WO2019165787A1 - 一种加载刚度可调岩石力学试验系统及试验方法 - Google Patents

一种加载刚度可调岩石力学试验系统及试验方法 Download PDF

Info

Publication number
WO2019165787A1
WO2019165787A1 PCT/CN2018/111402 CN2018111402W WO2019165787A1 WO 2019165787 A1 WO2019165787 A1 WO 2019165787A1 CN 2018111402 W CN2018111402 W CN 2018111402W WO 2019165787 A1 WO2019165787 A1 WO 2019165787A1
Authority
WO
WIPO (PCT)
Prior art keywords
stiffness
loading
unit
test
value
Prior art date
Application number
PCT/CN2018/111402
Other languages
English (en)
French (fr)
Inventor
谭云亮
刘学生
赵同彬
宋世琳
尹延春
范德源
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2019165787A1 publication Critical patent/WO2019165787A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Definitions

  • the invention relates to the technical field of rock mechanics test systems, in particular to a rock mechanics test system and test method with adjustable load stiffness.
  • Impact ground pressure is one of the main power disasters in coal mining. With the transfer of coal mining to the deep, the impact of ground pressure accidents frequently occurred, causing a large number of casualties and property losses, seriously affecting the safe and efficient production of coal mines. For example, on January 12, 2013, a ground pressure accident occurred in Wulong Coal Mine of Liaoning Fuxin Mining Company, causing 8 deaths; on July 29, 2015, the impact pressure of the 1305 island working face of Zhaolou Coal Mine of Shandong Yankuang Group occurred. In the accident, five people were injured; on August 15, 2016, a ground pressure accident occurred in the concentrated belt lane of the 35,000 mining area of Liangbaosi Coal Mine in Shandongzhou, causing two deaths.
  • the rock mechanics testing machine has experienced more and more functions and better performance from the initial lever loading and manual operation to the current hydraulic loading and computer control.
  • most of the existing rock mechanics testing machines are loaded with hydraulic cylinders, and a high-rigidity metal column is used as the pressure-bearing column.
  • the loading stiffness of the testing machine is approximately unchanged.
  • the electro-hydraulic servo three-axis produced by American MTS Company The testing machine is the most famous. Domestic and foreign scholars have used these testing machines to study the deformation and failure, crack propagation evolution and instability characteristics of coal rock, and have achieved rich results.
  • the coal body is clamped by the top and bottom rock layers. Due to the different conditions of the top and bottom plates, the deformation and failure of the coal body is not only related to the force but also affected by the conditions of the top and bottom plates, namely the surrounding rock. Changes in the combination of the sex and the loading and unloading process, so that the same / similar lithology of the coal body shows a distinctly different mechanical behavior. Because the loading stiffness of the existing testing machine is fixed, and the actual loading conditions of the field engineering are not exactly the same, the obtained test results are quite different from the actual engineering coal body, and the deformation and failure and energy evolution of the specimen under different loading stiffness conditions cannot be carried out. The test can not reveal the mechanism of the dynamic disaster caused by the release of energy from different types of top and bottom plates. Therefore, the existing rock mechanics testing machine has great limitations.
  • the present invention provides a test for different stiffness loading of test pieces, and the operation is simple and convenient.
  • the load stiffness adjustable rock mechanics test system and test method are in accordance with the actual loading conditions of the site engineering.
  • a load stiffness adjustable rock mechanics test system comprising:
  • Variable stiffness unit for adjusting the loading stiffness during loading
  • a monitoring unit for monitoring the loading stiffness of the test system, and pressure and displacement changes of the test piece, and generating monitoring data
  • the data analysis unit is respectively connected to the loading unit, the variable stiffness unit and the monitoring unit, the data analysis unit is configured to control the loading unit loading, and the data analysis unit is further configured to process and analyze the received monitoring data, and according to the analysis result
  • the variable stiffness unit is controlled to adjust the loading stiffness.
  • the loading unit comprises a base, a loading cylinder, an upper pressing plate, a lower pressing plate, a pressure chamber and a loading servo controller, and two racks are fixed at intervals on both sides of the upper surface of the base, and the upper part of the two racks Connected by a cross frame;
  • the loading cylinder is fixed on the upper surface of the base and located between the two frames;
  • the upper pressure plate is connected to the bottom of the variable stiffness unit, and the lower pressure plate and the piston rod of the loading cylinder Connected;
  • the pressure chamber is disposed above the loading cylinder, the upper pressure plate and the lower pressure plate are respectively disposed above and below the interior of the pressure chamber, and the test piece is placed between the upper pressure plate and the lower pressure plate;
  • the servo controller is loaded and connected to the loading cylinder and the data analysis unit respectively.
  • variable stiffness unit includes a servo cylinder, a fuel tank and a variable stiffness servo controller, the servo cylinder is disposed under the cross frame, and the piston rod of the servo cylinder is connected with the upper pressure plate; the oil tank and the servo cylinder
  • the variable stiffness servo controller is connected to the servo cylinder and the data analysis unit.
  • the monitoring unit includes a pressure sensor, a displacement sensor and a signal collector, the pressure sensor is disposed between the cross frame and the servo cylinder, and the displacement sensor is disposed on the upper pressure plate and located above the pressure chamber.
  • the front end of the signal collector is connected to the pressure sensor and the displacement sensor, and the back end is connected to the data analysis unit.
  • the side wall of the pressure chamber is further provided with a door that can be opened and closed.
  • variable stiffness servo controller of the invention is as follows: one is to change the rigidity of the servo cylinder by controlling the discharge (in) oil of the fuel tank when performing the change of the stiffness command; the second is to adjust the oil by the quick discharge (in) during the test. To keep the loading stiffness constant.
  • the method for adjusting the loading stiffness of the adjustable rock mechanics test system of the present invention comprises the following steps:
  • the first step is to place the test piece into the pressure chamber
  • the second step controls the loading unit to load the test piece
  • the third step is to monitor the pressure change of the test piece and the stiffness change of the variable stiffness unit in real time. Once the stiffness value of the variable stiffness unit is found to deviate from the set value, the variable stiffness servo controller is quickly adjusted to keep the stiffness at the set value. Specifically: the pressure sensor monitors the pressure value of the test piece in real time, that is, the pressure value of the servo cylinder, the displacement sensor monitors the displacement change of the servo cylinder, and determines the compression required by the servo cylinder according to the current pressure value and the set load stiffness value. Displacement, combined with the existing displacement change of the servo cylinder, determine the displacement that needs to be changed. The variable stiffness servo controller controls the fuel tank to discharge the oil into the servo cylinder, so that the compression displacement of the servo cylinder reaches the required compression value. Adjusting the stiffness value of the variable stiffness unit to a set value;
