WO2019160295A1 - 저비중 성형 폼 조성물 및 이를 이용한 성형 폼의 제조방법 - Google Patents
저비중 성형 폼 조성물 및 이를 이용한 성형 폼의 제조방법 Download PDFInfo
- Publication number
- WO2019160295A1 WO2019160295A1 PCT/KR2019/001678 KR2019001678W WO2019160295A1 WO 2019160295 A1 WO2019160295 A1 WO 2019160295A1 KR 2019001678 W KR2019001678 W KR 2019001678W WO 2019160295 A1 WO2019160295 A1 WO 2019160295A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- specific gravity
- mold
- molded foam
- low specific
- foam
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/32—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/002—Methods
- B29B7/007—Methods for continuous mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/72—Measuring, controlling or regulating
- B29B7/726—Measuring properties of mixture, e.g. temperature or density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/3461—Making or treating expandable particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/36—Feeding the material to be shaped
- B29C44/38—Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
- B29C44/44—Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
- B29C44/445—Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/60—Measuring, controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0014—Use of organic additives
- C08J9/0023—Use of organic additives containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/06—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
- C08J9/10—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
- C08J9/102—Azo-compounds
- C08J9/103—Azodicarbonamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
- C08J9/232—Forming foamed products by sintering expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0853—Vinylacetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/40—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
- B29B7/826—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/3415—Heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/3415—Heating or cooling
- B29C44/3426—Heating by introducing steam in the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
- B29K2023/0608—PE, i.e. polyethylene characterised by its density
- B29K2023/0633—LDPE, i.e. low density polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
- B29K2023/0608—PE, i.e. polyethylene characterised by its density
- B29K2023/065—HDPE, i.e. high density polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/08—Copolymers of ethylene
- B29K2023/083—EVA, i.e. ethylene vinyl acetate copolymer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/16—EPM, i.e. ethylene-propylene copolymers; EPDM, i.e. ethylene-propylene-diene copolymers; EPT, i.e. ethylene-propylene terpolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/24—Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/026—Crosslinking before of after foaming
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/04—N2 releasing, ex azodicarbonamide or nitroso compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/22—Expandable microspheres, e.g. Expancel®
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/22—Thermoplastic resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/26—Elastomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2309/00—Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2400/00—Characterised by the use of unspecified polymers
- C08J2400/22—Thermoplastic resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2400/00—Characterised by the use of unspecified polymers
- C08J2400/26—Elastomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2409/00—Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/18—Spheres
- C08L2205/20—Hollow spheres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/062—HDPE
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/066—LDPE (radical process)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
Definitions
- the technology disclosed herein relates to a low specific gravity molded foam composition and a method of manufacturing a molded foam using the same, and more particularly, to a low specific gravity molded foam composition having excellent product shrinkage and durability and a method of manufacturing a molded foam using the same.
- the molding foam of plastic material is made by the following methods.
- a foam by mixing a liquid resin, such as polyurethane foam in a high-speed mixer with a blowing agent and injecting it into a mold and then curing at heat or room temperature.
- a liquid resin such as polyurethane foam
- EPS expanded polystyrene
- EPP expanded polypropylene
- EPLA expanded polylactic acid
- the resin is made into mini pellets (also known as beads) with a diameter of 0.5-0.8 mm, placed in a high pressure tank filled with a certain amount of inert gas and subjected to high pressure to inert gas into the mini pellets of the resin and the pellet is pre-expanded. expander) and expand with steam to produce low specific gravity prefoam pellets with specific gravity 0.02-0.06.
- the preform pellet is injected into the mold in a machine equipped with a steam chest mold, and the steam and air pressure are applied at the same time, so that the surfaces of the preform pellets melt and the pellets adhere to each other to fill the mold cavity. After that, steam and air are removed and cooling air is injected to cool and demould the product.
- EVA foam for shoes peroxide crosslinking agent and chemical foaming agent are mixed with ethylene copolymer including EVA, filled into mold, heated and pressurized for a certain temperature, and then opened mold. There is a method of cooling a foamed product to a size to obtain a molded foam.
- the first method does not foam a lot, only 10-20% of the foam is possible, and the internal cell structure is irregular, so that the physical properties are not constant, many problems have not been used recently.
- the cell structure of the foam is uniform and beautiful appearance, but there is a limit to increase the foaming magnification, it is difficult to make products with a density of less than 0.5g / cc, there is a limit to the applied product.
- the third method is to produce a product that is easy to produce and uniform in physical properties.However, due to its poor weather resistance, it is impossible to use outdoors, and in the presence of water due to its hydrolyzability, the physical property is rapidly deteriorated and it is compressed because it is a continuous bubble instead of an independent bubble. Its low strength makes it hard to make high hardness products.
- EPS is inexpensive and easy to manufacture. It is used for various purposes such as packaging, but the material is fragile and can be crushed during handling, causing pollution and especially sunlight for oyster farming. It's broken by waves and waves, severely polluting the sea and the surrounding coasts.
- EPP is used as a shock absorbing material for automobile bumpers and motorcycle helmets, but it is difficult to mold, expensive, and only high hardness products can be obtained, and soft and elastic products cannot be obtained.
- EPS expanded polystyrene
- EPS expanded polystyrene
- EPP has a poor storage capacity of internal gas in the bead condition, and therefore, the cost of transporting raw materials is much higher than that of EPS because the bead producer has to pre-foam immediately after production and supply it to the steam chest molding company in the form of low specific gravity. Increases.
- the bead foam has a lot of risk factors such as the handling of high-pressure gas, the supply of beads is often supplied in large quantities in large-scale factories, and it is difficult to make a product of various materials and various physical properties because the small and medium companies can not use the material directly.
- the temperature raised by steam is difficult to exceed the maximum 150 °C can not use a general polypropylene and can only use a random copolymer having a melting point of 150 °C or less can not make a high hardness product.
