JP2011012132A - Nitrile rubber composition, crosslinkable rubber composition, and rubber crosslinked material - Google Patents

Nitrile rubber composition, crosslinkable rubber composition, and rubber crosslinked material Download PDF

Info

Publication number
JP2011012132A
JP2011012132A JP2009156065A JP2009156065A JP2011012132A JP 2011012132 A JP2011012132 A JP 2011012132A JP 2009156065 A JP2009156065 A JP 2009156065A JP 2009156065 A JP2009156065 A JP 2009156065A JP 2011012132 A JP2011012132 A JP 2011012132A
Authority
JP
Japan
Prior art keywords
weight
nitrile rubber
polymer
rubber composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009156065A
Other languages
Japanese (ja)
Other versions
JP5347770B2 (en
Inventor
Akira Tsukada
亮 塚田
Kazuhiro Ejiri
和弘 江尻
Chikara Katano
主税 片野
Hideyori Ueda
英順 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2009156065A priority Critical patent/JP5347770B2/en
Publication of JP2011012132A publication Critical patent/JP2011012132A/en
Application granted granted Critical
Publication of JP5347770B2 publication Critical patent/JP5347770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nitrile rubber composition giving a nitrile rubber crosslinked material having good oil resistance and excellent gasoline permeation resistance and cold resistance, and to provide a crosslinked material.SOLUTION: The nitrile rubber composition comprises 100 pts.wt of a polymer component (A) having the following component and 0.1 to 200 pts.wt of a plasticizer (B) having an SP value ranging from 8.0 to 10.2 (cal/cm)by Hoy method. A crosslinkable rubber composition and a crosslinked material are also provided. The polymer component (A) comprises: 40 to 95 wt.% of a nitrile rubber (a) containing 36 to 54 wt.% of α,β-ethylenically unsaturated nitrile monomer units and conjugated diene monomer units which may be at least partially hydrogenated, and having less than 20 wt.% of a methylethylketone-insoluble content; and 60 to 5 wt.% of a polymer (b) containing 50 to 100 wt.% of vinyl monomer units comprising aromatic vinyl monomer units or α,β-ethylenically unsaturated nitrile monomer units and 50 to 0 wt.% of conjugated diene monomer units which may be at least partially hydrogenated, and having 20 wt.% or more of a methylethylketone-insoluble content.

Description

本発明は、耐ガソリン透過性および耐寒性に優れたニトリルゴム架橋物を与えるニトリルゴム組成物および架橋性ゴム組成物、並びにその架橋物に関する。   The present invention relates to a nitrile rubber composition and a crosslinkable rubber composition that give a crosslinked nitrile rubber excellent in gasoline permeation resistance and cold resistance, and the crosslinked product.

従来から、α,β−エチレン性不飽和ニトリル単量体単位、および、共役ジエン単量体単位を含有するゴム(ニトリルゴム)は、耐油性に優れるゴムとして知られており、主に燃料ホース、燃料ガスケット、燃料パッキン、オイルシール、インレットホースなど、工業用部品や自動車等の各種油類まわりのゴム製品の材料として用いられている。   Conventionally, a rubber (nitrile rubber) containing an α, β-ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit has been known as a rubber excellent in oil resistance, and is mainly a fuel hose. It is used as a material for rubber products around various oils, such as industrial parts and automobiles, such as fuel gaskets, fuel packings, oil seals and inlet hoses.

この用途には、耐油性および耐寒性に優れることも重要な要請事項であるが、最近、世界的な環境保護活動の高まりにより、ガソリンなどの燃料の大気中への蒸散量を削減する取り組みが進んでいる。例えば、日本や欧州では、NO排出が規制され、これに伴って燃料蒸散量の低減が求められており、そのため、燃料ホース、シール、パッキンなどの用途においてガソリン透過性が一層低いことが求められている。 An excellent requirement for oil resistance and cold resistance is an important requirement for this application, but recently, efforts to reduce the transpiration of fuels such as gasoline into the atmosphere due to increasing global environmental protection activities. Progressing. For example, in Japan and Europe, NO X emissions is restricted, has been required to reduce the fuel transpiration Along with this, therefore, fuel hoses, seals, it is required even lower gasoline permeability in applications such as packing It has been.

このような状況において、特許文献1は、ベントナイト等の水性媒体で膨潤する層状ケイ酸塩をゴムラテックスに分散させることを提案し、特許文献2は、ゴムラテックスに、層状粘土鉱物であるモンモリロナイト水性懸濁液と、ピロリン酸化合物等の界面活性剤とを高速で撹拌して混合することを提案し、気体遮断性を向上させているが、これらの方法では、耐ガソリン透過性は不十分であった。   Under such circumstances, Patent Document 1 proposes to disperse a layered silicate that swells in an aqueous medium such as bentonite in rubber latex, and Patent Document 2 discloses an aqueous montmorillonite that is a layered clay mineral in rubber latex. It has been proposed to stir and mix the suspension and a surfactant such as pyrophosphate compound at high speed to improve gas barrier properties. However, these methods have insufficient gasoline permeation resistance. there were.

また、特許文献3は、ニトリル含量55〜80重量%の超極高ニトリルのニトリルゴムであって、ガラス転移温度−15〜30℃、ガラス転移の外挿終了温度が70℃以下であるニトリルゴムを提案している。このゴムは、機械的強度、耐油性および耐候性に優れ、特に高い耐ガス透過性を有するもので、耐ガス透過性として、「Fuel C(容積比で等量のイソオクタンとトルエンとを含む。)」の透過性が小さいことから、ガソリン透過性の低減が期待されるものであったが、耐寒性は十分とはいえなかった。   Patent Document 3 is a nitrile rubber of ultra-high nitrile having a nitrile content of 55 to 80% by weight, having a glass transition temperature of 15 to 30 ° C. and an extrapolation end temperature of the glass transition of 70 ° C. or less. Has proposed. This rubber is excellent in mechanical strength, oil resistance and weather resistance, and has particularly high gas permeation resistance. As the gas permeation resistance, “Fuel C (equal volume ratio of isooctane and toluene is included. ) "Was small, it was expected to reduce gasoline permeability, but cold resistance was not sufficient.

そこで、特許文献4では、ニトリル含量55〜80重量%の超極高ニトリルのニトリルゴムに、可塑剤と、アスペクト比が2〜100のケイ酸マグネシウムとを含有することにより、更にガソリン透過性が小さいニトリルゴム組成物が提案された。しかし、この特許文献4でも、使用上満足できる耐寒性を実現することはできなかった。   Therefore, in Patent Document 4, by adding a plasticizer and magnesium silicate having an aspect ratio of 2 to 100 to a nitrile rubber of ultra high nitrile having a nitrile content of 55 to 80% by weight, gasoline permeability is further improved. Small nitrile rubber compositions have been proposed. However, even in this Patent Document 4, it has not been possible to realize cold resistance that is satisfactory in use.

特開2004−51748号公報JP 2004-51748 A 特開2006−70137号公報JP 2006-70137 A 特開2002−206011号公報JP 2002-206011 A 特開2007−224161号公報JP 2007-224161 A

本発明は、耐ガソリン透過性および耐寒性に優れたニトリルゴム架橋物を与えるニトリルゴム組成物および架橋性ゴム組成物、並びにその架橋物を提供することを課題とする。   An object of the present invention is to provide a nitrile rubber composition and a crosslinkable rubber composition that give a crosslinked nitrile rubber excellent in gasoline permeation resistance and cold resistance, and a crosslinked product thereof.

本発明者らは、前記課題を解決するために鋭意研究した結果、所定量のα,β−エチレン性不飽和ニトリル単量体単位を有するニトリルゴムと、メチルエチルケトン不溶解分が20重量%以上である特定の共重合体とを含有する重合体成分と、特定の可塑剤とからなるニトリルゴム組成物により、上記の目的を達成できることを見い出し、本発明を完成するに至った。   As a result of intensive research to solve the above problems, the present inventors have found that a nitrile rubber having a predetermined amount of an α, β-ethylenically unsaturated nitrile monomer unit and a methylethylketone insoluble content of 20% by weight or more. It has been found that the above object can be achieved by a nitrile rubber composition comprising a polymer component containing a specific copolymer and a specific plasticizer, and the present invention has been completed.

すなわち、本発明によれば、
α,β−エチレン性不飽和ニトリル単量体単位と少なくとも一部が水素化されていてもよい共役ジエン単量体単位とを含有し、該α,β−エチレン性不飽和ニトリル単量体単位の含有割合が36〜54重量%であり、メチルエチルケトン不溶解分が20重量%未満であるニトリルゴム(a)40〜95重量%、および、
芳香族ビニル単量体単位およびα,β−エチレン性不飽和ニトリル単量体単位からなる群より選ばれる少なくとも一種のビニル単量体単位50〜100重量%と少なくとも一部が水素化されていてもよい共役ジエン単量体単位50〜0重量%とを含有し、メチルエチルケトン不溶解分が20重量%以上である重合体(b)60〜5重量%;を含有する重合体成分(A);並びに、
該重合体成分(A)100重量部に対して0.1〜200重量部の割合で、HOY法によるSP値が8.0〜10.2(cal/cm1/2の範囲内の可塑剤(B);
を含有することを特徴とするニトリルゴム組成物が提供される。
That is, according to the present invention,
an α, β-ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit which may be at least partially hydrogenated, the α, β-ethylenically unsaturated nitrile monomer unit Nitrile rubber (a) having a content of 36 to 54% by weight and an insoluble content of methyl ethyl ketone of less than 20% by weight, and 40 to 95% by weight, and
At least a part of at least one vinyl monomer unit selected from the group consisting of an aromatic vinyl monomer unit and an α, β-ethylenically unsaturated nitrile monomer unit is at least partially hydrogenated. A polymer component (A) containing 50 to 0% by weight of a conjugated diene monomer unit, and 60 to 5% by weight of a polymer (b) having an insoluble content of methyl ethyl ketone of 20% by weight or more; And
The SP value by the HOY method is in the range of 8.0 to 10.2 (cal / cm 3 ) 1/2 at a ratio of 0.1 to 200 parts by weight with respect to 100 parts by weight of the polymer component (A). Plasticizer (B);
The nitrile rubber composition characterized by containing is provided.

本発明のニトリルゴム組成物は、ニトリルゴム(a)および前記重合体(b)の少なくとも一方が、カチオン性単量体単位を0〜30重量%の割合でさらに含有するニトリルゴム組成物であることが好ましい。   The nitrile rubber composition of the present invention is a nitrile rubber composition in which at least one of the nitrile rubber (a) and the polymer (b) further contains 0 to 30% by weight of a cationic monomer unit. It is preferable.

また、本発明のニトリルゴム組成物は、前記ニトリルゴム(a)および前記重合体(b)の少なくとも一方が、共役ジエン単量体単位の炭素−炭素不飽和結合が水素化されたものであるニトリルゴム組成物であることが好ましい。   In the nitrile rubber composition of the present invention, at least one of the nitrile rubber (a) and the polymer (b) is obtained by hydrogenating a carbon-carbon unsaturated bond of a conjugated diene monomer unit. A nitrile rubber composition is preferred.

また、本発明によれば、ポリ塩化ビニル樹脂およびアクリル樹脂からなる群より選ばれる少なくとも一種の熱可塑性樹脂を、上記重合体成分(A)100重量部に対して、10〜100重量部の割合で含有するニトリルゴム組成物が提供される。   Further, according to the present invention, at least one thermoplastic resin selected from the group consisting of polyvinyl chloride resin and acrylic resin is 10 to 100 parts by weight with respect to 100 parts by weight of the polymer component (A). A nitrile rubber composition is provided.

さらに、本発明によれば、アスペクト比が30〜2,000である無機充填剤を、上記重合体成分(A)100重量部に対して、1〜100重量部の割合で含有するニトリルゴム組成物が提供される。   Furthermore, according to this invention, the nitrile rubber composition which contains the inorganic filler whose aspect ratio is 30-2,000 in the ratio of 1-100 weight part with respect to 100 weight part of said polymer components (A). Things are provided.

また、本発明によれば、上記に記載のニトリルゴム組成物に架橋剤を加えてなる架橋性ニトリルゴム組成物、および、該架橋性ニトリルゴム組成物を架橋してなるゴム架橋物が提供される。   The present invention also provides a crosslinkable nitrile rubber composition obtained by adding a crosslinking agent to the nitrile rubber composition described above, and a rubber crosslinked product obtained by crosslinking the crosslinkable nitrile rubber composition. The

本発明によれば、耐ガソリン透過性および耐寒性に優れたニトリルゴム架橋物を与えるニトリルゴム組成物および架橋性ニトリルゴム組成物、並びに、そのゴム架橋物を提供することができる。その結果、本発明のニトリルゴム組成物から得られるゴム架橋物は、耐油性が良好なニトリルゴム本来の特性に加え、耐ガソリン透過性および耐寒性にも優れる。   ADVANTAGE OF THE INVENTION According to this invention, the nitrile rubber composition and crosslinkable nitrile rubber composition which give the nitrile rubber crosslinked material excellent in gasoline permeability resistance and cold resistance, and the rubber crosslinked material can be provided. As a result, the rubber cross-linked product obtained from the nitrile rubber composition of the present invention is excellent in gasoline permeation resistance and cold resistance in addition to the original characteristics of nitrile rubber having good oil resistance.

本発明のニトリルゴム組成物は、
α,β−エチレン性不飽和ニトリル単量体単位と少なくとも一部が水素化されていてもよい共役ジエン単量体単位とを含有し、該α,β−エチレン性不飽和ニトリル単量体単位の含有割合が36〜54重量%であり、メチルエチルケトン不溶解分が20重量%未満であるニトリルゴム(a)40〜95重量%、および、
芳香族ビニル単量体単位およびα,β−エチレン性不飽和ニトリル単量体単位からなる群より選ばれる少なくとも一種のビニル単量体単位50〜100重量%と少なくとも一部が水素化されていてもよい共役ジエン単量体単位50〜0重量%とを含有し、メチルエチルケトン不溶解分が20重量%以上である重合体(b)60〜5重量%を含有する重合体成分(A);並びに、
該重合体成分(A)100重量部に対して0.1〜200重量部の割合で、HOY法によるSP値が8.0〜10.2(cal/cm1/2の範囲内の可塑剤(B);
を含有することを特徴とするニトリルゴム組成物である。
The nitrile rubber composition of the present invention is
an α, β-ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit which may be at least partially hydrogenated, the α, β-ethylenically unsaturated nitrile monomer unit Nitrile rubber (a) having a content of 36 to 54% by weight and an insoluble content of methyl ethyl ketone of less than 20% by weight, and 40 to 95% by weight, and
At least a part of at least one vinyl monomer unit selected from the group consisting of an aromatic vinyl monomer unit and an α, β-ethylenically unsaturated nitrile monomer unit is at least partially hydrogenated. A polymer component (A) containing 60 to 5% by weight of a polymer (b) containing 50 to 0% by weight of a conjugated diene monomer unit and having an insoluble content of methyl ethyl ketone of 20% by weight or more; ,
The SP value by the HOY method is in the range of 8.0 to 10.2 (cal / cm 3 ) 1/2 at a ratio of 0.1 to 200 parts by weight with respect to 100 parts by weight of the polymer component (A). Plasticizer (B);
It is a nitrile rubber composition characterized by containing.

ニトリルゴム(a)
本発明で用いるニトリルゴム(a)は、α,β−エチレン性不飽和ニトリル単量体単位と少なくとも一部が水素化されていてもよい共役ジエン単量体単位とを含有し、該α,β−エチレン性不飽和ニトリル単量体単位の含有割合が36〜54重量%のものである。
Nitrile rubber (a)
The nitrile rubber (a) used in the present invention contains an α, β-ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit which may be at least partially hydrogenated. The content ratio of the β-ethylenically unsaturated nitrile monomer unit is 36 to 54% by weight.

α,β−エチレン性不飽和ニトリル単量体単位を形成するα,β−エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β−エチレン性不飽和化合物であれば、特に限定されないが、たとえば、アクリロニトリル;α−クロロアクリロニトリル、α−ブロモアクリロニトリルなどのα−ハロゲノアクリロニトリル;メタクリロニトリルなどのα−アルキルアクリロニトリル;などが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルが特に好ましい。これらは一種単独でまたは複数種併せて用いることができる。   The α, β-ethylenically unsaturated nitrile monomer forming the α, β-ethylenically unsaturated nitrile monomer unit is particularly limited as long as it is an α, β-ethylenically unsaturated compound having a nitrile group. Although not, for example, acrylonitrile; α-halogenoacrylonitrile such as α-chloroacrylonitrile and α-bromoacrylonitrile; α-alkylacrylonitrile such as methacrylonitrile; Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is particularly preferable. These can be used individually by 1 type or in combination of multiple types.

ニトリルゴム(a)におけるα,β−エチレン性不飽和ニトリル単量体単位の含有割合は、全単量体単位に対して、36〜54重量%であり、好ましくは39〜52重量%、より好ましくは41〜51重量%である。α,β−エチレン性不飽和ニトリル単量体単位の含有割合が低すぎると、得られるゴム架橋物の耐油性が悪化し、ガソリン透過性が大きくなる。一方、その含有割合が高すぎると、得られるゴム架橋物の脆化温度が高くなり耐寒性に劣るものとなる。   The content ratio of the α, β-ethylenically unsaturated nitrile monomer unit in the nitrile rubber (a) is 36 to 54% by weight, preferably 39 to 52% by weight, based on the total monomer units. Preferably it is 41-51 weight%. When the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit is too low, the oil resistance of the resulting rubber cross-linked product is deteriorated and the gasoline permeability is increased. On the other hand, if the content is too high, the resulting rubber cross-linked product has a high embrittlement temperature and is inferior in cold resistance.

本発明で用いるニトリルゴム(a)は、得られるゴム架橋物がゴム弾性を有するものとするために、共役ジエン単量体単位を含有する。   The nitrile rubber (a) used in the present invention contains a conjugated diene monomer unit so that the obtained rubber cross-linked product has rubber elasticity.

共役ジエン単量体単位を形成する共役ジエン単量体としては、炭素数4〜6の共役ジエン単量体が好ましく、たとえば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエンなどが挙げられる。これらのなかでも、1,3−ブタジエンが好ましい。これらは一種単独でまたは複数種併せて用いることができる。   The conjugated diene monomer forming the conjugated diene monomer unit is preferably a conjugated diene monomer having 4 to 6 carbon atoms, such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3. -Butadiene, 1,3-pentadiene and the like. Of these, 1,3-butadiene is preferred. These can be used individually by 1 type or in combination of multiple types.

ニトリルゴム(a)における共役ジエン単量体単位の含有割合は、全単量体単位に対して、好ましくは46〜64重量%、より好ましくは47.7〜61重量%、特に好ましくは48.5〜59重量%である。   The content ratio of the conjugated diene monomer unit in the nitrile rubber (a) is preferably 46 to 64% by weight, more preferably 47.7 to 61% by weight, and particularly preferably 48.60% by weight with respect to the total monomer units. 5 to 59% by weight.

共役ジエン単量体単位の含有割合が低すぎると、得られるゴム架橋物のゴム弾性が低下するおそれがある。一方、共役ジエン単量体単位の含有割合が多すぎると、得られるゴム架橋物の耐ガソリン透過性が悪化する可能性がある。   When the content rate of a conjugated diene monomer unit is too low, there exists a possibility that the rubber elasticity of the rubber crosslinked material obtained may fall. On the other hand, if the content ratio of the conjugated diene monomer unit is too large, the gasoline permeation resistance of the resulting rubber cross-linked product may be deteriorated.

また、本発明で用いるニトリルゴム(a)は、α,β−エチレン性不飽和ニトリル単量体単位以外のα,β−エチレン性不飽和単量体単位として、カチオン性単量体単位を含有することが好ましい。カチオン性単量体単位とは、カチオン含有単量体単位およびカチオンを形成可能な単量体単位からなる群より選ばれる少なくとも1つの単量体単位を意味する。   The nitrile rubber (a) used in the present invention contains a cationic monomer unit as an α, β-ethylenically unsaturated monomer unit other than the α, β-ethylenically unsaturated nitrile monomer unit. It is preferable to do. The cationic monomer unit means at least one monomer unit selected from the group consisting of a cation-containing monomer unit and a monomer unit capable of forming a cation.

カチオン性単量体単位を形成するカチオン含有単量体としては、得られる重合体が水または酸水溶液に接した際にプラスに帯電するような単量体単位を形成する単量体であれば、特に限定されない。このようなカチオン含有単量体としては、たとえば、第四級アンモニウム塩基を含有する単量体が挙げられる。また、カチオンを形成可能な単量体単位を形成する単量体として、第三級アミノ基のように塩酸および硫酸等の酸水溶液と接触した際にアンモニウム塩(たとえば、アミン塩酸塩やアミン硫酸塩)などのカチオンを形成する前駆体部(置換基)を有する単量体が挙げられる。   The cation-containing monomer that forms the cationic monomer unit may be any monomer that forms a monomer unit that is positively charged when the resulting polymer contacts water or an aqueous acid solution. There is no particular limitation. Examples of such cation-containing monomers include monomers containing a quaternary ammonium base. In addition, as a monomer that forms a monomer unit capable of forming a cation, an ammonium salt (for example, amine hydrochloride or amine sulfate) is brought into contact with an aqueous acid solution such as hydrochloric acid and sulfuric acid such as a tertiary amino group. And a monomer having a precursor part (substituent) that forms a cation such as a salt).

