WO2019163482A1 - Nitrile copolymer rubber composition, crosslinkable rubber composition, crosslinked rubber object, and hose - Google Patents

Nitrile copolymer rubber composition, crosslinkable rubber composition, crosslinked rubber object, and hose Download PDF

Info

Publication number
WO2019163482A1
WO2019163482A1 PCT/JP2019/003618 JP2019003618W WO2019163482A1 WO 2019163482 A1 WO2019163482 A1 WO 2019163482A1 JP 2019003618 W JP2019003618 W JP 2019003618W WO 2019163482 A1 WO2019163482 A1 WO 2019163482A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer rubber
nitrile copolymer
weight
rubber
parts
Prior art date
Application number
PCT/JP2019/003618
Other languages
French (fr)
Japanese (ja)
Inventor
弘康 永森
杉山 学
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020501639A priority Critical patent/JP7136180B2/en
Publication of WO2019163482A1 publication Critical patent/WO2019163482A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics

Definitions

  • the present invention relates to a nitrile copolymer rubber composition, a crosslinkable rubber composition, a rubber cross-linked product, and a hose.
  • rubber nitrile copolymer rubber containing an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit is a rubber having excellent oil resistance, such as a rubber for a fuel hose. Used in products. In addition to oil resistance, such rubber products are required to have advanced performance such as processability during molding, strength characteristics as rubber products, and ozone resistance.
  • Patent Document 1 discloses a rubber composition containing two types of unsaturated nitrile / conjugated diene rubber, and a fuel hose using the rubber composition.
  • An object of the present invention is to provide a nitrile copolymer rubber composition which is excellent in molding processability of an uncrosslinked rubber product and excellent in strength properties, oil resistance and ozone resistance of the rubber crosslinked product.
  • one embodiment of the present invention provides a nitrile copolymer rubber (A) containing less than 40% by weight of an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, and an ⁇ , ⁇ -ethylenic property.
  • a nitrile copolymer rubber composition that is excellent in molding processability of an uncrosslinked rubber product and excellent in strength properties, oil resistance, and ozone resistance of the rubber crosslinked product.
  • a nitrile copolymer rubber composition includes a nitrile copolymer rubber (A) containing less than 40% by weight of an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, an ⁇ , ⁇ - A nitrile copolymer rubber (B) containing 40% by weight or more of an ethylenically unsaturated nitrile monomer unit and a vinyl chloride resin (C) having an average degree of polymerization of 800 or more, and a nitrile copolymer rubber ( The content ratio of the vinyl chloride resin (C) is 35 parts by weight or more based on 100 parts by weight of the total of A) and the nitrile copolymer rubber (B).
  • the nitrile copolymer rubber (A) used in the present embodiment is a rubber containing at least an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in a proportion of less than 40% by weight.
  • an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is a compound having a nitrile group and having a double bond between the ⁇ -position carbon and the ⁇ -position carbon with respect to the nitrile group. .
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the nitrile copolymer rubber (A) is less than 40% by weight, preferably less than 37% by weight, based on the total monomer units. More preferably, it is less than 35% by weight. If the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is too high, the molding processability of the resulting rubber cross-linked product and the strength characteristics of the rubber cross-linked product may be lowered.
  • the lower limit of the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is not particularly limited, but is preferably 15% by weight or more, more preferably from the viewpoint of oil resistance of the obtained rubber cross-linked product. Is 25% by weight or more.
  • one kind of rubber may be used as the nitrile copolymer rubber (A), but it contains less than 40% by weight of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit.
  • a plurality of nitrile copolymer rubbers (A) may be mixed and used. When a plurality of nitrile copolymer rubbers (A) are mixed, the content ratio of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units in the entire rubber mixture having different monomer compositions is within the above range. do it.
  • nitrile copolymer rubber (A) a rubber ( ⁇ ) containing 25% by weight of an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, a rubber ( ⁇ ) containing 35% by weight, are mixed at a ratio of 50:50 (weight ratio), the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the entire nitrile copolymer rubber (A) is the rubber ( ⁇ ).
  • the rubber ( ⁇ ) is 30% by weight.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer forming the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is not particularly limited, and examples thereof include acrylonitrile; ⁇ -chloroacrylonitrile, ⁇ -bromoacrylonitrile, etc. ⁇ -halogenoacrylonitrile, ⁇ -alkylacrylonitrile such as methacrylonitrile, and the like. Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is more preferable. These can be used individually by 1 type or in combination of multiple types.
  • the nitrile copolymer rubber (A) preferably has a methyl ethyl ketone insoluble content (hereinafter sometimes referred to as MEK insoluble content) of 60% or more, more preferably 70% or more. Preferably it is 80% or more.
  • MEK insoluble content methyl ethyl ketone insoluble content
  • the amount of methyl ethyl ketone insolubles when a plurality of rubbers are mixed and used is calculated from the amount of methyl ethyl ketone insolubles and the mixing weight ratio of each rubber.
  • the methyl ethyl ketone insoluble content is the amount of the nitrile copolymer rubber (A) that does not dissolve when the nitrile copolymer rubber (A) is dissolved in the methyl ethyl ketone solvent.
  • MEK insoluble content is the amount of the nitrile copolymer rubber (A) that does not dissolve when the nitrile copolymer rubber (A) is dissolved in the methyl ethyl ketone solvent.
  • the amount of insoluble methyl ethyl ketone is too small, the molding processability of the rubber uncrosslinked product and the strength characteristics of the rubber crosslinked product may not be sufficiently obtained.
  • there is no upper limit of the amount insoluble in methyl ethyl ketone but it is preferably 90% or less. In general, if the amount of insoluble methyl ethyl ketone is too large, mixing with other components becomes difficult, and the nitrile copolymer rubber (A) cannot be blended with other components, making it impossible to obtain a rubber composition. There is.
  • the nitrile copolymer rubber (A) used in the present embodiment also contains a diene monomer unit or an ⁇ -olefin monomer unit so that the resulting rubber cross-linked product has rubber elasticity. It is preferable.
  • Diene monomers include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like, preferably conjugated dienes having 4 or more carbon atoms; And non-conjugated dienes having 5 to 12 carbon atoms, such as 4-pentadiene, 1,4-hexadiene, vinylnorbornene, and dicyclopentadiene. Of these, conjugated dienes are preferred, and 1,3-butadiene is more preferred.
  • the ⁇ -olefin monomer preferably has 2 to 12 carbon atoms, and examples thereof include ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene. .
  • the content ratio of the diene monomer unit or ⁇ -olefin monomer unit in the nitrile copolymer rubber (A) is preferably 59% by weight or more, more preferably 61% by weight or more based on the total monomer units. More preferably, it is 64% by weight or more, preferably 78% by weight or less, more preferably 74% by weight or less, and further preferably 70% by weight or less.
  • the nitrile copolymer rubber (A) used in the present embodiment includes these ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units, diene monomer units, and ⁇ -olefin monomer units.
  • Other monomer units that are copolymerizable with the monomer that forms the monomer unit may be contained.
  • the content ratio of such other monomer units is preferably 30% by weight or less, more preferably 20% by weight or less, and still more preferably 10% by weight or less based on the total monomer units.
  • Examples of such other copolymerizable monomers include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethyl styrene, pentafluoro Fluorine-containing vinyl compounds such as vinyl benzoate, difluoroethylene and tetrafluoroethylene; ⁇ -olefin compounds such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene; acrylic acid, ⁇ , ⁇ -ethylenically unsaturated carboxylic acids such as methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, fumaric anhydride and the like; methyl (meth) acrylate, (meth) Ethyl acrylate, (meth) acrylic acid buty
  • (meth) acrylic acid means both “acrylic acid” and “methacrylic acid”.
  • methyl (meth) acrylate refers to methyl acrylate and / or methyl methacrylate.
  • a monomer having at least two polymerizable unsaturated groups it is preferable to copolymerize a monomer having at least two polymerizable unsaturated groups.
  • polyfunctional ethylene such as divinyl compound; di (meth) acrylic acid ester; trimethacrylic acid ester; It is preferable to copolymerize a polymerizable unsaturated monomer, and it is particularly preferable to copolymerize trimethylolpropane tri (meth) acrylate.
  • the content ratio of these monomer units is preferably 0.1% by weight or more, more preferably 0.3% by weight or more, and preferably 5% by weight or less, more preferably 3% by weight or less.
  • the amount insoluble in methyl ethyl ketone can be adjusted by copolymerization thereof.
  • the Mooney viscosity (polymer Mooney) (ML1 + 4, 100 ° C.) of the nitrile copolymer rubber (A) is usually 3 or more, preferably 15 or more, more preferably 30 or more, particularly preferably 50 or more, and usually It is 250 or less, preferably 180 or less, more preferably 150 or less, and particularly preferably 100 or less. If the polymer Mooney viscosity of the nitrile copolymer rubber (A) is too low, the strength characteristics of the resulting rubber cross-linked product may be lowered. On the other hand, if the polymer Mooney viscosity is too high, moldability may be reduced.
  • the Mooney viscosity of the nitrile copolymer rubber (A) can be measured according to, for example, JIS K6300.
  • the method for producing the nitrile copolymer rubber (A) used in the present embodiment is not particularly limited, but the above-mentioned monomers are copolymerized and, if necessary, the carbon-carbon double in the resulting copolymer. It can be produced by hydrogenating the bonds.
  • the polymerization method is not particularly limited and may be a known emulsion polymerization method or solution polymerization method. From the viewpoint of industrial productivity, the emulsion polymerization method is preferable. In emulsion polymerization, in addition to an emulsifier, a polymerization initiator, and a molecular weight modifier, a commonly used polymerization auxiliary material can be used.
  • Nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; Myristic acid, palmitic acid, oleic acid And salts of fatty acids such as linolenic acid, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, anionic emulsifiers such as higher alcohol sulfates and alkylsulfosuccinates; sulfoesters of ⁇ , ⁇ -unsaturated carboxylic acids, ⁇ , ⁇ -unsaturated carboxylic acid sulfate esters, sulfoalkyl aryl ethers and other copolymerizable emulsifiers.
  • Nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxy
  • the addition amount of the emulsifier is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, and preferably 10 parts by weight or less, based on 100 parts by weight of the monomer used for the polymerization.
  • the amount is preferably 5 parts by weight or less.
  • the polymerization initiator is not particularly limited as long as it is a radical initiator, but inorganic peroxides such as potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; t-butyl peroxide, cumene Hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3, 5, 5 Organic peroxides such as trimethylhexanoyl peroxide and t-butylperoxyisobutyrate; azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl azobisisobutyrate, etc.
  • inorganic peroxides
  • polymerization initiators can be used alone or in combination of two or more.
  • an inorganic or organic peroxide is preferable.
  • a peroxide is used as the polymerization initiator, it can be used as a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite or ferrous sulfate.
  • the addition amount of the polymerization initiator is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, and further preferably 0.1 parts by weight or more with respect to 100 parts by weight of the monomer used for the polymerization. And preferably 2 parts by weight or less, more preferably 1.5 parts by weight or less, and still more preferably 1.0 parts by weight or less.
  • Water is usually used as the emulsion polymerization medium.
  • the amount of water is preferably 80 to 500 parts by weight, more preferably 80 to 300 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
  • polymerization auxiliary materials such as a stabilizer, a dispersant, a pH adjuster, an oxygen scavenger, and a particle size adjuster can be used as necessary. In using these, neither the kind nor the usage-amount is specifically limited.
  • the nitrile copolymer rubber (A) used in the present embodiment is obtained by hydrogenating at least a part of the unsaturated bond portion in the diene monomer unit of the copolymer obtained by copolymerization as described above. Hydrogenated nitrile copolymer rubber may be used (hydrogenation reaction). The method for hydrogenation is not particularly limited, and a known method may be employed.
  • the nitrile copolymer rubber (A) is a hydrogenated nitrile copolymer rubber
  • the iodine value is preferably in the range of 0 or more, more preferably in the range of 4 or more, and preferably 70. It is the following range, More preferably, it is the range of 60 or less.
  • the present embodiment depends on the compounding agent used when obtaining the crosslinkable rubber composition.
  • a nitrile copolymer rubber (A) is added together with a crosslinking agent when obtaining a crosslinkable rubber composition to be described later. It is good also as an aspect which adds.
  • the nitrile copolymer rubber composition of this embodiment contains a nitrile copolymer rubber (B) in addition to the nitrile copolymer rubber (A) described above.
  • the nitrile copolymer rubber (B) used in the present embodiment is a rubber containing at least an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in a proportion of 40% by weight or more.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the nitrile copolymer rubber (B) is 40% by weight or more, preferably 45% by weight or more, based on the total monomer units. More preferably, it is 47% by weight or more.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is too low, the molding processability of the resulting rubber uncrosslinked product, the strength properties of the rubber crosslinked product, and the oil resistance tend to be lowered.
  • the upper limit of the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the nitrile copolymer rubber (B) of the nitrile copolymer rubber (B) is not particularly limited. From the viewpoint of moldability, it is preferably 80% by weight or less, more preferably 70% by weight or less, still more preferably 60% by weight or less, and particularly preferably 55% by weight or less.
  • the content of the nitrile copolymer rubber (B) is preferably 1900 parts by weight or less, more preferably 900 parts by weight or less, with respect to 100 parts by weight of the nitrile copolymer rubber (A).
  • the nitrile copolymer rubber (B) one kind of rubber may be used, but the nitrile copolymer rubber containing 40% by weight or more of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit.
  • a plurality of types of polymer rubber (B) may be mixed and used.
  • the content ratio of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units in the entire rubber mixture having different monomer compositions is within the above range. do it.
  • nitrile copolymer rubber (B) a rubber ( ⁇ ) having a content ratio of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units of 55% by weight, a rubber ( ⁇ ) having a content of 45% by weight, are mixed at a ratio of 50:50 (weight ratio), the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the entire nitrile copolymer rubber (A) is the rubber ( ⁇ ).
  • the rubber ( ⁇ ) is 50% by weight.
  • diene monomer units or ⁇ -olefin monomer units are diene monomer units or ⁇ -olefin monomer units.
  • the same nitrile copolymer rubber (A) as described above can be used as the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit.
  • Acrylonitrile is preferred.
  • the nitrile copolymer rubber (B) used in the present embodiment also contains a diene monomer unit or an ⁇ -olefin monomer unit so that the obtained rubber cross-linked product has rubber elasticity. It is preferable.
  • the diene monomer unit or ⁇ -olefin monomer unit those similar to the nitrile copolymer rubber (A) described above can be used, and 1,3-butadiene is preferred.
  • the content ratio of the diene monomer unit or ⁇ -olefin monomer unit in the nitrile copolymer rubber (B) is preferably 20% by weight or more, more preferably 30% by weight or more based on the total monomer units. More preferably, it is 40% by weight or more, particularly preferably 45% by weight or more, preferably 60% by weight or less, more preferably 55% by weight or less, and further preferably 53% by weight or less.
  • the nitrile copolymer rubber (B) used in the present embodiment is similar to the nitrile copolymer rubber (A) in that the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and the diene monomer unit or ⁇
  • other monomer units copolymerizable with the monomers forming these monomer units may be contained.
  • the content ratio of other monomer units contained in such a nitrile copolymer rubber (B) is the same as that of the nitrile copolymer rubber (A) described above, Preferably it is 30 weight% or less, More preferably, it is 20 weight% or less, More preferably, it is 10 weight% or less.
  • Examples of other copolymerizable monomers contained in such a nitrile copolymer rubber (B) include, for example, styrene, ⁇ -methylstyrene, vinyltoluene and the like as in the nitrile copolymer rubber (A).
  • Fluorine-containing vinyl compounds such as fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethyl styrene, vinyl pentafluorobenzoate, difluoroethylene, tetrafluoroethylene; ethylene, propylene, 1-butene, 4- ⁇ -olefin compounds such as methyl-1-pentene, 1-hexene, 1-octene; ⁇ , such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, fumaric anhydride, etc.
  • ⁇ -ethylenically unsaturated carboxylic acid and its anhydride ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl esters such as methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; monoethyl maleate, maleic acid Diethyl, mono n-butyl maleate, dibutyl maleate, monoethyl fumarate, diethyl fumarate, mono n-butyl fumarate, dibutyl fumarate, monocyclohexyl fumarate, dicyclohexyl fumarate, monoethyl itaconate, diethyl itaconate, itacon Monoesters and diesters of ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acids such as mono-n-butyl acid and dibutyl est
  • the Mooney viscosity (polymer Mooney) (ML1 + 4, 100 ° C.) of the nitrile copolymer rubber (B) is usually 3 or more, preferably 15 or more, more preferably 20 or more, particularly preferably 30 or more, and usually It is 250 or less, preferably 180 or less, more preferably 150 or less, and particularly preferably 120 or less. If the polymer Mooney viscosity of the nitrile copolymer rubber (B) is too low, the strength characteristics of the resulting rubber cross-linked product may be lowered. On the other hand, if the polymer Mooney viscosity is too high, moldability may be reduced.
  • the Mooney viscosity of the nitrile copolymer rubber (B) can be measured, for example, according to JIS K6300.
  • the production method of the nitrile copolymer rubber (B) used in the present embodiment is not particularly limited, but the same production method as that of the nitrile copolymer rubber (A) described above can be used. Also in this case, it can be produced by hydrogenating a carbon-carbon double bond in the obtained copolymer, if necessary.
  • the polymerization method is not particularly limited, and may be a known emulsion polymerization method or solution polymerization method as in the case of the nitrile copolymer rubber (A) described above. From the viewpoint of industrial productivity, the emulsion polymerization method may be used. Is preferred. In emulsion polymerization, in addition to the same emulsifier, polymerization initiator and molecular weight modifier as those of the nitrile copolymer rubber (A) described above, commonly used polymerization auxiliary materials can be used.
  • the present embodiment depends on the compounding agent used when obtaining the crosslinkable rubber composition.
  • a nitrile copolymer rubber (B) is added together with a crosslinking agent when obtaining a crosslinkable rubber composition to be described later. It is good also as an aspect which adds.
  • the total of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B) preferably contains 35% by weight or more of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units, and more preferably 38%. % By weight or more, more preferably 40% by weight or more.
  • the total of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B) contains 35% by weight or more of an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit. It means that 35% by weight or more of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is contained with respect to the total of (A) and nitrile copolymer rubber (B).
  • the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is preferably 70% by weight from the viewpoint of the miscibility with other components and the cold resistance of the rubber crosslinked product. % Or less, more preferably 60% by weight or less, further preferably 55% by weight or less, and particularly preferably 50% by weight or less.
  • the nitrile copolymer rubber composition of the present embodiment comprises a vinyl chloride resin (C) having an average degree of polymerization of 800 or more. contains.
  • the vinyl chloride resin (C) is not particularly limited as long as the main constituent monomer is vinyl chloride and the average degree of polymerization thereof is in the range of 800 or more, but the content of the main constituent monomer unit is not particularly limited. Is preferably 50 to 100% by weight, more preferably 60 to 100% by weight, still more preferably 70 to 100% by weight.
  • the average degree of polymerization of the vinyl chloride resin (C) is 800 or more, preferably 900 or more, more preferably 1300 or more, and particularly preferably 1500 or more. If the average degree of polymerization is too low, the ozone resistance of the resulting rubber cross-linked product is lowered. On the other hand, although there is no upper limit of the average degree of polymerization, it is preferably 2000 or less from the viewpoint of the miscibility with the nitrile copolymer rubber (A) and / or the nitrile copolymer rubber (B).
  • the average degree of polymerization of the vinyl chloride resin (C) can be measured, for example, by the solution viscosity method defined in JIS K6721.
  • the glass transition temperature (Tg) of the vinyl chloride resin (C) is preferably 50 to 180 ° C.
  • the vinyl chloride resin (C) used in the present embodiment may be a copolymer obtained by copolymerizing other monomers copolymerizable with vinyl chloride in addition to the main constituent monomer vinyl chloride.
  • examples of such other monomers include (meth) acrylic acid alkyl esters having an alkyl group of 1 to 20 carbon atoms; aromatic vinyl compounds such as styrene, vinyl toluene, and ⁇ -methyl styrene; acrylonitrile, methacrylonitrile Vinyl cyanide compounds such as vinylidene cyanide; vinyl ester compounds such as vinyl acetate and vinyl propionate; vinyl ether compounds such as ethyl vinyl ether, cetyl vinyl ether and hydroxybutyl vinyl ether; ⁇ -hydroxyethyl (meth) acrylate, (meth) Examples thereof include hydroxyl group or alkoxy group-containing unsaturated carboxylic acid ester compounds such as 3-hydroxybutyl acrylate and butoxyethyl
  • the polymerization method for producing the vinyl chloride resin (C) used in the present embodiment is not particularly limited, and examples thereof include emulsion polymerization, seeding emulsion polymerization, fine suspension polymerization, and suspension polymerization.
  • the content of the vinyl chloride resin (C) in the nitrile copolymer rubber composition of the present embodiment is based on 100 parts by weight of the total of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B). , 35 parts by weight or more, preferably 38 parts by weight or more, more preferably 40 parts by weight or more.
  • a vinyl chloride resin (C) When there is too little content of a vinyl chloride resin (C), the processability of the rubber uncrosslinked product obtained and the strength characteristic of a rubber crosslinked product will deteriorate.
  • the upper limit of the content of the vinyl chloride resin (C) is not particularly limited, but is 233 parts by weight from the viewpoint of miscibility with the nitrile copolymer rubber (A) and / or the nitrile copolymer rubber (B).
  • the amount is preferably 150 parts by weight or less, more preferably 100 parts by weight or less, still more preferably 80 parts by weight or less, and particularly preferably 70 parts by weight or less.
  • the nitrile copolymer rubber composition of the present embodiment contains other compounding agents in addition to the nitrile copolymer rubber (A), the nitrile copolymer rubber (B) and the vinyl chloride resin (C) described above. You may contain. Examples of such other compounding agents include plasticizers and anti-aging stabilizers.
  • the compounding amount of these other compounding agents is not particularly limited as long as the purpose and effect of the present embodiment are not impaired, and an amount corresponding to the compounding purpose can be blended.
  • plasticizer examples include ester compounds of adipic acid and ether-containing alcohols such as di (butoxyethyl) adipate and di (butoxyethoxyethyl) adipate; dibutoxyethyl azelate, Ester compounds of azelaic acid such as butoxyethoxyethyl) and ether bond-containing alcohols; ester compounds of sebacic acid such as dibutoxyethyl sebacate and di (butoxyethoxyethyl) sebacate and ether bond-containing alcohols; dibutoxy phthalate Ester compounds of phthalic acid such as ethyl and di (butoxyethoxyethyl) phthalate with alcohols containing ether bonds; isophthalic acid such as dibutoxyethyl isophthalate and di (butoxyethoxyethyl) isophthalate and ether bonds Ester compounds with cole; di- (2-ethylhexyl) adipate, di
  • a dibasic acid such as adipic acid, azelaic acid, sebacic acid, and phthalic acid
  • an ether bond-containing alcohol are used from the viewpoint that the resulting rubber cross-linked product can have better oil resistance.
  • An ester compound is preferred, an ester compound of adipic acid and an ether bond-containing alcohol is more preferred, and di (butoxyethoxyethyl) adipate is particularly preferred.
  • the content of the plasticizer in the nitrile copolymer rubber composition of the present embodiment is preferably 1 with respect to a total of 100 parts by weight of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B). Parts by weight or more, more preferably 2 parts by weight or more, further preferably 3 parts by weight or more, particularly preferably 4 parts by weight or more, and preferably 100 parts by weight or less, more preferably 80 parts by weight or less, still more preferably 60 parts by weight or less, particularly preferably 50 parts by weight or less.
  • the respective components including the nitrile copolymer rubber (A), the nitrile copolymer rubber (B), and the vinyl chloride resin (C) are preferably mixed in a non-aqueous system. It is prepared by. Mixing can be performed using, for example, a mixer such as a Banbury mixer, an internal mixer, or a kneader.
  • the mixing temperature at the time of mixing each component containing a nitrile copolymer rubber (A), a nitrile copolymer rubber (B), and a vinyl chloride resin (C) is not particularly limited, but is preferably a vinyl chloride resin.
  • C) It is temperature more than melting
  • the temperature is 10 ° C. or higher.
  • the mixing is preferably performed at 160 ° C or higher, more preferably performed at 165 ° C or higher, and further preferably performed at 170 ° C or higher. By mixing at such a temperature, the dispersibility of the vinyl chloride resin (C) in the nitrile copolymer rubber composition can be further increased, and thus the resulting rubber cross-linked product is more excellent in ozone resistance. Can be.
  • each component including the nitrile copolymer rubber (A) and the vinyl chloride resin (C) can be mixed in an aqueous system.
  • a latex of a nitrile copolymer rubber (A) and a nitrile copolymer rubber (B) obtained by emulsion polymerization are made into a latex vinyl chloride resin (C) produced by a conventionally known emulsion polymerization method or suspension polymerization method. ) Or other components (latex blend).
  • the crosslinkable rubber composition according to the embodiment is obtained by blending a crosslinking agent with the nitrile copolymer rubber composition of the present embodiment described above.
  • the crosslinking agent include a sulfur-based crosslinking agent and an organic peroxide crosslinking agent. Although these can be used individually by 1 type or in combination of multiple types, it is preferable to use a sulfur type crosslinking agent.
  • Sulfur-based cross-linking agents include powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, etc .; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothiazyl disulfide, caprolactam disulfide And sulfur-containing compounds such as phosphorus-containing polysulfides and polymer polysulfides; sulfur-donating compounds such as tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, and 2- (4′-morpholinodithio) benzothiazole. These can be used individually by 1 type or in combination of multiple types.
  • organic peroxide crosslinking agents include dicumyl peroxide, cumene hydroperoxide, t-butylcumyl peroxide, p-menthane hydroperoxide, di-t-butyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene 1,4-bis (t-butylperoxyisopropyl) benzene, 1,1-di-t-butylperoxy-3,3-trimethylcyclohexane, 4,4-bis- (t-butyl-peroxy) -n-butyl Valerate, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3, 1,1-di-t- Butylperoxy-3,5,5-trimethylcyclohexane, p-chlorobenzoyl peroxide, t-
  • the content of the crosslinking agent in the crosslinkable rubber composition of the present embodiment is a total of 100 of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B) from the viewpoint of obtaining a good rubber cross-linked product.
  • the amount is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, further preferably 0.3 parts by weight or more, and preferably 10 parts by weight or less, more preferably 8 parts by weight or more. It is 6 parts by weight or less, more preferably 6 parts by weight or less.
  • crosslinking aids such as activated zinc white, zinc white and stearic acid; guanidine type, aldehyde-amine type, aldehyde-ammonia type, thiazole type, sulfenamide type, thiourea type, etc.
  • crosslinking accelerators can be used in combination.
  • These crosslinking aids and crosslinking accelerators are used in an amount of preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B). It is a range.
  • a polyfunctional monomer such as trimethylolpropane tri (meth) acrylate, divinylbenzene, ethylene dimethacrylate, or triallyl isocyanurate may be used in combination as a crosslinking aid. It can.
  • the amount of these crosslinking aids used is preferably in the range of 0.5 to 20 parts by weight with respect to 100 parts by weight in total of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B).
  • the crosslinkable rubber composition of the present embodiment may further contain a hydrocarbon wax.
  • a hydrocarbon wax By further containing a hydrocarbon wax, the resulting rubber cross-linked product can be made more excellent in ozone resistance.
  • hydrocarbon wax examples include polyolefin waxes such as polyethylene wax and polypropylene wax; Fischer-Tropsch wax; petroleum waxes such as paraffin wax and microstarin wax. Among these, Fischer-Tropsch wax and petroleum wax are preferable. Petroleum wax is more preferable.
  • the crosslinkable rubber composition of the present embodiment preferably contains a plasticizer, and the same plasticizer as the above-mentioned nitrile copolymer rubber composition can be used.
  • the content of the plasticizer in the crosslinkable rubber composition of the present embodiment is preferably 3 parts by weight with respect to a total of 100 parts by weight of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B). More preferably, it is 5 parts by weight or more, more preferably 10 parts by weight or more, preferably 300 parts by weight or less, more preferably 200 parts by weight or less, still more preferably 150 parts by weight or less. .
  • the content of the plasticizer in the crosslinkable rubber composition of the present embodiment is such that the total content of the plasticizer contained in the nitrile copolymer rubber composition of the present embodiment described above falls within the above range. Adjust it.
  • the crosslinkable rubber composition of the present embodiment has other compounding agents used for general rubber as necessary, for example, a crosslinking retarder, a reinforcing agent, a filler, a lubricant, an adhesive, a lubricant, You may mix
  • blend additives such as a processing aid, a flame retardant, an antifungal agent, an antistatic agent, a coloring agent, and a coupling agent.
  • the filler is not particularly limited, and carbon-based materials such as carbon black and graphite can be used. Among these, it is preferable to use carbon black.
  • carbon black include furnace black, acetylene black, thermal black, channel black, and the like.
  • furnace black is preferably used, and specific examples thereof include SAF (N110), ISAF (N220), ISAF-HS (N234), ISAF-LS, IISAF-HS, HAF (N330), HAF- HS (N339), HAF-LS (N326), MAF, FEF (N550), SRF (N762, N774) and the like.
  • thermal black include FT and MT (N990).
  • graphite include natural graphite such as scaly graphite and scaly graphite, and artificial graphite.
  • fillers other than carbon-based materials include metal powders such as aluminum powder; inorganic powders such as hard clay, talc, calcium carbonate, titanium oxide, calcium sulfate, calcium carbonate, and aluminum hydroxide; starch and polystyrene powder, etc.
  • metal powders such as aluminum powder
  • inorganic powders such as hard clay, talc, calcium carbonate, titanium oxide, calcium sulfate, calcium carbonate, and aluminum hydroxide
  • starch and polystyrene powder etc.
  • powders such as organic powders
  • short fibers such as glass fibers (milled fibers), carbon fibers, aramid fibers, and potassium titanate whiskers
  • silica and mica are preferably used.
  • silica examples include natural silica such as quartz powder and silica powder; synthetic silica such as anhydrous silicic acid (silica gel, aerosil, etc.) and hydrous silicic acid. Among these, synthetic silica is preferable. These silicas may be surface-treated with a silane coupling agent or the like.
  • the blending amount of the filler is not particularly limited, but is preferably 5 parts by weight or more, more preferably 10 parts by weight or more with respect to 100 parts by weight of the nitrile group-containing copolymer rubber from the viewpoint of improving tensile stress. More preferably, it is 15 parts by weight or more, preferably 200 parts by weight or less, more preferably 150 parts by weight or less, and still more preferably 100 parts by weight or less.
  • crosslinkable rubber composition of the present embodiment may be blended with a rubber other than the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B) as long as the effects of the present embodiment are not inhibited. Good.
  • the blending amount is 100 weights in total of nitrile copolymer rubber (A) and nitrile copolymer rubber (B). 30 parts by weight or less is preferable, 20 parts by weight or less is more preferable, and 10 parts by weight or less is particularly preferable.
  • the method for preparing the crosslinkable rubber composition of the present embodiment is not particularly limited, but a nitrile copolymer rubber composition obtained by the above-described method is added with a crosslinking agent and other compounding agents, What is necessary is just to knead
  • the blending order is not particularly limited, but components (such as a crosslinking agent and a crosslinking accelerator) that are easily decomposed by heat after sufficiently mixing components that are not easily reacted or decomposed by heat do not decompose. What is necessary is just to mix for a short time below temperature.
  • the rubber uncrosslinked product of the present embodiment thus obtained is excellent in molding processability, and the rubber crosslinked product obtained from the rubber uncrosslinked product is excellent in strength characteristics, oil resistance, and ozone resistance. It is excellent.
  • the rubber cross-linked product according to this embodiment is obtained by cross-linking the cross-linkable rubber composition of this embodiment described above.
  • the crosslinkable rubber composition When the crosslinkable rubber composition is crosslinked, it is molded by a molding machine corresponding to the shape of the molded article (rubber crosslinked product) to be produced, for example, an extruder, an injection molding machine, a compressor, a roll, etc., and then crosslinked. By reacting, the shape of the crosslinked product is fixed.
  • the crosslinking When performing the crosslinking, the crosslinking may be performed after molding in advance, or the crosslinking may be performed simultaneously with the molding.
  • the molding temperature is usually 10 ° C. or higher, preferably 25 ° C. or higher, and is usually 200 ° C. or lower, preferably 120 ° C. or lower.
  • the crosslinking temperature is usually 100 ° C. or higher, preferably 130 ° C. or higher, and is usually 200 ° C. or lower, preferably 190 ° C. or lower.
  • the crosslinking time is usually 1 minute or longer, preferably 2 minutes or longer, and usually 24 hours or shorter, preferably 1
  • the rubber cross-linked product of the present embodiment thus obtained is excellent in molding processability as a rubber non-cross-linked product, and is obtained using the nitrile rubber composition and cross-linkable rubber composition of the present embodiment described above. Therefore, it has excellent strength characteristics, oil resistance, and ozone resistance.
  • the rubber cross-linked product of this embodiment includes seal members such as packings, gaskets, O-rings, and oil seals; hoses such as oil hoses, fuel hoses, inlet hoses, gas hoses, brake hoses, refrigerant hoses; diaphragms; accumulators It is suitable for Prada; boots; etc., and more suitably used as a fuel hose.
  • seal members such as packings, gaskets, O-rings, and oil seals
  • hoses such as oil hoses, fuel hoses, inlet hoses, gas hoses, brake hoses, refrigerant hoses
  • diaphragms accumulators It is suitable for Prada; boots; etc., and more suitably used as a fuel hose.
  • Mooney viscosity (polymer Mooney) The Mooney viscosity (polymer Mooney) of the nitrile copolymer rubber was measured according to JIS K6300 (unit: [ML1 + 4, 100 ° C.]).
  • Minimum Mooney viscosity (125 ° C) For the crosslinkable rubber composition, the Mooney viscosity-time curve at 125 ° C. was measured according to the Mooney viscosity test of JIS K6300-1, and the minimum Mooney viscosity (125 ° C.) was measured. The result of the minimum Mooney viscosity (125 ° C.) was used as an index of the deformability of the crosslinkable rubber composition. In addition, when the minimum Mooney viscosity (125 degreeC) was 33 or more, the shape maintenance property at the time of a shaping
  • the crosslinkable rubber composition is placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, press-molded at 100 ° C. for 2 minutes while being pressurized, and then 30 minutes while circulating cooling water at room temperature. An uncrosslinked rubber was obtained. Further, the crosslinkable rubber composition was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and press-molded at 160 ° C. for 20 minutes while applying pressure to obtain a crosslinked rubber product.
  • volume swelling degree ⁇ V after immersion ([volume after oil immersion ⁇ volume before oil immersion] / volume before oil immersion) ⁇ 100 As the volume swelling degree ⁇ V after immersion was closer to 0%, it was evaluated that the oil resistance was excellent, and when ⁇ V was 25% or more, the oil resistance was evaluated as inferior.
  • the composition of each monomer unit was measured in the same manner as in Production Example 1. As a result, 33.5% by weight of acrylonitrile unit (AN amount), 1,3- The butadiene unit was 66.5% by weight.
  • the methyl ethyl ketone insoluble content (MEK insoluble content) was 0%, and the polymer Mooney viscosity [ML1 + 4, 100 ° C.] was 46.
  • nitrile copolymer rubber (B-1) a nitrile copolymer rubber
  • the composition of each monomer unit was measured in the same manner as in Production Example 1.
  • 50% by weight of acrylonitrile unit (AN amount), 1,3-butadiene unit 50% by weight, the methyl ethyl ketone insoluble content (MEK insoluble content) was 0%, and the polymer Mooney viscosity [ML1 + 4, 100 ° C.] was 75.
  • the acrylonitrile unit (AN amount) was 40.5% by weight, 1, 3 -The butadiene unit was 59.5% by weight.
  • the methyl ethyl ketone insoluble content (MEK insoluble content) was 0%, and the polymer Mooney viscosity [ML1 + 4, 100 ° C.] was 80.
  • Example 1 10 parts of the nitrile copolymer rubber (A-1) obtained in Production Example 1, 42 parts of the nitrile copolymer rubber (B-1) obtained in Production Example 3, and the nitrile copolymer rubber obtained in Production Example 4 18 parts of polymer rubber (B-2), 30 parts of vinyl chloride resin (average polymerization degree 1700) (trade name “TK-1700E”, manufactured by Shin-Etsu Chemical Co., Ltd.), di (butoxyethoxyethyl) adipate (trade name)
  • the obtained rubber composition was wound around a roll heated to 50 ° C., 325 mesh sulfur (crosslinking agent) 0.3 part, di-2-benzothiazolyl disulfide (crosslinking accelerator) 1.5 part, Further, 1.5 parts of tetramethylthiuram disulfide (crosslinking accelerator) was added and kneaded with a roll to obtain a crosslinkable rubber composition. Then, using the obtained crosslinkable rubber composition, the minimum Mooney viscosity (125 ° C.), normal physical properties (100% tensile stress), and normal rubber properties (100% tensile stress) (100% tensile stress), fuel oil immersion test, and static ozone deterioration test. The results are shown in Table 1.
  • the nitrile copolymer rubber (A-1) is the nitrile copolymer rubber A, and the combination of the nitrile copolymer rubber (B-1) and the nitrile copolymer rubber (B-2) is used.
  • the acrylonitrile content (AN amount) was 45.2% by weight with respect to the total of the nitrile copolymer rubber A and the nitrile copolymer rubber B.
  • the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
  • Example 2 The amount of nitrile copolymer rubber (A-1) obtained in Production Example 1 is 20 parts, the amount of nitrile copolymer rubber (B-1) obtained in Production Example 3 is 50 parts, A nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained in the same manner as in Example 1 except that the nitrile copolymer rubber (B-2) obtained in Production Example 4 was not used. Each test and evaluation was conducted. The results are shown in Table 1.
  • Example 2 when the nitrile copolymer rubber (A-1) is the nitrile copolymer rubber A and the nitrile copolymer rubber (B-1) is the nitrile copolymer rubber B,
  • the content (AN amount) of acrylonitrile with respect to the total of the combined rubber A and the nitrile copolymer rubber B was 45.3% by weight.
  • the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
  • Example 3 Example 2 except that the amount of nitrile copolymer rubber (A-1) used was 30 parts and the amount of nitrile copolymer rubber (B-1) obtained in Production Example 3 was 40 parts. Similarly, a nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was performed in the same manner. The results are shown in Table 1.
  • Example 3 as in Example 2, when the nitrile copolymer rubber A and the nitrile copolymer rubber B were used, the acrylonitrile was added to the total of the nitrile copolymer rubber A and the nitrile copolymer rubber B. The content (AN amount) of was 42.9% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
  • Example 4 Example 1 was used except that 30 parts of vinyl chloride resin (average polymerization degree 1000) (trade name “TK-1000”, manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of vinyl chloride resin (average polymerization degree 1700). A nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was conducted in the same manner. The results are shown in Table 1.
  • Example 4 as in Example 1, when nitrile copolymer rubber A and nitrile copolymer rubber B were used, acrylonitrile was used with respect to the total of nitrile copolymer rubber A and nitrile copolymer rubber B. The content (AN amount) of was 45.2% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
  • Example 5 The amount of nitrile copolymer rubber (A-1) obtained in Production Example 1 was 8.6 parts, and the amount of nitrile copolymer rubber (B-1) obtained in Production Example 3 was 36 parts. Except that the amount of the nitrile copolymer rubber (B-2) obtained in Production Example 4 was 15.4 parts and the amount of vinyl chloride resin (average polymerization degree 1700) was 40 parts. In the same manner as in Example 1, a nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was performed in the same manner. The results are shown in Table 1.
  • Example 5 as in Example 1, when nitrile copolymer rubber A and nitrile copolymer rubber B were used, acrylonitrile was used with respect to the total of nitrile copolymer rubber A and nitrile copolymer rubber B.
  • the content (AN amount) of was 45.2% by weight.
  • the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 67 parts.
  • Example 6 Except that the nitrile copolymer rubber (B-1) obtained in Production Example 3 was not used and the amount of the nitrile copolymer rubber (B-2) obtained in Production Example 4 was 60 parts, In the same manner as in Example 1, a nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was performed in the same manner. The results are shown in Table 1.
  • Example 6 when the nitrile copolymer rubber (A-1) is the nitrile copolymer rubber A and the nitrile copolymer rubber (B-2) is the nitrile copolymer rubber B, the nitrile copolymer rubber A
  • the content (AN amount) of acrylonitrile with respect to the total of the combined rubber A and the nitrile copolymer rubber B was 39.5% by weight.
  • the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
  • Example 7 Similar to Example 2, except that 20 parts of the nitrile copolymer rubber (A-2) obtained in Production Example 2 was used instead of the nitrile copolymer rubber (A-1). A united rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was performed in the same manner. The results are shown in Table 1.
  • the nitrile copolymer rubber (A-2) is a nitrile copolymer rubber A and the nitrile copolymer rubber (B-1) is a nitrile copolymer rubber B
  • the content (AN amount) of acrylonitrile with respect to the total of the combined rubber A and the nitrile copolymer rubber B was 45.3% by weight.
  • the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
  • Comparative Example 1 As in Example 1, when nitrile copolymer rubber A and nitrile copolymer rubber B were used, acrylonitrile was used with respect to the total of nitrile copolymer rubber A and nitrile copolymer rubber B.
  • the content (AN amount) of was 45.2% by weight.
  • the blending ratio of the vinyl chloride resin to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 25 parts.
  • Example 2 The same as Example 4 except that 30 parts of vinyl chloride resin (average polymerization degree 700) (trade name “TK-700”, manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of vinyl chloride resin (average polymerization degree 1700). A nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was conducted in the same manner. The results are shown in Table 1.
  • Comparative Example 2 as in Example 1, when nitrile copolymer rubber A and nitrile copolymer rubber B were used, acrylonitrile was used with respect to the total of nitrile copolymer rubber A and nitrile copolymer rubber B. The content (AN amount) of was 45.2% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
  • Comparative Example 3 when the nitrile copolymer rubber (A-1) and the nitrile copolymer rubber (A-2) were used as the nitrile copolymer rubber A and the nitrile copolymer rubber B was not used,
  • the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
  • the content (AN amount) of acrylonitrile with respect to the total amount of rubber B was 33.5% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
  • nitrile copolymer rubber (A) containing less than 40% by weight of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and 40% by weight of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit % Of nitrile copolymer rubber (B) and vinyl chloride resin (C) having an average degree of polymerization of 800 or more, and nitrile copolymer rubber (A) and nitrile copolymer rubber (B).
  • the nitrile copolymer rubber composition in which the content ratio of the vinyl chloride resin (C) with respect to parts by weight does not satisfy the condition of 35 parts by weight or more is the molding processability of the resulting rubber uncrosslinked product, the strength properties of the rubber crosslinked product, It was inferior in at least one of oil resistance and ozone resistance (Comparative Examples 1 to 5).

Abstract

A nitrile copolymer rubber composition which comprises a nitrile copolymer rubber (A) containing units of an α,β-ethylenically unsaturated nitrile monomer in an amount less than 40 wt%, a nitrile copolymer rubber (B) containing units of an α,β-ethylenically unsaturated nitrile monomer in an amount of 40 wt% or larger, and a vinyl chloride resin (C) having an average degree of polymerization of 800 or higher, wherein the content of the vinyl chloride resin (C) is 35 parts by weight or higher per 100 parts by weight of the sum of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B).

