WO2019163269A1 - 電気分解用デバイス - Google Patents

電気分解用デバイス Download PDF

Info

Publication number
WO2019163269A1
WO2019163269A1 PCT/JP2018/046219 JP2018046219W WO2019163269A1 WO 2019163269 A1 WO2019163269 A1 WO 2019163269A1 JP 2018046219 W JP2018046219 W JP 2018046219W WO 2019163269 A1 WO2019163269 A1 WO 2019163269A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
exchange membrane
ion exchange
surface material
anode
Prior art date
Application number
PCT/JP2018/046219
Other languages
English (en)
French (fr)
Inventor
喜典 田中
久徳 白水
泰士 山本
亮子 乾
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880089587.4A priority Critical patent/CN111727274B/zh
Publication of WO2019163269A1 publication Critical patent/WO2019163269A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded

Definitions

  • the present disclosure relates to an electrolysis device that electrolyzes water between an anode and a cathode.
  • an electrolysis device for electrolyzing water between an anode and a cathode has been developed.
  • the conventional electrolysis device includes an anode power supply body and an anode having an anode surface material covering the main surface of the anode power supply body, and a cathode power supply body and a cathode surface covering the main surface of the cathode power supply body And a cathode having a material.
  • the ion exchange membrane is disposed between the anode and the cathode so as to contact the anode surface material and be separated from the cathode surface material.
  • the ion exchange membrane may come into contact with a part of the cathode surface material due to swelling of the ion exchange membrane toward the cathode surface material.
  • current concentration occurs at the site where the ion exchange membrane and the surface material for cathode contact.
  • the surface material for cathode may be deteriorated.
  • An object of this indication is to provide the device for electrolysis which can reduce a possibility that the surface material for cathodes may deteriorate.
  • the electrolysis device includes an anode, a cathode, an ion exchange membrane, and a spacer.
  • the cathode includes a cathode power supply body and a cathode surface material covering the main surface of the cathode power supply body.
  • the ion exchange membrane is disposed in contact with the anode and spaced from the cathode surface material between the anode and the cathode.
  • the spacer is provided in the cathode water passage between the surface material for the cathode and the ion exchange membrane.
  • the electrolysis device includes an anode, a cathode, an ion exchange membrane, and two cathode water passages.
  • the cathode has a through hole extending toward the anode.
  • the ion exchange membrane is disposed between the anode and the cathode.
  • the two cathode water passages are provided on both sides of the cathode and communicate with each other via the through holes.
  • FIG. 1 is a perspective external view of an electrolysis device according to an embodiment.
  • FIG. 2 is a perspective view of the anode case of the electrolysis device according to the embodiment.
  • FIG. 3 is a perspective view of the cathode case of the electrolysis device according to the embodiment.
  • FIG. 4 is a longitudinal sectional view of the electrolysis device according to the embodiment.
  • 5 is a cross-sectional view of the electrolysis device according to the embodiment, and is a cross-sectional view taken along line 5-5 of FIG.
  • FIG. 6 is a partially enlarged cross-sectional view of the anode, ion exchange membrane, spacer, and cathode of the device for electrolysis according to the embodiment.
  • 7 is a partially enlarged longitudinal sectional view of the anode, ion exchange membrane, spacer, and cathode of the electrolysis device according to the embodiment, and is a sectional view taken along line 7-7 in FIG.
  • the electrolysis device includes an anode, a cathode, an ion exchange membrane, and a spacer.
  • the cathode has a cathode power supply and a cathode surface material covering the main surface of the cathode power supply.
  • the ion exchange membrane is disposed in contact with the anode and spaced from the cathode surface material between the anode and the cathode.
  • the spacer is provided in the cathode water passage between the surface material for the cathode and the ion exchange membrane.
  • a gap through which water flows is provided between the spacer and the surface material for the cathode.
  • the spacer is provided in the cathode water passage so that the longitudinal direction of the spacer extends along the longitudinal direction of the cathode water passage. Be placed.
  • the spacer is formed on the cathode surface material so that the longitudinal direction of the spacer extends along the longitudinal direction of the cathode surface material. Contact.
  • the cathode power supply body has at least one of a recess and a through hole on at least a main surface facing the ion exchange membrane. At least a part of the inner surface of at least one of the recess and the through hole is covered with a surface material for a cathode.
  • the area of the portion where the spacer and the surface material for cathode are in contact is larger than the area of the portion where the spacer and the ion exchange membrane are in contact with each other. Is also small.
  • the electrolysis device includes an anode, a cathode, an ion exchange membrane, and two cathode water passages.
  • the cathode has a through hole extending toward the anode.
  • the ion exchange membrane is disposed between the anode and the cathode.
  • the two cathode water passages are provided on both sides of the cathode and communicate with each other via the through holes.
  • the cross-sectional area of the cathode water passage on the surface side facing the ion exchange membrane of the cathode is smaller than the cross-sectional area of the cathode water passage on the back side of the surface facing the ion exchange membrane of the cathode.
  • the channel breakage of the cathode water passage on the back side of the surface facing the ion exchange membrane of the cathode is provided.
  • the area is smaller than the cross-sectional area of the cathode water passage on the surface side facing the ion exchange membrane of the cathode.
  • the cathode surface material for covering the main surface of the cathode power supply and the ion exchange membrane of the cathode power supply facing the cathode power supply Including. At least a part of the inner peripheral surface of the through hole is also covered with the surface material for the cathode.
  • the electrolysis device 1 includes a rectangular flat plate-like anode case 1A and a rectangular flat plate-shaped cathode case 1C.
  • the anode case 1A shown in FIG. 2 and the cathode case 1C shown in FIG. 3 are integrated so that their inner surfaces face each other, whereby the electrolysis device 1 is configured.
  • anode case 1 ⁇ / b> A accommodates the anode 2 ⁇ / b> A and constitutes a part of the outline of the electrolysis device 1.
  • the material of the anode case 1A is acrylic resin.
  • Anode case 1A has a flat rectangular parallelepiped shape and includes case recess 1AC. Case recessed part 1AC is formed by digging in the main surface which comprises the inner surface of the device 1 for electrolysis.
  • the case recess 1AC has a water inlet hole 1AI and a water outlet hole 1AO.
  • the water inlet 1AI is disposed in the vicinity of one end of the inner surface of the electrolysis device 1 in the longitudinal direction.
  • the outlet hole 1AO is disposed in the vicinity of the other end portion in the longitudinal direction of the inner surface of the electrolysis device 1.
  • the case recess 1AC has a conductive wire insertion hole 1AL disposed between the center in the longitudinal direction of the inner surface of the electrolysis device 1 and the water outlet hole 1AO.
  • the case recess 1AC is disposed substantially at the center of the inner surface in the longitudinal direction of the inner surface of the electrolysis device 1, and has a planar recess 1AD.
  • the planar depression 1AD includes a water inlet hole 1AI, a water outlet hole 1AO, and a conductive wire insertion hole 1AL.
  • the case recess 1AC has an annular packing recess 1AP.
  • the packing depression 1AP is arranged outside the planar depression 1AD so as to surround the planar depression 1AD.
  • the case recess 1AC has a buffer recess 1AB.
  • the buffer recess 1AB is deeper than the planar recess 1AD.
  • the anode case 1A has a plurality of fixing holes 1AF.
  • the fixing hole 1AF is arranged outside an annular packing depression 1AP provided outside the buffer depression 1AB and the planar depression 1AD.
  • a plurality of disc-like case ribs 1AR are arranged inside the planar depression 1AD. As shown in FIGS. 2 and 4, the planar depression 1AD and the buffer depression 1AB are connected by a case inclined surface 1AS.
  • the cathode case 1C accommodates the cathode 2C and a plurality of (for example, three) spacers S and constitutes a part of the outline of the electrolysis device 1.
  • the material of the cathode case 1C is acrylic resin.
  • the cathode case 1C has a flat rectangular parallelepiped shape and includes a case recess 1CC.
  • Case recessed part 1CC is formed by digging in the main surface which comprises the inner surface of device 1 for electrolysis.
  • the case recess 1CC has a water inlet hole 1CI disposed in the vicinity of one end portion of the inner surface of the electrolysis device 1 in the longitudinal direction.
  • the case recess 1CC has a water outlet hole 1CO disposed in the vicinity of the other end in the longitudinal direction of the inner surface of the electrolysis device 1.
  • the case recess 1CC has a conductive wire insertion hole 1CL disposed between the center of the inner side surface of the electrolysis device 1 in the longitudinal direction and the water outlet hole 1CO.
  • the case recess 1CC is disposed at the approximate center of the inner surface of the electrolysis device 1 and has a planar depression 1CD.
  • the planar depression 1CD includes a water inlet hole 1CI, a water outlet hole 1CO, and a conductive wire insertion hole 1CL.
  • the annular packing recess 1CP is arranged outside the planar recess 1CD so as to surround the planar recess 1CD.
  • the case recess 1CC includes a water outlet hole 1CO.
  • the case recess 1CC has a buffer recess 1CB in a region not including the conductive wire insertion hole 1CL.
  • the buffer recess 1CB is deeper than the planar recess 1CD.
  • the case recess 1CC has a fixing hole 1CF.
  • the fixing hole 1CF is arranged outside an annular packing recess 1CP provided outside the buffer recess 1CB and the planar recess 1CD.
  • a plurality of disc-like case ribs 1CR are arranged inside the planar depression 1CD.
  • the disc-shaped case rib 1CR and the disc-shaped case rib 1AR are provided so that the respective circular tip surfaces face each other.
  • the planar depression 1CD and the buffer depression 1CB are connected by a case inclined surface 1CS.
  • the ion exchange membrane 3 is disposed between the anode 2A and the cathode 2C. More specifically, as shown in FIG. 6, the ion exchange membrane 3 contacts the anode surface material 2AS and is separated from the cathode surface material 2CS.
