JP5482385B2 - Nitrile copolymer rubber composition - Google Patents

Nitrile copolymer rubber composition Download PDF

Info

Publication number
JP5482385B2
JP5482385B2 JP2010082781A JP2010082781A JP5482385B2 JP 5482385 B2 JP5482385 B2 JP 5482385B2 JP 2010082781 A JP2010082781 A JP 2010082781A JP 2010082781 A JP2010082781 A JP 2010082781A JP 5482385 B2 JP5482385 B2 JP 5482385B2
Authority
JP
Japan
Prior art keywords
copolymer rubber
nitrile copolymer
weight
monomer unit
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010082781A
Other languages
Japanese (ja)
Other versions
JP2011213844A (en
Inventor
亮 塚田
慶久 武山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2010082781A priority Critical patent/JP5482385B2/en
Publication of JP2011213844A publication Critical patent/JP2011213844A/en
Application granted granted Critical
Publication of JP5482385B2 publication Critical patent/JP5482385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、耐ガソリン透過性、耐寒性、および耐オゾン性に優れたゴム架橋物を与えるニトリル共重合体ゴム組成物に関する。   The present invention relates to a nitrile copolymer rubber composition that provides a rubber cross-linked product excellent in gasoline permeation resistance, cold resistance, and ozone resistance.

従来から、α,β−エチレン性不飽和ニトリル単量体単位と、共役ジエン単量体単位またはオレフィン単量体単位と、を含有するゴム(ニトリル共重合体ゴム)は、耐油性に優れるゴムとして知られており、その架橋物は主に燃料用ホース、ガスケット、パッキンおよびオイルシールなどの主として自動車用途の各種油類周りのゴム製品の材料として用いられている。   Conventionally, a rubber (nitrile copolymer rubber) containing an α, β-ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit or an olefin monomer unit is a rubber excellent in oil resistance. The crosslinked product is mainly used as a material for rubber products around various oils for automobiles such as fuel hoses, gaskets, packings and oil seals.

一方、近年、世界的な環境保護活動の高まりにより、ガソリンなどの燃料の大気中への蒸散量を低減させる取り組みが進み、日本でも燃料ホース、シールおよびパッキンなどの用途において耐ガソリン透過性に一層優れていることや、耐オゾン性に優れていることが求められている。   On the other hand, in recent years, efforts to reduce the transpiration of fuels such as gasoline into the atmosphere have progressed due to increasing global environmental protection activities, and even in Japan, gasoline permeation resistance has been further improved in applications such as fuel hoses, seals and packing. It is required to be excellent and ozone resistant.

これに対して、特許文献1では、耐ガソリン透過性、耐オゾン性および耐寒性の改善された架橋物を与えるニトリル共重合体ゴム組成物として、α,β−エチレン性不飽和ニトリル単量体単位55〜80重量%を有するニトリル共重合体ゴム100重量部に対して、アクリル樹脂または塩化ビニル樹脂10〜100重量部、充填剤5〜500重量部、可塑剤0.1〜200重量部および加硫剤を配合してなるニトリル共重合体ゴム組成物が提案されている。この特許文献1によれば、耐オゾン性に優れるニトリル共重合体ゴムの架橋物を得ることができるものの、耐ガソリン透過性および耐寒性のさらなる改善が望まれていた。   In contrast, Patent Document 1 discloses an α, β-ethylenically unsaturated nitrile monomer as a nitrile copolymer rubber composition that provides a crosslinked product with improved gasoline permeation resistance, ozone resistance and cold resistance. 10 to 100 parts by weight of acrylic resin or vinyl chloride resin, 5 to 500 parts by weight of filler, 0.1 to 200 parts by weight of plasticizer, and 100 parts by weight of nitrile copolymer rubber having a unit of 55 to 80% by weight A nitrile copolymer rubber composition containing a vulcanizing agent has been proposed. According to Patent Document 1, although a crosslinked product of nitrile copolymer rubber excellent in ozone resistance can be obtained, further improvement in gasoline permeability resistance and cold resistance has been desired.

特開2007−277341号公報JP 2007-277341 A

本発明は、このような実状に鑑みてなされ、耐ガソリン透過性、耐寒性、および耐オゾン性に優れたゴム架橋物を与えるニトリル共重合体ゴム組成物、および該ニトリル共重合体ゴム組成物を架橋して得られるゴム架橋物を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a nitrile copolymer rubber composition that provides a rubber cross-linked product excellent in gasoline permeation resistance, cold resistance, and ozone resistance, and the nitrile copolymer rubber composition An object of the present invention is to provide a rubber cross-linked product obtained by cross-linking.

本発明者等は、上記目的を達成するために鋭意研究した結果、α,β−エチレン性不飽和ニトリル単量体単位、芳香族ビニル単量体単位および共役ジエン単量体単位を所定の比率で有し、かつ、メチルエチルケトン不溶解分が20〜90重量%であるニトリル共重合体ゴムと、所定量の塩化ビニル樹脂および/またはアクリル樹脂と、特定のSP値を有する可塑剤と、を含有するニトリル共重合体ゴム組成物により、上記目的を達成できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have determined that α, β-ethylenically unsaturated nitrile monomer units, aromatic vinyl monomer units, and conjugated diene monomer units have a predetermined ratio. A nitrile copolymer rubber having a methyl ethyl ketone insoluble content of 20 to 90% by weight, a predetermined amount of vinyl chloride resin and / or acrylic resin, and a plasticizer having a specific SP value. The nitrile copolymer rubber composition to be found has found that the above object can be achieved, and the present invention has been completed.

すなわち、本発明によれば、α,β−エチレン性不飽和ニトリル単量体単位(a1)30〜65重量%、芳香族ビニル単量体単位(a2)5〜40重量%、および共役ジエン単量体単位(a3)2560重量%を有し、前記α,β−エチレン性不飽和ニトリル単量体単位(a1)と前記芳香族ビニル単量体単位(a2)との合計が40〜75重量%であり、メチルエチルケトン不溶解分が20〜90重量%であるニトリル共重合体ゴム(A)と、塩化ビニル樹脂およびアクリル樹脂からなる群より選択される少なくとも一種の熱可塑性樹脂(B)と、HOY法によるSP値が8.0〜10.2(cal/cm1/2である可塑剤(C)と、を含有し、前記ニトリル共重合体ゴム(A)100重量部に対する、前記熱可塑性樹脂(B)の比率が10〜150重量部、前記可塑剤(C)の比率が0.1〜200重量部であるニトリル共重合体ゴム組成物が提供される。 That is, according to the present invention, the α, β-ethylenically unsaturated nitrile monomer unit (a1) 30 to 65 % by weight, the aromatic vinyl monomer unit (a2) 5 to 40 % by weight, and the conjugated diene unit The monomer unit (a3) has 25 to 60 % by weight, and the total of the α, β-ethylenically unsaturated nitrile monomer unit (a1) and the aromatic vinyl monomer unit (a2) is 40 to At least one thermoplastic resin (B) selected from the group consisting of 75% by weight nitrile copolymer rubber (A) having a methylethylketone insoluble content of 20 to 90% by weight, and vinyl chloride resin and acrylic resin And a plasticizer (C) having an SP value by the HOY method of 8.0 to 10.2 (cal / cm 3 ) 1/2 , based on 100 parts by weight of the nitrile copolymer rubber (A) The thermoplastic resin (B) A nitrile copolymer rubber composition having a ratio of 10 to 150 parts by weight and a ratio of the plasticizer (C) of 0.1 to 200 parts by weight is provided.

好ましくは、前記ニトリル共重合体ゴム(A)が、カチオン性単量体単位および/またはカチオンを形成可能な単量体単位(a4)をさらに有し、前記ニトリル共重合体ゴム(A)中における、前記カチオン性単量体単位および/またはカチオンを形成可能な単量体単位(a4)の含有割合が、0.1〜30重量%である。
好ましくは、前記ニトリル共重合体ゴム(A)が、炭素−炭素不飽和結合部分のうち少なくとも一部が水素化された水素化ニトリル共重合体ゴムである。
好ましくは、本発明のニトリル共重合体ゴム組成物は、アスペクト比が30〜2,000である無機充填剤(D)をさらに含有し、前記ニトリル共重合体ゴム(A)100重量に対する、前記無機充填剤(D)の比率が、1〜200重量部である。
Preferably, the nitrile copolymer rubber (A) further has a cationic monomer unit and / or a monomer unit (a4) capable of forming a cation, and the nitrile copolymer rubber (A) The content ratio of the cationic monomer unit and / or the monomer unit (a4) capable of forming a cation is 0.1 to 30% by weight.
Preferably, the nitrile copolymer rubber (A) is a hydrogenated nitrile copolymer rubber in which at least a part of the carbon-carbon unsaturated bond portion is hydrogenated.
Preferably, the nitrile copolymer rubber composition of the present invention further contains an inorganic filler (D) having an aspect ratio of 30 to 2,000, and is based on 100 weight of the nitrile copolymer rubber (A). The ratio of the inorganic filler (D) is 1 to 200 parts by weight.

本発明によれば、上記ニトリル共重合体ゴム組成物に架橋剤を加えてなる架橋性ニトリル共重合体ゴム組成物が提供される。
本発明によれば、上記架橋性ニトリル共重合体ゴム組成物を架橋してなるゴム架橋物が提供される。
According to the present invention, there is provided a crosslinkable nitrile copolymer rubber composition obtained by adding a crosslinking agent to the nitrile copolymer rubber composition.
According to the present invention, there is provided a crosslinked rubber product obtained by crosslinking the crosslinkable nitrile copolymer rubber composition.

また、本発明によれば、2以上の層からなり、少なくとも1層が上記ゴム架橋物から構成される積層体が提供される。
さらに、本発明によれば、上記架橋性ニトリル共重合体ゴム組成物を筒状に成形し、マンドレルを挿入して得られる成形体を、架橋して得られるホースが提供される。本発明のホースは、好ましくは、上記架橋性ニトリル共重合体ゴム組成物からなる層を含む2層以上の積層体を筒状に成形し、マンドレルを挿入して得られる成形体を、架橋して得られるものである。
Moreover, according to this invention, the laminated body which consists of two or more layers and at least 1 layer is comprised from the said rubber crosslinked material is provided.
Furthermore, according to this invention, the hose obtained by bridge | crosslinking the molded object obtained by shape | molding the said crosslinkable nitrile copolymer rubber composition into a cylinder shape and inserting a mandrel is provided. The hose of the present invention preferably crosslinks a molded product obtained by forming a laminate of two or more layers including a layer made of the crosslinkable nitrile copolymer rubber composition into a cylindrical shape and inserting a mandrel. Is obtained.

本発明によれば、耐ガソリン透過性、耐寒性、および耐オゾン性に優れたゴム架橋物を与えるニトリル共重合体ゴム組成物、および該組成物を架橋して得られ、上記特性を備えたゴム架橋物が提供される。   According to the present invention, a nitrile copolymer rubber composition that gives a rubber cross-linked product excellent in gasoline permeation resistance, cold resistance, and ozone resistance, and obtained by cross-linking the composition, has the above characteristics. A rubber cross-linked product is provided.

ニトリル共重合体ゴム組成物
本発明のニトリル共重合体ゴム組成物は、後述する特定のニトリル共重合体ゴム(A)と、塩化ビニル樹脂およびアクリル樹脂からなる群より選択される少なくとも一種の熱可塑性樹脂(B)と、HOY法によるSP値が8.0〜10.2(cal/cm1/2である可塑剤(C)と、を含有し、前記ニトリル共重合体ゴム(A)100重量部に対する、前記熱可塑性樹脂(B)の比率が10〜150重量部、前記可塑剤(C)の比率が0.1〜200重量部であるニトリル共重合体ゴム組成物である。
Nitrile copolymer rubber composition The nitrile copolymer rubber composition of the present invention comprises at least one heat selected from the group consisting of a specific nitrile copolymer rubber (A) described later, a vinyl chloride resin and an acrylic resin. Containing a plastic resin (B) and a plasticizer (C) having an SP value of 8.0 to 10.2 (cal / cm 3 ) 1/2 according to the HOY method, the nitrile copolymer rubber (A ) A nitrile copolymer rubber composition in which the ratio of the thermoplastic resin (B) to 100 parts by weight is 10 to 150 parts by weight, and the ratio of the plasticizer (C) is 0.1 to 200 parts by weight.

ニトリル共重合体ゴム(A)
まず、本発明で用いるニトリル共重合体ゴム(A)について説明する。
本発明で用いるニトリル共重合体ゴム(A)は、α,β−エチレン性不飽和ニトリル単量体単位(a1)30〜70重量%、芳香族ビニル単量体単位(a2)5〜50重量%、および共役ジエン単量体単位(a3)15〜65重量%を有し、前記α,β−エチレン性不飽和ニトリル単量体単位(a1)と前記芳香族ビニル単量体単位(a2)との合計が40〜75重量%であり、メチルエチルケトン不溶解分が20〜90重量%であるゴムである。
Nitrile copolymer rubber (A)
First, the nitrile copolymer rubber (A) used in the present invention will be described.
The nitrile copolymer rubber (A) used in the present invention comprises 30 to 70% by weight of α, β-ethylenically unsaturated nitrile monomer unit (a1) and 5 to 50% by weight of aromatic vinyl monomer unit (a2). %, And 15 to 65% by weight of the conjugated diene monomer unit (a3), the α, β-ethylenically unsaturated nitrile monomer unit (a1) and the aromatic vinyl monomer unit (a2) Is a rubber having a methylethylketone insoluble content of 20 to 90% by weight.

α,β−エチレン性不飽和ニトリル単量体単位(a1)の含有割合は、全単量体単位に対して、30〜70重量%であり、好ましくは30〜65重量%、より好ましくは35〜60重量%である。α,β−エチレン性不飽和ニトリル単量体単位(a1)の含有割合が低すぎると、得られるゴム架橋物の耐油性および耐ガソリン透過性が悪化する。一方、含有割合が高すぎると、得られるゴム架橋物が耐寒性に劣るものとなり、脆化温度が高くなる。   The content ratio of the α, β-ethylenically unsaturated nitrile monomer unit (a1) is 30 to 70% by weight, preferably 30 to 65% by weight, more preferably 35%, based on the total monomer units. ~ 60% by weight. If the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit (a1) is too low, the oil resistance and gasoline permeability resistance of the resulting rubber cross-linked product are deteriorated. On the other hand, if the content is too high, the resulting rubber cross-linked product is inferior in cold resistance, and the embrittlement temperature is increased.

α,β−エチレン性不飽和ニトリル単量体単位(a1)を形成するα,β−エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β−エチレン性不飽和化合物であれば、特に限定されないが、たとえば、アクリロニトリル;α−クロロアクリロニトリル、α−ブロモアクリロニトリルなどのα−ハロゲノアクリロニトリル;メタクリロニトリルなどのα−アルキルアクリロニトリル;などが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましい。これらは一種単独でまたは複数種併せて用いることができる。   The α, β-ethylenically unsaturated nitrile monomer forming the α, β-ethylenically unsaturated nitrile monomer unit (a1) may be any α, β-ethylenically unsaturated compound having a nitrile group. Although not particularly limited, for example, acrylonitrile; α-halogenoacrylonitrile such as α-chloroacrylonitrile and α-bromoacrylonitrile; α-alkylacrylonitrile such as methacrylonitrile; Among these, acrylonitrile and methacrylonitrile are preferable. These can be used individually by 1 type or in combination of multiple types.

芳香族ビニル単量体単位(a2)の含有割合は、全単量体単位に対して、5〜50重量%であり、好ましくは7〜40重量%、より好ましくは9〜30重量%である。芳香族ビニル単量体単位(a2)の含有割合が低すぎると、得られるゴム架橋物の耐ガソリン透過性が悪化してしまう。一方、含有割合が高すぎると、得られるゴム架橋物が耐寒性に劣るものとなり、脆化温度が高くなる。   The content of the aromatic vinyl monomer unit (a2) is 5 to 50% by weight, preferably 7 to 40% by weight, more preferably 9 to 30% by weight, based on all monomer units. . If the content ratio of the aromatic vinyl monomer unit (a2) is too low, the gasoline permeability resistance of the resulting rubber cross-linked product is deteriorated. On the other hand, if the content is too high, the resulting rubber cross-linked product is inferior in cold resistance, and the embrittlement temperature is increased.

芳香族ビニル単量体単位(a2)を形成する芳香族ビニル単量体としては、炭素数8〜16のものが好ましく、スチレン、α−メチルスチレン、モノクロロスチレン、ジクロロスチレン、トリクロロスチレン、モノメチルスチレン、ジメチルスチレン、トリメチルスチレン、ヒドロキシメチルスチレン、メトキシスチレン、クロロメチルスチレン、フェニルスチレン、ビニルナフタレンなどが挙げられる。これらのなかでも、スチレンが好ましい。これらは一種単独でまたは複数種併せて用いることができる。   As the aromatic vinyl monomer forming the aromatic vinyl monomer unit (a2), those having 8 to 16 carbon atoms are preferable, and styrene, α-methylstyrene, monochlorostyrene, dichlorostyrene, trichlorostyrene, monomethylstyrene. Dimethyl styrene, trimethyl styrene, hydroxymethyl styrene, methoxy styrene, chloromethyl styrene, phenyl styrene, vinyl naphthalene and the like. Of these, styrene is preferred. These can be used individually by 1 type or in combination of multiple types.

共役ジエン単量体単位(a3)の含有割合は、全単量体単位に対して、15〜65重量%であり、好ましくは25〜60重量%、より好ましくは30〜55重量%である。共役ジエン単量体単位(a3)の含有割合が低すぎると、得られるゴム架橋物のゴム弾性が低下してしまう。一方、含有割合が高すぎると、得られるゴム架橋物の耐熱老化性や耐化学的安定性が損なわれる可能性がある。   The content rate of a conjugated diene monomer unit (a3) is 15 to 65 weight% with respect to all the monomer units, Preferably it is 25 to 60 weight%, More preferably, it is 30 to 55 weight%. If the content ratio of the conjugated diene monomer unit (a3) is too low, the rubber elasticity of the resulting rubber cross-linked product is lowered. On the other hand, if the content ratio is too high, the heat aging resistance and chemical stability of the resulting rubber cross-linked product may be impaired.

共役ジエン単量体単位(a3)を形成する共役ジエン単量体としては、炭素数4以上の共役ジエンが好ましく、たとえば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエンなどが挙げられる。これらのなかでも、1,3−ブタジエンが好ましい。これらは一種単独でまたは複数種併せて用いることができる。   The conjugated diene monomer forming the conjugated diene monomer unit (a3) is preferably a conjugated diene having 4 or more carbon atoms, such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3- Examples thereof include butadiene and 1,3-pentadiene. Of these, 1,3-butadiene is preferred. These can be used individually by 1 type or in combination of multiple types.

また、本発明で用いるニトリル共重合体ゴム(A)は、上記α,β−エチレン性不飽和ニトリル単量体単位(a1)と芳香族ビニル単量体単位(a2)との合計の含有割合が、40〜75重量%であり、好ましくは45〜75重量%である。これらの合計の含有割合が低すぎると、得られるゴム架橋物の耐ガソリン透過性が悪化してしまう。一方、これらの合計の含有割合が高すぎると、得られるゴム架橋物が耐寒性に劣るものとなり、脆化温度が高くなる。   The nitrile copolymer rubber (A) used in the present invention is the total content of the α, β-ethylenically unsaturated nitrile monomer unit (a1) and the aromatic vinyl monomer unit (a2). Is 40 to 75% by weight, preferably 45 to 75% by weight. If the total content of these is too low, the gasoline permeation resistance of the resulting rubber cross-linked product will deteriorate. On the other hand, if the total content of these is too high, the resulting rubber cross-linked product will be inferior in cold resistance and the embrittlement temperature will be high.

また、本発明で用いるニトリル共重合体ゴム(A)は、α,β−エチレン性不飽和ニトリル単量体単位(a1)、芳香族ビニル単量体単位(a2)、および共役ジエン単量体単位(a3)に加えて、カチオン性単量体単位および/またはカチオンを形成可能な単量体単位(a4)をさらに有することが好ましい。   Further, the nitrile copolymer rubber (A) used in the present invention comprises an α, β-ethylenically unsaturated nitrile monomer unit (a1), an aromatic vinyl monomer unit (a2), and a conjugated diene monomer. In addition to the unit (a3), it is preferable to further have a cationic monomer unit and / or a monomer unit (a4) capable of forming a cation.