  • the loading unit continues to load, the variable stiffness unit adjusts the loading stiffness value to remain constant, or adjusts the stiffness value of the variable stiffness unit to the next set value again according to the method described in the third step.
  • test method for the mechanical properties of coal under different roof stiffness using the test system of the present invention is as follows:
  • a plurality of sets of different stiffness roof rock samples and coal samples to be tested are respectively processed into a plurality of standard cylindrical test pieces, and the number of test pieces of the coal sample to be tested under each load stiffness is required to be not less than three sets;
  • Step 2 Determine the stiffness values of different top plates
  • the load test of the test pieces of different top plates was carried out, and the stress-strain curves of different top test pieces were obtained.
  • the elastic modulus of different top test pieces was obtained according to the stress-strain curves of different top test pieces, and the transverse test pieces of different top test pieces were measured.
  • Cross-sectional area according to the formula to determine the stiffness of different top plates:
  • the third step selecting the stiffness value of a certain top plate determined in the second step as the loading stiffness value, and testing the compressive strength value and the elastic modulus value of the test piece under the stiffness.
  • Step 3.1 Loading test
  • the loading stiffness value of the variable stiffness rock mechanics testing machine is equal to the stiffness value of the top plate, and the coal test piece to be tested is placed in the pressure chamber; then the testing machine is started to carry out the loading test of the coal test piece to be tested.
  • the data monitored by the pressure sensor and the displacement sensor are collected in real time, and the corresponding servo cylinder compression displacement is determined according to the set stiffness value and the current pressure value, and the existing displacement of the servo cylinder is continuously passed through the row.
  • the oil or the oil is adjusted to adjust the compression displacement of the servo cylinder to achieve a constant stiffness value during the loading process, and the stress-strain curve of the coal specimen to be tested under the preset stiffness is obtained through a loading test;
  • Step 3.2 Repeated loading test
  • Step 3.3 The compressive strength and the elastic modulus obtained by the plurality of tests are respectively averaged, and the average value is the compressive strength and the elastic modulus of the coal specimen to be tested at the stiffness;
  • Step 4 Replace the load stiffness value and repeat the step three method to obtain the compressive strength and elastic modulus of the coal specimen to be tested under the new test stiffness; and so on, until the coal specimen to be tested is at all stiffness Compressive strength and modulus of elasticity;
  • Step 5 Draw the mechanical characteristics of the coal under different roof stiffness
  • the data analysis unit processes and analyzes the received monitoring data, and controls the variable stiffness unit to adjust its own stiffness according to the analysis result, thereby The constant or change of the loading stiffness value before the test (in the test) is realized, so that the rock mechanics test is closer to the actual engineering conditions.
  • the invention not only fills the gaps in the field at home and abroad, but also has the test operation simple and research. The result is more accurate and so on.
  • the invention replaces the pressure bearing column with a servo oil cylinder, and the loading stiffness can be continuously changed, and the adjustment precision is high, so that the testing machine can perform rock mechanics loading test under various rigidity.
  • the stiffness value of the testing machine is just equal to the stiffness value of the top plate, so that the mechanical characteristic curve of the coal body under different roof stiffness can be obtained by the test method of the invention, and the curve can be further analyzed.
  • the influence of the rigidity of the roof on the mechanical properties of the coal body is obtained, and the mechanical properties obtained by the technicians in the field as the support parameters of the roadway support and the impact disaster prevention and control are solved for a long time.
  • the mechanical characteristics reflect the influence of the roof rock stratum. As the supporting design and the basic parameters of the rock pressure prevention and control, it is more consistent with the actual field engineering, which provides a basis for guiding the mine production, with outstanding substantive characteristics and significant progress.
  • FIG. 1 is a schematic structural view of a load stiffness adjustable rock mechanics test system of the present invention
  • FIG. 2 is a schematic diagram of a variable stiffness unit of the load stiffness adjustable rock mechanics test system of the present invention
  • 1-loading unit 11-base, 12-frame, 13-cross frame, 14-loading cylinder, 15-up pressure plate, 16-low pressure plate, 17-pressure chamber, 18-load servo controller;
  • 2-variable stiffness unit 21-servo cylinder, 22-tank, 23-variable stiffness servo controller;
  • 3-monitoring unit 31-pressure sensor, 32-displacement sensor, 33-signal collector;
  • the load stiffness adjustable rock mechanics test system of the present invention includes:
  • Variable stiffness unit 2 for adjusting the loading stiffness during loading
  • a monitoring unit 3 for monitoring the loading stiffness of the test system, and the pressure and displacement changes of the test piece 5, and generating monitoring data
  • the data analysis unit 4 is respectively connected to the loading unit 1, the variable stiffness unit 2 and the monitoring unit 3, the data analysis unit 4 is used to control the loading of the loading unit 1, and the data analysis unit 4 is further configured to perform the monitoring data received.
  • the analysis is processed, and the variable stiffness unit 2 is controlled to adjust the loading stiffness according to the analysis result.
  • the data analysis unit 4 of the present invention is a control element having a processing operation capability such as a computer or a controller.
  • the invention monitors the pressure change and the load stiffness change of the test piece 5 by the monitoring unit 3, and generates monitoring data. Then, the data analysis unit 4 processes and analyzes the received monitoring data, and controls the variable stiffness unit 2 to adjust itself according to the analysis result. Stiffness, so that the load stiffness value can be constant or changed before the test (in the test), so that the rock mechanics test is closer to the actual engineering conditions. At the same time, the invention not only fills the blanks in this field at home and abroad, but also has the test. The operation is simple and the research results are more accurate.
  • the loading unit 1 of the present invention comprises:
  • the base 11 has two frames 12 fixedly spaced on both sides of the upper surface, and the upper portions of the two frames 12 are connected by the cross frame 13;
  • the loading cylinder 14 is fixed on the upper surface of the base 11 and located between the two frames 12; specifically, in the present invention, the loading cylinder 14 is fixedly connected to the base 11 by bolts, and the loading cylinder 14 can also be welded or the like. It is fixedly connected to the base 11.
  • the upper platen 15 and the lower platen 16 the upper platen 15 is connected to the bottom of the variable stiffness unit 2, and the lower platen 16 is connected to the piston rod of the loading cylinder 14;
  • the upper pressure plate 15 and the lower pressure plate 16 are respectively disposed above and below the inside of the pressure chamber 17, and the test piece 5 is placed between the upper pressure plate 15 and the lower pressure plate 16;