  • the ion exchange membrane 3 is a cation exchange membrane that allows hydrogen ions, unavoidable metal ions, water molecules, and oxygen molecules generated in the vicinity of the anode 2A to pass but does not allow cations to pass.
  • Examples of the cation exchange membrane include DuPont's trade name “Nafion (R)”.
  • the thickness of the ion exchange membrane 3 is 0.01 to 0.2 mm.
  • the ion exchange membrane 3 has a thin planar shape.
  • the ion exchange membrane 3 is a copolymer of fluororesin called perfluorosulfonic acid having perfluoroethylene as a main chain and having a side chain having a sulfonic acid group. Specifically, the ion exchange membrane 3 is polyfluoroethylene-sulfonic acid.
  • the amount of ion exchange groups “EW (equivalent weight)” representing the ease of passing electricity is about 1000. As shown in FIGS. 6 and 7, one main surface of the ion exchange membrane 3 is in contact with the entire one main surface of the anode surface material 2AS.
  • a part of the other main surface of the ion exchange membrane 3 comes into contact with a plurality of spacers S provided apart from each other.
  • the end of the ion exchange membrane 3 extends outward from the outer peripheral edges of the anode 2A and the cathode 2C.
  • the ends of the ion exchange membrane 3 are sandwiched between the packing P on the anode case 1A side and the packing P on the cathode case 1C side.
  • the anode power supply 2AF shown in FIGS. 6 and 7 receives a negative charge from the anode surface material 2AS.
  • the thickness of the anode power supply 2AF is 0.5 mm.
  • the anode power supply 2AF has a thin planar shape.
  • the anode power supply 2AF is made of titanium and inevitable impurities.
  • the anode surface material 2AS is provided on one main surface of the anode power supply 2AF.
  • the anode surface material 2AS is also provided on a part of the inner peripheral surface of the through hole THA.
  • the anode surface material 2AS may be provided on the entire inner peripheral surface of the through hole THA.
  • Conductive line 2AE (see FIG. 4) is inserted into conductive line insertion hole 1AL and electrically connected to the other main surface of anode power supply 2AF.
  • case rib 1AR protrudes from the planar recess 1AD of the anode case 1A. Case rib 1AR contacts the other main surface of anode power supply 2AF.
  • anode surface material 2AS (Surface material for anode ⁇ Pt and Pt-based metals and their alloys>)
  • a reaction of “2H 2 O ⁇ 4H + + O 2 + 4e ⁇ ” is performed in the anode surface material 2AS.
  • the thickness of the anode surface material 2AS is 0.1 ⁇ m.
  • the anode surface material 2AS has a thin planar shape.
  • the anode surface material 2AS has fine irregularities (not shown) on its main surface, and a large number of fine and continuous voids (not shown).
  • the material of the anode surface material 2AS is an alloy of platinum and iridium. As shown in FIGS. 6 and 7, the anode surface material 2AS is provided so as to be in contact with the whole of one main surface of the anode power supply body 2AF. When the anode case 1A and the cathode case 1C are combined, the anode surface material 2AS comes into contact with the ion exchange membrane 3. The anode surface material 2AS may be formed on the entire surface of the anode power supply body 2AF.
  • the cathode power supply 2CF supplies negative charges to the cathode surface material 2CS (see FIG. 6).
  • the thickness of the cathode power supply 2CF is 0.5 mm.
  • the cathode power supply body 2CF has a thin planar shape. Indentations D having a diameter of 1 mm are formed at intervals of 1 mm on the main surface of the cathode power supply 2CF facing the ion exchange membrane 3.
  • the through holes THC having a diameter of 1 mm are formed at intervals of 1 mm on the main surface facing the ion exchange membrane 3 at positions not including the depression D of the cathode power supply 2CF. Only one of the recess D and the through hole THC may be provided in the cathode power supply body 2CF.
  • the through hole THC only needs to have a hole diameter of about 1 nm to 1 mm.
  • the material of the cathode power supply 2CF includes titanium and inevitable impurities.
  • a cathode surface material 2CS is provided on one main surface of the cathode power supply 2CF.
  • the cathode surface material 2CS is also formed on part of the inner peripheral surface of the recess D and the through hole THC.
  • the cathode surface material 2CS may be provided on the entire inner peripheral surface of the through hole THC.
  • Conductive wire 2CE (see FIG. 4) is inserted into conductive wire insertion hole 1CL and connected to the other main surface of cathode power supply 2CF.
  • case rib 1CR protruding from planar depression 1CD of cathode case 1C comes into contact with the other main surface of cathode power supply 2CF.
  • the cathode surface material 2CS (Surface material for cathode ⁇ Pt and Pt-based metals and their alloys>) In the cathode surface material 2CS, a reaction of “2H + + 2e ⁇ ⁇ H 2 ” is performed.
  • the thickness of the cathode surface material 2CS is 0.1 to 1 ⁇ m.
  • the cathode surface material 2CS has a thin planar shape.
  • the cathode surface material 2CS has fine irregularities (not shown) on its main surface, and has many fine and continuous voids (not shown).
  • the material of the cathode surface material 2CS is an alloy of platinum and iridium. As shown in FIGS. 6 and 7, the cathode surface material 2CS is formed so as to be in contact with the whole of one main surface of the cathode power supply body 2CF, and when the anode case 1A and the cathode case 1C are combined, Contact the spacer S.
  • the cathode surface material 2CS may be formed on the entire surface of the cathode power supply body 2CF.
  • the spacer S is provided in the cathode water passage 10 ⁇ / b> B between the cathode surface material 2 ⁇ / b> CS and the ion exchange membrane 3.
  • the spacer S can suppress contact between the ion exchange membrane 3 and the cathode surface material 2CS due to swelling of the ion exchange membrane 3. For this reason, deterioration of the surface material 2CS for cathodes can be suppressed. As a result, it is possible to suppress the occurrence of current concentration at the portion where the spacer S and the ion exchange membrane 3 are in contact.
  • a gap C through which water flows is provided between the spacer S and the cathode surface material 2CS. Through the gap C, water also flows into the portion covered with the spacer S of the cathode surface material 2CS. For this reason, the amount of reduction in the area of the surface material for cathode 2CS that comes into contact with water can be reduced. As a result, it is possible to reduce the reduction amount of hydrogen generated in the cathode 2C due to the spacer S.
  • a recess formed on the surface of the spacer S facing the cathode surface material 2CS functions as the gap C.
  • the recess D formed on the surface of the cathode surface material 2CS also functions in the same manner as the gap C.
  • the gap C is not unevenness intentionally formed on the spacer S or the cathode surface material 2CS, but may be irregularities naturally formed on the cathode surface material 2CS or the spacer S.
  • a void a void formed by plating Pt and Pt-based metals and alloys thereof
  • a void naturally formed on the main surface of the cathode surface material 2CS during the manufacturing process may have the same function as the gap C.
  • the spacer S is arranged in the cathode water passage 10B so that the longitudinal direction of the spacer S extends along the longitudinal direction of the cathode water passage 10B. For this reason, the water flow resistance resulting from the spacer S can be reduced.
  • the spacer S contacts the cathode surface material 2CS so that the longitudinal direction of the spacer S extends along the longitudinal direction of the cathode surface material 2CS. For this reason, the deflection of the ion exchange membrane 3 in the longitudinal direction of the cathode surface material 2CS can be reduced. As a result, the possibility of contact between the cathode surface material 2CS and the ion exchange membrane 3 can be further reduced.
  • the cathode power supply 2CF has a recess D and a through hole THC at least on the surface facing the ion exchange membrane 3.
  • the inner surface of the recess D and a part of the inner surface of the through hole THC are covered with the cathode surface material 2CS. For this reason, in the position of the hollow D and the through-hole THC, the flow rate of water is slightly slower than other positions. As a result, more hydrogen can be generated at some positions of the recess D and the through hole THC.
  • the area where the spacer S and the ion exchange membrane 3 are in contact is larger than the area where the spacer S and the cathode surface material 2CS are in contact.
  • the spacer S is provided between the cathode surface material 2CS and the ion exchange membrane 3, and maintains the distance between the cathode surface material 2CS and the ion exchange membrane 3, that is, the width of the cathode water passage 10B.
  • the spacer S avoids current concentration occurring at the contact location by suppressing partial contact between the ion exchange membrane 3 and the cathode surface material 2CS.
  • the spacer S is a rod-shaped member having a trapezoidal cross section. Both ends of the spacer S are bent to form hook portions (see FIG. 2).
  • the spacer S may be a rod-shaped member having a rectangular or circular cross section.
  • the material of the spacer S is a resin having a specific resistance greater than that of water, for example, tap water.
  • the area of the portion where the spacer S and the surface material for cathode 2CS are in contact is smaller than the area of the portion where the spacer S and the ion exchange membrane 3 are in contact.
  • the width of the portion of the spacer S that contacts the ion exchange membrane 3 is, for example, 3 mm.
  • the width of the portion of the spacer S that contacts the cathode surface material 2CS is, for example, 2 mm.
  • a depression D is formed at a portion facing the spacer S of the cathode surface material 2CS.
  • a gap C is formed in a portion of the spacer S facing the cathode surface material 2CS.
  • the spacer S is sandwiched between the ion exchange membrane 3 and the cathode surface material 2CS. In this state, the hooks (see FIG. 2) at both ends of the spacer S are in contact with the cathode case 1C.
  • the cathode water passages 10B and 10C are provided so as to face the two main surfaces of the cathode 2C, respectively, and communicate with each other via the through hole THC.
  • the through hole THC As water moves through the through hole THC, turbulence is generated in the vicinity of the through hole THC. By this turbulent flow, hydrogen generated in the vicinity of the cathode 2C can be prevented from remaining there and aggregating. As a result, dissolution of hydrogen in water is promoted.
  • the cross-sectional area of the cathode water passage 10B on the surface side facing the ion exchange membrane 3 of the cathode 2C is opposed to the ion exchange membrane 3 of the cathode 2C. It is smaller than the cross-sectional area of the cathode water passage 10C on the back side of the surface.
  • the flow rate V1 of water on the surface side facing the ion exchange membrane 3 of the cathode 2C is larger than the flow rate V2 of water on the back side of the surface facing the ion exchange membrane 3 of the cathode 2C.