Description

ニトリル共重合体ゴム組成物、架橋性ゴム組成物、ゴム架橋物、及びホースNitrile copolymer rubber composition, crosslinkable rubber composition, cross-linked rubber, and hose
 本発明は、ニトリル共重合体ゴム組成物、架橋性ゴム組成物、ゴム架橋物、及びホースに関する。 The present invention relates to a nitrile copolymer rubber composition, a crosslinkable rubber composition, a rubber cross-linked product, and a hose.
 従来から、α、β-エチレン性不飽和ニトリル単量体単位、および、共役ジエン単量体単位を含有するゴム(ニトリル共重合体ゴム)は、耐油性に優れるゴムとして燃料用ホース等のゴム製品に用いられている。また、このようなゴム製品には、耐油性に加え、成形時の加工性、ゴム製品としての強度特性、耐オゾン性などの各性能の高度化が求められている。 Conventionally, rubber (nitrile copolymer rubber) containing an α, β-ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit is a rubber having excellent oil resistance, such as a rubber for a fuel hose. Used in products. In addition to oil resistance, such rubber products are required to have advanced performance such as processability during molding, strength characteristics as rubber products, and ozone resistance.
 例えば、特許文献1には、2種類の不飽和ニトリル・共役ジエンゴムを含有するゴム組成物、及び該ゴム組成物を用いた燃料ホースが開示されている。 For example, Patent Document 1 discloses a rubber composition containing two types of unsaturated nitrile / conjugated diene rubber, and a fuel hose using the rubber composition.
特開2003-306580号公報JP 2003-306580 A
 しかしながら、従来のニトリル共重合体ゴム組成物では、成形時の形状を維持できないおそれがあり、その状態で架橋されてしまうと目的の形状のゴム架橋物が得られない等の問題がある(例えば、円筒状のゴム未架橋物が成形時や放置時に塑性変形し、円筒形状が潰れる等)。従来のニトリル共重合体ゴム組成物は、このようにゴム未架橋物(または架橋性ゴム組成物)の成形加工性が十分でなく、また強度特性、耐油性、耐オゾン性が十分なゴム架橋物が得られない。 However, in the conventional nitrile copolymer rubber composition, there is a possibility that the shape at the time of molding cannot be maintained, and there is a problem that a crosslinked rubber product having a desired shape cannot be obtained if it is crosslinked in that state (for example, A cylindrical rubber uncrosslinked product is plastically deformed during molding or standing, and the cylindrical shape is crushed). Thus, conventional nitrile copolymer rubber compositions have insufficient rubber crosslinkable rubber (or crosslinkable rubber composition) moldability and rubber crosslinks with sufficient strength characteristics, oil resistance, and ozone resistance. I can't get anything.
 本発明の課題は、ゴム未架橋物の成形加工性に優れ、ゴム架橋物の強度特性、耐油性、および耐オゾン性に優れるニトリル共重合体ゴム組成物を提供することである。 An object of the present invention is to provide a nitrile copolymer rubber composition which is excellent in molding processability of an uncrosslinked rubber product and excellent in strength properties, oil resistance and ozone resistance of the rubber crosslinked product.
 上記課題を解決するため、本発明の一態様は、α,β-エチレン性不飽和ニトリル単量体単位を40重量%未満含有するニトリル共重合体ゴム(A)と、α,β-エチレン性不飽和ニトリル単量体単位を40重量%以上含有するニトリル共重合体ゴム(B)と、平均重合度が800以上の塩化ビニル樹脂(C)とを含有し、前記ニトリル共重合体ゴム(A)と前記ニトリル共重合体ゴム(B)の合計100重量部に対する、前記塩化ビニル樹脂(C)の含有割合が35重量部以上であるニトリル共重合体ゴム組成物である。 In order to solve the above-described problems, one embodiment of the present invention provides a nitrile copolymer rubber (A) containing less than 40% by weight of an α, β-ethylenically unsaturated nitrile monomer unit, and an α, β-ethylenic property. A nitrile copolymer rubber (B) containing 40% by weight or more of an unsaturated nitrile monomer unit and a vinyl chloride resin (C) having an average degree of polymerization of 800 or more, and the nitrile copolymer rubber (A ) And the nitrile copolymer rubber (B) in a total of 100 parts by weight, the content ratio of the vinyl chloride resin (C) is 35 parts by weight or more.
 本発明の一態様によれば、ゴム未架橋物の成形加工性に優れ、ゴム架橋物の強度特性、耐油性、および耐オゾン性に優れるニトリル共重合体ゴム組成物を提供することができる。 According to one embodiment of the present invention, it is possible to provide a nitrile copolymer rubber composition that is excellent in molding processability of an uncrosslinked rubber product and excellent in strength properties, oil resistance, and ozone resistance of the rubber crosslinked product.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 <ニトリル共重合体ゴム組成物>
 本発明の実施形態に係るニトリル共重合体ゴム組成物は、α,β-エチレン性不飽和ニトリル単量体単位を40重量%未満含有するニトリル共重合体ゴム(A)と、α,β-エチレン性不飽和ニトリル単量体単位を40重量%以上含有するニトリル共重合体ゴム(B)と、平均重合度が800以上の塩化ビニル樹脂(C)とを含有し、ニトリル共重合体ゴム(A)とニトリル共重合体ゴム(B)の合計100重量部に対する、塩化ビニル樹脂(C)の含有割合が35重量部以上である。
<Nitrile copolymer rubber composition>
A nitrile copolymer rubber composition according to an embodiment of the present invention includes a nitrile copolymer rubber (A) containing less than 40% by weight of an α, β-ethylenically unsaturated nitrile monomer unit, an α, β- A nitrile copolymer rubber (B) containing 40% by weight or more of an ethylenically unsaturated nitrile monomer unit and a vinyl chloride resin (C) having an average degree of polymerization of 800 or more, and a nitrile copolymer rubber ( The content ratio of the vinyl chloride resin (C) is 35 parts by weight or more based on 100 parts by weight of the total of A) and the nitrile copolymer rubber (B).
 <ニトリル共重合体ゴム(A)>
 本実施形態で用いるニトリル共重合体ゴム(A)は、少なくともα,β-エチレン性不飽和ニトリル単量体単位を40重量%未満の割合で含有するゴムである。本明細書において、α,β-エチレン性不飽和ニトリル単量体は、ニトリル基を有し、該ニトリル基に対してα位の炭素とβ位の炭素との二重結合を有する化合物である。
<Nitrile copolymer rubber (A)>
The nitrile copolymer rubber (A) used in the present embodiment is a rubber containing at least an α, β-ethylenically unsaturated nitrile monomer unit in a proportion of less than 40% by weight. In the present specification, an α, β-ethylenically unsaturated nitrile monomer is a compound having a nitrile group and having a double bond between the α-position carbon and the β-position carbon with respect to the nitrile group. .
 ニトリル共重合体ゴム(A)におけるα,β-エチレン性不飽和ニトリル単量体単位の含有割合は、全単量体単位に対して、40重量%未満であり、好ましくは37重量%未満、より好ましくは35重量%未満である。該α,β-エチレン性不飽和ニトリル単量体単位の含有割合が高すぎると、得られるゴム架橋物の成形加工性、ゴム架橋物の強度特性が低下する可能性がある。なお、α,β-エチレン性不飽和ニトリル単量体単位の含有割合の下限は、特に限定されないが、得られるゴム架橋物の耐油性の観点から、好ましくは15重量%以上であり、より好ましくは25重量%以上である。 The content ratio of the α, β-ethylenically unsaturated nitrile monomer unit in the nitrile copolymer rubber (A) is less than 40% by weight, preferably less than 37% by weight, based on the total monomer units. More preferably, it is less than 35% by weight. If the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit is too high, the molding processability of the resulting rubber cross-linked product and the strength characteristics of the rubber cross-linked product may be lowered. The lower limit of the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit is not particularly limited, but is preferably 15% by weight or more, more preferably from the viewpoint of oil resistance of the obtained rubber cross-linked product. Is 25% by weight or more.
 なお、本発明の実施形態において、ニトリル共重合体ゴム(A)として、1種のゴムを用いてもよいが、α,β-エチレン性不飽和ニトリル単量体単位を40重量%未満含有するニトリル共重合体ゴム(A)を複数種混合して使用してもよい。なお、ニトリル共重合体ゴム(A)を複数種混合する場合は、単量体組成の異なるゴムの混合物全体における、α,β-エチレン性不飽和ニトリル単量体単位の含有割合を上記範囲とすればよい。例えば、ニトリル共重合体ゴム(A)として、α,β-エチレン性不飽和ニトリル単量体単位の含有割合が25重量%であるゴム(α)と、35重量%であるゴム(β)とを50:50(重量比)にて混合して用いる場合には、ニトリル共重合体ゴム(A)全体のα,β-エチレン性不飽和ニトリル単量体単位の含有割合は、ゴム(α)、ゴム(β)のいずれも30重量%となる。以下、ジエン単量体単位またはα-オレフィン単量体単位などにおいても、同様とする。 In the embodiment of the present invention, one kind of rubber may be used as the nitrile copolymer rubber (A), but it contains less than 40% by weight of α, β-ethylenically unsaturated nitrile monomer unit. A plurality of nitrile copolymer rubbers (A) may be mixed and used. When a plurality of nitrile copolymer rubbers (A) are mixed, the content ratio of α, β-ethylenically unsaturated nitrile monomer units in the entire rubber mixture having different monomer compositions is within the above range. do it. For example, as the nitrile copolymer rubber (A), a rubber (α) containing 25% by weight of an α, β-ethylenically unsaturated nitrile monomer unit, a rubber (β) containing 35% by weight, Are mixed at a ratio of 50:50 (weight ratio), the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit in the entire nitrile copolymer rubber (A) is the rubber (α). The rubber (β) is 30% by weight. Hereinafter, the same applies to diene monomer units or α-olefin monomer units.
 α,β-エチレン性不飽和ニトリル単量体単位を形成するα,β-エチレン性不飽和ニトリル単量体としては、特に限定されないが、例えば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。これらの中でも、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。これらは一種単独でまたは複数種併せて用いることができる。 The α, β-ethylenically unsaturated nitrile monomer forming the α, β-ethylenically unsaturated nitrile monomer unit is not particularly limited, and examples thereof include acrylonitrile; α-chloroacrylonitrile, α-bromoacrylonitrile, etc. Α-halogenoacrylonitrile, α-alkylacrylonitrile such as methacrylonitrile, and the like. Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is more preferable. These can be used individually by 1 type or in combination of multiple types.
 本実施形態において、ニトリル共重合体ゴム(A)は、メチルエチルケトン不溶解分量(以下、MEK不溶分という場合がある)が60%以上であることが好ましく、より好ましくは70%以上であり、さらに好ましくは80%以上である。なお、複数のゴムを混合して使用した場合のメチルエチルケトン不溶解分量は、各ゴムのメチルエチルケトン不溶解分量と混合重量比により算出される。 In the present embodiment, the nitrile copolymer rubber (A) preferably has a methyl ethyl ketone insoluble content (hereinafter sometimes referred to as MEK insoluble content) of 60% or more, more preferably 70% or more. Preferably it is 80% or more. The amount of methyl ethyl ketone insolubles when a plurality of rubbers are mixed and used is calculated from the amount of methyl ethyl ketone insolubles and the mixing weight ratio of each rubber.
 メチルエチルケトン不溶解分量(MEK不溶分)は、ニトリル共重合体ゴム(A)をメチルエチルケトン溶剤に溶解したときに、溶解しないニトリル共重合体ゴム(A)の量である。なお、ニトリル共重合体ゴム(A)が部分的に架橋されている場合、MEK不溶分は多くなる。 The methyl ethyl ketone insoluble content (MEK insoluble content) is the amount of the nitrile copolymer rubber (A) that does not dissolve when the nitrile copolymer rubber (A) is dissolved in the methyl ethyl ketone solvent. When the nitrile copolymer rubber (A) is partially crosslinked, the MEK insoluble matter increases.
 メチルエチルケトン不溶解分量が少なすぎると、ゴム未架橋物の成形加工性およびゴム架橋物の強度特性が十分に得られない可能性がある。一方、メチルエチルケトン不溶解分量の上限はないが、好ましくは90%以下である。なお、一般にメチルエチルケトン不溶解分量が多すぎると、他の成分との混合が困難となり、ニトリル共重合体ゴム(A)を他の成分と配合できず、ゴム組成物とすることができなくなる可能性がある。 If the amount of insoluble methyl ethyl ketone is too small, the molding processability of the rubber uncrosslinked product and the strength characteristics of the rubber crosslinked product may not be sufficiently obtained. On the other hand, there is no upper limit of the amount insoluble in methyl ethyl ketone, but it is preferably 90% or less. In general, if the amount of insoluble methyl ethyl ketone is too large, mixing with other components becomes difficult, and the nitrile copolymer rubber (A) cannot be blended with other components, making it impossible to obtain a rubber composition. There is.
 また、本実施形態で用いるニトリル共重合体ゴム(A)は、得られるゴム架橋物がゴム弾性を有するものとするために、ジエン単量体単位またはα-オレフィン単量体単位をも含有することが好ましい。 The nitrile copolymer rubber (A) used in the present embodiment also contains a diene monomer unit or an α-olefin monomer unit so that the resulting rubber cross-linked product has rubber elasticity. It is preferable.
 ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの、好ましくは炭素数が4以上の共役ジエン;および、1,4-ペンタジエン、1,4-ヘキサジエン、ビニルノルボルネン、ジシクロペンタジエンなどの、好ましくは炭素数が5~12の非共役ジエン;が挙げられる。これらの中では共役ジエンが好ましく、1,3-ブタジエンがより好ましい。 Diene monomers include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like, preferably conjugated dienes having 4 or more carbon atoms; And non-conjugated dienes having 5 to 12 carbon atoms, such as 4-pentadiene, 1,4-hexadiene, vinylnorbornene, and dicyclopentadiene. Of these, conjugated dienes are preferred, and 1,3-butadiene is more preferred.
 α-オレフィン単量体としては、好ましくは炭素数が2~12のものであり、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどが例示される。 The α-olefin monomer preferably has 2 to 12 carbon atoms, and examples thereof include ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene. .
 ニトリル共重合体ゴム(A)におけるジエン単量体単位またはα-オレフィン単量体単位の含有割合は、全単量体単位に対して、好ましくは59重量%以上、より好ましくは61重量%以上、さらに好ましくは64重量%以上であり、また、好ましくは78重量%以下、より好ましくは74重量%以下、さらに好ましくは70重量%以下である。ジエン単量体単位またはα-オレフィン単量体単位の含有割合を上記範囲とすることにより、得られる架橋性ゴム組成物の成形加工性に優れ、得られるゴム架橋物の強度特性、耐油性、耐オゾン性に優れたものとしながら、ゴム弾性を適切に向上させることができる。 The content ratio of the diene monomer unit or α-olefin monomer unit in the nitrile copolymer rubber (A) is preferably 59% by weight or more, more preferably 61% by weight or more based on the total monomer units. More preferably, it is 64% by weight or more, preferably 78% by weight or less, more preferably 74% by weight or less, and further preferably 70% by weight or less. By setting the content ratio of the diene monomer unit or α-olefin monomer unit in the above range, the crosslinkable rubber composition obtained is excellent in molding processability, and the strength properties, oil resistance, Rubber elasticity can be appropriately improved while making it excellent in ozone resistance.
 また、本実施形態で用いるニトリル共重合体ゴム(A)は、上記α,β-エチレン性不飽和ニトリル単量体単位、およびジエン単量体単位またはα-オレフィン単量体単位以外に、これらの単量体単位を形成する単量体と共重合可能な他の単量体の単位を含有していてもよい。このような他の単量体単位の含有割合は、全単量体単位に対して、好ましくは30重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下である。 Further, the nitrile copolymer rubber (A) used in the present embodiment includes these α, β-ethylenically unsaturated nitrile monomer units, diene monomer units, and α-olefin monomer units. Other monomer units that are copolymerizable with the monomer that forms the monomer unit may be contained. The content ratio of such other monomer units is preferably 30% by weight or less, more preferably 20% by weight or less, and still more preferably 10% by weight or less based on the total monomer units.
 このような共重合可能な他の単量体としては、例えば、スチレン、α-メチルスチレン、ビニルトルエンなどの芳香族ビニル化合物;フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどのフッ素含有ビニル化合物;エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどのα-オレフィン化合物;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、無水フマル酸などのα,β-エチレン性不飽和カルボン酸およびその無水物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどのα,β-エチレン性不飽和モノカルボン酸アルキルエステル;マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノn-ブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノn-ブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノn-ブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステルおよびジエステル;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸ブトキシエチルなどのα,β-エチレン性不飽和カルボン酸のアルコキシアルキルエステル;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピルなどのα,β-エチレン性不飽和カルボン酸のヒドロキシアルキルエステル;ジビニルベンゼンなどのジビニル化合物;エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなどのジ(メタ)アクリル酸エステル類;トリメチロールプロパントリ(メタ)アクリレートなどのトリメタクリル酸エステル類;などの多官能エチレン性不飽和単量体のほか、N-メチロール(メタ)アクリルアミド、N,N′-ジメチロール(メタ)アクリルアミドなどの自己架橋性化合物;などが挙げられる。 Examples of such other copolymerizable monomers include aromatic vinyl compounds such as styrene, α-methylstyrene and vinyltoluene; fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethyl styrene, pentafluoro Fluorine-containing vinyl compounds such as vinyl benzoate, difluoroethylene and tetrafluoroethylene; α-olefin compounds such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene; acrylic acid, Α, β-ethylenically unsaturated carboxylic acids such as methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, fumaric anhydride and the like; methyl (meth) acrylate, (meth) Ethyl acrylate, (meth) acrylic acid butyrate Α, β-ethylenically unsaturated monocarboxylic acid alkyl esters such as 2-ethylhexyl (meth) acrylate; monoethyl maleate, diethyl maleate, mono n-butyl maleate, dibutyl maleate, monoethyl fumarate, fumaric acid Α, β-ethylenic unsaturation such as diethyl, mono n-butyl fumarate, dibutyl fumarate, monocyclohexyl fumarate, dicyclohexyl fumarate, monoethyl itaconate, diethyl itaconate, mono n-butyl itaconate, dibutyl itaconate Monoesters and diesters of polycarboxylic acids; alkoxyalkyl esters of α, β-ethylenically unsaturated carboxylic acids such as methoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, butoxyethyl (meth) acrylate; (Meta) Acry Hydroxyalkyl esters of α, β-ethylenically unsaturated carboxylic acids such as 2-hydroxyethyl oxalate and 3-hydroxypropyl (meth) acrylate; divinyl compounds such as divinylbenzene; ethylene di (meth) acrylate, diethylene glycol di (meta In addition to polyfunctional ethylenically unsaturated monomers such as) acrylates, di (meth) acrylates such as ethylene glycol di (meth) acrylate; trimethacrylates such as trimethylolpropane tri (meth) acrylate; And self-crosslinking compounds such as N-methylol (meth) acrylamide and N, N′-dimethylol (meth) acrylamide;
 なお、本明細書において、「(メタ)アクリル酸」は、「アクリル酸」、「メタクリル酸」の両方を意味する。したがって、例えば、(メタ)アクリル酸メチルは、アクリル酸メチル及び/またはメタクリル酸メチルを示す。 In the present specification, “(meth) acrylic acid” means both “acrylic acid” and “methacrylic acid”. Thus, for example, methyl (meth) acrylate refers to methyl acrylate and / or methyl methacrylate.
 これらのうち、少なくとも2個の重合性不飽和基を有する単量体を共重合することが好ましく、中でもジビニル化合物;ジ(メタ)アクリル酸エステル類;トリメタクリル酸エステル類;などの多官能エチレン性不飽和単量体を共重合することが好ましく、トリメチロールプロパントリ(メタ)アクリレートを共重合することが特に好ましい。これらの単量体単位の含有割合は、好ましくは0.1重量%以上、より好ましくは0.3重量%以上であり、また、好ましくは5重量%以下、より好ましくは3重量%以下である。なお、メチルエチルケトン不溶解分量は、これらの共重合により調整が可能である。 Among these, it is preferable to copolymerize a monomer having at least two polymerizable unsaturated groups. Among them, polyfunctional ethylene such as divinyl compound; di (meth) acrylic acid ester; trimethacrylic acid ester; It is preferable to copolymerize a polymerizable unsaturated monomer, and it is particularly preferable to copolymerize trimethylolpropane tri (meth) acrylate. The content ratio of these monomer units is preferably 0.1% by weight or more, more preferably 0.3% by weight or more, and preferably 5% by weight or less, more preferably 3% by weight or less. . In addition, the amount insoluble in methyl ethyl ketone can be adjusted by copolymerization thereof.
 ニトリル共重合体ゴム(A)のムーニー粘度(ポリマームーニー)(ML1+4、100℃)は、通常3以上で、好ましくは15以上、より好ましくは30以上、特に好ましくは50以上であり、また、通常250以下で、好ましくは180以下、より好ましくは150以下、特に好ましくは100以下である。ニトリル共重合体ゴム(A)のポリマームーニー粘度が低すぎると、得られるゴム架橋物の強度特性が低下する可能性がある。一方、ポリマームーニー粘度が高すぎると、成形加工性が低下する可能性がある。なお、ニトリル共重合体ゴム(A)のムーニー粘度は、例えば、JIS K6300に準拠して測定することができる。 The Mooney viscosity (polymer Mooney) (ML1 + 4, 100 ° C.) of the nitrile copolymer rubber (A) is usually 3 or more, preferably 15 or more, more preferably 30 or more, particularly preferably 50 or more, and usually It is 250 or less, preferably 180 or less, more preferably 150 or less, and particularly preferably 100 or less. If the polymer Mooney viscosity of the nitrile copolymer rubber (A) is too low, the strength characteristics of the resulting rubber cross-linked product may be lowered. On the other hand, if the polymer Mooney viscosity is too high, moldability may be reduced. The Mooney viscosity of the nitrile copolymer rubber (A) can be measured according to, for example, JIS K6300.
 本実施形態で用いるニトリル共重合体ゴム(A)の製造方法は、特に限定されないが、上述した単量体を共重合し、必要に応じて、得られる共重合体中の炭素-炭素二重結合を水素化することによって製造することができる。重合方法は、特に限定されず公知の乳化重合法や溶液重合法によればよいが、工業的生産性の観点から乳化重合法が好ましい。乳化重合に際しては、乳化剤、重合開始剤、分子量調整剤に加えて、通常用いられる重合副資材を使用することができる。 The method for producing the nitrile copolymer rubber (A) used in the present embodiment is not particularly limited, but the above-mentioned monomers are copolymerized and, if necessary, the carbon-carbon double in the resulting copolymer. It can be produced by hydrogenating the bonds. The polymerization method is not particularly limited and may be a known emulsion polymerization method or solution polymerization method. From the viewpoint of industrial productivity, the emulsion polymerization method is preferable. In emulsion polymerization, in addition to an emulsifier, a polymerization initiator, and a molecular weight modifier, a commonly used polymerization auxiliary material can be used.
 乳化剤としては、特に限定されないが、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性乳化剤;ミリスチン酸、パルミチン酸、オレイン酸およびリノレン酸等の脂肪酸の塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、アルキルスルホコハク酸塩等のアニオン性乳化剤;α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性乳化剤;などが挙げられる。乳化剤の添加量は、重合に用いる単量体100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、また、好ましくは10重量部以下、より好ましくは5重量部以下である。 Although it does not specifically limit as an emulsifier, For example, Nonionic emulsifiers, such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; Myristic acid, palmitic acid, oleic acid And salts of fatty acids such as linolenic acid, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, anionic emulsifiers such as higher alcohol sulfates and alkylsulfosuccinates; sulfoesters of α, β-unsaturated carboxylic acids, α , Β-unsaturated carboxylic acid sulfate esters, sulfoalkyl aryl ethers and other copolymerizable emulsifiers. The addition amount of the emulsifier is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, and preferably 10 parts by weight or less, based on 100 parts by weight of the monomer used for the polymerization. The amount is preferably 5 parts by weight or less.