- a random copolymer even if only a random copolymer is used, it takes a long time to sufficiently melt the preform surface during steam chest molding, and the manufacturing cost is high, and if the melting time is shortened, there is a problem that the strength of the molding foam is weak due to insufficient melting.
- At least one polymer component selected from the group consisting of a peroxide crosslinked thermoplastic resin, a peroxide crosslinked rubber and a peroxide crosslinked thermoplastic elastomer; Thermally expandable microspheres; And a low specific gravity molding foam composition comprising an organic peroxide crosslinking agent is provided.
- a mixture of at least one polymer component selected from the group consisting of a peroxide crosslinked thermoplastic resin, a peroxide crosslinked rubber and a peroxide crosslinked thermoplastic elastomer, a thermally expandable microsphere and an organic peroxide crosslinker Providing a foaming composition; Introducing the foaming composition into a mold for producing a molding foam; Expanding the foaming composition in the mold by raising the foaming composition to a temperature greater than or equal to the expansion start temperature (T start ) of the thermally expandable microspheres; Forming a molding foam in a state in which the foaming composition is expanded to fill the mold; And demolding the molding foam from the mold.
- T start expansion start temperature
- a low specific gravity molded foam having a specific gravity of 0.5 or less produced by the above-described manufacturing method.
- FIG. 1 is a process flowchart showing one embodiment of a method for manufacturing a low specific gravity molded foam.
- the material outside the limits of the conventional low specific gravity molding foam is a rubber or thermoplastic elastomer, there is no product shrinkage, low defect rate, low specific gravity molding foam composition and heat resistance and wear resistance and slip resistance is good and not hydrolyzed, and There is a need for a method for producing a used molded foam.
- a composition for low specific gravity molded foam may include at least one polymer component selected from the group consisting of a peroxide crosslinked thermoplastic resin, a peroxide crosslinked rubber, and a peroxide crosslinked thermoplastic elastomer; Thermally expandable microspheres; And organic peroxide crosslinkers.
- the thermoplastic resin may be divided into a peroxide crosslinkable thermoplastic resin crosslinkable by a peroxide and a peroxide non-crosslinkable thermoplastic resin crosslinkable by a peroxide.
- the double peroxide non-crosslinked thermoplastic resin include propylene homopolymer, propylene copolymer, polybutene-1, polyvinyl chloride homopolymer, polyvinyl chloride copolymer, polystyrene, styrene acrylonitrile (SAN) copolymer, acrylonitrile butadiene styrene (ABS) copolymers, polyamides, polyacetals, polycarbonates, polyesters, polyphenylene oxides and the like.
- the peroxide crosslinked thermoplastic resin used in the composition for low specific gravity molding foam may be at least one selected from the group consisting of ethylene homopolymer, ethylene copolymer and chlorinated polyethylene.
- the ethylene homopolymer is any one selected from the group consisting of low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ultra low density polyethylene (ULDPE), ultra low density polyethylene (VLDPE), medium density polyethylene (MDPE) and high density polyethylene (HDPE) It can be one.
- LDPE low density polyethylene
- LLDPE linear low density polyethylene
- ULDPE ultra low density polyethylene
- VLDPE ultra low density polyethylene
- MDPE medium density polyethylene
- HDPE high density polyethylene
- the ethylene copolymer comprises i) ethylene, and ii) C3-C10 alpha olefins, C1-C12 alkyl esters of unsaturated C3-C20 monocarboxylic acids, unsaturated C3-C20 mono or dicarboxylic acids, anhydrides and unsaturated C4-C8 dicarboxylic acids. It may be a copolymer of at least one ethylenically unsaturated monomer selected from the group consisting of vinyl esters of C2-C18 carboxylic acids or an ionomer of the copolymer.
- ethylene comprises the major mole fraction of the total polymer, usually ethylene comprises at least about 50 mole% of the total polymer. More preferably, ethylene comprises at least about 60 mol%, at least about 70 mol%, or at least about 80 mol%.
- ethylene copolymers include ethylene vinyl acetate, (Ethylene Vinyl Acetate, EVA) copolymer, ethylene butyl acrylate (Ethylene Butylacrylate, EBA) copolymer, ethylene methyl acrylate (EMA) copolymer, ethylene ethyl Ethylene Ethylacrylate (EEA) Copolymer, Ethylene Methylmethacrylate (EMMA) Copolymer, Ethylene Butene Copolymer (EB-Co) and Ethylene Octene Copolymer (EO) -Co) and the like.
- EVA Ethylene Vinyl Acetate
- EBA ethylene butyl acrylate
- EMA ethylene methyl acrylate
- EMMA Ethylene Methylmethacrylate
- EMMA Ethylene Methylmethacrylate
- EMMA Ethylene Butene Copolymer
- EB-Co Ethylene Butene Cop
- the ethylene copolymer is a copolymer of ethylene and an alpha olefin.
- the alpha olefin is an olefin having 3 or more carbon atoms having a double bond at the terminal.
- Substantial remainder except for ethylene in the total ethylene alphaolefin copolymer comprises at least one other comonomer which is preferably an alpha olefin having at least 3 carbon atoms.
- the alpha olefin is preferably butene, hexene or octene.
- compositions for ethylene octene copolymers, preferred compositions have an ethylene content of at least about 80 mole percent of the total polymer, and an octene content of about 10 to about 15 mole percent, preferably about 15 to about 20 mole percent, of the total polymer. Include.
- the ethylene and alpha olefin copolymers may be random copolymers or block copolymers, and specific examples thereof include polyolefin elastomers (POE) and olefin block copolymers (OBC).
- POE polyolefin elastomers
- OBC olefin block copolymers
- Commercialized products include Dow Chemical's Engage and Infuse, Mitsui's Tafmer, Exxon Mobile's Exact, and LG Chem's LG-POE.
- the chlorinated polyethylene resin may be at least one selected from the group consisting of chlorinated polyethylene homopolymers and chlorinated copolymers containing copolymerized units of i) ethylene and ii) copolymerizable monomers.
