WO2019161677A1 - 电池电量计算方法及其装置 - Google Patents

电池电量计算方法及其装置 Download PDF

Info

Publication number
WO2019161677A1
WO2019161677A1 PCT/CN2018/112879 CN2018112879W WO2019161677A1 WO 2019161677 A1 WO2019161677 A1 WO 2019161677A1 CN 2018112879 W CN2018112879 W CN 2018112879W WO 2019161677 A1 WO2019161677 A1 WO 2019161677A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
fuel gauge
real
offset correction
Prior art date
Application number
PCT/CN2018/112879
Other languages
English (en)
French (fr)
Inventor
刘玉华
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019161677A1 publication Critical patent/WO2019161677A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm

Definitions

  • the present invention relates to the field of battery management technologies, and in particular, to a battery power calculation method and apparatus therefor.
  • RSOC Remain State Of Charge
  • fuel gauge As a very important integrated chip on the battery protection board, the fuel gauge will generate a large power consumption when it is working. Therefore, when the battery is stored in a low battery state, it will choose to turn off the fuel gauge to reduce the overall power consumption.
  • an embodiment of the present invention provides a battery power calculation method and apparatus thereof that can reduce the risk of flying a drone.
  • the embodiment of the present invention provides the following technical solutions:
  • a battery power calculation method includes:
  • the second power value is displayed.
  • the performing the offset correction on the real-time electricity value calculated by the fuel gauge according to the offset correction value to obtain the second electricity value comprises:
  • the method includes:
  • the method includes:
  • the preset power threshold is 7% of the remaining battery power.
  • the method includes:
  • the real-time electricity value calculated by the fuel gauge is used as the second electricity value.
  • the embodiment of the present invention further provides the following technical solutions:
  • a battery power calculation device includes:
  • a power reading module configured to read a first power value calculated after the fuel gauge is started, and use the first power value as an offset correction value, where the first power value is a calculated value after the fuel gauge is started a power value;
  • a power correction module configured to perform offset correction on the real-time electricity value calculated by the fuel gauge according to the offset correction value to obtain a second electricity value, wherein the second electricity value is less than or equal to a real-time electricity value calculated by the fuel gauge;
  • a power display module configured to display the second power value.
  • the power correction module includes:
  • a calculating unit configured to calculate a difference between the real-time electricity value calculated by the fuel gauge and the offset correction value
  • a comparing unit configured to compare the difference with zero, if the difference is greater than zero, the difference is used as the second power value, and otherwise, 0 is used as the second power value.
  • the apparatus further includes:
  • the first determining module is configured to determine whether the real-time electricity value calculated by the fuel gauge is less than or equal to a preset power threshold, and if yes, update the second power value to a real-time electricity value calculated by the fuel gauge, and if not, The first determining module is further used for
  • the apparatus further includes:
  • the first determining module is configured to determine whether the second power value is less than or equal to a preset power threshold, and if yes, update and maintain the second power value as a preset power threshold.
  • the preset power threshold is 7% of the remaining battery power.
  • the apparatus further includes:
  • the second determining module is configured to determine whether the battery is fully charged, and if so, use the real-time power value calculated by the fuel gauge as the second power value.
  • the embodiment of the present invention further provides the following technical solutions:
  • An electronic device comprising at least one processor; a memory communicatively coupled to the at least one processor; wherein the memory stores instructions executable by the at least one processor, the instructions being by the at least one The processor executes to cause the at least one processor to implement the battery power calculation method described above.
  • the battery power calculation method of the embodiment of the present invention uses the first power value calculated after the fuel gauge is restarted, that is, the first power value as the offset correction value, and according to the offset correction value. Performing offset correction on the real-time power value calculated by the fuel gauge, and finally displaying the corrected second power value, because the second power value is less than or equal to the real-time power value calculated by the fuel gauge, thus preventing the power jump as much as possible The change occurs, which reduces the risk of the battery during the flight.
  • FIG. 1 is a schematic diagram of an application environment according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a battery power calculation method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a method for calculating a battery power according to an embodiment of the present invention
  • FIG. 4 is a schematic flow chart of a method for calculating a battery power according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of a battery power calculation method in a specific scenario according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a battery power calculation device according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application environment according to an embodiment of the present invention. As shown in FIG. 1, the application environment includes a lithium battery 10, a load 20, and a fuel gauge 30.
  • the lithium battery 10 is one or a plurality of batteries, and is formed in any form to form a battery pack for supplying a DC power source to an electric device such as an electric motor.
  • the lithium battery 10 can have a corresponding capacity, volume, or package form depending on the actual situation.
  • the lithium battery 10 can be discharged or charged under controlled conditions to simulate normal operating conditions.
  • the load 20 is electrically connected to the lithium battery 10, and the lithium battery 10 can supply power to the load 20 for normal operation.
  • the load 20 can be any electronic component, functional module, electrical device, etc. that require power supply voltage support work, such as a power module of a drone.
  • the fuel gauge 30 can be any type or brand of fuel gauge system or chip that calculates the current state of the lithium battery by collecting corresponding data.
  • the fuel gauge 30 can be run with one or more suitable software programs, record data and perform calculations based on the data.