  • the cross-sectional area of the cathode water passage 10C on the back side of the surface facing the ion exchange membrane 3 of the cathode 2C is the surface for the cathode on the surface side facing the ion exchange membrane 3 of the cathode 2C. It may be smaller than the cross-sectional area of the water passage 10B.
  • the flow rate V2 of water on the back side facing the ion exchange membrane 3 of the cathode 2C is larger than the flow rate V1 of water on the surface side facing the ion exchange membrane 3 of the cathode 2C.
  • part of the hydrogen generated in the cathode water passage 10B on the surface side facing the ion exchange membrane 3 of the cathode 2C passes through the through hole THC and the back side of the surface facing the ion exchange membrane 3 of the cathode 2C.
  • the cathode water passage 10C is brought into contact with water.
  • the cathode 2C includes a cathode power supply 2CF and a cathode surface material 2CS that covers the surface of the cathode power supply 2CF that faces the ion exchange membrane 3. Part or all of the inner peripheral surface of the through hole THC is also covered with the cathode surface material 2CS. For this reason, hydrogen is also generated inside the through hole THC. As a result, the area of the cathode 2C where hydrogen is generated can be increased, and the amount of hydrogen generated can be increased.
  • a cathode surface material 2CS is deposited on one main surface of the cathode power supply 2CF by electrolytic plating. At this time, the cathode surface material 2CS is also deposited on the surface of the depression D of the cathode power supply body 2CF and the surface of the through hole THC. The cathode surface material 2CS may be deposited on a part or all of the through holes THC.
  • Electroplating includes the case where a platinum chloride or complex or a solution in which a platinum-based metal chloride or complex is dissolved is directly applied and then heat-fired to deposit it on the cathode surface.
  • the cathode power supply 2CF is installed so as to expose the cathode surface material 2CS with respect to the planar depression 1CD.
  • the conductive wire 2CE is inserted further into the inner side surface of the cathode case 1C through the conductive wire insertion hole 1CL and connected to the cathode power supply 2CF.
  • the three spacers S are arranged on the cathode 2C at substantially equal intervals at both ends and the center in the short direction of the cathode 2C so that their longitudinal directions are along the longitudinal direction of the cathode 2C. Is done.
  • the catch portion of the spacer S is fixed to the cathode case 1C with an adhesive.
  • the area of the portion where the spacer S and the ion exchange membrane 3 are in contact is larger than the area of the portion where the spacer S and the cathode surface material 2CS are in contact (see FIG. 6).
  • Packing P is inserted into the depression 1AP for packing.
  • An ion exchange membrane 3 is superimposed on the cathode 2C. The peripheral edge of the ion exchange membrane 3 is located outside the packing recess 1AP.
  • the anode power supply 2AF is arranged in the planar depression 1AD so as to expose the anode surface material 2AS.
  • Conductive wire 2AE is inserted further into the inner surface of anode case 1A from conductive wire insertion hole 1AL, and is electrically connected to anode power supply 2AF.
  • the packing P is inserted into the packing recess 1AP.
  • the inner surface of the cathode case 1C and the inner surface of the anode case 1A are overlapped.
  • the disc-shaped case rib 1CR and the disc-shaped case rib 1AR are arranged so as to face each other.
  • the vicinity of the outer periphery of the ion exchange membrane 3 is sandwiched by the packing P.
  • the vicinity of the center of the ion exchange membrane 3 is supported by the anode surface material 2AS and the spacer S.
  • the ion exchange membrane 3 is provided apart from the cathode surface material 2CS.
  • the electrolysis device 1 is attached to the electrolyzed water generator.
  • a water inlet pipe is attached to the water inlet hole 1AI and the water inlet hole 1CI.
  • a water outlet pipe is attached to the water outlet hole 1AO and the water outlet hole 1CO.
  • the water outlet holes 1AO and 1CO are arranged to be higher than the water inlet hole 1AI and the water inlet hole 1CI.
  • the longitudinal direction of the spacer S is the same as the longitudinal direction of the cathode water passages 10B and 10C.
  • the external conductive lines are connected to the conductive lines 2AE and 2CE and connected to the power source.
  • the flow velocity V1 of the water flowing on the main surface side facing the ion exchange membrane 3 of the cathode 2C (the flow velocity on the exposed surface side of the cathode surface material 2CS) is the surface of the main surface facing the ion exchange membrane 3 of the cathode 2C. It is larger than the flow velocity V2 of the water flowing on the back side (the flow velocity on the exposed surface side of the cathode power supply 2CF).
  • hydrogen is generated mainly on the main surface of the cathode surface material 2CS facing the ion exchange membrane 3 by electrolysis. Specifically, hydrogen is generated by the through hole THC, the cathode surface material 2CS attached to the recess D of the cathode power supply 2CF, and the cathode surface material 2CS attached on the inner peripheral surface of the through hole THC.
  • the electrolysis device 1 includes an anode 2A, a cathode 2C, an ion exchange membrane 3, and a spacer S.
  • the cathode 2C includes a cathode power supply 2CF and a cathode surface material 2CS that covers the main surface of the cathode power supply 2CF.
  • the ion exchange membrane 3 is in contact with the anode 2A, and is spaced from the cathode surface material 2CS between the anode 2A and the cathode 2C.
  • the spacer S is provided in the cathode water passage 10 ⁇ / b> B between the cathode surface material 2 ⁇ / b> CS and the ion exchange membrane 3.
  • the ion exchange membrane 3 and the cathode surface material 2CS can be prevented from coming into contact with each other due to the swelling of the ion exchange membrane 3. As a result, deterioration of the cathode surface material 2CS can be suppressed.
  • a gap C through which water flows is provided between the spacer S and the cathode surface material 2CS. With this configuration, water flows into the surface of the region covered with the spacer S among the entire surface of the cathode surface material 2CS through the gap C.
  • the amount of decrease due to the spacer S in the area where the cathode surface material 2CS is in contact with water can be reduced.
  • the spacer S is disposed in the cathode water passage 10B so that the longitudinal direction of the spacer S extends along the longitudinal direction of the cathode water passage 10B. With this configuration, the water resistance caused by the spacer S can be reduced.
  • the spacer S contacts the cathode surface material 2CS so that the longitudinal direction of the spacer S extends along the longitudinal direction of the cathode surface material 2CS.
  • the cathode power supply 2CF preferably has at least one of the recess D and the through hole THC on at least the main surface thereof facing the ion exchange membrane 3. It is preferable that at least a part of the inner surface of at least one of the recess D and the through hole THC is covered with the cathode surface material 2CS.
  • At least one of the positions of the recess D and the through hole THC causes the water flow rate to be slower than the other positions. For this reason, more hydrogen can be generated in at least one of the positions of the recess D and the through hole THC.
  • the area of the part where the spacer S and the surface material 2CS for the cathode are in contact is smaller than the area of the part where the spacer S and the ion exchange membrane 3 are in contact.
  • the electrolysis device 1 includes an anode 2A, a cathode 2C, an ion exchange membrane 3, and cathode water passages 10B and 10C.
  • the cathode 2C has a through hole THC extending toward the anode 2A.
  • the ion exchange membrane 3 is disposed between the anode 2A and the cathode 2C.
  • the cathode water passages 10B and 10C are provided on both sides of the cathode 2C and communicate with each other via the through hole THC.
  • the cross-sectional area of the cathode water passage 10B on the surface side facing the ion exchange membrane 3 of the cathode 2C is the flow passage of the cathode water passage 10C on the back side of the surface facing the ion exchange membrane 3 of the cathode 2C. It may be smaller than the cross-sectional area.
  • the flow velocity V1 of the water flowing on the surface side of the cathode water passage 10B facing the ion exchange membrane 3 of the cathode 2C causes the cathode water passage 10C on the back side of the surface of the cathode 2C facing the ion exchange membrane 3 to flow. It is larger than the flow velocity V2 of the flowing water.
  • the cross-sectional area of the cathode water passage 10C on the back side of the surface of the cathode 2C facing the ion exchange membrane 3 is the flow passage of the cathode water passage 10B on the surface side of the cathode 2C facing the ion exchange membrane 3 It may be smaller than the cross-sectional area.
  • the flow velocity V2 of the water flowing through the cathode water passage 10C on the surface side facing the ion exchange membrane 3 of the cathode 2C is adjusted so that the cathode water passage 10B on the back side of the surface facing the ion exchange membrane 3 of the cathode 2C. It is larger than the flow velocity V1 of the flowing water.
  • part of the hydrogen generated in the cathode water passage 10B on the surface side facing the ion exchange membrane 3 of the cathode 2C passes through the through hole THC and the back side of the surface facing the ion exchange membrane 3 of the cathode 2C.
  • the cathode water passage 10C is brought into contact with water. For this reason, aggregation of hydrogen generated in the vicinity of the cathode 2C can be suppressed. As a result, dissolution of generated hydrogen in water can be promoted.
  • the cathode 2C may include a cathode power supply 2CF and a cathode surface material 2CS that covers a main surface facing the ion exchange membrane 3 of the cathode power supply 2CF. It is preferable that at least a part of the inner peripheral surface of the through hole THC is also covered with the cathode surface material 2CS. With this configuration, hydrogen is also generated inside the through hole THC. Therefore, the area of the cathode 2C where hydrogen is generated can be increased.
  • Electrolytic device 1A Anode case 1AB, 1CB Buffer recess 1AC, 1CC Case recess 1AD, 1CD Planar recess 1AF, 1CF Fixing hole 1AI, 1CI Inlet hole 1AL, 1CL Conductive wire insertion hole 1AO, 1CO Outlet hole 1AP, 1CP Depression for packing 1AR, 1CR Case rib 1AS, 1CS Case inclined surface 1C Cathode case 2A Anode 2AE, 2CE Conductive wire 2AF Anode power supply 2AS Anode surface material 2C Cathode 2CF Cathode power supply 2CS Cathode surface material 3 Ion exchange membrane 10A Anode passage 10B, 10C Cathode passage C Cavity D Dimple P Packing S Spacer THA, THC Through-hole V1, V2 Water flow rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