  • the upper platen 15 is partially disposed in the pressure chamber 17, and the lower platen 15 is entirely located inside the pressure chamber 17, and the shape and size of the lower platen 15 are adapted to the shape and size of the pressure chamber 17, such that It is ensured that the test piece 5 has a sufficiently large effective support surface and can improve the stability of the system during loading.
  • the servo controller 18 is loaded and connected to the loading cylinder 14 and the data analysis unit 4, respectively.
  • the loading servo controller 18 is configured to receive a control signal from the data analysis unit 4, control the loading of the loading cylinder 14, and effect loading of the test piece 5.
  • the variable stiffness unit 2 of the present invention comprises a servo cylinder 21, a fuel tank 22 and a variable stiffness servo controller 23.
  • the servo cylinder 21 is disposed below the cross frame 13, and the piston rod of the servo cylinder 21 is connected to the upper pressure plate 15, and the oil tank 22 Connected to the servo cylinder 21, the variable stiffness servo controller 23 is connected to the servo cylinder 21 and the data analysis unit 4.
  • the variable stiffness servo controller 23 By controlling the operation of the servo cylinder 21 by the variable stiffness servo controller 23, the upper platen 15 can be moved up and down, thereby changing the distance between the upper platen 15 and the lower platen 16.
  • the monitoring unit 3 includes a pressure sensor 31, a displacement sensor 32 and a signal collector 33.
  • the pressure sensor 31 is disposed between the cross frame 13 and the servo cylinder 21, and the displacement sensor 32 is disposed on the upper pressure plate 15 and above the pressure chamber 17.
  • the front end of the signal collector 33 is connected to the pressure sensor 31 and the displacement sensor 32, and the rear end is connected to the data analysis unit 4.
  • the signal collector 33 is a multi-channel data collector, and the collected data is sent to the data analysis unit 4 through the signal transmission line.
  • the principle of stiffness adjustment of the loading unit 1 in the present invention is as follows:
  • variable stiffness unit 2 After the variable stiffness unit 2 receives the command to change the stiffness from the data analysis unit 4, the pressure value of the test piece 5 at this time is determined by the pressure sensor 31, that is, the pressure value of the servo cylinder 21, and the servo cylinder 21 is determined through calculation. The required compression displacement is then fed back to the variable stiffness servo controller 23 by the displacement sensor 32 to determine the displacement of the servo cylinder 21 at this time, and the displacement of the servo cylinder 21 is determined, and the control oil tank 22 is arranged for the servo cylinder 21. The oil is introduced to bring the compression displacement of the servo cylinder 21 to a desired compression value, thereby realizing a change in the load stiffness value.
  • variable stiffness servo controller 23 also collects the values from the pressure sensor 31 and the displacement sensor 32 in real time, and controls the displacement of the servo cylinder 21 to ensure a constant load stiffness value.
  • the side wall of the pressure chamber 17 is further provided with a door which can be opened and closed.
  • the rock stiffness test system loading stiffness adjustment method of the present invention comprises the following steps:
  • test piece 5 is placed in the pressure chamber 17;
  • the second step controls the loading unit to load the test piece 5;
  • the pressure change of the test piece 5 and the change of the stiffness of the variable stiffness unit 2 are monitored in real time.
  • the variable stiffness servo controller 23 is quickly adjusted to keep the stiffness constant.
  • the pressure sensor 31 monitors the pressure value of the test piece 5 in real time, that is, the pressure value of the servo cylinder 21, and the displacement sensor 32 monitors the displacement change of the servo cylinder 21 according to the current pressure value and the set load stiffness.
  • the value calculation determines the compression displacement required by the servo cylinder, and determines the displacement that needs to be changed in combination with the existing displacement change of the servo cylinder 21, and controls the oil tank 22 to discharge (in) the oil to the servo cylinder 21 through the variable stiffness servo controller 23.
  • the compression displacement of the servo cylinder 21 reaches a desired compression value, and the stiffness value of the variable stiffness unit 2 is adjusted to a set value;
  • the loading unit 1 continues to load, and the variable stiffness unit 2 adjusts the loading stiffness value to remain constant or to the next set value.
  • test method for the mechanical properties of coal under different roof stiffness using the test system of the present invention is as follows:
  • the first step processing multiple sets of different stiffness roof rock samples and coal samples to be tested into a plurality of standard cylindrical test pieces 5, requiring that the number of test pieces to be tested under each load stiffness is not less than three groups;
  • Step 2 Determine the stiffness values of different top plates
  • the load test of the test pieces of different top plates was carried out, and the stress-strain curves of different top test pieces were obtained.
  • the elastic modulus of different top test pieces was obtained according to the stress-strain curves of different top test pieces, and the transverse test pieces of different top test pieces were measured.
  • Cross-sectional area according to the formula to determine the stiffness of different top plates:
  • the third step before the test, according to the top plate stiffness value obtained in the second step, preset the load stiffness value of the variable stiffness rock mechanic test machine, and place the test piece 5 into the pressure chamber 17; then start the test machine to make it
  • the test piece 5 performs a loading test.
  • the data monitored by the pressure sensor 31 and the displacement sensor 32 are collected in real time, and the required compression displacement of the servo cylinder 21 is calculated according to the current pressure value and the set load stiffness value.
  • the existing displacement of the servo cylinder 21 continuously adjusts the compression displacement of the servo cylinder 21 through oil discharge or oil intake to achieve a constant stiffness value during the loading process, and the stress-strain of the test piece 5 under the preset stiffness is obtained by the loading test. curve;
  • the fourth step replace the test piece 5, repeat the test of step three, the load test under the same stiffness is performed at least three times, and the stress-strain curve of one test piece 5 is obtained each time, and each stress-strain curve can obtain a compressive pressure.
  • the strength value and an elastic modulus value, the compressive strength and the elastic modulus obtained by the multiple tests are respectively averaged, that is, the compressive strength and the elastic modulus of the test piece 5 at this rigidity;
  • the fifth step changing the loading stiffness value of the testing machine, repeating the above step three, obtaining the compressive strength and elastic modulus of the test piece 5 under the new test rigidity;
  • Step 6 After repeating multiple sets of tests, according to the measured test data, the mechanical characteristics of the coal body under different stiffness of the test machine are obtained, that is, the mechanical characteristics of the coal under different roof stiffness.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种加载刚度可调岩石力学试验系统及试验方法,试验系统包括加载单元(1),用于对岩石试件(5)进行加载;变刚度单元(2),用于在加载过程中调节加载单元(1)的刚度;监测单元(3),用于监测岩石试件(5)的压力变化和加载单元(1)的刚度变化,并生成监测数据;数据分析单元(4),分别与加载单元(1)、变刚度单元(2)和监测单元(3)相连接,数据分析单元(4)用于控制加载单元(1)加载,且数据分析单元(4)还用于对接收的监测数据进行处理分析,并根据分析结果控制变刚度单元(2)调节加载单元(1)的刚度。加载刚度可调岩石力学试验系统及试验方法使岩石力学试验更加贴近实际生产状况,不仅填补了国内外在这一领域的空白,还具有试验操作简便、研究结果更加准确等优点。