  • a necessary electrical connection is established between the fuel gauge 30 and the lithium battery 10, and the fuel gauge 30 collects and acquires data of the lithium battery 10 through these electrical connections to determine the current power of the lithium battery 10.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a schematic flowchart of a method for calculating a battery power according to an embodiment of the present invention.
  • the bq3055 chip of TI (Texas Instruments) is taken as an example of the fuel gauge. It can be understood that in other embodiments, the fuel gauge can also be integrated with other bq3055 chips with similar power algorithm. The chip is not strictly limited here.
  • the battery power calculation method includes:
  • Step S110 Read the first power value calculated after the fuel gauge is started, and use the first power value as the offset correction value. Because the fuel gauge is turned off, it is generally the case that the battery is already low. Therefore, the calculated battery value will be directly set to 0% after the fuel gauge is turned off, that is, the battery power value is displayed as 0%. . After the charger is connected, the fuel gauge is reactivated, and the fuel gauge is restarted to calculate the first power value, which is the first power value mentioned above, and assign the first power value to Offset correction value offset.
  • the "electricity value” that appears uniformly refers to the percentage of the remaining battery power, for example, the electric energy value is 50%, indicating that the remaining half of the battery is the same. It can be understood that in other embodiments, the “electricity value” can also be used to indicate the remaining capacity of the battery, etc., which is not strictly limited herein.
  • Step S120 Perform offset modification on the real-time electricity value calculated by the fuel gauge according to the offset correction value to obtain a second electricity value, which is less than or equal to the real-time electricity value calculated by the fuel gauge.
  • the battery power calculation method in this embodiment needs to perform offset correction on the real-time power value calculated by the fuel gauge with reference to the offset correction value, and ensure that the corrected second power value is less than or equal to the real-time power calculated by the fuel gauge. value.
  • step S120 specifically includes:
  • the offset correction value is 5%, that is, the first power value calculated after the fuel gauge is restarted is 5%, and the real-time electricity value calculated by the fuel gauge at a certain time is 20% (indicating that the fuel gauge is If there is charging during the restart, the difference between the real-time electricity value calculated by the fuel gauge and the offset correction value is 15%, and 15% is displayed as the second electricity value.
  • the calculated first power value of 5% is not necessarily the actual power value of the battery at that time, so the real-time electricity value calculated by the fuel gauge at a certain moment in the late charging process is certainly not 20 %, if it shows 20% directly, it will cause the power to jump during the post-discharge process.
  • Using the solution of the embodiment to offset the real-time power value calculated by the fuel gauge is equivalent to setting the battery power value to 0 when the fuel gauge is restarted, which may cause the power display to be slightly lower, but as much as possible The ground prevents the risk of power jumps.
  • the offset correction value is 5%, that is, the first power value calculated after the fuel gauge is restarted is 5%, and the real-time electricity value calculated by the fuel gauge at a certain time is 4% (may be always discharged), then Directly display 0 as the second battery value.
  • Step S130 Display the second power value.
  • the displayed second power value is less than or equal to the real-time power value calculated by the fuel gauge, the risk caused by the power jump is prevented as much as possible.
  • the real-time electricity value calculated by the fuel gauge is 20%, but due to the accuracy problem of the fuel gauge itself or other factors, the battery may not actually have 20% of the power, then after the processing in step S130, the second power displayed is displayed. The value must be less than 20%, which will at least reduce the possibility of a power jump.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the method further includes:
  • Step S142 It is determined whether the real-time electricity value calculated by the fuel gauge is less than or equal to a preset power threshold, and if yes, step S152 is performed, and if no, step S162 is performed.
  • Step S152 Update the second power value to a real-time power value calculated by the fuel gauge.
  • Step S162 determining whether the second power value is less than or equal to a preset power threshold, and if yes, executing step S172, and if no, returning to step S120.
  • Step S172 The second power value is updated and maintained as the preset power threshold.
  • the preset power threshold is 7%. It can be understood that in other embodiments, it may be based on a specific chip.
  • the power algorithm determines the corresponding power threshold, which is not strictly limited.
  • step S152 is performed, and the second power value is updated to 7% of the real-time power value calculated by the fuel gauge.
  • the offset correction value set to 0 at this time that is, the subsequent display of the second power value no longer considers the offset of the power.
  • step S162 is performed, and if the offset correction value is 5%, the second power calculated according to step S120 in the first embodiment is performed. If the value is 10% and is greater than the power threshold 7%, after step S162 is performed, the process returns to step S120.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the method further includes:
  • Step S144 determining whether the second power value is less than or equal to a preset power threshold, and if yes, executing step S154, and if no, returning to step S120.
  • Step S154 The second power value is updated and maintained as a preset power threshold.
  • the preset power threshold is 7%. It can be understood that in other embodiments, it may be based on a specific chip.
  • the power algorithm determines the corresponding power threshold, which is not strictly limited.
  • step S120 in the first embodiment is 5%, which is less than the preset power.
  • the second power value calculated according to step S120 in the first embodiment is 10%, which is greater than the preset power threshold 7%, and then returns. Go to step S120.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the method further includes:
  • the real-time electricity value calculated by the fuel gauge is used as the second electricity value.