電気分解用デバイスは、陽極(2A)と陰極(2C)とイオン交換膜(3)とスペーサ(S)とを備える。陰極(2C)は、陰極用給電体と、陰極用給電体の表面を覆う陰極用表面材とを有する。イオン交換膜(3)、陽極(2A)に接触し、かつ、陽極(2A)と陰極(2C)との間に陰極用表面材から離間して配置される。スペーサ(S)は、陰極用表面材とイオン交換膜(3)との間の陰極用通水路に設けられる。

Description

電気分解用デバイス
 本開示は、陽極と陰極との間で水を電気分解する電気分解用デバイスに関する。
 従来、例えば、特許文献1に開示されるように、陽極と陰極との間で水を電気分解する電気分解用デバイスが開発されている。従来の電気分解用デバイスは、陽極用給電体およびその陽極用給電体の主表面を覆う陽極用表面材を有する陽極と、陰極用給電体およびその陰極用給電体の主表面を覆う陰極用表面材を有する陰極とを有する。
 上記従来の電気分解用デバイスにおいて、イオン交換膜が、陽極用表面材には接触し、陰極用表面材からは離間するように、陽極と陰極との間に配置されるものがある。
 上記従来の電気分解用デバイスにおいて、流速の大きな水が、陰極用表面材のイオン交換膜側の主表面に接触しながらその主表面に沿って流れる。これにより、陰極用表面材の近傍で発生した水素の水への溶解が促進される。
特開2003-245669号公報
 上記従来の電気分解用デバイスによれば、イオン交換膜が陰極用表面材側に膨潤することによって、イオン交換膜が陰極用表面材の一部に接触することがある。この場合、イオン交換膜と陰極用表面材とが接触した部位で電流集中が生じる。その結果、陰極用表面材が劣化するおそれがある。
 本開示は、上記従来技術の課題に鑑みてなされたものである。本開示は、陰極用表面材が劣化するおそれを低減することができる電気分解用デバイスを提供することを目的とする。
 本開示の一態様の電気分解用デバイスは、陽極と陰極とイオン交換膜とスペーサとを備える。陰極は、陰極用給電体と、前記陰極用給電体の主表面を覆う陰極用表面材とを有する。イオン交換膜は、陽極に接触し、かつ、陽極と陰極との間に陰極用表面材から離間して配置される。スペーサは、陰極用表面材とイオン交換膜との間の陰極用通水路に設けられる。
 本開示の他の態様の電気分解用デバイスは、陽極と陰極とイオン交換膜と二つの陰極用通水路とを備える。陰極は、陽極に向かって延在する貫通孔を有する。イオン交換膜は、陽極と陰極との間に配置される。二つの陰極用通水路は、陰極の両側に設けられ、貫通孔を経由して連通する。
 本態様によれば、陰極用表面材が劣化するおそれを低減することができる。
図1は、実施の形態に係る電気分解用デバイスの斜視外観図である。 図2は、実施の形態に係る電気分解用デバイスの陽極ケースの斜視図である。 図3は、実施の形態に係る電気分解用デバイスの陰極ケースの斜視図である。 図4は、実施の形態に係る電気分解用デバイスの縦断面図である。 図5は、実施の形態に係る電気分解用デバイスの横断面図であって、図4の5-5線断面図である。 図6は、実施の形態に係る電気分解用デバイスの陽極、イオン交換膜、スペーサ、陰極の部分的に拡大された横断面図である。 図7は、実施の形態に係る電気分解用デバイスの陽極、イオン交換膜、スペーサ、陰極の部分的に拡大された縦断面図であって、図4の7-7線断面図である。
 本開示の第1の態様の電気分解用デバイスは、陽極と陰極とイオン交換膜とスペーサとを備える。
 陰極は、陰極用給電体と、前記陰極用給電体の主表面を覆う陰極用表面材と、を有する。イオン交換膜は、陽極に接触し、かつ、陽極と陰極との間に陰極用表面材から離間して配置される。スペーサは、陰極用表面材とイオン交換膜との間の陰極用通水路に設けられる。
 本開示の第2の態様の電気分解用デバイスでは、第1の態様に加えて、スペーサと陰極用表面材との間には、水が流れる隙間が設けられる。
 本開示の第3の態様の電気分解用デバイスでは、第1の態様に加えて、スペーサの長手方向が陰極用通水路の長手方向に沿って延在するように、スペーサが陰極用通水路に配置される。
 本開示の第4の態様の電気分解用デバイスでは、第1の態様に加えて、スペーサの長手方向が陰極用表面材の長手方向に沿って延在するように、スペーサが陰極用表面材に接触する。
 本開示の第5の態様の電気分解用デバイスでは、第1の態様に加えて、陰極用給電体が、少なくともイオン交換膜に対向する主表面に窪みおよび貫通孔の少なくともいずれかを有する。窪みおよび貫通孔の少なくともいずれかの内面の少なくとも一部が、陰極用表面材により覆われる。
 本開示の第6の態様の電気分解用デバイスでは、第1の態様に加えて、スペーサと陰極用表面材とが接触する部分の面積が、スペーサとイオン交換膜とが接触する部分の面積よりも小さい。
 本開示の第7の態様の電気分解用デバイスは、陽極と陰極とイオン交換膜と二つの陰極用通水路とを備える。
 陰極は、陽極に向かって延在する貫通孔を有する。イオン交換膜は、陽極と陰極との間に配置される。二つの陰極用通水路は、陰極の両側に設けられ、貫通孔を経由して連通する。
 本開示の第8の態様の電気分解用デバイスでは、第7の態様に加えて、二つの陰極用通水路において、陰極のイオン交換膜に対向する表面側の陰極用通水路の流路断面積が、陰極のイオン交換膜に対向する表面の裏側の陰極用通水路の流路断面積よりも小さい。
 本開示の第9の態様の電気分解用デバイスでは、第7の態様に加えて、二つの陰極用通水路において、陰極のイオン交換膜に対向する表面の裏側の陰極用通水路の流路断面積が、陰極のイオン交換膜に対向する表面側の陰極用通水路の流路断面積よりも小さい。
 本開示の第10の態様の電気分解用デバイスでは、第8の態様に加えて、陰極が、陰極用給電体と、陰極用給電体のイオン交換膜に対向する主表面を覆う陰極用表面材とを含む。貫通孔の内周面の少なくとも一部も陰極用表面材により覆われる。
 以下、図面を参照しながら、本開示の実施の形態の電気分解用デバイスを説明する。
 本実施の形態において、同一の参照符号が付される部位は、同一の機能を有するものとする。従って、特に必要がなければ、同一参照符号が付された部位の機能の説明は繰り返さない。
 図1~図7を用いて、本実施の形態の電気分解用デバイスを説明する。
 (電気分解用デバイスの全体構成)
 図1に示すように、電気分解用デバイス1は、矩形の平板状の陽極ケース1Aと矩形の平板状の陰極ケース1Cとを備える。図2に示される陽極ケース1Aと図3に示される陰極ケース1Cとが、それらの内側面同士が対向するように一体化されることで、電気分解用デバイス1が構成される。
 (陽極ケース)
 図2、図4、図5に示すように、陽極ケース1Aは、陽極2Aを収容し、電気分解用デバイス1の外郭の一部を構成する。陽極ケース1Aの材質はアクリル樹脂である。陽極ケース1Aは、平板状の直方体形状を有し、ケース凹部1ACを備える。ケース凹部1ACは、電気分解用デバイス1の内側面を構成する主表面に掘り込み加工によって形成される。
 図2、図4に示すように、ケース凹部1ACは、入水孔1AIと出水孔1AOとを有する。入水孔1AIは、電気分解用デバイス1の内側面の長手方向の一端部の近傍に配置される。出水孔1AOは、電気分解用デバイス1の内側面の長手方向の他端部の近傍に配置される。ケース凹部1ACは、電気分解用デバイス1の内側面の長手方向の中央と出水孔1AOとの間に配置された導電線挿入孔1ALを有する。
 図2、図4、図5に示すように、ケース凹部1ACは、電気分解用デバイス1の内側面の長手方向の内側面の略中央に配置され、面状窪み1ADを有する。面状窪み1ADは、入水孔1AIと出水孔1AOと導電線挿入孔1ALとを含む。
 図2、図4に示すように、ケース凹部1ACは、環状のパッキン用窪み1APを有する。パッキン用窪み1APは、面状窪み1ADを取り囲むように、面状窪み1ADの外側に配置される。
 出水孔1AOを含み、導電線挿入孔1ALを含まない領域において、ケース凹部1ACはバッファ用窪み1ABを有する。バッファ用窪み1ABは、面状窪み1ADよりも深く窪んでいる。
 図2に示すように、陽極ケース1Aは複数の固定用孔1AFを有する。固定用孔1AFは、バッファ用窪み1ABおよび面状窪み1ADの外側に設けられた環状のパッキン用窪み1APの外側に配置される。