Description

一种加载刚度可调岩石力学试验系统及试验方法 技术领域
本发明涉及岩石力学试验系统技术领域,尤其涉及一种加载刚度可调岩石力学试验系统及试验方法。
背景技术
冲击地压是煤矿开采的主要动力灾害之一。随着煤炭开采向深部转移,冲击地压事故频繁发生,造成了大量人员伤亡和财产损失,严重影响煤矿安全高效生产。例如,2013年1月12日,辽宁省阜新矿业公司五龙煤矿发生冲击地压事故,造成8人死亡;2015年7月29日,山东兖矿集团赵楼煤矿1305孤岛工作面发生冲击地压事故,造成5人受伤;2016年8月15日,山东省梁宝寺煤矿35000采区集中皮带巷发生冲击地压事故,造成2人死亡。为此,国内外学者针对冲击地压开展了多年的研究,取得了较丰富的成果,但是由于冲击地压自身的复杂性,目前仍有很多难题没有解决,煤矿冲击地压防治成为世界性疑难杂症之一,是国内外攻关研究的热点问题。试验研究是揭示冲击地压孕灾机理、能量释放规律的最基本手段之一,岩石力学试验机则是试验研究的必备工具。
岩石力学试验机经历了从开始的杠杆加载和手工操作,到目前的液压加载和计算机控制,其功能越来越多,性能也越来越好。在试验机的发展过程中有两大进步,一是刚性试验机的应用,二是反馈伺服系统的实现,引领了岩石力学试验机的发展。目前,现有的岩石力学试验机大多数是采用液压油缸进行加载,利用一高刚度金属柱作为承压柱,试验机加载刚度近似不变,其中,以美国MTS公司生产的电液伺服三轴试验机最为著名。国内外学者利用这些试验机 研究煤岩的变形破坏、裂纹扩展演化及失稳特征等问题,取得了丰富的成果。
然而,由于现场实际地质工程条件复杂,煤体被顶底板岩层夹持,由于顶底板条件的不同,导致煤体的变形破坏不仅与受力有关,还受到顶底板条件的影响,即围岩岩性组合及加卸载过程等变化,使相同/相近岩性的煤体表现出明显不同的力学行为。由于现有试验机加载刚度固定,与现场工程实际加载条件不完全相同,获得的试验结果与现场工程煤体实际有较大差异,且无法开展不同加载刚度条件下试件变形破坏及能量演化规律试验,故无法揭示不同类型顶底板释放能量诱发煤岩体动力灾害机理。因此,现有的岩石力学试验机存在较大局限性。
发明内容
为了开展不同加载刚度条件下试件变形破坏及能量演化规律试验,揭示不同类型顶底板释放能量诱发煤岩体动力灾害机理,本发明提供一种能实现试件不同刚度加载试验、操作简单方便、符合现场工程实际加载条件的加载刚度可调岩石力学试验系统及试验方法。
为达到上述目的,本发明采取的技术方案是:
一种加载刚度可调岩石力学试验系统,其包括:
加载单元,用于对试件进行加载;
变刚度单元,用于在加载过程中调节加载刚度;
监测单元,用于监测所述试验系统加载刚度,以及试件的压力和位移变化,并生成监测数据;
数据分析单元,分别与所述加载单元、变刚度单元和监测单元相连接,数据分析单元用于控制加载单元加载,且数据分析单元还用于对接收的监测数据 进行处理分析,并根据分析结果控制变刚度单元调节加载刚度。
进一步地,所述加载单元包括底座、加载油缸、上压盘、下压盘、压力室和加载伺服控制器,在底座的上表面两侧间隔地固定有两个机架,两个机架上部通过横架相连接;所述的加载油缸固定在底座的上表面,且位于两个机架之间;所述上压盘与变刚度单元的底部相连接,下压盘与加载油缸的活塞杆相连接;所述的压力室设置在加载油缸上方,上压盘和下压盘分别穿设在压力室的内部上方和下方,试件放置在上压盘和下压盘之间;所述的加载伺服控制器,分别与加载油缸和数据分析单元相连接。
进一步地,所述变刚度单元包括伺服油缸、油箱和变刚度伺服控制器,所述伺服油缸设置在横架的下方,且伺服油缸的活塞杆与上压盘相连接;所述油箱与伺服油缸和变刚度伺服控制器相连接;所述变刚度伺服控制器与伺服油缸和数据分析单元相连接。
进一步地,所述监测单元包括压力传感器、位移传感器和信号采集器,所述压力传感器设置在横架与伺服油缸之间,所述位移传感器设置在上压盘上,且位于压力室的上方,所述信号采集器前端与压力传感器和位移传感器相连接,后端与数据分析单元相连接。
进一步地,所述压力室的侧壁上还设有可打开和关闭的仓门。
本发明变刚度伺服控制器的作用:一是执行改变刚度命令时,通过控制油箱的排(进)油来实现伺服油缸刚度的改变;二是在试验中,可通过快速排(进)油调节来保持加载刚度的恒定。
本发明的可调岩石力学试验系统加载刚度的调节方法,其包括以下步骤:
第一步、将试件放置到压力室中;
第二步、预设加载刚度值,控制加载单元对试件进行加载;
第三步、实时监测试件的压力变化和变刚度单元的刚度变化,一旦发现变刚度单元刚度值偏离设定值,通过变刚度伺服控制器快速进行调整,使其刚度始终保持在设定值;具体为:压力传感器实时监测试件的压力值,即为伺服油缸的压力值,位移传感器监测伺服油缸的位移变化,根据当前压力值和设定的加载刚度值计算确定伺服油缸所需的压缩位移,结合伺服油缸已有的位移变化,确定其需要改变的位移,通过变刚度伺服控制器控制油箱对伺服油缸进行排(进)油,使伺服油缸的压缩位移达到所需的压缩值,实现将变刚度单元的刚度值调节至设定值;
第四步、加载单元继续加载,变刚度单元调节加载刚度值保持恒定,或再次按照第三步记载的方法将变刚度单元的刚度值调节至下一设定值。
利用本发明试验系统对不同顶板刚度下煤体力学特性的试验方法为:
第一步:试件制作
将多组不同刚度顶板岩样和待测煤试样分别加工成多个标准圆柱体试件,要求每个加载刚度下待测煤试样试件数不少于三组;
第二步:确定不同顶板的刚度值
对不同顶板的试件进行加载试验,得到不同顶板试件的应力-应变曲线,根据不同顶板试件的应力-应变曲线得到不同顶板试件的弹性模量,同时测得不同顶板试件的横截面积,根据公式求得不同顶板的刚度:
Figure PCTCN2018111402-appb-000001
式中,
k——顶板刚度,单位,N/m;
E——顶板岩样试件弹性模量,单位,MPa;
A——顶板岩样试件横截面积,单位m 2
L——顶板岩样试件的高度,单位,m;
第三步:选取第二步确定的某一顶板的刚度值作为加载刚度值,对待测煤试件在该刚度下的抗压强度值和弹性模量值进行试验
第3.1步:加载试验
试验前,首先预设变刚度岩石力学试验机的加载刚度值等于该顶板的刚度值,将待测煤试件放置到压力室中;然后启动试验机,使其对待测煤试件进行加载试验,在加载试验过程中,实时采集压力传感器和位移传感器监测到的数据,根据设定的刚度值与当前压力值确定相对应的伺服油缸压缩位移,结合伺服油缸已有的位移,不断地通过排油或进油调整伺服油缸的压缩位移,以实现加载过程中刚度值的恒定,通过加载试验获得待测煤试件在该预设刚度下的应力—应变曲线;
第3.2步:重复加载试验
更换煤试件,重复步骤3.1的试验,对该刚度下加载试验至少进行三次,每次得到一个待测煤试件的应力—应变曲线,每个应力—应变曲线可以求得一个抗压强度值和一个弹性模量值;
第3.3步:将多次试验获得的抗压强度和弹性模量分别求平均值,该平均值即为待测煤试件此刚度下的抗压强度和弹性模量;
第四步:更换加载刚度值,重复步骤三方法,从而得到待测煤试件在新的 试验刚度下的抗压强度和弹性模量;以此类推,直到得到待测煤试件在所有刚度下的抗压强度和弹性模量;
第五步:绘制出不同顶板刚度下煤体的力学特性曲线
根据得到的各个顶板刚度下待测煤试件的抗压强度和弹性模量,绘制出不同试验机刚度下的煤体力学特性曲线,即不同顶板刚度下煤体的力学特性曲线。
本发明的有益效果在于:
1、通过监测单元监测试件的压力变化和加载刚度变化,并生成监测数据,然后,数据分析单元对接收的监测数据进行处理分析,并根据分析结果控制变刚度单元调节其自身刚度,从而可实现在试验前(试验中)加载刚度值的恒定或改变,进而使岩石力学试验更加贴近实际工程条件,同时,本发明不仅填补了国内外在这一领域的空白,还具有试验操作简便、研究结果更加准确等优点。
2、本发明用伺服油缸代替承压柱,实现加载刚度可连续变化,调节精度高,使试验机可以进行多种刚度下的岩石力学加载试验。