カチオン性単量体単位および/またはカチオンを形成可能な単量体単位(a4)の含有割合は、全単量体単位に対して、好ましくは0〜30重量%であり、より好ましくは0.1〜30重量%、さらに好ましくは0.3〜10重量%である。カチオン性単量体単位および/またはカチオンを形成可能な単量体単位(a4)を含有させることにより、得られるゴム架橋物を、耐油性に一層優れたものとすることができる。   The content ratio of the cationic monomer unit and / or the monomer unit (a4) capable of forming a cation is preferably 0 to 30% by weight, more preferably 0. 1 to 30% by weight, more preferably 0.3 to 10% by weight. By containing the cationic monomer unit and / or the monomer unit (a4) capable of forming a cation, the obtained rubber cross-linked product can be made more excellent in oil resistance.

カチオン性単量体単位および/またはカチオンを形成可能な単量体単位(a4)を形成する単量体としては、得られる重合体が水または酸水溶液に接した際にプラスに帯電するような単量体単位を形成する単量体であれば、特に限定されない。このような単量体としては、たとえば、カチオン性単量体として、第四級アンモニウム塩基を含有する単量体が挙げられる。また、カチオンを形成可能な単量体として、第三級アミノ基のように塩酸および硫酸等の酸水溶液と接触した際にアンモニウム塩(たとえば、アミン塩酸塩やアミン硫酸塩)などにカチオン化される前駆体部(置換基)を有する単量体が挙げられる。   As the monomer that forms the cationic monomer unit and / or the monomer unit (a4) capable of forming a cation, the polymer obtained is positively charged when in contact with water or an aqueous acid solution. The monomer is not particularly limited as long as it is a monomer that forms a monomer unit. Examples of such a monomer include a monomer containing a quaternary ammonium base as a cationic monomer. Moreover, as a monomer capable of forming a cation, it is cationized to an ammonium salt (for example, amine hydrochloride or amine sulfate) when coming into contact with an aqueous acid solution such as hydrochloric acid and sulfuric acid such as a tertiary amino group. And a monomer having a precursor portion (substituent).

カチオン性単量体の具体例としては、(メタ)アクリロイルオキシトリメチルアンモニウムクロライド〔アクリロイルオキシトリメチルアンモニウムクロライドおよび/またはメタクリロイルオキシトリメチルアンモニウムクロライドを意味する。以下、同様。〕、(メタ)アクリロイルオキシヒドロキシプロピルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシトリエチルアンモニウムクロライド、(メタ)アクリロイルオキシジメチルベンジルアンモニウムクロライド、(メタ)アクリロイルオキシトリメチルアンモニウムメチルサルフェート等の第四級アンモニウム塩基を含有する(メタ)アクリル酸エステル単量体;(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライド、(メタ)アクリルアミドプロピルジメチルベンジルアンモニウムクロライド等の第四級アンモニウム塩基を含有する(メタ)アクリルアミド単量体;などが挙げられる。   Specific examples of the cationic monomer include (meth) acryloyloxytrimethylammonium chloride [acryloyloxytrimethylammonium chloride and / or methacryloyloxytrimethylammonium chloride. The same applies hereinafter. Quaternary ammonium bases such as (meth) acryloyloxyhydroxypropyltrimethylammonium chloride, (meth) acryloyloxytriethylammonium chloride, (meth) acryloyloxydimethylbenzylammonium chloride, (meth) acryloyloxytrimethylammonium methyl sulfate (Meth) acrylic acid ester monomers; (meth) acrylamidopropyltrimethylammonium chloride, (meth) acrylamidepropyldimethylbenzylammonium chloride and other (meth) acrylamide monomers containing quaternary ammonium bases; It is done.

カチオンを形成可能な単量体の具体例としては、2−ビニルピリジン、4−ビニルピリジン等のビニル基含有環状アミン単量体;(メタ)アクリル酸ジメチルアミノエチル等の第三級アミノ基含有(メタ)アクリル酸エステル単量体;(メタ)アクリルアミドジメチルアミノエチル、N,N−ジメチルアミノプロピルアクリルアミド等の第三級アミノ基含有(メタ)アクリルアミド単量体;N−(4−アニリノフェニル)アクリルアミド、N−(4−アニリノフェニル)メタクリルアミド、N−(4−アニリノフェニル)シンナムアミド、N−(4−アニリノフェニル)クロトンアミド、N−フェニル−4−(3−ビニルベンジルオキシ)アニリン、N−フェニル−4−(4−ビニルベンジルオキシ)アニリン等が挙げられる。
これらは一種単独でまたは複数種併せて用いることができる。
Specific examples of monomers capable of forming cations include vinyl group-containing cyclic amine monomers such as 2-vinylpyridine and 4-vinylpyridine; tertiary amino groups such as dimethylaminoethyl (meth) acrylate (Meth) acrylic acid ester monomer; tertiary amino group-containing (meth) acrylamide monomer such as (meth) acrylamide dimethylaminoethyl, N, N-dimethylaminopropylacrylamide; N- (4-anilinophenyl) ) Acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamamide, N- (4-anilinophenyl) crotonamide, N-phenyl-4- (3-vinylbenzyloxy) ) Aniline, N-phenyl-4- (4-vinylbenzyloxy) aniline and the like.
These can be used individually by 1 type or in combination of multiple types.

カチオン性単量体およびカチオンを形成可能な単量体のなかでも、ビニル基含有環状アミン単量体、第三級アミノ基含有(メタ)アクリル酸エステル単量体および第三級アミノ基含有(メタ)アクリルアミド単量体が好ましく、ビニル基含有環状アミン単量体および第三級アミノ基含有アクリルアミド単量体がより好ましく、ビニル基含有環状アミン単量体が特に好ましい。
なお、ビニル基含有環状アミン単量体としては、ビニル基含有ピリジン類が好ましく、2−ビニルピリジンが特に好ましい。
Among cationic monomers and monomers capable of forming cations, vinyl group-containing cyclic amine monomers, tertiary amino group-containing (meth) acrylic acid ester monomers, and tertiary amino group-containing ( A meta) acrylamide monomer is preferable, a vinyl group-containing cyclic amine monomer and a tertiary amino group-containing acrylamide monomer are more preferable, and a vinyl group-containing cyclic amine monomer is particularly preferable.
In addition, as a vinyl group containing cyclic amine monomer, vinyl group containing pyridines are preferable and 2-vinyl pyridine is especially preferable.

さらに、本発明で用いるニトリル共重合体ゴム(A)は、上記α,β−エチレン性不飽和ニトリル単量体単位(a1)、芳香族ビニル単量体単位(a2)、共役ジエン単量体単位(a3)、ならびに、カチオン性単量体単位および/またはカチオンを形成可能な単量体単位(a4)以外に、これらの単量体単位を形成する単量体と共重合可能な他の単量体の単位を含有していてもよい。このような他の単量体単位の含有割合は、全単量体単位に対して、好ましくは30重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下である。   Furthermore, the nitrile copolymer rubber (A) used in the present invention comprises the above α, β-ethylenically unsaturated nitrile monomer unit (a1), aromatic vinyl monomer unit (a2), conjugated diene monomer. In addition to the unit (a3) and the monomer unit (a4) capable of forming a cationic monomer unit and / or a cation, other units copolymerizable with the monomer forming these monomer units It may contain monomer units. The content ratio of such other monomer units is preferably 30% by weight or less, more preferably 20% by weight or less, and still more preferably 10% by weight or less based on the total monomer units.

このような共重合可能な他の単量体としては、たとえば、フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどのフッ素含有ビニル化合物;1,4-ペンタジエン、1,4-ヘキサジエン、ビニルノルボルネン、ジシクロペンタジエンなどの非共役ジエン化合物;エチレン;プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテンなどのα―オレフィン化合物;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、無水フマル酸などのα,β−エチレン性不飽和カルボン酸およびその無水物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシルなどのα,β−エチレン性不飽和モノカルボン酸アルキルエステル;マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β−エチレン性不飽和多価カルボン酸のモノエステルおよびジエステル;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸ブトキシエチルなどのα,β−エチレン性不飽和カルボン酸のアルコキシアルキルエステル;(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピルなどのα,β−エチレン性不飽和カルボン酸のヒドロキシアルキルエステル;などが挙げられる。   Examples of such other copolymerizable monomers include fluorine-containing vinyl compounds such as fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethylstyrene, vinyl pentafluorobenzoate, difluoroethylene, and tetrafluoroethylene. Non-conjugated diene compounds such as 1,4-pentadiene, 1,4-hexadiene, vinylnorbornene, dicyclopentadiene; ethylene; propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, etc. Α-olefin compounds of α, β-ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, fumaric anhydride and the like; (Meth) methyl acrylate, (meth) acrylic Α, β-ethylenically unsaturated monocarboxylic acid alkyl esters such as ethyl oxalate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; monoethyl maleate, diethyl maleate, monobutyl maleate, dibutyl maleate Α, β-ethylenic acid such as monoethyl fumarate, diethyl fumarate, monobutyl fumarate, dibutyl fumarate, monocyclohexyl fumarate, dicyclohexyl fumarate, monoethyl itaconate, diethyl itaconate, monobutyl itaconate, dibutyl itaconate Monoesters and diesters of saturated polycarboxylic acids; alkoxyalkyls of α, β-ethylenically unsaturated carboxylic acids such as methoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, butoxyethyl (meth) acrylate Ester; 2-hydroxyethyl (meth) acrylate, (meth) alpha, such as acrylic acid 3-hydroxypropyl, hydroxyalkyl esters of β- ethylenically unsaturated carboxylic acids; and the like.

また、本発明で用いるニトリル共重合体ゴム(A)は、メチルエチルケトン(MEK)不溶解分が20〜90重量%であり、好ましくは25〜85重量%、より好ましくは30〜80重量%である。メチルエチルケトン不溶解分が少なすぎると、得られるゴム架橋物の耐ガソリン透過性が低下してしまう。一方、メチルエチルケトン不溶解分が多すぎると、ニトリル共重合体ゴム組成物の加工性が低下し、混練が困難となってしまう。   The nitrile copolymer rubber (A) used in the present invention has a methyl ethyl ketone (MEK) insoluble content of 20 to 90% by weight, preferably 25 to 85% by weight, more preferably 30 to 80% by weight. . When there is too little insoluble matter in methyl ethyl ketone, the gasoline permeation resistance of the resulting rubber cross-linked product is lowered. On the other hand, when there is too much insoluble matter in methyl ethyl ketone, the processability of the nitrile copolymer rubber composition is lowered and kneading becomes difficult.

なお、本発明において、メチルエチルケトン不溶解分は、ニトリル共重合体ゴム1gを200mlのメチルエチルケトンに浸漬させ、23℃で24時間放置後、325メッシュ金網を用いてろ過し、ろ液を蒸発乾燥固化させ、得られた残存乾燥固形分[メチルエチルケトン可溶分:(y)g]を秤量し、下記式により算出したものである。
メチルエチルケトン不溶解分(重量%)=100×(1−y)/1
In the present invention, 1 g of nitrile copolymer rubber is immersed in 200 ml of methyl ethyl ketone, left to stand at 23 ° C. for 24 hours, filtered using a 325 mesh wire mesh, and the filtrate is evaporated to dryness. The remaining dry solid content [methyl ethyl ketone soluble content: (y) g] was weighed and calculated by the following formula.
Methyl ethyl ketone insoluble matter (% by weight) = 100 × (1-y) / 1

また、ニトリル共重合体ゴム(A)のメチルエチルケトン不溶解分は、ニトリル共重合体ゴム(A)を重合する際における、重合温度、反応時間、重合開始剤の種類や使用量、架橋性単量体の種類やその使用量、さらには、分子量調整剤の種類やその使用量など種々の因子を適宜選択し、ニトリル共重合体ゴム(A)の架橋度合いを調整することにより、制御することが可能であるが、ジビニルベンゼンやトリメチロールプロパントリ(メタ)アクリレート等の架橋性単量体を、全単量体100重量部に対して、0.01〜5重量部用いて重合を行う方法が好適に用いられる。   In addition, the methylethylketone insoluble content of the nitrile copolymer rubber (A) is the polymerization temperature, reaction time, type and amount of polymerization initiator used when polymerizing the nitrile copolymer rubber (A), and a crosslinkable monomer. It can be controlled by appropriately selecting various factors such as the type of body and the amount of use thereof, and further, the type of molecular weight regulator and the amount of use thereof, and adjusting the degree of crosslinking of the nitrile copolymer rubber (A). Although possible, there is a method in which 0.01 to 5 parts by weight of a crosslinkable monomer such as divinylbenzene or trimethylolpropane tri (meth) acrylate is used with respect to 100 parts by weight of the total monomers. Preferably used.

ニトリル共重合体ゴム(A)のムーニー粘度(以下、「ポリマー・ムーニー粘度」と記すことがある。)(ML1+4、100℃)は、好ましくは3〜250、より好ましくは15〜180、さらに好ましくは20〜160である。ニトリル共重合体ゴム(A)のポリマー・ムーニー粘度が低すぎると、得られるゴム架橋物の強度特性が低下するおそれがある。一方、高すぎると、加工性が悪化する可能性がある。 The Mooney viscosity of the nitrile copolymer rubber (A) (hereinafter sometimes referred to as “polymer Mooney viscosity”) (ML 1 + 4 , 100 ° C.) is preferably 3 to 250, more preferably 15 to 180, Preferably it is 20-160. If the polymer Mooney viscosity of the nitrile copolymer rubber (A) is too low, the strength characteristics of the resulting rubber cross-linked product may be lowered. On the other hand, if it is too high, the workability may be deteriorated.

本発明で用いるニトリル共重合体ゴム(A)は、上記したニトリル共重合体ゴム(A)を構成する各単量体を共重合することにより製造することができる。各単量体を共重合する方法としては、特に限定されないが、たとえば、乳化剤を用いて約50〜1,000nmの平均粒径を有する共重合体のラテックスを得る乳化重合法や、ポリビニルアルコールなどの分散剤を用いて約0.2〜200μmの平均粒径を有する共重合体のラテックスを得る懸濁重合法(微細懸濁重合法も含む)などを好適に用いることができる。これらのなかでも、重合反応制御が容易なことから乳化重合法がより好ましい。   The nitrile copolymer rubber (A) used in the present invention can be produced by copolymerizing each monomer constituting the nitrile copolymer rubber (A). The method for copolymerizing each monomer is not particularly limited. For example, an emulsion polymerization method for obtaining a latex of a copolymer having an average particle diameter of about 50 to 1,000 nm using an emulsifier, polyvinyl alcohol, etc. A suspension polymerization method (including a fine suspension polymerization method) that obtains a latex of a copolymer having an average particle size of about 0.2 to 200 μm using the above dispersant can be suitably used. Among these, the emulsion polymerization method is more preferable because the polymerization reaction can be easily controlled.

乳化重合法は、下記の手順で行うことが好ましい。
なお、以下において、適宜、α,β−エチレン性不飽和ニトリル単量体を「単量体(m1)」とし、芳香族ビニル単量体を「単量体(m2)」とし、共役ジエン単量体を「単量体(m3)」とし、カチオン性単量体および/またはカチオンを形成可能な単量体を「単量体(m4)」とする。
The emulsion polymerization method is preferably performed according to the following procedure.
In the following, the α, β-ethylenically unsaturated nitrile monomer is referred to as “monomer (m1)”, the aromatic vinyl monomer is referred to as “monomer (m2)”, and a conjugated diene monomer is appropriately used. The monomer is referred to as “monomer (m3)”, and the monomer capable of forming a cationic monomer and / or cation is referred to as “monomer (m4)”.

すなわち、単量体(m1)25〜80重量%、好ましくは30〜70重量%、より好ましくは35〜65重量%、単量体(m2)5〜60重量%、好ましくは7〜50重量%、より好ましくは7〜35重量%、単量体(m3)10〜70重量%、好ましくは15〜60重量%、より好ましくは25〜55重量%、および単量体(m4)0〜30重量%、好ましくは0.2〜20重量%、より好ましくは0.5〜10重量%からなる単量体混合物(ただし、単量体(m1)、単量体(m2)、単量体(m3)および単量体(m4)の合計量が100重量%である。)を、乳化重合し、重合転化率が好ましくは50〜99重量%の時点で、重合反応を停止した後、所望により未反応の単量体を除去する方法が好ましい。   That is, the monomer (m1) is 25 to 80% by weight, preferably 30 to 70% by weight, more preferably 35 to 65% by weight, and the monomer (m2) 5 to 60% by weight, preferably 7 to 50% by weight. More preferably 7 to 35% by weight, monomer (m3) 10 to 70% by weight, preferably 15 to 60% by weight, more preferably 25 to 55% by weight, and monomer (m4) 0 to 30% by weight. %, Preferably 0.2 to 20% by weight, more preferably 0.5 to 10% by weight of monomer mixture (provided that monomer (m1), monomer (m2), monomer (m3 ) And the monomer (m4) is 100% by weight.) Is emulsion polymerized, and when the polymerization conversion rate is preferably 50 to 99% by weight, the polymerization reaction is stopped, A method of removing the monomer of the reaction is preferred.

乳化重合法に用いる、単量体(m1)の使用量が少なすぎると、得られるゴム架橋物の耐ガソリン透過性および耐油性が悪化し、一方、多すぎると、耐寒性が悪化する傾向がある。単量体(m2)の使用量が少なすぎると、得られるゴム架橋物の耐ガソリン透過性が悪化し、一方、多すぎると、耐寒性に劣るものとなる傾向がある。単量体(m3)の使用量が少なすぎると重合初期段階で反応が失活し、一方、多すぎると、得られるゴム架橋物の耐ガソリン透過性が悪化する傾向がある。
なお、重合反応を停止する重合転化率が低すぎると、未反応の単量体の回収が非常に困難になる。一方、高すぎると、得られるゴム架橋物の常態物性が悪化するおそれがある。
If the amount of the monomer (m1) used in the emulsion polymerization method is too small, the resulting rubber cross-linked product deteriorates in gasoline permeation resistance and oil resistance. On the other hand, if it is too large, cold resistance tends to deteriorate. is there. If the amount of the monomer (m2) used is too small, the gasoline cross-linkability of the resulting rubber cross-linked product is deteriorated. On the other hand, if the amount is too large, the cold resistance tends to be inferior. If the amount of the monomer (m3) used is too small, the reaction is deactivated at the initial stage of polymerization. On the other hand, if the amount is too large, the gasoline permeation resistance of the resulting rubber cross-linked product tends to deteriorate.
If the polymerization conversion rate for stopping the polymerization reaction is too low, recovery of unreacted monomers becomes very difficult. On the other hand, when too high, there exists a possibility that the normal-state physical property of the rubber crosslinked material obtained may deteriorate.

また、乳化重合を行うに際しては、乳化重合の分野で従来公知の乳化剤、重合開始剤、重合副資材などを適宜用いることができる。   In conducting emulsion polymerization, conventionally known emulsifiers, polymerization initiators, polymerization auxiliary materials, and the like can be appropriately used in the field of emulsion polymerization.

乳化剤としては、特に限定されないが、たとえば、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤が挙げられる。乳化剤の使用量は、全単量体100重量部に対して、好ましくは0.1〜10重量部、より好ましくは0.2〜5重量部である。   The emulsifier is not particularly limited, and examples thereof include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant. The amount of the emulsifier used is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the total monomers.

重合開始剤としては、特に限定されないが、ラジカル開始剤が好ましく使用できる。このようなラジカル開始剤としては、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;t−ブチルパーオキサイド、クメンハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ジベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、t−ブチルパーオキシイソブチレート等の有機過酸化物;などを挙げることができる。これらの重合開始剤は、単独でまたは2種類以上を組み合わせて使用することができる。重合開始剤の使用量は、全単量体100重量部に対して、好ましくは0.001〜3重量部、より好ましくは0.002〜2重量部である。   Although it does not specifically limit as a polymerization initiator, A radical initiator can be used preferably. Examples of such radical initiators include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p- Menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide , Organic peroxides such as t-butylperoxyisobutyrate; and the like. These polymerization initiators can be used alone or in combination of two or more. The amount of the polymerization initiator used is preferably 0.001 to 3 parts by weight, more preferably 0.002 to 2 parts by weight with respect to 100 parts by weight of the total monomers.