カチオン含有単量体の具体例としては、(メタ)アクリロイルオキシトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシヒドロキシプロピルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシトリエチルアンモニウムクロライド、(メタ)アクリロイルオキシジメチルベンジルアンモニウムクロライド、(メタ)アクリロイルオキシトリメチルアンモニウムメチルサルフェート等の第四級アンモニウム塩を有する基を含有する(メタ)アクリル酸エステル単量体;(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライド、(メタ)アクリルアミドプロピルジメチルベンジルアンモニウムクロライド等の第四級アンモニウム塩を有する基を含有する(メタ)アクリルアミド単量体等が挙げられる。   Specific examples of the cation-containing monomer include (meth) acryloyloxytrimethylammonium chloride, (meth) acryloyloxyhydroxypropyltrimethylammonium chloride, (meth) acryloyloxytriethylammonium chloride, (meth) acryloyloxydimethylbenzylammonium chloride, (Meth) acrylic acid ester monomer containing a group having a quaternary ammonium salt such as (meth) acryloyloxytrimethylammonium methyl sulfate; (meth) acrylamidopropyltrimethylammonium chloride, (meth) acrylamidopropyldimethylbenzylammonium chloride And (meth) acrylamide monomers containing a group having a quaternary ammonium salt such as

カチオンを形成可能な単量体単位を形成する単量体の具体例としては、2−ビニルピリジン、4−ビニルピリジン等のビニル基含有環状第三級アミン単量体;(メタ)アクリル酸ジメチルアミノエチル等の第三級アミノ基含有(メタ)アクリル酸エステル単量体;(メタ)アクリルアミドジメチルアミノエチル、N,N−ジメチルアミノプロピルアクリルアミド等の第三級アミノ基含有(メタ)アクリルアミド単量体;N−(4−アニリノフェニル)アクリルアミド、N−(4−アニリノフェニル)メタクリルアミド、N−(4−アニリノフェニル)シンナムアミド、N−(4−アニリノフェニル)クロトンアミド、N−フェニル−4−(3−ビニルベンジルオキシ)アニリン、N−フェニル−4−(4−ビニルベンジルオキシ)アニリン等が挙げられる。これらは一種単独でまたは複数種併せて用いることができる。   Specific examples of the monomer that forms a monomer unit capable of forming a cation include vinyl group-containing cyclic tertiary amine monomers such as 2-vinylpyridine and 4-vinylpyridine; dimethyl (meth) acrylate Tertiary amino group-containing (meth) acrylic acid ester monomer such as aminoethyl; tertiary amino group-containing (meth) acrylamide single amount such as (meth) acrylamide dimethylaminoethyl and N, N-dimethylaminopropyl acrylamide N- (4-anilinophenyl) acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamamide, N- (4-anilinophenyl) crotonamide, N- Phenyl-4- (3-vinylbenzyloxy) aniline, N-phenyl-4- (4-vinylbenzyloxy) aniline, etc. And the like. These can be used individually by 1 type or in combination of multiple types.

上記単量体のなかでも、本発明の効果がより一層顕著になることから、ビニル基含有環状第三級アミン単量体、第三級アミノ基含有(メタ)アクリル酸エステル単量体および第三級アミノ基含有(メタ)アクリルアミド単量体が好ましく、ビニル基含有環状第三級アミン単量体および第三級アミノ基含有アクリルアミド単量体がより好ましく、ビニル基含有環状第三級アミン単量体がさらに好ましく、その中でもビニル基含有ピリジン類が特に好ましく、2−ビニルピリジンが最も好ましい。   Among the above monomers, the effects of the present invention become more prominent, so that a vinyl group-containing cyclic tertiary amine monomer, a tertiary amino group-containing (meth) acrylate monomer, and Tertiary amino group-containing (meth) acrylamide monomers are preferred, vinyl group-containing cyclic tertiary amine monomers and tertiary amino group-containing acrylamide monomers are more preferred, vinyl group-containing cyclic tertiary amine monomers More preferred is a monomer, of which vinyl group-containing pyridines are particularly preferred, and 2-vinylpyridine is most preferred.

カチオン性単量体単位の含有割合は、全単量体単位に対して、好ましくは0〜30重量%、より好ましくは0.1〜18重量%、さらに好ましくは0.3〜13重量%、特に好ましくは0.5〜10重量%である。カチオン性単量体単位を含有させることにより、得られるゴム架橋物が、耐ガソリン透過性、耐寒性に一層優れたものとなる。   The content ratio of the cationic monomer unit is preferably 0 to 30% by weight, more preferably 0.1 to 18% by weight, still more preferably 0.3 to 13% by weight, based on all monomer units. Particularly preferred is 0.5 to 10% by weight. By containing a cationic monomer unit, the obtained rubber cross-linked product becomes more excellent in gasoline permeation resistance and cold resistance.

また、本発明で用いるニトリルゴム(a)は、上記α,β−エチレン性不飽和ニトリル単量体単位、共役ジエン単量体単位、ならびに、カチオン性単量体単位以外に、これらの単量体単位を形成する単量体と共重合可能な他の単量体の単位を含有していてもよい。このような他の単量体単位の含有割合は、全単量体単位に対して、好ましくは30重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下である。   Further, the nitrile rubber (a) used in the present invention is a monomer other than the above α, β-ethylenically unsaturated nitrile monomer unit, conjugated diene monomer unit, and cationic monomer unit. It may contain a unit of another monomer copolymerizable with the monomer forming the body unit. The content ratio of such other monomer units is preferably 30% by weight or less, more preferably 20% by weight or less, and still more preferably 10% by weight or less based on the total monomer units.

このような共重合可能な他の単量体としては、たとえば、フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-(トリフルオロ)メチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどのフッ素含有ビニル化合物;1,4−ペンタジエン、1,4−ヘキサジエン、ビニルノルボルネン、ジシクロペンタジエンなどの非共役ジエン化合物;エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテンなどのα―オレフィン化合物;アクリル酸、メタクリル酸などのα,β−エチレン性不飽和一価カルボン酸;マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、無水フマル酸などのα,β−エチレン性不飽和多価カルボン酸およびその無水物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシルなどのα,β−エチレン性不飽和カルボン酸アルキルエステル;マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β−エチレン性不飽和多価カルボン酸のモノエステルおよびジエステル;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸ブトキシエチルなどのα,β−エチレン性不飽和カルボン酸のアルコキシアルキルエステル;(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピルなどのα,β−エチレン性不飽和カルボン酸のヒドロキシアルキルエステル;ジビニルベンゼンなどのジビニル化合物;エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなどのジ(メタ)アクリル酸エステル類;トリメチロールプロパントリ(メタ)アクリレートなどのトリ(メタ)アクリル酸エステル類;などの多官能エチレン性不飽和単量体のほか、N-メチロール(メタ)アクリルアミド、N,N′-ジメチロール(メタ)アクリルアミドなどの自己架橋性化合物;などが挙げられる。   Examples of such other copolymerizable monomers include fluorine containing fluoroethyl vinyl ether, fluoropropyl vinyl ether, o- (trifluoro) methylstyrene, vinyl pentafluorobenzoate, difluoroethylene, tetrafluoroethylene and the like. Vinyl compounds; non-conjugated diene compounds such as 1,4-pentadiene, 1,4-hexadiene, vinyl norbornene, dicyclopentadiene; ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-hexene Α-olefin compounds such as octene; α, β-ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, fumaric anhydride, etc. α, β-ethylenically unsaturated polyvalent carboxylic acid And anhydrides thereof; α, β-ethylenically unsaturated carboxylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; maleic acid Monoethyl, diethyl maleate, monobutyl maleate, dibutyl maleate, monoethyl fumarate, diethyl fumarate, monobutyl fumarate, dibutyl fumarate, monocyclohexyl fumarate, dicyclohexyl fumarate, monoethyl itaconate, diethyl itaconate, monobutyl itaconate , Monoesters and diesters of α, β-ethylenically unsaturated polyvalent carboxylic acids such as dibutyl itaconate; α such as methoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, butoxyethyl (meth) acrylate Alkoxyalkyl esters of β-ethylenically unsaturated carboxylic acids; hydroxyalkyl esters of α, β-ethylenically unsaturated carboxylic acids such as 2-hydroxyethyl (meth) acrylate and 3-hydroxypropyl (meth) acrylate; divinyl Divinyl compounds such as benzene; Di (meth) acrylates such as ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and ethylene glycol di (meth) acrylate; Tri (meta) such as trimethylolpropane tri (meth) acrylate In addition to polyfunctional ethylenically unsaturated monomers such as acrylic acid esters; self-crosslinking compounds such as N-methylol (meth) acrylamide and N, N′-dimethylol (meth) acrylamide;

ニトリルゴム(a)のムーニー粘度(以下、「ポリマー・ムーニー粘度」と記すことがある。)(ML1+4、100℃)は、好ましくは3〜250、より好ましくは15〜180、さらに好ましくは20〜160である。ニトリルゴム(a)のポリマー・ムーニー粘度が低すぎると、得られるゴム架橋物の強度特性が低下するおそれがある。一方、高すぎると、加工性が悪化する可能性がある。 The Mooney viscosity of the nitrile rubber (a) (hereinafter sometimes referred to as “polymer Mooney viscosity”) (ML 1 + 4 , 100 ° C.) is preferably 3 to 250, more preferably 15 to 180, and still more preferably 20. ~ 160. If the polymer Mooney viscosity of the nitrile rubber (a) is too low, the strength properties of the resulting crosslinked rubber may be lowered. On the other hand, if it is too high, the workability may be deteriorated.

本発明で用いるニトリルゴム(a)は、上記したニトリルゴム(a)を構成する各単量体を共重合することにより製造することができる。各単量体を共重合する方法としては、特に限定されないが、たとえば、ドデシルベンゼンスルホン酸ナトリウムなどの乳化剤を用いて約50〜1,000nmの平均粒径を有する共重合体のラテックスを得る乳化重合法や、ポリビニルアルコールなどの分散剤を用いて約0.2〜200μmの平均粒径を有する共重合体のラテックスを得る懸濁重合法(微細懸濁重合法も含む)などを好適に用いることができる。これらのなかでも、重合反応制御が容易なことから乳化重合法がより好ましい。   The nitrile rubber (a) used in the present invention can be produced by copolymerizing each monomer constituting the nitrile rubber (a). The method for copolymerizing each monomer is not particularly limited, but for example, emulsification that obtains a latex of a copolymer having an average particle diameter of about 50 to 1,000 nm using an emulsifier such as sodium dodecylbenzenesulfonate. A polymerization method or a suspension polymerization method (including a fine suspension polymerization method) for obtaining a latex of a copolymer having an average particle size of about 0.2 to 200 μm using a dispersant such as polyvinyl alcohol is preferably used. be able to. Among these, the emulsion polymerization method is more preferable because the polymerization reaction can be easily controlled.

乳化重合法は、下記の手順で行うことが好ましい。
なお、以下において、適宜、α,β−エチレン性不飽和ニトリル単量体を「単量体(m1)」とし、共役ジエン単量体を「単量体(m2)」とし、カチオン性単量体単位を形成する単量体を「単量体(m3)」とする。
The emulsion polymerization method is preferably performed according to the following procedure.
In the following, the α, β-ethylenically unsaturated nitrile monomer is referred to as “monomer (m1)”, the conjugated diene monomer is referred to as “monomer (m2)”, and a cationic monomer The monomer forming the body unit is referred to as “monomer (m3)”.

すなわち、単量体(m1)20〜80重量%、好ましくは30〜70重量%、より好ましくは40〜60重量%、単量体(m2)80〜20重量%、好ましくは70〜30重量%、より好ましくは60〜40重量%、および単量体(m3)は、0〜20重量%であり、好ましくは0.3〜15重量%、特に好ましくは0.5〜10重量%からなる単量体混合物(ただし、単量体(m1)、単量体(m2)および単量体(m3)の合計量が100重量%である。)を、乳化重合し、重合転化率が好ましくは50〜95重量%の時点で、重合反応を停止した後、所望により未反応の単量体を除去する方法が好ましい。   That is, monomer (m1) 20 to 80% by weight, preferably 30 to 70% by weight, more preferably 40 to 60% by weight, monomer (m2) 80 to 20% by weight, preferably 70 to 30% by weight More preferably 60 to 40% by weight, and the monomer (m3) is 0 to 20% by weight, preferably 0.3 to 15% by weight, particularly preferably 0.5 to 10% by weight. The monomer mixture (however, the total amount of the monomer (m1), the monomer (m2) and the monomer (m3) is 100% by weight) is subjected to emulsion polymerization, and the polymerization conversion rate is preferably 50. A method of removing the unreacted monomer as desired after stopping the polymerization reaction at a time of ˜95% by weight is preferable.

乳化重合法に用いる、単量体(m1)の使用量が少なすぎると、得られるゴム架橋物の耐油性および耐ガソリン透過性が悪化し、一方、単量体(m1)の使用量が多すぎると、耐寒性が悪化する傾向がある。単量体(m2)の使用量が少なすぎると、得られるゴム架橋物の耐寒性が悪化し、一方、単量体(m2)の使用量が多すぎると、得られるゴム架橋物の耐ガソリン透過性が悪化する傾向がある。また、単量体(m3)を、上記範囲で用いることにより、得られるゴム架橋物の耐ガソリン透過性のさらなる向上が可能となる。   If the amount of the monomer (m1) used in the emulsion polymerization method is too small, the oil resistance and gasoline permeation resistance of the resulting rubber cross-linked product deteriorate, while the amount of the monomer (m1) used is large. If too much, cold resistance tends to deteriorate. If the amount of the monomer (m2) used is too small, the cold resistance of the resulting rubber cross-linked product will deteriorate. On the other hand, if the amount of the monomer (m2) used is too large, the resulting rubber cross-linked product will be gasoline resistant. There is a tendency for permeability to deteriorate. Further, by using the monomer (m3) within the above range, it is possible to further improve the gasoline permeation resistance of the obtained rubber cross-linked product.

なお、重合反応を停止する重合転化率が低すぎると、未反応の単量体の回収が非常に困難になる。一方、高すぎると、得られるゴム架橋物の常態物性が悪化する。   If the polymerization conversion rate for terminating the polymerization reaction is too low, it becomes very difficult to recover the unreacted monomer. On the other hand, if it is too high, the normal physical properties of the resulting rubber cross-linked product will deteriorate.

乳化重合を行うに際し、乳化重合の分野で従来公知の乳化剤、重合開始剤、重合副資材などを適宜用いることができ、重合温度や重合時間も適宜調節すればよい。   In conducting the emulsion polymerization, conventionally known emulsifiers, polymerization initiators, polymerization auxiliary materials and the like can be appropriately used in the field of emulsion polymerization, and the polymerization temperature and polymerization time may be appropriately adjusted.

また、乳化重合に用いる単量体(m1)〜(m3)の全量を用い、重合反応を開始してもよいが、生成する共重合体の各単量体単位の組成分布を制御し、よりゴム弾性に富むゴム架橋物を得るという観点から、乳化重合に用いる単量体(m1)〜(m3)の全量のうち一部を用いて重合反応を開始し、その後、乳化重合に用いる単量体(m1)〜(m3)の残余を反応器に添加して重合することが好ましい。重合反応開始時から、乳化重合に用いる単量体(m1)〜(m3)の全量を反応させてしまうと、共重合体の組成分布が広がってしまう可能性があるからである。   In addition, the polymerization reaction may be started using the total amount of the monomers (m1) to (m3) used for the emulsion polymerization, but the composition distribution of each monomer unit of the copolymer to be produced is controlled, and more From the viewpoint of obtaining a rubber cross-linked product rich in rubber elasticity, a polymerization reaction is started using a part of the total amount of monomers (m1) to (m3) used for emulsion polymerization, and then used for emulsion polymerization. The remainder of the bodies (m1) to (m3) is preferably added to the reactor for polymerization. This is because if the total amount of the monomers (m1) to (m3) used for the emulsion polymerization is reacted from the start of the polymerization reaction, the composition distribution of the copolymer may be expanded.

この場合、重合に用いる単量体(m1)の好ましくは10〜100重量%、より好ましくは20〜100重量%、特に好ましくは30〜100重量%、重合に用いる単量体(m2)の好ましくは5〜90重量%、より好ましくは10〜80重量%、特に好ましくは15〜70重量%、および、重合に用いる単量体(m3)の好ましくは0〜100重量%、より好ましくは30〜100重量%、特に好ましくは70〜100重量%からなる単量体混合物を反応器に仕込み、重合反応を開始した後、反応器に仕込んだ単量体混合物に対する重合転化率が好ましくは5〜80重量%の範囲で、残余の単量体を反応器に添加して重合反応を継続することが好ましい。なお、単量体(m3)を使用しない場合においても、重合に用いる単量体(m1)、単量体(m2)のうち、上記した量を用いて、重合反応を開始し、単量体(m1)、(m2)の残余を反応器に添加して重合することが好ましい。   In this case, the monomer (m1) used for the polymerization is preferably 10 to 100% by weight, more preferably 20 to 100% by weight, particularly preferably 30 to 100% by weight, preferably the monomer (m2) used for the polymerization. Is from 5 to 90% by weight, more preferably from 10 to 80% by weight, particularly preferably from 15 to 70% by weight, and preferably from 0 to 100% by weight, more preferably from 30 to 70% by weight of the monomer (m3) used in the polymerization. A monomer mixture comprising 100% by weight, particularly preferably 70 to 100% by weight, is charged into the reactor, and after the polymerization reaction is started, the polymerization conversion rate with respect to the monomer mixture charged into the reactor is preferably 5 to 80 It is preferable to continue the polymerization reaction by adding the remaining monomer to the reactor in the range of% by weight. Even when the monomer (m3) is not used, the polymerization reaction is started using the above-mentioned amounts of the monomer (m1) and the monomer (m2) used for the polymerization, and the monomer It is preferable to polymerize by adding the remainder of (m1) and (m2) to the reactor.

残余の単量体を添加する方法は、特に制限されないが、一括で添加しても、分割して添加しても、また、連続的に添加してもよい。本発明では、得られる共重合体の組成分布をより簡便に制御できる点から、残余の単量体を、分割して添加することが好ましく、1〜6回に分割して添加することが特に好ましい。残余の単量体を、分割して添加する場合、分割添加する単量体の量や分割添加する時期は、重合反応の進行に合わせ、所望のニトリルゴム(a)が得られるよう調整すればよい。   The method for adding the remaining monomer is not particularly limited, but it may be added all at once, dividedly, or continuously. In the present invention, from the viewpoint that the composition distribution of the copolymer to be obtained can be more easily controlled, it is preferable to add the remaining monomer in divided portions, and it is particularly preferable to add in one to six portions. preferable. When the remaining monomer is added in divided portions, the amount of the monomer to be added in divided portions and the timing of the divided addition may be adjusted according to the progress of the polymerization reaction so that the desired nitrile rubber (a) is obtained. Good.

重合反応終了後に、所望により、加熱蒸留、減圧蒸留、水蒸気蒸留などの公知の方法を用いて未反応の単量体を除去することにより、ニトリルゴム(a)のラテックスが得られる。本発明においては、乳化重合法によって得られるニトリルゴム(a)のラテックスの固形分濃度は、好ましくは5〜70重量%、より好ましくは10〜60重量%、特に好ましくは15〜50重量%である。   After completion of the polymerization reaction, a latex of the nitrile rubber (a) can be obtained by removing unreacted monomers using a known method such as heating distillation, vacuum distillation, steam distillation or the like, if desired. In the present invention, the solid content concentration of the nitrile rubber (a) latex obtained by the emulsion polymerization method is preferably 5 to 70% by weight, more preferably 10 to 60% by weight, and particularly preferably 15 to 50% by weight. is there.

本発明で用いるニトリルゴム(a)は、上記のように共重合して得られた共重合体の共役ジエン単量体単位部分における炭素−炭素不飽和結合のうち少なくとも一部を水素化(水素添加反応)した水素化ニトリルゴムであってもよい。水素化の方法は特に限定されず、公知の方法を採用すればよい。ニトリルゴム(a)を、水素化ニトリルゴムとする場合には、そのヨウ素価は、好ましくは0〜70の範囲、より好ましくは4〜60の範囲である。ニトリルゴム(a)を水素化し、水素化ニトリルゴムとすることにより、耐熱性、耐候性、耐オゾン性などを向上させることができる。   The nitrile rubber (a) used in the present invention is obtained by hydrogenating (hydrogenating at least a part of carbon-carbon unsaturated bonds in the conjugated diene monomer unit portion of the copolymer obtained by copolymerization as described above. Hydrogenated nitrile rubber subjected to addition reaction) may be used. The method for hydrogenation is not particularly limited, and a known method may be employed. When the nitrile rubber (a) is a hydrogenated nitrile rubber, the iodine value is preferably in the range of 0 to 70, more preferably in the range of 4 to 60. By hydrogenating the nitrile rubber (a) to obtain a hydrogenated nitrile rubber, heat resistance, weather resistance, ozone resistance and the like can be improved.

また、ニトリルゴム(a)のメチルエチルケトン不溶解分は、20重量%未満、好ましくは10重量%未満であり、実質的にメチルエチルケトン不溶解分が0重量%でもよい。   Moreover, the methyl ethyl ketone insoluble content of the nitrile rubber (a) is less than 20 wt%, preferably less than 10 wt%, and the methyl ethyl ketone insoluble content may be substantially 0 wt%.

メチルエチルケトン不溶解分が20重量%以上である重合体(b)
本発明で用いるメチルエチルケトン不溶解分が20重量%以上である重合体(b)は、芳香族ビニル単量体単位およびα,β−エチレン性不飽和ニトリル単量体単位からなる群より選ばれる少なくとも一種のビニル単量体単位50〜100重量%と少なくとも一部が水素化されていてもよい共役ジエン単量体単位50〜0重量%とを含有し、メチルエチルケトン不溶解分が20重量%以上である重合体である。
Polymer (b) having a methyl ethyl ketone insoluble content of 20% by weight or more
The polymer (b) having an insoluble content of methyl ethyl ketone of 20% by weight or more used in the present invention is at least selected from the group consisting of an aromatic vinyl monomer unit and an α, β-ethylenically unsaturated nitrile monomer unit. Containing 50 to 100% by weight of one kind of vinyl monomer unit and 50 to 0% by weight of conjugated diene monomer unit which may be at least partially hydrogenated, and having an insoluble content of methyl ethyl ketone of 20% by weight or more It is a polymer.