 図4、図5に示すように、面状窪み1ADの内部には、複数の円盤状のケースリブ1ARが配置される。図2、図4に示すように、面状窪み1ADとバッファ用窪み1ABとはケース傾斜面1ASで接続される。
 (陰極ケース)
 図3~図5に示すように、陰極ケース1Cは、陰極2Cと、複数(例えば3本)のスペーサSとを収容し、電気分解用デバイス1の外郭の一部を構成する。陰極ケース1Cの材質はアクリル樹脂である。
 図3に示すように、陰極ケース1Cは平板状の直方体形状を有し、ケース凹部1CCを備える。ケース凹部1CCは、電気分解用デバイス1の内側面を構成する主表面に掘り込み加工によって形成される。
 図3、図4に示すように、ケース凹部1CCは、電気分解用デバイス1の内側面の長手方向の一端部の近傍に配置される入水孔1CIを有する。ケース凹部1CCは、電気分解用デバイス1の内側面の長手方向の他端部の近傍に配置された出水孔1COを有する。
 図4に示すように、ケース凹部1CCは、電気分解用デバイス1の内側面の長手方向の中央と出水孔1COとの間に配置された導電線挿入孔1CLを有する。
 図3、図4に示すように、ケース凹部1CCは、電気分解用デバイス1の内側面の略中央に配置され、面状窪み1CDを有する。面状窪み1CDは、入水孔1CIと出水孔1COと導電線挿入孔1CLとを含む。環状のパッキン用窪み1CPは、面状窪み1CDを取り囲むように、面状窪み1CDの外側に配置される。
 図3、図4に示すように、ケース凹部1CCは出水孔1COを含む。しかしながら、ケース凹部1CCは、導電線挿入孔1CLを含まない領域において、バッファ用窪み1CBを有する。バッファ用窪み1CBは、面状窪み1CDよりも深く窪んでいる。
 ケース凹部1CCは固定用孔1CFを有する。固定用孔1CFは、バッファ用窪み1CBおよび面状窪み1CDよりも外側に設けられた環状のパッキン用窪み1CPの外側に配置される。
 図4、図5に示すように、面状窪み1CDの内部には、複数の円盤状のケースリブ1CRが配置される。円盤状のケースリブ1CRと円盤状のケースリブ1ARとは、それぞれの円形の先端面が互いに対向するように設けられる。図3、図4に示すように、面状窪み1CDとバッファ用窪み1CBとはケース傾斜面1CSで接続される。
 (イオン交換膜)
 図4、図5に示すように、イオン交換膜3は、陽極2Aと陰極2Cとの間に配置される。より具体的には、図6に示すように、イオン交換膜3は、陽極用表面材2ASには接触し、陰極用表面材2CSからは離間する。
 イオン交換膜3は、陽極2Aの近傍で発生した水素イオン、不可避の金属イオン、水分子、酸素分子を通過させるが、カチオンを通過させないカチオン交換膜である。カチオン交換膜としては、例えば、デュポン社の商品名「ナフィオン(R)」などが挙げられる。イオン交換膜3の厚さは、0.01~0.2mmである。イオン交換膜3は、薄い平面状の形状を有する。
 イオン交換膜3は、パーフロロエチレンを主鎖として、スルホン酸基を有する側鎖を有するパーフロロスルホン酸と呼ばれるフッ素樹脂の共重合体である。具体的には、イオン交換膜3は、ポリフルオロエチレンースルホン酸である。なお、電気の通りやすさを表すイオン交換基の量「EW(equivalent weight,等価質量)」は約1000である。図6、図7に示すように、イオン交換膜3の一方の主表面が、陽極用表面材2ASの一方の主表面の全体に接触する。
 図5に示すように、イオン交換膜3の他方の主表面の一部が、互いに離間して設けられた複数のスペーサSに接触する。図4、図5に示すように、イオン交換膜3の端部は、陽極2Aおよび陰極2Cの外周縁から外方に延在する。イオン交換膜3の端部は、陽極ケース1A側のパッキンPおよび陰極ケース1C側のパッキンPによって挟持される。
 (陽極用給電体<チタン面材>)
 図6、図7に示される陽極用給電体2AFは、負の電荷を陽極用表面材2ASから受け取る。陽極用給電体2AFの厚さは0.5mmである。陽極用給電体2AFは、薄い平面状の形状を有する。
 陽極用給電体2AFのイオン交換膜3に対向する主表面には、例えば、1mm間隔で、直径1mmの貫通孔THAが形成される。貫通孔THAは、例えば、1nm~1mm程度の孔径を有すればよい。陽極用給電体2AFの材質は、チタンと不可避の不純物とからなる。
 陽極用給電体2AFの一方の主表面には、陽極用表面材2ASが設けられる。本実施の形態では、貫通孔THAの内周面の一部にも、陽極用表面材2ASが設けられる。しかし貫通孔THAの内周面の全体に、陽極用表面材2ASが設けられてもよい。導電線2AE(図4参照)は、導電線挿入孔1ALに挿入され、陽極用給電体2AFの他方の主表面に電気的に接続される。
 図4~図6に示すように、ケースリブ1ARは、陽極ケース1Aの面状窪み1ADから突出する。ケースリブ1ARは、陽極用給電体2AFの他方の主表面に当接する。
 (陽極用表面材<PtおよびPt系金属ならびにその合金>)
 陽極用表面材2ASにおいて、「2HO→4H+O+4e」の反応が行われる。陽極用表面材2ASの厚さは0.1μmである。陽極用表面材2ASは、薄い平面状の形状を有する。陽極用表面材2ASは、その主表面に微細な凹凸(図示せず)を有し、かつ、微細で連続する多数の空隙(図示せず)を有する。
 陽極用表面材2ASの材質は、白金とイリジウムとの合金である。図6、図7に示すように、陽極用表面材2ASは、陽極用給電体2AFの一方の主表面の全体に接触するように設けられる。陽極ケース1Aと陰極ケース1Cとが組み合わされると、陽極用表面材2ASはイオン交換膜3に接触する。陽極用表面材2ASは、陽極用給電体2AFの全表面に形成されてもよい。
 (陰極用給電体<チタン面材>)
 陰極用給電体2CFは、負の電荷を陰極用表面材2CS(図6参照)に供給する。陰極用給電体2CFの厚さは0.5mmである。陰極用給電体2CFは、薄い平面状の形状を有する。陰極用給電体2CFのイオン交換膜3に対向する主表面に、直径1mmの窪みDが1mm間隔で形成される。
 イオン交換膜3に対向する主表面における、陰極用給電体2CFの窪みDを含まない位置に、直径1mmの貫通孔THCが1mm間隔で形成される。窪みDおよび貫通孔THCのいずれかのみが陰極用給電体2CFに設けられてもよい。貫通孔THCは、1nm~1mm程度の孔径を有すればよい。陰極用給電体2CFの材質は、チタンと不可避の不純物とを含む。
 図6、図7に示すように、陰極用給電体2CFの一方の主表面に、陰極用表面材2CSが設けられる。窪みDおよび貫通孔THCの内周面の一部にも、陰極用表面材2CSが形成される。貫通孔THCの内周面の全体に、陰極用表面材2CSが設けられてもよい。
 導電線2CE(図4参照)が、導電線挿入孔1CLに挿入され、陰極用給電体2CFの他方の主表面に接続される。陽極ケース1Aと陰極ケース1Cとが組み合わされると、陰極用給電体2CFの他方の主表面に、陰極ケース1Cの面状窪み1CDから突出したケースリブ1CRが当接する。
 (陰極用表面材<PtおよびPt系金属ならびにその合金>)
 陰極用表面材2CSにおいて、「2H+2e→H」の反応が行われる。陰極用表面材2CSの厚さは0.1~1μmである。陰極用表面材2CSは、薄い平面状の形状を有する。陰極用表面材2CSは、その主表面に微細な凹凸(図示せず)を有し、かつ、微細で連続する空隙(図示せず)を多数有する。
 陰極用表面材2CSの材質は、白金とイリジウムとの合金である。図6、図7に示すように、陰極用表面材2CSは、陰極用給電体2CFの一方の主表面の全体に接触するように形成され、陽極ケース1Aと陰極ケース1Cとが組み合わされると、スペーサSに接触する。陰極用表面材2CSは、陰極用給電体2CFの全表面に形成されてもよい。
 (スペーサ)
 図6に示すように、スペーサSは、陰極用表面材2CSとイオン交換膜3との間の陰極用通水路10Bに設けられる。スペーサSによって、イオン交換膜3の膨潤に起因するイオン交換膜3と陰極用表面材2CSとの接触を抑制することができる。このため、陰極用表面材2CSの劣化を抑制することができる。その結果、スペーサSとイオン交換膜3とが接触する部位における電流集中の発生を抑制することができる。