3、本发明在加载试验过程中,试验机的刚度值刚好等于顶板的刚度值,这样通过本发明试验方法,不仅可以得到不同顶板刚度下煤体的力学特性曲线,还可以进一步通过分析该曲线得到顶板刚度对煤体力学特性的影响,解决了长期以来,本领域技术人员以顶板岩层和/或煤体的力学特性作为巷道支护设计和冲击灾害防治基础参数的不足,试验获得的煤体力学特性体现了顶板岩层影响,作为支护设计和冲击地压防治基础参数时,与现场工程实际更加吻合,从而为指导矿井生产提供了依据,具有突出的实质性特点和显著的进步。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本发明的加载刚度可调岩石力学试验系统的结构示意图;
图2是本发明的加载刚度可调岩石力学试验系统的变刚度单元的原理图;
图中:
1-加载单元,11-底座,12-机架,13-横架,14-加载油缸,15-上压盘,16-下压盘,17-压力室,18-加载伺服控制器;
2-变刚度单元,21-伺服油缸,22-油箱,23-变刚度伺服控制器;
3-监测单元,31-压力传感器,32-位移传感器,33-信号采集器;
4-数据分析单元;
5-试件。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
参阅图1-2所示,本发明的加载刚度可调岩石力学试验系统,其包括:
加载单元1,用于对试件5进行加载;
变刚度单元2,用于在加载过程中调节加载刚度;
监测单元3,用于监测所述试验系统加载刚度,以及试件5的压力和位移变化,并生成监测数据;
数据分析单元4,分别与所述加载单元1、变刚度单元2和监测单元3相连接,数据分析单元4用于控制加载单元1加载,且数据分析单元4还用于对接 收的监测数据进行处理分析,并根据分析结果控制变刚度单元2调节加载刚度。本发明的数据分析单元4为计算机、控制器等具有处理运算能力的控制元件。
本发明通过监测单元3监测试件5的压力变化和加载刚度变化,并生成监测数据,然后,数据分析单元4对接收的监测数据进行处理分析,并根据分析结果控制变刚度单元2调节其自身刚度,从而可实现在试验前(试验中)加载刚度值的恒定或改变,进而使得岩石力学试验更加贴近实际工程条件,同时,本发明不仅填补了国内外在这一领域的空白,还具有试验操作简便、研究结果更加准确等优点。
本发明的加载单元1包括:
底座11,上表面两侧间隔地固定有两个机架12,两个机架12的上部通过横架13相连接;
加载油缸14,固定在底座11的上表面,且位于两个机架12之间;具体地,本发明中,加载油缸14通过螺栓与底座11固定连接,加载油缸14也可以通过焊接等其他方式与底座11固定连接。
上压盘15和下压盘16,上压盘15与变刚度单元2的底部相连接,下压盘16与加载油缸14的活塞杆相连接;
压力室17,设置在加载油缸14上方,上压盘15和下压盘16分别穿设在压力室17的内部上方和下方,试件5放置在上压盘15和下压盘16之间;具体地,上压盘15部分穿设在压力室17内,下压盘15完全位于压力室17的内部,且下压盘15的形状和大小与压力室17的形状和大小相适配,这样可以保证试件5具有足够大的有效支撑面,且能提高加载过程中系统的稳定性。
加载伺服控制器18,分别与加载油缸14和数据分析单元4相连接。加载伺 服控制器18用于接收数据分析单元4的控制信号,控制加载油缸14动作,实现对试件5的加载。
本发明的变刚度单元2包括伺服油缸21、油箱22和变刚度伺服控制器23,伺服油缸21设置在横架13的下方,且伺服油缸21的活塞杆与上压盘15相连接,油箱22与伺服油缸21相连接,变刚度伺服控制器23与伺服油缸21和数据分析单元4相连接。通过变刚度伺服控制器23控制伺服油缸21动作,即可带动上压盘15上下移动,从而改变上压盘15和下压盘16之间的间距。
监测单元3包括压力传感器31、位移传感器32和信号采集器33,压力传感器31设置在横架13与伺服油缸21之间,位移传感器32设置在上压盘15上,且位于压力室17的上方,信号采集器33前端与压力传感器31和位移传感器32相连接,后端与数据分析单元4相连接。信号采集器33为多通道数据采集器,将采集到的数据通过信号传输线输送给数据分析单元4。
本发明中的加载单元1的刚度调节原理如下:
1)、变刚度单元2接受来自数据分析单元4改变刚度的命令后,通过压力传感器31确定此时试件5所受的压力值,即为伺服油缸21的压力值,经过计算确定伺服油缸21所需的压缩位移,然后,通过位移传感器32将伺服油缸21此时的压缩位移反馈给变刚度伺服控制器23,确定此时伺服油缸21需要改变的位移,控制油箱22对伺服油缸21进行排(进)油,使伺服油缸21的压缩位移达到所需的压缩值,从而实现加载刚度值的改变。
2)、变刚度伺服控制器23还实时收集来自压力传感器31和位移传感器32的数值,通过控制伺服油缸21的排(进)油,来保证加载刚度值的恒定。
优选地,为了方便放入或取出试件5,压力室17的侧壁上还设有可打开和 关闭的仓门。
本发明的岩石力学试验系统加载刚度调节方法,其包括以下步骤:
第一步、将试件5放置到压力室17中;
第二步、预设加载刚度值,控制加载单元对试件5进行加载;
第三步、实时监测试件5的压力变化和变刚度单元2的刚度变化,一旦发现变刚度单元2刚度值偏离设定值,通过变刚度伺服控制器23快速进行调整,使其刚度始终保持在设定值;具体为:压力传感器31实时监测试件5的压力值,即为伺服油缸21的压力值,位移传感器32监测伺服油缸21的位移变化,根据当前压力值和设定的加载刚度值计算确定伺服油缸所需的压缩位移,结合伺服油缸21已有的位移变化,确定其需要改变的位移,通过变刚度伺服控制器23控制油箱22对伺服油缸21进行排(进)油,使伺服油缸21的压缩位移达到所需的压缩值,实现变刚度单元2的刚度值调节至设定值;
第四步、加载单元1继续加载,变刚度单元2调节加载刚度值保持恒定或至下一设定值。
利用本发明试验系统对不同顶板刚度下煤体力学特性的试验方法为:
第一步:将多组不同刚度顶板岩样和待测煤试样分别加工成多个标准圆柱体试件5,要求每个加载刚度下待测煤试试件数不少于三组;
第二步:确定不同顶板的刚度值
对不同顶板的试件进行加载试验,得到不同顶板试件的应力-应变曲线,根据不同顶板试件的应力-应变曲线得到不同顶板试件的弹性模量,同时测得不同顶板试件的横截面积,根据公式求得不同顶板的刚度:
Figure PCTCN2018111402-appb-000002
式中,
k——顶板刚度,单位,N/m;
E——顶板岩样试件弹性模量,单位,MPa;
A——顶板岩样试件横截面积,单位m 2
L——顶板岩样试件的高度,单位,m;
第三步:试验前,根据第二步得到的顶板刚度值,预设好变刚度岩石力学试验机的加载刚度值,将试件5放置到压力室17中;然后启动试验机,使其对试件5进行加载试验,在加载试验过程中,实时采集压力传感器31和位移传感器32监测到的数据,根据当前压力值和设定的加载刚度值计算确定伺服油缸21所需的压缩位移,结合伺服油缸21已有的位移,不断地通过排油或进油调整伺服油缸21的压缩位移,以实现加载过程中刚度值的恒定,通过加载试验获得试件5在预设刚度下的应力—应变曲线;
第四步:更换试件5,重复步骤三的试验,对同一刚度下加载试验至少进行三次,每次得到一个试件5的应力—应变曲线,每个应力—应变曲线可以求得一个抗压强度值和一个弹性模量值,多次试验获得的抗压强度和弹性模量分别求平均值,即为试件5在此刚度下的抗压强度和弹性模量;
第五步:改变试验机加载刚度值,重复上述步骤三,得到试件5在新的试验刚度下的抗压强度和弹性模量;
第六步:重复多组试验后,根据测得的试验数据,做出不同试验机刚度下的煤体力学特性曲线,即不同顶板刚度下煤体的力学特性曲线。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此, 任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (7)