分子量調整剤としては、特に限定されないが、たとえば、α−メチルスチレンダイマー;t−ドデシルメルカプタン、n−ドデシルメルカプタン、オクチルメルカプタン等のメルカプタン類;四塩化炭素、塩化メチレン、臭化メチレン等のハロゲン化炭化水素;テトラエチルチウラムダイサルファイド、ジペンタメチレンチウラムダイサルファイド、ジイソプロピルキサントゲンダイサルファイド等の含硫黄化合物;などが挙げられる。これらは単独でまたは2種類以上を組み合わせて使用することができる。分子量調整剤の使用量は、その種類によって異なるが、全単量体100重量部に対して、好ましくは0.001〜10重量部、より好ましくは0.01〜5重量部である。なお、本発明においては、分子量調整剤の使用量を上記範囲内で調整することにより、ニトリル共重合体ゴム(A)に含まれるメチルエチルケトン不溶解分の量を制御してもよい。たとえば、分子量調整剤の使用量を比較的少ないものとすると、メチルエチルケトン不溶解分の量は多くなる傾向にあり、一方、分子量調整剤の使用量を比較的多いものとすると、メチルエチルケトン不溶解分の量は少なくなる傾向にある。   Although it does not specifically limit as a molecular weight modifier, For example, α-methylstyrene dimer; Mercaptans, such as t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan; Halogenation, such as carbon tetrachloride, a methylene chloride, a methylene bromide Hydrocarbons; sulfur-containing compounds such as tetraethylthiuram disulfide, dipentamethylene thiuram disulfide, diisopropylxanthogen disulfide; and the like. These can be used alone or in combination of two or more. Although the usage-amount of a molecular weight modifier changes with kinds, Preferably it is 0.001-10 weight part with respect to 100 weight part of all monomers, More preferably, it is 0.01-5 weight part. In the present invention, the amount of insoluble methyl ethyl ketone contained in the nitrile copolymer rubber (A) may be controlled by adjusting the amount of the molecular weight modifier used within the above range. For example, if the amount of molecular weight modifier used is relatively small, the amount of methyl ethyl ketone insoluble matter tends to increase, whereas if the amount of molecular weight modifier used is relatively large, the amount of methyl ethyl ketone insoluble matter tends to increase. The amount tends to decrease.

また、乳化重合において、反応温度は、好ましくは0〜90℃、より好ましくは0〜50℃であり、反応時間は、好ましくは1〜50時間、より好ましくは2〜30時間である。なお、本発明においては、反応条件のうち、反応時間を上記範囲内で調整することにより、ニトリル共重合体ゴム(A)に含まれるメチルエチルケトン不溶解分の量を制御してもよく、たとえば、反応時間を比較的長くし、重合転化率を60〜99重量%と比較的高くすることにより、メチルエチルケトン不溶解分の量は多くなる傾向にある。   In the emulsion polymerization, the reaction temperature is preferably 0 to 90 ° C, more preferably 0 to 50 ° C, and the reaction time is preferably 1 to 50 hours, more preferably 2 to 30 hours. In the present invention, among the reaction conditions, the amount of methyl ethyl ketone insoluble matter contained in the nitrile copolymer rubber (A) may be controlled by adjusting the reaction time within the above range. By making the reaction time relatively long and the polymerization conversion rate relatively high as 60 to 99% by weight, the amount of methyl ethyl ketone insoluble matter tends to increase.

さらに、本発明においては、乳化重合に用いる単量体(m1)〜(m4)の全量を用い、重合反応を開始してもよいが、生成する共重合体の各単量体単位の組成分布を制御し、よりゴム弾性に富むゴム架橋物が得るという観点より、乳化重合に用いる単量体(m1)〜(m4)の全量のうち一部を用い、重合反応を開始し、その後、乳化重合に用いる単量体(m1)〜(m4)の残余を反応器に添加して重合することが好ましい。これは、一般に、重合反応開始時から、乳化重合に用いる単量体(m1)〜(m4)の全量を反応させてしまうと、共重合体の組成分布が広がるためである。   Furthermore, in the present invention, the polymerization reaction may be started using the total amount of the monomers (m1) to (m4) used for the emulsion polymerization, but the composition distribution of each monomer unit of the copolymer to be produced From the viewpoint of obtaining a crosslinked rubber product rich in rubber elasticity, a polymerization reaction is started using a part of the total amount of monomers (m1) to (m4) used for emulsion polymerization, and then emulsified. It is preferable to polymerize by adding the remainder of the monomers (m1) to (m4) used for the polymerization to the reactor. This is because, generally, if the total amount of the monomers (m1) to (m4) used for the emulsion polymerization is reacted from the start of the polymerization reaction, the composition distribution of the copolymer spreads.

この場合、重合に用いる単量体(m1)の好ましくは10〜100重量%、より好ましくは20〜100重量%、特に好ましくは30〜100重量%、重合に用いる単量体(m2)の好ましくは5〜100重量%、より好ましくは10〜100重量%、特に好ましくは20〜100重量%、重合に用いる単量体(m3)の好ましくは5〜100重量%、より好ましくは10〜80重量%、特に好ましくは15〜70重量%、および、重合に用いる単量体(m4)の好ましくは0〜100重量%、より好ましくは10〜100重量%、特に好ましくは20〜100重量%からなる単量体混合物を反応器に仕込み、重合反応を開始した後、反応器に仕込んだ単量体混合物に対する重合転化率が好ましくは5〜90重量%の範囲で、残余の単量体を反応器に添加して重合反応を継続することが好ましい。なお、たとえば、単量体(m4)を使用しない場合においても、重合に用いる単量体(m1)、単量体(m2)、単量体(m3)のうち、上記した量を用い、重合反応を開始し、単量体(m1)、(m2)、(m3)の残余を反応器に添加して重合することが好ましい。   In this case, the monomer (m1) used for the polymerization is preferably 10 to 100% by weight, more preferably 20 to 100% by weight, particularly preferably 30 to 100% by weight, preferably the monomer (m2) used for the polymerization. Is 5 to 100% by weight, more preferably 10 to 100% by weight, particularly preferably 20 to 100% by weight, preferably 5 to 100% by weight, more preferably 10 to 80% by weight of the monomer (m3) used in the polymerization. %, Particularly preferably 15 to 70% by weight, and preferably 0 to 100% by weight, more preferably 10 to 100% by weight, particularly preferably 20 to 100% by weight of the monomer (m4) used for the polymerization. After the monomer mixture is charged into the reactor and the polymerization reaction is started, the polymerization conversion rate with respect to the monomer mixture charged in the reactor is preferably in the range of 5 to 90% by weight, and the remaining monomer is removed. It is preferred to continue adding to the polymerization reaction to 応器. For example, even when the monomer (m4) is not used, polymerization is performed using the above-mentioned amounts among the monomer (m1), the monomer (m2), and the monomer (m3) used for the polymerization. It is preferable to start the reaction and perform polymerization by adding the remainder of the monomers (m1), (m2), and (m3) to the reactor.

残余の単量体を添加する方法は、特に制限されないが、一括で添加しても、分割して添加しても、また、連続的に添加してもよい。本発明では、得られる共重合体の組成分布をより簡便に制御できる点から、残余の単量体を、分割して添加することが好ましく、1〜6回に分割して添加することが特に好ましい。残余の単量体を、分割して添加する場合、分割添加する単量体の量や分割添加する時期は、重合反応の進行に合わせ、所望の共重合体が得られるよう調整すればよい。   The method for adding the remaining monomer is not particularly limited, but it may be added all at once, dividedly, or continuously. In the present invention, from the viewpoint that the composition distribution of the copolymer to be obtained can be more easily controlled, it is preferable to add the remaining monomer in divided portions, and it is particularly preferable to add in one to six portions. preferable. When the remaining monomer is added in a divided manner, the amount of monomer to be added in a divided manner and the timing of the divided addition may be adjusted so as to obtain a desired copolymer in accordance with the progress of the polymerization reaction.

そして、その後、所望により、加熱蒸留、減圧蒸留、水蒸気蒸留などの公知の方法を用いて未反応の単量体を除去することにより、ニトリル共重合体ゴム(A)のラテックスが得られる。   Then, if desired, a latex of the nitrile copolymer rubber (A) is obtained by removing unreacted monomers using a known method such as heating distillation, vacuum distillation, steam distillation or the like.

本発明においては、乳化重合法によって得られるニトリル共重合体ゴム(A)のラテックスの固形分濃度は、好ましくは5〜70重量%、より好ましくは10〜60重量%である。   In the present invention, the solid content concentration of the latex of the nitrile copolymer rubber (A) obtained by the emulsion polymerization method is preferably 5 to 70% by weight, more preferably 10 to 60% by weight.

なお、本発明で用いるニトリル共重合体ゴム(A)は、上記のように共重合して得られた共重合体の共役ジエン単量体単位部分における不飽和結合部分のうち少なくとも一部を水素化(水素添加反応)した水素化ニトリル共重合体ゴムであってもよい。水素化の方法は特に限定されず、公知の方法を採用すればよい。ニトリル共重合体ゴム(A)を、水素化ニトリル共重合体ゴムとする場合には、そのヨウ素価は、好ましくは0〜70の範囲、より好ましくは4〜60の範囲である。ニトリル共重合体ゴム(A)を水素化し、水素化ニトリル共重合体ゴムとすることにより、耐熱性、耐候性、耐オゾン性などを向上させることができる。   The nitrile copolymer rubber (A) used in the present invention is such that at least a part of the unsaturated bond portion in the conjugated diene monomer unit portion of the copolymer obtained by copolymerization as described above is hydrogen. Hydrogenated nitrile copolymer rubber may be used (hydrogenation reaction). The method for hydrogenation is not particularly limited, and a known method may be employed. When the nitrile copolymer rubber (A) is a hydrogenated nitrile copolymer rubber, the iodine value is preferably in the range of 0 to 70, more preferably in the range of 4 to 60. By hydrogenating the nitrile copolymer rubber (A) to obtain a hydrogenated nitrile copolymer rubber, heat resistance, weather resistance, ozone resistance and the like can be improved.

熱可塑性樹脂(B)
本発明のニトリル共重合体ゴム組成物は、上述したニトリル共重合体ゴム(A)に加えて、塩化ビニル樹脂およびアクリル樹脂からなる群より選択される少なくとも一種の熱可塑性樹脂(B)を含有する。ニトリル共重合体ゴム(A)に、熱可塑性樹脂(B)を配合することにより、得られるゴム架橋物の耐オゾン性を向上させることができる。
Thermoplastic resin (B)
The nitrile copolymer rubber composition of the present invention contains at least one thermoplastic resin (B) selected from the group consisting of a vinyl chloride resin and an acrylic resin in addition to the nitrile copolymer rubber (A) described above. To do. By adding the thermoplastic resin (B) to the nitrile copolymer rubber (A), the ozone resistance of the resulting rubber cross-linked product can be improved.

塩化ビニル樹脂は、主構成単量体が塩化ビニルであり、主構成単量体の単位の含有量が好ましくは50〜100重量%、より好ましくは60〜100重量%、さらに好ましくは70〜100重量%である。塩化ビニル樹脂は、JIS K6721に規定の溶液粘度法による平均重合度が、好ましくは400〜3,000、より好ましくは600〜2,000であり、ガラス転移温度(Tg)が、好ましくは50〜180℃である。   In the vinyl chloride resin, the main constituent monomer is vinyl chloride, and the content of units of the main constituent monomer is preferably 50 to 100% by weight, more preferably 60 to 100% by weight, and still more preferably 70 to 100%. % By weight. The vinyl chloride resin has an average polymerization degree according to the solution viscosity method specified in JIS K6721 of preferably 400 to 3,000, more preferably 600 to 2,000, and a glass transition temperature (Tg) of preferably 50 to 180 ° C.

塩化ビニル樹脂は、従来公知の乳化重合や懸濁重合により製造することができる。
例えば、乳化重合によって製造する場合には、耐圧反応容器に、水、ラウリル硫酸ナトリウム等の乳化剤および過硫酸カリウム等の重合開始剤を仕込んで、減圧脱気をくり返した後、塩化ビニル単量体(必要に応じて共重合可能なその他の単量体を加えても良い)を仕込み、攪拌しつつ加温して乳化重合を行い、重合転化率が所定の値に達したら重合停止剤を加え、室温に冷却して未反応単量体を除去して塩化ビニル樹脂ラテックスを得ることができる。
The vinyl chloride resin can be produced by conventionally known emulsion polymerization or suspension polymerization.
For example, in the case of producing by emulsion polymerization, a pressure resistant reaction vessel is charged with an emulsifier such as water, sodium lauryl sulfate, and a polymerization initiator such as potassium persulfate, and after repeated degassing under reduced pressure, a vinyl chloride monomer (Other monomers that can be copolymerized may be added if necessary), and the emulsion polymerization is performed by heating while stirring, and a polymerization terminator is added when the polymerization conversion rate reaches a predetermined value. Then, it is cooled to room temperature to remove the unreacted monomer to obtain a vinyl chloride resin latex.

アクリル樹脂は、主構成単量体が(メタ)アクリル酸アルキルエステルである樹脂であり、主構成単量体の単位の含有量が好ましくは50〜100重量%、より好ましくは60〜100重量%、さらに好ましくは70〜100重量%である。また、アクリル樹脂は、ゲルパーミエーションクロマトグラフィ(GPC)による標準ポリスチレン換算の数平均分子量(Mn)が、好ましくは10,000〜7,000,000、より好ましくは100,000〜2,000,000であり、ガラス転移温度(Tg)が、好ましくは60〜150℃である。   The acrylic resin is a resin in which the main constituent monomer is a (meth) acrylic acid alkyl ester, and the content of units of the main constituent monomer is preferably 50 to 100% by weight, more preferably 60 to 100% by weight. More preferably, it is 70 to 100% by weight. In addition, the acrylic resin has a standard polystyrene conversion number average molecular weight (Mn) by gel permeation chromatography (GPC), preferably 10,000 to 7,000,000, more preferably 100,000 to 2,000,000. The glass transition temperature (Tg) is preferably 60 to 150 ° C.

アクリル樹脂は、従来公知の乳化重合や懸濁重合により製造することができる。
例えば、乳化重合によって製造する場合には、反応器に、水、オクチル硫酸ナトリウム等の乳化剤、過硫酸アンモニウム等の重合開始剤、メタクリル酸メチル等の単量体(必要に応じて共重合可能なその他の単量体を加えても良い)を仕込み、攪拌しつつ加温して乳化重合を行い、重合転化率が所定の値に達したら重合停止剤を加え、室温に冷却してアクリル樹脂のラテックスを得ることができる。
The acrylic resin can be produced by conventionally known emulsion polymerization or suspension polymerization.
For example, in the case of production by emulsion polymerization, water, an emulsifier such as sodium octyl sulfate, a polymerization initiator such as ammonium persulfate, a monomer such as methyl methacrylate (others that can be copolymerized if necessary) The monomer may be added) and heated while stirring to carry out emulsion polymerization. When the polymerization conversion rate reaches a predetermined value, a polymerization terminator is added, and the mixture is cooled to room temperature and latex of acrylic resin Can be obtained.

塩化ビニル樹脂およびアクリル樹脂からなる群より選択される少なくとも一種の熱可塑性樹脂(B)の含有量は、ニトリル共重合体ゴム(A)100重量部に対して、10〜150重量部であり、好ましくは15〜130重量部、より好ましくは20〜100重量部である。熱可塑性樹脂(B)の含有量が少なすぎると、耐ガソリン透過性および耐オゾン性に劣るおそれがあり、一方、含有量が多すぎると、耐寒性が悪化するおそれがある。   The content of at least one thermoplastic resin (B) selected from the group consisting of a vinyl chloride resin and an acrylic resin is 10 to 150 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A), Preferably it is 15-130 weight part, More preferably, it is 20-100 weight part. When there is too little content of a thermoplastic resin (B), there exists a possibility that it may be inferior to gasoline permeability resistance and ozone resistance, and when there is too much content, there exists a possibility that cold resistance may deteriorate.

可塑剤(C)
本発明のニトリル共重合体ゴム組成物は、ニトリル共重合体ゴム(A)および熱可塑性樹脂(B)に加えて、HOY法によるSP値(溶解度パラメータ)が8.0〜10.2(cal/cm1/2である可塑剤(C)を含有する。可塑剤のSP値が大き過ぎると、得られるゴム架橋物の耐寒性が劣る。また、小さすぎると得られるゴム架橋物の耐ガソリン透過性が悪化する。
Plasticizer (C)
In addition to the nitrile copolymer rubber (A) and the thermoplastic resin (B), the nitrile copolymer rubber composition of the present invention has an SP value (solubility parameter) by the HOY method of 8.0 to 10.2 (cal / Cm 3 ) 1/2 plasticizer (C). If the SP value of the plasticizer is too large, the resulting rubber cross-linked product has poor cold resistance. On the other hand, if it is too small, the gasoline permeation resistance of the resulting rubber cross-linked product is deteriorated.