 重合開始剤としては、ラジカル開始剤であれば特に限定されないが、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ジベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;等を挙げることができる。これらの重合開始剤は、単独でまたは2種類以上を組み合わせて使用することができる。重合開始剤としては、無機または有機の過酸化物が好ましい。重合開始剤として過酸化物を用いる場合には、重亜硫酸ナトリウム、硫酸第一鉄等の還元剤と組み合わせて、レドックス系重合開始剤として使用することもできる。 The polymerization initiator is not particularly limited as long as it is a radical initiator, but inorganic peroxides such as potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; t-butyl peroxide, cumene Hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3, 5, 5 Organic peroxides such as trimethylhexanoyl peroxide and t-butylperoxyisobutyrate; azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl azobisisobutyrate, etc. Azo Compounds; and the like. These polymerization initiators can be used alone or in combination of two or more. As the polymerization initiator, an inorganic or organic peroxide is preferable. When a peroxide is used as the polymerization initiator, it can be used as a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite or ferrous sulfate.
 重合開始剤の添加量は、重合に用いる単量体100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、さらに好ましくは0.1重量部以上であり、また、好ましくは2重量部以下、より好ましくは1.5重量部以下、さらに好ましくは1.0重量部以下である。 The addition amount of the polymerization initiator is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, and further preferably 0.1 parts by weight or more with respect to 100 parts by weight of the monomer used for the polymerization. And preferably 2 parts by weight or less, more preferably 1.5 parts by weight or less, and still more preferably 1.0 parts by weight or less.
 乳化重合の媒体には、通常、水が使用される。水の量は、重合に用いる単量体100重量部に対して、好ましくは80~500重量部、より好ましくは80~300重量部である。 Water is usually used as the emulsion polymerization medium. The amount of water is preferably 80 to 500 parts by weight, more preferably 80 to 300 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
 乳化重合に際しては、さらに、必要に応じて安定剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等の重合副資材を用いることができる。これらを用いる場合においては、その種類、使用量とも特に限定されない。 In the emulsion polymerization, polymerization auxiliary materials such as a stabilizer, a dispersant, a pH adjuster, an oxygen scavenger, and a particle size adjuster can be used as necessary. In using these, neither the kind nor the usage-amount is specifically limited.
 また、本実施形態で用いるニトリル共重合体ゴム(A)は、上記のように共重合して得られた共重合体のジエン単量体単位における不飽和結合部分のうち少なくとも一部を水素化(水素添加反応)した水素化ニトリル共重合体ゴムであってもよい。水素化の方法は特に限定されず、公知の方法を採用すればよい。ニトリル共重合体ゴム(A)を、水素化ニトリル共重合体ゴムとする場合には、そのヨウ素価は、好ましくは0以上の範囲、より好ましくは4以上の範囲であり、また、好ましくは70以下の範囲、より好ましくは60以下の範囲である。 Further, the nitrile copolymer rubber (A) used in the present embodiment is obtained by hydrogenating at least a part of the unsaturated bond portion in the diene monomer unit of the copolymer obtained by copolymerization as described above. Hydrogenated nitrile copolymer rubber may be used (hydrogenation reaction). The method for hydrogenation is not particularly limited, and a known method may be employed. When the nitrile copolymer rubber (A) is a hydrogenated nitrile copolymer rubber, the iodine value is preferably in the range of 0 or more, more preferably in the range of 4 or more, and preferably 70. It is the following range, More preferably, it is the range of 60 or less.
 なお、本実施形態のニトリル共重合体ゴム組成物を用いて、後述する架橋性ゴム組成物を得る場合には、架橋性ゴム組成物を得る際に用いる配合剤などに応じて、本実施形態のニトリル共重合体ゴム組成物に含有させるニトリル共重合体ゴム(A)に加えて、後述する架橋性ゴム組成物を得る際に、架橋剤などと共に、ニトリル共重合体ゴム(A)を追加添加するような態様としてもよい。 In the case of obtaining a crosslinkable rubber composition to be described later using the nitrile copolymer rubber composition of the present embodiment, the present embodiment depends on the compounding agent used when obtaining the crosslinkable rubber composition. In addition to the nitrile copolymer rubber (A) to be included in the nitrile copolymer rubber composition, a nitrile copolymer rubber (A) is added together with a crosslinking agent when obtaining a crosslinkable rubber composition to be described later. It is good also as an aspect which adds.
 <ニトリル共重合体ゴム(B)>
 また、本実施形態のニトリル共重合体ゴム組成物は、上述したニトリル共重合体ゴム(A)に加えてニトリル共重合体ゴム(B)を含有する。本実施形態で用いるニトリル共重合体ゴム(B)は、少なくともα,β-エチレン性不飽和ニトリル単量体単位を40重量%以上の割合で含有するゴムである。
<Nitrile copolymer rubber (B)>
Moreover, the nitrile copolymer rubber composition of this embodiment contains a nitrile copolymer rubber (B) in addition to the nitrile copolymer rubber (A) described above. The nitrile copolymer rubber (B) used in the present embodiment is a rubber containing at least an α, β-ethylenically unsaturated nitrile monomer unit in a proportion of 40% by weight or more.
 ニトリル共重合体ゴム(B)におけるα,β-エチレン性不飽和ニトリル単量体単位の含有割合は、全単量体単位に対して、40重量%以上であり、好ましくは45重量%以上、より好ましくは47重量%以上である。該α,β-エチレン性不飽和ニトリル単量体単位の含有割合が低すぎると、得られるゴム未架橋物の成形加工性、ゴム架橋物の強度特性、耐油性が低下する傾向がある。一方、ニトリル共重合体ゴム(B)のニトリル共重合体ゴム(B)におけるα,β-エチレン性不飽和ニトリル単量体単位の含有割合の上限は、特に限定されないが、ゴム未架橋物の成形加工性の観点から、好ましくは80重量%以下、より好ましくは70重量%以下、さらに好ましくは60重量%以下、特に好ましくは55重量%以下である。また、ニトリル共重合体ゴム(B)の含有割合は、ニトリル共重合体ゴム(A)100重量部に対して好ましくは1900重量部以下、より好ましくは900重量部以下である。 The content ratio of the α, β-ethylenically unsaturated nitrile monomer unit in the nitrile copolymer rubber (B) is 40% by weight or more, preferably 45% by weight or more, based on the total monomer units. More preferably, it is 47% by weight or more. When the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit is too low, the molding processability of the resulting rubber uncrosslinked product, the strength properties of the rubber crosslinked product, and the oil resistance tend to be lowered. On the other hand, the upper limit of the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit in the nitrile copolymer rubber (B) of the nitrile copolymer rubber (B) is not particularly limited. From the viewpoint of moldability, it is preferably 80% by weight or less, more preferably 70% by weight or less, still more preferably 60% by weight or less, and particularly preferably 55% by weight or less. The content of the nitrile copolymer rubber (B) is preferably 1900 parts by weight or less, more preferably 900 parts by weight or less, with respect to 100 parts by weight of the nitrile copolymer rubber (A).
 なお、本実施形態において、ニトリル共重合体ゴム(B)として、1種のゴムを用いてもよいが、α,β-エチレン性不飽和ニトリル単量体単位を40重量%以上含有するニトリル共重合体ゴム(B)を複数種混合して使用してもよい。なお、ニトリル共重合体ゴム(B)を複数種混合する場合は、単量体組成の異なるゴムの混合物全体における、α,β-エチレン性不飽和ニトリル単量体単位の含有割合を上記範囲とすればよい。例えば、ニトリル共重合体ゴム(B)として、α,β-エチレン性不飽和ニトリル単量体単位の含有割合が55重量%であるゴム(α)と、45重量%であるゴム(β)とを50:50(重量比)にて混合して用いる場合には、ニトリル共重合体ゴム(A)全体のα,β-エチレン性不飽和ニトリル単量体単位の含有割合は、ゴム(α)、ゴム(β)のいずれも50重量%となる。以下、ジエン単量体単位またはα-オレフィン単量体単位などにおいても、同様とする。 In the present embodiment, as the nitrile copolymer rubber (B), one kind of rubber may be used, but the nitrile copolymer rubber containing 40% by weight or more of α, β-ethylenically unsaturated nitrile monomer unit. A plurality of types of polymer rubber (B) may be mixed and used. When a plurality of nitrile copolymer rubbers (B) are mixed, the content ratio of α, β-ethylenically unsaturated nitrile monomer units in the entire rubber mixture having different monomer compositions is within the above range. do it. For example, as the nitrile copolymer rubber (B), a rubber (α) having a content ratio of α, β-ethylenically unsaturated nitrile monomer units of 55% by weight, a rubber (β) having a content of 45% by weight, Are mixed at a ratio of 50:50 (weight ratio), the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit in the entire nitrile copolymer rubber (A) is the rubber (α). The rubber (β) is 50% by weight. Hereinafter, the same applies to diene monomer units or α-olefin monomer units.
 α,β-エチレン性不飽和ニトリル単量体単位を形成するα,β-エチレン性不飽和ニトリル単量体としては、上述したニトリル共重合体ゴム(A)と同様のものを用いることができ、アクリロニトリルが好ましい。 As the α, β-ethylenically unsaturated nitrile monomer forming the α, β-ethylenically unsaturated nitrile monomer unit, the same nitrile copolymer rubber (A) as described above can be used. Acrylonitrile is preferred.
 また、本実施形態で用いるニトリル共重合体ゴム(B)は、得られるゴム架橋物がゴム弾性を有するものとするために、ジエン単量体単位またはα-オレフィン単量体単位をも含有することが好ましい。ジエン単量体単位またはα-オレフィン単量体単位としては、上述したニトリル共重合体ゴム(A)と同様のものを用いることができ、1,3-ブタジエンが好ましい。 Further, the nitrile copolymer rubber (B) used in the present embodiment also contains a diene monomer unit or an α-olefin monomer unit so that the obtained rubber cross-linked product has rubber elasticity. It is preferable. As the diene monomer unit or α-olefin monomer unit, those similar to the nitrile copolymer rubber (A) described above can be used, and 1,3-butadiene is preferred.
 ニトリル共重合体ゴム(B)におけるジエン単量体単位またはα-オレフィン単量体単位の含有割合は、全単量体単位に対して、好ましくは20重量%以上、より好ましくは30重量%以上、さらに好ましくは40重量%以上、特に好ましくは45重量%以上であり、また、好ましくは60重量%以下、より好ましくは55重量%以下、さらに好ましくは53重量%以下である。ジエン単量体単位またはα-オレフィン単量体単位の含有割合を上記範囲とすることにより、得られるゴム未架橋物の成形加工性に優れ、得られるゴム架橋物の強度特性、耐油性、耐オゾン性に優れたものとしながら、ゴム弾性を適切に向上させることができる。 The content ratio of the diene monomer unit or α-olefin monomer unit in the nitrile copolymer rubber (B) is preferably 20% by weight or more, more preferably 30% by weight or more based on the total monomer units. More preferably, it is 40% by weight or more, particularly preferably 45% by weight or more, preferably 60% by weight or less, more preferably 55% by weight or less, and further preferably 53% by weight or less. By setting the content ratio of the diene monomer unit or α-olefin monomer unit in the above range, the resulting rubber uncrosslinked product is excellent in molding processability, and the resulting rubber crosslinked product has strength characteristics, oil resistance, Rubber elasticity can be appropriately improved while being excellent in ozone.
 本実施形態で用いるニトリル共重合体ゴム(B)は、ニトリル共重合体ゴム(A)と同様に、上記α,β-エチレン性不飽和ニトリル単量体単位、およびジエン単量体単位またはα-オレフィン単量体単位以外に、これらの単量体単位を形成する単量体と共重合可能な他の単量体の単位を含有していてもよい。また、このようなニトリル共重合体ゴム(B)に含まれる他の単量体単位の含有割合は、上述したニトリル共重合体ゴム(A)と同様に、全単量体単位に対して、好ましくは30重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下である。 The nitrile copolymer rubber (B) used in the present embodiment is similar to the nitrile copolymer rubber (A) in that the α, β-ethylenically unsaturated nitrile monomer unit and the diene monomer unit or α In addition to the olefin monomer units, other monomer units copolymerizable with the monomers forming these monomer units may be contained. Further, the content ratio of other monomer units contained in such a nitrile copolymer rubber (B) is the same as that of the nitrile copolymer rubber (A) described above, Preferably it is 30 weight% or less, More preferably, it is 20 weight% or less, More preferably, it is 10 weight% or less.
 このようなニトリル共重合体ゴム(B)に含まれる共重合可能な他の単量体としては、ニトリル共重合体ゴム(A)と同様に、例えば、スチレン、α-メチルスチレン、ビニルトルエンなどの芳香族ビニル化合物;フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどのフッ素含有ビニル化合物;エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどのα-オレフィン化合物;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、無水フマル酸などのα,β-エチレン性不飽和カルボン酸およびその無水物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどのα,β-エチレン性不飽和モノカルボン酸アルキルエステル;マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノn-ブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノn-ブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノn-ブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステルおよびジエステル;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸ブトキシエチルなどのα,β-エチレン性不飽和カルボン酸のアルコキシアルキルエステル;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピルなどのα,β-エチレン性不飽和カルボン酸のヒドロキシアルキルエステル;ジビニルベンゼンなどのジビニル化合物;エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなどのジ(メタ)アクリル酸エステル類;トリメチロールプロパントリ(メタ)アクリレートなどのトリメタクリル酸エステル類;などの多官能エチレン性不飽和単量体のほか、N-メチロール(メタ)アクリルアミド、N,N′-ジメチロール(メタ)アクリルアミドなどの自己架橋性化合物;などが挙げられる。 Examples of other copolymerizable monomers contained in such a nitrile copolymer rubber (B) include, for example, styrene, α-methylstyrene, vinyltoluene and the like as in the nitrile copolymer rubber (A). Fluorine-containing vinyl compounds such as fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethyl styrene, vinyl pentafluorobenzoate, difluoroethylene, tetrafluoroethylene; ethylene, propylene, 1-butene, 4- Α-olefin compounds such as methyl-1-pentene, 1-hexene, 1-octene; α, such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, fumaric anhydride, etc. β-ethylenically unsaturated carboxylic acid and its anhydride; ) Α, β-ethylenically unsaturated monocarboxylic acid alkyl esters such as methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; monoethyl maleate, maleic acid Diethyl, mono n-butyl maleate, dibutyl maleate, monoethyl fumarate, diethyl fumarate, mono n-butyl fumarate, dibutyl fumarate, monocyclohexyl fumarate, dicyclohexyl fumarate, monoethyl itaconate, diethyl itaconate, itacon Monoesters and diesters of α, β-ethylenically unsaturated polyvalent carboxylic acids such as mono-n-butyl acid and dibutyl itaconate; methoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, (meth) acrylic acid Α, β such as butoxyethyl -Alkoxyalkyl esters of ethylenically unsaturated carboxylic acids; hydroxyalkyl esters of α, β-ethylenically unsaturated carboxylic acids such as 2-hydroxyethyl (meth) acrylate and 3-hydroxypropyl (meth) acrylate; divinylbenzene Divinyl compounds such as ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, di (meth) acrylates such as ethylene glycol di (meth) acrylate; trimethacrylic acid esters such as trimethylolpropane tri (meth) acrylate And other self-crosslinking compounds such as N-methylol (meth) acrylamide and N, N'-dimethylol (meth) acrylamide; and the like.
 ニトリル共重合体ゴム(B)のムーニー粘度(ポリマームーニー)(ML1+4、100℃)は、通常3以上で、好ましくは15以上、より好ましくは20以上、特に好ましくは30以上であり、また、通常250以下、好ましくは180以下、より好ましくは150以下、特に好ましくは120以下である。ニトリル共重合体ゴム(B)のポリマームーニー粘度が低すぎると、得られるゴム架橋物の強度特性が低下する可能性がある。一方、ポリマームーニー粘度が高すぎると、成形加工性が低下する可能性がある。なお、ニトリル共重合体ゴム(B)のムーニー粘度は、例えば、JIS K6300に準拠して測定することができる。 The Mooney viscosity (polymer Mooney) (ML1 + 4, 100 ° C.) of the nitrile copolymer rubber (B) is usually 3 or more, preferably 15 or more, more preferably 20 or more, particularly preferably 30 or more, and usually It is 250 or less, preferably 180 or less, more preferably 150 or less, and particularly preferably 120 or less. If the polymer Mooney viscosity of the nitrile copolymer rubber (B) is too low, the strength characteristics of the resulting rubber cross-linked product may be lowered. On the other hand, if the polymer Mooney viscosity is too high, moldability may be reduced. The Mooney viscosity of the nitrile copolymer rubber (B) can be measured, for example, according to JIS K6300.
 本実施形態で用いるニトリル共重合体ゴム(B)の製造方法は、特に限定されないが、上述したニトリル共重合体ゴム(A)と同様の製造方法を用いることができる。この場合も、必要に応じて、得られる共重合体中の炭素-炭素二重結合を水素化することによって製造することができる。また、重合方法は、特に限定されず、上述したニトリル共重合体ゴム(A)と同様に、公知の乳化重合法や溶液重合法によればよいが、工業的生産性の観点から乳化重合法が好ましい。乳化重合に際しては、上述したニトリル共重合体ゴム(A)と同様の乳化剤、重合開始剤、分子量調整剤に加えて、通常用いられる重合副資材を使用することができる。 The production method of the nitrile copolymer rubber (B) used in the present embodiment is not particularly limited, but the same production method as that of the nitrile copolymer rubber (A) described above can be used. Also in this case, it can be produced by hydrogenating a carbon-carbon double bond in the obtained copolymer, if necessary. The polymerization method is not particularly limited, and may be a known emulsion polymerization method or solution polymerization method as in the case of the nitrile copolymer rubber (A) described above. From the viewpoint of industrial productivity, the emulsion polymerization method may be used. Is preferred. In emulsion polymerization, in addition to the same emulsifier, polymerization initiator and molecular weight modifier as those of the nitrile copolymer rubber (A) described above, commonly used polymerization auxiliary materials can be used.
 なお、本実施形態のニトリル共重合体ゴム組成物を用いて、後述する架橋性ゴム組成物を得る場合には、架橋性ゴム組成物を得る際に用いる配合剤などに応じて、本実施形態のニトリル共重合体ゴム組成物に含有させるニトリル共重合体ゴム(B)に加えて、後述する架橋性ゴム組成物を得る際に、架橋剤などと共に、ニトリル共重合体ゴム(B)を追加添加するような態様としてもよい。 In the case of obtaining a crosslinkable rubber composition to be described later using the nitrile copolymer rubber composition of the present embodiment, the present embodiment depends on the compounding agent used when obtaining the crosslinkable rubber composition. In addition to the nitrile copolymer rubber (B) contained in the nitrile copolymer rubber composition, a nitrile copolymer rubber (B) is added together with a crosslinking agent when obtaining a crosslinkable rubber composition to be described later. It is good also as an aspect which adds.
 また、ニトリル共重合体ゴム(A)とニトリル共重合体ゴム(B)の合計でα,β-エチレン性不飽和ニトリル単量体単位を35重量%以上含有するのが好ましく、より好ましくは38重量%以上、さらに好ましくは40重量%以上である。ここで、ニトリル共重合体ゴム(A)とニトリル共重合体ゴム(B)の合計でα,β-エチレン性不飽和ニトリル単量体単位を35重量%以上含有するとは、ニトリル共重合体ゴム(A)とニトリル共重合体ゴム(B)の合計に対してα,β-エチレン性不飽和ニトリル単量体単位を35重量%以上含有することを意味する。 Further, the total of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B) preferably contains 35% by weight or more of α, β-ethylenically unsaturated nitrile monomer units, and more preferably 38%. % By weight or more, more preferably 40% by weight or more. Here, the total of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B) contains 35% by weight or more of an α, β-ethylenically unsaturated nitrile monomer unit. It means that 35% by weight or more of α, β-ethylenically unsaturated nitrile monomer unit is contained with respect to the total of (A) and nitrile copolymer rubber (B).
 ニトリル共重合体ゴム(A)とニトリル共重合体ゴム(B)の合計において、α,β-エチレン性不飽和ニトリル単量体単位の含有割合が低すぎると、得られるゴム未架橋物の成形加工性、ゴム架橋物の強度特性が低下する傾向がある。一方、含有割合の上限はないが、他の成分との混合性およびゴム架橋物の耐寒性の観点から、α,β-エチレン性不飽和ニトリル単量体単位の含有割合は、好ましくは70重量%以下、より好ましくは60重量%以下、さらに好ましくは55重量%以下、特に好ましくは50重量%以下である。 If the content of the α, β-ethylenically unsaturated nitrile monomer unit is too low in the total of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B), molding of the resulting rubber uncrosslinked product There is a tendency for processability and strength properties of the rubber cross-linked product to decrease. On the other hand, although there is no upper limit of the content ratio, the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit is preferably 70% by weight from the viewpoint of the miscibility with other components and the cold resistance of the rubber crosslinked product. % Or less, more preferably 60% by weight or less, further preferably 55% by weight or less, and particularly preferably 50% by weight or less.
 <塩化ビニル樹脂(C)>
 本実施形態のニトリル共重合体ゴム組成物は、上述したニトリル共重合体ゴム(A)及びニトリル共重合体ゴム(B)に加えて、平均重合度が800以上の塩化ビニル樹脂(C)を含有する。
<Vinyl chloride resin (C)>
In addition to the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B) described above, the nitrile copolymer rubber composition of the present embodiment comprises a vinyl chloride resin (C) having an average degree of polymerization of 800 or more. contains.
 塩化ビニル樹脂(C)としては、主構成単量体が塩化ビニルであり、その平均重合度が800以上の範囲である樹脂であれば特に限定されないが、主構成単量体の単位の含有量が好ましくは50~100重量%、より好ましくは60~100重量%、さらに好ましくは70~100重量%である。 The vinyl chloride resin (C) is not particularly limited as long as the main constituent monomer is vinyl chloride and the average degree of polymerization thereof is in the range of 800 or more, but the content of the main constituent monomer unit is not particularly limited. Is preferably 50 to 100% by weight, more preferably 60 to 100% by weight, still more preferably 70 to 100% by weight.
 また、塩化ビニル樹脂(C)の平均重合度は、800以上であり、好ましくは900以上、より好ましくは1300以上、特に好ましくは1500以上である。平均重合度が低すぎると、得られるゴム架橋物の耐オゾン性が低下する。一方、平均重合度の上限はないが、ニトリル共重合体ゴム(A)および/またはニトリル共重合体ゴム(B)との混合性の観点から、好ましくは2000以下である。なお、塩化ビニル樹脂(C)の平均重合度は、例えば、JIS K6721に規定の溶液粘度法により測定することができる。塩化ビニル樹脂(C)のガラス転移温度(Tg)は、好ましくは50~180℃である。 The average degree of polymerization of the vinyl chloride resin (C) is 800 or more, preferably 900 or more, more preferably 1300 or more, and particularly preferably 1500 or more. If the average degree of polymerization is too low, the ozone resistance of the resulting rubber cross-linked product is lowered. On the other hand, although there is no upper limit of the average degree of polymerization, it is preferably 2000 or less from the viewpoint of the miscibility with the nitrile copolymer rubber (A) and / or the nitrile copolymer rubber (B). The average degree of polymerization of the vinyl chloride resin (C) can be measured, for example, by the solution viscosity method defined in JIS K6721. The glass transition temperature (Tg) of the vinyl chloride resin (C) is preferably 50 to 180 ° C.