  1. 一种加载刚度可调岩石力学试验系统,其特征在于,其包括:
    加载单元,用于对试件进行加载;
    变刚度单元,用于在加载过程中调节加载刚度;
    监测单元,用于监测所述试验系统加载刚度,以及试件的压力和位移变化,并生成监测数据;
    数据分析单元,分别与所述加载单元、变刚度单元和监测单元相连接,数据分析单元用于控制加载单元加载,且数据分析单元还用于对接收的监测数据进行处理分析,并根据分析结果控制变刚度单元调节加载刚度。
  2. 如权利要求1所述的加载刚度可调岩石力学试验系统,其特征在于,所述加载单元包括底座、加载油缸、上压盘、下压盘、压力室和加载伺服控制器,在底座的上表面两侧间隔地固定有两个机架,两个机架上部通过横架相连接;所述的加载油缸固定在底座的上表面,且位于两个机架之间;所述上压盘与变刚度单元的底部相连接,下压盘与加载油缸的活塞杆相连接;所述的压力室设置在加载油缸上方,上压盘和下压盘分别穿设在压力室的内部上方和下方,试件放置在上压盘和下压盘之间;所述的加载伺服控制器,分别与加载油缸和数据分析单元相连接。
  3. 如权利要求1所述的加载刚度可调岩石力学试验系统,其特征在于,所述变刚度单元包括伺服油缸、油箱和变刚度伺服控制器,所述伺服油缸设置在横架的下方,且伺服油缸的活塞杆与上压盘相连接;所述油箱与伺服油缸和变刚度伺服控制器相连接;所述变刚度伺服控制器与伺服油缸和数据分析单元相连接。
  4. 如权利要求1所述的加载刚度可调岩石力学试验系统,其特征在于,所 述监测单元包括压力传感器、位移传感器和信号采集器,所述压力传感器设置在横架与伺服油缸之间,所述位移传感器设置在上压盘上,且位于压力室的上方,所述信号采集器前端与压力传感器和位移传感器相连接,后端与数据分析单元相连接。
  5. 如权利要求1所述的加载刚度可调岩石力学试验系统,其特征在于,所述压力室的侧壁上还设有可打开和关闭的仓门。
  6. 一种利用权利要求1-5任一所述的加载刚度可调岩石力学试验系统调节加载刚度的方法,其特征在于,其包括以下步骤:
    第一步、将试件放置到压力室中;
    第二步、预设加载刚度值,控制加载单元对试件进行加载;
    第三步、实时监测试件的压力变化和变刚度单元的刚度变化,一旦发现变刚度单元刚度值偏离设定值,通过变刚度伺服控制器快速进行调整,使其刚度始终保持在设定值;具体为:压力传感器实时监测试件的压力值,即为伺服油缸的压力值,位移传感器监测伺服油缸的位移变化,根据当前压力值和设定的加载刚度值计算确定伺服油缸所需的压缩位移,结合伺服油缸已有的位移变化,确定其需要改变的位移,通过变刚度伺服控制器控制油箱对伺服油缸进行排或进油,使伺服油缸的压缩位移达到所需的压缩值,实现将变刚度单元的刚度值调节至设定值;
    第四步、加载单元继续加载,变刚度单元调节加载刚度值保持恒定,或再次按照第三步记载的方法将变刚度单元的刚度值调节至下一设定值。
  7. 一种利用权利要求1-5任一所述的加载刚度可调岩石力学试验系统对不同顶板刚度下煤体力学特性的试验方法为:
    第一步:试件制作
    将多组不同刚度顶板岩样和待测煤试样分别加工成标准圆柱体试件,要求每个加载刚度下待测煤试样试件数不少于三组;
    第二步:确定不同顶板的刚度值
    对不同顶板的试件进行加载试验,得到不同顶板试件的应力-应变曲线,根据不同顶板试件的应力-应变曲线得到不同顶板试件的弹性模量,同时测得不同顶板试件的横截面积,根据公式求得不同顶板的刚度:
    Figure PCTCN2018111402-appb-100001
    式中,
    k——顶板刚度,单位,N/m;
    E——顶板岩样试件弹性模量,单位,MPa;
    A——顶板岩样试件横截面积,单位m 2
    L——顶板岩样试件的高度,单位,m;
    第三步:选取第二步确定的某一顶板的刚度值作为加载刚度值,对待测煤试件在该刚度下的抗压强度值和弹性模量值进行试验
    第3.1步:加载试验
    试验前,首先预设变刚度岩石力学试验机的加载刚度值等于该顶板的刚度值,将待测煤试件放置到压力室中;然后启动试验机,使其对待测煤试件进行加载试验,在加载试验过程中,实时采集压力传感器和位移传感器监测到的数 据,根据设定的刚度值与当前压力值确定相对应的伺服油缸压缩位移,结合伺服油缸已有的位移,不断地通过排油或进油调整伺服油缸的压缩位移,以实现加载过程中刚度值的恒定,通过加载试验获得待测煤试件在该预设刚度下的应力—应变曲线;
    第3.2步:重复加载试验
    更换煤试件,重复步骤3.1的试验,对该刚度下加载试验至少进行三次,每次得到一个待测煤试件的应力—应变曲线,每个应力—应变曲线可以求得一个抗压强度值和一个弹性模量值;
    第3.3步:将多次试验获得的抗压强度和弹性模量分别求平均值,该平均值即为待测煤试件此刚度下的抗压强度和弹性模量;
    第四步:更换加载刚度值,重复步骤三方法,从而得到待测煤试件在新的试验刚度下的抗压强度和弹性模量;以此类推,直到得到待测煤试件在所有刚度下的抗压强度和弹性模量;
    第五步:绘制出不同顶板刚度下煤体的力学特性曲线
    根据得到的各个顶板刚度下待测煤试件的抗压强度和弹性模量,绘制出不同试验机刚度下的煤体力学特性曲线,即不同顶板刚度下煤体的力学特性曲线。
PCT/CN2018/111402 2018-09-19 2018-10-23 一种加载刚度可调岩石力学试验系统及试验方法 WO2019165787A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811094103.3A CN109269902B (zh) 2018-09-19 2018-09-19 一种加载刚度可调岩石力学试验系统及试验方法
CN201811094103.3 2018-09-19