芳香族ビニル単量体単位を形成する芳香族ビニル単量体としては、例えば、スチレン、α−メチルスチレン、p−tert−ブチルスチレン等が挙げられるが、スチレンが好ましい。α,β−エチレン性不飽和ニトリル単量体単位を形成するα,β−エチレン性不飽和ニトリル単量体としては、上述のニトリルゴム(a)の場合と同様のものが挙げられ、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルが特に好ましい。   Examples of the aromatic vinyl monomer that forms the aromatic vinyl monomer unit include styrene, α-methylstyrene, p-tert-butylstyrene, and the like, and styrene is preferable. Examples of the α, β-ethylenically unsaturated nitrile monomer forming the α, β-ethylenically unsaturated nitrile monomer unit include those similar to the case of the nitrile rubber (a) described above, and acrylonitrile and Methacrylonitrile is preferred and acrylonitrile is particularly preferred.

共役ジエン単量体単位を形成する共役ジエン単量体としては、上述のニトリルゴム(a)の場合と同様のものが挙げられ、1,3−ブタジエンが好ましい。   Examples of the conjugated diene monomer forming the conjugated diene monomer unit include the same ones as in the case of the nitrile rubber (a) described above, and 1,3-butadiene is preferable.

重合体(b)におけるビニル単量体単位の含有割合は、全単量体単位の50〜100重量%であり、好ましくは55〜100重量%、特に好ましくは60〜100重量%である。ビニル単量体単位の含有割合が50重量%未満であると、耐ガソリン透過性が悪化する。   The content ratio of the vinyl monomer units in the polymer (b) is 50 to 100% by weight, preferably 55 to 100% by weight, particularly preferably 60 to 100% by weight, based on all monomer units. When the content ratio of the vinyl monomer unit is less than 50% by weight, the gasoline permeation resistance deteriorates.

なお、重合体(b)中のα,β−エチレン性不飽和ニトリル単量体単位は、好ましくは10〜90重量%、特に好ましくは30〜80重量%である。また、重合体(b)中の芳香族ビニル単量体単位は、好ましくは0〜90重量%、さらに好ましくは0〜70重量%、特に好ましくは0〜30重量%である。   In addition, the α, β-ethylenically unsaturated nitrile monomer unit in the polymer (b) is preferably 10 to 90% by weight, particularly preferably 30 to 80% by weight. The aromatic vinyl monomer unit in the polymer (b) is preferably 0 to 90% by weight, more preferably 0 to 70% by weight, and particularly preferably 0 to 30% by weight.

また、本発明で用いる重合体(b)は、上述のニトリルゴム(a)の場合と同様のカチオン性単量体単位を、更に含有してもよい。カチオン性単量体単位の含有割合は、全単量体単位に対して、好ましくは0〜30重量%である。   The polymer (b) used in the present invention may further contain a cationic monomer unit similar to that in the case of the nitrile rubber (a) described above. The content ratio of the cationic monomer unit is preferably 0 to 30% by weight with respect to the total monomer units.

さらに、本発明で用いる重合体(b)は、上述のニトリルゴム(a)の場合と同様に、上記ビニル単量体単位、共役ジエン単量体単位、ならびに、カチオン性単量体単位以外に、これらの単量体単位を形成する単量体と共重合可能な他の単量体の単位を含有していてもよい。このような他の単量体単位の含有割合は、全単量体単位に対して、好ましくは30重量%以下、より好ましくは20重量%以下、特に好ましくは10重量%以下である。   Further, the polymer (b) used in the present invention is the same as the above-mentioned nitrile rubber (a) except for the vinyl monomer unit, the conjugated diene monomer unit, and the cationic monomer unit. These may contain other monomer units copolymerizable with the monomers forming the monomer units. The content ratio of such other monomer units is preferably 30% by weight or less, more preferably 20% by weight or less, and particularly preferably 10% by weight or less based on the total monomer units.

なお、このような他の単量体単位を形成する単量体としては、上述のニトリルゴム(a)の場合と同様のものが挙げられる。   In addition, as a monomer which forms such another monomer unit, the same thing as the case of the above-mentioned nitrile rubber (a) is mentioned.

また、重合体(b)のテトラヒドロフラン可溶分の重量平均分子量(GPCによるポリスチレン換算)は、好ましくは5,000〜2,000,000、より好ましくは7,000〜1,500,000、さらに好ましくは10,000〜1,000,000、特に好ましくは20,000〜800,000である。   Moreover, the weight average molecular weight (polystyrene conversion by GPC) of the tetrahydrofuran soluble part of a polymer (b) becomes like this. Preferably it is 5,000-2,000,000, More preferably, it is 7,000-1,500,000, Furthermore, Preferably it is 10,000-1,000,000, Most preferably, it is 20,000-800,000.

メチルエチルケトン不溶解分
重合体(b)は、メチルエチルケトン不溶解分が20重量%以上であることが必要である。メチルエチルケトン不溶解分は、重合体(b)1gを200mlのメチルエチルケトンに浸漬させ、23℃で24時間放置後、325メッシュ金網を用いてろ過し、ろ液を蒸発乾燥固化させ、得られた残存乾燥固形分[メチルエチルケトン可溶分:(y)g]を秤量し、下式によりメチルエチルケトン不溶解分を算出したものである。
The methyl ethyl ketone insoluble polymer (b) needs to have a methyl ethyl ketone insoluble content of 20% by weight or more. The methyl ethyl ketone insoluble matter was obtained by immersing 1 g of the polymer (b) in 200 ml of methyl ethyl ketone, leaving it to stand at 23 ° C. for 24 hours, filtering using a 325 mesh wire net, evaporating the filtrate by evaporation and solidifying, The solid content [methyl ethyl ketone soluble content: (y) g] is weighed, and the methyl ethyl ketone insoluble content is calculated by the following equation.

メチルエチルケトン不溶解分(重量%)=100×(1−y)/1     Methyl ethyl ketone insoluble matter (% by weight) = 100 × (1-y) / 1

重合体(b)は、各単量体を共重合することにより製造することができる。各単量体を共重合する方法としては、特に限定されないが、たとえば、ドデシルベンゼンスルホン酸ナトリウムなどの乳化剤を用いて約50〜1,000nmの平均粒径を有する共重合体のラテックスを得る乳化重合法や、ポリビニルアルコールなどの分散剤を用いて約0.2〜200μmの平均粒径を有する共重合体のラテックスを得る懸濁重合法(微細懸濁重合法も含む)などを好適に用いることができる。これらのなかでも、重合反応制御が容易なことから乳化重合法がより好ましい。   The polymer (b) can be produced by copolymerizing each monomer. The method for copolymerizing each monomer is not particularly limited, but for example, emulsification that obtains a latex of a copolymer having an average particle diameter of about 50 to 1,000 nm using an emulsifier such as sodium dodecylbenzenesulfonate. A polymerization method or a suspension polymerization method (including a fine suspension polymerization method) for obtaining a latex of a copolymer having an average particle size of about 0.2 to 200 μm using a dispersant such as polyvinyl alcohol is preferably used. be able to. Among these, the emulsion polymerization method is more preferable because the polymerization reaction can be easily controlled.

乳化重合方法の手順は、先にニトリルゴム(a)について述べたのと同じ手順でよい。重合反応終了後に、所望により、加熱蒸留、減圧蒸留、水蒸気蒸留などの公知の方法を用いて未反応の単量体を除去することにより、重合体(b)のラテックスが得られる。本発明においては、乳化重合法によって得られる重合体(b)のラテックスの固形分濃度は、好ましくは5〜70重量%、より好ましくは10〜60重量%、特に好ましくは15〜50重量%である。   The procedure of the emulsion polymerization method may be the same as described above for the nitrile rubber (a). After completion of the polymerization reaction, a latex of the polymer (b) can be obtained by removing unreacted monomers by using a known method such as heating distillation, vacuum distillation, steam distillation or the like. In the present invention, the latex concentration of the polymer (b) latex obtained by the emulsion polymerization method is preferably 5 to 70% by weight, more preferably 10 to 60% by weight, and particularly preferably 15 to 50% by weight. is there.

メチルエチルケトン不溶解分の調整は、(ア)連鎖移動剤の量を減少させたり、重合温度を高くすること、及び(イ)ジビニルベンゼン、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートなどの多官能エチレン性不飽和単量体、N-メチロール(メタ)アクリルアミド、N,N′-ジメチロール(メタ)アクリルアミドなどの自己架橋性化合物などを共重合することによって不溶解分を高くするなどの方法で行うことができる。   Adjustment of the insoluble matter of methyl ethyl ketone includes (a) decreasing the amount of chain transfer agent and increasing the polymerization temperature, and (b) polyfunctional ethylene such as divinylbenzene, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, etc. By increasing the insoluble content by copolymerizing self-crosslinking compounds such as water-soluble unsaturated monomers, N-methylol (meth) acrylamide, and N, N'-dimethylol (meth) acrylamide Can do.

重合体(b)のメチルエチルケトン不溶解分が20重量%未満であると、耐ガソリン透過性が悪化する。これに対して、ニトリルゴム(a)のメチルエチルケトン不溶解分は、20重量%未満であり、実質的にメチルエチルケトン不溶解分が0%でもよい。なお、ニトリルゴム(a)のメチルエチルケトン不溶解分は、上記「重合体(b)1g」に代えて、「ニトリルゴム(a)1g」を測定試料として用いることにより、重合体(b)と同様に測定して求めることができる。   When the methyl ethyl ketone insoluble content of the polymer (b) is less than 20% by weight, the gasoline permeation resistance deteriorates. On the other hand, the methyl ethyl ketone insoluble matter of the nitrile rubber (a) is less than 20% by weight, and the methyl ethyl ketone insoluble matter may be substantially 0%. The methyl ethyl ketone insoluble matter of nitrile rubber (a) is the same as that of polymer (b) by using “nitrile rubber (a) 1 g” as a measurement sample instead of “polymer (b) 1 g”. It can be determined by measuring.

なお、本発明で用いる重合体(b)は、重合体(b)の共役ジエン単量体単位部分における不飽和結合部分のうち少なくとも一部を水素化(水素添加反応)した水素化重合体であってもよい。水素化の方法は特に限定されず、公知の方法を採用すればよい。重合体(b)を、水素化重合体とする場合には、そのヨウ素価は、好ましくは0〜70の範囲、より好ましくは4〜60の範囲である。重合体(b)を水素化し、水素化重合体とすることにより、耐熱性、耐候性、耐オゾン性などを向上させることができる。   The polymer (b) used in the present invention is a hydrogenated polymer obtained by hydrogenating (hydrogenation reaction) at least a part of the unsaturated bond portion in the conjugated diene monomer unit portion of the polymer (b). There may be. The method for hydrogenation is not particularly limited, and a known method may be employed. When making a polymer (b) into a hydrogenated polymer, the iodine value becomes like this. Preferably it is the range of 0-70, More preferably, it is the range of 4-60. By hydrogenating the polymer (b) to obtain a hydrogenated polymer, heat resistance, weather resistance, ozone resistance and the like can be improved.

重合体成分(A)
本発明のニトリルゴム組成物は、ニトリルゴム(a)40〜95重量%、および、重合体(b)60〜5重量%を含有する重合体成分(A)を含有するものである。
Polymer component (A)
The nitrile rubber composition of the present invention contains a polymer component (A) containing 40 to 95% by weight of nitrile rubber (a) and 60 to 5% by weight of polymer (b).

重合体成分(A)は、ニトリルゴム(a)および重合体(b)の全単量体単位の合計に占める、α,β−エチレン性不飽和ニトリル単量体単位の比率が、好ましくは35〜65重量%、より好ましくは40〜62重量%であることが、耐寒性、耐ガソリン透過性および耐油性のバランスの点で望ましい。   The ratio of the α, β-ethylenically unsaturated nitrile monomer unit to the polymer component (A) in the total of all monomer units of the nitrile rubber (a) and the polymer (b) is preferably 35. It is desirable that it is ˜65% by weight, more preferably 40 to 62% by weight, in terms of a balance between cold resistance, gasoline permeation resistance and oil resistance.

可塑剤(B)
本発明のニトリルゴム組成物は、特定の可塑剤(B)を含有するものである。可塑剤(B)としては、HOY法によるSP値(溶解度パラメータ)が8.0〜10.2(cal/cm1/2である可塑剤を用いる。可塑剤(B)のSP値が大き過ぎると、得られるゴム架橋物の耐寒性が劣る傾向にあり、また、SP値が小さすぎると得られるゴム架橋物の耐ガソリン透過性が悪化する傾向にある。SP値が8.0〜10.2(cal/cm1/2である可塑剤(B)を用いると、得られるゴム架橋物の耐寒性が優れるとともに、耐ガソリン透過性も優れたものとなる。
Plasticizer (B)
The nitrile rubber composition of the present invention contains a specific plasticizer (B). As the plasticizer (B), a plasticizer having an SP value (solubility parameter) by the HOY method of 8.0 to 10.2 (cal / cm 3 ) 1/2 is used. If the SP value of the plasticizer (B) is too large, the resulting rubber cross-linked product tends to be inferior in cold resistance, and if the SP value is too small, the resulting rubber cross-linked product tends to deteriorate in gasoline permeability resistance. is there. When the plasticizer (B) having an SP value of 8.0 to 10.2 (cal / cm 3 ) 1/2 is used, the resulting rubber cross-linked product has excellent cold resistance and excellent gasoline permeability resistance. It becomes.

このような可塑剤(B)の具体例(SP値の単位は「(cal/cm1/2」)としては、たとえば、アジピン酸ジブトキシエチル(SP値:8.8)、アジピン酸ジ(ブトキシエトキシエチル)(SP値:9.2)などのアジピン酸とエーテル結合含有アルコールとのエステル化合物;アゼライン酸ジブトキシエチル、アゼライン酸ジ(ブトキシエトキシエチル)などのアゼライン酸とエーテル結合含有アルコールとのエステル化合物;セバシン酸ジブトキシエチル、セバシン酸ジ(ブトキシエトキシエチル)などのセバシン酸とエーテル結合含有アルコールとのエステル化合物;フタル酸ジブトキシエチル、フタル酸ジ(ブトキシエトキシエチル)などのフタル酸とエーテル結合含有アルコールとのエステル化合物;イソフタル酸ジブトキシエチル、イソフタル酸ジ(ブトキシエトキシエチル)などのイソフタル酸とエーテル結合含有アルコールとのエステル化合物;アジピン酸ジ−(2−エチルヘキシル)(SP値:8.5)、アジピン酸ジイソデシル(SP値:8.3)、アジピン酸ジイソノニル、アジピン酸ジブチル(SP値:8.9)などのアジピン酸ジアルキルエステル類;アゼライン酸ジ−(2−エチルヘキシル)(SP値:8.5)、アゼライン酸ジイソオクチル、アゼライン酸ジ−n−ヘキシルなどのアゼライン酸ジアルキルエステル類;セバシン酸ジ−n−ブチル(SP値:8.7)、セバシン酸ジ−(2−エチルヘキシル)(SP値:8.4)などのセバシン酸ジアルキルエステル類;フタル酸ジブチル(SP値:9.4)、フタル酸ジ−(2−エチルヘキシル)(SP値:9.0)、フタル酸ジ−n−オクチル、フタル酸ジイソブチル、フタル酸ジヘプチル(SP値:9.0)、フタル酸ジイソデシル(SP値:8.5)、フタル酸ジウンデシル(SP値:8.5)、フタル酸ジイソノニル(SP値:8.9)などのフタル酸ジアルキルエステル類;フタル酸ジシクロヘキシルなどのフタル酸ジシクロアルキルエステル類;フタル酸ジフェニル、フタル酸ブチルベンジル(SP値:10.2)などのフタル酸アリールエステル類;イソフタル酸ジ−(2−エチルヘキシル)、イソフタル酸ジイソオクチルなどのイソフタル酸ジアルキルエステル類;テトラヒドロフタル酸ジ−(2−エチルヘキシル)、テトラヒドロフタル酸ジ−n−オクチル、テトラヒドロフタル酸ジイソデシルなどのテトラヒドロフタル酸ジアルキルエステル類;トリメリット酸トリ−(2−エチルヘキシル)(SP値:8.9)、トリメリット酸トリ−n−オクチル(SP値:8.9)、トリメリット酸トリイソデシル(SP値:8.4)、トリメリット酸トリイソオクチル、トリメリット酸トリ−n−ヘキシル、トリメリット酸トリイソノニル(SP値:8.8)、トリメリット酸トリイソデシル(SP値:8.8)などのトリメリット酸誘導体;エポキシ化大豆油(SP値:9.0)、エポキシ化アマニ油(SP値:9.3)などのエポキシ系可塑剤;トリクレジルホスフェート(SP値:9.7)などのリン酸エステル系可塑剤;などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。 Specific examples of such a plasticizer (B) (the unit of SP value is “(cal / cm 3 ) 1/2 ”) include, for example, dibutoxyethyl adipate (SP value: 8.8), adipic acid Ester compound of adipic acid such as di (butoxyethoxyethyl) (SP value: 9.2) and ether bond-containing alcohol; azelaic acid such as dibutoxyethyl azelate, azelaic acid di (butoxyethoxyethyl) and ether bond Ester compounds with alcohols; ester compounds of sebacic acid and ether-bonded alcohols such as dibutoxyethyl sebacate and di (butoxyethoxyethyl) sebacate; dibutoxyethyl phthalate, di (butoxyethoxyethyl) phthalate, etc. Ester compound of phthalic acid and ether bond-containing alcohol; isophthalic acid Ester compounds of isophthalic acid such as dibutoxyethyl and di (butoxyethoxyethyl) isophthalate and alcohols containing an ether bond; di- (2-ethylhexyl) adipate (SP value: 8.5), diisodecyl adipate (SP value) : 8.3), diisononyl adipate, dialkyl esters of adipate such as dibutyl adipate (SP value: 8.9); di- (2-ethylhexyl) azelate (SP value: 8.5), diisooctyl azelate , Azelaic acid dialkyl esters such as azelaic acid di-n-hexyl; di-n-butyl sebacate (SP value: 8.7), di- (2-ethylhexyl) sebacate (SP value: 8.4), etc. Of dialkyl esters of sebacic acid: dibutyl phthalate (SP value: 9.4), di- (2-ethylhexyl phthalate) (SP value: 9.0), di-n-octyl phthalate, diisobutyl phthalate, diheptyl phthalate (SP value: 9.0), diisodecyl phthalate (SP value: 8.5), diundecyl phthalate (SP value: 8.5), dialkyl phthalates such as diisononyl phthalate (SP value: 8.9); dicycloalkyl phthalates such as dicyclohexyl phthalate; diphenyl phthalate, butylbenzyl phthalate ( SP value: 10.2) phthalic acid aryl esters; isophthalic acid di- (2-ethylhexyl), isophthalic acid dialkyl esters such as diisooctyl isophthalic acid; tetrahydrophthalic acid di- (2-ethylhexyl), tetrahydrophthalic acid Tetrahydro, such as di-n-octyl and diisodecyl tetrahydrophthalate Lophthalic acid dialkyl esters; trimellitic acid tri- (2-ethylhexyl) (SP value: 8.9), trimellitic acid tri-n-octyl (SP value: 8.9), trimellitic acid triisodecyl (SP value: 8.4), trimellitic acid such as triisooctyl trimellitic acid, tri-n-hexyl trimellitic acid, triisononyl trimellitic acid (SP value: 8.8), triisodecyl trimellitic acid (SP value: 8.8) Acid derivatives; epoxy plasticizers such as epoxidized soybean oil (SP value: 9.0), epoxidized linseed oil (SP value: 9.3); phosphorus such as tricresyl phosphate (SP value: 9.7) And acid ester plasticizers. These can be used individually by 1 type or in combination of multiple types.

これらのなかでも、得られる架橋物の耐寒性と耐ガソリン透過性とを良好なものとすることができることから、アジピン酸、アゼライン酸、セバシン酸およびフタル酸などの二塩基酸と、エーテル結合含有アルコールとのエステル化合物が好ましく、アジピン酸とエーテル結合含有アルコールとのエステル化合物がより好ましく、アジピン酸ジ(ブトキシエトキシエチル)が特に好ましい。   Among these, since the cold resistance and gasoline permeation resistance of the resulting cross-linked product can be improved, dibasic acids such as adipic acid, azelaic acid, sebacic acid and phthalic acid, and an ether bond are contained. An ester compound with an alcohol is preferred, an ester compound of adipic acid and an ether bond-containing alcohol is more preferred, and di (butoxyethoxyethyl) adipate is particularly preferred.

本発明のニトリルゴム組成物における可塑剤(B)の含有割合は、重合体成分(A)100重量部に対し、0.1〜200重量部であり、好ましくは1〜150重量部、より好ましくは2〜100重量部、特に好ましくは5〜50重量部である。可塑剤(B)の含有量が上記範囲にある場合に、ブリードが防止できることに加えて、本発明の効果がより一層顕著なものとなる。   The content of the plasticizer (B) in the nitrile rubber composition of the present invention is 0.1 to 200 parts by weight, preferably 1 to 150 parts by weight, more preferably 100 parts by weight of the polymer component (A). Is 2 to 100 parts by weight, particularly preferably 5 to 50 parts by weight. When the content of the plasticizer (B) is in the above range, in addition to preventing bleeding, the effect of the present invention becomes even more remarkable.