  • the real-time electricity value calculated by the fuel gauge is displayed as the second electricity value, that is, the offset correction value is set to 0, because the battery is not always in a state of being full, which is equivalent to The offset value is removed. In the subsequent charging and discharging process, as long as the fuel gauge is not turned off and then restarted, the power calculation will not consider the offset correction value again.
  • the fuel gauge is turned off when the battery power is low, and the display power C (ie, the second power value) is forcibly set to 0 after being turned off. %.
  • the offset correction value offset will always exist in the case where the total battery capacity update does not occur subsequently, so that the display power C will be less than or equal to the real-time electricity value calculated by the fuel gauge, and the power jump can be prevented as much as possible. The situation occurs, thereby reducing the risk of the battery during the flight of the aircraft.
  • the battery it is also necessary to judge whether the battery is charged or discharged. Specifically, if the battery is not charged or discharged, there is no need to proceed to the next step. If the battery is in the process of charging, it is further required to determine whether it is fully charged. If it is full, the real-time power value calculated by the fuel gauge is 100. % is displayed as the second power value, that is, the offset correction value offset is set to 0, because the battery cannot always be in a state of being full, which is equivalent to removing the offset value, and in the subsequent charging and discharging process, as long as there is no In the case where the fuel gauge is turned off and then restarted, the offset calculation will no longer be considered.
  • the power calculation will consider this offset correction value during the subsequent charging and discharging process. Refer to 7% for some optimization. Specifically, during the discharging process, it is determined whether the real-time electricity value C1 calculated by the fuel gauge is less than or equal to 7%, and if yes, the display power C is updated to the real-time electricity value calculated by the fuel gauge, that is, the offset correction value is set to 0. If no, it is further determined whether the display power C is less than or equal to 7%, and if so, the display power C is updated and maintained at 7%. In this way, the previously set offset correction value decreases as the real-time electricity value calculated by the fuel gauge decreases.
  • the offset correction value offset the real-time electricity value calculated by the fuel gauge C1-7% until it is reduced to zero.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the battery power calculation device includes a power reading module 610, a power correction module 620, and a power display module 630.
  • the power reading module 610 is configured to read a first power value calculated after the fuel gauge is started, and use the first power value as an offset correction value, where the first power value is calculated after the fuel gauge is started.
  • the first power value is configured to perform offset correction on the real-time electricity value calculated by the fuel gauge according to the offset correction value to obtain a second power value.
  • the power display module 630 is configured to display the second power value.
  • the power correction module 620 may include a calculating unit, configured to calculate a difference between the real-time electricity value calculated by the fuel gauge and the offset correction value, and a comparing unit, configured to compare the difference with zero, if If the difference is greater than zero, the difference is taken as the second power value, otherwise, 0 is taken as the second power value.
  • the battery power calculation device further includes a first determining module, configured to determine whether the real-time electricity value calculated by the fuel gauge is less than or equal to a preset power threshold, and if so, the second The first value determining module is further configured to determine whether the second power value is less than or equal to a preset power threshold, and if not, the second The battery value is updated and remains at the preset battery threshold.
  • the battery power calculation device further includes a first determining module, configured to determine whether the second power value is less than or equal to a preset power threshold, and if yes, the second power value Update and keep the default power threshold.
  • the preset power threshold is 7% of the remaining battery power.
  • the battery power calculation device further includes a second determining module, configured to determine whether the battery is fully charged, and if so, use the real-time power value calculated by the fuel gauge as the second power value.
  • FIG. 7 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • the electronic device can be used as the hardware base of the fuel gauge 30 itself and/or the periphery of Fig. 1 to perform the battery power calculation method as provided by the above method embodiment.
  • the electronic device 70 includes one or more processors 701 and a memory 702. Wherein, one processor 701 is taken as an example in FIG.
  • the above electronic device may further include an output device 703.
  • other suitable device modules can also be added or subtracted according to actual needs.
  • the processor 701, the memory 702, and the output device 703 may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 702 is a non-volatile computer readable storage medium, and can be used for storing non-volatile software programs, non-volatile computer-executable programs, and modules, such as a program corresponding to the battery power calculation method in the embodiment of the present invention.
  • the instruction or module for example, the power reading module 610, the power correction module 620 shown in FIG. 6, and the output device 703 in the electronic device can be directly replaced by the display module 630 mentioned in the above embodiment.
  • the processor 701 executes various functional applications and data processing of the server by executing non-volatile software programs, instructions, and modules stored in the memory 702, that is, implementing the battery power calculation method of the above method embodiments.
  • the memory 702 can include a storage program area and an storage data area, wherein the storage program area can store an operating system, an application required for at least one function; the storage data area can store some historical data calculated by the fuel gauge, and the like.
  • memory 702 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 702 can optionally include a memory remotely located relative to processor 701, examples of which include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the computer software can be stored in a computer readable storage medium, which, when executed, can include the flow of an embodiment of the methods described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only storage memory, or a random storage memory.