- chlorinated polyethylene homopolymer may include chlorinated high density polyethylene homopolymers, chlorinated low density polyethylene homopolymers, and chlorinated ultrahigh density polyethylene homopolymers.
- the chlorinated copolymers are i) ethylene, and ii) C3-C10 alpha monoolefins, C1-C12 alkyl esters of C3-C20 monocarboxylic acids, unsaturated C3-C20 mono or dicarboxylic acids, anhydrides and unsaturated C4-C8 dicarboxylic acids. It may be a chlorinated copolymer of one or more ethylenically unsaturated monomers selected from the group consisting of vinyl esters of C2-C18 carboxylic acids. In addition, the chlorinated copolymer may include a chlorinated graft copolymer.
- chlorinated copolymer examples include chlorinated ethylene vinyl acetate copolymer, chlorinated ethylene acrylic acid copolymer, chlorinated ethylene methacrylic acid copolymer, chlorinated ethylene methyl acrylate copolymer, chlorinated ethylene methyl methacrylate copolymer, chlorinated ethylene butyl acryl Latex copolymer, chlorinated ethylene butyl methacrylate copolymer, chlorinated ethylene glycidyl methacrylate copolymer, chlorinated graft copolymer of ethylene and maleic anhydride, and propylene, butene, 3-methyl-1-pentene or octene And chlorinated copolymers of ethylene.
- the copolymer here can be a binary copolymer, a ternary copolymer or a higher order copolymer.
- Preferred chlorinated polyethylenes can be selected from chlorinated polyethylene homopolymers, chlorinated ethylene vinyl acetate, chlorinated ethylene butyl acrylate, chlorinated ethylene methyl acrylate, chlorinated ethylene methyl methacrylate, chlorinated ethylene butene copolymers and chlorinated ethylene octene copolymers. .
- the chlorine content in the chlorinated polyethylene resin may be 30 to 70% by weight, preferably 30 to 50% by weight, based on the total weight of the chlorinated polyethylene resin. If the content of chlorine is less than the above range, it is close to polyethylene, so the resilience is insufficient and stiff, so that it cannot be used as the intended outdoor foam, and if it exceeds the above range, the hardness is too high and brittle, so it is difficult to form and foam. It can be impossible.
- the peroxide crosslinked thermoplastic resin of the present composition may be prepared using a Ziegler-Natta catalyst, a metallocene or vanadium based coordination catalyst or a free radical initiator.
- the density of the low density polyethylene (LDPE) is from about 0.910 g / cm 3 to about 0.930 g / cm 3 as measured by ASTM D-792.
- the density of the linear low density polyethylene (LLDPE) is from about 0.850 g / cm 3 to about 0.940 g / cm 3 and the melt index, as measured by ASTM 1238, condition I, is from about 0.01 to about 100 g per 10 minutes.
- the melt index is from about 0.1 to about 50 g per 10 minutes.
- LLDPE is an interpolymer of ethylene and one or more other alpha-olefins having 3 to 18 carbon atoms, more preferably 3 to 8 carbon atoms.
- Preferred comonomers include 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene.
- the ultra low density polyethylene (ULDPE) and the ultra low density (VLDPE) polyethylene have a density of about 0.860 g / cm 3 to about 0.910 g / cm 3.
- the medium density ethylene polymer (MDPE) is generally a homopolymer having a density from about 0.926 g / cm 3 to about 0.940 g / cm 3.
- the high density ethylene polymer (HDPE) is generally a homopolymer having a density from about 0.941 g / cm 3 to about 0.965 g / cm 3.
- the peroxide crosslinked thermoplastic resin used in the composition has a side chain larger than CH 3 per 1000 carbon atoms, preferably C 2 -C 6 branched chains per 1000 carbon atoms, 0.01-20, CH per 1000 carbon atoms Side chains larger than 3 , preferably C 2 -C 6 branched chains per 1000 carbon atoms 1 to 15, particularly preferably side chains larger than CH 3 per 1000 carbon atoms, preferably 1000 carbon atoms
- the number of C 2 -C 6 side chain branches per sugar is 2-8.
- the number of branched branch chains greater than CH 3 per 1000 carbon atoms is determined by 13 C-NMR, which is the total content of side chains greater than CH 3 groups per 1000 carbon atoms (not including terminal).
- the molecular weight distribution width of the peroxide crosslinked thermoplastic resin suitable for the composition is in the range of 6 to 100, preferably 11 to 60, particularly preferably 20 to 40, M w / M n .
- the density of the peroxide crosslinked thermoplastic resin suitable for the present composition is in the range of 0.89 to 0.98 g / cm 3, preferably 0.90 to 0.97 g / cm 3.
- the weight average molecular weight M w of the peroxide crosslinked thermoplastic resin of the present composition suitable for the present composition is 5,000 to 700,000 g / mol, preferably 30,000 to 550,000 g / mol, particularly preferably 70,000 g / mol to 450,000 g / mol Range.
- M w weight average molecular weight of the peroxide crosslinked thermoplastic resin of the present composition suitable for the present composition
- the melt index (MI) of the peroxide crosslinked thermoplastic resin is 1.0 to 50 g / 10 minutes, preferably 1.0 to 30 g / 10 minutes, more preferably measured by ASTM D1238 (190 ° C., 2.16 kg). It can illustrate that it is the range of 2.0-25 g / 10min. Especially preferably, it is the range of 2.0-20 g / 10min.
- the higher the melt index of the thermoplastic resin can reduce the load on the device when melt kneading with an extruder or the like. However, if the pressure is too high, the processing equipment is too heavy and the amount of extrusion per hour is too small, so there is no economical efficiency.
- the viscosity of the composition may be low, and the adhesion may be too high immediately after the mixture passes through the extrusion die. . In this case, the extrudate may not be cut well and pelletization may be difficult. It is preferable that the melt index of the entire resin composition including other additives which may be contained as necessary is also controlled in the above range for the same reason.
- Rubber may be divided into peroxide crosslinkable rubber crosslinkable by peroxide and peroxide non-crosslinkable rubber not crosslinkable by peroxide.