HOY法によるSP値が8.0〜10.2(cal/cm1/2である可塑剤(C)の具体例(SP値の単位は「(cal/cm1/2」)としては、たとえば、アジピン酸ジブトキシエチル(SP値:8.8)、アジピン酸ジ(ブトキシエトキシエチル)(SP値:9.2)、アジピン酸ジ(メトキシテトラエチレングリコール)、アジピン酸ジ(メトキシペンタエチレングリコール)、アジピン酸(メトキシテトラエチレングリコール)(メトキシペンタエチレングリコール)などのアジピン酸とエーテル結合含有アルコールとのエステル化合物;アゼライン酸ジブトキシエチル、アゼライン酸ジ(ブトキシエトキシエチル)などのアゼライン酸とエーテル結合含有アルコールとのエステル化合物;セバシン酸ジブトキシエチル、セバシン酸ジ(ブトキシエトキシエチル)などのセバシン酸とエーテル結合含有アルコールとのエステル化合物;フタル酸ジブトキシエチル、フタル酸ジ(ブトキシエトキシエチル)などのフタル酸とエーテル結合含有アルコールとのエステル化合物;イソフタル酸ジブトキシエチル、イソフタル酸ジ(ブトキシエトキシエチル)などのイソフタル酸とエーテル結合含有アルコールとのエステル化合物;アジピン酸ジ−(2−エチルヘキシル)(SP値:8.5)、アジピン酸ジイソデシル(SP値:8.3)、アジピン酸ジイソノニル、アジピン酸ジブチル(SP値:8.9)などのアジピン酸ジアルキルエステル類;アゼライン酸ジ−(2−エチルヘキシル)(SP値:8.5)、アゼライン酸ジイソオクチル、アゼライン酸ジ−n−ヘキシルなどのアゼライン酸ジアルキルエステル類;セバシン酸ジ−n−ブチル(SP値:8.7)、セバシン酸ジ−(2−エチルヘキシル)(SP値:8.4)などのセバシン酸ジアルキルエステル類;フタル酸ジブチル(SP値:9.4)、フタル酸ジ−(2−エチルヘキシル)(SP値:9.0)、フタル酸ジ−n−オクチル、フタル酸ジイソブチル、フタル酸ジヘプチル(SP値:9.0)、フタル酸ジイソデシル(SP値:8.5)、フタル酸ジウンデシル(SP値:8.5)、フタル酸ジイソノニル(SP値:8.9)などのフタル酸ジアルキルエステル類;フタル酸ジシクロヘキシルなどのフタル酸ジシクロアルキルエステル類;フタル酸ジフェニル、フタル酸ブチルベンジル(SP値:10.2)などのフタル酸アリールエステル類;イソフタル酸ジ−(2−エチルヘキシル)、イソフタル酸ジイソオクチルなどのイソフタル酸ジアルキルエステル類;テトラヒドロフタル酸ジ−(2−エチルヘキシル)、テトラヒドロフタル酸ジ−n−オクチル、テトラヒドロフタル酸ジイソデシルなどのテトラヒドロフタル酸ジアルキルエステル類;トリメリット酸トリ−(2−エチルヘキシル)(SP値:8.9)、トリメリット酸トリ−n−オクチル(SP値:8.9)、トリメリット酸トリイソデシル(SP値:8.4)、トリメリット酸トリイソオクチル、トリメリット酸トリ−n−ヘキシル、トリメリット酸トリイソノニル(SP値:8.8)、トリメリット酸トリイソデシル(SP値:8.8)などのトリメリット酸誘導体;エポキシ化大豆油(SP値:9.0)、エポキシ化アマニ油(SP値:9.3)などのエポキシ系可塑剤;トリクレジルホスフェート(SP値:9.7)などのリン酸エステル系可塑剤;などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。 Specific example of plasticizer (C) whose SP value by the HOY method is 8.0 to 10.2 (cal / cm 3 ) 1/2 (the unit of SP value is “(cal / cm 3 ) 1/2 ”) As, for example, dibutoxyethyl adipate (SP value: 8.8), di (butoxyethoxyethyl) adipate (SP value: 9.2), di (methoxytetraethylene glycol) adipate, di ( Ester compounds of adipic acid and ether bond-containing alcohols such as methoxypentaethylene glycol) and adipic acid (methoxytetraethylene glycol) (methoxypentaethylene glycol); dibutoxyethyl azelate, di (butoxyethoxyethyl) azelate, etc. Ester compound of azelaic acid and ether bond-containing alcohol; dibutoxye sebacate Ester compound of sebacic acid such as chill, di (butoxyethoxyethyl) sebacate and alcohol containing ether bond; ester of phthalic acid such as dibutoxyethyl phthalate, di (butoxyethoxyethyl) phthalate and alcohol containing ether bond Compound; ester compound of isophthalic acid and ether bond-containing alcohol such as dibutoxyethyl isophthalate and di (butoxyethoxyethyl) isophthalate; di- (2-ethylhexyl) adipate (SP value: 8.5), adipic acid Adipic acid dialkyl esters such as diisodecyl (SP value: 8.3), diisononyl adipate, dibutyl adipate (SP value: 8.9); di- (2-ethylhexyl) azelate (SP value: 8.5) , Diisooctyl azelaate, di-n-azelaate Dialkyl esters of azelaic acid such as xylyl; dialkyl esters of sebacic acid such as di-n-butyl sebacate (SP value: 8.7), di- (2-ethylhexyl) sebacate (SP value: 8.4); Dibutyl phthalate (SP value: 9.4), di- (2-ethylhexyl) phthalate (SP value: 9.0), di-n-octyl phthalate, diisobutyl phthalate, diheptyl phthalate (SP value: 9) 0.0), diisodecyl phthalate (SP value: 8.5), diundecyl phthalate (SP value: 8.5), diisononyl phthalate (SP value: 8.9), and the like; dialkyl phthalates; Phthalic acid dicycloalkyl esters such as diphenyl phthalate and butyl benzyl phthalate (SP value: 10.2) Isophthalic acid dialkyl esters such as di- (2-ethylhexyl) isophthalate and diisooctyl isophthalate; Dialkyl phthalates; trimellitic acid tri- (2-ethylhexyl) (SP value: 8.9), trimellitic acid tri-n-octyl (SP value: 8.9), trimellitic acid triisodecyl (SP value: 8.4), trimellitic acid such as triisooctyl trimellitic acid, tri-n-hexyl trimellitic acid, triisononyl trimellitic acid (SP value: 8.8), triisodecyl trimellitic acid (SP value: 8.8) Acid derivatives; epoxidized soybean oil (SP value: 9.0), Epo And epoxy plasticizers such as xylated linseed oil (SP value: 9.3); and phosphate ester plasticizers such as tricresyl phosphate (SP value: 9.7). These can be used individually by 1 type or in combination of multiple types.

これらのなかでも、得られるゴム架橋物の耐ガソリン透過性および耐寒性を良好なものとすることができることから、アジピン酸、アゼライン酸、セバシン酸およびフタル酸などの二塩基酸と、エーテル結合含有アルコールとのエステル化合物;が好ましく、アジピン酸とエーテル結合含有アルコールとのエステル化合物;がより好ましく、アジピン酸ジ(ブトキシエトキシエチル)、アジピン酸ジ(メトキシテトラエチレングリコール)、アジピン酸ジ(メトキシペンタエチレングリコール)およびアジピン酸(メトキシテトラエチレングリコール)(メトキシペンタエチレングリコール)がより好ましく、アジピン酸ジ(ブトキシエトキシエチル)が特に好ましい。   Among these, since the resulting rubber cross-linked product can have good gasoline permeation resistance and cold resistance, it contains a dibasic acid such as adipic acid, azelaic acid, sebacic acid and phthalic acid, and an ether bond. An ester compound with an alcohol; is preferred, and an ester compound with an adipic acid and an ether bond-containing alcohol is more preferred; adipic acid di (butoxyethoxyethyl), adipic acid di (methoxytetraethylene glycol), adipic acid di (methoxypenta) Ethylene glycol) and adipic acid (methoxytetraethylene glycol) (methoxypentaethylene glycol) are more preferred, and di (butoxyethoxyethyl) adipate is particularly preferred.

本発明のニトリル共重合体ゴム組成物における可塑剤(C)の含有量は、ニトリル共重合体ゴム(A)100重量部に対し、0.1〜200重量部であり、好ましくは1〜150重量部、より好ましくは2〜100重量部である。可塑剤(C)の含有量が少なすぎると、得られるゴム架橋物の耐寒性が劣ってしまう。一方、含有量が多すぎると、ブリードが発生するおそれがある。   Content of the plasticizer (C) in the nitrile copolymer rubber composition of this invention is 0.1-200 weight part with respect to 100 weight part of nitrile copolymer rubber (A), Preferably it is 1-150. Part by weight, more preferably 2 to 100 parts by weight. When there is too little content of a plasticizer (C), the cold resistance of the rubber crosslinked material obtained will be inferior. On the other hand, if the content is too large, bleeding may occur.

無機充填剤(D)
また、本発明のニトリル共重合体ゴム組成物は、上記ニトリル共重合体ゴム(A)、熱可塑性樹脂(B)、および可塑剤(C)に加えて、アスペクト比が30〜2,000である無機充填剤(D)を含有していることが好ましい。
Inorganic filler (D)
The nitrile copolymer rubber composition of the present invention has an aspect ratio of 30 to 2,000 in addition to the nitrile copolymer rubber (A), the thermoplastic resin (B), and the plasticizer (C). It preferably contains a certain inorganic filler (D).

無機充填剤(D)は、アスペクト比が30〜2,000の扁平状の充填剤であり、そのアスペクト比は、好ましくは35〜1,800、より好ましくは100〜1,600、特に好ましくは200〜1,300である。このような扁平状の無機充填剤(D)を用いることにより、得られるゴム架橋物の耐ガソリン透過性をより高めることができる。アスペクト比が小さすぎると、耐ガソリン透過性の向上効果が得難くなる。一方、大きすぎると、ニトリル共重合体ゴム(A)中への分散が困難となり、機械的強度が低下してしまう。   The inorganic filler (D) is a flat filler having an aspect ratio of 30 to 2,000, and the aspect ratio is preferably 35 to 1,800, more preferably 100 to 1,600, and particularly preferably. 200 to 1,300. By using such a flat inorganic filler (D), the gasoline permeation resistance of the resulting rubber cross-linked product can be further increased. If the aspect ratio is too small, it is difficult to obtain an effect of improving the gasoline permeation resistance. On the other hand, when too large, dispersion | distribution in a nitrile copolymer rubber (A) will become difficult, and mechanical strength will fall.

なお、本発明において無機充填剤(D)のアスペクト比は、無機充填剤(D)の面平均径と平均厚みの比を求めることにより算出することができる。ここで、面平均径および平均厚みは原子間力顕微鏡で無作為に選んだ100個の無機充填剤(D)の面方向の径と厚みとを測定し、その算術平均値として算出される個数平均の値である。   In the present invention, the aspect ratio of the inorganic filler (D) can be calculated by determining the ratio of the average surface diameter to the average thickness of the inorganic filler (D). Here, the surface average diameter and the average thickness are the numbers calculated as the arithmetic average value of the surface diameter and thickness of 100 inorganic fillers (D) randomly selected with an atomic force microscope. Average value.

アスペクト比が30〜2,000である無機充填剤(D)としては、特に限定されず、天然物由来のものであっても、天然物に精製などの処理を加えたものであっても、合成品であってもよい。具体例としては、カオリナイトやハロサイトなどのカオリナイト類;モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スティブンサイト、マイカなどのスメクタイト類;およびバーミキュライト類;緑泥石類;タルク;EガラスまたはCガラスなどの無定形板状粒子であるガラスフレークなどが挙げられ、中でもスメクタイト類が好ましく、モンモリロナイト、マイカおよびサポナイトが特に好ましい。これらは一種単独でまたは複数種併せて用いることができる。また、本発明では、モンモリロナイト、マイカ、サポナイトを水分散処理することにより、多層構造を有する化合物であるモンモリロナイト、マイカ、サポナイトを構成する各層を分離して得られるものを用いてもよい。このような水分散処理を行うことにより分散性が良好な組成物を得ることができる。ここで、上記のうち、無機充填剤(D)としてのモンモリロナイトは、ベントナイトに主成分として含有されるものであり、そのため、モンモリロナイトとしては、ベントナイトを精製することにより得られるものなどを用いることができる。   The inorganic filler (D) having an aspect ratio of 30 to 2,000 is not particularly limited, and it may be derived from a natural product or a natural product subjected to a treatment such as purification. It may be a synthetic product. Specific examples include kaolinites such as kaolinite and halosite; smectites such as montmorillonite, beidellite, nontronite, saponite, hectorite, stevensite, mica; and vermiculites; chlorite; talc; E Examples thereof include glass flakes which are amorphous plate-like particles such as glass or C glass, among which smectites are preferable, and montmorillonite, mica and saponite are particularly preferable. These can be used individually by 1 type or in combination of multiple types. Moreover, in this invention, you may use what isolate | separates each layer which comprises the compound which has a multilayered structure montmorillonite, mica, and saponite by carrying out the water dispersion process of montmorillonite, mica, and saponite. By performing such an aqueous dispersion treatment, a composition having good dispersibility can be obtained. Here, among the above, montmorillonite as the inorganic filler (D) is contained as a main component in bentonite. Therefore, as montmorillonite, one obtained by purifying bentonite or the like may be used. it can.

無機充填剤(D)の平均粒径(平均一次粒子径)は、好ましくは0.001〜20μm、より好ましくは0.005〜15μm、さらに好ましくは0.01〜10μmである。本発明においては、無機充填剤(D)の平均粒径は、X線透過法で粒度分布を測定することにより求められる50%体積累積径で定義される。無機充填剤(D)の粒径が小さすぎると、得られるゴム架橋物の伸びが低下するおそれがあり、逆に、大きすぎると安定なゴム組成物が調製できない可能性がある。   The average particle diameter (average primary particle diameter) of the inorganic filler (D) is preferably 0.001 to 20 μm, more preferably 0.005 to 15 μm, and still more preferably 0.01 to 10 μm. In the present invention, the average particle diameter of the inorganic filler (D) is defined as a 50% volume cumulative diameter obtained by measuring the particle size distribution by the X-ray transmission method. If the particle size of the inorganic filler (D) is too small, the elongation of the resulting rubber cross-linked product may be reduced. Conversely, if it is too large, a stable rubber composition may not be prepared.

無機充填剤(D)の含有量は、ニトリル共重合体ゴム(A)100重量部に対し、好ましくは1〜200重量部、より好ましくは2〜150重量部、さらに好ましくは3〜100重量部である。無機充填剤(D)の使用量が少なすぎると、無機充填剤(D)の添加効果が得難くなる傾向にある。一方、使用量が多すぎると、得られるゴム架橋物の伸びが低下するおそれがある。   The content of the inorganic filler (D) is preferably 1 to 200 parts by weight, more preferably 2 to 150 parts by weight, further preferably 3 to 100 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A). It is. If the amount of the inorganic filler (D) used is too small, the effect of adding the inorganic filler (D) tends to be difficult to obtain. On the other hand, when there is too much usage-amount, there exists a possibility that the elongation of the rubber crosslinked material obtained may fall.

ニトリル共重合体ゴム組成物の調製方法
本発明のニトリル共重合体ゴム組成物の調製方法は、特に限定されないが、次の方法により調製することができる。すなわち、まず、上記した方法により、ニトリル共重合体ゴム(A)のラテックスを調製し、次いで、ニトリル共重合体ゴム(A)のラテックスに、熱可塑性樹脂(B)のラテックス、可塑剤(C)の水性分散液、および必要に応じて添加される無機充填剤(D)の水性分散液を攪拌下で添加することによりラテックス組成物を得る。そして、得られたラテックス組成物を凝固し、必要に応じて水洗・乾燥することにより、本発明のニトリル共重合体ゴム組成物を調製することができる。
Method for Preparing Nitrile Copolymer Rubber Composition The method for preparing the nitrile copolymer rubber composition of the present invention is not particularly limited, and can be prepared by the following method. That is, first, a latex of the nitrile copolymer rubber (A) is prepared by the above-described method, and then the latex of the thermoplastic resin (B) and the plasticizer (C) are added to the latex of the nitrile copolymer rubber (A). ) And an aqueous dispersion of the inorganic filler (D) added as necessary are added under stirring to obtain a latex composition. And the nitrile copolymer rubber composition of this invention can be prepared by coagulating the obtained latex composition, and washing and drying as needed.

可塑剤(C)の水性分散液の調整方法は特に限定はないが、可塑剤(C)の0.5〜10重量%となる量の界面活性剤を含有する水媒体を強く撹拌しながら、可塑剤(C)を添加して調製することが好ましい。このような界面活性剤としては、ロジン酸カリウム、ラウリル硫酸ナトリウム、オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアニオン界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステルなどのノニオン界面活性剤;ジデシルジメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライドなどのカチオン界面活性剤等が挙げられる。なお、水性分散液中の可塑剤(C)の濃度は、5〜70重量%とすることが好ましい。   The method for preparing the aqueous dispersion of the plasticizer (C) is not particularly limited. While strongly stirring the aqueous medium containing the surfactant in an amount of 0.5 to 10% by weight of the plasticizer (C), It is preferable to prepare by adding a plasticizer (C). Such surfactants include anionic surfactants such as potassium rosinate, sodium lauryl sulfate, potassium oleate, sodium dodecylbenzenesulfonate; polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl. Nonionic surfactants such as esters; cationic surfactants such as didecyldimethylammonium chloride and stearyltrimethylammonium chloride. In addition, it is preferable that the density | concentration of the plasticizer (C) in an aqueous dispersion shall be 5-70 weight%.

また、無機充填剤(D)の水性分散液の調整方法は特に限定はないが、水媒体を、強く撹拌しながら、無機充填剤(D)を添加して調製すればよい。この場合においては、無機充填剤(D)に対して、0.1〜10重量%となる量のポリアクリル酸ナトリウム、トリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウム、ポリマレイン酸ナトリウム、β−ナフタレンスルホン酸・ホルマリン縮合物のNa塩などの分散剤や界面活性剤等を含有する水媒体を使用してもよく、アニオン性の分散剤や界面活性剤を含有するのが好ましい。これらは一種単独でまたは複数種併せて用いることができる。無機充填剤(D)の水性分散液の固形分濃度は、好ましくは1〜50重量%、より好ましくは2〜40重量%である。   The method for adjusting the aqueous dispersion of the inorganic filler (D) is not particularly limited, but may be prepared by adding the inorganic filler (D) while strongly stirring the aqueous medium. In this case, sodium polyacrylate, sodium tripolyphosphate, sodium hexametaphosphate, sodium pyrophosphate, sodium polymaleate, β-naphthalene in an amount of 0.1 to 10% by weight with respect to the inorganic filler (D). An aqueous medium containing a dispersant such as Na salt of a sulfonic acid / formalin condensate, a surfactant or the like may be used, and an anionic dispersant or surfactant is preferably contained. These can be used individually by 1 type or in combination of multiple types. The solid content concentration of the aqueous dispersion of the inorganic filler (D) is preferably 1 to 50% by weight, more preferably 2 to 40% by weight.

無機充填剤(D)の水性分散液を調製する際には、湿式粉砕機を用いて、無機充填剤(D)を水中に分散させてもよい。湿式粉砕機を用いて分散させることにより、無機充填剤(D)が二次凝集している場合に、無機充填剤(D)の二次凝集を解消することができ、得られるゴム架橋物を耐ガソリン透過性により優れたものとすることができる。この場合に用いる湿式粉砕機としては、ナスマイザー(吉田機械興業(株)製)、スーパーウイングミルDM−200((株)エステック製)、スターバースト((株)スギノマシン製)、スターミル(アシザワファインテック(株)製)などが挙げられる。   When preparing the aqueous dispersion of the inorganic filler (D), the inorganic filler (D) may be dispersed in water using a wet pulverizer. When the inorganic filler (D) is secondary agglomerated by dispersing using a wet pulverizer, the secondary agglomeration of the inorganic filler (D) can be eliminated, and the resulting rubber cross-linked product is obtained. Excellent gasoline permeation resistance can be achieved. As the wet pulverizer used in this case, Nasmizer (manufactured by Yoshida Kikai Kogyo Co., Ltd.), Super Wing Mill DM-200 (manufactured by STEC Co., Ltd.), Starburst (manufactured by Sugino Machine Co., Ltd.), Star Mill (Ashizawa Fine) Tech Co., Ltd.).

ラテックス組成物の凝固は、特に限定されないが、凍結凝固、乾燥凝固、水溶性有機液体による凝固、塩析凝固等の公知の方法が適用される。これらの中でも、凝固剤を含む水溶液に、ラテックス組成物を添加して塩析させることにより行うことが好ましい。凝固剤としては、塩化カルシウム、塩化ナトリウム、水酸化カルシウム、硫酸アルミニウムおよび水酸化アルミニウムなどが挙げられる。また、凝固剤の使用量は、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは0.5〜150重量部、特に好ましくは0.5〜20重量部である。   Coagulation of the latex composition is not particularly limited, and known methods such as freeze coagulation, dry coagulation, coagulation with a water-soluble organic liquid, and salting out coagulation are applied. Among these, it is preferable to perform by salting out the latex composition by adding it to an aqueous solution containing a coagulant. Examples of the coagulant include calcium chloride, sodium chloride, calcium hydroxide, aluminum sulfate, and aluminum hydroxide. The amount of the coagulant used is preferably 0.5 to 150 parts by weight, particularly preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A).

一般に、クラム粒径は、凝固、洗浄工程に続く振動スクリーンやスクイーザーでの脱水度、クラム回収率、さらには乾燥工程での乾燥度に大きな影響を及ぼすものである。たとえば、クラム粒径が小さすぎると、振動スクリーンなどでは、クラム粒径が小さくてスクリーンの目から流出したり、スクイーザーでのポリマーの噛みこみが不充分になって脱水度が低下したりして、生産性が悪化する。そのため、クラムの平均粒径は、0.5〜40mmであることが好ましい。   In general, the crumb particle size has a great influence on the degree of dehydration in the vibrating screen or squeezer following the coagulation and washing process, the crumb recovery rate, and the degree of drying in the drying process. For example, if the crumb particle size is too small, the crumb particle size will be too small to flow out of the screen, or the polymer will be insufficiently squeezed by the squeezer and the degree of dehydration will decrease. , Productivity deteriorates. Therefore, the average particle diameter of crumb is preferably 0.5 to 40 mm.

クラムの洗浄、脱水および乾燥方法については、一般的なゴムの製造における洗浄・脱水方法および乾燥方法と同様とすることができる。洗浄・脱水方法としては網目状のフィルター、遠心分離機等を用いて、凝固によって得られたクラムと水とを分離させた後、洗浄し、スクイーザー等でクラムを脱水すればよい。次に一般にゴムの製造に用いられるバンドドライヤー、通気竪型乾燥機、単軸押出機、二軸押出機等により、所望の含水率になるまで乾燥させることにより、本発明のニトリル共重合体ゴム組成物を得ることができる。また、二軸押出機内で、凝固、乾燥を同時に行ってもよい。   The washing, dehydrating and drying methods of crumb can be the same as the washing / dehydrating method and drying method in general rubber production. As a washing / dehydrating method, a crumb obtained by coagulation and water may be separated using a mesh filter, a centrifugal separator, etc., then washed, and the crumb may be dehydrated with a squeezer or the like. Next, the nitrile copolymer rubber of the present invention is dried by a band dryer, a ventilated vertical dryer, a single screw extruder, a twin screw extruder or the like generally used for rubber production until a desired water content is obtained. A composition can be obtained. Moreover, you may perform coagulation | solidification and drying simultaneously within a twin-screw extruder.