熱可塑性樹脂
本発明のニトリルゴム組成物は、本発明の効果を阻害しない範囲で、ニトリルゴム(a)および重合体(b)に加えて、他のゴムや重合体を含有することができるが、ポリ塩化ビニル樹脂およびアクリル樹脂からなる群より選ばれる少なくとも一種の熱可塑性樹脂をさらに有することが好ましい。ポリ塩化ビニル樹脂およびアクリル樹脂からなる群より選ばれる少なくとも一種の熱可塑性樹脂を含有することにより、ゴム架橋物とした場合に、耐オゾン性がより一層改善されたものとすることができる。
Thermoplastic resin The nitrile rubber composition of the present invention can contain other rubbers and polymers in addition to the nitrile rubber (a) and the polymer (b) as long as the effects of the present invention are not impaired. It is preferable to further have at least one thermoplastic resin selected from the group consisting of polyvinyl chloride resin and acrylic resin. By containing at least one thermoplastic resin selected from the group consisting of a polyvinyl chloride resin and an acrylic resin, ozone resistance can be further improved when a rubber cross-linked product is obtained.

本発明に用いられるポリ塩化ビニル樹脂とは、樹脂を構成する主構成単量体が塩化ビニルであって、該単量体単位の含有量が好ましくは50〜100重量%、より好ましくは60〜100重量%、特に好ましくは70〜100重量%である。本発明に用いられるアクリル樹脂とは、樹脂を構成する主構成単量体が(メタ)アクリル酸アルキルエステルであって、該単量体単位の含有量が好ましくは50〜100重量%、より好ましくは60〜100重量%、特に好ましくは70〜100重量%である。アルキル基の炭素数は、好ましくは1〜20、より好ましくは1〜18、特に好ましくは1〜10である。   With the polyvinyl chloride resin used in the present invention, the main constituent monomer constituting the resin is vinyl chloride, and the content of the monomer unit is preferably 50 to 100% by weight, more preferably 60 to 100% by weight, particularly preferably 70 to 100% by weight. In the acrylic resin used in the present invention, the main constituent monomer constituting the resin is a (meth) acrylic acid alkyl ester, and the content of the monomer unit is preferably 50 to 100% by weight, more preferably Is 60 to 100% by weight, particularly preferably 70 to 100% by weight. Carbon number of an alkyl group becomes like this. Preferably it is 1-20, More preferably, it is 1-18, Most preferably, it is 1-10.

これらの熱可塑性樹脂の平均粒径は、好ましくは0.01μm〜1mm、より好ましくは0.05〜100μm、特に好ましくは0.1〜10μmである。平均粒径の測定は、レーザー回折の散乱式粒子径分布測定装置による。樹脂の平均粒径が小さすぎるとゴム架橋物の耐オゾン性が低下するおそれがあり、逆に、大きすぎると混練時に分散不良が発生する可能性がある。   The average particle diameter of these thermoplastic resins is preferably 0.01 μm to 1 mm, more preferably 0.05 to 100 μm, and particularly preferably 0.1 to 10 μm. The average particle size is measured by a laser diffraction scattering particle size distribution measuring device. If the average particle size of the resin is too small, the ozone resistance of the rubber cross-linked product may be reduced. Conversely, if it is too large, poor dispersion may occur during kneading.

また、熱可塑性樹脂のTg(ガラス転移温度)は、50〜180℃であることが好ましく、アクリル樹脂のTgが60〜150℃であることが特に好ましい。   Moreover, it is preferable that Tg (glass transition temperature) of a thermoplastic resin is 50-180 degreeC, and it is especially preferable that Tg of an acrylic resin is 60-150 degreeC.

ポリ塩化ビニル樹脂とアクリル樹脂の重合度または分子量は、特に限定されないが、ポリ塩化ビニル樹脂では、JIS K6721に規定の溶液粘度法による平均重合度が、好ましくは400〜3,000、より好ましくは600〜2,000である。アクリル樹脂では、テトラヒドロフランを溶剤とするゲルパーミエーションクロマトグラフィ(GPC)による標準ポリスチレン換算の数平均分子量が、好ましくは10,000〜7,000,000、より好ましくは100,000〜2,000,000である。   The polymerization degree or molecular weight of the polyvinyl chloride resin and the acrylic resin is not particularly limited, but in the case of the polyvinyl chloride resin, the average polymerization degree according to the solution viscosity method defined in JIS K6721 is preferably 400 to 3,000, more preferably 600-2,000. In the acrylic resin, the number average molecular weight in terms of standard polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent is preferably 10,000 to 7,000,000, more preferably 100,000 to 2,000,000. It is.

重合度または分子量が小さすぎるとゴム架橋物の耐オゾン性が悪化するおそれがあり、逆に、大きすぎると成型加工性に劣る場合がある。   If the degree of polymerization or the molecular weight is too small, the ozone resistance of the rubber cross-linked product may be deteriorated. Conversely, if it is too large, the moldability may be inferior.

ポリ塩化ビニル樹脂およびアクリル樹脂からなる群より選ばれる少なくとも一種の熱可塑性樹脂の含有量は、重合体成分(A)100重量部に対して、好ましくは10〜100重量部、より好ましくは20〜85重量部、特に好ましくは30〜70重量部である。ポリ塩化ビニル樹脂およびアクリル樹脂からなる群より選ばれる少なくとも一種の熱可塑性樹脂の含有量が少なすぎると、その添加効果が得難くなる。一方、多すぎると耐寒性が悪化するおそれがある。   The content of at least one thermoplastic resin selected from the group consisting of a polyvinyl chloride resin and an acrylic resin is preferably 10 to 100 parts by weight, more preferably 20 to 100 parts by weight with respect to 100 parts by weight of the polymer component (A). 85 parts by weight, particularly preferably 30 to 70 parts by weight. If the content of at least one thermoplastic resin selected from the group consisting of polyvinyl chloride resin and acrylic resin is too small, it is difficult to obtain the effect of addition. On the other hand, if too much, cold resistance may be deteriorated.

無機充填剤
本発明のニトリルゴム組成物においては、得られるゴム架橋物にガソリンの浸透遮断効果を高めるために、アスペクト比が30〜2,000である無機充填剤を、重合体成分(A)100重量部に対して1〜100重量部の割合で含有させることが好ましい。アスペクト比が上記範囲にある無機充填剤は、扁平状の板状充填剤であり、これを上記重合体成分(A)および可塑剤(B)と組み合わせることにより、得られる架橋物を、耐ガソリン透過性および機械的強度を良好なものとしながら、耐寒性に優れたものとすることができる。アスペクト比が小さすぎると、得られるゴム架橋物の耐ガソリン透過性が悪化してしまう。一方、大きすぎると、ニトリルゴム組成物中への分散が困難となり、ゴム架橋物の機械的強度が低下してしまう。アスペクト比は、より好ましくは100〜1,500、特に好ましくは200〜1,000である。
Inorganic filler In the nitrile rubber composition of the present invention, an inorganic filler having an aspect ratio of 30 to 2,000 is added to the polymer component (A) in order to enhance the penetration blocking effect of gasoline on the obtained rubber cross-linked product. It is preferable to contain in the ratio of 1-100 weight part with respect to 100 weight part. The inorganic filler having an aspect ratio in the above range is a flat plate-like filler. By combining this with the polymer component (A) and the plasticizer (B), the resulting cross-linked product is converted into gasoline-resistant. While the permeability and mechanical strength are good, the cold resistance can be excellent. When the aspect ratio is too small, the gasoline permeation resistance of the resulting rubber cross-linked product is deteriorated. On the other hand, if it is too large, it will be difficult to disperse in the nitrile rubber composition, and the mechanical strength of the crosslinked rubber will decrease. The aspect ratio is more preferably 100 to 1,500, and particularly preferably 200 to 1,000.

無機充填剤のアスペクト比は、無機充填剤の一次粒子の面平均径と平均厚みの比を求めることにより算出することができる。ここで、面平均径および平均厚みは原子間力顕微鏡で無作為に選んだ100個の無機充填剤の面方向の径と厚みとを測定し、その算術平均値として算出される個数平均の値である。   The aspect ratio of the inorganic filler can be calculated by determining the ratio between the average surface diameter and the average thickness of the primary particles of the inorganic filler. Here, the surface average diameter and the average thickness are the values of the number average calculated by measuring the surface diameter and thickness of 100 inorganic fillers randomly selected with an atomic force microscope and calculating the arithmetic average value thereof. It is.

無機充填剤の平均粒径(平均一次粒子径)は、好ましくは0.001〜20μm、より好ましくは0.005〜15μm、さらに好ましくは0.01〜10μmである。本発明においては、無機充填剤の平均粒径は、X線透過法で粒度分布を測定することにより求められる50%体積累積径で定義される。無機充填剤の平均粒径が小さすぎると、得られるゴム架橋物の伸びが低下するおそれがあり、逆に、大きすぎると安定なラテックス組成物が調製できない可能性がある。   The average particle diameter (average primary particle diameter) of the inorganic filler is preferably 0.001 to 20 μm, more preferably 0.005 to 15 μm, and still more preferably 0.01 to 10 μm. In the present invention, the average particle size of the inorganic filler is defined as a 50% volume cumulative diameter obtained by measuring the particle size distribution by the X-ray transmission method. If the average particle size of the inorganic filler is too small, the elongation of the resulting rubber cross-linked product may be reduced. Conversely, if it is too large, a stable latex composition may not be prepared.

アスペクト比が30〜2,000である無機充填剤としては、特に限定されず、天然物由来のものであっても、天然物に精製などの処理を加えたものであっても、合成品であってもよい。具体例としては、カオリナイトやハロサイトなどのカオリナイト類;モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スティブンサイト、マイカなどのスメクタイト類;およびバーミキュライト類;緑泥石類;タルク;EガラスまたはCガラスなどの無定形板状粒子であるガラスフレークなどが挙げられる。中でもスメクタイト類が好ましく、モンモリロナイト、マイカおよびサポナイトが特に好ましい。   The inorganic filler having an aspect ratio of 30 to 2,000 is not particularly limited, and it may be a natural product or a synthetic product, regardless of whether it is derived from a natural product or a natural product subjected to a treatment such as purification. There may be. Specific examples include kaolinites such as kaolinite and halosite; smectites such as montmorillonite, beidellite, nontronite, saponite, hectorite, stevensite, mica; and vermiculites; chlorite; talc; E Examples thereof include glass flakes which are amorphous plate-like particles such as glass or C glass. Of these, smectites are preferable, and montmorillonite, mica, and saponite are particularly preferable.

ここで、上記のうち、モンモリロナイトは、ベントナイトに主成分として含有されるものである。そのため、モンモリロナイトとしては、ベントナイトを、好ましくは精製することにより得られるものなどを用いることができる。   Here, among the above, montmorillonite is contained as a main component in bentonite. Therefore, as montmorillonite, bentonite, preferably obtained by purifying can be used.

無機充填剤の含有割合は、重合体成分(A)100重量部に対して、好ましくは1〜100重量部であり、より好ましくは3〜75重量部、特に好ましくは5〜50重量部である。無機充填剤の含有量が少なすぎると、耐ガソリン透過性が悪化する傾向にある。一方、含有量が多すぎると、得られるゴム架橋物の伸びが低下する傾向にある。   The content of the inorganic filler is preferably 1 to 100 parts by weight, more preferably 3 to 75 parts by weight, and particularly preferably 5 to 50 parts by weight with respect to 100 parts by weight of the polymer component (A). . If the content of the inorganic filler is too small, the gasoline permeation resistance tends to deteriorate. On the other hand, when there is too much content, it exists in the tendency for the elongation of the rubber crosslinked material obtained to fall.

なお、モンモリロナイト、マイカ、サポナイトは、層間に交換性陽イオンを有する多層構造であるため、上記ニトリルゴム(A)中のカチオン性単量体単位への分散性に優れる。   Note that montmorillonite, mica, and saponite have a multilayer structure having exchangeable cations between layers, and thus have excellent dispersibility in the cationic monomer units in the nitrile rubber (A).

ニトリルゴム組成物の調製
本発明のニトリルゴム組成物の調製方法は、特に限定されないが、以下の方法で行うことが好ましい。
Preparation of Nitrile Rubber Composition The method for preparing the nitrile rubber composition of the present invention is not particularly limited, but is preferably performed by the following method.

すなわち、ニトリルゴム(a)および重合体(b)として、それぞれ乳化重合、懸濁重合などによって平均粒径が好ましくは0.05〜10μmの重合体ラテックスとして得たものを用い、両ラテックスを混合し、さらに可塑剤を水性エマルションとしてこれに加えて混合する。このラテックス組成物を、凝固させてクラムを生成させ、ろ過、洗浄、次いで乾燥することにより、先ずニトリルゴム(a)、重合体(b)および可塑剤を含有する混合物を得、この混合物に対して他の成分を混練する。この方法を採ると、ニトリルゴム(a)、重合体(b)および可塑剤が均一に混合して、可塑剤のブリードが起こり難いことに加え、耐ガソリン透過性および耐寒性に優れたゴム架橋物が得られ易い。   That is, as the nitrile rubber (a) and the polymer (b), those obtained as a polymer latex having an average particle size of preferably 0.05 to 10 μm by emulsion polymerization or suspension polymerization, respectively, are mixed. In addition, a plasticizer is added as an aqueous emulsion and mixed. The latex composition is coagulated to form a crumb, filtered, washed and then dried to obtain a mixture containing nitrile rubber (a), polymer (b) and a plasticizer. Knead the other ingredients. When this method is adopted, the nitrile rubber (a), the polymer (b) and the plasticizer are uniformly mixed, and the plasticizer is less likely to bleed, and the rubber cross-linking excellent in gasoline permeability resistance and cold resistance. Things are easy to get.

可塑剤の水性エマルションを調製する方法は特に限定はないが、可塑剤の0.5〜10重量%となる量の界面活性剤を含有する水媒体を強く撹拌しながら、可塑剤を添加して調製することが好ましい。界面活性剤としては、ロジン酸カリウム、ラウリル硫酸ナトリウム、オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステルなどのノニオン性界面活性剤;ジデシルジメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライドなどのカチオン性界面活性剤等が挙げられる。なお、水性エマルションの可塑剤濃度は、5〜70重量%とすることが好ましい。   The method for preparing the aqueous plasticizer emulsion is not particularly limited, but the plasticizer is added while vigorously stirring the aqueous medium containing the surfactant in an amount of 0.5 to 10% by weight of the plasticizer. It is preferable to prepare. Surfactants include anionic surfactants such as potassium rosinate, sodium lauryl sulfate, potassium oleate, sodium dodecylbenzenesulfonate; polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester, etc. Nonionic surfactants such as: cationic surfactants such as didecyldimethylammonium chloride and stearyltrimethylammonium chloride. In addition, it is preferable that the plasticizer density | concentration of an aqueous emulsion shall be 5-70 weight%.

ラテックス組成物の凝固方法は、特に限定されないが、塩析凝固等の公知の方法が適用される。その中でも、凝固剤を含む水溶液に、ラテックス組成物を添加して塩析させることにより行うことが好ましい。凝固剤としては、塩化カルシウム、塩化ナトリウム、水酸化カルシウム、硫酸アルミニウムおよび水酸化アルミニウムなどが挙げられる。また、凝固剤の使用量は、ニトリルゴム(a)100重量部に対して、好ましくは0.5〜150重量部、特に好ましくは0.5〜20重量部である。   The method for coagulating the latex composition is not particularly limited, but a known method such as salting out coagulation is applied. Among these, it is preferable to carry out by salting out the latex composition by adding it to an aqueous solution containing a coagulant. Examples of the coagulant include calcium chloride, sodium chloride, calcium hydroxide, aluminum sulfate, and aluminum hydroxide. The amount of the coagulant used is preferably 0.5 to 150 parts by weight, particularly preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of the nitrile rubber (a).

ここで、ニトリルゴム(a)または重合体(b)の一方または両者が、カチオン性単量体単位を含有するものである場合には、ラテックス組成物を塩析する際に、希硫酸水溶液などを添加して、凝固剤水溶液のpHをニトリル共重合体(A)のラテックス組成物の等電点以下に制御することが好ましい。凝固剤水溶液のpHを制御することにより、ニトリルゴム(a)または重合体(b)の一方または両者に含まれるカチオン性単量体単位が有する官能基のゼータ電位が上昇し、これにより、無機充填剤の分散性が向上するとともに、凝固によって得られるクラム粒径を大きなものとすることができる。クラム粒径は、凝固、洗浄工程に続く振動スクリーンやスクイーザーでの脱水度、クラム回収率、さらには乾燥工程での乾燥度に大きな影響を及ぼすものであるので、クラムの平均粒径は、0.5〜40mmであることが好ましい。クラムの洗浄、脱水および乾燥方法は、一般的なゴムの製造における洗浄・脱水方法および乾燥方法と同様である。洗浄・脱水方法としては網目状のフィルター、遠心分離機等を用いて、凝固によって得られたクラムと水とを分離させた後、洗浄し、スクイーザー等でクラムを脱水すればよい。次に一般にゴムの製造に用いられるバンドドライヤー、二軸押出機等により、所望の含水率になるまで乾燥させることにより、本発明のニトリルゴム組成物を得ることができる。また、二軸押出機内で、凝固と乾燥を同時に行ってもよい。   Here, when one or both of the nitrile rubber (a) and the polymer (b) contain a cationic monomer unit, a dilute sulfuric acid aqueous solution or the like is used when salting out the latex composition. It is preferable to control the pH of the aqueous coagulant solution to be equal to or lower than the isoelectric point of the latex composition of the nitrile copolymer (A). By controlling the pH of the aqueous solution of the coagulant, the zeta potential of the functional group of the cationic monomer unit contained in one or both of the nitrile rubber (a) and the polymer (b) is increased. The dispersibility of the filler is improved, and the crumb particle size obtained by solidification can be increased. The crumb particle size greatly affects the degree of dehydration in the vibrating screen and squeezer following the coagulation and washing process, the crumb recovery rate, and the dryness in the drying process. It is preferably 5 to 40 mm. The crumb washing, dehydration and drying methods are the same as the washing / dehydration and drying methods in general rubber production. As a washing / dehydrating method, a crumb obtained by coagulation and water may be separated using a mesh filter, a centrifugal separator, etc., then washed, and the crumb may be dehydrated with a squeezer or the like. Next, the nitrile rubber composition of the present invention can be obtained by drying to a desired moisture content by a band drier, a twin screw extruder or the like generally used for rubber production. Moreover, you may perform coagulation | solidification and drying simultaneously within a twin-screw extruder.

本発明のニトリルゴム組成物中に、ポリ塩化ビニル樹脂およびアクリル樹脂からなる群より選ばれる少なくとも一種の熱可塑性樹脂を含有させる場合には、従来から公知の乳化重合法により製造したラテックス状態のポリ塩化ビニル樹脂またはアクリル樹脂を、上記のように調製した重合体成分(A)と可塑剤(B)を含有するラテックス組成物に、混合(ラテックスブレンド)すればよい。   When the nitrile rubber composition of the present invention contains at least one thermoplastic resin selected from the group consisting of a polyvinyl chloride resin and an acrylic resin, a latex-state polymer produced by a conventionally known emulsion polymerization method is used. A vinyl chloride resin or an acrylic resin may be mixed (latex blend) with the latex composition containing the polymer component (A) and the plasticizer (B) prepared as described above.

また、上記のように調製した重合体成分(A)と可塑剤(B)を含有するラテックス組成物を凝固、乾燥して得られたゴム組成物に、ポリ塩化ビニル樹脂またはアクリル樹脂をロールやバンバリーミキサー等の混錬機で混錬してもよい。   Further, a polyvinyl chloride resin or an acrylic resin is rolled into a rubber composition obtained by coagulating and drying the latex composition containing the polymer component (A) and the plasticizer (B) prepared as described above. You may knead with kneading machines, such as a Banbury mixer.

本発明のニトリルゴム組成物中に、アスペクト比が30〜2,000である無機充填剤を含有させる方法は、特に限定されないが、上記のように調製した重合体成分(A)と可塑剤(B)を含有するラテックス組成物に、扁平状の無機充填剤の水性分散液を攪拌下で添加すればよい。   The method for incorporating the inorganic filler having an aspect ratio of 30 to 2,000 in the nitrile rubber composition of the present invention is not particularly limited, but the polymer component (A) and the plasticizer (prepared as described above) What is necessary is just to add the aqueous dispersion of a flat inorganic filler to the latex composition containing B) under stirring.

そして、ラテックス組成物を凝固させ、必要に応じて乾燥することにより得られたゴム組成物に、充填剤、老化防止剤、補強剤などの成分を添加し、ロールやバンバリーミキサー等の混錬機で混錬することにより、本発明のニトリルゴム組成物は調製される。   The rubber composition obtained by coagulating the latex composition and drying as necessary, is added with components such as filler, anti-aging agent, reinforcing agent, kneading machines such as rolls and Banbury mixers The nitrile rubber composition of the present invention is prepared by kneading with the above.

なお、本発明のニトリルゴム組成物の調製方法としては、上述した方法以外にも、たとえば、ニトリルゴム(a)のラテックスに、可塑剤、必要に応じて添加される扁平状の無機充填剤、および、必要に応じて添加されるポリ塩化ビニル樹脂もしくはアクリル樹脂の全成分、または1つ以上の成分の全量もしくはその一部を含有させ、その後に凝固・乾燥して、充填剤、老化防止剤、補強剤などの成分とをロールやバンバリーミキサー等の混錬機で混錬して得ることもできる。   As a method for preparing the nitrile rubber composition of the present invention, in addition to the method described above, for example, a plasticizer, a flat inorganic filler added as necessary to the latex of the nitrile rubber (a), In addition, all the components of polyvinyl chloride resin or acrylic resin added as necessary, or the total amount of one or more components or a part thereof are contained, and then coagulated and dried to obtain a filler and an anti-aging agent. It can also be obtained by kneading ingredients such as reinforcing agents with a kneading machine such as a roll or a Banbury mixer.