 スペーサSと陰極用表面材2CSとの間には、水が流れる隙間Cが設けられる。隙間Cを通じて、陰極用表面材2CSのスペーサSによって覆われた部分にも水が流れ込む。このため、水に接触する陰極用表面材2CSの面積の減少量を小さくすることができる。その結果、スペーサSに起因する、陰極2Cで発生する水素の減少量を小さくすることができる。
 本実施の形態においては、スペーサSの陰極用表面材2CSに対向する表面に形成された凹部が、隙間Cとして機能する。陰極用表面材2CSの表面に形成された窪みDも、隙間Cと同様に機能する。
 隙間Cは、スペーサSまたは陰極用表面材2CSに意図的に形成された凸凹ではなく、陰極用表面材2CSまたはスペーサSに自然に形成された凹凸でもよい。例えば、製造過程において陰極用表面材2CSの主表面に自然に形成されたボイド(PtおよびPt系金属ならびにその合金のめっきのボイド)が、隙間Cと同様の機能を有してもよい。
 図6、図7に示すように、スペーサSの長手方向が陰極用通水路10Bの長手方向に沿って延在するように、スペーサSが陰極用通水路10Bに配置される。このため、スペーサSに起因する通水抵抗を小さくすることができる。
 スペーサSの長手方向が陰極用表面材2CSの長手方向に沿って延在するように、スペーサSが陰極用表面材2CSに接触する。このため、陰極用表面材2CSの長手方向におけるイオン交換膜3のたわみを小さくすることができる。その結果、陰極用表面材2CSとイオン交換膜3との接触のおそれをさらに低減させることができる。
 陰極用給電体2CFは、少なくともイオン交換膜3に対向する面に、窪みDおよび貫通孔THCを有する。窪みDの内面および貫通孔THCの内面の一部が、陰極用表面材2CSによって覆われる。このため、窪みDおよび貫通孔THCの位置では、水の流速が他の位置と比較して若干遅くなる。その結果、窪みDおよび貫通孔THCの一部の位置で、水素をより多く発生させることができる。
 図6に示すように、スペーサSとイオン交換膜3とが接触する部分の面積が、スペーサSと陰極用表面材2CSとが接触する部分の面積よりも大きい。スペーサSと陰極用表面材2CSとが接触する部分の面積を小さくすることによって、陰極用表面材2CSのうちの水素の発生に有効に機能する部分の面積を大きくすることができる。
 スペーサSは、陰極用表面材2CSとイオン交換膜3との間に設けられ、陰極用表面材2CSとイオン交換膜3との間の距離、すなわち、陰極用通水路10Bの幅を維持する。スペーサSは、イオン交換膜3と陰極用表面材2CSの部分的な接触を抑制することによって、接触箇所で生じる電流集中を回避する。
 スペーサSは、台形状の断面を有する棒状部材である。スペーサSの両端は、折り曲げ加工されて引掛り部(図2参照)となる。スペーサSは、長方形状または円形状の断面を有する棒状部材でもよい。スペーサSの材質は、比抵抗が通水、例えば水道水よりも大きい樹脂である。
 前述のように、スペーサSと陰極用表面材2CSとが接触する部分の面積が、スペーサSとイオン交換膜3とが接触する部分の面積よりも小さい。具体的には、スペーサSのイオン交換膜3に接触する部位の幅は、例えば、3mmである。スペーサSの陰極用表面材2CSと接触する部位の幅は、例えば、2mmである。
 このため、スペーサSが陰極用通水路10Bに存在しても、陰極用表面材2CSのうちの水素の発生に有効に機能する部分の面積はより大きくなる。
 陰極用表面材2CSのスペーサSに対向する部位には、窪みDが形成される。スペーサSの陰極用表面材2CSに対向する部位には、隙間Cが形成される。スペーサSは、イオン交換膜3と陰極用表面材2CSとに挟まれる。この状態で、スペーサSの両端の引掛り部(図2参照)が陰極ケース1Cに接触する。
 (陰極用通水路)
 図6、図7に示すように、陰極用通水路10B、10Cは、陰極2Cの二つの主表面にそれぞれ面するように設けられ、貫通孔THCを経由して連通する。貫通孔THCを経由して水が移動することにより、貫通孔THCの近傍で乱流が生じる。この乱流により、陰極2Cの近傍で発生した水素がそこに留まって凝集するのを防止することができる。その結果、水への水素の溶解が促進される。
 図6に示すように、貫通孔THCを通る流路の断面において、陰極2Cのイオン交換膜3に対向する表面側の陰極用通水路10Bの断面積が、陰極2Cのイオン交換膜3に対向する表面の裏側の陰極用通水路10Cの断面積よりも小さい。
 このため、陰極2Cのイオン交換膜3に対向する表面側の水の流速V1が、陰極2Cのイオン交換膜3に対向する表面の裏側の水の流速V2よりも大きい。その結果、貫通孔THCを経由して陰極用通水路10Bに水が流れ込み、発生した水素の水への溶解が促進される。
 貫通孔THCを通る流路の断面において、陰極2Cのイオン交換膜3に対向する表面の裏側の陰極用通水路10Cの断面積が、陰極2Cのイオン交換膜3に対向する表面側の陰極用通水路10Bの断面積よりも小さくてもよい。
 この場合、陰極2Cのイオン交換膜3に対向する表面側の裏側の水の流速V2が、陰極2Cのイオン交換膜3に対向する表面側の水の流速V1よりも大きくなる。このため、陰極2Cのイオン交換膜3に対向する表面側の陰極用通水路10Bで発生した水素の一部が、貫通孔THCを通過し、陰極2Cのイオン交換膜3に対向する表面の裏側の陰極用通水路10Cで水に接触する。
 その結果、陰極2Cの近傍で発生した水素の凝集を抑制することができる。従って、この場合においても、水素の水への溶解を促進させることができる。
 陰極2Cは、陰極用給電体2CFと、陰極用給電体2CFのイオン交換膜3に対向する表面を覆う陰極用表面材2CSとを含む。貫通孔THCの内周面の一部または全部も、陰極用表面材2CSによって覆われる。このため、貫通孔THCの内部でも水素が発生する。その結果、陰極2Cの水素が発生する部分の面積を大きくすることができ、水素の発生量を増加させることができる。
 (電気分解用デバイスの組み立て)
 陰極用給電体2CFの一方の主表面上に、電解めっきによって陰極用表面材2CSを析出させる。この際、陰極用給電体2CFの窪みDの表面と貫通孔THCの表面上にも、陰極用表面材2CSを析出させる。陰極用表面材2CSを、貫通孔THCの一部または全部に析出させてもよい。
 電解めっきには、白金の塩化物もしくは錯体、または、白金系の金属の塩化物もしくは錯体を溶解した溶液を直接塗布した後に熱焼成を行って陰極用表面に析出させた場合も含まれる。
 陰極用給電体2CFが、面状窪み1CDに対して陰極用表面材2CSを露出させるように設置される。導電線2CEが、導電線挿入孔1CLから陰極ケース1Cの内側面のさらに内側に挿入され、陰極用給電体2CFに接続される。
 図3に示すように、三つのスペーサSは、それらの長手方向が陰極2Cの長手方向に沿うように、陰極2Cの短手方向の両端部および中央に略等間隔に陰極2Cの上に配置される。
 スペーサSの引掛り部は、陰極ケース1Cに接着剤によって固定される。スペーサSとイオン交換膜3とが接触する部分の面積は、スペーサSと陰極用表面材2CSとが接触する部分の面積よりも大きい(図6参照)。
 パッキンPがパッキン用窪み1APに挿入される。イオン交換膜3が陰極2Cの上に重ね合わされる。イオン交換膜3の周縁部は、パッキン用窪み1APよりも外側に位置する。
 陽極用給電体2AFが、陽極用表面材2ASを露出させるように、面状窪み1ADに配置される。導電線2AEが、導電線挿入孔1ALから陽極ケース1Aの内側面のさらに内側に挿入され、陽極用給電体2AFに電気的に接続される。
 図4に示すように、パッキンPがパッキン用窪み1APに挿入される。陽極用表面材2ASがイオン交換膜3に向けられた状態で、陰極ケース1Cの内側面と陽極ケース1Aの内側面とが重ね合わされる。円盤状のケースリブ1CRと円盤状のケースリブ1ARとは、ほぼ対向するように配置される。
 図1に示される状態で、図示されないビスおよびナットが、固定用孔1CFおよび固定用孔1AFに挿入されることによって、陰極ケース1Cと陽極ケース1Aとが固定される。
 図4~図7に示すように、イオン交換膜3の外周の近傍がパッキンPによって挟持される。イオン交換膜3の中心付近が、陽極用表面材2ASとスペーサSとによって支持される。イオン交換膜3は、陰極用表面材2CSから離間して設けられる。