このようにして得られる本発明のニトリル共重合体ゴム組成物のムーニー粘度(ML1+4、100℃)は、好ましくは5〜300、より好ましくは10〜250である。 The Mooney viscosity (ML 1 + 4 , 100 ° C.) of the nitrile copolymer rubber composition of the present invention thus obtained is preferably 5 to 300, more preferably 10 to 250.

なお、本発明のニトリル共重合体ゴム組成物の調製方法としては、上述した方法以外にも、たとえば、ニトリル共重合体ゴム(A)のラテックスに、熱可塑性樹脂(B)、可塑剤(C)、および必要に応じて添加される無機充填剤(D)の全成分もしくは1つ以上の成分の全量もしくはその一部を含有させた後に凝固・乾燥し、残余の成分とをロールやバンバリーミキサー等の混錬機で混錬して得ることもできる。   In addition, as a method for preparing the nitrile copolymer rubber composition of the present invention, for example, a latex of a nitrile copolymer rubber (A), a thermoplastic resin (B), a plasticizer (C ), And the inorganic filler (D), which is added as necessary, or all or a part of one or more components, and then coagulated and dried, and the remaining components are rolled or banbury mixer. It can also be obtained by kneading with a kneader.

架橋性ニトリル共重合体ゴム組成物
本発明の架橋性ニトリル共重合体ゴム組成物は、上記した本発明のニトリル共重合体ゴム組成物に、架橋剤を加えてなるものである。
Crosslinkable nitrile copolymer rubber composition The crosslinkable nitrile copolymer rubber composition of the present invention is obtained by adding a crosslinking agent to the nitrile copolymer rubber composition of the present invention described above.

架橋剤は、ニトリル共重合体ゴムの架橋剤として通常使用されるものであればよく、特に限定されない。代表的な架橋剤としては、ニトリル共重合体ゴム(A)の不飽和結合間を架橋する硫黄系架橋剤または有機過酸化物架橋剤が挙げられる。これらは一種単独でまたは複数種併せて用いることができる。これらのなかでも、硫黄系架橋剤が好ましい。   The crosslinking agent is not particularly limited as long as it is usually used as a crosslinking agent for nitrile copolymer rubber. A typical crosslinking agent includes a sulfur-based crosslinking agent or an organic peroxide crosslinking agent that bridges between unsaturated bonds of the nitrile copolymer rubber (A). These can be used individually by 1 type or in combination of multiple types. Among these, a sulfur type crosslinking agent is preferable.

硫黄系架橋剤としては、粉末硫黄、硫黄華、沈降性硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの硫黄;塩化硫黄、二塩化硫黄、モルホリンジスルフィド、アルキルフェノールジスルフィド、ジベンゾチアジルジスルフィド、N,N’−ジチオ−ビス(ヘキサヒドロ−2H−アゼノピン−2)、含リンポリスルフィド、高分子多硫化物などの含硫黄化合物;テトラメチルチウラムジスルフィド、ジメチルジチオカルバミン酸セレン、2−(4’−モルホリノジチオ)ベンゾチアゾールなどの硫黄供与性化合物;などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。   Sulfur-based crosslinking agents include powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, and other sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothiazyl disulfide, N, Sulfur-containing compounds such as N′-dithio-bis (hexahydro-2H-azenopine-2), phosphorus-containing polysulfides, polymer polysulfides; tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, 2- (4′-morpholinodithio) And sulfur donating compounds such as benzothiazole; These can be used individually by 1 type or in combination of multiple types.

有機過酸化物架橋剤としては、ジクミルペルオキシド、クメンヒドロペルオキシド、t−ブチルクミルペルオキシド、パラメンタンヒドロペルオキシド、ジ−t−ブチルペルオキシド、1,3−ビス(t−ブチルペルオキシイソプロピル)ベンゼン、1,4−ビス(t−ブチルペルオキシイソプロピル)ベンゼン、1,1−ジ−t−ブチルペルオキシ−3,3−トリメチルシクロヘキサン、4,4−ビス−(t−ブチル−ペルオキシ)−n−ブチルバレレート、2,5−ジメチル−2,5−ジ−t−ブチルペルオキシヘキサン、2,5−ジメチル−2,5−ジ−t−ブチルペルオキシヘキシン−3、1,1−ジ−t−ブチルペルオキシ−3,5,5−トリメチルシクロヘキサン、p−クロロベンゾイルペルオキシド、t−ブチルペルオキシイソプロピルカーボネート、t−ブチルペルオキシベンゾエート等が挙げられる。これらは一種単独でまたは複数種併せて用いることができる。   Examples of the organic peroxide crosslinking agent include dicumyl peroxide, cumene hydroperoxide, t-butylcumyl peroxide, paramentane hydroperoxide, di-t-butyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, 1,4-bis (t-butylperoxyisopropyl) benzene, 1,1-di-t-butylperoxy-3,3-trimethylcyclohexane, 4,4-bis- (t-butyl-peroxy) -n-butylvale 2,5-dimethyl-2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3, 1,1-di-t-butyl Peroxy-3,5,5-trimethylcyclohexane, p-chlorobenzoyl peroxide, t-butylperoxy Propyl carbonate, t- butyl peroxybenzoate, and the like. These can be used individually by 1 type or in combination of multiple types.

本発明の架橋性ニトリル共重合体ゴム組成物中における、架橋剤の含有量は特に限定されないが、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは0.1〜10重量部、より好ましくは0.2〜5重量部である。   The content of the crosslinking agent in the crosslinkable nitrile copolymer rubber composition of the present invention is not particularly limited, but is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A). More preferably, it is 0.2 to 5 parts by weight.

有機過酸化物架橋剤を用いる場合には、架橋助剤として、トリメタクリル酸トリメチロールプロパン、ジビニルベンゼン、ジメタクリル酸エチレン、イソシアヌル酸トリアリルなどの多官能性単量体などを併用することができる。これらの架橋助剤の使用量は特に限定されないが、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは0.5〜20重量部の範囲である。   When an organic peroxide crosslinking agent is used, a multifunctional monomer such as trimethylolpropane trimethacrylate, divinylbenzene, ethylene dimethacrylate, or triallyl isocyanurate can be used in combination as a crosslinking aid. . Although the usage-amount of these crosslinking adjuvants is not specifically limited, Preferably it is the range of 0.5-20 weight part with respect to 100 weight part of nitrile copolymer rubber (A).

硫黄系架橋剤を用いる場合には、亜鉛華、ステアリン酸などの架橋助剤;グアニジン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系などの架橋促進剤;を併用することができる。これらの架橋助剤および架橋促進剤の使用量も特に限定されず、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは0.1〜10重量部の範囲である。   When using a sulfur-based crosslinking agent, a crosslinking assistant such as zinc white or stearic acid; a crosslinking accelerator such as guanidine, aldehyde-amine, aldehyde-ammonia, thiazole, sulfenamide, thiourea Can be used in combination. The amounts of these crosslinking aids and crosslinking accelerators are not particularly limited, and are preferably in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A).

また、本発明のニトリル共重合体ゴム組成物または架橋性ニトリル共重合体ゴム組成物には、その他必要に応じて一般的なゴムに使用される配合剤、例えば、架橋遅延剤、老化防止剤、無機充填剤(D)以外の充填剤、滑剤、粘着剤、潤滑剤、加工助剤、可塑剤(C)以外の可塑剤、難燃剤、防黴剤、帯電防止剤、着色剤、カップリング剤などの添加剤を配合してもよい。   In addition, the nitrile copolymer rubber composition or the crosslinkable nitrile copolymer rubber composition of the present invention includes other compounding agents used for general rubber as necessary, for example, a crosslinking retarder, an antiaging agent. , Fillers other than inorganic fillers (D), lubricants, adhesives, lubricants, processing aids, plasticizers other than plasticizers (C), flame retardants, antifungal agents, antistatic agents, colorants, couplings You may mix | blend additives, such as an agent.

老化防止剤としては、フェノール系、アミン系、ベンズイミダゾール系、リン酸系などの老化防止剤を使用することができる。フェノール系では、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)等が、アミン系では、4,4’−ビス(α、α−ジメチルベンジル)ジフェニルアミン、N−イソプロピル−N’−フェニル−p−フェニレンジアミン等が、ベンズイミダゾール系では2−メルカプトベンズイミダゾール等が挙げられる。これらは1種単独でまたは2種以上併せて使用される。   As the anti-aging agent, an anti-aging agent such as phenol, amine, benzimidazole or phosphoric acid can be used. In the phenol system, 2,2′-methylenebis (4-methyl-6-tert-butylphenol) and the like are used, and in the amine system, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, N-isopropyl-N ′. -Phenyl-p-phenylenediamine and the like, and benzimidazole type include 2-mercaptobenzimidazole and the like. These may be used alone or in combination of two or more.

無機充填剤(D)以外の充填剤としては、たとえば、カーボンブラックや、シリカ、炭酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、酸化マグネシウム、短繊維、(メタ)アクリル酸亜鉛や(メタ)アクリル酸マグネシウムなどのα,β−エチレン系不飽和カルボン酸金属塩などが挙げられる。これらの充填剤はシランカップリング剤、チタンカップリング剤等によるカップリング処理や、高級脂肪酸またはその金属塩、エステル若しくはアミド等の高級脂肪酸誘導体や界面活性剤等による表面改質処理剤を施すことができる。   Examples of fillers other than the inorganic filler (D) include carbon black, silica, calcium carbonate, aluminum silicate, magnesium silicate, calcium silicate, magnesium oxide, short fiber, zinc (meth) acrylate, and (meth) acrylic. And α, β-ethylenically unsaturated carboxylic acid metal salts such as magnesium acid. These fillers are subjected to a coupling treatment with a silane coupling agent, a titanium coupling agent, etc., and a surface modification treatment agent with a higher fatty acid derivative or a surfactant such as a higher fatty acid or its metal salt, ester or amide. Can do.

また、本発明のニトリル共重合体ゴム組成物および架橋性ニトリル共重合体ゴム組成物には、本発明の効果を損なわない範囲で、ニトリル共重合体ゴム(A)および熱可塑性樹脂(B)以外の重合体を含有していてもよい。ニトリル共重合体ゴム(A)および熱可塑性樹脂(B)以外の重合体としては、特に限定されないが、フッ素ゴム、スチレン−ブタジエン共重合体ゴム、エチレン−プロピレン共重合体ゴム、エチレン−プロピレン−ジエン三元共重合体ゴム、天然ゴムおよびポリイソプレンゴム、エピクロロヒドリンゴム、ウレタンゴム、クロロプレンゴム、エチレン−酢酸ビニル共重合体、クロロスルホン化ポリエチレンなどを挙げることができる。なお、ニトリル共重合体ゴム(A)以外の重合体を配合する場合における配合量は、ニトリル共重合体ゴム(A)100重量部に対して、好ましくは100重量部以下、より好ましくは50重量部以下、特に好ましくは30重量部以下である。   In addition, the nitrile copolymer rubber composition and the crosslinkable nitrile copolymer rubber composition of the present invention include a nitrile copolymer rubber (A) and a thermoplastic resin (B) as long as the effects of the present invention are not impaired. Other polymers may be contained. The polymer other than the nitrile copolymer rubber (A) and the thermoplastic resin (B) is not particularly limited, but fluorine rubber, styrene-butadiene copolymer rubber, ethylene-propylene copolymer rubber, ethylene-propylene- Examples thereof include diene terpolymer rubber, natural rubber and polyisoprene rubber, epichlorohydrin rubber, urethane rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, chlorosulfonated polyethylene, and the like. The blending amount in the case of blending a polymer other than the nitrile copolymer rubber (A) is preferably 100 parts by weight or less, more preferably 50 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A). Part or less, particularly preferably 30 parts by weight or less.

本発明の架橋性ニトリル共重合体ゴム組成物の調製方法としては、特に限定されないが、上記したニトリル共重合体ゴム組成物に、架橋剤、架橋助剤およびその他の配合剤を添加し、ロールやバンバリーミキサー等の混錬機で混錬する方法などが挙げられる。なお、この場合における、配合順序は特に限定されないが、熱で反応や分解しにくい成分を充分に混合した後、熱で反応しやすい成分あるいは分解しやすい成分、たとえば架橋剤、架橋促進剤などを、反応や分解が起こらない温度で短時間で混合すればよい。   The method for preparing the crosslinkable nitrile copolymer rubber composition of the present invention is not particularly limited, but a crosslinking agent, a crosslinking aid and other compounding agents are added to the nitrile copolymer rubber composition described above, and a roll Or kneading with a kneading machine such as a Banbury mixer. In this case, the blending order is not particularly limited. However, after sufficiently mixing components that are not easily reacted or decomposed by heat, components that are easily reacted by heat or components that are easily decomposed, such as a crosslinking agent, a crosslinking accelerator, etc. Mixing in a short time at a temperature at which no reaction or decomposition occurs.

本発明の架橋性ニトリル共重合体ゴム組成物のムーニー粘度(ML1+4、100℃)は、好ましくは5〜300、より好ましくは10〜250である。 The Mooney viscosity (ML 1 + 4 , 100 ° C.) of the crosslinkable nitrile copolymer rubber composition of the present invention is preferably 5 to 300, more preferably 10 to 250.

ゴム架橋物
本発明のゴム架橋物は、上記架橋性ニトリル共重合体ゴム組成物を架橋してなる。
本発明の架橋性ニトリル共重合体ゴム組成物を架橋する際には、製造する成形品(ゴム架橋物)の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、次いで架橋反応させることにより架橋物の形状を固定化する。架橋を行う際には、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10〜200℃、好ましくは25〜120℃である。架橋温度は、通常、100〜200℃、好ましくは130〜190℃であり、架橋時間は、通常、1分〜24時間、好ましくは2分〜2時間である。
Cross-linked rubber The cross-linked rubber of the present invention is formed by cross-linking the cross-linkable nitrile copolymer rubber composition.
When crosslinking the crosslinkable nitrile copolymer rubber composition of the present invention, a molding machine corresponding to the shape of the molded product (rubber crosslinked product) to be produced, such as an extruder, an injection molding machine, a compressor, a roll, etc. Then, the shape of the cross-linked product is fixed by carrying out a cross-linking reaction. When cross-linking is performed, the cross-linking may be performed after molding or may be performed simultaneously with the molding. The molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C. The crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C., and the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 2 hours.

また、ゴム架橋物は、その形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。   Further, depending on the shape, size, etc. of the rubber cross-linked product, even if the surface is cross-linked, it may not be sufficiently cross-linked to the inside. Therefore, secondary cross-linking may be performed by heating.

このようにして得られる本発明のゴム架橋物は、耐ガソリン透過性、耐寒性、および耐オゾン性に優れるものである。そのため、本発明のゴム架橋物からなる層(I)を少なくとも1つの層とする一層または二層以上からなるホースとすることにより燃料用ホースなどとして好適に用いられる。なお、二層以上の積層体の場合においては、本発明のゴム架橋物からなる層(I)を内層、中間層、外層のいずれに用いてもよい。積層体の層(I)以外を構成する層(II)を構成する重合体としては、α,β−エチレン性不飽和ニトリル単量体単位含有量が好ましくは5〜60重量%、より好ましくは18〜55重量%であるニトリル共重合体ゴム(L)、該ニトリル共重合体ゴム(L)とアクリル樹脂および/または塩化ビニル樹脂とを含有するものや、フッ素ゴム、クロロプレンゴム、ヒドリンゴム、クロロスルホン化ポリエチレンゴム、アクリルゴム、エチレン−アクリル酸共重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン3元共重合体、ブチルゴム、イソプレンゴム、天然ゴム、スチレン−ブタジエン共重合体、フッ素樹脂、ポリアミド樹脂、ポリビニルアルコール、エチレン-酢酸ビニル共重合樹脂、エチレン−ビニルアルコール共重合体樹脂、ポリブチレンナフタレート、ポリフェニレンスルフィド、ポリオレフィン樹脂、ポリエステル樹脂などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。なお、層(II)を構成する重合体を組成物にする方法としては、例えば重合体に架橋剤、架橋助剤、架橋遅延剤、老化防止剤、充填剤、滑剤、粘着剤、潤滑剤、加工助剤、可塑剤、難燃剤、防黴剤、帯電防止剤、着色剤、カップリング剤などの添加剤を配合して、混練する方法等が挙げられる。   The rubber cross-linked product of the present invention thus obtained is excellent in gasoline permeation resistance, cold resistance, and ozone resistance. Therefore, it can be suitably used as a fuel hose or the like by forming a hose consisting of one layer or two or more layers in which the layer (I) comprising the crosslinked rubber of the present invention is at least one layer. In the case of a laminate of two or more layers, the layer (I) composed of the rubber cross-linked product of the present invention may be used for any of the inner layer, intermediate layer and outer layer. As the polymer constituting the layer (II) other than the layer (I) of the laminate, the α, β-ethylenically unsaturated nitrile monomer unit content is preferably 5 to 60% by weight, more preferably Nitrile copolymer rubber (L) of 18 to 55% by weight, those containing the nitrile copolymer rubber (L) and acrylic resin and / or vinyl chloride resin, fluorine rubber, chloroprene rubber, hydrin rubber, chloro Sulfonated polyethylene rubber, acrylic rubber, ethylene-acrylic acid copolymer, ethylene-propylene copolymer, ethylene-propylene-diene terpolymer, butyl rubber, isoprene rubber, natural rubber, styrene-butadiene copolymer, fluorine Resin, polyamide resin, polyvinyl alcohol, ethylene-vinyl acetate copolymer resin, ethylene-vinyl alcohol copolymer Resins, polybutylene naphthalate, polyphenylene sulfide, polyolefin resins, and polyester resins. These can be used individually by 1 type or in combination of multiple types. In addition, as a method of making the polymer constituting the layer (II) into a composition, for example, the polymer is a crosslinking agent, a crosslinking assistant, a crosslinking retarder, an anti-aging agent, a filler, a lubricant, an adhesive, a lubricant, Examples thereof include a method of blending additives such as processing aids, plasticizers, flame retardants, antifungal agents, antistatic agents, colorants, coupling agents, and kneading.

また、必要に応じて、層(I)と層(II)を接着させるために、層(I)、層(II)のいずれか/または両方にホスニウム塩、1,8−ジアザビシクロ(5.4.0)ウンデセン−7塩(DBU塩)、1,5−ジアザビシクロ(4.3.0)−ノネン−5塩(DBN塩)などを含有させてもよく、層(I)、層(II)の間に、新たな層(III)を接着層として用いてもよい。層(III)としては、上述した層(II)を構成する樹脂又はゴムと同様の樹脂又はゴム組成物を用いることができる。この場合、上述した層(II)を構成する樹脂又はゴム組成物を一種単独でまたは複数種併せて用いることができ、ホスニウム塩、1,8−ジアザビシクロ(5.4.0)ウンデセン−7塩(DBU塩)、1,5−ジアザビシクロ(4.3.0)−ノネン−5塩(DBN塩)などを含有させてもよい。   Further, if necessary, in order to bond the layer (I) and the layer (II), either or both of the layer (I) and the layer (II) are added with a phosnium salt, 1,8-diazabicyclo (5.4). 0.0) Undecene-7 salt (DBU salt), 1,5-diazabicyclo (4.3.0) -nonene-5 salt (DBN salt), etc., and may contain layers (I) and (II). In the meantime, a new layer (III) may be used as an adhesive layer. As the layer (III), the same resin or rubber composition as the resin or rubber constituting the layer (II) described above can be used. In this case, the resin or rubber composition constituting the layer (II) described above can be used singly or in combination, and phosnium salt, 1,8-diazabicyclo (5.4.0) undecene-7 salt. (DBU salt), 1,5-diazabicyclo (4.3.0) -nonene-5 salt (DBN salt) and the like may be contained.

ここで、層(I)の厚みは、好ましくは0.1〜10mm、より好ましくは0.5〜5mmである。また、二層以上の積層体の場合においては、層(I)以外の層の厚みは、好ましくは0.1〜10mm、より好ましくは0.5〜5mmである。   Here, the thickness of the layer (I) is preferably 0.1 to 10 mm, more preferably 0.5 to 5 mm. In the case of a laminate of two or more layers, the thickness of the layers other than the layer (I) is preferably 0.1 to 10 mm, more preferably 0.5 to 5 mm.