また、本発明のニトリルゴム組成物には、本発明の効果を損なわない範囲で、ニトリルゴム(a)、重合体(b)並びに上述したポリ塩化ビニル樹脂およびアクリル樹脂以外の他の重合体を含有させてもよい。ニトリルゴム(a)及び重合体(b)以外の重合体としては、特に限定されないが、アクリルゴム、エチレン−アクリル酸共重合体ゴム、フッ素ゴム、エチレン−プロピレン共重合体ゴム、エチレン−プロピレン−ジエン三元共重合体ゴム、エピクロロヒドリンゴム、ウレタンゴム、クロロプレンゴム、エチレン−酢酸ビニル共重合体、クロロスルホン化ポリエチレン、天然ゴムおよびポリイソプレンゴムなどを挙げることができる。なお、他の重合体を配合する場合における配合量は、ニトリルゴム(a)100重量部に対して、好ましくは100重量部以下、より好ましくは50重量部以下、さらに好ましくは30重量部以下、特に好ましくは10重量部以下である。   In addition, the nitrile rubber composition of the present invention includes a nitrile rubber (a), a polymer (b), and a polymer other than the above-described polyvinyl chloride resin and acrylic resin as long as the effects of the present invention are not impaired. You may make it contain. The polymer other than the nitrile rubber (a) and the polymer (b) is not particularly limited, but acrylic rubber, ethylene-acrylic acid copolymer rubber, fluororubber, ethylene-propylene copolymer rubber, ethylene-propylene- Examples thereof include diene terpolymer rubber, epichlorohydrin rubber, urethane rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, chlorosulfonated polyethylene, natural rubber, and polyisoprene rubber. The blending amount in the case of blending other polymer is preferably 100 parts by weight or less, more preferably 50 parts by weight or less, and further preferably 30 parts by weight or less, with respect to 100 parts by weight of the nitrile rubber (a). The amount is particularly preferably 10 parts by weight or less.

架橋性ニトリルゴム組成物
本発明の架橋性ニトリルゴム組成物は、本発明のニトリルゴム組成物に架橋剤を含有させてなるものである。架橋剤としては、硫黄系架橋剤、有機過酸化物架橋剤等が挙げられる。これらは一種単独でまたは複数種併せて用いることができるが、硫黄系架橋剤を用いることが好ましい。
Crosslinkable nitrile rubber composition The crosslinkable nitrile rubber composition of the present invention comprises the nitrile rubber composition of the present invention containing a crosslinking agent. Examples of the crosslinking agent include a sulfur-based crosslinking agent and an organic peroxide crosslinking agent. Although these can be used individually by 1 type or in combination of multiple types, it is preferable to use a sulfur type crosslinking agent.

硫黄系架橋剤としては、粉末硫黄、硫黄華、沈降性硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの硫黄;塩化硫黄、二塩化硫黄、モルホリンジスルフィド、アルキルフェノールジスルフィド、ジベンゾチアジルジスルフィド、N,N’−ジチオ−ビス(ヘキサヒドロ−2H−アゼノピン−2)、含リンポリスルフィド、高分子多硫化物などの含硫黄化合物;テトラメチルチウラムジスルフィド、ジメチルジチオカルバミン酸セレン、2−(4’−モルホリノジチオ)ベンゾチアゾールなどの硫黄供与性化合物;などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。   Sulfur-based crosslinking agents include powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, and other sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothiazyl disulfide, N, Sulfur-containing compounds such as N′-dithio-bis (hexahydro-2H-azenopine-2), phosphorus-containing polysulfides, polymer polysulfides; tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, 2- (4′-morpholinodithio) And sulfur donating compounds such as benzothiazole; These can be used individually by 1 type or in combination of multiple types.

有機過酸化物架橋剤としては、ジクミルペルオキシド、クメンヒドロペルオキシド、t−ブチルクミルペルオキシド、パラメンタンヒドロペルオキシド、ジ−t−ブチルペルオキシド、1,3−ビス(t−ブチルペルオキシイソプロピル)ベンゼン、1,4−ビス(t−ブチルペルオキシイソプロピル)ベンゼン、1,1−ジ−t−ブチルペルオキシ−3,3−トリメチルシクロヘキサン、4,4−ビス−(t−ブチル−ペルオキシ)−n−ブチルバレレート、2,5−ジメチル−2,5−ジ−t−ブチルペルオキシヘキサン、2,5−ジメチル−2,5−ジ−t−ブチルペルオキシヘキシン−3、1,1−ジ−t−ブチルペルオキシ−3,5,5−トリメチルシクロヘキサン、p−クロロベンゾイルペルオキシド、t−ブチルペルオキシイソプロピルカーボネート、t−ブチルペルオキシベンゾエート等が挙げられる。これらは一種単独でまたは複数種併せて用いることができる。   Examples of the organic peroxide crosslinking agent include dicumyl peroxide, cumene hydroperoxide, t-butylcumyl peroxide, paramentane hydroperoxide, di-t-butyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, 1,4-bis (t-butylperoxyisopropyl) benzene, 1,1-di-t-butylperoxy-3,3-trimethylcyclohexane, 4,4-bis- (t-butyl-peroxy) -n-butylvale 2,5-dimethyl-2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3, 1,1-di-t-butyl Peroxy-3,5,5-trimethylcyclohexane, p-chlorobenzoyl peroxide, t-butylperoxy Propyl carbonate, t- butyl peroxybenzoate, and the like. These can be used individually by 1 type or in combination of multiple types.

本発明のニトリルゴム組成物から形成される架橋性ニトリルゴム組成物中における、架橋剤の含有量は特に限定されないが、ニトリルゴム(a)および重合体(b)の合計100重量部に対して、好ましくは0.1〜10重量部、より好ましくは0.2〜5重量部である。   The content of the crosslinking agent in the crosslinkable nitrile rubber composition formed from the nitrile rubber composition of the present invention is not particularly limited, but is 100 parts by weight in total of the nitrile rubber (a) and the polymer (b). The amount is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight.

有機過酸化物架橋剤を用いる場合には、架橋助剤として、トリメチロールプロパントリメタクリレート、ジビニルベンゼン、エチレンジメタクリレート、イソシアヌル酸トリアリルなどの多官能性単量体などを併用することができる。これらの架橋助剤の使用量は特に限定されないが、ニトリルゴム(a)および重合体(b)の合計100重量部に対して、好ましくは0.5〜20重量部の範囲である。   When an organic peroxide crosslinking agent is used, a multifunctional monomer such as trimethylolpropane trimethacrylate, divinylbenzene, ethylene dimethacrylate, or triallyl isocyanurate can be used in combination as a crosslinking aid. Although the usage-amount of these crosslinking adjuvants is not specifically limited, Preferably it is the range of 0.5-20 weight part with respect to a total of 100 weight part of nitrile rubber (a) and a polymer (b).

硫黄系架橋剤を用いる場合には、亜鉛華、ステアリン酸などの架橋助剤;グアニジン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系などの架橋促進剤;を併用することができる。これらの架橋助剤および架橋促進剤の使用量も特に限定されず、ニトリルゴム(a)100重量部に対して、好ましくは0.1〜10重量部の範囲である。   When using a sulfur-based crosslinking agent, a crosslinking assistant such as zinc white or stearic acid; a crosslinking accelerator such as guanidine, aldehyde-amine, aldehyde-ammonia, thiazole, sulfenamide, thiourea Can be used in combination. The amounts of these crosslinking aids and crosslinking accelerators are not particularly limited, and are preferably in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the nitrile rubber (a).

また、本発明のニトリルゴム組成物から形成される架橋性ニトリルゴム組成物には、その他必要に応じて一般的なゴムに使用される配合剤、例えば、架橋遅延剤、老化防止剤、滑剤、粘着剤、潤滑剤、加工助剤、難燃剤、防黴剤、帯電防止剤、着色剤などの添加剤を配合してもよい。老化防止剤としては、フェノール系、アミン系、ベンズイミダゾール系、リン酸系などの老化防止剤を使用することができる。フェノール系では、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)等が、アミン系では、4,4’−ビス(α、α−ジメチルベンジル)ジフェニルアミン、N−イソプロピル−N’−フェニル−p−フェニレンジアミン等が、ベンズイミダゾール系では2−メルカプトベンズイミダゾール等が挙げられる。これらは1種単独でまたは2種以上併せて使用される。   In addition, the crosslinkable nitrile rubber composition formed from the nitrile rubber composition of the present invention includes other compounding agents used for general rubber as necessary, for example, a crosslinking retarder, an anti-aging agent, a lubricant, Additives such as pressure-sensitive adhesives, lubricants, processing aids, flame retardants, antifungal agents, antistatic agents, and coloring agents may be blended. As the anti-aging agent, an anti-aging agent such as phenol, amine, benzimidazole or phosphoric acid can be used. In the phenol system, 2,2′-methylenebis (4-methyl-6-tert-butylphenol) and the like are used, and in the amine system, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, N-isopropyl-N ′. -Phenyl-p-phenylenediamine and the like, and benzimidazole type include 2-mercaptobenzimidazole and the like. These may be used alone or in combination of two or more.

本発明の架橋性ニトリルゴム組成物の調製方法としては、特に限定されないが、上記の方法で得られたニトリルゴム組成物に、架橋剤、架橋助剤およびその他の配合剤を添加し、ロールやバンバリーミキサー等の混錬機で混錬すればよい。なお、この場合における、配合順序は特に限定されないが、熱で反応や分解しにくい成分を充分に混合した後、熱で分解しやすい成分(架橋剤、架橋促進剤など)を、分解が起こらない温度で短時間で混合すればよい。   The method for preparing the crosslinkable nitrile rubber composition of the present invention is not particularly limited, but a nitrile rubber composition obtained by the above method is added with a crosslinking agent, a crosslinking aid and other compounding agents, What is necessary is just to knead with kneading machines, such as a Banbury mixer. In this case, the blending order is not particularly limited, but components (such as a crosslinking agent and a crosslinking accelerator) that are easily decomposed by heat after sufficiently mixing components that are not easily reacted or decomposed by heat do not decompose. What is necessary is just to mix in temperature for a short time.

本発明の架橋性ニトリルゴム組成物のムーニー粘度(以下、「コンパウンド・ムーニー粘度」と記すことがある。)(ML1+4、100℃)は、好ましくは5〜300、より好ましくは10〜250である。 The crosslinkable nitrile rubber composition of the present invention has a Mooney viscosity (hereinafter sometimes referred to as “compound Mooney viscosity”) (ML 1 + 4 , 100 ° C.) of preferably 5 to 300, more preferably 10 to 250. is there.

ゴム架橋物
本発明のゴム架橋物は、上記架橋性ニトリルゴム組成物を架橋してなるものである。
Cross-linked rubber The cross-linked rubber of the present invention is obtained by cross-linking the cross-linkable nitrile rubber composition.

架橋性ニトリルゴム組成物を架橋する際には、製造する成形品(ゴム架橋物)の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、次いで架橋反応させることにより架橋物の形状を固定化する。架橋を行う際には、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10〜200℃、好ましくは25〜120℃である。架橋温度は、通常、100〜200℃、好ましくは130〜190℃であり、架橋時間は、通常、1分〜24時間、好ましくは2分〜1時間である。   When the crosslinkable nitrile rubber composition is crosslinked, it is molded by a molding machine corresponding to the shape of the molded article (rubber crosslinked product) to be produced, for example, an extruder, an injection molding machine, a compressor, a roll, etc. The shape of the crosslinked product is fixed by crosslinking reaction. When cross-linking is performed, the cross-linking may be performed after molding or may be performed simultaneously with the molding. The molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C. The crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C., and the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 1 hour.

ゴム架橋物は、その形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。   Depending on the shape, size, etc. of the rubber cross-linked product, even if the surface is cross-linked, it may not be sufficiently cross-linked to the inside. Therefore, secondary cross-linking may be performed by heating.

このようにして得られる本発明のゴム架橋物は、耐油性が良好なニトリルゴム本来の特性に加え、耐ガソリン透過性および耐寒性に優れたニトリルゴム架橋物である。   The rubber cross-linked product of the present invention thus obtained is a nitrile rubber cross-linked product excellent in gasoline permeation resistance and cold resistance in addition to the original characteristics of nitrile rubber having good oil resistance.

その結果、本発明のニトリルゴム組成物、および、その架橋物は、燃料ホース、燃料シールなど多くの分野への使用に適したものであり、また、ガソリンなど燃料の大気中への蒸散量を低減することにより環境への負荷を低減することができる効果を奏することができる。   As a result, the nitrile rubber composition of the present invention and the cross-linked product thereof are suitable for use in many fields such as fuel hoses and fuel seals, and the transpiration amount of fuel such as gasoline into the atmosphere is reduced. By reducing, the effect which can reduce the load to an environment can be show | played.

本発明のゴム架橋物は、本発明のゴム架橋物からなる層を少なくとも1つの層とする一層または二層以上からなるホースとすることにより燃料用ホースなどとして好適に用いられる。二層以上の積層体の場合においては、本発明のゴム架橋物からなる層を内層、中間層、外層のいずれに用いてもよい。積層体の他の層としては、α,β−エチレン性不飽和ニトリル単量体単位含有量が好ましくは5〜35重量%、より好ましくは18〜30重量%であるニトリルゴムのほか、該ニトリルゴムとポリ塩化ビニル樹脂またはアクリル樹脂とを含有するものや、フッ素ゴム、クロロプレンゴム、ヒドリンゴム、クロロスルホン化ポリエチレンゴム、アクリルゴム、エチレン−アクリル酸共重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン3元共重合体、ブチルゴム、イソプレンゴム、天然ゴム、スチレン−ブタジエン共重合体、フッ素樹脂、ポリアミド樹脂、ポリビニルアルコール、エチレン-酢酸ビニル共重合樹脂、エチレン−ビニルアルコール共重合体樹脂、ポリブチレンナフタレート、ポリフェニレンスルフィド、ポリオレフィン樹脂、ポリエステル樹脂などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。   The rubber cross-linked product of the present invention is suitably used as a fuel hose or the like by forming a hose consisting of one layer or two or more layers having at least one layer of the rubber cross-linked product of the present invention. In the case of a laminate of two or more layers, the layer made of the rubber cross-linked product of the present invention may be used for any of the inner layer, intermediate layer, and outer layer. As other layers of the laminate, in addition to the nitrile rubber having an α, β-ethylenically unsaturated nitrile monomer unit content of preferably 5 to 35% by weight, more preferably 18 to 30% by weight, the nitrile Rubber containing polyvinyl chloride resin or acrylic resin, fluoro rubber, chloroprene rubber, hydrin rubber, chlorosulfonated polyethylene rubber, acrylic rubber, ethylene-acrylic acid copolymer, ethylene-propylene copolymer, ethylene- Propylene-diene terpolymer, butyl rubber, isoprene rubber, natural rubber, styrene-butadiene copolymer, fluororesin, polyamide resin, polyvinyl alcohol, ethylene-vinyl acetate copolymer resin, ethylene-vinyl alcohol copolymer resin, Polybutylene naphthalate, polyphenylene sulfide, poly Olefin resins, and polyester resins. These can be used individually by 1 type or in combination of multiple types.

また、必要に応じて、本発明のゴム架橋物からなる層と、他の層を接着させるために、本発明のゴム架橋物からなる層と、他の層のいずれか/または両方にホスニウム塩、1,8−ジアザビシクロ(5.4.0)ウンデセン−7塩(DBU塩)、1,5−ジアザビシクロ(4.3.0)−ノネン−5塩(DBN塩)などを含有させてもよい。   Further, if necessary, in order to adhere the layer made of the rubber cross-linked product of the present invention and the other layer, a phosnium salt is present in either / or both of the layer made of the rubber cross-linked product of the present invention and the other layer. 1,8-diazabicyclo (5.4.0) undecene-7 salt (DBU salt), 1,5-diazabicyclo (4.3.0) -nonene-5 salt (DBN salt), and the like. .

上述の構成を有する、本発明のゴム架橋物を含むホースを製造する方法は、特に限定されないが、押出機などを用いて筒状に成形し、それを架橋することによりホースを製造することができる。本発明のニトリルゴム組成物から形成される架橋性ニトリルゴム組成物は、マンドレルクラックが発生しにくいという性質を有しているため、マンドレルを用いて製造することができる。すなわち、ホースを、本発明のニトリルゴム架橋物のみからなる単層のものとする場合には、まず、本発明のニトリルゴム組成物から形成される架橋性ニトリルゴム組成物を筒状に成形し、得られた筒状の成形体にマンドレルを挿入することにより形状を固定し、架橋性ニトリルゴム組成物を架橋させることにより製造することができる。   The method for producing the hose including the rubber cross-linked product of the present invention having the above-described configuration is not particularly limited, but the hose can be produced by forming into a cylindrical shape using an extruder or the like and crosslinking it. it can. The crosslinkable nitrile rubber composition formed from the nitrile rubber composition of the present invention has the property that mandrel cracks are unlikely to occur, and therefore can be produced using a mandrel. That is, when the hose is a single layer made only of the crosslinked nitrile rubber of the present invention, the crosslinkable nitrile rubber composition formed from the nitrile rubber composition of the present invention is first molded into a cylindrical shape. The shape can be fixed by inserting a mandrel into the obtained cylindrical molded body, and the crosslinkable nitrile rubber composition can be crosslinked.

本発明のゴム架橋物は、パッキン、ガスケット、O−リング、オイルシール等のシール部材;オイルホース、燃料ホース、インレットホース、ガスホース、ブレーキホース、冷媒ホース等のホース類;ダイアフラム類;アキュムレータプラダ;ブーツ類;などに好適である。上記ガスホースのガスとしては、空気、窒素、酸素、水素、二酸化炭素、一酸化炭素、メタン、エタン、プロパン、ジメチルエーテル、LPG、水蒸気等が挙げられる。   The rubber cross-linked product of the present invention includes seal members such as packing, gasket, O-ring and oil seal; hoses such as oil hose, fuel hose, inlet hose, gas hose, brake hose and refrigerant hose; diaphragms; accumulator prada; Suitable for boots; Examples of the gas of the gas hose include air, nitrogen, oxygen, hydrogen, carbon dioxide, carbon monoxide, methane, ethane, propane, dimethyl ether, LPG, and water vapor.

以下に、実施例および比較例を挙げて、本発明についてより具体的に説明するが、本発明はこの実施例に限られるものではない。物性および特性の試験または評価方法は以下のとおりである。なお、以下において「部」は、「重量部」の意味である。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples. Tests or evaluation methods for physical properties and characteristics are as follows. In the following, “part” means “part by weight”.

(1)ムーニー粘度(ポリマームーニー粘度)〔ML1+4(100℃)〕
ポリマームーニー粘度〔ML1+4(100℃)〕は、JIS K6300によって測定した。
(1) Mooney viscosity (polymer Mooney viscosity) [ML 1 + 4 (100 ° C.)]
The polymer Mooney viscosity [ML 1 + 4 (100 ° C.)] was measured according to JIS K6300.

(2)常態物性(引張強さ、伸び、100%引張応力、硬さ)
ニトリルゴム組成物を縦15cm、横15cm、深さ0.2cmの金型に入れ、10MPaに加圧しながら160℃で20分間プレス成形してシート状ゴム架橋物を得た。得られたシート状ゴム架橋物をJIS3号形ダンベルで打ち抜いて試験片を作製した。架橋物の引張強さ、伸びおよび100%引張応力は、これらの試験片を用いて、JIS K6251に従って、測定した。また、架橋物の硬さは、JIS K6253に従い、デュロメータ硬さ試験機タイプAを用いて、測定した。
(2) Normal physical properties (tensile strength, elongation, 100% tensile stress, hardness)
The nitrile rubber composition was put into a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and press-molded at 160 ° C. for 20 minutes while applying pressure of 10 MPa to obtain a sheet-like rubber cross-linked product. The obtained sheet-like rubber cross-linked product was punched with a JIS No. 3 dumbbell to prepare a test piece. The tensile strength, elongation and 100% tensile stress of the crosslinked product were measured according to JIS K6251 using these test pieces. The hardness of the crosslinked product was measured using a durometer hardness tester type A in accordance with JIS K6253.

(3)耐寒性
耐寒性は、上記(2)と同様にして得たシート状ゴム架橋物につき、JIS K6261に従い、脆化温度(℃)を測定した。脆化温度が低いほど、耐寒性に優れる。
(3) Cold resistance For cold resistance, the brittle temperature (° C.) was measured according to JIS K6261 for the sheet-like rubber cross-linked product obtained in the same manner as (2) above. The lower the embrittlement temperature, the better the cold resistance.

(4)耐ガソリン透過性
試験用燃料油CE−20(容積比:イソオクタン/トルエン/エタノール=40/40/20)を用いてアルミカップ法により、ガソリン透過量を測定した。すなわち、100ml容量のアルミニウム製のカップに50mlの試験用燃料油CE−20を入れ、これに直径61mmの円板状に切り取った厚さ2mmの上記(2)と同様にして得たシート状ゴム架橋物で蓋をし、締め具で該試験片によりアルミカップ内外を隔てる面積が25.50cmになるように調整し、該アルミカップを23℃の恒温槽内にて放置し、24時間毎に重量測定することにより、24時間毎の試験用燃料油の透過量を測定し、その最大値をガソリン透過量P(単位:g・mm/m・day)とした。ガソリン透過量が少ない程、耐ガソリン透過性に優れる。
(4) Gasoline permeation resistance Gasoline permeation was measured by an aluminum cup method using test fuel oil CE-20 (volume ratio: isooctane / toluene / ethanol = 40/40/20). That is, 50 ml of test fuel oil CE-20 was put into a 100 ml capacity aluminum cup, and the sheet-like rubber obtained in the same manner as (2) above having a thickness of 2 mm cut into a disk shape having a diameter of 61 mm. Cover with a cross-linked product, and adjust with a fastener so that the area separating the inside and outside of the aluminum cup is 25.50 cm 2 , and leave the aluminum cup in a constant temperature bath at 23 ° C. every 24 hours. The permeation amount of the test fuel oil every 24 hours was measured, and the maximum value was defined as the gasoline permeation amount P (unit: g · mm / m 2 · day). The smaller the gasoline permeation, the better the gasoline permeation resistance.