- the double peroxide non-crosslinked rubber includes chloroprene rubber (CR), butyl rubber (IIR), acrylic rubber, fluorine rubber and the like.
- the peroxide crosslinked rubber used in the composition for low specific gravity molding foam may be natural rubber (NR), isoprene rubber (IR), styrene butadiene rubber (SBR rubber), butadiene rubber (BR), nitrile butadiene rubber (NBR ), Hydrogenated nitrile rubber (HNBR), EPDM rubber (ethylene propylene diene monomer rubber), chlorosulphonated polyethylene rubber (chlorosulphonated polyethylene rubber) and silicone rubber may be one or more selected from the group consisting of.
- NR natural rubber
- IR isoprene rubber
- SBR rubber styrene butadiene rubber
- BR butadiene rubber
- NBR nitrile butadiene rubber
- HNBR Hydrogenated nitrile rubber
- EPDM rubber ethylene propylene diene monomer rubber
- chlorosulphonated polyethylene rubber chlorosulphonated polyethylene rubber
- silicone rubber may be one or more selected from the group consisting
- thermoplastic elastomer may also be divided into a peroxide crosslinkable thermoplastic elastomer crosslinkable by a peroxide and a peroxide non-crosslinkable thermoplastic elastomer crosslinkable by a peroxide.
- Dual peroxide non-crosslinkable elastomers include thermoplastic polyurethane (TPU), thermoplastic polyester elastomer (TPEE), thermoplastic polyamide elastomer (TPAE), and the like.
- the thermally-expandable microspheres used in the composition for low specific gravity molded foam according to an embodiment of the present disclosure is a polymer particle containing a hydrocarbon-like foamable compound. It is a normal powder form at room temperature, but above a certain temperature, the hydrocarbon-like expandable compound generates a gas by evaporation or decomposition by heat to form a hollow inside the thermally expandable microspheres, the polymer expands to form a shell. At this time, since the polymer is very soft and excellent in elasticity, it does not rupture.
- the thermally expansible microspheres When the thermally expansible microspheres are ruptured due to overheating upon expansion, the gas in the thermally expansible microspheres escapes and disappears during molding of the molding foam composition, thereby causing less or no expansion.
- the polymer makes it possible to obtain excellent surface properties if not ruptured.
- the thermally expandable microspheres are heated and expanded during the molding of the low specific gravity molded foam composition, and the expanded article molded from the composition including the thermally expandable microspheres may form a foam.
- hydrocarbons foamable compound in boiling point below the softening temperature of a shell, for example about 100 degrees CPa or less, without dissolving the polymer which forms a shell.
- Low-boiling liquid phase materials commonly referred to as volatile swelling agents, are used, but solid phase materials that decompose by heat to produce gas may also be used.
- liquid substance examples include, for example, linear aliphatic hydrocarbons having 3 to 8 carbon atoms and their fluorides, branched aliphatic hydrocarbons having 3 to 8 carbon atoms and their fluorides, and straight chains having 3 to 8 carbon atoms. And an alicyclic hydrocarbon and its fluoride, an ether compound having a hydrocarbon group having 2 to 8 carbon atoms, or a compound in which a part of the hydrogen atoms of the hydrocarbon group is substituted with a fluorine atom.
- Hydrocarbons which usually have a boiling point of less than 60 ° C. at atmospheric pressure are preferred.
- the preferred liquid inside the hollow microspheres is isobutane.
- the solid substance include azobisisobutyronitrile (AIBN), which is pyrolyzed by heating to become a gaseous state.
- thermally expandable microspheres can generally be prepared by a suspension polymerization method of polymerizing monomer residues in a state in which a polymerizable monomer mixture containing a polymerizable monomer and a blowing agent is dispersed in an incompatible liquid such as water.
- the thermally expandable microspheres included in the low specific gravity molded foam composition may have an average particle diameter of about 5 to about 60 ⁇ m before expansion, for example, about 10 to about 50 ⁇ m, and other examples of about 20 to about 35 ⁇ m. to be.
- a shell having an appropriate thickness can be formed without bursting upon expansion and thermal expansion behavior can be rapid.
- the polymer forming the shell upon expansion is basically possible as long as it is a thermoplastic resin that can be flexible to allow expansion due to internal gas at the expansion expansion temperature.
- a thermoplastic resin that can be flexible to allow expansion due to internal gas at the expansion expansion temperature.
- a polymer or a thermoplastic polymer made by mixing them may be used, but is not limited thereto.
- Such a polymer can be selected according to the desired use such as its softening temperature, heat resistance and chemical resistance.
- copolymers containing vinylidene chloride have excellent gas barrier properties
- copolymers containing about 80% by weight or more of nitrile monomers have excellent heat resistance and chemical resistance.
- the shell of the thermally expandable microspheres may be composed of an acryl-based copolymer, i.e., an acrylonitrile copolymer, mainly composed of a nitrile monomer and a (meth) acrylic acid ester monomer.
- the thermally expandable microspheres may be included in the composition in an amount of 1 to 20 parts by weight based on 100 parts by weight of the polymer component, such as a peroxide crosslinked thermoplastic resin, rubber, and thermoplastic elastomer, and may be included in an amount of 3 to 15 parts by weight. . If the amount is less than the above range may be less foaming, if it exceeds the above range, the foaming is too much and the strength of the molding foam is lowered may be a problem in use.
- the polymer component such as a peroxide crosslinked thermoplastic resin, rubber, and thermoplastic elastomer
- composition may further include one or more additives selected from the group consisting of metal oxides and antioxidants generally used in the manufacture of foams to help the processing properties and to improve the properties of the foams.
- the additive may be used in an amount of 0.01 to 5 parts by weight based on 100 parts by weight of the polymer component of the low specific gravity molding foam composition.
- the metal oxide zinc oxide, titanium oxide, cadmium oxide, magnesium oxide, mercury oxide, tin oxide, lead oxide, calcium oxide, and the like may be used to improve the physical properties of the foam. Parts by weight can be used.