Abstract

一种电池电量计算方法,包括:读取电量计启动后计算的第一电量值,并将第一电量值作为偏移修正值,其中第一电量值为电量计启动后计算出的第一个电量值(S110);根据偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值,第二电量值小于或等于电量计计算的实时电量值(S120);显示第二电量值(S130)。电池电量计算方法可以尽可能防止电量跳变的情况发生,从而降低了电池在飞机飞行过程中带来的风险。

Description

电池电量计算方法及其装置
申请要求于2018年2月26日申请的、申请号为201810162771.9、申请名称为“电池电量计算方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及电池管理技术领域,尤其涉及一种电池电量计算方法及其装置。
【背景技术】
随着无人机技术的发展和成熟,其应用场景越来越广泛。无人机的安全飞行需要智能电量管理方案来进行支撑。目前的智能电量管理方案多以德州仪器(TI,Texas Instruments)的BQ30Z55、BQ40Z50、BQ34Z100等芯片为核心,再辅以处理器等外围器件实现。其中,电池剩余电量(RSOC,Remain State Of Charge)的信息主要由TI的电量计量芯片(即电量计)来提供。电量计作为电池保护板上一块很重要的集成芯片,其工作的时候会产生较大的功耗,因此电池在电量较低状态下存放时会选择将电量计关闭来降低整体功耗。
然而,关闭电量计后,在下次电池使用时需要将电量计重新激活并重新计算电量,而这个重新计算的电量因多方面因素会和电量计关闭前显示的电量不一致,有的甚至差距较大,会有跳变产生,而这种跳变的产生会对无人机的飞行带来风险。
【发明内容】
为了解决上述技术问题,本发明实施例提供一种可以降低无人机飞行风险的电池电量计算方法及其装置。
为解决上述技术问题,本发明实施例提供以下技术方案:
一种电池电量计算方法,包括:
读取电量计启动后计算的第一电量值,并将所述第一电量值作为偏移修正值,其中所述第一电量值为电量计启动后计算出的第一个电量值;
根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值,所述第二电量值小于或等于电量计计算的实时电量值;
显示所述第二电量值。
在其中一个实施例中,所述根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值,包括:
计算电量计计算的实时电量值与所述偏移修正值之间的差值;
将所述差值与零比较,若所述差值大于零,则将所述差值作为所述第二电量值,否则,将0作为所述第二电量值。
在其中一个实施例中,所述根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值之后,包括:
判断所述电量计计算的实时电量值是否小于或等于预设的电量阈值;
若是则将所述第二电量值更新为电量计计算的实时电量值;
若否,则判断所述第二电量值是否小于或等于预设的电量阈值,若是,则将所述第二电量值更新并保持为预设的电量阈值。
在其中一个实施例中,所述根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值之后,包括:
判断所述第二电量值是否小于或等于预设的电量阈值,若是,则将所述第二电量值更新并保持为预设的电量阈值。
在其中一个实施例中,所述预设的电量阈值为电池剩余电量的7%。
在其中一个实施例中,所述根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值之后,包括:
判断所述电池是否充满电,若是,则将所述电量计计算的实时电量值作为第二电量值。
为解决上述技术问题,本发明实施例还提供以下技术方案:
一种电池电量计算装置,包括:
电量读取模块,用于读取电量计启动后计算的第一电量值,并将所述第一电量值作为偏移修正值,其中所述第一电量值为电量计启动后计算出的第 一个电量值;
电量修正模块,用于根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值,所述第二电量值小于或等于电量计计算的实时电量值;
电量显示模块,用于显示所述第二电量值。
在其中一个实施例中,所述电量修正模块包括:
计算单元,用于计算电量计计算的实时电量值与所述偏移修正值之间的差值;
比较单元,用于将所述差值与零比较,若所述差值大于零,则将所述差值作为第二电量值,否则,将0作为第二电量值。
在其中一个实施例中,所述装置还包括:
第一判断模块,用于判断所述电量计计算的实时电量值是否小于或等于预设的电量阈值,若是则将所述第二电量值更新为电量计计算的实时电量值,若否,则所述第一判断模块进一步用于
判断所述第二电量值是否小于或等于预设的电量阈值,若是,则将所述第二电量值更新并保持为预设的电量阈值。
在其中一个实施例中,所述装置还包括:
第一判断模块,用于判断所述第二电量值是否小于或等于预设的电量阈值,若是,则将所述第二电量值更新并保持为预设的电量阈值。
在其中一个实施例中,所述预设的电量阈值为电池剩余电量的7%。
在其中一个实施例中,所述装置还包括:
第二判断模块,用于判断所述电池是否充满电,若是,则将所电量计计算的实时电量值作为第二电量值。
为解决上述技术问题,本发明实施例还提供以下技术方案:
一种电子设备,包括至少一个处理器;存储器,与所述至少一个处理器通信连接;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器实现上述的电池电量计算方法。
与现有技术相比较,本发明实施例的电池电量计算方法,通过将电量计 重新启动后计算的第一个电量值即第一电量值作为偏移修正值,并根据所述偏移修正值对电量计计算的实时电量值进行偏移修正,最后显示修正后得到的第二电量值,因所述第二电量值小于或等于电量计计算的实时电量值,这样尽可能的防止了电量跳变的情况发生,从而降低了电池在飞机飞行过程中带来的风险。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例提供的应用环境示意图;
图2为本发明一实施例提供的电池电量计算方法流程示意图;
图3为本发明一实施例提供的电池电量计算方法部分流程示意图;
图4为本发明一实施例提供的电池电量计算方法部分流程示意图;
图5为本发明一实施例提供的具体场景中的电池电量计算方法流程示意图;
图6为本发明一实施例提供的电池电量计算装置示意图;
图7为本发明实施例提供的电子设备的结构框图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之 间未构成冲突就可以相互结合。术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