(5)メチルエチルケトン不溶解分
重合体1gを200mlのメチルエチルケトンに浸漬させ、23℃で24時間放置後、325メッシュ金網を用いてろ過し、ろ液を蒸発乾燥固化させ、得られた残存乾燥固形分[メチルエチルケトン可溶分:(y)g]を秤量し、下式によりメチルエチルケトン不溶解分を算出したものである。
メチルエチルケトン不溶解分(重量%)=100×(1−y)/1
(5) Methyl ethyl ketone insoluble matter 1 g of the polymer was immersed in 200 ml of methyl ethyl ketone, allowed to stand at 23 ° C. for 24 hours, filtered using a 325 mesh wire net, the filtrate was evaporated to dryness, and the resulting dry solid content was obtained. [Methyl ethyl ketone soluble matter: (y) g] was weighed, and methyl ethyl ketone insoluble matter was calculated by the following formula.
Methyl ethyl ketone insoluble matter (% by weight) = 100 × (1-y) / 1

[実施例1]
製造例1(ニトリルゴム(a1)のラテックスの製造)
反応容器に、水240部、アクリロニトリル42部およびドデシルベンゼンスルホン酸ナトリウム(乳化剤)2.5部を仕込み、温度を5℃に調整した。次いで、気相を減圧して十分に脱気してから、1,3−ブタジエン52部、重合開始剤であるパラメンタンヒドロペルオキシド0.06部、エチレンジアミン四酢酸ナトリウム0.02部、硫酸第一鉄(7水塩)0.006部およびホルムアルデヒドスルホキシル酸ナトリウム0.06部、ならびに連鎖移動剤のt−ドデシルメルカプタン1部を添加して乳化重合の1段目の反応を開始した。仕込み単量体に対する重合転化率が、42重量%に達した時点で、反応容器に1,3−ブタジエンを10部追加して、2段目の重合反応を行った。その後、仕込み全単量体に対する重合転化率が75重量%に達した時点で、ヒドロキシルアミン硫酸塩0.3部および水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収してニトリルゴム(a1)のラテックス(固形分:24重量%)を得た。
[Example 1]
Production Example 1 ( Production of latex of nitrile rubber (a1))
A reaction vessel was charged with 240 parts of water, 42 parts of acrylonitrile and 2.5 parts of sodium dodecylbenzenesulfonate (emulsifier), and the temperature was adjusted to 5 ° C. Next, after the gas phase was depressurized and sufficiently deaerated, 52 parts of 1,3-butadiene, 0.06 part of paramentane hydroperoxide as a polymerization initiator, 0.02 part of sodium ethylenediaminetetraacetate, first sulfuric acid sulfate First stage reaction of emulsion polymerization was started by adding 0.006 part of iron (7 water salt) and 0.06 part of sodium formaldehyde sulfoxylate and 1 part of t-dodecyl mercaptan as a chain transfer agent. When the polymerization conversion rate with respect to the charged monomer reached 42% by weight, 10 parts of 1,3-butadiene was added to the reaction vessel to carry out the second stage polymerization reaction. Thereafter, when the polymerization conversion ratio with respect to all charged monomers reached 75% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to stop the polymerization reaction. After the reaction was stopped, the contents of the reaction vessel were heated to 70 ° C., and the unreacted monomer was recovered by steam distillation under reduced pressure to obtain a latex of nitrile rubber (a1) (solid content: 24% by weight). It was.

上記ラテックスの一部をサンプリングし、多量のメタノールで凝固後、ろ過、乾燥してニトリルゴム(a1)を得た。得られたニトリルゴム(a1)を構成する各単量体単位の含有割合を、日本電子株式会社製FT−NMR装置(JNM−EX400WB)を用いて測定したところ、アクリロニトリル単量体単位42重量%、1,3−ブタジエン単位58重量%であった。また、ニトリルゴム(a1)のムーニー粘度(ポリマー・ムーニー粘度)は68であり、メチルエチルケトン不溶解分は0.1重量%であった。   A part of the latex was sampled, coagulated with a large amount of methanol, filtered and dried to obtain a nitrile rubber (a1). When the content ratio of each monomer unit constituting the obtained nitrile rubber (a1) was measured using an FT-NMR apparatus (JNM-EX400WB) manufactured by JEOL Ltd., 42% by weight of acrylonitrile monomer unit was obtained. The 1,3-butadiene unit was 58% by weight. Moreover, the Mooney viscosity (polymer Mooney viscosity) of the nitrile rubber (a1) was 68, and the insoluble matter in methyl ethyl ketone was 0.1% by weight.

製造例2(重合体(b1)のラテックスの製造)
反応容器に、水240部、スチレン24部、アクリロニトリル45部およびドデシルベンゼンスルホン酸ナトリウム(乳化剤)2.5部を仕込み、温度を20℃に調整した。次いで、気相を減圧して十分に脱気してから、1,3−ブタジエン31部、重合開始剤であるパラメンタンヒドロペルオキシド0.06部、エチレンジアミン四酢酸ナトリウム0.02部、硫酸第一鉄(7水塩)0.006部およびホルムアルデヒドスルホキシル酸ナトリウム0.06部、ならびに連鎖移動剤のt−ドデシルメルカプタン0.05部を添加して乳化重合の1段目の反応を開始した。仕込み全単量体に対する重合転化率が75重量%に達した時点でヒドロキシルアミン硫酸塩0.3部および水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収して重合体(b1)のラテックス(固形分:20重量%)を得た。
Production Example 2 ( Production of latex of polymer (b1))
A reaction vessel was charged with 240 parts of water, 24 parts of styrene, 45 parts of acrylonitrile and 2.5 parts of sodium dodecylbenzenesulfonate (emulsifier), and the temperature was adjusted to 20 ° C. Next, after depressurizing and sufficiently degassing the gas phase, 31 parts of 1,3-butadiene, 0.06 part of paramentane hydroperoxide as a polymerization initiator, 0.02 part of sodium ethylenediaminetetraacetate, first sulfuric acid sulfate First stage reaction of emulsion polymerization was started by adding 0.006 part of iron (7 water salt) and 0.06 part of sodium formaldehyde sulfoxylate and 0.05 part of chain transfer agent t-dodecyl mercaptan. When the polymerization conversion ratio with respect to all charged monomers reached 75% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to stop the polymerization reaction. After the reaction was stopped, the contents of the reaction vessel were heated to 70 ° C., and unreacted monomers were recovered by steam distillation under reduced pressure to obtain a latex of polymer (b1) (solid content: 20% by weight). It was.

得られた重合体(b1)を構成する各単量体単位の含有割合を、日本電子株式会社製FT−NMR装置に代えて固体NMR測定装置(ブルカー・バイオスピン株式会社製、ADVANCEIII400)を用いた以外は、製造例1と同様に測定したところ、スチレン単量体単位20重量%、アクリロニトリル単量体単位40重量%、1,3−ブタジエン単位40重量%であった。また、得られた共重合体のメチルエチルケトン不溶解分は60重量%であった。   The content ratio of each monomer unit constituting the obtained polymer (b1) was replaced with a FT-NMR apparatus manufactured by JEOL Ltd., and a solid NMR measurement apparatus (Bruker BioSpin Corporation, ADVANCE III400) was used. The amount of styrene monomer unit was 20% by weight, the amount of acrylonitrile monomer unit was 40% by weight, and the amount of 1,3-butadiene unit was 40% by weight. Further, the methyl ethyl ketone insoluble matter of the obtained copolymer was 60% by weight.

(ニトリルゴム組成物の調製)
可塑剤(B)としてのアジピン酸ジ(ブトキシエトキシエチル)[商品名「アデカサイザーRS−107」、旭電化工業社製;SP値9.2(cal/cm1/2]の50重量%水性エマルジョンを、乳化剤としてのオレイン酸カリウムを該可塑剤の2重量%使用し、強撹拌下で混合して調製した。
(Preparation of nitrile rubber composition)
50 weight of di (butoxyethoxyethyl) adipate as a plasticizer (B) [trade name “Adekasizer RS-107” manufactured by Asahi Denka Kogyo; SP value 9.2 (cal / cm 3 ) 1/2 ] A% aqueous emulsion was prepared by mixing 2% by weight of the plasticizer with potassium oleate as an emulsifier and mixing under strong agitation.

製造例1において製造したニトリルゴム(a1)のラテックスを容器内で撹拌しつつ、ニトリルゴム(a1)ラテックスの固形分(ニトリルゴム量)60部に対し、製造例2において製造した重合体(b1)のラテックス(重合体(b1)を40部含有)を添加して分散させた。   While stirring the nitrile rubber (a1) latex produced in Production Example 1 in a container, the polymer produced in Production Example 2 (b1) with respect to 60 parts of the solid content (nitrile rubber amount) of the nitrile rubber (a1) latex ) Latex (containing 40 parts of polymer (b1)) was added and dispersed.

ニトリルゴム(a1)と重合体(b1)を分散させたラテックスに、ニトリルゴム(a1)と重合体(b1)との合計100部(固形分換算)に対して、上記にて調製したアジピン酸ジ(ブトキシエトキシエチル)を含有するエマルジョン30部(可塑剤量は15部)を加えて混合・分散して、ニトリルゴム共重合体ラテックス組成物を得た。   Adipic acid prepared above with respect to a total of 100 parts (in terms of solid content) of nitrile rubber (a1) and polymer (b1) in latex in which nitrile rubber (a1) and polymer (b1) are dispersed 30 parts of an emulsion containing di (butoxyethoxyethyl) (15 parts of plasticizer) was added and mixed and dispersed to obtain a nitrile rubber copolymer latex composition.

得られたニトリルゴム共重合体ラテックス組成物を、そのラテックス組成物中のニトリルゴム(a1)と重合体(b1)との合計量に対して4重量%となる量の塩化カルシウム(凝固剤)を含有する水溶液中に、凝固中の水溶液のpHが2となるよう10%希硫酸を適宜添加してpHを調整しながら、撹拌下で注ぎ入れて凝固させニトリルゴム(a1)および重合体(b1)の混合物からなるクラムを生成させた。なお、該クラム中の重合体成分(A)におけるアクリロニトリルの含有割合は、
42重量%×(60/100)+40重量%×(40/100)=41.2重量%である。
The obtained nitrile rubber copolymer latex composition was used in an amount of 4% by weight of calcium chloride (coagulant) based on the total amount of nitrile rubber (a1) and polymer (b1) in the latex composition. 10% dilute sulfuric acid is appropriately added to the aqueous solution containing 2 to adjust the pH so that the pH of the aqueous solution during coagulation becomes 2, and the solution is poured and stirred to solidify the nitrile rubber (a1) and the polymer ( A crumb consisting of a mixture of b1) was produced. The content of acrylonitrile in the polymer component (A) in the crumb is
42 wt% x (60/100) + 40 wt% x (40/100) = 41.2 wt%.

そして、得られたクラムを濾別、水洗した後、60℃で減圧乾燥してニトリルゴム組成物を得た。   The obtained crumb was filtered and washed with water, and then dried under reduced pressure at 60 ° C. to obtain a nitrile rubber composition.

(架橋性ニトリルゴム組成物の調製およびニトリルゴム架橋物の作製)
次いで、バンバリーミキサを用いて、ニトリルゴム組成物中のニトリルゴム(a1)100部に対して、MTカーボンブラック(「ThermaxR medium thermal carbon black N990」、CANCARB社製)10部、架橋助剤としての亜鉛華5部およびステアリン酸1部を添加して50℃にて混合した。そして、この混合物をロールに移して架橋剤である325メッシュ硫黄0.5部およびテトラメチルチウラムジスルフィド(商品名「ノクセラーTT」、大内新興化学工業社製)1.5部、およびN−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーCZ」、大内新興化学工業社製、架橋促進剤)1.5部を添加して50℃で混練し、架橋性ニトリルゴム組成物を調製した。
(Preparation of crosslinkable nitrile rubber composition and production of crosslinked nitrile rubber)
Next, using a Banbury mixer, 10 parts of MT carbon black (“Thermax® medium thermal carbon black N990”, manufactured by CANCARB) per 100 parts of nitrile rubber (a1) in the nitrile rubber composition, as a crosslinking aid 5 parts of zinc white and 1 part of stearic acid were added and mixed at 50 ° C. Then, this mixture was transferred to a roll and 0.5 parts of 325 mesh sulfur as a crosslinking agent and 1.5 parts of tetramethylthiuram disulfide (trade name “Noxeller TT”, manufactured by Ouchi Shinsei Chemical Co., Ltd.), and N-cyclohexyl were used. -2-Benzothiazolylsulfenamide (trade name “Noxeller CZ”, manufactured by Ouchi Shinsei Chemical Co., Ltd., crosslinking accelerator) 1.5 parts was added and kneaded at 50 ° C. to obtain a crosslinkable nitrile rubber composition. Prepared.

得られた架橋性ニトリル共重合体ゴム組成物を架橋して得られたゴム架橋物について、常態物性(引張強さ、伸び、100%引張応力、硬さ)、耐寒性、耐ガソリン透過性の各評価を行った。結果を表1に示す。   About the rubber cross-linked product obtained by cross-linking the obtained cross-linkable nitrile copolymer rubber composition, normal properties (tensile strength, elongation, 100% tensile stress, hardness), cold resistance, gasoline permeation resistance Each evaluation was performed. The results are shown in Table 1.

[実施例2]
実施例1において、ニトリルゴムを製造する際に、乳化重合1段目の反応の仕込み単量体を、アクリロニトリル75.7部および1,3−ブタジエン22部にそれぞれ変更し、1段目の反応を開始した。仕込み単量体に対する重合転化率が、42重量%に達した時点と、60重量%に達した時点で、反応容器に1,3−ブタジエンをそれぞれ12部ずつ追加して2段目および3段目の重合反応を行った。その後、仕込み全単量体に対する重合転化率が75重量%に達した時点でヒドロキシルアミン硫酸塩0.3部および水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収してニトリルゴム(a2)のラテックス(固形分:24重量%)を得た。
[Example 2]
In Example 1, when the nitrile rubber was produced, the monomer charged for the first stage of the emulsion polymerization was changed to 75.7 parts of acrylonitrile and 22 parts of 1,3-butadiene, respectively. Started. When the polymerization conversion ratio with respect to the charged monomer reached 42% by weight and when it reached 60% by weight, 12 parts of 1,3-butadiene were added to the reaction vessel, respectively, in the second and third stages. An eye polymerization reaction was performed. Thereafter, when the polymerization conversion rate with respect to all charged monomers reached 75% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to terminate the polymerization reaction. After the reaction was stopped, the contents of the reaction vessel were heated to 70 ° C., and unreacted monomer was recovered by steam distillation under reduced pressure to obtain a nitrile rubber (a2) latex (solid content: 24% by weight). It was.

得られたニトリルゴム(a2)を構成する各単量体単位の含有割合を、製造例1と同様にして測定したところ、アクリロニトリル単量体単位50重量%、1,3−ブタジエン単位50重量%であった。また、ニトリルゴム(a2)のムーニー粘度(ポリマー・ムーニー粘度)は75であり、メチルエチルケトン不溶解分は0.2重量%であった。   When the content ratio of each monomer unit constituting the obtained nitrile rubber (a2) was measured in the same manner as in Production Example 1, acrylonitrile monomer unit 50% by weight, 1,3-butadiene unit 50% by weight. Met. Moreover, the Mooney viscosity (polymer Mooney viscosity) of the nitrile rubber (a2) was 75, and the insoluble matter in methyl ethyl ketone was 0.2% by weight.

そして、得られたニトリルゴム(a2)を用いた以外は、実施例1と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。   And the nitrile rubber composition was prepared like Example 1 except having used the obtained nitrile rubber (a2), and it evaluated similarly. The results are shown in Table 1.

[比較例1]
実施例2において、重合体(b1)のラテックスを用いずに、ニトリルゴム(a2)ラテックスの固形分(ニトリルゴム量)を100部に変更した以外は実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
[Comparative Example 1]
In Example 2, a nitrile rubber composition was used in the same manner as in Example 2 except that the latex of the polymer (b1) was not used and the solid content (nitrile rubber amount) of the nitrile rubber (a2) latex was changed to 100 parts. Were prepared and evaluated in the same manner. The results are shown in Table 1.

[比較例2]
実施例1において、ニトリルゴムを製造する際に、乳化重合1段目の反応の仕込み単量体をアクリロニトリル95.5部、1,3−ブタジエン3部にそれぞれ変更し、1段目の反応を開始した。反応開始後、仕込み単量体に対する重合転化率が、それぞれ12重量%、22重量%、32重量%、42重量%および52重量%に達した時点で、反応容器に1,3−ブタジエンをそれぞれ3部、3部、3部、4部および4部追加して2段目、3段目、4段目、5段目および6段目の重合反応を行った。その後、仕込み全単量体に対する重合転化率が60重量%に達した時点でヒドロキシルアミン硫酸塩0.3部と水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収してニトリルゴム(a3)のラテックス(固形分20重量%)を得た。ニトリルゴム(a3)は、各単量体の含有割合が、アクリロニトリル単量体単位60重量%、1,3−ブタジエン単位40重量%であり、ムーニー粘度83であった。
[Comparative Example 2]
In Example 1, when the nitrile rubber was produced, the monomer charged for the first stage of emulsion polymerization was changed to 95.5 parts of acrylonitrile and 3 parts of 1,3-butadiene, respectively, and the first stage reaction was carried out. Started. After the start of the reaction, when the polymerization conversion ratio with respect to the charged monomer reached 12% by weight, 22% by weight, 32% by weight, 42% by weight and 52% by weight, respectively, 3 parts, 3 parts, 3 parts, 4 parts and 4 parts were added to carry out the second, third, fourth, fifth and sixth stage polymerization reactions. Thereafter, when the polymerization conversion rate with respect to all charged monomers reached 60% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to stop the polymerization reaction. After stopping the reaction, the contents of the reaction vessel were heated to 70 ° C., and unreacted monomers were recovered by steam distillation under reduced pressure to obtain latex of nitrile rubber (a3) (solid content 20% by weight). . The nitrile rubber (a3) had a monomer content of 60% by weight of acrylonitrile monomer units, 40% by weight of 1,3-butadiene units, and a Mooney viscosity of 83.

そして、得られたニトリルゴム(a3)を用いた以外は、実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。   And the nitrile rubber composition was prepared like Example 2 except having used the obtained nitrile rubber (a3), and it evaluated similarly. The results are shown in Table 1.

[比較例3]
実施例1において、ニトリルゴムを製造する際に、乳化重合1段目の反応の仕込み単量体をアクリロニトリル23部、1,3−ブタジエン70部にそれぞれ変更した以外は実施例1と同様にして重合反応を行い、アクリロニトリル単量体単位30重量%、1,3−ブタジエン単位70重量%、ムーニー粘度69であるニトリルゴム(a4)を得た。そして、得られたニトリルゴム(a4)を用いた以外は、実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
[Comparative Example 3]
In Example 1, when producing nitrile rubber, the same procedure as in Example 1 was conducted except that the monomer charged in the first stage of emulsion polymerization was changed to 23 parts of acrylonitrile and 70 parts of 1,3-butadiene. A polymerization reaction was performed to obtain a nitrile rubber (a4) having an acrylonitrile monomer unit of 30% by weight, a 1,3-butadiene unit of 70% by weight and a Mooney viscosity of 69. And the nitrile rubber composition was prepared like Example 2 except having used the obtained nitrile rubber (a4), and it evaluated similarly. The results are shown in Table 1.

[比較例4]
実施例2において、ニトリルゴム(a2)ラテックスの固形分(ニトリルゴム量)を97部に、重合体(b1)のラテックスの固形分(重合体(b1)量)を3部に変更した以外は実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
[Comparative Example 4]
In Example 2, except that the solid content (nitrile rubber amount) of the nitrile rubber (a2) latex was changed to 97 parts, and the solid content (polymer (b1) amount) of the polymer (b1) latex was changed to 3 parts. A nitrile rubber composition was prepared in the same manner as in Example 2 and evaluated in the same manner. The results are shown in Table 1.

[比較例5]
実施例2において、ニトリルゴム(a2)ラテックスの固形分(ニトリルゴム量)を30部に、重合体(b1)のラテックスの固形分(重合体(b1)量)を70部に変更した以外は実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
[Comparative Example 5]
In Example 2, except that the solid content (nitrile rubber amount) of the nitrile rubber (a2) latex was changed to 30 parts, and the solid content (polymer (b1) amount) of the polymer (b1) latex was changed to 70 parts. A nitrile rubber composition was prepared in the same manner as in Example 2 and evaluated in the same manner. The results are shown in Table 1.

Figure 2011012132
Figure 2011012132

(注)(*1)アクリロニトリル、(*2)1,3−ブタジエン、(*3)2−ビニルピリジン、(*4)スチレン。表2〜5についても同じ。 (Note) (* 1) Acrylonitrile, (* 2) 1,3-butadiene, (* 3) 2-vinylpyridine, (* 4) Styrene. The same applies to Tables 2-5.

実施例2と比較例1から分かるように、重合体(b1)を配合することにより、耐寒性が向上しつつ、耐ガソリン透過性も向上するという効果がある。また、アクリロニトリルの含有割合を低くしたニトリルゴム(a1)を使用した実施例1では、耐ガソリン透過性が若干低下するものの、耐寒性は更に向上し、ほぼバランスがとれた物性が実現した。   As can be seen from Example 2 and Comparative Example 1, blending the polymer (b1) has an effect of improving the gasoline permeation resistance while improving the cold resistance. Further, in Example 1 using the nitrile rubber (a1) having a low content of acrylonitrile, although the gasoline permeation resistance was slightly lowered, the cold resistance was further improved and a substantially balanced physical property was realized.