- the antioxidant sunnoc, butylated hydroxy toluene (BHT), songnox 1076 (songnox 1076, octadecyl-3,5-di-tert-butyl-hydroxy hydrocinnamate) and the like are used. 0.25 to 2 parts by weight may be used based on 100 parts by weight of the polymer component.
- the expansion of the thermally expandable microspheres is preferably less than 1 minute half-life temperature of the organic peroxide crosslinking agent so that foaming is efficiently performed.
- the organic peroxide crosslinking agent may be a one-minute half-life temperature is 130 to 180 °C.
- Specific examples of the organic peroxide crosslinking agent include t-butyl peroxy isopropyl carbonate, t-butyl peroxy laurate, t-butyl peroxy acetate, di-t-butyl peroxy phthalate, t-dibutyl foroxy Maleic acid, cyclohexanone peroxide, t-butyl cumyl peroxide, t-butyl hydroperoxide, t-butyl peroxybenzoate, dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, methyl Ethyl ketone peroxide, 2,5-dimethyl-2,5-di (benzoyloxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, di
- the composition for a low specific gravity molded foam according to an embodiment of the present disclosure is 0.02 to 4 parts by weight, preferably 0.02 to 3 parts by weight, more preferably 0.05, based on 100 parts by weight of the polymer component. To 1.5 parts by weight. If the amount is less than 0.02 parts by weight, the crosslinking is insufficient to reduce the wear resistance of the molded foam, and if it exceeds 4 parts by weight, the hardness may increase rapidly due to overcrosslinking.
- a method of making a low specific gravity molded foam is provided.
- 1 is a process flowchart showing one embodiment of a method for manufacturing a low specific gravity molded foam.
- step S1 a foam comprising a mixture of at least one polymer component, thermally expandable microspheres, and an organic peroxide crosslinking agent selected from the group consisting of a peroxide crosslinked thermoplastic resin, a peroxide crosslinked rubber, and a peroxide crosslinked thermoplastic elastomer It provides a composition for.
- the foaming composition may be prepared by extrusion processing the mixture.
- the extrusion may be performed using various extruders including a buss kneader, a single screw extruder or a twin screw extruder. It is possible to produce a variety of products by changing the process conditions, such as screw configuration (screw configuration) of the extruder, set temperature, screw rotation speed, extrusion amount.
- the temperature of the cylinder may be melted to have proper flowability, and is controlled at a temperature above the melting point of the polymer and below the T start of the thermally expandable microspheres. However, if the temperature of the cylinder is too high, the thermally expandable microspheres are expanded and the pellet obtained by extrusion is foamed to achieve the desired purpose.
- the temperature of the cylinder may vary depending on the type of the polymer used, but may generally be 80 to 120 ° C., and the screw rotational speed and the extrusion amount may be appropriately controlled according to the specific gravity and shape of the extrudate to be foamed and required. Depending on the process conditions can be variously controlled.
- the polymer component and the thermally expandable microspheres may be evenly mixed by the extrusion process, and the foaming composition may have a size having a suitable size for processing in a mold later by extrusion and cutting.
- the foaming composition extruded may have a pellet, rod or sheet form.
- the foaming composition is preferably in the form of extruded pellets in that molding foams of various shapes can be made.
- the size of the extruded pellet may be determined according to the size and shape of the die of the extruder, and may have a size of 0.1 to 10 mm, preferably 1 to 5 mm, based on the smallest portion of diameter, thickness, and length depending on the shape of the extruder. Can be. In the above range during the mold processing, the adhesion between the pellets can be well and the foaming efficiency can be excellent.
- the foaming composition may be in an unfoamed or low-foamed state, and the density of the extrudate is preferably 0.70 g / cm 3 or more for smooth foaming in the mold.
- the extrudate may have a density of 0.80 to 1.00 g / cm 3 . If less than the specific gravity, the thermal conductivity during molding in the mold is poor foaming may take a long time.
- the expansion start temperature of the thermally expandable microspheres is preferably higher than the extrusion processing temperature so that the mixture of the polymer and the thermally expandable microspheres remains unfoamed during the extrusion process. If necessary, the expansion start temperature of the thermally expandable microspheres may be lower than 5 ° C. below the processing temperature during extrusion for some pre-expanding.
- the thermally expandable microspheres may have an expansion starting temperature of about 130 to about 220 ° C., for example, about 140 ° C. to about 200 ° C.
- the maximum expansion temperature may be about 150 to 280 ° C, for example, about 170 to 270 ° C, and may be appropriately selected depending on the intended use.
- the thermally expandable microspheres can increase from about 10 times to about 100 times in volume at the maximum expansion temperature, for example from about 30 times to about 60 times.
- the composition for low specific gravity molded foam including the thermally expandable microspheres is heated, the thermally expandable microspheres are expanded, and the manufactured article includes the thermally expandable microspheres in an expanded state.
- the thermally expandable microspheres in the molded article may be in a state of about 10 times to about 50 times increased in volume compared to before expansion, for example, about 20 times to about 40 times increased.
- the expanded thermally expansible microspheres are ultra-light hollow microspheres, they can contribute to the weight reduction of the final product and can maintain and improve the mechanical strength of the final product because they have excellent elasticity.
- thermally expandable microspheres form a closed cell of a predetermined size in the product after expansion, thereby improving the surface properties of the final product, and the elasticity of the independent bubble may contribute to preventing shrinkage of the final product.
- step S2 the foaming composition is introduced into a mold for producing a molding foam.
- the foam composition is introduced into the mold in an amount of 50% or less of the mold volume, for example, 10 to 50%.
- the foaming composition is used in molding in the range of the above range, it is possible to obtain a molding foam having a low specific gravity of 0.5 or less, for example, 0.1 to 0.5, which is suitable for low specific gravity applications. Can be.
- the specific gravity of the molding foam may be more than 0.5, thereby reducing the practicality of the molding foam.