 (電解水生成装置への電気分解用デバイスの組み込み)
 電気分解用デバイス1が電解水生成装置に取り付けられる。入水用パイプが入水孔1AIおよび入水孔1CIに取り付けられる。出水用パイプが出水孔1AOおよび出水孔1COに取り付けられる。
 出水孔1AO、1COは、入水孔1AIおよび入水孔1CIよりも高くなるように配置される。この状態で、スペーサSの長手方向と陰極用通水路10B、10Cの長手方向とが同一である。外部導電線が、導電線2AE、2CEに接続され、かつ、電源に接続される。
 (電気分解用デバイスにおける電気分解の動作)
 操作電源への通電により、電気分解用デバイス1の初期動作の確認が開始される。例えば、陽極2Aと陰極2Cとの間に所定電圧を印加した際の電流値に基づいて、上記外部導電線の外れ、イオン交換膜3と陰極2Cとの不適切な接触、および、陰極用表面材2CSの劣化などの有無が判断される。このテストにおいて異常が検出されると、異常の報知が行われるとともに電解水生成装置の動作が停止される。
 図4に示すように、水が電気分解用デバイス1の中へ流れ込んだ後、入水孔1AIおよび入水孔1CIから出水孔1AOおよび出水孔1COに向かって流れ、電気分解用デバイス1の内部空間に充填される。
 図7に示すように、水は、貫通孔THCを介して陰極用通水路10B、10Cを流れる。また、水は陽極用通水路10Aを流れる。
 この場合、陰極2Cのイオン交換膜3に対向する主表面側を流れる水の流速V1(陰極用表面材2CSの露出面側の流速)が、陰極2Cのイオン交換膜3に対向する主表面の裏側を流れる水の流速V2(陰極用給電体2CFの露出面側の流速)よりも大きい。
 電気分解用デバイス1の電源がオンされると、電気分解によって主として、陰極用表面材2CSのイオン交換膜3に対向する主表面で、水素が生成される。具体的には、水素は、貫通孔THC、陰極用給電体2CFの窪みDに付着した陰極用表面材2CS、および、貫通孔THCの内周面上に付着した陰極用表面材2CSで生成される。
 以下、本実施の形態の電気分解用デバイス1の特徴的構成、および、それにより得られる効果を説明する。
 (1)電気分解用デバイス1は、陽極2Aと陰極2Cとイオン交換膜3とスペーサSとを備える。陰極2Cは、陰極用給電体2CFと、陰極用給電体2CFの主表面を覆う陰極用表面材2CSとを有する。イオン交換膜3は、陽極2Aに接触し、かつ、陽極2Aと陰極2Cとの間に陰極用表面材2CSから離間して配置される。スペーサSは、陰極用表面材2CSとイオン交換膜3との間の陰極用通水路10Bに設けられる。
 上記構成によれば、イオン交換膜3の膨潤に起因してイオン交換膜3と陰極用表面材2CSとが接触することを抑制することができる。その結果、陰極用表面材2CSの劣化を抑制することができる。
 (2)スペーサSと陰極用表面材2CSとの間には、水が流れる隙間Cが設けられることが好ましい。この構成により、陰極用表面材2CSの全表面のうちのスペーサSによって覆われた領域の表面にも、隙間Cを通じて水が流れ込む。
 このため、陰極用表面材2CSが水に接触する面積の、スペーサSに起因する減少量を小さくすることができる。その結果、スペーサSに起因した、陰極2Cで発生する水素の減少量を小さくすることができる。
 (3)スペーサSの長手方向が陰極用通水路10Bの長手方向に沿って延在するように、スペーサSが陰極用通水路10Bに配置されることが好ましい。この構成により、スペーサSに起因する通水抵抗を小さくすることができる。
 (4)スペーサSの長手方向が陰極用表面材2CSの長手方向に沿って延在するように、スペーサSが陰極用表面材2CSに接触することが好ましい。この構成により、陰極用表面材2CSの長手方向におけるイオン交換膜3のたわみを小さくすることができる。このため、陰極用表面材2CSとイオン交換膜3との接触のおそれをさらに低減させることができる。
 (5)陰極用給電体2CFは、少なくともイオン交換膜3に対向するその主表面に、窪みDおよび貫通孔THCの少なくともいずれかを有することが好ましい。窪みDおよび貫通孔THCの少なくともいずれかの内面の少なくとも一部が、陰極用表面材2CSによって覆われていることが好ましい。
 この構成により、窪みDおよび貫通孔THCの少なくともいずれかの位置では、水の流速が他の位置より遅くなる。このため、窪みDおよび貫通孔THCの少なくともいずれかの位置で、水素をより多く発生させることができる。
 (6)スペーサSと陰極用表面材2CSとが接触する部分の面積が、スペーサSとイオン交換膜3とが接触する部分の面積よりも小さいことが好ましい。スペーサSと陰極用表面材2CSとが接触する部分の面積を小さくすることによって、陰極用表面材2CSのうちの水素の発生に有効に機能する部分の面積を大きくすることができる。
 (7)電気分解用デバイス1は、陽極2Aと陰極2Cとイオン交換膜3と陰極用通水路10B、10Cとを備える。陰極2Cは、陽極2Aに向かって延在する貫通孔THCを有する。イオン交換膜3は、陽極2Aと陰極2Cとの間に配置される。陰極用通水路10B、10Cは、陰極2Cの両側に設けられ、貫通孔THCを経由して連通する。
 貫通孔THCを経由して水が陰極用通水路10B、10Cの間を移動することにより、貫通孔THCの近傍で乱流が生じる。この乱流により、陰極2Cの近傍で発生した水素がそこに留まって凝集するのを抑制することができる。その結果、発生した水素の水への溶解が促進される。
 (8)陰極2Cのイオン交換膜3に対向する表面側の陰極用通水路10Bの流路断面積が、陰極2Cのイオン交換膜3に対向する表面の裏側の陰極用通水路10Cの流路断面積よりも小さくてもよい。
 この構成により、陰極2Cのイオン交換膜3に対向する陰極用通水路10Bの表面側を流れる水の流速V1が、陰極2Cのイオン交換膜3に対向する表面の裏側の陰極用通水路10Cを流れる水の流速V2よりも大きい。
 このため、イオン交換膜3に面する表面の裏側の陰極用通水路10Cから貫通孔THCを経由してイオン交換膜3に面する表面側の陰極用通水路10Bへ水が流れ込む。これにより、発生した水素の水への溶解が促進される。
 (9)陰極2Cのイオン交換膜3に対向する表面の裏側の陰極用通水路10Cの流路断面積が、陰極2Cのイオン交換膜3に対向する表面側の陰極用通水路10Bの流路断面積よりも小さくてもよい。
 この構成により、陰極2Cのイオン交換膜3に対向する表面側の陰極用通水路10Cを流れる水の流速V2が、陰極2Cのイオン交換膜3に対向する表面の裏側の陰極用通水路10Bを流れる水の流速V1よりも大きい。
 このため、陰極2Cのイオン交換膜3に対向する表面側の陰極用通水路10Bで発生した水素の一部が、貫通孔THCを通過し、陰極2Cのイオン交換膜3に対向する表面の裏側の陰極用通水路10Cで水に接触する。このため、陰極2Cの近傍で発生した水素の凝集を抑制することができる。その結果、発生した水素の水への溶解を促進させることができる。
 (10)陰極2Cは、陰極用給電体2CFと、陰極用給電体2CFのイオン交換膜3に対向する主表面を覆う陰極用表面材2CSとを含んでいてもよい。貫通孔THCの内周面の少なくとも一部も、陰極用表面材2CSによって覆われることが好ましい。この構成により、貫通孔THCの内部でも水素が発生する。このため、陰極2Cの水素が発生する部分の面積を大きくすることができる。
 1 電気分解用デバイス
 1A 陽極ケース
 1AB、1CB バッファ用窪み
 1AC、1CC ケース凹部
 1AD、1CD 面状窪み
 1AF、1CF 固定用孔
 1AI、1CI 入水孔
 1AL、1CL 導電線挿入孔
 1AO、1CO 出水孔
 1AP、1CP パッキン用窪み
 1AR、1CR ケースリブ
 1AS、1CS ケース傾斜面
 1C 陰極ケース
 2A 陽極
 2AE、2CE 導電線
 2AF 陽極用給電体
 2AS 陽極用表面材
 2C 陰極
 2CF 陰極用給電体
 2CS 陰極用表面材
 3 イオン交換膜
 10A 陽極用通水路
 10B、10C 陰極用通水路
 C 隙間
 D 窪み
 P パッキン
 S スペーサ
 THA、THC 貫通孔
 V1、V2 水の流速