 また、本実施形態で用いる塩化ビニル樹脂(C)は、主構成単量体である塩化ビニルに加えて、塩化ビニルと共重合可能な他の単量体を共重合したものであってもよい。このような他の単量体としては、アルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステル;スチレン、ビニルトルエン、α-メチルスチレンなどの芳香族ビニル化合物;アクリロニトリル、メタクリロニトリル、シアン化ビニリデンなどのシアン化ビニル化合物;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル化合物;エチルビニルエーテル、セチルビニルエーテル、ヒドロキシブチルビニルエーテルなどのビニルエーテル化合物;(メタ)アクリル酸α-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸ブトキシエチルなどの水酸基またはアルコキシ基含有不飽和カルボン酸エステル化合物などが挙げられる。 Further, the vinyl chloride resin (C) used in the present embodiment may be a copolymer obtained by copolymerizing other monomers copolymerizable with vinyl chloride in addition to the main constituent monomer vinyl chloride. . Examples of such other monomers include (meth) acrylic acid alkyl esters having an alkyl group of 1 to 20 carbon atoms; aromatic vinyl compounds such as styrene, vinyl toluene, and α-methyl styrene; acrylonitrile, methacrylonitrile Vinyl cyanide compounds such as vinylidene cyanide; vinyl ester compounds such as vinyl acetate and vinyl propionate; vinyl ether compounds such as ethyl vinyl ether, cetyl vinyl ether and hydroxybutyl vinyl ether; α-hydroxyethyl (meth) acrylate, (meth) Examples thereof include hydroxyl group or alkoxy group-containing unsaturated carboxylic acid ester compounds such as 3-hydroxybutyl acrylate and butoxyethyl (meth) acrylate.
 本実施形態で用いる塩化ビニル樹脂(C)を製造するための重合方法として特に制限はなく、例えば、乳化重合、播種乳化重合、微細懸濁重合、懸濁重合などが挙げられる。 The polymerization method for producing the vinyl chloride resin (C) used in the present embodiment is not particularly limited, and examples thereof include emulsion polymerization, seeding emulsion polymerization, fine suspension polymerization, and suspension polymerization.
 本実施形態のニトリル共重合体ゴム組成物中における、塩化ビニル樹脂(C)の含有量は、ニトリル共重合体ゴム(A)及びニトリル共重合体ゴム(B)の合計100重量部に対して、35重量部以上であり、好ましくは38重量部以上、より好ましくは40重量部以上である。塩化ビニル樹脂(C)の含有量が少なすぎると、得られるゴム未架橋物の成形加工性およびゴム架橋物の強度特性が低下する。一方、塩化ビニル樹脂(C)の含有量の上限は、特に限定されないが、ニトリル共重合体ゴム(A)および/またはニトリル共重合体ゴム(B)との混合性の観点から、233重量部以下、好ましくは150重量部以下、より好ましくは100重量部以下、さらに好ましくは80重量部以下、特に好ましくは70重量部以下である。 The content of the vinyl chloride resin (C) in the nitrile copolymer rubber composition of the present embodiment is based on 100 parts by weight of the total of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B). , 35 parts by weight or more, preferably 38 parts by weight or more, more preferably 40 parts by weight or more. When there is too little content of a vinyl chloride resin (C), the processability of the rubber uncrosslinked product obtained and the strength characteristic of a rubber crosslinked product will deteriorate. On the other hand, the upper limit of the content of the vinyl chloride resin (C) is not particularly limited, but is 233 parts by weight from the viewpoint of miscibility with the nitrile copolymer rubber (A) and / or the nitrile copolymer rubber (B). The amount is preferably 150 parts by weight or less, more preferably 100 parts by weight or less, still more preferably 80 parts by weight or less, and particularly preferably 70 parts by weight or less.
 また、本実施形態のニトリル共重合体ゴム組成物は、上述したニトリル共重合体ゴム(A)、ニトリル共重合体ゴム(B)および塩化ビニル樹脂(C)に加えて、その他の配合剤を含有していてもよい。このようなその他の配合剤としては、例えば、可塑剤、老化防止剤安定剤などが挙げられる。 The nitrile copolymer rubber composition of the present embodiment contains other compounding agents in addition to the nitrile copolymer rubber (A), the nitrile copolymer rubber (B) and the vinyl chloride resin (C) described above. You may contain. Examples of such other compounding agents include plasticizers and anti-aging stabilizers.
 これら他の配合剤の配合量は、本実施形態の目的や効果を阻害しない範囲であれば特に限定されず、配合目的に応じた量を配合することができる。 The compounding amount of these other compounding agents is not particularly limited as long as the purpose and effect of the present embodiment are not impaired, and an amount corresponding to the compounding purpose can be blended.
 可塑剤の具体例としては、例えば、アジピン酸ジ(ブトキシエチル)、アジピン酸ジ(ブトキシエトキシエチル)などのアジピン酸とエーテル結合含有アルコールとのエステル化合物;アゼライン酸ジブトキシエチル、アゼライン酸ジ(ブトキシエトキシエチル)などのアゼライン酸とエーテル結合含有アルコールとのエステル化合物;セバシン酸ジブトキシエチル、セバシン酸ジ(ブトキシエトキシエチル)などのセバシン酸とエーテル結合含有アルコールとのエステル化合物;フタル酸ジブトキシエチル、フタル酸ジ(ブトキシエトキシエチル)などのフタル酸とエーテル結合含有アルコールとのエステル化合物;イソフタル酸ジブトキシエチル、イソフタル酸ジ(ブトキシエトキシエチル)などのイソフタル酸とエーテル結合含有アルコールとのエステル化合物;アジピン酸ジ-(2-エチルヘキシル)、アジピン酸ジイソデシル、アジピン酸ジイソノニル、アジピン酸ジブチルなどのアジピン酸ジアルキルエステル類;アゼライン酸ジ-(2-エチルヘキシル)、アゼライン酸ジイソオクチル、アゼライン酸ジ-n-ヘキシルなどのアゼライン酸ジアルキルエステル類;セバシン酸ジ-n-ブチル、セバシン酸ジ-(2-エチルヘキシル)などのセバシン酸ジアルキルエステル類;フタル酸ジブチル、フタル酸ジ-(2-エチルヘキシル)、フタル酸ジ-n-オクチル、フタル酸ジイソブチル、フタル酸ジヘプチル、フタル酸ジイソデシル、フタル酸ジウンデシル、フタル酸ジイソノニルなどのフタル酸ジアルキルエステル類;フタル酸ジシクロヘキシルなどのフタル酸ジシクロアルキルエステル類;フタル酸ジフェニル、フタル酸ブチルベンジルなどのフタル酸アリールエステル類;イソフタル酸ジ-(2-エチルヘキシル)、イソフタル酸ジイソオクチルなどのイソフタル酸ジアルキルエステル類;テトラヒドロフタル酸ジ-(2-エチルヘキシル)、テトラヒドロフタル酸ジ-n-オクチル、テトラヒドロフタル酸ジイソデシルなどのテトラヒドロフタル酸ジアルキルエステル類;トリメリット酸トリ-(2-エチルヘキシル)、トリメリット酸トリ-n-オクチル、トリメリット酸トリイソデシル、トリメリット酸トリイソオクチル、トリメリット酸トリ-n-ヘキシル、トリメリット酸トリイソノニル、トリメリット酸トリイソデシルなどのトリメリット酸誘導体;エポキシ化大豆油、エポキシ化アマニ油などのエポキシ系可塑剤;トリクレジルホスフェートなどのリン酸エステル系可塑剤;などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。 Specific examples of the plasticizer include ester compounds of adipic acid and ether-containing alcohols such as di (butoxyethyl) adipate and di (butoxyethoxyethyl) adipate; dibutoxyethyl azelate, Ester compounds of azelaic acid such as butoxyethoxyethyl) and ether bond-containing alcohols; ester compounds of sebacic acid such as dibutoxyethyl sebacate and di (butoxyethoxyethyl) sebacate and ether bond-containing alcohols; dibutoxy phthalate Ester compounds of phthalic acid such as ethyl and di (butoxyethoxyethyl) phthalate with alcohols containing ether bonds; isophthalic acid such as dibutoxyethyl isophthalate and di (butoxyethoxyethyl) isophthalate and ether bonds Ester compounds with cole; di- (2-ethylhexyl) adipate, diisodecyl adipate, diisononyl adipate, dibutyl adipate, etc .; di- (2-ethylhexyl) azelate, diisooctyl azelate, azelain Dialkyl esters of azelaic acid such as di-n-hexyl acid; dialkyl esters of sebacic acid such as di-n-butyl sebacate, di- (2-ethylhexyl) sebacate; dibutyl phthalate, di-phthalate (2- Ethylhexyl), di-n-octyl phthalate, diisobutyl phthalate, diheptyl phthalate, diisodecyl phthalate, diundecyl phthalate, diisononyl phthalate, and the like; phthalic acids such as dicyclohexyl phthalate Cycloalkyl esters; Phthalic acid aryl esters such as diphenyl phthalate and butyl benzyl phthalate; Diphthalic acid dialkyl esters such as di- (2-ethylhexyl) isophthalate and diisooctyl isophthalate; Tetrahydrophthalic acid di- (2- Ethyl hexyl), tetrahydrophthalic acid dialkyl esters such as tetrahydrophthalic acid di-n-octyl, tetrahydrophthalic acid diisodecyl; trimellitic acid tri- (2-ethylhexyl), trimellitic acid tri-n-octyl, trimellitic acid triisodecyl, Trimellitic acid derivatives such as triisooctyl trimellitic acid, tri-n-hexyl trimellitic acid, triisononyl trimellitic acid, triisodecyl trimellitic acid; epoxidized soybean oil, epoxidized flax And epoxy plasticizers such as ni oil; phosphate ester plasticizers such as tricresyl phosphate; and the like. These can be used individually by 1 type or in combination of multiple types.
 これらの中でも、得られるゴム架橋物の耐油性をより良好なものとすることができるという観点より、アジピン酸、アゼライン酸、セバシン酸およびフタル酸などの二塩基酸と、エーテル結合含有アルコールとのエステル化合物;が好ましく、アジピン酸とエーテル結合含有アルコールとのエステル化合物;がより好ましく、アジピン酸ジ(ブトキシエトキシエチル)が特に好ましい。 Among these, a dibasic acid such as adipic acid, azelaic acid, sebacic acid, and phthalic acid, and an ether bond-containing alcohol are used from the viewpoint that the resulting rubber cross-linked product can have better oil resistance. An ester compound is preferred, an ester compound of adipic acid and an ether bond-containing alcohol is more preferred, and di (butoxyethoxyethyl) adipate is particularly preferred.
 本実施形態のニトリル共重合体ゴム組成物中における、可塑剤の含有量は、ニトリル共重合体ゴム(A)及びニトリル共重合体ゴム(B)の合計100重量部に対して、好ましくは1重量部以上、より好ましくは2重量部以上、さらに好ましくは3重量部以上、特に好ましくは4重量部以上であり、また、好ましくは100重量部以下、より好ましくは80重量部以下、さらに好ましくは60重量部以下、特に好ましくは50重量部以下である。
可塑剤の含有量を上記範囲とすることにより、その添加効果をより高めることできる。
The content of the plasticizer in the nitrile copolymer rubber composition of the present embodiment is preferably 1 with respect to a total of 100 parts by weight of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B). Parts by weight or more, more preferably 2 parts by weight or more, further preferably 3 parts by weight or more, particularly preferably 4 parts by weight or more, and preferably 100 parts by weight or less, more preferably 80 parts by weight or less, still more preferably 60 parts by weight or less, particularly preferably 50 parts by weight or less.
By making content of a plasticizer into the said range, the addition effect can be improved more.
 本実施形態のニトリル共重合体ゴム組成物は、ニトリル共重合体ゴム(A)、ニトリル共重合体ゴム(B)、および塩化ビニル樹脂(C)を含む各成分を好ましくは非水系で混合することにより調製される。混合は、例えば、バンバリーミキサー、インターナルミキサー、ニーダーなどの混合機を用いて行うことができる。 In the nitrile copolymer rubber composition of the present embodiment, the respective components including the nitrile copolymer rubber (A), the nitrile copolymer rubber (B), and the vinyl chloride resin (C) are preferably mixed in a non-aqueous system. It is prepared by. Mixing can be performed using, for example, a mixer such as a Banbury mixer, an internal mixer, or a kneader.
 なお、ニトリル共重合体ゴム(A)、ニトリル共重合体ゴム(B)、および塩化ビニル樹脂(C)を含む各成分を混合する際の混合温度は、特に限定されないが、好ましくは塩化ビニル樹脂(C)の融点以上の温度であり、より好ましくは塩化ビニル樹脂(C)の軟化点よりも5℃以上高い温度で混合を行うことがより好ましく、塩化ビニル樹脂(C)の軟化点よりも10℃以上高い温度である。具体的には、160℃以上で混合を行うことが好ましく、165℃以上で混合を行うことがより好ましく、170℃以上で混合を行うことがさらに好ましい。このような温度で混合を行うことにより、ニトリル共重合体ゴム組成物中における、塩化ビニル樹脂(C)の分散性をより高めることでき、これにより、得られるゴム架橋物を耐オゾン性により優れたものとすることができる。 In addition, the mixing temperature at the time of mixing each component containing a nitrile copolymer rubber (A), a nitrile copolymer rubber (B), and a vinyl chloride resin (C) is not particularly limited, but is preferably a vinyl chloride resin. (C) It is temperature more than melting | fusing point, More preferably, it is more preferable to mix at the temperature 5 degreeC or more higher than the softening point of vinyl chloride resin (C), and it is more than the softening point of vinyl chloride resin (C). The temperature is 10 ° C. or higher. Specifically, the mixing is preferably performed at 160 ° C or higher, more preferably performed at 165 ° C or higher, and further preferably performed at 170 ° C or higher. By mixing at such a temperature, the dispersibility of the vinyl chloride resin (C) in the nitrile copolymer rubber composition can be further increased, and thus the resulting rubber cross-linked product is more excellent in ozone resistance. Can be.
 あるいは、本実施形態のニトリル共重合体ゴム組成物は、ニトリル共重合体ゴム(A)および塩化ビニル樹脂(C)を含む各成分を水系で混合することも可能であり、この場合には、乳化重合により得られたニトリル共重合体ゴム(A)およびニトリル共重合体ゴム(B)のラテックスに、従来から公知の乳化重合法や懸濁重合法により製造したラテックス状態の塩化ビニル樹脂(C)や、他の成分を混合することにより調製することができる(ラテックスブレンド)。 Alternatively, in the nitrile copolymer rubber composition of the present embodiment, each component including the nitrile copolymer rubber (A) and the vinyl chloride resin (C) can be mixed in an aqueous system. A latex of a nitrile copolymer rubber (A) and a nitrile copolymer rubber (B) obtained by emulsion polymerization are made into a latex vinyl chloride resin (C) produced by a conventionally known emulsion polymerization method or suspension polymerization method. ) Or other components (latex blend).
 <架橋性ゴム組成物>
 実施形態に係る架橋性ゴム組成物は、上述した本実施形態のニトリル共重合体ゴム組成物に、架橋剤を配合してなるものである。架橋剤としては、硫黄系架橋剤、有機過酸化物架橋剤等が挙げられる。これらは一種単独でまたは複数種併せて用いることができるが、硫黄系架橋剤を用いることが好ましい。
<Crosslinkable rubber composition>
The crosslinkable rubber composition according to the embodiment is obtained by blending a crosslinking agent with the nitrile copolymer rubber composition of the present embodiment described above. Examples of the crosslinking agent include a sulfur-based crosslinking agent and an organic peroxide crosslinking agent. Although these can be used individually by 1 type or in combination of multiple types, it is preferable to use a sulfur type crosslinking agent.
 硫黄系架橋剤としては、粉末硫黄、硫黄華、沈降性硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの硫黄;塩化硫黄、二塩化硫黄、モルホリンジスルフィド、アルキルフェノールジスルフィド、ジベンゾチアジルジスルフィド、カプロラクタムジスルフィド、含リンポリスルフィド、高分子多硫化物などの含硫黄化合物;テトラメチルチウラムジスルフィド、ジメチルジチオカルバミン酸セレン、2-(4’-モルホリノジチオ)ベンゾチアゾールなどの硫黄供与性化合物;などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。 Sulfur-based cross-linking agents include powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, etc .; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothiazyl disulfide, caprolactam disulfide And sulfur-containing compounds such as phosphorus-containing polysulfides and polymer polysulfides; sulfur-donating compounds such as tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, and 2- (4′-morpholinodithio) benzothiazole. These can be used individually by 1 type or in combination of multiple types.
 有機過酸化物架橋剤としては、ジクミルペルオキシド、クメンヒドロペルオキシド、t-ブチルクミルペルオキシド、p-メンタンヒドロペルオキシド、ジ-t-ブチルペルオキシド、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,4-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,1-ジ-t-ブチルペルオキシ-3,3-トリメチルシクロヘキサン、4,4-ビス-(t-ブチル-ペルオキシ)-n-ブチルバレレート、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキサン、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキシン-3、1,1-ジ-t-ブチルペルオキシ-3,5,5-トリメチルシクロヘキサン、p-クロロベンゾイルペルオキシド、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシベンゾエート等が挙げられる。これらは一種単独でまたは複数種併せて用いることができる。 Examples of organic peroxide crosslinking agents include dicumyl peroxide, cumene hydroperoxide, t-butylcumyl peroxide, p-menthane hydroperoxide, di-t-butyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene 1,4-bis (t-butylperoxyisopropyl) benzene, 1,1-di-t-butylperoxy-3,3-trimethylcyclohexane, 4,4-bis- (t-butyl-peroxy) -n-butyl Valerate, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3, 1,1-di-t- Butylperoxy-3,5,5-trimethylcyclohexane, p-chlorobenzoyl peroxide, t-butylperoxy Isopropyl carbonate, t- butyl peroxybenzoate, and the like. These can be used individually by 1 type or in combination of multiple types.
 本実施形態の架橋性ゴム組成物中における、架橋剤の含有量は、良好なゴム架橋物を得るという観点より、ニトリル共重合体ゴム(A)及びニトリル共重合体ゴム(B)の合計100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、さらに好ましくは0.3重量部以上であり、また、好ましくは10重量部以下、より好ましくは8重量部以下、さらに好ましくは6重量部以下である。 The content of the crosslinking agent in the crosslinkable rubber composition of the present embodiment is a total of 100 of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B) from the viewpoint of obtaining a good rubber cross-linked product. The amount is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, further preferably 0.3 parts by weight or more, and preferably 10 parts by weight or less, more preferably 8 parts by weight or more. It is 6 parts by weight or less, more preferably 6 parts by weight or less.
 硫黄系架橋剤を用いる場合には、活性亜鉛華、亜鉛華、ステアリン酸などの架橋助剤;グアニジン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系などの架橋促進剤;を併用することができる。これらの架橋助剤および架橋促進剤の使用量は、ニトリル共重合体ゴム(A)及びニトリル共重合体ゴム(B)の合計100重量部に対して、好ましくは0.1~20重量部の範囲である。 In the case of using a sulfur-based crosslinking agent, crosslinking aids such as activated zinc white, zinc white and stearic acid; guanidine type, aldehyde-amine type, aldehyde-ammonia type, thiazole type, sulfenamide type, thiourea type, etc. These crosslinking accelerators can be used in combination. These crosslinking aids and crosslinking accelerators are used in an amount of preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B). It is a range.
 有機過酸化物架橋剤を用いる場合には、架橋助剤として、トリメチロールプロパントリ(メタ)クリレート、ジビニルベンゼン、エチレンジメタクリレート、イソシアヌル酸トリアリルなどの多官能性単量体などを併用することができる。これらの架橋助剤の使用量は、ニトリル共重合体ゴム(A)及びニトリル共重合体ゴム(B)の合計100重量部に対して、好ましくは0.5~20重量部の範囲である。 When an organic peroxide crosslinking agent is used, a polyfunctional monomer such as trimethylolpropane tri (meth) acrylate, divinylbenzene, ethylene dimethacrylate, or triallyl isocyanurate may be used in combination as a crosslinking aid. it can. The amount of these crosslinking aids used is preferably in the range of 0.5 to 20 parts by weight with respect to 100 parts by weight in total of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B).
 また、本実施形態の架橋性ゴム組成物は、炭化水素系ワックスをさらに含有していても良い。炭化水素系ワックスをさらに含有させることにより、得られるゴム架橋物を、耐オゾン性により優れたものとすることができる。 Moreover, the crosslinkable rubber composition of the present embodiment may further contain a hydrocarbon wax. By further containing a hydrocarbon wax, the resulting rubber cross-linked product can be made more excellent in ozone resistance.
 炭化水素系ワックスとしては、ポリエチレンワックス、ポリプロピレンワックス等のポリオレフィンワックス;フィッシャートロプシュワックス;パラフィンワックス、マイクロスタリンワックス等の石油系ワックス等が挙げられ、これらの中でも、フィッシャートロプシュワックス、石油系ワックスが好ましく、石油系ワックスがより好ましい。 Examples of the hydrocarbon wax include polyolefin waxes such as polyethylene wax and polypropylene wax; Fischer-Tropsch wax; petroleum waxes such as paraffin wax and microstarin wax. Among these, Fischer-Tropsch wax and petroleum wax are preferable. Petroleum wax is more preferable.
 また、本実施形態の架橋性ゴム組成物は、可塑剤を含有していることが好ましく、可塑剤としては、上述したニトリル共重合体ゴム組成物と同様のものを用いることができる。本実施形態の架橋性ゴム組成物中における、可塑剤の含有量は、ニトリル共重合体ゴム(A)及びニトリル共重合体ゴム(B)の合計100重量部に対して、好ましくは3重量部以上であり、より好ましくは5重量部以上、さらに好ましくは10重量部以上であり、また、好ましくは300重量部以下であり、より好ましくは200重量部以下、さらに好ましくは150重量部以下である。可塑剤の含有量を上記範囲とすることにより、その添加効果をより高めることできる。なお、本実施形態の架橋性ゴム組成物における可塑剤の含有量は、上述した本実施形態のニトリル共重合体ゴム組成物に含まれる可塑剤との合計の含有量が上記範囲となるように調整すればよい。 Further, the crosslinkable rubber composition of the present embodiment preferably contains a plasticizer, and the same plasticizer as the above-mentioned nitrile copolymer rubber composition can be used. The content of the plasticizer in the crosslinkable rubber composition of the present embodiment is preferably 3 parts by weight with respect to a total of 100 parts by weight of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B). More preferably, it is 5 parts by weight or more, more preferably 10 parts by weight or more, preferably 300 parts by weight or less, more preferably 200 parts by weight or less, still more preferably 150 parts by weight or less. . By making content of a plasticizer into the said range, the addition effect can be improved more. In addition, the content of the plasticizer in the crosslinkable rubber composition of the present embodiment is such that the total content of the plasticizer contained in the nitrile copolymer rubber composition of the present embodiment described above falls within the above range. Adjust it.
 また、本実施形態の架橋性ゴム組成物には、その他必要に応じて一般的なゴムに使用される配合剤、例えば、架橋遅延剤、補強剤、充填剤、滑剤、粘着剤、潤滑剤、加工助剤、難燃剤、防黴剤、帯電防止剤、着色剤、カップリング剤などの添加剤を配合してもよい。 In addition, the crosslinkable rubber composition of the present embodiment has other compounding agents used for general rubber as necessary, for example, a crosslinking retarder, a reinforcing agent, a filler, a lubricant, an adhesive, a lubricant, You may mix | blend additives, such as a processing aid, a flame retardant, an antifungal agent, an antistatic agent, a coloring agent, and a coupling agent.
 充填剤としては、特に限定されず、カーボンブラック、黒鉛(グラファイト)等の炭素系材料を用いることができる。中でもカーボンブラックを用いるのが好ましい。カーボンブラックの具体例は、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック等が挙げられる。これらの中でも、ファーネスブラックを用いることが好ましく、その具体例としては、SAF(N110)、ISAF(N220)、ISAF-HS(N234)、ISAF-LS、IISAF-HS、HAF(N330)、HAF-HS(N339)、HAF-LS(N326)、MAF、FEF(N550)、SRF(N762、N774)等が挙げられる。サーマルブラックの具体例としては、FT、MT(N990)等が挙げられる。黒鉛の具体例は、鱗状黒鉛、鱗片状黒鉛等の天然黒鉛、人造黒鉛が挙げられる。 The filler is not particularly limited, and carbon-based materials such as carbon black and graphite can be used. Among these, it is preferable to use carbon black. Specific examples of carbon black include furnace black, acetylene black, thermal black, channel black, and the like. Among these, furnace black is preferably used, and specific examples thereof include SAF (N110), ISAF (N220), ISAF-HS (N234), ISAF-LS, IISAF-HS, HAF (N330), HAF- HS (N339), HAF-LS (N326), MAF, FEF (N550), SRF (N762, N774) and the like. Specific examples of thermal black include FT and MT (N990). Specific examples of graphite include natural graphite such as scaly graphite and scaly graphite, and artificial graphite.
 炭素系材料以外の充填剤としては、例えば、アルミニウム粉末等の金属粉;ハードクレー、タルク、炭酸カルシウム、酸化チタン、硫酸カルシウム、炭酸カルシウム、水酸化アルミニウム等の無機粉末;デンプンやポリスチレン粉末等の有機粉末等の粉体;ガラス繊維(ミルドファイバー)、炭素繊維、アラミド繊維、チタン酸カリウムウィスカー等の短繊維(上記短繊維);シリカ、マイカ;等が挙げられる。中でもシリカを用いるのが好ましい。 Examples of fillers other than carbon-based materials include metal powders such as aluminum powder; inorganic powders such as hard clay, talc, calcium carbonate, titanium oxide, calcium sulfate, calcium carbonate, and aluminum hydroxide; starch and polystyrene powder, etc. Examples thereof include powders such as organic powders; short fibers (the above-mentioned short fibers) such as glass fibers (milled fibers), carbon fibers, aramid fibers, and potassium titanate whiskers; silica and mica. Of these, silica is preferably used.