图1为本发明实施例提供的应用环境示意图。如图1所示,所述应用环境包括锂电池10、负载20以及电量计30。
锂电池10是一个或者多个电芯,以任何形式排列形成的电池组,用于为电动机等电器设备提供直流电源。锂电池10可以根据实际情况,具有相应的容量、体积大小或者封装形式。锂电池10可以在受控的情况下放电或者充电,模拟正常的工作运行情况。
负载20与锂电池10之间电性连接,锂电池10可以供电给负载20使其正常运行。负载20可以是任何需要电源电压支持工作的电子元器件、功能模块、电器设备等,具体如无人机的动力模块等。
电量计30可以是任何类型或者品牌的电量计量系统或芯片,通过采集相应的数据来计算确定锂电池当前的电量情况。该电量计30可以运行有一种或者多种合适的软件程序,记录数据并基于这些数据进行运算。
电量计30与锂电池10之间建立有必要的电性连接,电量计30通过这些电性连接采集、获取锂电池10的数据以确定锂电池10当前的电量。
实施例一:
图2为本发明实施例提供的电池电量计算方法流程示意图。在本实施例中,以TI(Texas Instruments,德州仪器)的bq3055芯片作为电量计为例来描述,可以理解,在其他实施例中,电量计还可以为其他与bq3055芯片具有类似电量算法的集成芯片,这里不作严格限定。
如图2所示,该电池电量计算方法包括:
步骤S110:读取电量计启动后计算的第一电量值,并将所述第一电量值作为偏移修正值。因为电量计在被关闭的时候,一般都是电池的电量已经很低了的情况,所以在电量计关闭后其计算的电量值会直接被强制置为0%,即电池电量值显示为0%。当期间有充电器接入,使得电量计被重新激活以后,电量计重新启动后会计算出第一个电量值,也就是前面提到的第一电量值,并将所述第一电量值赋值给偏移修正值offset。
在本实施例中,出现的“电量值”统一是指电池剩余电量的百分比,比 如电量值为50%,说明电池剩余一半的电量。可以理解,在其他实施例中,“电量值”还可以用于表示电池剩余容量等,这里不作严格限制。
步骤S120:根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值,所述第二电量值小于或等于电量计计算的实时电量值。
具体地,电量计在重新启动以后,其计算出来的电量值一般会和电量计关闭前显示的电量不一致,有的甚至差距较大,会有跳变产生,而这种跳变的存在会对无人机的飞行带来风险。因此,本实施例中的电池电量计算方法需要参照所述偏移修正值对电量计计算的实时电量值进行偏移修正,并且保证修正后的第二电量值小于或等于电量计计算的实时电量值。
在一个实施例中,步骤S120具体包括:
计算电量计计算的实时电量值与所述偏移修正值之间的差值;
将所述差值与零比较,若所述差值大于零,则将所述差值作为第二电量值,否则,将0作为第二电量值。
举例说明,假如所述偏移修正值为5%,即电量计重新启动后计算的第一电量值为5%,而电量计在某一时刻计算的实时电量值为20%(说明电量计在重新启动过程中有充电),则电量计计算的实时电量值与所述偏移修正值之间的差值为15%,这时将15%作为第二电量值进行显示。
在该例中,电量计重新启动后其计算的第一电量值5%不一定就是电池当时的实际电量值,那么在后期充电过程中的某一时刻电量计计算的实时电量值肯定也不是20%,如果直接显示20%,就会的后期放电过程中导致电量发生跳变。采用本实施例的方案对电量计计算的实时电量值进行偏移修正后相当于将电量计重新启动时电池的电量值置为0,这样虽然有可能会导致电量显示略微偏低,但尽可能地防止了电量跳变带来的风险。
假如所述偏移修正值为5%,即电量计重新启动后计算的第一电量值为5%,而某一时刻电量计计算的实时电量值为4%(有可能一直在放电),则直接将0作为第二电量值显示出来。
步骤S130:显示所述第二电量值。
因为显示出来的第二电量值小于或等于电量计计算的实时电量值,这样尽可能地防止了电量跳变带来的风险。例如,电量计计算的实时电量值是 20%,但因为电量计本身的精度问题或其他因素,电池的实际上可能没有20%的电量,那么经过步骤S130处理后,使得显示出来的第二电量值一定是低于20%的,这样至少可以降低电量跳变的可能性。
实施例二:
请参阅图3,在一个实施例中,上述实施例一中的步骤S120之后还包括:
步骤S142:判断所述电量计计算的实时电量值是否小于或等于预设的电量阈值,若是,则执行步骤S152,若否,则执行步骤S162。
步骤S152:将所述第二电量值更新为电量计计算的实时电量值。
步骤S162:判断所述第二电量值是否小于或等于预设的电量阈值,若是,则执行步骤S172,若否,则返回步骤S120。
步骤S172:将所述第二电量值更新并保持为所述预设的电量阈值。
具体地,因为bq3055芯片本身电量算法的配置,会在7%的电量值处有条件的更新电池总电量,而如果电池总容量在7%电量值处发生了更新,那么在这个更新的过程中是最有可能发生跳变的,例如会从15%的电量直接跳变到7%,因此本实施例中将预设电量阈值为7%,可以理解,在其他实施例中,可以根据具体芯片的电量算法确定相应的电量阈值,这里不作严格限定。
举例说明,假如某一时刻电量计计算的实时电量值为7%,刚好等于预设的电量阈值,则执行步骤S152,将第二电量值更新为电量计计算的实时电量值7%显示出来,其实就是相当于这时将之前设置的偏移修正值置为0了,即后续显示的第二电量值都不再考虑电量的偏移。
假如某一时刻电量计计算的实时电量值为15%,大于预设的电量阈值,则执行步骤S162,若偏移修正值为5%,根据实施例一中的步骤S120计算得到的第二电量值为10%,大于电量阈值7%,则在执行步骤S162后,继续返回至步骤S120。
假如某一时刻电量计计算的实时电量值为10%,大于预设的电量阈值,则执行步骤S162,若偏移修正值为5%,根据实施例一中的步骤S120计算得到的第二电量值为5%,小于预设的电量阈值7%,则执行步骤S172将所述第二电量值更新并保留为预设的电量阈值7%,那么相当于之前设置的偏移修正值=电量计计算的实时电量值-7%。这样之前设置的偏移修正值会随着电量计 计算的实时电量值的减少而减少。
实施例三:
请参阅图4,在一个实施例中,上述实施例一中的步骤S120之后还包括:
步骤S144:判断所述第二电量值是否小于或等于预设的电量阈值,若是,则执行步骤S154,若否,则返回步骤S120。
步骤S154:将所述第二电量值更新并保持为预设的电量阈值。
具体地,因为bq3055芯片本身电量算法的配置,会在7%的电量值处有条件的更新电池总电量,而如果电池总容量在7%电量值处发生了更新,那么在这个更新的过程中是最有可能发生跳变的,例如会从15%的电量直接跳变到7%,因此本实施例中将预设电量阈值为7%,可以理解,在其他实施例中,可以根据具体芯片的电量算法确定相应的电量阈值,这里不作严格限定。