Publications (1)

Publication Number Publication Date
WO2019165787A1 true WO2019165787A1 (zh) 2019-09-06

Family

ID=65198097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111402 WO2019165787A1 (zh) 2018-09-19 2018-10-23 一种加载刚度可调岩石力学试验系统及试验方法

Country Status (2)

Country Link
CN (1) CN109269902B (zh)
WO (1) WO2019165787A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380755A (zh) * 2019-10-16 2020-07-07 中南大学 一种用于岩石多角度压剪加卸荷的试验装置及加载方法
CN111879605A (zh) * 2020-09-10 2020-11-03 长安大学 一种接触刚度可调的冲击加载装置及其接触刚度调节方法
CN111965006A (zh) * 2020-09-03 2020-11-20 中国石油天然气集团有限公司 一种泥页岩颗粒强度测试仪及其测试方法
CN113340738A (zh) * 2021-05-24 2021-09-03 鲁西工业装备有限公司 一种全自动压力试验系统及测量方法
CN113607558A (zh) * 2021-07-08 2021-11-05 安徽省路桥试验检测有限公司 一种水泥试块抗压、抗折强度检测自动采集设备
CN113686657A (zh) * 2021-10-12 2021-11-23 辽宁工程技术大学 一种岩煤结构静动组合加载试验装置
CN114279861A (zh) * 2021-12-29 2022-04-05 中国科学院合肥物质科学研究院 一种超导导体力学性能自动化测试系统及其实现方法
CN115964931A (zh) * 2022-11-04 2023-04-14 广西大学 岩石高强高脆动静特性相似的材料配制理论、方法和配方
CN118130264A (zh) * 2024-05-06 2024-06-04 中国矿业大学(北京) 气囊补偿支护下硐室岩体性能的测试设备及评价方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095345B (zh) * 2019-04-12 2020-03-06 山东科技大学 一种加载刚度可调的真三轴试验机及试验方法
CN110031320B (zh) * 2019-04-12 2020-06-16 山东科技大学 一种内外框架组合式变刚度岩石力学试验机及试验方法
CN111208272A (zh) * 2020-01-13 2020-05-29 中煤科工集团重庆研究院有限公司 一种深井突出模拟实验方法及刚度调控装置
CN111665135B (zh) * 2020-07-13 2023-01-24 中煤科工集团重庆研究院有限公司 顶板岩体弹性能对煤岩组合体失稳破坏能量贡献度的试验装置及方法
US11499897B2 (en) 2021-03-06 2022-11-15 Shandong University Of Science And Technology Deformation controllable compression ring-based mechanical test system for rocks with variable stiffness and test method thereof
CN113092262B (zh) * 2021-03-06 2021-12-24 山东科技大学 基于变形可控承压环的变刚度岩石力学试验系统及试验方法
CN114279854B (zh) * 2021-12-22 2024-05-24 健研检测集团有限公司 一种桩筏的刚度调节装置的测试方法
CN114235595B (zh) * 2022-01-27 2023-01-10 福州大学 可智能化反映原岩应力变化的注浆模拟试验系统
CN114414392B (zh) * 2022-01-27 2023-04-14 山东科技大学 恒定侧向刚度常规三轴试验装置及其试验方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040244497A1 (en) * 2001-03-20 2004-12-09 Abdel-Hadi Ali Ismail Enhanced triaxial tester with volume change device for measurement of flow properties of dry cohesive particulate systems under low confining pressures
CN2833563Y (zh) * 2005-11-11 2006-11-01 绍兴市肯特机械电子有限公司 双速双油缸万能材料试验机
CN101614638A (zh) * 2009-07-10 2009-12-30 清华大学 一种卧式三轴拉压试验仪
CN101620055A (zh) * 2009-07-29 2010-01-06 河南理工大学 简易岩石蠕变试验装置及其试验方法
CN204228505U (zh) * 2014-09-12 2015-03-25 西安科技大学 一种新型岩石力学试验机
CN205027605U (zh) * 2015-07-23 2016-02-10 王立明 一种应力、温度和振动耦合作用下的岩石单轴压缩试验装置
CN107490517A (zh) * 2017-07-27 2017-12-19 河海大学 应力、微波和振动耦合作用下的岩石单轴压缩试验装置
CN207114300U (zh) * 2017-07-27 2018-03-16 河海大学 一种岩石单轴压缩试验装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9410874B2 (en) * 2012-03-31 2016-08-09 China University Of Mining & Technology (Beijing) Simulated impact-type rock burst experiment apparatus
CN106289989B (zh) * 2016-07-20 2019-03-26 西安理工大学 一种三向独立加载的大型真三轴仪
CN107655762A (zh) * 2017-09-22 2018-02-02 安徽理工大学 一种组合煤岩冲击倾向性试验模拟装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040244497A1 (en) * 2001-03-20 2004-12-09 Abdel-Hadi Ali Ismail Enhanced triaxial tester with volume change device for measurement of flow properties of dry cohesive particulate systems under low confining pressures