 シリカとしては、石英粉末、珪石粉末等の天然シリカ;無水珪酸(シリカゲル、アエロジル等)、含水珪酸等の合成シリカ;等が挙げられ、これらの中でも、合成シリカが好ましい。またこれらシリカはシランカップリング剤等で表面処理されたものであってもよい。 Examples of silica include natural silica such as quartz powder and silica powder; synthetic silica such as anhydrous silicic acid (silica gel, aerosil, etc.) and hydrous silicic acid. Among these, synthetic silica is preferable. These silicas may be surface-treated with a silane coupling agent or the like.
 これらの充填剤は、1種または2種以上を組み合わせて用いられる。また、充填剤の配合量は、特に限定されないが、引張応力を向上させる観点から、ニトリル基含有共重合体ゴム100重量部に対して、好ましくは5重量部以上、より好ましくは10重量部以上、さらに好ましくは15重量部以上であり、また、好ましくは200重量部以下、より好ましくは150重量部以下、さらに好ましくは100重量部以下である。 These fillers are used alone or in combination of two or more. The blending amount of the filler is not particularly limited, but is preferably 5 parts by weight or more, more preferably 10 parts by weight or more with respect to 100 parts by weight of the nitrile group-containing copolymer rubber from the viewpoint of improving tensile stress. More preferably, it is 15 parts by weight or more, preferably 200 parts by weight or less, more preferably 150 parts by weight or less, and still more preferably 100 parts by weight or less.
 さらに、本実施形態の架橋性ゴム組成物には、本実施形態の効果が阻害されない範囲で上記ニトリル共重合体ゴム(A)およびニトリル共重合体ゴム(B)以外のゴムを配合してもよい。ニトリル共重合体ゴム(A)およびニトリル共重合体ゴム(B)以外のゴムとしては、アクリルゴム、エチレン-アクリル酸共重合体ゴム、フッ素ゴム、スチレン-ブタジエン共重合体ゴム、ポリブタジエンゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエン三元共重合体ゴム、エピクロロヒドリンゴム、ウレタンゴム、クロロプレンゴム、シリコーンゴム、フルオロシリコーンゴム、クロロスルホン化ポリエチレンゴム、天然ゴムおよびポリイソプレンゴムなどを挙げることができる。ニトリル共重合体ゴム(A)及びニトリル共重合体ゴム(B)以外のゴムを配合する場合における配合量は、ニトリル共重合体ゴム(A)及びニトリル共重合体ゴム(B)の合計100重量部に対して、30重量部以下が好ましく、20重量部以下がより好ましく、10重量部以下が特に好ましい。 Furthermore, the crosslinkable rubber composition of the present embodiment may be blended with a rubber other than the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B) as long as the effects of the present embodiment are not inhibited. Good. As rubbers other than the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B), acrylic rubber, ethylene-acrylic acid copolymer rubber, fluorine rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, ethylene -Propylene copolymer rubber, ethylene-propylene-diene terpolymer rubber, epichlorohydrin rubber, urethane rubber, chloroprene rubber, silicone rubber, fluorosilicone rubber, chlorosulfonated polyethylene rubber, natural rubber and polyisoprene rubber Can be mentioned. When blending rubber other than nitrile copolymer rubber (A) and nitrile copolymer rubber (B), the blending amount is 100 weights in total of nitrile copolymer rubber (A) and nitrile copolymer rubber (B). 30 parts by weight or less is preferable, 20 parts by weight or less is more preferable, and 10 parts by weight or less is particularly preferable.
 本実施形態の架橋性ゴム組成物の調製方法としては、特に限定されないが、上述した方法で得られたニトリル共重合体ゴム組成物に、架橋剤、およびその他の配合剤を添加し、ロールやバンバリーミキサー、ニーダー等の混練機で混練すればよい。 The method for preparing the crosslinkable rubber composition of the present embodiment is not particularly limited, but a nitrile copolymer rubber composition obtained by the above-described method is added with a crosslinking agent and other compounding agents, What is necessary is just to knead | mix with kneading machines, such as a Banbury mixer and a kneader.
 なお、この場合における、配合順序は特に限定されないが、熱で反応や分解しにくい成分を充分に混合した後、熱で分解しやすい成分(架橋剤、架橋促進剤など)を、分解が起こらない温度以下で短時間混合すればよい。 In this case, the blending order is not particularly limited, but components (such as a crosslinking agent and a crosslinking accelerator) that are easily decomposed by heat after sufficiently mixing components that are not easily reacted or decomposed by heat do not decompose. What is necessary is just to mix for a short time below temperature.
 このようにして得られる本実施形態のゴム未架橋物は、成形加工性に優れるものであり、このゴム未架橋物から得られたゴム架橋物は、強度特性、耐油性、および耐オゾン性に優れるものである。 The rubber uncrosslinked product of the present embodiment thus obtained is excellent in molding processability, and the rubber crosslinked product obtained from the rubber uncrosslinked product is excellent in strength characteristics, oil resistance, and ozone resistance. It is excellent.
 <ゴム架橋物>
 本実施形態に係るゴム架橋物は、上述した本実施形態の架橋性ゴム組成物を架橋してなるものである。
<Rubber cross-linked product>
The rubber cross-linked product according to this embodiment is obtained by cross-linking the cross-linkable rubber composition of this embodiment described above.
 架橋性ゴム組成物を架橋する際には、製造する成形品(ゴム架橋物)の形状に対応した成形機、例えば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、次いで架橋反応させることにより架橋物の形状を固定化する。架橋を行う際には、予め成形した後に架橋してもよいし、成形と同時に架橋を行ってもよい。成形温度は、通常10℃以上で、好ましくは25℃以上であり、また、通常200℃以下で、好ましくは120℃以下である。架橋温度は、通常100℃以上で、好ましくは130℃以上であり、また、通常200℃以下で、好ましくは190℃以下である。架橋時間は、通常1分以上で、好ましくは2分以上であり、また、通常24時間以下で、好ましくは1時間以下である。 When the crosslinkable rubber composition is crosslinked, it is molded by a molding machine corresponding to the shape of the molded article (rubber crosslinked product) to be produced, for example, an extruder, an injection molding machine, a compressor, a roll, etc., and then crosslinked. By reacting, the shape of the crosslinked product is fixed. When performing the crosslinking, the crosslinking may be performed after molding in advance, or the crosslinking may be performed simultaneously with the molding. The molding temperature is usually 10 ° C. or higher, preferably 25 ° C. or higher, and is usually 200 ° C. or lower, preferably 120 ° C. or lower. The crosslinking temperature is usually 100 ° C. or higher, preferably 130 ° C. or higher, and is usually 200 ° C. or lower, preferably 190 ° C. or lower. The crosslinking time is usually 1 minute or longer, preferably 2 minutes or longer, and usually 24 hours or shorter, preferably 1 hour or shorter.
 ゴム架橋物は、その形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。 Depending on the shape, size, etc. of the rubber cross-linked product, even if the surface is cross-linked, it may not be sufficiently cross-linked to the inside. Therefore, secondary cross-linking may be performed by heating.
 このようにして得られる本実施形態のゴム架橋物は、ゴム未架橋物として成形加工性に優れるものであり、上述した本実施形態のニトリルゴム組成物および架橋性ゴム組成物を用いて得られるものであるため強度特性、耐油性、および耐オゾン性に優れたものである。 The rubber cross-linked product of the present embodiment thus obtained is excellent in molding processability as a rubber non-cross-linked product, and is obtained using the nitrile rubber composition and cross-linkable rubber composition of the present embodiment described above. Therefore, it has excellent strength characteristics, oil resistance, and ozone resistance.
 そのため、本実施形態のゴム架橋物は、パッキン、ガスケット、O-リング、オイルシール等のシール部材;オイルホース、燃料ホース、インレットホース、ガスホース、ブレーキホース、冷媒ホース等のホース;ダイアフラム類;アキュムレータプラダ;ブーツ類;などに好適であり、燃料ホースとしてより好適に用いられる。 Therefore, the rubber cross-linked product of this embodiment includes seal members such as packings, gaskets, O-rings, and oil seals; hoses such as oil hoses, fuel hoses, inlet hoses, gas hoses, brake hoses, refrigerant hoses; diaphragms; accumulators It is suitable for Prada; boots; etc., and more suitably used as a fuel hose.
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。なお、特に説明がない限り、「部」は重量基準である。物性および特性の試験または評価方法は、以下のとおりである。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Unless otherwise specified, “parts” are based on weight. The test or evaluation method of physical properties and characteristics is as follows.
 [メチルエチルケトン不溶解分量(MEK不溶分)]
 ニトリル共重合体ゴム(ニトリル基含有ポリマー)0.2gを80メッシュ金網の中に入れ、これを50mlのメチルエチルケトン(以下MEKという)に、室温で24時間浸漬した後金網を取り出し、室温で10分間乾燥させた。その後、80メッシュ金網に残留したポリマーの重量を量ることにより、その重量からMEK不溶分を測定した。MEK不溶分(%)は、下記式により算出した。
MEK不溶分(%)=(C-A)/(B-A)×100
A:金網の重量
B:(MEK浸漬前の試料+金網)の重量
C:(MEK浸漬ならびに乾燥後の試料+金網)の重量
[Methyl ethyl ketone insoluble content (MEK insoluble content)]
0.2 g of nitrile copolymer rubber (nitrile group-containing polymer) is placed in an 80 mesh wire mesh, immersed in 50 ml of methyl ethyl ketone (hereinafter referred to as MEK) for 24 hours at room temperature, then the wire mesh is taken out, and 10 minutes at room temperature. Dried. Thereafter, the MEK insoluble matter was measured from the weight of the polymer remaining on the 80-mesh wire mesh. The MEK insoluble content (%) was calculated by the following formula.
MEK insoluble content (%) = (CA) / (BA) × 100
A: Weight of wire mesh B: Weight of (sample before MEK immersion + wire mesh) C: Weight of (sample after MEK immersion and drying + wire mesh)
 [ムーニー粘度(ポリマー・ムーニー)]
 ニトリル共重合体ゴムのムーニー粘度(ポリマー・ムーニー)は、JIS K6300に従って測定した(単位は〔ML1+4、100℃〕)。
[Mooney viscosity (polymer Mooney)]
The Mooney viscosity (polymer Mooney) of the nitrile copolymer rubber was measured according to JIS K6300 (unit: [ML1 + 4, 100 ° C.]).
 [最低ムーニー粘度(125℃)]
 架橋性ゴム組成物について、JIS K6300-1のムーニー粘度試験に従い、125℃のムーニー粘度-時間曲線を測定し、最低ムーニー粘度(125℃)を測定した。最低ムーニー粘度(125℃)の結果を架橋性ゴム組成物の変形性の指標とした。なお、最低ムーニー粘度(125℃)が33以上では、成形加工時の形状維持性が良好であり、33未満では成形加工時の形状維持性が劣るものと評価した。
[Minimum Mooney viscosity (125 ° C)]
For the crosslinkable rubber composition, the Mooney viscosity-time curve at 125 ° C. was measured according to the Mooney viscosity test of JIS K6300-1, and the minimum Mooney viscosity (125 ° C.) was measured. The result of the minimum Mooney viscosity (125 ° C.) was used as an index of the deformability of the crosslinkable rubber composition. In addition, when the minimum Mooney viscosity (125 degreeC) was 33 or more, the shape maintenance property at the time of a shaping | molding process was favorable, and when less than 33, the shape maintenance property at the time of a shaping | molding process was inferior.
 [強度特性(未架橋物及び架橋物の100%引張応力)]
 架橋性ゴム組成物を縦15cm、横15cm、深さ0.2cmの金型に入れ、加圧しながら100℃で2分間、その後室温の冷却水を循環させながら30分間プレス成形し、シート状のゴム未架橋物を得た。また、架橋性ゴム組成物を縦15cm、横15cm、深さ0.2cmの金型に入れ、加圧しながら160℃で20分間プレス成形し、ゴム架橋物を得た。得られたシート状のゴム未架橋物及びゴム架橋物を用いてJIS K6251に従い、ダンベル状3号形で打ち抜いた試験片を用いて、常態物性としてゴム未架橋物及びゴム架橋物の100%引張応力(MPa)を測定した。なお、ゴム未架橋物の100%引張応力では、2.0MPa以上で強度特性が優れるものと評価し、2.0MPa未満で強度特性が劣るものと評価した。また、ゴム架橋物の100%引張応力では、4.6MPa以上で強度特性が優れるものと評価し、4.6MPa未満で強度特性が劣るものと評価した。
[Strength characteristics (100% tensile stress of uncrosslinked and crosslinked products)]
The crosslinkable rubber composition is placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, press-molded at 100 ° C. for 2 minutes while being pressurized, and then 30 minutes while circulating cooling water at room temperature. An uncrosslinked rubber was obtained. Further, the crosslinkable rubber composition was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and press-molded at 160 ° C. for 20 minutes while applying pressure to obtain a crosslinked rubber product. Using the obtained sheet-shaped rubber uncrosslinked product and rubber crosslinked product in accordance with JIS K6251 and using a test piece punched out in the shape of dumbbell No. 3, 100% tensile strength of the rubber uncrosslinked product and rubber crosslinked product as normal properties Stress (MPa) was measured. The 100% tensile stress of the rubber uncrosslinked product was evaluated as excellent in strength characteristics at 2.0 MPa or more, and evaluated as inferior in strength characteristics at less than 2.0 MPa. Further, the 100% tensile stress of the rubber cross-linked product was evaluated as excellent in strength characteristics at 4.6 MPa or more, and evaluated as inferior in strength characteristics at less than 4.6 MPa.
 [耐燃料油浸漬試験(トルエン/イソオクタン=50/50)]
 上記常態物性の評価に用いた架橋性ゴム組成物と同様のものを架橋して得られたゴム架橋物を30mm×20mm×2mmの大きさに打ち抜いた試験片を、トルエン/イソオクタン=50/50(体積比)の燃料油(Fuel-C)中に40℃で48時間浸漬することにより、耐燃料油浸漬試験を行った。なお、耐燃料油試験においては、浸漬後の体積膨潤度ΔV(単位:%)を下記式に従って算出した。
浸漬後の体積膨潤度ΔV(単位:%)=([油浸漬後の体積-油浸漬前の体積]/油浸漬前の体積)×100
浸漬後の体積膨潤度ΔVが0%に近いほど、耐油性に優れるものと評価し、ΔVが25%以上の場合は耐油性が劣るものと評価した。
[Fuel resistant oil immersion test (toluene / isooctane = 50/50)]
A test piece obtained by punching a rubber cross-linked product obtained by cross-linking the same cross-linkable rubber composition used for evaluation of the above-described normal physical properties into a size of 30 mm × 20 mm × 2 mm was used as toluene / isooctane = 50/50. The fuel oil immersion test was conducted by immersing in (volume ratio) fuel oil (Fuel-C) at 40 ° C. for 48 hours. In the fuel oil resistance test, the volume swelling degree ΔV (unit:%) after immersion was calculated according to the following formula.
Volume swelling degree ΔV after immersion (unit:%) = ([volume after oil immersion−volume before oil immersion] / volume before oil immersion) × 100
As the volume swelling degree ΔV after immersion was closer to 0%, it was evaluated that the oil resistance was excellent, and when ΔV was 25% or more, the oil resistance was evaluated as inferior.
 [静的オゾン劣化試験(耐オゾン性)]
 上記耐燃料油浸漬試験の評価に用いたシート状のゴム架橋物と同様のものを用い、JIS K6259に従い、40℃、オゾン濃度50pphm、30%伸長の条件で、120時間後の状態を評価した。亀裂の評価方法はJIS K6259-1に記載の亀裂の状態の評価方法に従い、10倍の拡大鏡で亀裂が観察できないものはNCで表した。なお、静的オゾン劣化試験の結果がNCの場合は、耐オゾン性に優れるものと評価し、それ以外の場合は耐オゾン性に劣るものと評価した。
[Static ozone degradation test (ozone resistance)]
Using the same sheet-like rubber cross-linked product used in the evaluation of the fuel oil immersion test, the state after 120 hours was evaluated according to JIS K6259 under the conditions of 40 ° C., ozone concentration of 50 pphm, and 30% elongation. . The crack evaluation method was in accordance with the crack state evaluation method described in JIS K6259-1. When the crack could not be observed with a 10 × magnifier, it was expressed as NC. In addition, when the result of the static ozone deterioration test was NC, it was evaluated as being excellent in ozone resistance, and in other cases, it was evaluated as being inferior in ozone resistance.
 [製造例1](ニトリル共重合体ゴム(A-1)の製造)
 反応容器に、水240部、アクリロニトリル33部、トリメチロールプロパントリメタクリレート1部、およびドデシルベンゼンスルホン酸ナトリウム(乳化剤)2.5部を仕込み、温度を5℃に調整した。次いで、気相を減圧して十分に脱気してから、1,3-ブタジエン66部、重合開始剤であるp-メンタンヒドロペルオキシド0.04部、エチレンジアミン四酢酸ナトリウム0.02部、硫酸第一鉄(7水塩)0.006部、ホルムアルデヒドスルホキシル酸ナトリウム0.06部、および連鎖移動剤であるt-ドデシルメルカプタン1部を添加して乳化重合の1段目の反応を開始した。その後、仕込み全単量体に対する重合転化率が90重量%に達した時点でヒドロキシルアミン硫酸塩0.3部、および水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収してニトリル共重合体ゴム(A-1)のラテックス(固形分26重量%)を得た。次いで、得られたラテックスに2倍容量のメタノールを加えて凝固した後、60℃で12時間真空乾燥することにより、ニトリル共重合体ゴム(A-1)を得た。H-NMRにより、得られたニトリル共重合体ゴム(A-1)の各単量体単位の組成を測定した結果、アクリロニトリル単位(AN量)33.5重量%、1,3-ブタジエン単位65.5重量%、トリメチロールプロパントリメタクリレート1重量%であった。また、メチルエチルケトン不溶解分量(MEK不溶分)は81%であり、ポリマームーニー粘度〔ML1+4、100℃〕は78であった。
[Production Example 1] (Production of nitrile copolymer rubber (A-1))
A reaction vessel was charged with 240 parts of water, 33 parts of acrylonitrile, 1 part of trimethylolpropane trimethacrylate, and 2.5 parts of sodium dodecylbenzenesulfonate (emulsifier), and the temperature was adjusted to 5 ° C. Next, after the gas phase is depressurized and sufficiently degassed, 66 parts of 1,3-butadiene, 0.04 part of p-menthane hydroperoxide as a polymerization initiator, 0.02 part of sodium ethylenediaminetetraacetate, sulfuric acid The first stage reaction of the emulsion polymerization was started by adding 0.006 part of ferrous iron (7 water salt), 0.06 part of sodium formaldehyde sulfoxylate and 1 part of t-dodecyl mercaptan as a chain transfer agent. Thereafter, when the polymerization conversion rate with respect to all charged monomers reached 90% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to stop the polymerization reaction. After the reaction was stopped, the contents of the reaction vessel were heated to 70 ° C., and unreacted monomers were recovered by steam distillation under reduced pressure to obtain latex of nitrile copolymer rubber (A-1) (solid content 26 wt. %). Next, after adding 2 volumes of methanol to the obtained latex and coagulating, it was vacuum-dried at 60 ° C. for 12 hours to obtain a nitrile copolymer rubber (A-1). As a result of measuring the composition of each monomer unit of the obtained nitrile copolymer rubber (A-1) by 1 H-NMR, 33.5% by weight of acrylonitrile unit (AN amount), 1,3-butadiene unit 65.5% by weight and 1% by weight of trimethylolpropane trimethacrylate. The methyl ethyl ketone insoluble content (MEK insoluble content) was 81%, and the polymer Mooney viscosity [ML1 + 4, 100 ° C.] was 78.
 [製造例2](ニトリル共重合体ゴム(A-2)の製造)
 乳化重合の1段目の反応において、仕込みでトリメチロールプロパントリメタクリレートを用いず、1,3-ブタジエンの添加量を67部に変更した以外は製造例1と同様にして、ニトリル共重合体ゴム(A-2)のラテックス(固形分26重量%)及びニトリル共重合体ゴム(A-2)を得た。次いで、得られたラテックスから、製造例1と同様にして、ニトリル共重合体ゴム(A-2)を得た。得られたニトリル共重合体ゴム(A-2)について、製造例1と同様に、各単量体単位の組成を測定した結果、アクリロニトリル単位(AN量)33.5重量%、1,3-ブタジエン単位66.5重量%であった。また、メチルエチルケトン不溶解分量(MEK不溶分)は0%であり、ポリマームーニー粘度〔ML1+4、100℃〕は46であった。
[Production Example 2] (Production of nitrile copolymer rubber (A-2))
A nitrile copolymer rubber was prepared in the same manner as in Production Example 1 except that in the first stage reaction of emulsion polymerization, trimethylolpropane trimethacrylate was not used and the amount of 1,3-butadiene added was changed to 67 parts. A latex (A-2) (solid content 26% by weight) and a nitrile copolymer rubber (A-2) were obtained. Next, a nitrile copolymer rubber (A-2) was obtained from the obtained latex in the same manner as in Production Example 1. As for the obtained nitrile copolymer rubber (A-2), the composition of each monomer unit was measured in the same manner as in Production Example 1. As a result, 33.5% by weight of acrylonitrile unit (AN amount), 1,3- The butadiene unit was 66.5% by weight. The methyl ethyl ketone insoluble content (MEK insoluble content) was 0%, and the polymer Mooney viscosity [ML1 + 4, 100 ° C.] was 46.
 [製造例3](ニトリル共重合体ゴム(B-1)の製造)
 反応容器に、水240部、アクリロニトリル75.7部およびドデシルベンゼンスルホン酸ナトリウム(乳化剤)2.5部を仕込み、温度を5℃に調整した。次いで、気相を減圧して十分に脱気してから、1,3-ブタジエン22部、重合開始剤であるp-メンタンヒドロペルオキシド0.06部、エチレンジアミン四酢酸ナトリウム0.02部、硫酸第一鉄(7水塩)0.006部、ホルムアルデヒドスルホキシル酸ナトリウム0.06部、および連鎖移動剤であるt-ドデシルメルカプタン1部を添加して乳化重合の1段目の反応を開始した。反応開始後、仕込み単量体に対する重合転化率が、それぞれ42重量%、および60重量%に達した時点で、反応容器に1,3-ブタジエンをそれぞれ12部、および12部を追加して2段目、および3段目の重合反応を行った。その後、仕込み全単量体に対する重合転化率が75重量%に達した時点でヒドロキシルアミン硫酸塩0.3部、および水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収してニトリル共重合体ゴム(B-1)のラテックス(固形分24重量%)を得た。次いで、得られたラテックスの一部をサンプリングし、多量のメタノールで凝固させた後、ろ過、乾燥することによりニトリル共重合体ゴム(B-1)を得た。得られたニトリル共重合体ゴム(B-1)について、製造例1と同様に、各単量体単位の組成を測定した結果、アクリロニトリル単位(AN量)50重量%、1,3-ブタジエン単位50重量%、メチルエチルケトン不溶解分量(MEK不溶分)は0%であり、ポリマームーニー粘度〔ML1+4、100℃〕は75であった。
[Production Example 3] (Production of nitrile copolymer rubber (B-1))
A reaction vessel was charged with 240 parts of water, 75.7 parts of acrylonitrile and 2.5 parts of sodium dodecylbenzenesulfonate (emulsifier), and the temperature was adjusted to 5 ° C. Next, after the gas phase is depressurized and sufficiently deaerated, 22 parts of 1,3-butadiene, 0.06 part of p-menthane hydroperoxide as a polymerization initiator, 0.02 part of sodium ethylenediaminetetraacetate, sulfuric acid The first stage reaction of the emulsion polymerization was started by adding 0.006 part of ferrous iron (7 water salt), 0.06 part of sodium formaldehyde sulfoxylate and 1 part of t-dodecyl mercaptan as a chain transfer agent. After the start of the reaction, when the polymerization conversion ratio with respect to the charged monomer reached 42% by weight and 60% by weight, respectively, 12 parts and 12 parts of 1,3-butadiene were added to the reaction vessel, respectively. The polymerization reaction of the second and third stages was performed. Thereafter, when the polymerization conversion ratio with respect to all charged monomers reached 75% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to stop the polymerization reaction. After the reaction was stopped, the contents of the reaction vessel were heated to 70 ° C., and unreacted monomers were recovered by steam distillation under reduced pressure to obtain a latex of nitrile copolymer rubber (B-1) (solid content: 24 wt. %). Next, a part of the obtained latex was sampled, coagulated with a large amount of methanol, filtered and dried to obtain a nitrile copolymer rubber (B-1). For the obtained nitrile copolymer rubber (B-1), the composition of each monomer unit was measured in the same manner as in Production Example 1. As a result, 50% by weight of acrylonitrile unit (AN amount), 1,3-butadiene unit 50% by weight, the methyl ethyl ketone insoluble content (MEK insoluble content) was 0%, and the polymer Mooney viscosity [ML1 + 4, 100 ° C.] was 75.
 [製造例4](ニトリル共重合体ゴム(B-2)の製造)