Claims (10)

  1.  陽極と、
     陰極用給電体と、前記陰極用給電体の主表面を覆う陰極用表面材と、を有する陰極と、
     前記陽極に接触し、かつ、前記陽極と前記陰極との間に前記陰極用表面材から離間して配置されたイオン交換膜と、
     前記陰極用表面材と前記イオン交換膜との間の陰極用通水路に設けられたスペーサと、を備えた、電気分解用デバイス。
  2.  前記スペーサと前記陰極用表面材との間には、水が流れる隙間が設けられた、請求項1に記載の電気分解用デバイス。
  3.  前記スペーサの長手方向が前記陰極用通水路の長手方向に沿って延在するように、前記スペーサが前記陰極用通水路に配置された、請求項1に記載の電気分解用デバイス。
  4.  前記スペーサの長手方向が前記陰極用表面材の長手方向に沿って延在するように、前記スペーサが前記陰極用表面材に接触する、請求項1に記載の電気分解用デバイス。
  5.  前記陰極用給電体が、少なくとも前記イオン交換膜に対向する主表面に窪みおよび貫通孔の少なくともいずれかを有し、
     前記窪みおよび前記貫通孔の少なくともいずれかの内面の少なくとも一部が、前記陰極用表面材により覆われる、請求項1に記載の電気分解用デバイス。
  6.  前記スペーサと前記陰極用表面材とが接触する部分の面積が、前記スペーサと前記イオン交換膜とが接触する部分の面積よりも小さい、請求項1に記載の電気分解用デバイス。
  7.  陽極と、
     前記陽極に向かって延在する貫通孔を有する陰極と、
     前記陽極と前記陰極との間に配置されたイオン交換膜と、
     前記陰極の両側に設けられ、前記貫通孔を経由して連通する二つの陰極用通水路と、を備えた、電気分解用デバイス。
  8.  前記二つの陰極用通水路のうちの、前記陰極の前記イオン交換膜に対向する表面側の陰極用通水路の流路断面積が、前記陰極の前記イオン交換膜に対向する表面の裏側の陰極用通水路の流路断面積よりも小さい、請求項7に記載の電気分解用デバイス。
  9.  前記二つの陰極用通水路のうちの、前記陰極の前記イオン交換膜に対向する表面の裏側の陰極用通水路の流路断面積が、前記陰極の前記イオン交換膜に対向する表面側の陰極用通水路の流路断面積よりも小さい、請求項7に記載の電気分解用デバイス。
  10.  前記陰極が、陰極用給電体と、前記陰極用給電体の前記イオン交換膜に対向する主表面を覆う陰極用表面材とを含み、
     前記貫通孔の内周面の少なくとも一部も前記陰極用表面材により覆われる、請求項8に記載の電気分解用デバイス。
PCT/JP2018/046219 2018-02-22 2018-12-17 電気分解用デバイス WO2019163269A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880089587.4A CN111727274B (zh) 2018-02-22 2018-12-17 电解用器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-029506 2018-02-22
JP2018029506A JP2019143212A (ja) 2018-02-22 2018-02-22 電気分解用デバイス

Publications (1)

Publication Number Publication Date
WO2019163269A1 true WO2019163269A1 (ja) 2019-08-29

Family

ID=67687587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046219 WO2019163269A1 (ja) 2018-02-22 2018-12-17 電気分解用デバイス

Country Status (4)

Country Link
JP (1) JP2019143212A (ja)
CN (1) CN111727274B (ja)
TW (1) TWI785175B (ja)
WO (1) WO2019163269A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383998A (en) * 1976-12-29 1978-07-24 Tokuyama Soda Co Ltd Electrolysis method
JPS5638486A (en) * 1979-09-04 1981-04-13 Toagosei Chem Ind Co Ltd Electrolytic tank for electrolyzing aqueous alkali chloride solution
JP2010088972A (ja) * 2008-10-03 2010-04-22 Chugoku Electric Manufacture Co Ltd 水素含有電解水生成装置及び給湯設備
WO2016080505A1 (ja) * 2014-11-21 2016-05-26 国立大学法人横浜国立大学 有機ハイドライド製造装置およびこれを用いた有機ハイドライドの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275670A (ja) * 2001-03-13 2002-09-25 Association For The Progress Of New Chemistry イオン交換膜電解槽および電解方法
WO2010122785A1 (ja) * 2009-04-21 2010-10-28 東ソー株式会社 イオン交換膜法電解槽
JP5945154B2 (ja) * 2012-04-27 2016-07-05 ティッセンクルップ・ウーデ・クロリンエンジニアズ株式会社 イオン交換膜電解槽
JP5210456B1 (ja) * 2012-11-20 2013-06-12 日科ミクロン株式会社 洗浄水生成装置
DE102015118352A1 (de) * 2015-10-27 2017-04-27 Thyssenkrupp Uhde Chlorine Engineers Gmbh Elektrolyseur zur elektrochemischen Wasseraufbereitung
CN205556792U (zh) * 2016-04-05 2016-09-07 陕西金泰氯碱化工有限公司 一种零极距电解槽

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383998A (en) * 1976-12-29 1978-07-24 Tokuyama Soda Co Ltd Electrolysis method
JPS5638486A (en) * 1979-09-04 1981-04-13 Toagosei Chem Ind Co Ltd Electrolytic tank for electrolyzing aqueous alkali chloride solution
JP2010088972A (ja) * 2008-10-03 2010-04-22 Chugoku Electric Manufacture Co Ltd 水素含有電解水生成装置及び給湯設備
WO2016080505A1 (ja) * 2014-11-21 2016-05-26 国立大学法人横浜国立大学 有機ハイドライド製造装置およびこれを用いた有機ハイドライドの製造方法

Also Published As

Publication number Publication date
TWI785175B (zh) 2022-12-01
CN111727274A (zh) 2020-09-29
TW201937001A (zh) 2019-09-16
JP2019143212A (ja) 2019-08-29
CN111727274B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
JP5427129B2 (ja) 電解電極ユニット及びこれを用いた電解水生成装置
TWI546419B (zh) 電解電極元件及具有該電解電極元件之電解水生成裝置
JP2016096033A (ja) 燃料電池スタック
US20120125782A1 (en) Gas diffusion electrode equipped ion exchange membrane electrolyzer
JP2007265929A (ja) 燃料電池用燃料極、それを備えた燃料電池および燃料電池システム
US11542182B2 (en) Hydrogen-containing water generator
KR101474868B1 (ko) 전해액 확산 및 가스 배출 효율이 향상된 수전해조
WO2019163269A1 (ja) 電気分解用デバイス
JP2010216007A (ja) 水電解装置
JP5309902B2 (ja) 燃料電池
JP5493787B2 (ja) イオン交換膜法電解槽
JP2014143191A (ja) マグネシウム電池
CN111032919B (zh) 电解池及电解池用电极板
US20170283284A1 (en) Electrolysis module
JP2020514969A (ja) 燃料電池のためのガス分配プレート、および燃料電池
JP2007508456A (ja) 複極式電解槽のための構造ユニット
JP6403052B2 (ja) 電解用電極ユニット
EP2289852B1 (en) Improved electrolytic cell for generating chlorine in a pool
JP4838879B2 (ja) 水電解装置
JP2010113863A (ja) 燃料電池
JP2008103133A (ja) 燃料電池
JP5653209B2 (ja) イオン交換膜法電解槽
JP2008004390A (ja) チューブ型燃料電池
JP2011127212A (ja) 水電解装置
JP2010189711A (ja) 電解装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907002

Country of ref document: EP

Kind code of ref document: A1