- the foaming composition introduced into the mold may be in an unfoamed state or low-foamed to have a specific gravity of 0.7 to 0.9.
- the foaming process can be expanded in a short time due to good thermal conductivity during foaming in the mold. If a composition having a specific gravity smaller than the above range is used, the thermal conductivity is inferior, and the foaming is poor, and thus the expanded product may not fill the mold, thereby causing a defect.
- step S3 the foaming composition is heated up to the expansion start temperature (T start ) of the thermally expandable microspheres to expand the foaming composition in the mold.
- the temperature increase of the foaming composition may be to heat up the mold directly or indirectly by a heat source.
- the temperature of the mold can be sufficiently increased by heating the mold with a heat source using electricity.
- the mold may be heated to a temperature of more than 140 ° C and less than 230 ° C, for example, 150 to 210 ° C, preferably 160 to 190 ° C. If the temperature of the mold is less than the above range, foaming is not sufficient, and if the temperature exceeds the above range, there is a fear that the molded foam deforms, discolors, or shrinks.
- the vacuum is applied to the inside of the mold, when the thermally expandable microspheres start to expand, the expansion may be faster and easier due to the force of the vacuum, and the expansion magnification may be increased.
- the expansion magnification may be increased.
- using a vacuum can reduce the amount of thermally expansible microspheres by more than 10% compared to without using a vacuum.
- the pressurization device of the mold processing apparatus may be a vacuum press. At this time, between the hot plates of the press which is the pressurizing device may have a form in which a mold is present therein.
- the pressurizing device is a general press, it is possible to make a vacuum groove around the cavity of the mold and connect the connection of the vacuum pump to the outlet of the vacuum groove.
- step S4 the foaming composition is expanded to form a molding foam in the state of filling the mold.
- the foaming composition is expanded to maintain the molding temperature while the mold is substantially filled to complete the molding foam so that the mold to the molding foam is 1: 1 to 1: 1.1 in volume ratio.
- the molding time can be shortened by controlling such conditions.
- the size and thickness of the product but in consideration of productivity, preferably about 10 minutes. It is preferable to make sufficient crosslinking in this process, since a molded foam product having excellent durability can be obtained.
- step S5 the molding foam is demolded from the mold.
- the foaming composition is expanded in the mold and crosslinked in the expanded state, the molding foam does not shrink even after demolding.
- a molding foam having a specific gravity of 0.5 or less is provided by the above-described manufacturing method. These molded foams have no shrinkage and are excellent in dimensional stability and can be applied to low specific gravity product applications.
- the low specific gravity molded foam composition and the method for manufacturing the low specific gravity molded foam using the same there are various advantages as follows.
- a vacuum can be applied to the inside of the mold to obtain a large expansion with a small amount of thermally expandable microspheres.
- the mold temperature can be sufficiently raised, the adhesive strength of the expanded pellets is high, the strength of the molding foam is high, and there is little risk of defects during manufacturing.
- EVA-1 Elvax 550 (manufactured by Dupont, VA 15%, DSC melting point 89 ° C, MI (190 ° C, 2.16kg) 8.0)
- LDPE-1 LDPE 303 (Hanicide), Specific Gravity 0.919, MI (190 ° C, 2.16kg) 6.0, DSC Melting Point 106 ° C)
- HDPE-1 M690 (Korean emulsifier, specific gravity 0.965, MI (190 °C, 2.16kg) 12.0, DSC melting point 135 °C)
- BR-1 Kumho Agent, Cis 96%, ML 1 + 4 (100 ° C) 45
- EPDM-1 KEP 210 (Kumho Agent, ML 1 + 4 (125 ° C) 25, Ethylene 65%, ENB 5.7%)
- TEMS-1 Expancel 930 DU 120 (manufactured by Akzo Nobel, T start 127 ° C, T max 196 ° C)
- TEMS-2 Expancel 980 DU 120 (manufactured by Akzo Nobel, T start 165 ° C, T max 225 ° C)
- Peroxide-1 Dicumyl Peroxide (1 minute half life temperature: 175 °C)
- Peroxide-2 Luperox 231 (manufactured by Arkema, half-life temperature: 145 ° C)
- Extrusion at temperature gave pellets with a diameter of 3 mm by underwater cutting. Underwater cutting used an emulsion of 5% emulsified zinc stearate instead of water.
- the pellet was put into a mold having a size of 100 mm x 200 mm x 20 mm (volume 400CC) (shown in Tables 1 and 2) and molded by adjusting the mold temperature and vacuum. The mold temperature and vacuum were controlled and heated for 10 minutes before demolding.
- Comparative Examples 5 and 8 crosslinking proceeds first to suppress expansion of thermally expandable microspheres, and Comparative Examples 6 and 7 have a slow thermal conduction rate in the mold due to pellets being foamed first, and thus the foaming progress is slow. When the crosslinking time is significantly increased, the remaining expansion of thermally expandable microspheres can be confirmed to be crosslinking.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Emergency Medicine (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
과산화물 가교형 열가소성 수지, 과산화물 가교형 고무 및 과산화물 가교형 열가소성 탄성체로 이루어진 군으로부터 선택된 1종 이상의 고분자 성분; 열팽창성 미소구; 및 유기 과산화물 가교제를 포함하는 저비중 성형 폼용 조성물이 제공된다.
Description
본 명세서에 개시된 기술은 저비중 성형 폼 조성물 및 이를 이용한 성형 폼의 제조방법에 관한 것으로 보다 상세하게는 제품수축이 없고 내구성이 뛰어난 저비중 성형 폼 조성물 및 이를 이용한 성형 폼의 제조방법에 관한 것이다.
일반적으로 플라스틱 소재의 성형 폼은 아래의 방법들로 만들어진다.
첫째, 플라스틱 사출기의 호퍼에 발포제를 함유한 플라스틱 원료를 투입하고 냉각된 금형에 단순 사출하거나 금형의 캐비티(cavity)를 일정 속도로 넓혀 가면서 사출하는 방법이 있다.