 乳化重合の1段目の反応において、仕込みでアクリロニトリルの仕込み量を44部とし、トリメチロールプロパントリメタクリレートを用いず、1,3-ブタジエンの添加量を56部とし、仕込み全単量体に対する重合転化率が92重量に達した時点で重合を停止させた以外は製造例1と同様にしてニトリル共重合体ゴム(B-2)を得た。次いで、製造例1と同様に、得られたニトリル共重合体ゴム(B-2)の各単量体単位の組成を測定した結果、アクリロニトリル単位(AN量)40.5重量%、1,3-ブタジエン単位59.5重量%であった。また、メチルエチルケトン不溶解分量(MEK不溶分)は0%であり、ポリマームーニー粘度〔ML1+4、100℃〕は80であった。
[Production Example 4] (Production of nitrile copolymer rubber (B-2))
In the first stage reaction of the emulsion polymerization, the charged amount of acrylonitrile is 44 parts, trimethylolpropane trimethacrylate is not used, and the added amount of 1,3-butadiene is 56 parts. A nitrile copolymer rubber (B-2) was obtained in the same manner as in Production Example 1 except that the polymerization was stopped when the conversion rate reached 92 weight. Subsequently, as in Production Example 1, the composition of each monomer unit of the obtained nitrile copolymer rubber (B-2) was measured. As a result, the acrylonitrile unit (AN amount) was 40.5% by weight, 1, 3 -The butadiene unit was 59.5% by weight. The methyl ethyl ketone insoluble content (MEK insoluble content) was 0%, and the polymer Mooney viscosity [ML1 + 4, 100 ° C.] was 80.
 [実施例1]
 製造例1で得られたニトリル共重合体ゴム(A-1)10部、製造例3で得られたニトリル共重合体ゴム(B-1)42部、及び製造例4で得られたニトリル共重合体ゴム(B-2)18部に、塩化ビニル樹脂(平均重合度1700)(商品名「TK-1700E」、信越化学工業社製)30部、アジピン酸ジ(ブトキシエトキシエチル)(商品名「アデカサイザーRS-107」、ADEKA社製、可塑剤、「アデカサイザー」は登録商標、以下同様)5部、を添加して、バンバリーミキサーにて、175℃で混練することにより、ニトリル共重合体ゴム組成物を得た。次いで、上記にて得られたニトリル共重合体ゴム組成物に、FEFカーボン(商品名「シーストSO」、東海カーボン社製、充填剤、「シースト」は登録商標)45部、酸化亜鉛5部、アジピン酸ジ(ブトキシエトキシエチル)(可塑剤)25部を添加し、バンバリーミキサーにて、140℃で混練することにより、ゴム組成物を得た。次いで、得られたゴム組成物を50℃に加温したロールに巻き付け、325メッシュ硫黄(架橋剤)0.3部、ジ-2-ベンゾチアゾリルジスルフィド(架橋促進剤)1.5部、およびテトラメチルチウラムジスルフィド(架橋促進剤)1.5部を添加して、ロールにて混練することにより、架橋性ゴム組成物を得た。そして、得られた架橋性ゴム組成物を用いて、最低ムーニー粘度(125℃)、常態物性(100%引張応力)、及び、上記の方法により得られたゴム架橋物を用いて、常態物性(100%引張応力)、耐燃料油浸漬試験、静的オゾン劣化試験の各試験・評価を行った。結果を表1に示す。なお、実施例1では、ニトリル共重合体ゴム(A-1)をニトリル共重合体ゴムAとし、ニトリル共重合体ゴム(B-1)およびニトリル共重合体ゴム(B-2)の組み合わせをニトリル共重合体ゴムBとした場合、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計に対してアクリロニトリルの含有量(AN量)は45.2重量%であった。また、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計100部に対する塩化ビニル樹脂の配合比率は43部であった。
[Example 1]
10 parts of the nitrile copolymer rubber (A-1) obtained in Production Example 1, 42 parts of the nitrile copolymer rubber (B-1) obtained in Production Example 3, and the nitrile copolymer rubber obtained in Production Example 4 18 parts of polymer rubber (B-2), 30 parts of vinyl chloride resin (average polymerization degree 1700) (trade name “TK-1700E”, manufactured by Shin-Etsu Chemical Co., Ltd.), di (butoxyethoxyethyl) adipate (trade name) Add ADEKA SIZER RS-107, manufactured by ADEKA, plasticizer, “ADEKA SIZER” is a registered trademark, the same shall apply hereinafter) 5 parts, and knead at 175 ° C. with a Banbury mixer. A combined rubber composition was obtained. Next, to the nitrile copolymer rubber composition obtained above, FEF carbon (trade name “SEAST SO”, manufactured by Tokai Carbon Co., Ltd., filler, “SEAST” is a registered trademark) 45 parts, zinc oxide 5 parts, 25 parts of di (butoxyethoxyethyl) adipate (plasticizer) was added and kneaded at 140 ° C. with a Banbury mixer to obtain a rubber composition. Next, the obtained rubber composition was wound around a roll heated to 50 ° C., 325 mesh sulfur (crosslinking agent) 0.3 part, di-2-benzothiazolyl disulfide (crosslinking accelerator) 1.5 part, Further, 1.5 parts of tetramethylthiuram disulfide (crosslinking accelerator) was added and kneaded with a roll to obtain a crosslinkable rubber composition. Then, using the obtained crosslinkable rubber composition, the minimum Mooney viscosity (125 ° C.), normal physical properties (100% tensile stress), and normal rubber properties (100% tensile stress) (100% tensile stress), fuel oil immersion test, and static ozone deterioration test. The results are shown in Table 1. In Example 1, the nitrile copolymer rubber (A-1) is the nitrile copolymer rubber A, and the combination of the nitrile copolymer rubber (B-1) and the nitrile copolymer rubber (B-2) is used. When the nitrile copolymer rubber B was used, the acrylonitrile content (AN amount) was 45.2% by weight with respect to the total of the nitrile copolymer rubber A and the nitrile copolymer rubber B. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
 [実施例2]
 製造例1で得られたニトリル共重合体ゴム(A-1)の使用量を20部とし、製造例3で得られたニトリル共重合体ゴム(B-1)の使用量を50部とし、製造例4で得られたニトリル共重合体ゴム(B-2)を使用しなかった以外は、実施例1と同様に、ニトリル共重合体ゴム組成物および架橋性ゴム組成物を得て、同様に各試験・評価を行った。結果を表1に示す。なお、実施例2では、ニトリル共重合体ゴム(A-1)をニトリル共重合体ゴムAとし、ニトリル共重合体ゴム(B-1)をニトリル共重合体ゴムBとした場合、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計に対してアクリロニトリルの含有量(AN量)は45.3重量%であった。また、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計100部に対する塩化ビニル樹脂の配合比率は43部であった。
[Example 2]
The amount of nitrile copolymer rubber (A-1) obtained in Production Example 1 is 20 parts, the amount of nitrile copolymer rubber (B-1) obtained in Production Example 3 is 50 parts, A nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained in the same manner as in Example 1 except that the nitrile copolymer rubber (B-2) obtained in Production Example 4 was not used. Each test and evaluation was conducted. The results are shown in Table 1. In Example 2, when the nitrile copolymer rubber (A-1) is the nitrile copolymer rubber A and the nitrile copolymer rubber (B-1) is the nitrile copolymer rubber B, The content (AN amount) of acrylonitrile with respect to the total of the combined rubber A and the nitrile copolymer rubber B was 45.3% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
 [実施例3]
 ニトリル共重合体ゴム(A-1)の使用量を30部とし、製造例3で得られたニトリル共重合体ゴム(B-1)の使用量を40部とした以外は、実施例2と同様に、ニトリル共重合体ゴム組成物および架橋性ゴム組成物を得て、同様に各試験・評価を行った。結果を表1に示す。なお、実施例3では、実施例2と同様に、ニトリル共重合体ゴムA、ニトリル共重合体ゴムBとした場合、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計に対してアクリロニトリルの含有量(AN量)は42.9重量%であった。また、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計100部に対する塩化ビニル樹脂の配合比率は43部であった。
[Example 3]
Example 2 except that the amount of nitrile copolymer rubber (A-1) used was 30 parts and the amount of nitrile copolymer rubber (B-1) obtained in Production Example 3 was 40 parts. Similarly, a nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was performed in the same manner. The results are shown in Table 1. In Example 3, as in Example 2, when the nitrile copolymer rubber A and the nitrile copolymer rubber B were used, the acrylonitrile was added to the total of the nitrile copolymer rubber A and the nitrile copolymer rubber B. The content (AN amount) of was 42.9% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
 [実施例4]
 塩化ビニル樹脂(平均重合度1700)の代わりに塩化ビニル樹脂(平均重合度1000)(商品名「TK-1000」、信越化学工業社製)30部を使用した以外は、実施例1と同様に、ニトリル共重合体ゴム組成物および架橋性ゴム組成物を得て、同様に各試験・評価を行った。結果を表1に示す。なお、実施例4では、実施例1と同様に、ニトリル共重合体ゴムA、ニトリル共重合体ゴムBとした場合、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計に対してアクリロニトリルの含有量(AN量)は45.2重量%であった。また、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計100部に対する塩化ビニル樹脂の配合比率は43部であった。
[Example 4]
Example 1 was used except that 30 parts of vinyl chloride resin (average polymerization degree 1000) (trade name “TK-1000”, manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of vinyl chloride resin (average polymerization degree 1700). A nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was conducted in the same manner. The results are shown in Table 1. In Example 4, as in Example 1, when nitrile copolymer rubber A and nitrile copolymer rubber B were used, acrylonitrile was used with respect to the total of nitrile copolymer rubber A and nitrile copolymer rubber B. The content (AN amount) of was 45.2% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
 [実施例5]
 製造例1で得られたニトリル共重合体ゴム(A-1)の使用量を8.6部とし、製造例3で得られたニトリル共重合体ゴム(B-1)の使用量を36部とし、製造例4で得られたニトリル共重合体ゴム(B-2)の使用量を15.4部とし、塩化ビニル樹脂(平均重合度1700)の使用量を40部とした以外は、実施例1と同様に、ニトリル共重合体ゴム組成物および架橋性ゴム組成物を得て、同様に各試験・評価を行った。結果を表1に示す。なお、実施例5では、実施例1と同様に、ニトリル共重合体ゴムA、ニトリル共重合体ゴムBとした場合、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計に対してアクリロニトリルの含有量(AN量)は45.2重量%であった。また、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計100部に対する塩化ビニル樹脂の配合比率は67部であった。
[Example 5]
The amount of nitrile copolymer rubber (A-1) obtained in Production Example 1 was 8.6 parts, and the amount of nitrile copolymer rubber (B-1) obtained in Production Example 3 was 36 parts. Except that the amount of the nitrile copolymer rubber (B-2) obtained in Production Example 4 was 15.4 parts and the amount of vinyl chloride resin (average polymerization degree 1700) was 40 parts. In the same manner as in Example 1, a nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was performed in the same manner. The results are shown in Table 1. In Example 5, as in Example 1, when nitrile copolymer rubber A and nitrile copolymer rubber B were used, acrylonitrile was used with respect to the total of nitrile copolymer rubber A and nitrile copolymer rubber B. The content (AN amount) of was 45.2% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 67 parts.
 [実施例6]
 製造例3で得られたニトリル共重合体ゴム(B-1)を使用せず、製造例4で得られたニトリル共重合体ゴム(B-2)の使用量を60部とした以外は、実施例1と同様に、ニトリル共重合体ゴム組成物および架橋性ゴム組成物を得て、同様に各試験・評価を行った。結果を表1に示す。なお、実施例6では、ニトリル共重合体ゴム(A-1)をニトリル共重合体ゴムAとし、ニトリル共重合体ゴム(B-2)をニトリル共重合体ゴムBとした場合、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計に対してアクリロニトリルの含有量(AN量)は39.5重量%であった。また、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計100部に対する塩化ビニル樹脂の配合比率は43部であった。
[Example 6]
Except that the nitrile copolymer rubber (B-1) obtained in Production Example 3 was not used and the amount of the nitrile copolymer rubber (B-2) obtained in Production Example 4 was 60 parts, In the same manner as in Example 1, a nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was performed in the same manner. The results are shown in Table 1. In Example 6, when the nitrile copolymer rubber (A-1) is the nitrile copolymer rubber A and the nitrile copolymer rubber (B-2) is the nitrile copolymer rubber B, the nitrile copolymer rubber A The content (AN amount) of acrylonitrile with respect to the total of the combined rubber A and the nitrile copolymer rubber B was 39.5% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
 [実施例7]
 ニトリル共重合体ゴム(A-1)の代わりに製造例2で得られたニトリル共重合体ゴム(A-2)20部を使用したとした以外は、実施例2と同様に、ニトリル共重合体ゴム組成物および架橋性ゴム組成物を得て、同様に各試験・評価を行った。結果を表1に示す。なお、実施例7では、ニトリル共重合体ゴム(A-2)をニトリル共重合体ゴムAとし、ニトリル共重合体ゴム(B-1)をニトリル共重合体ゴムBとした場合、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計に対してアクリロニトリルの含有量(AN量)は45.3重量%であった。また、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計100部に対する塩化ビニル樹脂の配合比率は43部であった。
[Example 7]
Similar to Example 2, except that 20 parts of the nitrile copolymer rubber (A-2) obtained in Production Example 2 was used instead of the nitrile copolymer rubber (A-1). A united rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was performed in the same manner. The results are shown in Table 1. In Example 7, when the nitrile copolymer rubber (A-2) is a nitrile copolymer rubber A and the nitrile copolymer rubber (B-1) is a nitrile copolymer rubber B, The content (AN amount) of acrylonitrile with respect to the total of the combined rubber A and the nitrile copolymer rubber B was 45.3% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
 [比較例1]
 製造例1で得られたニトリル共重合体ゴム(A-1)の使用量を11.4部とし、製造例3で得られたニトリル共重合体ゴム(B-1)の使用量を48部とし、製造例4で得られたニトリル共重合体ゴム(B-2)の使用量を20.6部とし、塩化ビニル樹脂(平均重合度1700)の使用量を20部とした以外は、実施例1と同様に、ニトリル共重合体ゴム組成物および架橋性ゴム組成物を得て、同様に各試験・評価を行った。結果を表1に示す。なお、比較例1では、実施例1と同様に、ニトリル共重合体ゴムA、ニトリル共重合体ゴムBとした場合、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計に対してアクリロニトリルの含有量(AN量)は45.2重量%であった。また、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計100部に対する塩化ビニル樹脂の配合比率は25部であった。
[Comparative Example 1]
The amount of nitrile copolymer rubber (A-1) obtained in Production Example 1 was 11.4 parts, and the amount of nitrile copolymer rubber (B-1) obtained in Production Example 3 was 48 parts. Except that the amount of the nitrile copolymer rubber (B-2) obtained in Production Example 4 was 20.6 parts and the amount of vinyl chloride resin (average polymerization degree 1700) was 20 parts. In the same manner as in Example 1, a nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was performed in the same manner. The results are shown in Table 1. In Comparative Example 1, as in Example 1, when nitrile copolymer rubber A and nitrile copolymer rubber B were used, acrylonitrile was used with respect to the total of nitrile copolymer rubber A and nitrile copolymer rubber B. The content (AN amount) of was 45.2% by weight. The blending ratio of the vinyl chloride resin to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 25 parts.
 [比較例2]
 塩化ビニル樹脂(平均重合度1700)の代わりに塩化ビニル樹脂(平均重合度700)(商品名「TK-700」、信越化学工業社製)30部を使用した以外は、実施例4と同様に、ニトリル共重合体ゴム組成物および架橋性ゴム組成物を得て、同様に各試験・評価を行った。結果を表1に示す。なお、比較例2では、実施例1と同様に、ニトリル共重合体ゴムA、ニトリル共重合体ゴムBとした場合、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計に対してアクリロニトリルの含有量(AN量)は45.2重量%であった。また、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計100部に対する塩化ビニル樹脂の配合比率は43部であった。
[Comparative Example 2]
The same as Example 4 except that 30 parts of vinyl chloride resin (average polymerization degree 700) (trade name “TK-700”, manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of vinyl chloride resin (average polymerization degree 1700). A nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was conducted in the same manner. The results are shown in Table 1. In Comparative Example 2, as in Example 1, when nitrile copolymer rubber A and nitrile copolymer rubber B were used, acrylonitrile was used with respect to the total of nitrile copolymer rubber A and nitrile copolymer rubber B. The content (AN amount) of was 45.2% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
 [比較例3]
 製造例4で得られたニトリル共重合体ゴム(B-2)の代わりに、製造例2で得られたニトリル共重合体ゴム(A-2)の使用量を60部とした以外は、実施例6と同様に、ニトリル共重合体ゴム組成物および架橋性ゴム組成物を得て、同様に各試験・評価を行った。結果を表1に示す。なお、比較例3では、ニトリル共重合体ゴム(A-1)およびニトリル共重合体ゴム(A-2)をニトリル共重合体ゴムAとし、ニトリル共重合体ゴムBを使用しなかった場合、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計に対してアクリロニトリルの含有量(AN量)は33.5重量%であった。また、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計100部に対する塩化ビニル樹脂の配合比率は43部であった。
[Comparative Example 3]
Implementation was performed except that the amount of the nitrile copolymer rubber (A-2) obtained in Production Example 2 was changed to 60 parts instead of the nitrile copolymer rubber (B-2) obtained in Production Example 4. In the same manner as in Example 6, a nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was performed in the same manner. The results are shown in Table 1. In Comparative Example 3, when the nitrile copolymer rubber (A-1) and the nitrile copolymer rubber (A-2) were used as the nitrile copolymer rubber A and the nitrile copolymer rubber B was not used, The content (AN amount) of acrylonitrile with respect to the total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 33.5% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
 [比較例4]
 製造例1で得られたニトリル共重合体ゴム(A-1)を使用せず、製造例2で得られたニトリル共重合体ゴム(A-2)の使用量を70部とした以外は、比較例3と同様に、ニトリル共重合体ゴム組成物および架橋性ゴム組成物を得て、同様に各試験・評価を行った。結果を表1に示す。なお、比較例4では、ニトリル共重合体ゴム(A-2)をニトリル共重合体ゴムAとし、ニトリル共重合体ゴムBを使用しなかった場合、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計に対してアクリロニトリルの含有量(AN量)は33.5重量%であった。また、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計100部に対する塩化ビニル樹脂の配合比率は43部であった。
[Comparative Example 4]
Except not using the nitrile copolymer rubber (A-1) obtained in Production Example 1 and using 70 parts of the nitrile copolymer rubber (A-2) obtained in Production Example 2, Similarly to Comparative Example 3, a nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained, and each test and evaluation was performed in the same manner. The results are shown in Table 1. In Comparative Example 4, when the nitrile copolymer rubber (A-2) is the nitrile copolymer rubber A and the nitrile copolymer rubber B is not used, the nitrile copolymer rubber A and the nitrile copolymer are used. The content (AN amount) of acrylonitrile with respect to the total amount of rubber B was 33.5% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
 [比較例5]
 製造例1で得られたニトリル共重合体ゴム(A-1)を使用せず、製造例3で得られたニトリル共重合体ゴム(B-1)の使用量を40部とし、製造例4で得られたニトリル共重合体ゴム(B-2)の使用量を30部とした以外は、実施例1と同様に、ニトリル共重合体ゴム組成物および架橋性ゴム組成物を得て、同様に各試験・評価を行った。結果を表1に示す。なお、比較例5では、ニトリル共重合体ゴムAを使用せず、ニトリル共重合体ゴム(B-1)およびニトリル共重合体ゴム(B-2)をニトリル共重合体ゴムBとした場合、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計に対してアクリロニトリルの含有量(AN量)は45.9重量%であった。また、ニトリル共重合体ゴムAとニトリル共重合体ゴムBの合計100部に対する塩化ビニル樹脂の配合比率は43部であった。
[Comparative Example 5]
The nitrile copolymer rubber (A-1) obtained in Production Example 1 was not used, and the amount of the nitrile copolymer rubber (B-1) obtained in Production Example 3 was 40 parts. Production Example 4 A nitrile copolymer rubber composition and a crosslinkable rubber composition were obtained in the same manner as in Example 1 except that the amount of the nitrile copolymer rubber (B-2) obtained in the above was changed to 30 parts. Each test and evaluation was conducted. The results are shown in Table 1. In Comparative Example 5, when the nitrile copolymer rubber A was not used and the nitrile copolymer rubber (B-1) and the nitrile copolymer rubber (B-2) were used as the nitrile copolymer rubber B, The content (AN amount) of acrylonitrile with respect to the total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 45.9% by weight. Moreover, the compounding ratio of the vinyl chloride resin with respect to 100 parts in total of the nitrile copolymer rubber A and the nitrile copolymer rubber B was 43 parts.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1より、α,β-エチレン性不飽和ニトリル単量体単位を40重量%未満含有するニトリル共重合体ゴム(A)と、α,β-エチレン性不飽和ニトリル単量体単位を40重量%以上含有するニトリル共重合体ゴム(B)と、平均重合度が800以上の塩化ビニル樹脂(C)とを含有し、ニトリル共重合体ゴム(A)とニトリル共重合体ゴム(B)の合計100重量部に対する、塩化ビニル樹脂(C)の含有割合が35重量部以上であるニトリル共重合体ゴム組成物により得られるゴム未架橋物の成形加工性に優れ、ゴム架橋物の強度特性、耐油性、および耐オゾン性に優れるものであった(実施例1~7)。  From Table 1, nitrile copolymer rubber (A) containing less than 40% by weight of α, β-ethylenically unsaturated nitrile monomer unit and 40% by weight of α, β-ethylenically unsaturated nitrile monomer unit % Of nitrile copolymer rubber (B) and vinyl chloride resin (C) having an average degree of polymerization of 800 or more, and nitrile copolymer rubber (A) and nitrile copolymer rubber (B). Excellent molding processability of the rubber uncrosslinked product obtained from the nitrile copolymer rubber composition having a vinyl chloride resin (C) content of 35 parts by weight or more with respect to 100 parts by weight in total, strength properties of the rubber crosslinked product, It was excellent in oil resistance and ozone resistance (Examples 1 to 7). *
一方、α,β-エチレン性不飽和ニトリル単量体単位を40重量%未満含有するニトリル共重合体ゴム(A)と、α,β-エチレン性不飽和ニトリル単量体単位を40重量%以上含有するニトリル共重合体ゴム(B)と、平均重合度が800以上の塩化ビニル樹脂(C)とを含有し、ニトリル共重合体ゴム(A)とニトリル共重合体ゴム(B)の合計100重量部に対する、塩化ビニル樹脂(C)の含有割合が35重量部以上の条件を満たさないニトリル共重合体ゴム組成物は、得られるゴム未架橋物の成形加工性、ゴム架橋物の強度特性、耐油性、および耐オゾン性の少なくともいずれかにおいて劣るものであった(比較例1~5)。 On the other hand, a nitrile copolymer rubber (A) containing less than 40% by weight of an α, β-ethylenically unsaturated nitrile monomer unit and 40% by weight or more of an α, β-ethylenically unsaturated nitrile monomer unit Containing nitrile copolymer rubber (B) and vinyl chloride resin (C) having an average degree of polymerization of 800 or more, a total of 100 nitrile copolymer rubber (A) and nitrile copolymer rubber (B) The nitrile copolymer rubber composition in which the content ratio of the vinyl chloride resin (C) with respect to parts by weight does not satisfy the condition of 35 parts by weight or more is the molding processability of the resulting rubber uncrosslinked product, the strength properties of the rubber crosslinked product, It was inferior in at least one of oil resistance and ozone resistance (Comparative Examples 1 to 5).
 以上、本発明の実施形態について実施例を挙げて説明したが、本発明は特定の実施形態、実施例に限定されるものではなく、特許請求の範囲に記載された発明の範囲内において、種々の変形、変更が可能である。 The embodiments of the present invention have been described with reference to the examples. However, the present invention is not limited to the specific embodiments and examples, and various modifications can be made within the scope of the invention described in the claims. Can be modified and changed.
 本国際出願は、2018年2月26日に出願された日本国特許出願2018-032354号に基づく優先権を主張するものであり、その全内容をここに援用する。 This international application claims priority based on Japanese Patent Application No. 2018-032354 filed on Feb. 26, 2018, the entire contents of which are hereby incorporated by reference.