これに対して、比較例2のように、アクリロニトリルの含有割合が本発明で規定する54重量%を超えるニトリルゴム(a3)では、耐ガソリン透過性は改善されるものの、耐寒性が−3℃しかなく、寒冷地での使用にはとても耐えないものであった。一方、比較例3のように、ニトリルゴム(a4)のアクリロニトリルの含有割合が本発明で規定する36重量%を下回ると、耐ガソリン透過性が顕著に悪化し、例えば輸送ホースなどの用途には到底使用することができない。   On the other hand, as in Comparative Example 2, in the nitrile rubber (a3) in which the content ratio of acrylonitrile exceeds 54% by weight defined in the present invention, the gasoline permeation resistance is improved, but the cold resistance is −3 ° C. However, it was very unbearable for use in cold regions. On the other hand, when the content of acrylonitrile in the nitrile rubber (a4) is less than 36% by weight as defined in the present invention as in Comparative Example 3, the gasoline permeation resistance is significantly deteriorated. For example, for applications such as transportation hoses. It cannot be used at all.

更に、比較例4のように、重合体(b1)の配合量が本発明で規定する量に満たない場合には、耐寒性はほとんど改善せず、耐ガソリン透過性も改善がみられない。また、比較例5のように重合体(b1)の配合量が本発明で規定する量を超える場合は、耐寒性が顕著に悪化するだけでなく、耐ガソリン透過性も悪化してしまうことが分かった。   Further, when the blending amount of the polymer (b1) is less than the amount specified in the present invention as in Comparative Example 4, the cold resistance is hardly improved and the gasoline permeation resistance is not improved. Moreover, when the compounding quantity of a polymer (b1) exceeds the quantity prescribed | regulated by this invention like the comparative example 5, not only cold resistance will deteriorate notably, but gasoline permeability resistance may also deteriorate. I understood.

[実施例3]
実施例1において、重合体(b1)を製造する際に、乳化重合1段目の反応の仕込み単量体を、スチレン8.5部、アクリロニトリル85部および1,3−ブタジエン6.5部にそれぞれ変更し、また、連鎖移動剤のt−ドデシルメルカプタン量を0.5部に変更して、1段目の反応を開始した。仕込み単量体に対する重合転化率が、36重量%に達した時点と、56重量%に達した時点で、反応容器に1,3−ブタジエンをそれぞれ9部ずつ追加して2段目および3段目の重合反応を行った。その後、仕込み全単量体に対する重合転化率が70重量%に達した時点でヒドロキシルアミン硫酸塩0.3部および水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収して重合体(b2)のラテックス(固形分:20重量%)を得た。
[Example 3]
In Example 1, when the polymer (b1) was produced, the monomer charged for the first stage of emulsion polymerization was added to 8.5 parts of styrene, 85 parts of acrylonitrile and 6.5 parts of 1,3-butadiene. The amount of t-dodecyl mercaptan of the chain transfer agent was changed to 0.5 part, and the first stage reaction was started. When the polymerization conversion ratio with respect to the charged monomer reaches 36% by weight and 56% by weight, 9 parts of 1,3-butadiene are added to the reaction vessel respectively in the second and third stages. An eye polymerization reaction was performed. Thereafter, when the polymerization conversion rate with respect to all charged monomers reached 70% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to terminate the polymerization reaction. After the reaction was stopped, the contents of the reaction vessel were heated to 70 ° C., and the unreacted monomer was recovered by steam distillation under reduced pressure to obtain a latex of polymer (b2) (solid content: 20% by weight). It was.

得られた重合体(b2)を構成する各単量体単位の含有割合を、製造例2と同様にして測定したところ、スチレン単量体単位10重量%、アクリロニトリル単量体単位60重量%、1,3−ブタジエン単位30重量%であった。また、得られた共重合体のメチルエチルケトン不溶解分は35重量%であった。そして、得られた重合体(b2)を用いた以外は、実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表2に示す。   When the content ratio of each monomer unit constituting the obtained polymer (b2) was measured in the same manner as in Production Example 2, the styrene monomer unit was 10% by weight, the acrylonitrile monomer unit was 60% by weight, The 1,3-butadiene unit was 30% by weight. Further, the methyl ethyl ketone insoluble matter of the obtained copolymer was 35% by weight. And the nitrile rubber composition was prepared like Example 2 except having used the obtained polymer (b2), and it evaluated similarly. The results are shown in Table 2.

[実施例4]
実施例1において、重合体(b1)を製造する際に、乳化重合1段目の反応の仕込み単量体として、1,3−ブタジエンを使用せずにスチレン7部およびアクリロニトリル93部にそれぞれ変更し、1段目の反応を開始した。仕込み単量体に対する重合転化率が、22重量%に達した時点、40重量%に達した時点および54重量%に達した時点で、反応容器にスチレンをそれぞれ6部、5部および5部追加して2段目、3段目および4段目の重合反応を行った。その後、仕込み全単量体に対する重合転化率が65重量%に達した時点でヒドロキシルアミン硫酸塩0.3部および水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収して重合体(b3)のラテックス(固形分:20重量%)を得た。得られた重合体(b3)を構成する各単量体単位の含有割合を、製造例2と同様にして測定したところ、スチレン単量体単位30重量%、アクリロニトリル単量体単位70重量%であった。また、得られた重合体のメチルエチルケトン不溶解分は56重量%であった。そして、得られた重合体(b3)を用いた以外は、実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表2に示す。
[Example 4]
In Example 1, when the polymer (b1) was produced, the preparation monomer for the first stage of emulsion polymerization was changed to 7 parts of styrene and 93 parts of acrylonitrile without using 1,3-butadiene. Then, the first stage reaction was started. When the polymerization conversion ratio with respect to the charged monomer reaches 22% by weight, 40% by weight and 54% by weight, 6 parts, 5 parts and 5 parts of styrene are added to the reaction vessel, respectively. Then, the second, third and fourth stage polymerization reactions were carried out. Thereafter, when the polymerization conversion ratio with respect to all monomers charged reached 65% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to stop the polymerization reaction. After stopping the reaction, the contents of the reaction vessel were heated to 70 ° C., and unreacted monomers were recovered by steam distillation under reduced pressure to obtain a latex (solid content: 20% by weight) of the polymer (b3). It was. When the content ratio of each monomer unit constituting the obtained polymer (b3) was measured in the same manner as in Production Example 2, the styrene monomer unit was 30% by weight and the acrylonitrile monomer unit was 70% by weight. there were. Moreover, the methyl ethyl ketone insoluble matter of the obtained polymer was 56 weight%. And the nitrile rubber composition was prepared like Example 2 except having used the obtained polymer (b3), and it evaluated similarly. The results are shown in Table 2.

[実施例5]
実施例1において、重合体(b1)を製造する際に、乳化重合1段目の反応の仕込み単量体として、スチレンを使用せずにアクリロニトリル95部および1,3−ブタジエン5部にそれぞれ変更し、また、連鎖移動剤のt−ドデシルメルカプタン量を0.5部に変更して、1段目の反応を開始した。反応開始後、仕込み単量体に対する重合転化率が、20重量%に達した時点、38重量%に達した時点および53重量%に達した時点で、反応容器に1,3−ブタジエンをそれぞれ5部、4.5部および4部追加して2段目、3段目および4段目の重合反応を行った。その後、仕込み全単量体に対する重合転化率が65重量%に達した時点でヒドロキシルアミン硫酸塩0.3部および水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収して重合体(b4)のラテックス(固形分:20重量%)を得た。
[Example 5]
In Example 1, when the polymer (b1) was produced, it was changed to 95 parts of acrylonitrile and 5 parts of 1,3-butadiene, respectively, without using styrene as a charge monomer for the first stage of emulsion polymerization. In addition, the amount of t-dodecyl mercaptan of the chain transfer agent was changed to 0.5 part, and the first stage reaction was started. After the start of the reaction, when the polymerization conversion ratio with respect to the charged monomer reached 20% by weight, reached 38% by weight, and reached 53% by weight, 1,3-butadiene was added to the reaction vessel at 5% each. Part, 4.5 parts and 4 parts were added to carry out the second, third and fourth stage polymerization reactions. Thereafter, when the polymerization conversion ratio with respect to all monomers charged reached 65% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to stop the polymerization reaction. After stopping the reaction, the contents of the reaction vessel are heated to 70 ° C., and unreacted monomers are recovered by steam distillation under reduced pressure to obtain a latex (solid content: 20% by weight) of the polymer (b4). It was.

得られた重合体(b4)を構成する各単量体単位の含有割合を、製造例2と同様にして測定したところ、アクリロニトリル単量体単位75重量%、1,3−ブタジエン単位25重量%であった。また、得られた重合体のメチルエチルケトン不溶解分は57重量%であった。そして、得られた重合体(b4)を用いた以外は、実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表2に示す。   When the content ratio of each monomer unit constituting the obtained polymer (b4) was measured in the same manner as in Production Example 2, acrylonitrile monomer unit 75% by weight, 1,3-butadiene unit 25% by weight. Met. The methyl ethyl ketone insoluble matter of the obtained polymer was 57% by weight. And the nitrile rubber composition was prepared like Example 2 except having used the obtained polymer (b4), and it evaluated similarly. The results are shown in Table 2.

[比較例6]
実施例1において、重合体(b1)を製造する際に、乳化重合1段目の反応の仕込み単量体をスチレン25部、アクリロニトリル44部および1,3−ブタジエン31部にそれぞれ変更し、また、連鎖移動剤のt−ドデシルメルカプタン量を1.0部に変更した以外は、実施例1と同様にして重合反応を行い、スチレン単量体単位20重量%、アクリロニトリル単量体単位40重量%、1,3−ブタジエン単位40重量%、メチルエチルケトン不溶解分2重量%の重合体(b5)を得た。そして、得られた重合体(b5)を用いた以外は実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表2に示す。
[Comparative Example 6]
In Example 1, when the polymer (b1) was produced, the monomer charged for the first stage of emulsion polymerization was changed to 25 parts of styrene, 44 parts of acrylonitrile and 31 parts of 1,3-butadiene, The polymerization reaction was conducted in the same manner as in Example 1 except that the amount of t-dodecyl mercaptan of the chain transfer agent was changed to 1.0 part, and the styrene monomer unit was 20% by weight and the acrylonitrile monomer unit was 40% by weight. Thus, a polymer (b5) having 40% by weight of 1,3-butadiene units and 2% by weight of insoluble matter in methyl ethyl ketone was obtained. And the nitrile rubber composition was prepared like Example 2 except having used the obtained polymer (b5), and it evaluated similarly. The results are shown in Table 2.

[比較例7]
実施例1において、重合体(b1)を製造する際に、乳化重合1段目の反応の仕込み単量体をスチレン15.5部、アクリロニトリル15.5部および1,3−ブタジエン69部にそれぞれ変更した以外は、実施例1と同様にして重合反応を行い、スチレン単量体単位10重量%、アクリロニトリル単量体単位20重量%、1,3−ブタジエン単位70重量%、メチルエチルケトン不溶解分60重量%の重合体(b6)を得た。そして、得られた重合体(b6)を用いた以外は実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表2に示す。
[Comparative Example 7]
In Example 1, when the polymer (b1) was produced, the monomer charged for the first stage of emulsion polymerization was added to 15.5 parts of styrene, 15.5 parts of acrylonitrile and 69 parts of 1,3-butadiene, respectively. Except for the change, the polymerization reaction was carried out in the same manner as in Example 1. The styrene monomer unit was 10% by weight, the acrylonitrile monomer unit was 20% by weight, the 1,3-butadiene unit was 70% by weight, and the methyl ethyl ketone insoluble matter was 60%. A weight percent polymer (b6) was obtained. And the nitrile rubber composition was prepared like Example 2 except having used the obtained polymer (b6), and it evaluated similarly. The results are shown in Table 2.

Figure 2011012132
Figure 2011012132

表2から分かるように、実施例2(再掲)、実施例3、実施例4、実施例5のように、ビニル単量体単位が50重量%以上あり、メチルエチルケトン不溶解分が20重量%以上である重合体(b1)〜(b4)を配合することにより、優れた耐寒性と優れた耐ガソリン透過性を併せて実現することができた。   As can be seen from Table 2, as in Example 2 (repost), Example 3, Example 4, and Example 5, the vinyl monomer unit is 50% by weight or more, and the methyl ethyl ketone insoluble matter is 20% by weight or more. By blending the polymers (b1) to (b4), excellent cold resistance and excellent gasoline permeation resistance could be realized.

これに対して、メチルエチルケトン不溶解分が2重量%である重合体(b5)を配合した比較例6では、耐ガソリン透過性は悪化し、600(g・mm/m・day)を超えてしまった。また、ビニル単量体単位が50重量%未満である重合体(b6)を配合した比較例7でも、耐ガソリン透過性が悪化し、800(g・mm/m・day)を超えてしまった。 On the other hand, in Comparative Example 6 in which the polymer (b5) having a methylethylketone insoluble content of 2% by weight was blended, the gasoline permeation resistance deteriorated and exceeded 600 (g · mm / m 2 · day). Oops. Further, even in Comparative Example 7 in which the polymer (b6) having a vinyl monomer unit of less than 50% by weight was blended, the gasoline permeation resistance deteriorated and exceeded 800 (g · mm / m 2 · day). It was.

[比較例8]
実施例2において、可塑剤(B)を使用しなかった以外は実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表3に示した。
[Comparative Example 8]
In Example 2, a nitrile rubber composition was prepared and evaluated in the same manner as in Example 2 except that the plasticizer (B) was not used. The results are shown in Table 3.

[比較例9]
可塑剤として、HOY法によるSP値が7.8(cal/cm1/2であるアルキルナフテンオイル(C10−C2n+1(n=16〜18)(製品名:バーレルプロセス油B−28N、松村石油社)を使用した以外は、実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表3に示した。
[Comparative Example 9]
Alkyl naphthenic oil (C 10 H 7 -C n H 2n + 1 (n = 16-18) (product name: Barrel Process) having an SP value of 7.8 (cal / cm 3 ) 1/2 as a plasticizer A nitrile rubber composition was prepared and evaluated in the same manner as in Example 2 except that Oil B-28N (Matsumura Oil Co., Ltd.) was used, and the results are shown in Table 3.

[比較例10]
可塑剤として、HOY法によるSP値が10.5(cal/cm1/2であるフタル酸ジメチル(製品名:DMF、大八化学工業社)を使用した以外は、実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表3に示した。
[Comparative Example 10]
The same as in Example 2 except that dimethyl phthalate (product name: DMF, Daihachi Chemical Industry Co., Ltd.) having an SP value of 10.5 (cal / cm 3 ) 1/2 by the HOY method was used as the plasticizer. A nitrile rubber composition was prepared and evaluated in the same manner. The results are shown in Table 3.

Figure 2011012132
Figure 2011012132

表3から、SP値が7.8である可塑剤を配合した比較例9では、耐寒性の改善効果が少ないことに加えて、耐ガソリン透過性が顕著に悪化し、使用に耐えなかった。他方、比較例10のように、SPが10.5である可塑剤を配合すると、耐寒性が更に悪化すると同時に、耐ガソリン透過性も悪化した。また、可塑剤を配合しない比較例8では、耐寒性が悪化した。結局、SP値が8.0〜10.2である可塑剤(B)を配合する場合(実施例2)にのみ、耐寒性と耐ガソリン透過性の両方に優れたものであった。   From Table 3, in Comparative Example 9 in which a plasticizer having an SP value of 7.8 was blended, in addition to having little effect of improving cold resistance, the gasoline permeability resistance was remarkably deteriorated and could not be used. On the other hand, when a plasticizer with SP of 10.5 was blended as in Comparative Example 10, the cold resistance was further deteriorated and the gasoline permeability resistance was also deteriorated. Further, in Comparative Example 8 in which no plasticizer was blended, the cold resistance deteriorated. After all, only when the plasticizer (B) having an SP value of 8.0 to 10.2 was blended (Example 2), it was excellent in both cold resistance and gasoline permeability resistance.

[実施例6]
実施例1において、ニトリルゴムを製造する際に、乳化重合1段目の反応の仕込み単量体を、アクリロニトリル75.7部、1,3−ブタジエン22部、2−ビニルピリジン2.2部にそれぞれ変更し、1段目の反応を開始した。仕込み単量体に対する重合転化率が、42重量%に達した時点と、60重量%に達した時点で、反応容器に1,3−ブタジエンをそれぞれ12部ずつ追加して2段目および3段目の重合反応を行った。その後、仕込み全単量体に対する重合転化率が75重量%に達した時点でヒドロキシルアミン硫酸塩0.3部および水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収してニトリルゴム(a5)のラテックス(固形分:24重量%)を得た。
[Example 6]
In Example 1, when the nitrile rubber was produced, the monomer charged for the first stage of the emulsion polymerization was changed to 75.7 parts of acrylonitrile, 22 parts of 1,3-butadiene, and 2.2 parts of 2-vinylpyridine. Each change was made and the first stage reaction was started. When the polymerization conversion ratio with respect to the charged monomer reached 42% by weight and when it reached 60% by weight, 12 parts of 1,3-butadiene were added to the reaction vessel, respectively, in the second and third stages. An eye polymerization reaction was performed. Thereafter, when the polymerization conversion rate with respect to all charged monomers reached 75% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to terminate the polymerization reaction. After the reaction was stopped, the contents of the reaction vessel were heated to 70 ° C., and the unreacted monomer was recovered by steam distillation under reduced pressure to obtain a latex of nitrile rubber (a5) (solid content: 24% by weight). It was.

得られたニトリルゴム(a5)を構成する各単量体単位の含有割合を、製造例1と同様にして測定したところ、アクリロニトリル単量体単位50重量%、2−ビニルピリジン2重量%、1,3−ブタジエン単位48重量%であった。また、ニトリルゴム(a5)のムーニー粘度(ポリマー・ムーニー粘度)は73であり、メチルエチルケトン不溶解分は0.4重量%であった。そして、得られたニトリルゴム(a5)を用いた以外は、実施例1と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表4に示す。   When the content ratio of each monomer unit constituting the obtained nitrile rubber (a5) was measured in the same manner as in Production Example 1, 50% by weight of acrylonitrile monomer unit, 2% by weight of 2-vinylpyridine, 1% , 3-butadiene unit was 48% by weight. Moreover, the Mooney viscosity (polymer Mooney viscosity) of the nitrile rubber (a5) was 73, and the methyl ethyl ketone insoluble matter was 0.4% by weight. And the nitrile rubber composition was prepared like Example 1 except having used the obtained nitrile rubber (a5), and it evaluated similarly. The results are shown in Table 4.

[実施例7]
(ポリ塩化ビニル樹脂のラテックスの製造)
耐圧反応容器に、水120部、ラウリル硫酸ナトリウム0.8部および過硫酸カリウム0.06部を仕込んで、減圧脱気を2回くり返した後、塩化ビニルを100部仕込み、撹拌しつつ加温して47℃にて乳化重合を行った。重合転化率が90%に達した後、室温に冷却して未反応単量体を除去した。得られたポリ塩化ビニル樹脂ラテックスの濃度は、41重量%であった。ポリ塩化ビニル樹脂の遠心沈降濁度法による平均粒径は0.3μmであり、JIS K6721による平均重合度は1,300、ガラス転移温度は80℃であった。
[Example 7]
(Manufacture of latex of polyvinyl chloride resin)
A pressure-resistant reaction vessel was charged with 120 parts of water, 0.8 part of sodium lauryl sulfate and 0.06 part of potassium persulfate, and after repeated vacuum degassing twice, 100 parts of vinyl chloride was charged and heated while stirring. The emulsion polymerization was carried out at 47 ° C. After the polymerization conversion reached 90%, it was cooled to room temperature to remove unreacted monomers. The concentration of the obtained polyvinyl chloride resin latex was 41% by weight. The average particle diameter of the polyvinyl chloride resin measured by centrifugal sedimentation turbidity method was 0.3 μm, the average polymerization degree according to JIS K6721 was 1,300, and the glass transition temperature was 80 ° C.

実施例2において、ニトリルゴム組成物を調製する際に、ニトリルゴム(a2)と重合体(b1)との合計100部に対して、可塑剤(B)としてのアジピン酸ジ(ブトキシエトキシエチル)の含有割合を35部に変更し、上記において製造したポリ塩化ビニル樹脂のラテックス(ポリ塩化ビニル樹脂の量としては45部)をさらに添加した以外は、実施例2と同様にして、ニトリルゴム組成物を得た。
そして、実施例2と同様にして、評価を行った。結果を表4に示す。
In Example 2, when preparing a nitrile rubber composition, di (butoxyethoxyethyl) adipate as a plasticizer (B) is used for 100 parts in total of the nitrile rubber (a2) and the polymer (b1). The nitrile rubber composition was changed in the same manner as in Example 2 except that the content ratio of was changed to 35 parts and latex of the polyvinyl chloride resin produced above (45 parts as the amount of polyvinyl chloride resin) was further added. I got a thing.
Then, evaluation was performed in the same manner as in Example 2. The results are shown in Table 4.

[実施例8]
(アクリル樹脂のラテックスの製造)
温度計、撹拌装置を備えた反応器に、イオン交換水150部、オクチル硫酸ナトリウム2部、過硫酸アンモニウム(重合開始剤)0.3部、メタクリル酸メチル80部、アクリロニトリル20部およびt−ドデシルメルカプタン(分子量調整剤)0.05部を入れ、撹拌しながら温度80℃にて乳化重合を開始し、5時間後に反応を停止してラテックスを得た。得られたアクリル樹脂ラテックスの濃度は39重量%で、重合転化率は98重量%であった。アクリル樹脂の平均粒径は0.2μmであり、数平均分子量は600,000、ガラス転移温度は103℃であった。
[Example 8]
(Manufacture of acrylic resin latex)
In a reactor equipped with a thermometer and a stirring device, 150 parts of ion exchange water, 2 parts of sodium octyl sulfate, 0.3 part of ammonium persulfate (polymerization initiator), 80 parts of methyl methacrylate, 20 parts of acrylonitrile and t-dodecyl mercaptan (Molecular weight adjusting agent) 0.05 part was added, emulsion polymerization was started at a temperature of 80 ° C. with stirring, and the reaction was stopped after 5 hours to obtain a latex. The concentration of the obtained acrylic resin latex was 39% by weight, and the polymerization conversion rate was 98% by weight. The average particle diameter of the acrylic resin was 0.2 μm, the number average molecular weight was 600,000, and the glass transition temperature was 103 ° C.