둘째, 실린더의 일정부분에 가스주입 구멍이 설치된 플라스틱 사출기의 호퍼에 플라스틱 원료를 투입하고 사출하면서 가스 주입 구멍으로 초임계 탄산가스(supercritical CO2 gas)를 주입하면서 냉각된 금형에 사출하는 방법이 있다.
셋째, 폴리우레탄 폼(polyurethane foam)과 같은 액상의 수지를 발포제와 고속 믹서에서 혼합하여 폼을 만든 뒤 금형에 주입한 후 열 또는 상온에서 경화시켜 만드는 방법이 있다.
넷째, 발포폴리스티렌(EPS), 발포폴리프로필렌(EPP), 발포폴리락틱산(EPLA)의 경우와 같이 비드 폼(bead foam) 재료를 사용하여 만드는 방법이 있다. 수지를 직경 0.5-0.8mm의 미니 펠렛(비드라고도 함)으로 만든 뒤 일정량의 불활성 가스를 채운 고압 탱크에 넣고 고압을 걸어 불활성 가스가 수지의 미니 펠렛 속으로 침투시키고 그 펠렛을 전팽창기(pre-expander)에 넣고 스팀으로 팽창시켜 비중 0.02-0.06의 저비중 프리폼(prefoam) 펠렛을 만든다. 그 뒤, 프리폼 펠렛을 스팀 체스트 몰드(steam chest mold)가 장착된 기계에서 몰드 속으로 프리폼 펠렛을 주입하고 스팀과 공기압을 동시에 걸면 프리폼 펠렛의 표면이 녹으면서 펠렛끼리 접착되어 금형 캐비티가 채워진다. 이후 스팀과 공기를 빼고 냉각공기를 주입하여 제품을 냉각시키고 탈형하는 방법이다.
다섯째, 신발에 쓰이는 EVA 폼과 같이, EVA를 위시한 에틸렌공중합체에 퍼옥사이드 가교제와 화학 발포제를 혼합하고 금형에 채운 뒤 일정온도 일정시간 동안 가열 가압한 뒤 금형을 오픈하면 금형 내용적의 3-5배 크기로 발포되어 나오는 것을 냉각시켜 성형폼을 얻는 방법이 있다.
이중 첫째 방법은 발포를 많이 시키지 못하여 10-20%의 발포만 가능하고, 내부 셀 구조가 불규칙하여 물성이 일정하지 않는 등 문제가 많아 최근에는 사용되지 않고 있다.
둘째 방법은 발포물의 셀 구조가 균일하고 외관도 미려하나 발포배율을 키우는데 한계가 있어 밀도 0.5g/cc 이하의 제품은 만들기가 어려워 적용 제품에 한계가 있다.
셋째 방법은 생산도 용이하고 물성도 균일한 제품을 만들 수 있으나, 내후성이 약하여 옥외 사용이 불가능하고, 가수분해성이 심하여 수분이 존재하는 데서는 물성 저하가 급격하고, 독립기포가 아닌 연속기포이므로 압축강도가 낮아 고경도 제품은 만들기가 어렵다.
넷째 방법 즉 비드 폼을 사용할 경우, EPS는 가격도 저렴하고 제조도 쉬워 포장 등의 다양한 용도로 사용하고 있으나 재질이 부스러지기 쉬워 취급 중 파쇄되어 공해를 유발하고 특히 굴 양식 등의 부구용으로 사용시 햇빛과 파도에 의해 부서져 바다와 주변 해안을 심하게 오염시키고 있다. EPP는 자동차 범퍼, 오토바이 헬멧 등의 충격 흡수 소재로 쓰이는데 성형이 어렵고 가격이 비싸며 고경도 제품만 얻을 수 있고 부드럽고 탄력성이 있는 제품은 얻을 수 없다. 그리고 EPS(expanded polystyrene)는 비드 상태에서 내부 가스의 보관 능력이 좋은 특성으로 인해 스팀 체스트 몰딩(steam chest molding) 업체에 비드의 상태로 공급하고 그 몰딩 업체에서 사전 발포(pre-expanding)를 하여 쓰면 되는데 반해 EPP는 비드 상태에서 내부 가스의 보관능력이 나빠 비드 생산업체에서 생산 직후 사전 발포를 완료한 후 스팀 체스트 몰딩 업체에 저비중 프리폼의 형태로 공급해야 하기 때문에 EPS에 비해 원료의 운반 원가가 대단히 높아진다. 그리고 이 비드 폼은 고압가스의 취급 등 위험요소가 많아 비드의 공급이 대규모 공장에서 대량으로 공급되는 경우가 많고 중소기업 등에서 직접 소재를 구사할 수 없어 다양한 소재와 다양한 물성의 제품을 만들기가 어렵다. 그리고 스팀 체스트 몰딩의 특성상 스팀으로 올리는 온도가 최대 150℃를 넘기 어려우므로 일반적인 폴리프로필렌을 사용할 수 없고 융점이 150℃ 이하인 랜덤 공중합체만 쓸 수 있어 고경도의 제품을 만들 수 없다. 또한 랜덤 공중합체만 쓰더라도 스팀 체스트 몰딩 시에 프리폼 표면을 충분히 용융시키는 데 장시간이 걸려 제조원가가 높아지고, 용융시간을 줄이면 용융이 충분치 않아 성형 폼의 강도가 약하게 되는 등 문제점이 많다.
다섯째 방법은 원가가 싸고 제조가 쉬운 장점은 있으나, 가교도를 많이 올리면 발포가 어려워지므로 가교도가 낮아 내열성이 좋은 성형폼은 얻기 어렵고, 제품이 탈형되면서 금형 내용적의 3-5배 커지므로 최종 성형품의 크기가 편차가 클 수 있으며, 어느 정도 가교된 상태에서 팽창되므로 팽창 후 수축이 일어날 수 있어 제품의 치수 관리에 난점이 있다. 그리고 이 방법은 체적이 크고 두께가 두꺼운 제품은 생산하기 어렵다. 왜냐하면 내부까지 가교시키려면 금형의 파팅 라인(parting line) 부분은 과경화(over-cure)가 되어버리기 때문에 제품이 찢어져 버리고 파팅 라인(parting line)을 적정 가교(optimum cure)시키려면 내부는 불충분 경화(under-cure)가 되어 버려 물성이 저하하고 성형 직후 수축이 커져 생산이 어렵게 된다.