Claims (7)

  1.  α,β-エチレン性不飽和ニトリル単量体単位を40重量%未満含有するニトリル共重合体ゴム(A)と、
     α,β-エチレン性不飽和ニトリル単量体単位を40重量%以上含有するニトリル共重合体ゴム(B)と、
     平均重合度が800以上の塩化ビニル樹脂(C)とを含有し、
     前記ニトリル共重合体ゴム(A)と前記ニトリル共重合体ゴム(B)の合計100重量部に対する、前記塩化ビニル樹脂(C)の含有割合が35重量部以上であるニトリル共重合体ゴム組成物。
    a nitrile copolymer rubber (A) containing less than 40% by weight of an α, β-ethylenically unsaturated nitrile monomer unit;
    a nitrile copolymer rubber (B) containing 40% by weight or more of an α, β-ethylenically unsaturated nitrile monomer unit;
    A vinyl chloride resin (C) having an average degree of polymerization of 800 or more,
    Nitrile copolymer rubber composition in which the content of the vinyl chloride resin (C) is 35 parts by weight or more with respect to 100 parts by weight of the total of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B) .
  2.  前記ニトリル共重合体ゴム(A)のメチルエチルケトン(MEK)不溶解分量が60%以上である、請求項1に記載のニトリル共重合体ゴム組成物。 The nitrile copolymer rubber composition according to claim 1, wherein the nitrile copolymer rubber (A) has a methylethylketone (MEK) insoluble content of 60% or more.
  3.  前記ニトリル共重合体ゴム(A)と前記ニトリル共重合体ゴム(B)の合計でα,β-エチレン性不飽和ニトリル単量体単位を35重量%以上含有する請求項1または2に記載のニトリル共重合体ゴム組成物。 The total of the nitrile copolymer rubber (A) and the nitrile copolymer rubber (B) contains 35% by weight or more of α, β-ethylenically unsaturated nitrile monomer units. Nitrile copolymer rubber composition.
  4.  前記塩化ビニル樹脂(C)の平均重合度が1300以上である、請求項1乃至3のいずれか1項に記載のニトリル共重合体ゴム組成物。 The nitrile copolymer rubber composition according to any one of claims 1 to 3, wherein the vinyl chloride resin (C) has an average degree of polymerization of 1300 or more.
  5.  請求項1乃至4のいずれか1項に記載のニトリル共重合体ゴム組成物に、架橋剤を配合してなる架橋性ゴム組成物。 A crosslinkable rubber composition obtained by blending a nitrile copolymer rubber composition according to any one of claims 1 to 4 with a crosslinking agent.
  6.  請求項5に記載の架橋性ゴム組成物を架橋してなるゴム架橋物。 A rubber cross-linked product obtained by cross-linking the cross-linkable rubber composition according to claim 5.
  7.  請求項1乃至4のいずれか1項に記載のニトリル共重合体ゴム組成物を用いてなるホース。 A hose comprising the nitrile copolymer rubber composition according to any one of claims 1 to 4.
PCT/JP2019/003618 2018-02-26 2019-02-01 Nitrile copolymer rubber composition, crosslinkable rubber composition, crosslinked rubber object, and hose WO2019163482A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501639A JP7136180B2 (en) 2018-02-26 2019-02-01 Nitrile copolymer rubber composition, crosslinkable rubber composition, crosslinked rubber, and hose