なお、上述のような構成を有する、本発明のゴム架橋物を含むホースを製造する方法としては、特に限定されないが、押出機などを用いて筒状に成形し、それを架橋することにより本発明のホースとなる。本発明の架橋性ニトリル共重合体ゴム組成物は、マンドレルクラックが発生しにくいという性質を有しているため、マンドレルを用いて製造することができる。   The method for producing the hose including the rubber cross-linked product of the present invention having the above-described configuration is not particularly limited. However, the hose is molded into a cylindrical shape using an extruder or the like, and is crosslinked to form the hose. It becomes the hose of the invention. Since the crosslinkable nitrile copolymer rubber composition of the present invention has the property that mandrel cracks are unlikely to occur, it can be produced using a mandrel.

すなわち、ホースを、本発明のゴム架橋物のみからなる単層のものとする場合には、まず、本発明の架橋性ニトリル共重合体ゴム組成物を筒状に成形し、得られた筒状の成形体にマンドレルを挿入することにより形状を固定し、架橋性ニトリル共重合体ゴム組成物を架橋させることにより製造することができる。   That is, when the hose is a single layer composed only of the rubber cross-linked product of the present invention, first, the cross-linkable nitrile copolymer rubber composition of the present invention is formed into a cylindrical shape, and the obtained cylindrical shape It can be produced by fixing the shape by inserting a mandrel into the molded article and crosslinking the crosslinkable nitrile copolymer rubber composition.

あるいは、ホースを、本発明のゴム架橋物を含む多層のものとする場合には、本発明の架橋性ニトリル共重合体ゴム組成物と、本発明のゴム架橋物からなる層以外の層を形成することとなる樹脂またはゴム組成物と、を積層させながら筒状に成形し、得られた筒状の積層成形体にマンドレルを挿入することにより形状を固定し、架橋性ニトリル共重合体ゴム組成物を架橋させることにより製造することができる。   Alternatively, when the hose has a multilayer structure including the rubber cross-linked product of the present invention, a layer other than the cross-linked nitrile copolymer rubber composition of the present invention and the layer formed of the rubber cross-linked product of the present invention is formed. The resin or rubber composition to be formed is molded into a cylindrical shape while being laminated, and the shape is fixed by inserting a mandrel into the obtained cylindrical laminated molded body, and a crosslinkable nitrile copolymer rubber composition It can be produced by crosslinking the product.

本発明のゴム架橋物は、パッキン、ガスケット、O−リング、オイルシール等のシール部材;オイルホース、燃料ホース、インレットホース、ガスホース、ブレーキホース、冷媒ホース等のホース;ダイアフラム;アキュムレータプラダ;ブーツ;などに好適であるが、ホースとして特に好適に用いられる。上記ガスホースのガスとしては、空気、窒素、酸素、水素、二酸化炭素、一酸化炭素、メタン、エタン、プロパン、ジメチルエーテル、LPG、水蒸気等が挙げられる。   The rubber cross-linked product of the present invention comprises a seal member such as packing, gasket, O-ring and oil seal; hose such as oil hose, fuel hose, inlet hose, gas hose, brake hose, refrigerant hose; diaphragm; accumulator prada; However, it is particularly preferably used as a hose. Examples of the gas of the gas hose include air, nitrogen, oxygen, hydrogen, carbon dioxide, carbon monoxide, methane, ethane, propane, dimethyl ether, LPG, and water vapor.

以下に、実施例および比較例を挙げて本発明を具体的に説明する。以下において、特記しない限り、「部」は重量基準である。なお、試験、評価は以下によった。   The present invention will be specifically described below with reference to examples and comparative examples. In the following, “part” is based on weight unless otherwise specified. The test and evaluation were as follows.

ムーニー粘度
ニトリル共重合体ゴム(「水素化ニトリル共重合体ゴム」の場合も含む)のムーニー粘度(ポリマー・ムーニー粘度)(ML1+4、100℃)は、JIS K6300に準拠して測定した。
The Mooney viscosity (polymer Mooney viscosity) (ML 1 + 4 , 100 ° C.) of the Mooney viscosity nitrile copolymer rubber (including the case of “hydrogenated nitrile copolymer rubber”) was measured according to JIS K6300.

メチルエチルケトン(MEK)不溶解分
ニトリル共重合体ゴム1gを200mlのメチルエチルケトンに浸漬させ、23℃で24時間放置後、325メッシュ金網を用いてろ過し、ろ液を蒸発乾燥固化させ、得られた残存乾燥固形分[メチルエチルケトン可溶分:(y)g]を秤量し、下式によりメチルエチルケトン不溶解分を算出したものである。
メチルエチルケトン不溶解分(重量%)=100×(1−y)/1
1 g of methylethylketone (MEK) insoluble nitrile copolymer rubber was immersed in 200 ml of methylethylketone, left to stand at 23 ° C. for 24 hours, filtered using a 325 mesh wire net, and the filtrate was evaporated to dryness and solidified. The dry solid content [methyl ethyl ketone soluble content: (y) g] is weighed, and the methyl ethyl ketone insoluble content is calculated by the following equation.
Methyl ethyl ketone insoluble matter (% by weight) = 100 × (1-y) / 1

常態物性(引張強さ、伸び、100%引張応力、硬さ)
架橋性ニトリル共重合体ゴム組成物(「架橋性水素化ニトリル共重合体ゴム組成物」の場合も含む)を縦15cm、横15cm、深さ0.2cmの金型に入れ、加圧しながら160℃で20分間プレス成形してシート状のゴム架橋物を得た。得られたシート状のゴム架橋物を用いてJIS K6251に従い、ダンベル状3号形で打ち抜いた試験片を用いてゴム架橋物の引張強さ、伸びおよび100%引張応力を、また、JIS K6253に従い、デュロメータ硬さ試験機タイプAを用いてゴム架橋物の硬さを、それぞれ測定した。
Normal properties (tensile strength, elongation, 100% tensile stress, hardness)
A crosslinkable nitrile copolymer rubber composition (including the case of the “crosslinkable hydrogenated nitrile copolymer rubber composition”) is placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and 160 while applying pressure. It was press-molded at 20 ° C. for 20 minutes to obtain a sheet-like rubber crosslinked product. Using the obtained sheet-like rubber cross-linked product in accordance with JIS K6251, using a test piece punched out in dumbbell shape No. 3, the tensile strength, elongation and 100% tensile stress of the rubber cross-linked product are obtained. Also in accordance with JIS K6253. The hardness of the rubber cross-linked product was measured using a durometer hardness tester type A, respectively.

ガソリン透過係数
上記常態物性の評価に用いたシート状のゴム架橋物と同様のものを準備し、燃料油として「イソオクタンとトルエンとエタノールを重量比2:2:1で混合したもの」を使用して、アルミカップ法によりガソリン透過係数を測定した。具体的には、100ml容量のアルミニウム製のカップに、上記燃料油を50ml入れ、その上にシート状のゴム架橋物をのせ、これで蓋をして、締め具で、シート状のゴム架橋物によりアルミカップ内外を隔てる面積が25.50cmになるように調整し、該アルミカップを23℃の恒温槽内にて、放置し、24時間毎に重量測定することにより24時間毎の油の透過量を測定し、その最大量を透過量とするものである(単位:g・mm/m・day)。
なお、ガソリン透過係数は値が低い程、好ましい。
Gasoline permeability coefficient Prepare the same sheet-like rubber cross-linked product used for evaluation of the above-mentioned normal physical properties, and use "mixture of isooctane, toluene and ethanol in a weight ratio of 2: 2: 1" as fuel oil. The gasoline permeability coefficient was measured by the aluminum cup method. Specifically, 50 ml of the above fuel oil is put into a 100 ml capacity aluminum cup, and a sheet-like rubber cross-linked product is placed on the cup, which is then covered with a fastener and a sheet-like rubber cross-linked product. By adjusting the area separating the inside and outside of the aluminum cup to 25.50 cm 2 , leaving the aluminum cup in a constant temperature bath at 23 ° C., and measuring the weight every 24 hours, so that The amount of permeation is measured, and the maximum amount is taken as the amount of permeation (unit: g · mm / m 2 · day).
In addition, a gasoline permeability coefficient is so preferable that a value is low.

脆化温度
上記常態物性の評価に用いたシート状のゴム架橋物と同様のものを用い、JIS K6261に従い、脆化温度を測定した。
Brittle temperature The brittle temperature was measured in accordance with JIS K6261 using the same sheet-like rubber cross-linked product used for the evaluation of the normal state physical properties.

耐オゾン性試験
上記常態物性の評価に用いたシート状のゴム架橋物と同様のものを用い、JIS K6259に従い、温度40℃、オゾン濃度50pphm、30%伸長で、72時間の条件で耐オゾン性試験を行い、試験後の試料の表面状態を観察することにより耐オゾン性の評価を行った。評価は、下記の基準にて行なった。
○:クラックの発生が認められなかった。
×:クラックの発生が認められた。
Ozone resistance test Ozone resistance under conditions of 72 hours at a temperature of 40 ° C., an ozone concentration of 50 pphm, and a 30% elongation according to JIS K6259 using the same sheet-like rubber cross-linked product used for evaluation of the above-mentioned normal physical properties. A test was conducted, and the ozone resistance was evaluated by observing the surface state of the sample after the test. Evaluation was performed according to the following criteria.
○: No occurrence of cracks was observed.
X: Generation | occurrence | production of the crack was recognized.

製造例1(塩化ビニル樹脂のラテックスの製造)
耐圧反応容器に、水120部、ラウリル硫酸ナトリウム0.8部および過硫酸カリウム0.06部を仕込んで、減圧脱気を2回くり返した後、塩化ビニルを100部仕込み、攪拌しつつ加温して47℃にて乳化重合を行った。重合転化率が90%に達した後、室温に冷却して未反応単量体を除去した。得られた塩化ビニル樹脂ラテックスの固形分濃度は41重量%であった。塩化ビニル樹脂の平均粒径は0.3μmであり、JIS K6721による平均重合度は1,300、ガラス転移温度は80℃であった。
Production Example 1 (Production of vinyl chloride resin latex)
A pressure-resistant reaction vessel was charged with 120 parts of water, 0.8 part of sodium lauryl sulfate and 0.06 part of potassium persulfate, and after repeated vacuum degassing twice, 100 parts of vinyl chloride was added and heated while stirring. The emulsion polymerization was carried out at 47 ° C. After the polymerization conversion reached 90%, it was cooled to room temperature to remove unreacted monomers. The resulting vinyl chloride resin latex had a solid content concentration of 41% by weight. The average particle size of the vinyl chloride resin was 0.3 μm, the average degree of polymerization according to JIS K6721 was 1,300, and the glass transition temperature was 80 ° C.

製造例2(アクリル樹脂のラテックスの製造)
温度計、撹拌装置を備えた反応器に、イオン交換水150部、オクチル硫酸ナトリウム2部、過硫酸アンモニウム(重合開始剤)0.3部、メタクリル酸メチル80部、アクリロニトリル20部およびt−ドデシルメルカプタン(分子量調整剤)0.05部を入れ、攪拌しながら温度80℃にて乳化重合を開始し、5時間後に反応を停止してラテックスを得た。得られたアクリル樹脂ラテックスの固形分濃度は39重量%で重合転化率は98重量%であった。アクリル樹脂の平均粒径は0.2μmであり、数平均分子量は600,000、ガラス転移温度は103℃であった。
Production Example 2 (Production of latex of acrylic resin)
In a reactor equipped with a thermometer and a stirring device, 150 parts of ion exchange water, 2 parts of sodium octyl sulfate, 0.3 part of ammonium persulfate (polymerization initiator), 80 parts of methyl methacrylate, 20 parts of acrylonitrile and t-dodecyl mercaptan (Molecular weight adjusting agent) 0.05 part was added, emulsion polymerization was started at a temperature of 80 ° C. with stirring, and the reaction was stopped after 5 hours to obtain a latex. The obtained acrylic resin latex had a solid content of 39% by weight and a polymerization conversion rate of 98% by weight. The average particle diameter of the acrylic resin was 0.2 μm, the number average molecular weight was 600,000, and the glass transition temperature was 103 ° C.

実施例1
ニトリル共重合体ゴムのラテックスの製造
反応容器に、水240部、アクリロニトリル78部、スチレン10部、トリメチロールプロパントリメタクリレート0.4部およびドデシルベンゼンスルホン酸ナトリウム(乳化剤)2.5部を仕込み、温度を5℃に調整した。次いで、気相を減圧して十分に脱気してから、1,3−ブタジエン11.6部、重合開始剤であるp−メンタンハイドロパーオキサイド0.06部、エチレンジアミン四酢酸ナトリウム0.02部、硫酸第一鉄(7水塩)0.006部およびホルムアルデヒドスルホキシル酸ナトリウム0.06部、ならびに連鎖移動剤のt−ドデシルメルカプタン0.5部を添加して乳化重合の1段目の反応を開始した。反応開始後、仕込み単量体に対する重合転化率が28重量%、47重量%、60重量%に達した時点で、反応容器に1,3−ブタジエンをそれぞれ7部および7部、7部追加して2段目および3段目、4段目の重合反応を行った。仕込み全単量体に対する重合転化率が70重量%に達した時点でヒドロキシルアミン硫酸塩0.3部、および水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収してニトリル共重合体ゴム(A1)のラテックス(固形分濃度23重量%)を得た。
Example 1
Preparation of latex of nitrile copolymer rubber A reaction vessel was charged with 240 parts of water, 78 parts of acrylonitrile, 10 parts of styrene, 0.4 part of trimethylolpropane trimethacrylate and 2.5 parts of sodium dodecylbenzenesulfonate (emulsifier), The temperature was adjusted to 5 ° C. Next, after depressurizing and sufficiently degassing the gas phase, 11.6 parts of 1,3-butadiene, 0.06 parts of p-menthane hydroperoxide as a polymerization initiator, 0.02 parts of sodium ethylenediaminetetraacetate First reaction of emulsion polymerization by adding 0.006 part of ferrous sulfate (7 water salt) and 0.06 part of sodium formaldehyde sulfoxylate and 0.5 part of t-dodecyl mercaptan as a chain transfer agent Started. After the start of the reaction, when the polymerization conversion ratio with respect to the charged monomer reaches 28 wt%, 47 wt% and 60 wt%, 7 parts, 7 parts and 7 parts of 1,3-butadiene are added to the reaction vessel, respectively. The second, third, and fourth stage polymerization reactions were performed. When the polymerization conversion rate with respect to all charged monomers reached 70% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to terminate the polymerization reaction. After the reaction was stopped, the contents in the reaction vessel were heated to 70 ° C., and unreacted monomers were recovered by steam distillation under reduced pressure to obtain a latex of nitrile copolymer rubber (A1) (solid content concentration 23 wt% )

得られたニトリル共重合体ゴム(A1)を構成する各単量体単位の含有割合を、ブルカー・バイオスピン株式会社製NMR装置(ADVANCEIII400)を用いて測定したところ、アクリロニトリル単位50重量%、スチレン単位10重量%、1,3−ブタジエン単位40重量%であった。また、ニトリル共重合体ゴム(A1)のメチルエチルケトン(MEK)不溶解分は74重量%であった。   When the content ratio of each monomer unit constituting the obtained nitrile copolymer rubber (A1) was measured using an NMR apparatus (ADVANCE III400) manufactured by Bruker BioSpin Corporation, 50% by weight of acrylonitrile unit, styrene The unit was 10% by weight and the 1,3-butadiene unit was 40% by weight. The nitrile copolymer rubber (A1) had an insoluble content in methyl ethyl ketone (MEK) of 74% by weight.

ニトリル共重合体ゴムのラテックス組成物の調製
可塑剤(C)としてのアジピン酸ジ(ブトキシエトキシエチル)(製品名「アデカサイザーRS−107」、ADEKA社製、SP値9.2(cal/cm1/2)の50重量%水性エマルジョンを、乳化剤としてのオレイン酸カリウムを該可塑剤の2重量%使用し、強撹拌下で混合して調製した。そして、上記にて得られたニトリル共重合体ゴム(A1)のラテックスを容器内で撹拌しつつ、ニトリル共重合体ゴム(A1)100部に対して、可塑剤(C)としてのアジピン酸ジ(ブトキシエトキシエチル)を含有するエマルジョン70部(可塑剤量は35部)および製造例1で得られた塩化ビニル樹脂ラテックス(塩化ビニル樹脂は65部)を加えて混合・分散して、ニトリル共重合体ラテックス組成物を得た。そして、得られたニトリル共重合体ラテックス組成物を、そのラテックス組成物中のニトリル共重合体ゴム(A1)の量に対して4重量%となる量の塩化カルシウム(凝固剤)を含有する水溶液中に、撹拌下で注ぎ入れて凝固させ、ニトリル共重合体ゴム(A1)、熱可塑性樹脂(B)としての塩化ビニル樹脂、および可塑剤(C)の混合物からなるクラムを生成させた。
Preparation of latex composition of nitrile copolymer rubber Di (butoxyethoxyethyl) adipate as a plasticizer (C) (product name “ADEKA SIZER RS-107”, manufactured by ADEKA, SP value 9.2 (cal / cm 3 ) A 50% by weight aqueous emulsion of 1/2 ) was prepared by mixing 2% by weight of the plasticizer with potassium oleate as an emulsifier and mixing under strong stirring. Then, while stirring the latex of the nitrile copolymer rubber (A1) obtained above in a container, 100 parts of the nitrile copolymer rubber (A1) is mixed with adipic acid diacid as a plasticizer (C). 70 parts of an emulsion containing (butoxyethoxyethyl) (35 parts of plasticizer) and the vinyl chloride resin latex obtained in Production Example 1 (65 parts of vinyl chloride resin) are added and mixed and dispersed. A polymer latex composition was obtained. Then, the obtained nitrile copolymer latex composition is an aqueous solution containing calcium chloride (coagulant) in an amount of 4% by weight with respect to the amount of nitrile copolymer rubber (A1) in the latex composition. The mixture was poured and solidified under stirring to produce a crumb comprising a mixture of the nitrile copolymer rubber (A1), the vinyl chloride resin as the thermoplastic resin (B), and the plasticizer (C).

架橋性ニトリル共重合体ゴム組成物の調製
そして、得られたクラムを濾別、水洗した後、60℃で減圧乾燥し、次いで、バンバリーミキサーを用いて、上記乾燥クラムを温度が180℃になるまで混練した。そして、混練後にロールに移して冷却した後、再び、バンバリーミキサーを用いて、ニトリル共重合体ゴム(A1)100部に対して、MTカーボンブラック(「Thermax(R) medium thermal carbon black N990」、CANCARB社製)20部、架橋助剤としての亜鉛華5部およびステアリン酸1部を添加して50℃にて混合した。そして、この混合物をロールに移して架橋剤である325メッシュ硫黄0.6部およびテトラメチルチウラムジスルフィド(商品名「ノクセラーTT」、大内新興化学工業社製)2.5部、およびN−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーCZ」、大内新興化学工業社製、架橋促進剤)2.5部を添加して50℃で混練し、架橋性ニトリル共重合体ゴム組成物を調製した。
Preparation of a crosslinkable nitrile copolymer rubber composition, and the obtained crumb was filtered, washed with water, dried under reduced pressure at 60 ° C., and then the dried crumb was heated to 180 ° C. using a Banbury mixer. Until kneaded. And after kneading | mixing, after moving to a roll and cooling, again using a Banbury mixer, 100 parts of nitrile copolymer rubber (A1) is used for MT carbon black ("Thermax (R) medium thermal carbon black N990", 20 parts of CANCARB), 5 parts of zinc white as a crosslinking aid and 1 part of stearic acid were added and mixed at 50 ° C. Then, this mixture is transferred to a roll and 0.6 part of 325 mesh sulfur as a crosslinking agent and 2.5 parts of tetramethylthiuram disulfide (trade name “Noxeller TT”, manufactured by Ouchi Shinsei Chemical Co., Ltd.), and N-cyclohexyl. -2-Benzothiazolylsulfenamide (trade name “Noxeller CZ”, manufactured by Ouchi Shinsei Chemical Co., Ltd., crosslinking accelerator) 2.5 parts was added and kneaded at 50 ° C. to form a crosslinkable nitrile copolymer rubber. A composition was prepared.