举例说明,假如某一时刻电量计计算的实时电量值为10%,偏移修正值为5%,根据实施例一中的步骤S120计算得到的第二电量值为5%,小于预设的电量阈值7%,则执行步骤S154,将所述第二电量值更新并保持为预设的电量阈值7%,那么相当于之前设置的偏移修正值=电量计计算的实时电量值-7%。这样之前设置的偏移修正值会随着电量计计算的实时电量值的减少而减少。
假如电量计计算的实时电量值为15%,偏移修正值为5%,根据实施例一中的步骤S120计算得到的第二电量值为10%,大于预设的电量阈值7%,则返回至步骤S120。
实施例四:
在一个实施例中,上述实施例一中的步骤S120之后还包括:
判断所述电池是否充满电,若是,则将所述电量计计算的实时电量值作为第二电量值。
若充满了,则将所述电量计计算的实时电量值100%作为第二电量值进行显示,即将偏移修正值offset置为0,因为电池不可能一直处在充不满的状态,这样相当于将偏移值去掉了,后续充放电的过程中,只要没有发生电量计关闭再重启的情况,电量计算将不会再考虑该偏移修正值了。
下面结合一个具体的可选实施例进行说明,如图5所示,电量计在电池电量较低的情况下会被关闭,关闭后显示电量C(即第二电量值)会被强制置为0%。当电量计重新启动之后,将电量计启动时刻计算出的第一电量值作为偏移修正值offset,系统会实时地根据所述偏移修正值offset对电量计计算的实时电量值C1进行偏移修正,然后将修正后的电量值C显示出来,具体为:显示电量C=电量计计算的实时电量值C1-偏移修正值offset,其中,若显示电量C的计算结果小于或等于0,则按0%显示。以上就是一个完整的电池电量计算过程。在这个过程中,这个偏移修正值offset在后续没有发生电池总容量更新的情况下会一直存在,这样显示电量C会小于或等于电量计计算的实时电量值,可以尽可能的防止电量跳变的情况发生,从而降低电池在飞机飞行过程中带来的风险。
进一步地,在上述过程中,还需要对电池是否充放电进行判断。具体地,若电池没有充电也没有放电则无需作下一步处理,若电池在充电过程中,还需要进一步判断其有没有充满电,若充满了,则将所述电量计计算的实时电量值100%作为第二电量值进行显示,即将偏移修正值offset置为0,因为电池不可能一直处在充不满的状态,这样相当于将偏移值去掉了,后续充放电的过程中,只要没有发生电量计关闭再重启的情况,电量计算将不会再考虑该偏移修正值了。
假如电池没有达到充满的状态,那么在后续充放电的过程中电量计算会考虑这个偏移修正值offset,参考7%这个电量点作一些优化。具体地,在放电过程中,判断所述电量计计算的实时电量值C1是否小于或等于7%,若是则将显示电量C更新为电量计计算的实时电量值,即将偏移修正值offset置为0,若否,则进一步判断显示电量C是否小于或等于7%,若是,则将显示电量C更新并保持为7%。这样之前设置的偏移修正值会随着电量计计算的实时电量值的减少而减少,偏移修正值offset=电量计计算的实时电量值C1-7%,直到减少为0。
实施例五:
请参照图6,为本发明中提供的一种电池电量计算装置的实施例。所述电 池电量计算装置包括:电量读取模块610、电量修正模块620、电量显示模块630。
其中,电量读取模块610用于读取电量计启动后计算的第一电量值,并将所述第一电量值作为偏移修正值,其中所述第一电量值为电量计启动后计算出的第一个电量值。电量修正模块620用于根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值。电量显示模块630用于显示所述第二电量值。
具体地,电量修正模块620可以包括计算单元,用于计算电量计计算的实时电量值与所述偏移修正值之间的差值;比较单元,用于将所述差值与零比较,若所述差值大于零,则将所述差值作为第二电量值,否则,将0作为第二电量值。
进一步地,在一个实施例中,该电池电量计算装置还包括第一判断模块,用于判断所述电量计计算的实时电量值是否小于或等于预设的电量阈值,若是则将所述第二电量值更新为电量计计算的实时电量值,若否,则所述第一判断模块进一步用于判断所述第二电量值是否小于或等于预设的电量阈值,若是,则将所述第二电量值更新并保持为预设的电量阈值。
进一步地,在一个实施例中,该电池电量计算装置还包括第一判断模块,用于判断所述第二电量值是否小于或等于预设的电量阈值,若是,则将所述第二电量值更新并保持为预设的电量阈值。
上述实施例中,所述预设的电量阈值为电池剩余电量的7%。
进一步地,在一个实施例中,该电池电量计算装置还包括第二判断模块,用于判断所述电池是否充满电,若是,则将所述电量计计算的实时电量值作为第二电量值。
应当说明的是,上述方法实施例与装置实施例基于相同的发明构思实现,方法实施例所能够具备的技术效果以及技术特征均可以由装置实施例中相应的功能模块执行或者实现,为陈述简便,在此不作赘述。
实施例六:
图7是本发明实施例提供的一种电子设备的结构示意图。该电子设备可以作为图1中电量计30本身和/或外围的硬件基础,执行如上述方法实施例 提供的电池电量计算方法。如图7所示,该电子设备70包括一个或多个处理器701以及存储器702。其中,图7中以一个处理器701为例。上述电子设备还可以包括输出装置703。当然,也可以根据实际情况需要,添加或者减省其它合适的装置模块。
处理器701、存储器702、输出装置703可以通过总线或者其他方式连接,图7中以通过总线连接为例。
存储器702作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的电池电量计算方法对应的程序指令或模块,例如,附图6所示的电量读取模块610、电量修正模块620,而该电子设备中的输出装置703可以直接由上述实施例中提到的显示模块630代替。处理器701通过运行存储在存储器702中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例的电池电量计算方法。
存储器702可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储电量计计算的一些历史数据等。此外,存储器702可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器702可选包括相对于处理器701远程设置的存储器,上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域技术人员应该还可以进一步意识到,结合本文中所公开的实施例描述的示例性的电机控制方法的各个步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所述的计算机软件可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (13)