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-032354 2018-02-26
JP2018032354 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019163482A1 true WO2019163482A1 (en) 2019-08-29

Family

ID=67687085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003618 WO2019163482A1 (en) 2018-02-26 2019-02-01 Nitrile copolymer rubber composition, crosslinkable rubber composition, crosslinked rubber object, and hose

Country Status (2)

Country Link
JP (1) JP7136180B2 (en)
WO (1) WO2019163482A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241407A1 (en) * 2020-05-27 2021-12-02 日本ゼオン株式会社 Latex composition for dip molding and dip-molded article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172433A (en) * 1999-12-22 2001-06-26 Nippon Zeon Co Ltd Rubber composition and fuel system hose
JP2001317663A (en) * 2000-05-11 2001-11-16 Tokai Rubber Ind Ltd Fuel transportation hose
JP2011012132A (en) * 2009-06-30 2011-01-20 Nippon Zeon Co Ltd Nitrile rubber composition, crosslinkable rubber composition, and rubber crosslinked material
WO2011115093A1 (en) * 2010-03-17 2011-09-22 日本ゼオン株式会社 Nitrile copolymer rubber composition for hose and crosslinked material
WO2017146046A1 (en) * 2016-02-23 2017-08-31 日本ゼオン株式会社 Nitrile copolymer rubber composition, crosslinkable rubber composition and rubber crosslinked product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172433A (en) * 1999-12-22 2001-06-26 Nippon Zeon Co Ltd Rubber composition and fuel system hose
JP2001317663A (en) * 2000-05-11 2001-11-16 Tokai Rubber Ind Ltd Fuel transportation hose
JP2011012132A (en) * 2009-06-30 2011-01-20 Nippon Zeon Co Ltd Nitrile rubber composition, crosslinkable rubber composition, and rubber crosslinked material
WO2011115093A1 (en) * 2010-03-17 2011-09-22 日本ゼオン株式会社 Nitrile copolymer rubber composition for hose and crosslinked material
WO2017146046A1 (en) * 2016-02-23 2017-08-31 日本ゼオン株式会社 Nitrile copolymer rubber composition, crosslinkable rubber composition and rubber crosslinked product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241407A1 (en) * 2020-05-27 2021-12-02 日本ゼオン株式会社 Latex composition for dip molding and dip-molded article
CN115551936A (en) * 2020-05-27 2022-12-30 日本瑞翁株式会社 Latex composition for dip molding and dip molded article

Also Published As

Publication number Publication date
JPWO2019163482A1 (en) 2021-02-25
JP7136180B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
JP5617638B2 (en) Method for producing crosslinkable nitrile copolymer rubber composition for fuel hose and rubber cross-linked product for fuel hose
TW201833155A (en) Acrylic copolymer, and crosslinked product thereof
WO2018143101A1 (en) Acrylic rubber, acrylic rubber composition, and acrylic rubber crosslinked product
JP5655784B2 (en) Nitrile rubber composition, crosslinkable nitrile rubber composition, rubber cross-linked product, and method for producing nitrile rubber composition
JPWO2008123405A1 (en) Nitrile copolymer rubber composition and nitrile copolymer latex composition
JP5347770B2 (en) Nitrile rubber composition, crosslinkable rubber composition, and rubber cross-linked product
JP5892171B2 (en) Nitrile copolymer rubber composition and rubber cross-linked product
JP6593321B2 (en) Crosslinkable nitrile rubber composition and rubber cross-linked product
JP2009235304A (en) Nitrile copolymer latex composition and nitrile copolymer rubber composition
WO2015046559A1 (en) Nitrile copolymer rubber and production method for same
JP2007277341A (en) Vulcanizable nitrile copolymer rubber composition and its vulcanizate
JP5482385B2 (en) Nitrile copolymer rubber composition
JP6765629B2 (en) Acrylic rubber and its cross-linked rubber
JP5391553B2 (en) Nitrile copolymer latex composition and nitrile copolymer rubber composition
JPWO2013133358A1 (en) Method for producing nitrile copolymer rubber composition
JP6852728B2 (en) Nitrile copolymer rubber composition, crosslinkable rubber composition and rubber crosslinked product
JP2007224161A (en) Vulcanizable nitrile copolymer rubber composition and its vulcanizate
JP7136180B2 (en) Nitrile copolymer rubber composition, crosslinkable rubber composition, crosslinked rubber, and hose
JP2010155883A (en) Nitrile copolymer rubber composition
JPWO2007026707A1 (en) Nitrile copolymer rubber cross-linked product, nitrile copolymer rubber composition, and method for producing the composition
JP2010070713A (en) Acrylic rubber
JP2015030760A (en) Highly-saturated nitrile rubber composition for roll, and roll
JPWO2019003342A1 (en) Acrylic rubber and its rubber cross-linked product
JP4019808B2 (en) Crosslinkable acrylic rubber composition
JP2015030750A (en) Highly-saturated nitrile rubber composition for oil well and rubber-crosslinked product for oil well

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757121

Country of ref document: EP

Kind code of ref document: A1