得られた架橋性ニトリル共重合体ゴム組成物を架橋して得られたゴム架橋物について、常態物性(引張強さ、伸び、100%引張応力、硬さ)、ガソリン透過係数、脆化温度、および耐オゾン性の各評価を行った。結果を表1に示す。   About the rubber cross-linked product obtained by cross-linking the obtained cross-linkable nitrile copolymer rubber composition, normal properties (tensile strength, elongation, 100% tensile stress, hardness), gasoline permeability coefficient, embrittlement temperature, And each evaluation of ozone resistance was performed. The results are shown in Table 1.

実施例2
ニトリル共重合体ゴムを製造する際に、トリメチロールプロパントリメタクリレートの量を0.1部に変更した以外は、実施例1と同様にして、ニトリル共重合体ゴム(A2)のラテックス(固形分濃度23重量%)を得た。得られたニトリル共重合体ゴム(A2)を構成する各単量体単位の含有割合を、実施例1と同様にして測定したところ、アクリロニトリル単位50重量%、スチレン単位10重量%、1,3−ブタジエン単位40重量%であった。また、ニトリル共重合体ゴム(A2)のメチルエチルケトン(MEK)不溶解分は35重量%であった。
Example 2
A latex of nitrile copolymer rubber (A2) (solid content) was prepared in the same manner as in Example 1 except that the amount of trimethylolpropane trimethacrylate was changed to 0.1 part when producing the nitrile copolymer rubber. A concentration of 23% by weight) was obtained. When the content ratio of each monomer unit constituting the obtained nitrile copolymer rubber (A2) was measured in the same manner as in Example 1, 50% by weight of acrylonitrile unit, 10% by weight of styrene unit, 1, 3 -It was 40 weight% of butadiene units. Further, the insoluble content of methyl ethyl ketone (MEK) in the nitrile copolymer rubber (A2) was 35% by weight.

そして、ニトリル共重合体ゴム(A1)のラテックスの代わりに、得られたニトリル共重合体ゴム(A2)のラテックスを用いた以外は、実施例1と同様にして、架橋性ニトリル共重合体ゴム組成物を調製し、同様にして評価を行った。結果を表1に示す。   Then, a crosslinkable nitrile copolymer rubber was used in the same manner as in Example 1 except that the latex of the obtained nitrile copolymer rubber (A2) was used instead of the latex of the nitrile copolymer rubber (A1). Compositions were prepared and evaluated in the same manner. The results are shown in Table 1.

実施例3
ニトリル共重合体ゴムを製造する際に、乳化重合の1段目の反応の仕込み単量体を、アクリロニトリル75部、スチレン17部、トリメチロールプロパントリメタクリレート0.4部および1,3−ブタジエン7.6部にそれぞれ変更し、重合転化率が45重量%、60重量%に達した時点で、反応容器に1,3−ブタジエンをそれぞれ9部および9部追加して2段目および3段目の重合反応を行った以外は実施例1と同様にして、ニトリル共重合体ゴム(A3)のラテックス(固形分濃度23重量%)を得た。得られたニトリル共重合体ゴム(A3)を構成する各単量体単位の含有割合を、実施例1と同様にして測定したところ、アクリロニトリル単位50重量%、スチレン単位20重量%、1,3−ブタジエン単位30重量%であった。また、ニトリル共重合体ゴム(A3)のメチルエチルケトン(MEK)不溶解分は76重量%であった。
Example 3
In producing the nitrile copolymer rubber, the monomers charged for the first stage of the emulsion polymerization were 75 parts of acrylonitrile, 17 parts of styrene, 0.4 part of trimethylolpropane trimethacrylate and 1,3-butadiene 7 When the polymerization conversion reached 45 wt% and 60 wt%, respectively, 9 parts and 9 parts of 1,3-butadiene were added to the reaction vessel, respectively, and the second and third stages were changed. A latex of nitrile copolymer rubber (A3) (solid content concentration 23% by weight) was obtained in the same manner as in Example 1 except that the polymerization reaction was performed. When the content ratio of each monomer unit constituting the obtained nitrile copolymer rubber (A3) was measured in the same manner as in Example 1, 50% by weight of acrylonitrile unit, 20% by weight of styrene unit, 1, 3 -The butadiene unit was 30% by weight. The nitrile copolymer rubber (A3) had an insoluble content in methyl ethyl ketone (MEK) of 76% by weight.

そして、ニトリル共重合体ゴム(A1)のラテックスの代わりに、得られたニトリル共重合体ゴム(A3)のラテックスを用いた以外は、実施例1と同様にして、架橋性ニトリル共重合体ゴム組成物を調製し、同様にして評価を行った。結果を表1に示す。   Then, a crosslinkable nitrile copolymer rubber was used in the same manner as in Example 1 except that the latex of the obtained nitrile copolymer rubber (A3) was used instead of the latex of the nitrile copolymer rubber (A1). Compositions were prepared and evaluated in the same manner. The results are shown in Table 1.

実施例4
ニトリル共重合体ゴムを製造する際に、乳化重合の1段目の反応の仕込み単量体を、アクリロニトリル77.2部、スチレン9.8部、トリメチロールプロパントリメタクリレート0.4部、1,3−ブタジエン10.3部、および2−ビニルピリジン2.3部にそれぞれ変更した以外は実施例1と同様にして、ニトリル共重合体ゴム(A4)のラテックス(固形分濃度23重量%)を得た。得られたニトリル共重合体ゴム(A4)を構成する各単量体単位の含有割合を、実施例1と同様にして測定したところ、アクリロニトリル単位50重量%、スチレン単位10重量%、1,3−ブタジエン単位38重量%、2−ビニルピリジン単位2重量%であった。また、ニトリル共重合体ゴム(A4)のメチルエチルケトン(MEK)不溶解分は75重量%であった。
Example 4
In producing the nitrile copolymer rubber, the monomers charged in the first stage of the emulsion polymerization were 77.2 parts of acrylonitrile, 9.8 parts of styrene, 0.4 part of trimethylolpropane trimethacrylate, 1, A latex of nitrile copolymer rubber (A4) (solid content concentration 23% by weight) was obtained in the same manner as in Example 1 except for changing to 10.3 parts of 3-butadiene and 2.3 parts of 2-vinylpyridine. Obtained. When the content ratio of each monomer unit constituting the obtained nitrile copolymer rubber (A4) was measured in the same manner as in Example 1, 50% by weight of acrylonitrile unit, 10% by weight of styrene unit, 1, 3 -It was 38 weight% of butadiene units and 2 weight% of 2-vinylpyridine units. The nitrile copolymer rubber (A4) insoluble in methyl ethyl ketone (MEK) was 75% by weight.

そして、ニトリル共重合体ゴム(A1)のラテックスの代わりに、得られたニトリル共重合体ゴム(A4)のラテックスを用いた以外は、実施例1と同様にして、架橋性ニトリル共重合体ゴム組成物を調製し、同様にして評価を行った。結果を表1に示す。   Then, a crosslinkable nitrile copolymer rubber was used in the same manner as in Example 1 except that the latex of the obtained nitrile copolymer rubber (A4) was used instead of the latex of the nitrile copolymer rubber (A1). Compositions were prepared and evaluated in the same manner. The results are shown in Table 1.

実施例5
製造例1で得られた塩化ビニル樹脂ラテックスに代えて、製造例2で得られたアクリル樹脂ラテックス(アクリル樹脂は65部)を用いた以外は、実施例1と同様にして、架橋性ニトリル共重合体ゴム組成物を調製し、同様にして評価を行った。結果を表1に示す。
Example 5
A crosslinkable nitrile copolymer was prepared in the same manner as in Example 1, except that the acrylic resin latex obtained in Production Example 2 (65 parts of acrylic resin) was used instead of the vinyl chloride resin latex obtained in Production Example 1. A polymer rubber composition was prepared and evaluated in the same manner. The results are shown in Table 1.

実施例6
無機充填剤(D)としての精製ベントナイト(商品名「ベンゲル HV」、株式会社ホージュン製、アスペクト比:295)100部を、蒸留水1995部に、ポリアクリル酸ナトリウム5部の存在下に添加して強攪拌し、固形分濃度5%の無機充填剤(D)の水性分散液を得た。そして、ニトリル共重合体ラテックス組成物を調製する際に、得られた無機充填剤(D)の水性分散液を、ニトリル共重合体ゴム(A1)のラテックスの固形分(ニトリル共重合体ゴム量)100部に対して、無機充填剤(D)25部となるようにさらに添加した以外は実施例1と同様にして、ニトリル共重合体ゴム(A1)、熱可塑性樹脂(B)としての塩化ビニル樹脂、および可塑剤(C)、無機充填剤(D)の混合物からなるクラムを生成させた。
そして、得られたクラムを濾別、水洗した後、60℃で減圧乾燥し、次いで、バンバリーミキサーを用いて、上記乾燥クラムを温度が180℃になるまで混練した。次いで、混練後にロールに移して冷却した後、再び、バンバリーミキサーを用いて、ニトリル共重合体ゴム(A1)100部に対して、MTカーボンブラック(「Thermax(R) medium thermal carbon black N990」、CANCARB社製)20部、架橋助剤としての亜鉛華5部およびステアリン酸1部、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランを0.5部を添加しを添加して50℃にて混合した。そして、この混合物をロールに移して架橋剤である325メッシュ硫黄0.6部およびテトラメチルチウラムジスルフィド(商品名「ノクセラーTT」、大内新興化学工業社製)2.5部、およびN−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーCZ」、大内新興化学工業社製、架橋促進剤)2.5部を添加して50℃で混練し、架橋性ニトリル共重合体ゴム組成物を調製し、実施例1と同様にして評価を行った。結果を表1に示す。
Example 6
100 parts of purified bentonite (trade name “Bengel HV”, manufactured by Hojun Co., Ltd., aspect ratio: 295) as an inorganic filler (D) is added to 1995 parts of distilled water in the presence of 5 parts of sodium polyacrylate. To obtain an aqueous dispersion of an inorganic filler (D) having a solid content concentration of 5%. Then, when preparing the nitrile copolymer latex composition, the aqueous dispersion of the obtained inorganic filler (D) was added to the solid content of the nitrile copolymer rubber (A1) latex (the amount of nitrile copolymer rubber). ) Chloride as nitrile copolymer rubber (A1) and thermoplastic resin (B) in the same manner as in Example 1 except that 100 parts are added to 25 parts of inorganic filler (D). A crumb comprising a mixture of vinyl resin, plasticizer (C) and inorganic filler (D) was produced.
Then, the obtained crumb was separated by filtration, washed with water, dried under reduced pressure at 60 ° C., and then the dried crumb was kneaded using a Banbury mixer until the temperature reached 180 ° C. Next, after kneading and transferring to a roll and cooling, MT carbon black ("Thermax (R) medium thermal carbon black N990", 100 parts of nitrile copolymer rubber (A1) is again used with a Banbury mixer. CANCARB) 20 parts, 5 parts of zinc white as a crosslinking aid and 1 part of stearic acid, 0.5 part of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was added and 50 ° C. was added. And mixed. Then, this mixture is transferred to a roll and 0.6 part of 325 mesh sulfur as a crosslinking agent and 2.5 parts of tetramethylthiuram disulfide (trade name “Noxeller TT”, manufactured by Ouchi Shinsei Chemical Co., Ltd.), and N-cyclohexyl. -2-Benzothiazolylsulfenamide (trade name “Noxeller CZ”, manufactured by Ouchi Shinsei Chemical Co., Ltd., crosslinking accelerator) 2.5 parts was added and kneaded at 50 ° C. to form a crosslinkable nitrile copolymer rubber. A composition was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例7
実施例6において、ニトリル共重合体ラテックス組成物を調製する際に、無機充填剤(D)としての精製ベントナイトの添加量を20部から15部に変更した以外は、実施例6と同様にして架橋性ニトリル共重合体ゴム組成物を調製し、評価を行った。結果を表1に示す。
Example 7
In Example 6, when preparing the nitrile copolymer latex composition, the same procedure as in Example 6 was conducted, except that the addition amount of purified bentonite as the inorganic filler (D) was changed from 20 parts to 15 parts. A crosslinkable nitrile copolymer rubber composition was prepared and evaluated. The results are shown in Table 1.

比較例1
ニトリル共重合体ゴムを製造する際に、乳化重合の1段目の反応の仕込み単量体を、アクリロニトリル10部、スチレン45部、トリメチロールプロパントリメタクリレート0.2部および1,3−ブタジエン44.8部にそれぞれ変更し、重合転化率が28重量%、47重量%に達した時点で、反応容器にアクリロニトリルをそれぞれ10部および9部追加して2段目および3段目の重合反応を行った以外は実施例1と同様にして、ニトリル共重合体ゴム(A5)のラテックス(固形分濃度22重量%)を得た。得られたニトリル共重合体ゴム(A5)を構成する各単量体単位の含有割合を、実施例1と同様にして測定したところ、アクリロニトリル単位25重量%、スチレン単位30重量%、1,3−ブタジエン単位45重量%であった。また、ニトリル共重合体ゴム(A5)のメチルエチルケトン(MEK)不溶解分は60重量%であった。
Comparative Example 1
In producing the nitrile copolymer rubber, the monomers charged in the first stage of the emulsion polymerization were 10 parts of acrylonitrile, 45 parts of styrene, 0.2 part of trimethylolpropane trimethacrylate and 1,3-butadiene 44. When the polymerization conversion reached 28 wt% and 47 wt%, respectively, 10 parts and 9 parts of acrylonitrile were added to the reaction vessel, respectively, and the second and third stage polymerization reactions were carried out. A latex of nitrile copolymer rubber (A5) (solid content concentration: 22% by weight) was obtained in the same manner as in Example 1 except for the above. When the content ratio of each monomer unit constituting the obtained nitrile copolymer rubber (A5) was measured in the same manner as in Example 1, 25% by weight of acrylonitrile units, 30% by weight of styrene units, 1, 3 -It was 45 weight% of butadiene units. The nitrile copolymer rubber (A5) had an insoluble content in methyl ethyl ketone (MEK) of 60% by weight.

そして、ニトリル共重合体ゴム(A1)のラテックスの代わりに、得られたニトリル共重合体ゴム(A5)のラテックスを用いた以外は、実施例1と同様にして、架橋性ニトリル共重合体ゴム組成物を調製し、評価を行った。結果を表1に示す。   Then, a crosslinkable nitrile copolymer rubber was used in the same manner as in Example 1 except that the latex of the obtained nitrile copolymer rubber (A5) was used instead of the latex of the nitrile copolymer rubber (A1). Compositions were prepared and evaluated. The results are shown in Table 1.

比較例2
ニトリル共重合体ゴムを製造する際に、乳化重合の1段目の反応の仕込み単量体を、アクリロニトリル78部、トリメチロールプロパントリメタクリレート0.4部および1,3−ブタジエン21.6部にそれぞれ変更し、重合転化率が36重量%、53重量%に達した時点で、反応容器に1,3−ブタジエンをそれぞれ13.5部および13部追加して2段目および3段目の重合反応を行った以外は実施例1と同様にして、ニトリル共重合体ゴム(A6)のラテックス(固形分濃度22重量%)を得た。得られたニトリル共重合体ゴム(A6)を構成する各単量体単位の含有割合を、実施例1と同様にして測定したところ、アクリロニトリル単位50重量%、1,3−ブタジエン単位50重量%であった。また、ニトリル共重合体ゴム(A6)のメチルエチルケトン(MEK)不溶解分は73重量%であった。
Comparative Example 2
In producing the nitrile copolymer rubber, the first stage reaction monomer for emulsion polymerization was added to 78 parts of acrylonitrile, 0.4 parts of trimethylolpropane trimethacrylate and 21.6 parts of 1,3-butadiene. When the polymerization conversions reached 36 wt% and 53 wt%, respectively, 13.5 parts and 13 parts of 1,3-butadiene were added to the reaction vessel, respectively, and the second and third stage polymerizations were performed. A latex of nitrile copolymer rubber (A6) (solid content concentration 22% by weight) was obtained in the same manner as in Example 1 except that the reaction was performed. When the content ratio of each monomer unit constituting the obtained nitrile copolymer rubber (A6) was measured in the same manner as in Example 1, 50% by weight of acrylonitrile units and 50% by weight of 1,3-butadiene units were measured. Met. Further, the insoluble matter in methyl ethyl ketone (MEK) of the nitrile copolymer rubber (A6) was 73% by weight.

そして、ニトリル共重合体ゴム(A1)のラテックスの代わりに、得られたニトリル共重合体ゴム(A6)のラテックスを用いた以外は、実施例1と同様にして、架橋性ニトリル共重合体ゴム組成物を調製し、同様にして評価を行った。結果を表1に示す。   Then, a crosslinkable nitrile copolymer rubber was used in the same manner as in Example 1 except that the latex of the obtained nitrile copolymer rubber (A6) was used instead of the latex of the nitrile copolymer rubber (A1). Compositions were prepared and evaluated in the same manner. The results are shown in Table 1.

比較例3
ニトリル共重合体ゴムを製造する際に、乳化重合の1段目の反応の仕込み単量体を、アクリロニトリル26部、スチレン9部、トリメチロールプロパントリメタクリレート0.5部および1,3−ブタジエン64.5部にそれぞれ変更した以外は実施例1と同様にして、ニトリル共重合体ゴム(A7)のラテックス(固形分濃度22重量%)を得た。得られたニトリル共重合体ゴム(A7)を構成する各単量体単位の含有割合を、実施例1と同様にして測定したところ、アクリロニトリル単位30重量%、スチレン単位5重量%、1,3−ブタジエン単位65重量%であった。また、ニトリル共重合体ゴム(A7)のメチルエチルケトン(MEK)不溶解分は80重量%であった。
Comparative Example 3
When the nitrile copolymer rubber was produced, the first stage reaction monomer for emulsion polymerization was 26 parts acrylonitrile, 9 parts styrene, 0.5 part trimethylolpropane trimethacrylate and 1,3-butadiene 64. A latex of nitrile copolymer rubber (A7) (solid content concentration 22% by weight) was obtained in the same manner as in Example 1 except that the content was changed to 5 parts. When the content ratio of each monomer unit constituting the obtained nitrile copolymer rubber (A7) was measured in the same manner as in Example 1, 30% by weight of acrylonitrile unit, 5% by weight of styrene unit, 1, 3 -It was 65 weight% of butadiene units. Further, the insoluble matter in methyl ethyl ketone (MEK) of the nitrile copolymer rubber (A7) was 80% by weight.

そして、ニトリル共重合体ゴム(A1)のラテックスの代わりに、得られたニトリル共重合体ゴム(A7)のラテックスを用いた以外は、実施例1と同様にして、架橋性ニトリル共重合体ゴム組成物を調製し、同様にして評価を行った。結果を表1に示す。   Then, a crosslinkable nitrile copolymer rubber was used in the same manner as in Example 1 except that the latex of the obtained nitrile copolymer rubber (A7) was used instead of the latex of the nitrile copolymer rubber (A1). Compositions were prepared and evaluated in the same manner. The results are shown in Table 1.

比較例4
ニトリル共重合体ゴムを製造する際に、トリメチロールプロパントリメタクリレートを使用せずに重合反応を行った以外は、実施例1と同様にして、ニトリル共重合体ゴム(A8)のラテックス(固形分濃度23重量%)を得た。得られたニトリル共重合体ゴム(A8)を構成する各単量体単位の含有割合を、実施例1と同様にして測定したところ、アクリロニトリル単位50重量%、スチレン単位10重量%、1,3−ブタジエン単位40重量%であった。また、ニトリル共重合体ゴム(A8)のメチルエチルケトン(MEK)不溶解分は2重量%であった。
Comparative Example 4
A latex of nitrile copolymer rubber (A8) (solid content) was prepared in the same manner as in Example 1 except that the polymerization reaction was performed without using trimethylolpropane trimethacrylate when producing the nitrile copolymer rubber. A concentration of 23% by weight) was obtained. When the content ratio of each monomer unit constituting the obtained nitrile copolymer rubber (A8) was measured in the same manner as in Example 1, 50% by weight of acrylonitrile unit, 10% by weight of styrene unit, 1, 3 -It was 40 weight% of butadiene units. The nitrile copolymer rubber (A8) had an insoluble content in methyl ethyl ketone (MEK) of 2% by weight.