  1. 一种电池电量计算方法,其特征在于,包括:
    读取电量计启动后计算的第一电量值,并将所述第一电量值作为偏移修正值,其中所述第一电量值为电量计启动后计算出的第一个电量值;
    根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值,所述第二电量值小于或等于电量计计算的实时电量值;
    显示所述第二电量值。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值,包括:
    计算电量计计算的实时电量值与所述偏移修正值之间的差值;
    将所述差值与零比较,若所述差值大于零,则将所述差值作为所述第二电量值,否则,将0作为所述第二电量值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值之后,包括:
    判断所述电量计计算的实时电量值是否小于或等于预设的电量阈值;
    若是则将所述第二电量值更新为电量计计算的实时电量值;
    若否,则判断所述第二电量值是否小于或等于预设的电量阈值,若是,则将所述第二电量值更新并保持为预设的电量阈值。
  4. 根据权利要求1或2所述的方法,其特征在于,所述根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值之后,包括:
    判断所述第二电量值是否小于或等于预设的电量阈值,若是,则将所述第二电量值更新并保持为预设的电量阈值。
  5. 根据权利要求3或4所述的方法,其特征在于,所述预设的电量阈值为电池剩余电量的7%。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值之后,包括:
    判断所述电池是否充满电,若是,则将所述电量计计算的实时电量值作为第二电量值。
  7. 一种电池电量计算装置,其特征在于,包括:
    电量读取模块,用于读取电量计启动后计算的第一电量值,并将所述第一电量值作为偏移修正值,其中所述第一电量值为电量计启动后计算出的第一个电量值;
    电量修正模块,用于根据所述偏移修正值对电量计计算的实时电量值进行偏移修正以获得第二电量值,所述第二电量值小于或等于电量计计算的实时电量值;
    电量显示模块,用于显示所述第二电量值。
  8. 根据权利要求7所述的装置,其特征在于,所述电量修正模块包括:
    计算单元,用于计算电量计计算的实时电量值与所述偏移修正值之间的差值;
    比较单元,用于将所述差值与零比较,若所述差值大于零,则将所述差值作为第二电量值,否则,将0作为第二电量值。
  9. 根据权利要求7或8所述的装置,其特征在于,所述装置还包括:
    第一判断模块,用于判断所述电量计计算的实时电量值是否小于或等于预设的电量阈值,若是则将所述第二电量值更新为电量计计算的实时电量值,若否,则所述第一判断模块进一步用于
    判断所述第二电量值是否小于或等于预设的电量阈值,若是,则将所述第二电量值更新并保持为预设的电量阈值。
  10. 根据权利要求7或8所述的装置,其特征在于,所述装置还包括:
    第一判断模块,用于判断所述第二电量值是否小于或等于预设的电量阈值,若是,则将所述第二电量值更新并保持为预设的电量阈值。
  11. 根据权利要求9或10所述的装置,其特征在于,所述预设的电量阈值为电池剩余电量的7%。
  12. 根据权利要求7-11中任一项所述的装置,其特征在于,所述装置还包括:
    第二判断模块,用于判断所述电池是否充满电,若是,则将所电量计计算的实时电量值作为第二电量值。
  13. 一种电子设备,其特征在于,包括:
    至少一个处理器;
    存储器,与所述至少一个处理器通信连接;
    其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器实现上述权利要求1~6中任一所述的电池电量计算方法。
PCT/CN2018/112879 2018-02-26 2018-10-31 电池电量计算方法及其装置 WO2019161677A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810162771.9A CN108344952B (zh) 2018-02-26 2018-02-26 电池电量计算方法及其装置
CN201810162771.9 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019161677A1 true WO2019161677A1 (zh) 2019-08-29