CN2833563Y (zh) * 2005-11-11 2006-11-01 绍兴市肯特机械电子有限公司 双速双油缸万能材料试验机
CN101614638A (zh) * 2009-07-10 2009-12-30 清华大学 一种卧式三轴拉压试验仪
CN101620055A (zh) * 2009-07-29 2010-01-06 河南理工大学 简易岩石蠕变试验装置及其试验方法
CN204228505U (zh) * 2014-09-12 2015-03-25 西安科技大学 一种新型岩石力学试验机
CN205027605U (zh) * 2015-07-23 2016-02-10 王立明 一种应力、温度和振动耦合作用下的岩石单轴压缩试验装置
CN107490517A (zh) * 2017-07-27 2017-12-19 河海大学 应力、微波和振动耦合作用下的岩石单轴压缩试验装置
CN207114300U (zh) * 2017-07-27 2018-03-16 河海大学 一种岩石单轴压缩试验装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380755A (zh) * 2019-10-16 2020-07-07 中南大学 一种用于岩石多角度压剪加卸荷的试验装置及加载方法
CN111380755B (zh) * 2019-10-16 2024-05-14 中南大学 一种用于岩石多角度压剪加卸荷的试验装置及加载方法
CN111965006B (zh) * 2020-09-03 2023-08-15 中国石油天然气集团有限公司 一种泥页岩颗粒强度测试仪及其测试方法
CN111965006A (zh) * 2020-09-03 2020-11-20 中国石油天然气集团有限公司 一种泥页岩颗粒强度测试仪及其测试方法
CN111879605A (zh) * 2020-09-10 2020-11-03 长安大学 一种接触刚度可调的冲击加载装置及其接触刚度调节方法
CN111879605B (zh) * 2020-09-10 2023-02-24 长安大学 一种接触刚度可调的冲击加载装置及其接触刚度调节方法
CN113340738A (zh) * 2021-05-24 2021-09-03 鲁西工业装备有限公司 一种全自动压力试验系统及测量方法
CN113340738B (zh) * 2021-05-24 2024-01-26 鲁西工业装备有限公司 一种全自动压力试验系统及测量方法
CN113607558A (zh) * 2021-07-08 2021-11-05 安徽省路桥试验检测有限公司 一种水泥试块抗压、抗折强度检测自动采集设备
CN113607558B (zh) * 2021-07-08 2024-02-02 安徽省路桥试验检测有限公司 一种水泥试块抗压、抗折强度检测自动采集设备
CN113686657B (zh) * 2021-10-12 2024-05-10 辽宁工程技术大学 一种岩煤结构静动组合加载试验装置
CN113686657A (zh) * 2021-10-12 2021-11-23 辽宁工程技术大学 一种岩煤结构静动组合加载试验装置
CN114279861B (zh) * 2021-12-29 2023-08-11 中国科学院合肥物质科学研究院 一种超导导体力学性能自动化测试系统及其实现方法
CN114279861A (zh) * 2021-12-29 2022-04-05 中国科学院合肥物质科学研究院 一种超导导体力学性能自动化测试系统及其实现方法
CN115964931A (zh) * 2022-11-04 2023-04-14 广西大学 岩石高强高脆动静特性相似的材料配制理论、方法和配方
CN115964931B (zh) * 2022-11-04 2023-09-05 广西大学 岩石高强高脆动静特性相似的材料配制理论、方法和配方
CN118130264A (zh) * 2024-05-06 2024-06-04 中国矿业大学(北京) 气囊补偿支护下硐室岩体性能的测试设备及评价方法

Also Published As

Publication number Publication date
CN109269902A (zh) 2019-01-25
CN109269902B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2019165787A1 (zh) 一种加载刚度可调岩石力学试验系统及试验方法
US9404821B2 (en) Large deformation tensile testing system
JP6804121B2 (ja) ある(鉱山)坑道周囲の岩石の支持強度試験装置及び強度確定方法
WO2020010854A1 (zh) 一种岩石冲击加载-卸围压力学试验系统及其使用方法
US9410874B2 (en) Simulated impact-type rock burst experiment apparatus
Alexeev et al. True triaxial loading apparatus and its application to coal outburst prediction
CN104792616A (zh) 一种瓦斯抽采钻孔孔径变化规律模拟装置及模拟方法
CN106353181B (zh) 薄板压缩的非对称夹持装置及实验方法
CN105203394B (zh) 测定板料应力‑应变曲线的装置
CN107941617B (zh) 一种拉剪作用下锚杆锚索力学性能测试系统及其测试方法
CN110018056B (zh) 一种砂岩储层孔眼稳定性评价实验装置及方法
WO2021056321A1 (zh) 一种高刚度多轴高应力加载框架装置
CN109612840B (zh) 用于获得脆性岩石峰后曲线和残留强度的实验装置及方法
CN110411842A (zh) 可获取脆岩峰后曲线和残留强度的真三轴实验装置及方法
CN104089822A (zh) 深部开采采动应力场演变过程试验方法
CN113624593B (zh) 一种模拟含倾角煤岩组合的动静载致冲试验装置及方法
CN203241300U (zh) 一种岩土压剪流变试验机
Jiangcheng et al. Characteristics of damage evolution of deep coal based on CT three-dimensional reconstruction
CN105699213A (zh) 用于岩石纯剪切试验的岩块试件及基于该试件的纯剪切试验方法
CN108507922B (zh) 让压锚注耦合支护下岩体注浆渗流及加固特性试验方法
CN107131178A (zh) 一种可变刚度的伺服油缸性能测试方法及其测试系统
CN113188908B (zh) 一种预支撑精准卸压感知煤层回采模拟试验装置及方法
CN114048566A (zh) 一种含双裂纹tbm刀盘特征件的寿命预测方法
CN111487145B (zh) 一种描述爆炸冲击对混凝土-围岩界面损伤的装置及方法
CN206838829U (zh) 一种纵梁数控折弯工装

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907918

Country of ref document: EP

Kind code of ref document: A1