そして、ニトリル共重合体ゴム(A1)のラテックスの代わりに、得られたニトリル共重合体ゴム(A8)のラテックスを用いた以外は、実施例1と同様にして、架橋性ニトリル共重合体ゴム組成物を作製し、同様にして評価を行った。結果を表1に示す。   Then, a crosslinkable nitrile copolymer rubber was used in the same manner as in Example 1 except that the latex of the obtained nitrile copolymer rubber (A8) was used instead of the latex of the nitrile copolymer rubber (A1). A composition was prepared and evaluated in the same manner. The results are shown in Table 1.

比較例5
塩化ビニル樹脂ラテックスを使用せず、かつ、可塑剤(C)としてのアジピン酸ジ(ブトキシエチル)の配合量を35部から15部に変更した以外は、実施例1と同様にして、架橋性ニトリル共重合体ゴム組成物を調製し、同様にして評価を行った。結果を表1に示す。
Comparative Example 5
Crosslinkability in the same manner as in Example 1 except that no vinyl chloride resin latex was used and the blending amount of di (butoxyethyl) adipate as the plasticizer (C) was changed from 35 parts to 15 parts. A nitrile copolymer rubber composition was prepared and evaluated in the same manner. The results are shown in Table 1.

比較例6
可塑剤(C)としてのアジピン酸ジ(ブトキシエトキシエチル)の代わりに、アルキルナフテン(C10−C2n+1(n=16〜18)、製品名:バーレルプロセス油B−28AN、松村石油社製、SP値7.8(cal/cm1/2)を使用した以外は、実施例1と同様にして、架橋性ニトリル共重合体ゴム組成物を作製し、同様にして評価を行った。結果を表1に示す。
Comparative Example 6
Instead of adipate as a plasticizer (C) (butoxyethoxyethyl) alkyl naphthene (C 10 H 7 -C n H 2n + 1 (n = 16~18), Product Name: barrel Process Oil B-28AN A crosslinkable nitrile copolymer rubber composition was prepared in the same manner as in Example 1 except that Matsumura Oil Co., Ltd., SP value 7.8 (cal / cm 3 ) 1/2 ) was used. And evaluated. The results are shown in Table 1.

比較例7
可塑剤(C)としてのアジピン酸ジ(ブトキシエトキシエチル)の代わりに、フタル酸ジメチル(製品名:DMP、大八化学工業社社製、SP値10.5(cal/cm1/2)を使用した以外は、実施例1と同様にして、架橋性ニトリル共重合体ゴム組成物を調製し、同様にして評価を行った。結果を表1に示す。
Comparative Example 7
Instead of di (butoxyethoxyethyl) adipate as the plasticizer (C), dimethyl phthalate (product name: DMP, manufactured by Daihachi Chemical Industry Co., Ltd., SP value 10.5 (cal / cm 3 ) 1/2 ) Was used in the same manner as in Example 1 except that a crosslinkable nitrile copolymer rubber composition was prepared and evaluated in the same manner. The results are shown in Table 1.

実施例8
実施例1において得られたニトリル共重合体ゴム(A1)のラテックスについて、該ラテックスに含有される乾燥ゴム重量に対してパラジウム含有量が1000ppmになるように反応器にパラジウム触媒(1重量%酢酸パラジウムアセトン溶液と等重量のイオン交換水を混合した溶液)を添加して、水素圧3MPa、温度50℃で6時間水素添加反応を行い、水素化ニトリル共重合体ゴム(A9)のラテックスを得た。得られた水素化ニトリル共重合体ゴム(A9)を構成する各単量体単位の含有割合を、実施例1と同様にして測定したところ、アクリロニトリル単量体単位50重量%、スチレン単位10重量%、1,3−ブタジエン単位と飽和化ブタジエン単位との合計40重量%であった。また、水素化ニトリル共重合体ゴム(A9)のヨウ素価は38であり、メチルエチルケトン(MEK)不溶解分は79重量%であった。
Example 8
About the latex of the nitrile copolymer rubber (A1) obtained in Example 1, a palladium catalyst (1 wt% acetic acid was added to the reactor so that the palladium content was 1000 ppm with respect to the dry rubber weight contained in the latex. A solution obtained by mixing a palladium acetone solution and an equal weight of ion exchange water) is added, and hydrogenation reaction is performed at a hydrogen pressure of 3 MPa and a temperature of 50 ° C. for 6 hours to obtain a latex of hydrogenated nitrile copolymer rubber (A9). It was. When the content ratio of each monomer unit constituting the obtained hydrogenated nitrile copolymer rubber (A9) was measured in the same manner as in Example 1, 50% by weight of acrylonitrile monomer unit, 10% by weight of styrene unit. %, A total of 40% by weight of 1,3-butadiene units and saturated butadiene units. The iodine value of the hydrogenated nitrile copolymer rubber (A9) was 38, and the insoluble content of methyl ethyl ketone (MEK) was 79% by weight.

そして、ニトリル共重合体ゴム(A1)のラテックスの代わりに、得られた水素化ニトリル共重合体ゴム(A9)のラテックスを用いた以外は、実施例1と同様にして、架橋性水素化ニトリル共重合体ゴム組成物を調製し、同様にして評価を行った。結果を表2に示す。   Then, a crosslinkable hydrogenated nitrile was obtained in the same manner as in Example 1 except that the latex of the obtained hydrogenated nitrile copolymer rubber (A9) was used instead of the latex of the nitrile copolymer rubber (A1). A copolymer rubber composition was prepared and evaluated in the same manner. The results are shown in Table 2.

比較例8
ニトリル共重合体ゴム(A1)のラテックスの代わりに、比較例4において得られたニトリル共重合体ゴム(A8)のラテックスを用いた以外は、実施例7と同様にして、水素添加反応を行い、水素化ニトリル共重合体ゴム(A10)のラテックスを得た。得られた水素化ニトリル共重合体ゴム(A10)を構成する各単量体単位の含有割合を、実施例1と同様にして測定したところ、アクリロニトリル単量体単位50重量%、スチレン単位10重量%、1,3−ブタジエン単位と飽和化ブタジエン単位との合計40重量%であった。また、水素化ニトリル共重合体ゴム(A10)のヨウ素価は21であり、メチルエチルケトン(MEK)不溶解分は3重量%であった。
Comparative Example 8
A hydrogenation reaction was performed in the same manner as in Example 7 except that the latex of the nitrile copolymer rubber (A8) obtained in Comparative Example 4 was used instead of the latex of the nitrile copolymer rubber (A1). A latex of hydrogenated nitrile copolymer rubber (A10) was obtained. The content ratio of each monomer unit constituting the obtained hydrogenated nitrile copolymer rubber (A10) was measured in the same manner as in Example 1. As a result, 50% by weight of acrylonitrile monomer unit and 10% by weight of styrene unit were measured. %, A total of 40% by weight of 1,3-butadiene units and saturated butadiene units. The iodine value of the hydrogenated nitrile copolymer rubber (A10) was 21, and the methyl ethyl ketone (MEK) insoluble content was 3% by weight.

そして、ニトリル共重合体ゴム(A1)のラテックスの代わりに、得られた水素化ニトリル共重合体ゴム(A10)のラテックスを用いた以外は、実施例1と同様にして、架橋性水素化ニトリル共重合体ゴム組成物を調製し、同様にして評価を行った。結果を表2に示す。   Then, a crosslinkable hydrogenated nitrile was obtained in the same manner as in Example 1 except that the latex of the obtained hydrogenated nitrile copolymer rubber (A10) was used instead of the latex of the nitrile copolymer rubber (A1). A copolymer rubber composition was prepared and evaluated in the same manner. The results are shown in Table 2.

Figure 0005482385
Figure 0005482385

Figure 0005482385
Figure 0005482385

表1,2より、所定組成を有するニトリル共重合体ゴム(A)に、塩化ビニル樹脂およびアクリル樹脂からなる群より選択される少なくとも一種の熱可塑性樹脂(B)、およびSP値が8.0〜10.2(cal/cm1/2である可塑剤(C)を所定の割合で含有させたニトリル共重合体ゴム組成物(「水素化ニトリル共重合体ゴム組成物」を含む)を架橋することにより得られるゴム架橋物は、常態物性が良好で、耐ガソリン透過性、耐寒性、および耐オゾン性に優れる結果となった(実施例1〜8)。 From Tables 1 and 2, to the nitrile copolymer rubber (A) having a predetermined composition, at least one thermoplastic resin (B) selected from the group consisting of vinyl chloride resin and acrylic resin, and SP value is 8.0. Nitrile copolymer rubber composition containing a plasticizer (C) that is ˜10.2 (cal / cm 3 ) 1/2 in a predetermined ratio (including “hydrogenated nitrile copolymer rubber composition”) The rubber cross-linked product obtained by cross-linking was excellent in normal properties and excellent in gasoline permeation resistance, cold resistance and ozone resistance (Examples 1 to 8).

これに対して、α,β−エチレン性不飽和ニトリル単量体単位(a1)としてのアクリロニトリル単位の含有割合が低すぎるニトリル共重合体ゴムを用いた場合、および、芳香族ビニル単量体単位(a2)としてのスチレン単位を含有しないニトリル共重合体ゴムを用いた場合には、耐ガソリン透過性に劣る結果となった(比較例1,2)。
α,β−エチレン性不飽和ニトリル単量体単位(a1)としてのアクリロニトリル単位と芳香族ビニル単量体単位(a2)としてのスチレン単位との合計の含有割合が少なすぎるニトリル共重合体ゴムを用いた場合、および、メチルエチルケトン(MEK)不溶解分が少なすぎるニトリル共重合体ゴムを用いた場合にも、耐ガソリン透過性に劣る結果となった(比較例3,4,8)。
また、熱可塑性樹脂(B)を配合しない場合には、耐ガソリン透過性および耐オゾン性に劣る結果となった(比較例5)。
さらに、可塑剤として、SP値が低すぎるものを用いた場合には、耐ガソリン透過性に劣る結果となり、SP値が高すぎるものを用いた場合には、耐寒性に劣る結果となった(比較例6,7)。
On the other hand, when the nitrile copolymer rubber in which the content of the acrylonitrile unit is too low as the α, β-ethylenically unsaturated nitrile monomer unit (a1) is used, and the aromatic vinyl monomer unit When the nitrile copolymer rubber not containing a styrene unit as (a2) was used, the result was inferior in gasoline permeation resistance (Comparative Examples 1 and 2).
A nitrile copolymer rubber in which the total content of the acrylonitrile unit as the α, β-ethylenically unsaturated nitrile monomer unit (a1) and the styrene unit as the aromatic vinyl monomer unit (a2) is too small. When used, and when a nitrile copolymer rubber having too little insoluble matter in methyl ethyl ketone (MEK) was used, the results were inferior in gasoline permeation resistance (Comparative Examples 3, 4, and 8).
Further, when the thermoplastic resin (B) was not blended, the results were inferior in gasoline permeability resistance and ozone resistance (Comparative Example 5).
Furthermore, when a plasticizer having an SP value that is too low is used, the result is inferior in gasoline permeation resistance, and when a plasticizer having an SP value that is too high, the result is inferior in cold resistance ( Comparative Examples 6 and 7).

Claims (9)

α,β−エチレン性不飽和ニトリル単量体単位(a1)30〜65重量%、芳香族ビニル単量体単位(a2)5〜40重量%、および共役ジエン単量体単位(a3)2560重量%を有し、前記α,β−エチレン性不飽和ニトリル単量体単位(a1)と前記芳香族ビニル単量体単位(a2)との合計が40〜75重量%であり、メチルエチルケトン不溶解分が20〜90重量%であるニトリル共重合体ゴム(A)と、
塩化ビニル樹脂およびアクリル樹脂からなる群より選択される少なくとも一種の熱可塑性樹脂(B)と、
HOY法によるSP値が8.0〜10.2(cal/cm1/2である可塑剤(C)と、を含有し、
前記ニトリル共重合体ゴム(A)100重量部に対する、前記熱可塑性樹脂(B)の比率が10〜150重量部、前記可塑剤(C)の比率が0.1〜200重量部であるニトリル共重合体ゴム組成物。
α, β-ethylenically unsaturated nitrile monomer unit (a1) 30 to 65 % by weight, aromatic vinyl monomer unit (a2) 5 to 40 % by weight, and conjugated diene monomer unit (a3) 25 The total of the α, β-ethylenically unsaturated nitrile monomer unit (a1) and the aromatic vinyl monomer unit (a2) is 40 to 75% by weight, A nitrile copolymer rubber (A) having a dissolved content of 20 to 90% by weight;
At least one thermoplastic resin (B) selected from the group consisting of vinyl chloride resin and acrylic resin;
A plasticizer (C) having an SP value of 8.0 to 10.2 (cal / cm 3 ) 1/2 by the HOY method,
The nitrile copolymer in which the ratio of the thermoplastic resin (B) is 10 to 150 parts by weight and the ratio of the plasticizer (C) is 0.1 to 200 parts by weight with respect to 100 parts by weight of the nitrile copolymer rubber (A). Polymer rubber composition.
前記ニトリル共重合体ゴム(A)が、カチオン性単量体単位および/またはカチオンを形成可能な単量体単位(a4)をさらに有し、前記ニトリル共重合体ゴム(A)中における、前記カチオン性単量体単位および/またはカチオンを形成可能な単量体単位(a4)の含有割合が、0.1〜30重量%である請求項1に記載のニトリル共重合体ゴム組成物。   The nitrile copolymer rubber (A) further has a cationic monomer unit and / or a monomer unit (a4) capable of forming a cation, and in the nitrile copolymer rubber (A), The nitrile copolymer rubber composition according to claim 1, wherein the content of the cationic monomer unit and / or the monomer unit (a4) capable of forming a cation is 0.1 to 30% by weight. 前記ニトリル共重合体ゴム(A)が、炭素−炭素不飽和結合部分のうち少なくとも一部が水素化された水素化ニトリル共重合体ゴムである請求項1または2に記載のニトリル共重合体ゴム組成物。   The nitrile copolymer rubber according to claim 1 or 2, wherein the nitrile copolymer rubber (A) is a hydrogenated nitrile copolymer rubber in which at least a part of a carbon-carbon unsaturated bond portion is hydrogenated. Composition. アスペクト比が30〜2,000である無機充填剤(D)をさらに含有し、前記ニトリル共重合体ゴム(A)100重量部に対する、前記無機充填剤(D)の比率が、1〜200重量部である請求項1〜3のいずれか1項に記載のニトリル共重合体ゴム組成物。   It further contains an inorganic filler (D) having an aspect ratio of 30 to 2,000, and the ratio of the inorganic filler (D) to 100 parts by weight of the nitrile copolymer rubber (A) is 1 to 200 weights. The nitrile copolymer rubber composition according to any one of claims 1 to 3, which is a part. 請求項1〜4のいずれか1項に記載のニトリル共重合体ゴム組成物に架橋剤を加えてなる架橋性ニトリル共重合体ゴム組成物。   A crosslinkable nitrile copolymer rubber composition obtained by adding a crosslinking agent to the nitrile copolymer rubber composition according to any one of claims 1 to 4. 請求項5に記載の架橋性ニトリル共重合体ゴム組成物を架橋してなるゴム架橋物。   A rubber cross-linked product obtained by cross-linking the cross-linkable nitrile copolymer rubber composition according to claim 5. 2以上の層からなり、少なくとも1層が請求項6に記載のゴム架橋物から構成される積層体。   A laminate comprising two or more layers, wherein at least one layer comprises the rubber cross-linked product according to claim 6. 請求項5に記載の架橋性ニトリル共重合体ゴム組成物を筒状に成形し、マンドレルを挿入して得られる成形体を、架橋して得られるホース。   A hose obtained by crosslinking a molded product obtained by molding the crosslinkable nitrile copolymer rubber composition according to claim 5 into a cylindrical shape and inserting a mandrel. 請求項5に記載の架橋性ニトリル共重合体ゴム組成物からなる層を含む2層以上の積層体を筒状に成形し、マンドレルを挿入して得られる成形体を、架橋して得られるホース。   A hose obtained by crosslinking a molded body obtained by molding a laminate of two or more layers including a layer made of the crosslinkable nitrile copolymer rubber composition according to claim 5 into a cylindrical shape and inserting a mandrel. .
JP2010082781A 2010-03-31 2010-03-31 Nitrile copolymer rubber composition Active JP5482385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082781A JP5482385B2 (en) 2010-03-31 2010-03-31 Nitrile copolymer rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082781A JP5482385B2 (en) 2010-03-31 2010-03-31 Nitrile copolymer rubber composition

Publications (2)

Publication Number Publication Date
JP2011213844A JP2011213844A (en) 2011-10-27
JP5482385B2 true JP5482385B2 (en) 2014-05-07

Family

ID=44943925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082781A Active JP5482385B2 (en) 2010-03-31 2010-03-31 Nitrile copolymer rubber composition

Country Status (1)

Country Link
JP (1) JP5482385B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746330B1 (en) * 2011-09-21 2017-07-19 Zeon Corporation Nitrile copolymer rubber composition and rubber crosslink
US20150099841A1 (en) * 2012-03-08 2015-04-09 Zeon Corporation Method of production of nitrile copolymer rubber composition
BR112015024101B1 (en) * 2013-03-22 2021-02-23 Zeon Corporation method for producing a copolymer rubber containing nitrile group, method for producing a crosslinkable rubber composition, and method for producing a crosslinked rubber
JP6787319B2 (en) * 2015-08-05 2020-11-18 日本ゼオン株式会社 Nitrile group-containing highly saturated copolymer rubber, crosslinkable rubber composition, and rubber crosslinked product
RU2677211C1 (en) * 2018-05-04 2019-01-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Elastomer composition based on butadiene-nitrile rubber
JP7200569B2 (en) * 2018-09-26 2023-01-10 日本ゼオン株式会社 Rubber mixture, nitrile group-containing copolymer rubber composition, crosslinkable rubber composition and crosslinked rubber
CN116023724A (en) * 2021-10-27 2023-04-28 中国石油化工股份有限公司 Hydrogenated nitrile rubber composition and application thereof, vulcanized rubber and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932649B (en) * 2008-01-30 2013-04-24 日本瑞翁株式会社 Nitrile copolymer latex composition and nitrile copolymer rubber composition
JP5347770B2 (en) * 2009-06-30 2013-11-20 日本ゼオン株式会社 Nitrile rubber composition, crosslinkable rubber composition, and rubber cross-linked product

Also Published As

Publication number Publication date
JP2011213844A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5338658B2 (en) Nitrile copolymer rubber composition
JP5617638B2 (en) Method for producing crosslinkable nitrile copolymer rubber composition for fuel hose and rubber cross-linked product for fuel hose
JP5655784B2 (en) Nitrile rubber composition, crosslinkable nitrile rubber composition, rubber cross-linked product, and method for producing nitrile rubber composition
JP5347770B2 (en) Nitrile rubber composition, crosslinkable rubber composition, and rubber cross-linked product
JP5742836B2 (en) Nitrile copolymer rubber composition for hose and cross-linked product
JP5803943B2 (en) Nitrile rubber composition, crosslinkable nitrile rubber composition, and rubber cross-linked product
JP5417730B2 (en) Nitrile copolymer latex composition and nitrile copolymer rubber composition
JP6225919B2 (en) Nitrile copolymer rubber composition
JP5892171B2 (en) Nitrile copolymer rubber composition and rubber cross-linked product
JP5482385B2 (en) Nitrile copolymer rubber composition
JP6465104B2 (en) Nitrile copolymer rubber composition
WO2009096456A1 (en) Nitrile copolymer latex composition and nitrile copolymer rubber composition
JP5381088B2 (en) Nitrile copolymer rubber composition
JP5391553B2 (en) Nitrile copolymer latex composition and nitrile copolymer rubber composition
JPWO2013133358A1 (en) Method for producing nitrile copolymer rubber composition
JP2010155883A (en) Nitrile copolymer rubber composition
JP2007224161A (en) Vulcanizable nitrile copolymer rubber composition and its vulcanizate
JP6750606B2 (en) Method for producing rubber cross-linked product
JP2009221371A (en) Method for producing nitrile copolymer rubber composition
JP5803914B2 (en) Nitrile copolymer rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5482385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250