Family

ID=62959938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112879 WO2019161677A1 (zh) 2018-02-26 2018-10-31 电池电量计算方法及其装置

Country Status (2)

Country Link
CN (1) CN108344952B (zh)
WO (1) WO2019161677A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108344952B (zh) * 2018-02-26 2021-07-09 深圳市道通智能航空技术股份有限公司 电池电量计算方法及其装置
CN109581245A (zh) * 2018-11-30 2019-04-05 中国航空工业集团公司沈阳飞机设计研究所 一种飞机电气负载统计及电源容量分析方法及系统
CN109541492B (zh) * 2018-12-03 2021-11-09 郑州云海信息技术有限公司 电源的剩余电量确定方法、装置、设备及可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375127A (zh) * 2011-11-11 2012-03-14 深圳市中兴移动通信有限公司 一种移动终端剩余电池电量显示的方法
CN103675701A (zh) * 2013-11-29 2014-03-26 宇龙计算机通信科技(深圳)有限公司 一种电池剩余电量的更正方法及装置
CN104330739A (zh) * 2014-10-22 2015-02-04 常州格力博有限公司 锂电池soc计算方法
CN105403835A (zh) * 2014-08-29 2016-03-16 展讯通信(深圳)有限公司 一种测量电池电量的系统及方法
JP2017003471A (ja) * 2015-06-11 2017-01-05 シャープ株式会社 保護回路、バッテリーパック、保護プログラム、コンピュータ読み取り可能な記録媒体、及び保護回路の駆動方法
CN106740131A (zh) * 2016-12-20 2017-05-31 德州富路汽车智能化研究有限公司 电动汽车电池电量的监控方法、装置及系统、监控服务器
CN107703458A (zh) * 2017-10-17 2018-02-16 宝沃汽车(中国)有限公司 动力电池的剩余电量修正方法、装置、车辆及存储介质
CN108344952A (zh) * 2018-02-26 2018-07-31 深圳市道通智能航空技术有限公司 电池电量计算方法及其装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4080859B2 (ja) * 2002-12-11 2008-04-23 松下電器産業株式会社 二次電池の残存容量演算装置及びその残存容量演算方法
CN102866357B (zh) * 2011-07-06 2014-12-31 珠海全志科技股份有限公司 电池电量计量系统和方法
US9146280B2 (en) * 2011-10-26 2015-09-29 Industrial Technology Research Institute Method and system for estimating a capacity of a battery
CN102590756B (zh) * 2012-02-14 2015-01-07 深圳市沛城电子科技有限公司 电池电量检测的方法及装置
CN103792489B (zh) * 2013-11-22 2017-03-22 广州视源电子科技股份有限公司 测量和计算系统电池电量的改进方法
CN105259508A (zh) * 2015-10-14 2016-01-20 惠州Tcl移动通信有限公司 一种终端及计算其初始电量的方法
CN106814317B (zh) * 2015-11-27 2021-08-24 西安中兴新软件有限责任公司 一种移动终端和基于充电习惯的移动终端电量显示方法
CN105842632A (zh) * 2016-05-24 2016-08-10 北京小米移动软件有限公司 数据处理方法及装置
CN107561446A (zh) * 2016-07-01 2018-01-09 中兴通讯股份有限公司 一种终端电池电量计算方法和装置
CN107571747B (zh) * 2017-07-07 2020-06-16 北汽福田汽车股份有限公司 Soc的平滑控制方法、装置、电池管理系统及车辆
CN107643493A (zh) * 2017-09-15 2018-01-30 深圳市道通智能航空技术有限公司 一种电池电量预估方法和装置、无人机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375127A (zh) * 2011-11-11 2012-03-14 深圳市中兴移动通信有限公司 一种移动终端剩余电池电量显示的方法
CN103675701A (zh) * 2013-11-29 2014-03-26 宇龙计算机通信科技(深圳)有限公司 一种电池剩余电量的更正方法及装置
CN105403835A (zh) * 2014-08-29 2016-03-16 展讯通信(深圳)有限公司 一种测量电池电量的系统及方法
CN104330739A (zh) * 2014-10-22 2015-02-04 常州格力博有限公司 锂电池soc计算方法
JP2017003471A (ja) * 2015-06-11 2017-01-05 シャープ株式会社 保護回路、バッテリーパック、保護プログラム、コンピュータ読み取り可能な記録媒体、及び保護回路の駆動方法
CN106740131A (zh) * 2016-12-20 2017-05-31 德州富路汽车智能化研究有限公司 电动汽车电池电量的监控方法、装置及系统、监控服务器
CN107703458A (zh) * 2017-10-17 2018-02-16 宝沃汽车(中国)有限公司 动力电池的剩余电量修正方法、装置、车辆及存储介质
CN108344952A (zh) * 2018-02-26 2018-07-31 深圳市道通智能航空技术有限公司 电池电量计算方法及其装置

Also Published As

Publication number Publication date
CN108344952A (zh) 2018-07-31
CN108344952B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2019161677A1 (zh) 电池电量计算方法及其装置
US9952645B2 (en) Firmware update and power system thereof
BR102018002893A2 (pt) servidor para sistema de carga-descarga, sistema de carga-descarga, e método de controle de servidor
US20120331317A1 (en) Power-capping based on ups capacity
EP2851700A1 (en) Method and terminal for displaying capacity of battery
US10038325B2 (en) Electric storage device and deterioration determination method
US9531202B2 (en) Battery management system and method for charging lithium-ion battery cells in an information handling system
EP3510688B1 (en) Apparatus and method for battery management
US20150188324A1 (en) Systems and methods to increase and decrease charging current to battery
WO2018000827A1 (zh) 一种终端电池电量计算方法和装置
CN109307844A (zh) 一种锂电池soc的估算方法及装置
US20130049704A1 (en) Charging apparatus and charging method
CN104749528B (zh) 动力锂电池容量确定方法
JP2022041931A (ja) バッテリ状態推定方法及び装置
WO2020015502A1 (zh) 跟踪电池过放电的方法和装置、芯片、电池及飞行器
US10514422B2 (en) Aspects for determining charging capacity of a battery
CN114801883A (zh) 电池均衡控制方法、系统、存储介质、电子设备和车辆
JP6332273B2 (ja) 蓄電システム、蓄電池の制御方法及びプログラム
TWI463764B (zh) 電源管理系統及方法
US20150137765A1 (en) Moderating a charging
US20060022633A1 (en) High rate power source recharging
CN116260209A (zh) Soc显示方法、可插拔式电源系统、设备和存储介质
CN109933377A (zh) 一种cpld的电源管理方法及相关装置
CN115425704A (zh) 电池功率限制保护方法、系统及存储介质
WO2018119798A1 (zh) 电池充电方法、充电系统、充电器及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907013

Country of ref document: EP

Kind code of ref document: A1