実施例2において、ニトリルゴム組成物を調製する際に、ニトリルゴム(a2)と重合体(b1)との合計100部に対して、可塑剤としてのアジピン酸ジ(ブトキシエトキシエチル)の含有割合を35部に変更し、上記において製造したアクリル樹脂のラテックス(アクリル樹脂の量としては45部)をさらに添加した以外は、実施例2と同様にして、ニトリルゴム組成物を得た。
そして、実施例2と同様にして、評価を行った。結果を表4に示す。
In Example 2, when preparing the nitrile rubber composition, the content of di (butoxyethoxyethyl) adipate as a plasticizer with respect to 100 parts in total of the nitrile rubber (a2) and the polymer (b1) Was changed to 35 parts, and a nitrile rubber composition was obtained in the same manner as in Example 2 except that the latex of the acrylic resin produced above (45 parts as the amount of acrylic resin) was further added.
Then, evaluation was performed in the same manner as in Example 2. The results are shown in Table 4.

[実施例9]
(無機充填剤水性分散液の製造)
無機充填剤として、板状充填剤である精製ベントナイト(株式会社ホージュン、商品名「ベンゲル」、アスペクト比:280)100部を、蒸留水1995部に、ポリアクリル酸ナトリウム5部の存在下に添加して強撹拌し、固形分濃度5%の無機充填剤水性分散液を得た。
[Example 9]
(Production of inorganic filler aqueous dispersion)
As an inorganic filler, 100 parts of purified bentonite (Hojun Co., Ltd., trade name “Bengel”, aspect ratio: 280), which is a plate-like filler, is added to 1995 parts of distilled water in the presence of 5 parts of sodium polyacrylate. Then, the mixture was vigorously stirred to obtain an aqueous inorganic filler dispersion having a solid content concentration of 5%.

ニトリルゴム組成物を調製する際に、ニトリルゴム(a2)と共重合体(b1)との合計100部(固形分換算)に対して、板状充填剤20部となるように上記で得られた無機充填剤水性分散液を添加し、実施例2と同様にして、ニトリルゴム組成物を得た。そして、実施例2と同様にして、評価を行った。結果を表4に示す。   When preparing the nitrile rubber composition, it is obtained as described above so as to be 20 parts of a plate-like filler with respect to 100 parts in total of the nitrile rubber (a2) and the copolymer (b1) (in terms of solid content). An inorganic filler aqueous dispersion was added, and a nitrile rubber composition was obtained in the same manner as in Example 2. Then, evaluation was performed in the same manner as in Example 2. The results are shown in Table 4.

Figure 2011012132
Figure 2011012132

ニトリル重合体ゴム(a)の成分として、カチオン性モノマーである2−ビニルピリジンを共重合させて含有させた(a5)を使用する実施例6では、一層優れた耐寒性と耐ガソリン透過性を実現することができた。重合体成分(A)に、更に、ポリ塩化ビニル樹脂やアクリル樹脂を配合した実施例7と実施例8では、より一層優れた耐寒性と耐ガソリン透過性を併せて実現することができた。また、アスペクト比が30〜2,000である無機充填剤を配合した実施例9では、さらに一層優れた耐寒性と耐ガソリン透過性を併せて実現することができた。   In Example 6 in which (a5) containing 2-vinylpyridine, which was a cationic monomer, was copolymerized and contained as a component of the nitrile polymer rubber (a), further excellent cold resistance and gasoline permeability were obtained. Could be realized. In Example 7 and Example 8 in which a polyvinyl chloride resin or an acrylic resin was further blended with the polymer component (A), it was possible to achieve even better cold resistance and gasoline permeation resistance. Moreover, in Example 9 which mix | blended the inorganic filler whose aspect-ratio is 30-2,000, it was able to implement | achieved much more excellent cold resistance and gasoline permeability resistance.

[実施例10]
(水素化ニトリルゴム(a6)のラテックスの製造)
実施例2において得られたニトリルゴム(a2)のラテックスについて、該ラテックスに含有される乾燥ゴム重量に対してパラジウム含有量が1000ppmになるように反応器にパラジウム触媒(1重量%酢酸パラジウムアセトン溶液と等重量のイオン交換水を混合した溶液)を添加して、水素圧3MPa、温度50℃で6時間水素添加反応を行い、水素化ニトリルゴム(a6)のラテックスを得た。
[Example 10]
(Manufacture of latex of hydrogenated nitrile rubber (a6))
About the latex of the nitrile rubber (a2) obtained in Example 2, a palladium catalyst (1 wt% palladium acetate / acetone solution) was added to the reactor so that the palladium content was 1000 ppm with respect to the dry rubber weight contained in the latex. And a solution obtained by mixing equal weight of ion-exchanged water) and a hydrogenation reaction was performed at a hydrogen pressure of 3 MPa and a temperature of 50 ° C. for 6 hours to obtain a latex of hydrogenated nitrile rubber (a6).

得られた水素化ニトリルゴム(a6)を構成する各単量体単位の含有割合を、製造例1と同様にして測定したところ、アクリロニトリル単量体単位50重量%、1,3−ブタジエン単位と飽和したブタジエン単位との合計50重量%であった。また、水素化ニトリルゴム(a6)のムーニー粘度(ポリマー・ムーニー粘度)は155、ヨウ素価は20、メチルエチルケトン不溶解分は0.6重量%であった。   When the content ratio of each monomer unit constituting the obtained hydrogenated nitrile rubber (a6) was measured in the same manner as in Production Example 1, 50% by weight of acrylonitrile monomer unit, 1,3-butadiene unit and Total 50% by weight with saturated butadiene units. The hydrogenated nitrile rubber (a6) had a Mooney viscosity (polymer Mooney viscosity) of 155, an iodine value of 20, and a methyl ethyl ketone insoluble content of 0.6% by weight.

そして、得られた水素化ニトリルゴム(a6)を用いた以外は、実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表5に示す。   A nitrile rubber composition was prepared and evaluated in the same manner as in Example 2 except that the obtained hydrogenated nitrile rubber (a6) was used. The results are shown in Table 5.

[比較例11]
実施例10において、重合体(b1)を、比較例6でも使用したメチルエチルケトン不溶解分が2重量%である重合体(b5)に変えた以外は実施例2と同様にしてニトリルゴム組成物を調製し、同様に評価を行った。結果を表5に示す。
[Comparative Example 11]
In Example 10, the nitrile rubber composition was prepared in the same manner as in Example 2 except that the polymer (b1) was changed to the polymer (b5) having a methylethylketone insoluble content of 2% by weight used in Comparative Example 6. Prepared and evaluated in the same manner. The results are shown in Table 5.

Figure 2011012132
Figure 2011012132

ニトリルゴムとして、水素化されたもの(a6)を使用した実施例10では、極めて優れた耐寒性と耐ガソリン透過性を実現することができたが、重合体(b)のメチルエチルケトン不溶解分が20重量%未満である比較例11においては、耐寒性は優れているものの、耐ガソリン透過性が悪いものしか得られなかった。   In Example 10 using the hydrogenated nitrile rubber (a6), extremely excellent cold resistance and gasoline permeation resistance could be realized, but the methyl ethyl ketone insoluble content of the polymer (b) was reduced. In Comparative Example 11 of less than 20% by weight, only cold resistance was poor, although cold resistance was excellent.

本発明によれば、耐油性が良好であるニトリルゴム本来の特性に加え、耐ガソリン透過性と耐寒性にも優れたニトリルゴム架橋物を与えるニトリルゴム組成物、並びに、その架橋物を提供することができる。そのため本発明のニトリルゴム組成物、および、その架橋物は、燃料ホース、燃料シールなど多くの分野に適用することができ、また、ガソリンなど燃料の大気中への蒸散量を低減することにより環境への負荷を低減することができる。   According to the present invention, there are provided a nitrile rubber composition that provides a nitrile rubber crosslinked product excellent in gasoline permeation resistance and cold resistance in addition to the original characteristics of nitrile rubber having good oil resistance, and a crosslinked product thereof. be able to. Therefore, the nitrile rubber composition of the present invention and the cross-linked product thereof can be applied to many fields such as a fuel hose and a fuel seal, and the environment can be reduced by reducing the transpiration amount of fuel such as gasoline into the atmosphere. The load on can be reduced.

Claims (7)

α,β−エチレン性不飽和ニトリル単量体単位と少なくとも一部が水素化されていてもよい共役ジエン単量体単位とを含有し、該α,β−エチレン性不飽和ニトリル単量体単位の含有割合が36〜54重量%であり、メチルエチルケトン不溶解分が20重量%未満であるニトリルゴム(a)40〜95重量%、および、
芳香族ビニル単量体単位およびα,β−エチレン性不飽和ニトリル単量体単位からなる群より選ばれる少なくとも一種のビニル単量体単位50〜100重量%と少なくとも一部が水素化されていてもよい共役ジエン単量体単位50〜0重量%とを含有し、メチルエチルケトン不溶解分が20重量%以上である重合体(b)60〜5重量%を含有する重合体成分(A);並びに、
該重合体成分(A)100重量部に対して0.1〜200重量部の割合で、HOY法によるSP値が8.0〜10.2(cal/cm1/2の範囲内の可塑剤(B);
を含有することを特徴とするニトリルゴム組成物。
an α, β-ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit which may be at least partially hydrogenated, the α, β-ethylenically unsaturated nitrile monomer unit Nitrile rubber (a) having a content of 36 to 54% by weight and an insoluble content of methyl ethyl ketone of less than 20% by weight, and 40 to 95% by weight, and
At least a part of at least one vinyl monomer unit selected from the group consisting of an aromatic vinyl monomer unit and an α, β-ethylenically unsaturated nitrile monomer unit is at least partially hydrogenated. A polymer component (A) containing 60 to 5% by weight of a polymer (b) containing 50 to 0% by weight of a conjugated diene monomer unit and having an insoluble content of methyl ethyl ketone of 20% by weight or more; ,
The SP value by the HOY method is in the range of 8.0 to 10.2 (cal / cm 3 ) 1/2 at a ratio of 0.1 to 200 parts by weight with respect to 100 parts by weight of the polymer component (A). Plasticizer (B);
A nitrile rubber composition comprising:
前記ニトリルゴム(a)および前記重合体(b)の少なくとも一方が、カチオン性単量体単位を0〜30重量%の割合でさらに含有する請求項1記載のニトリルゴム組成物。   The nitrile rubber composition according to claim 1, wherein at least one of the nitrile rubber (a) and the polymer (b) further contains a cationic monomer unit in a proportion of 0 to 30% by weight. 前記ニトリルゴム(a)および前記重合体(b)の少なくとも一方が、共役ジエン単量体単位の炭素−炭素不飽和結合が水素化されたものである請求項1または2記載のニトリルゴム組成物。   The nitrile rubber composition according to claim 1 or 2, wherein at least one of the nitrile rubber (a) and the polymer (b) is a hydrogenated carbon-carbon unsaturated bond of a conjugated diene monomer unit. . ポリ塩化ビニル樹脂およびアクリル樹脂からなる群より選ばれる少なくとも一種の熱可塑性樹脂を、前記重合体成分(A)100重量部に対して、10〜100重量部の割合で含有することを特徴とする請求項1ないし3のいずれか1項に記載のニトリルゴム組成物。   It contains at least one thermoplastic resin selected from the group consisting of a polyvinyl chloride resin and an acrylic resin in a ratio of 10 to 100 parts by weight with respect to 100 parts by weight of the polymer component (A). The nitrile rubber composition according to any one of claims 1 to 3. アスペクト比が30〜2,000である無機充填剤を、前記重合体成分(A)100重量部に対して、1〜100重量部の割合で含有することを特徴とする請求項1ないし4のいずれか1項に記載のニトリルゴム組成物。   The inorganic filler having an aspect ratio of 30 to 2,000 is contained in a proportion of 1 to 100 parts by weight with respect to 100 parts by weight of the polymer component (A). The nitrile rubber composition according to any one of the above. 請求項1ないし5のいずれか1項に記載のニトリルゴム組成物に架橋剤を加えてなる架橋性ニトリルゴム組成物。   A crosslinkable nitrile rubber composition obtained by adding a crosslinking agent to the nitrile rubber composition according to any one of claims 1 to 5. 請求項6に記載の架橋性ニトリルゴム組成物を架橋してなるゴム架橋物。   A crosslinked rubber product obtained by crosslinking the crosslinkable nitrile rubber composition according to claim 6.
JP2009156065A 2009-06-30 2009-06-30 Nitrile rubber composition, crosslinkable rubber composition, and rubber cross-linked product Active JP5347770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009156065A JP5347770B2 (en) 2009-06-30 2009-06-30 Nitrile rubber composition, crosslinkable rubber composition, and rubber cross-linked product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009156065A JP5347770B2 (en) 2009-06-30 2009-06-30 Nitrile rubber composition, crosslinkable rubber composition, and rubber cross-linked product

Publications (2)

Publication Number Publication Date
JP2011012132A true JP2011012132A (en) 2011-01-20
JP5347770B2 JP5347770B2 (en) 2013-11-20

Family

ID=43591346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009156065A Active JP5347770B2 (en) 2009-06-30 2009-06-30 Nitrile rubber composition, crosslinkable rubber composition, and rubber cross-linked product

Country Status (1)

Country Link
JP (1) JP5347770B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213844A (en) * 2010-03-31 2011-10-27 Nippon Zeon Co Ltd Nitrile copolymer rubber composition
WO2012098910A1 (en) * 2011-01-21 2012-07-26 日本ゼオン株式会社 Rubber-reinforcing cord and rubber product employing same
WO2013042764A1 (en) * 2011-09-21 2013-03-28 日本ゼオン株式会社 Nitrile copolymer rubber composition and rubber crosslink
WO2016031848A1 (en) * 2014-08-29 2016-03-03 日本ゼオン株式会社 Crosslinkable nitrile rubber composition and crosslinked rubber material
WO2016132978A1 (en) * 2015-02-16 2016-08-25 日本ゼオン株式会社 Crosslinked rubber object
KR101913164B1 (en) 2011-09-23 2018-10-31 평화오일씰공업 주식회사 Rubber composite for a diaphram of fuel pump
RU2688741C1 (en) * 2018-04-04 2019-05-22 федеральное государственное унитарное предприятие "Федеральный научно-производственный центр "Прогресс" (ФГУП "ФНПЦ "Прогресс") Oil-and-petrol-resistant and cold-resistant rubber mixture
WO2019163482A1 (en) * 2018-02-26 2019-08-29 日本ゼオン株式会社 Nitrile copolymer rubber composition, crosslinkable rubber composition, crosslinked rubber object, and hose
JP2020050722A (en) * 2018-09-26 2020-04-02 日本ゼオン株式会社 Rubber mixture, nitrile group-containing copolymer rubber composition, crosslinkable rubber composition, and crosslinked rubber
JP2020164690A (en) * 2019-03-29 2020-10-08 日本ゼオン株式会社 Latex composition for dip molding
CN113896963A (en) * 2021-11-25 2022-01-07 南阳天一密封股份有限公司 Rubber sealing material for mixed fuel bearing system and preparation process thereof
JP7382213B2 (en) 2019-11-29 2023-11-16 住友理工株式会社 Rubber composition for fuel hose and fuel hose obtained using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239268A (en) * 1992-02-27 1993-09-17 Toyo Tire & Rubber Co Ltd Production of antifouling rubber composition
WO1998044035A1 (en) * 1997-03-28 1998-10-08 Nippon Zeon Co., Ltd. Rubber composition
JP2002206011A (en) * 2000-11-13 2002-07-26 Jsr Corp Unsaturated nitrile-conjugated diene-based rubber and rubber composition and methods of producing them
JP2004292637A (en) * 2003-03-27 2004-10-21 Nippon Zeon Co Ltd Adhesive rubber composition
JP2007224161A (en) * 2006-02-23 2007-09-06 Nippon Zeon Co Ltd Vulcanizable nitrile copolymer rubber composition and its vulcanizate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239268A (en) * 1992-02-27 1993-09-17 Toyo Tire & Rubber Co Ltd Production of antifouling rubber composition
WO1998044035A1 (en) * 1997-03-28 1998-10-08 Nippon Zeon Co., Ltd. Rubber composition
JP2002206011A (en) * 2000-11-13 2002-07-26 Jsr Corp Unsaturated nitrile-conjugated diene-based rubber and rubber composition and methods of producing them
JP2004292637A (en) * 2003-03-27 2004-10-21 Nippon Zeon Co Ltd Adhesive rubber composition
JP2007224161A (en) * 2006-02-23 2007-09-06 Nippon Zeon Co Ltd Vulcanizable nitrile copolymer rubber composition and its vulcanizate

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213844A (en) * 2010-03-31 2011-10-27 Nippon Zeon Co Ltd Nitrile copolymer rubber composition
WO2012098910A1 (en) * 2011-01-21 2012-07-26 日本ゼオン株式会社 Rubber-reinforcing cord and rubber product employing same
US10000868B2 (en) 2011-01-21 2018-06-19 Zeon Corporation Reinforcing cord for rubber and rubber product using the same
CN103380246A (en) * 2011-01-21 2013-10-30 日本瑞翁株式会社 Rubber-reinforcing cord and rubber product employing same
JPWO2013042764A1 (en) * 2011-09-21 2015-03-26 日本ゼオン株式会社 Nitrile copolymer rubber composition and rubber cross-linked product
KR101906957B1 (en) 2011-09-21 2018-10-11 제온 코포레이션 Nitrile copolymer rubber composition and rubber crosslink
CN103797062A (en) * 2011-09-21 2014-05-14 日本瑞翁株式会社 Nitrile copolymer rubber composition and rubber crosslink
WO2013042764A1 (en) * 2011-09-21 2013-03-28 日本ゼオン株式会社 Nitrile copolymer rubber composition and rubber crosslink
KR101913164B1 (en) 2011-09-23 2018-10-31 평화오일씰공업 주식회사 Rubber composite for a diaphram of fuel pump
US10059835B2 (en) 2014-08-29 2018-08-28 Zeon Corporation Cross-linkable nitrile rubber composition and cross-linked rubber
WO2016031848A1 (en) * 2014-08-29 2016-03-03 日本ゼオン株式会社 Crosslinkable nitrile rubber composition and crosslinked rubber material
JPWO2016132978A1 (en) * 2015-02-16 2017-11-24 日本ゼオン株式会社 Rubber cross-linked product
KR20170118708A (en) * 2015-02-16 2017-10-25 니폰 제온 가부시키가이샤 Rubber bridge
WO2016132978A1 (en) * 2015-02-16 2016-08-25 日本ゼオン株式会社 Crosslinked rubber object
KR102405292B1 (en) 2015-02-16 2022-06-02 니폰 제온 가부시키가이샤 rubber crosslinked
WO2019163482A1 (en) * 2018-02-26 2019-08-29 日本ゼオン株式会社 Nitrile copolymer rubber composition, crosslinkable rubber composition, crosslinked rubber object, and hose
RU2688741C1 (en) * 2018-04-04 2019-05-22 федеральное государственное унитарное предприятие "Федеральный научно-производственный центр "Прогресс" (ФГУП "ФНПЦ "Прогресс") Oil-and-petrol-resistant and cold-resistant rubber mixture
JP2020050722A (en) * 2018-09-26 2020-04-02 日本ゼオン株式会社 Rubber mixture, nitrile group-containing copolymer rubber composition, crosslinkable rubber composition, and crosslinked rubber
JP7200569B2 (en) 2018-09-26 2023-01-10 日本ゼオン株式会社 Rubber mixture, nitrile group-containing copolymer rubber composition, crosslinkable rubber composition and crosslinked rubber
JP2020164690A (en) * 2019-03-29 2020-10-08 日本ゼオン株式会社 Latex composition for dip molding
JP7382213B2 (en) 2019-11-29 2023-11-16 住友理工株式会社 Rubber composition for fuel hose and fuel hose obtained using the same
CN113896963A (en) * 2021-11-25 2022-01-07 南阳天一密封股份有限公司 Rubber sealing material for mixed fuel bearing system and preparation process thereof

Also Published As

Publication number Publication date
JP5347770B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5347770B2 (en) Nitrile rubber composition, crosslinkable rubber composition, and rubber cross-linked product
JP5655784B2 (en) Nitrile rubber composition, crosslinkable nitrile rubber composition, rubber cross-linked product, and method for producing nitrile rubber composition
JP5617638B2 (en) Method for producing crosslinkable nitrile copolymer rubber composition for fuel hose and rubber cross-linked product for fuel hose
JP5338658B2 (en) Nitrile copolymer rubber composition
JP5803943B2 (en) Nitrile rubber composition, crosslinkable nitrile rubber composition, and rubber cross-linked product
JP5742836B2 (en) Nitrile copolymer rubber composition for hose and cross-linked product
JP5892171B2 (en) Nitrile copolymer rubber composition and rubber cross-linked product
JP6225919B2 (en) Nitrile copolymer rubber composition
JP6465104B2 (en) Nitrile copolymer rubber composition
JP5381088B2 (en) Nitrile copolymer rubber composition
JPWO2013133358A1 (en) Method for producing nitrile copolymer rubber composition
JP5482385B2 (en) Nitrile copolymer rubber composition
JP2010155883A (en) Nitrile copolymer rubber composition
JP2009221371A (en) Method for producing nitrile copolymer rubber composition
JP5803914B2 (en) Nitrile copolymer rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5347770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250