본 명세서에 개시된 기술의 일 측면에 따르면, 과산화물 가교형 열가소성 수지, 과산화물 가교형 고무 및 과산화물 가교형 열가소성 탄성체로 이루어진 군으로부터 선택된 1종 이상의 고분자 성분; 열팽창성 미소구; 및 유기 과산화물 가교제를 포함하는 저비중 성형 폼용 조성물이 제공된다.
본 명세서에 개시된 기술의 다른 측면에 따르면, 과산화물 가교형 열가소성 수지, 과산화물 가교형 고무 및 과산화물 가교형 열가소성 탄성체로 이루어진 군으로부터 선택된 1종 이상의 고분자 성분, 열팽창성 미소구 및 유기 과산화물 가교제의 혼합물을 포함하는 발포용 조성물을 제공하는 단계; 상기 발포용 조성물을 성형 폼을 제조하기 위한 금형 내에 도입하는 단계; 상기 발포용 조성물을 상기 열팽창성 미소구의 팽창시작온도(Tstart) 이상으로 승온시켜 상기 발포용 조성물을 상기 금형 내에서 팽창시키는 단계; 상기 발포용 조성물이 팽창되어 상기 금형을 채운 상태에서 성형 폼을 형성시키는 단계; 및 상기 금형으로부터 상기 성형 폼을 탈형시키는 단계를 포함하는 저비중 성형 폼의 제조방법이 제공된다.
본 명세서에 개시된 기술의 또 다른 측면에 따르면, 상술한 제조방법으로 제조된 비중이 0.5 이하인 저비중 성형 폼이 제공된다.
도 1은 저비중 성형 폼의 제조방법의 일 구현예를 나타낸 공정순서도이다.
이하 본 명세서에 개시된 기술에 대하여 보다 상세히 설명하고자 한다.
상술한 바와 같이, 종래 저비중 성형 폼의 한계를 벗어나 소재는 고무 또는 열가소성 탄성체이면서 제품수축이 없고 불량율이 적으며 내열성과 내마모성과 내미끄럼성이 좋고 가수분해가 되지 않는 저비중 성형 폼용 조성물 및 이를 이용한 성형 폼의 제조방법이 요구된다.
본 명세서에 개시된 기술의 일 측면에 따르면, 저비중 성형 폼용 조성물이 제공된다. 상기 조성물은 과산화물 가교형 열가소성 수지, 과산화물 가교형 고무 및 과산화물 가교형 열가소성 탄성체로 이루어진 군으로부터 선택된 1종 이상의 고분자 성분; 열팽창성 미소구; 및 유기 과산화물 가교제를 포함한다.
열가소성 수지의 경우 과산화물에 의하여 가교가능한 과산화물 가교형 열가소성 수지와 과산화물에 의하여 가교가 불가능한 과산화물 비가교형 열가소성 수지로 나뉠 수 있다. 이중 과산화물 비가교형 열가소성 수지의 예로 프로필렌 단독 중합체, 프로필렌 공중합체, 폴리부텐-1, 폴리염화비닐 단독 중합체, 폴리염화비닐 공중합체, 폴리스티렌, 스티렌 아크릴로니트릴(SAN) 공중합체, 아크릴로니트릴 부타디엔 스티렌(ABS) 공중합체, 폴리아마이드, 폴리아세탈, 폴리카보네이트, 폴리에스터, 폴리페닐렌옥사이드 등이 있다.
한편 일 구현예에 따른 저비중 성형 폼용 조성물에 사용되는 과산화물 가교형 열가소성 수지는 에틸렌 단독중합체, 에틸렌 공중합체 및 염소화 폴리에틸렌으로 이루어진 군 중에서 선택되는 1종 이상일 수 있다.
상기 에틸렌 단독중합체는 저밀도 폴리에틸렌(LDPE), 선형 저밀도 폴리에틸렌(LLDPE), 초저밀도 폴리에틸렌(ULDPE), 극저밀도 폴리에틸렌(VLDPE), 중밀도 폴리에틸렌(MDPE) 및 고밀도 폴리에틸렌(HDPE)로 이루어진 군 중에서 선택된 어느 하나일 수 있다.
상기 에틸렌 공중합체는 i) 에틸렌, 및 ii) C3-C10 알파 올레핀, 불포화 C3-C20 모노카르복시산의 C1-C12 알킬 에스테르, 불포화 C3-C20 모노 또는 디카르복시산, 불포화 C4-C8 디카르복시산의 무수물 및 포화 C2-C18 카르복시산의 비닐 에스테르로 이루어진 군으로부터 선택되는 1종 이상의 에틸렌성 불포화 단량체의 공중합체이거나 상기 공중합체의 이오노머(ionomer)일 수 있다.
상기 에틸렌 공중합체에 있어서 바람직하게는, 에틸렌은 전체 중합체의 주요 몰분율을 차지하는데, 통상 에틸렌은 전체 중합체의 약 50 몰% 이상을 차지한다. 더욱 바람직하게는, 에틸렌은 약 60 몰% 이상, 약 70 몰% 이상, 또는 약 80 몰% 이상을 차지한다.
상기 에틸렌 공중합체의 구체적인 예는 에틸렌 비닐 아세테이트, (Ethylene Vinyl Acetate, EVA) 공중합체, 에틸렌 부틸아크릴레이트(Ethylene Butylacrylate, EBA) 공중합체, 에틸렌 메틸아크릴레이트(Ethylene Methylacrylate, EMA) 공중합체, 에틸렌 에틸아크릴레이트(Ethylene Ethylacrylate, EEA) 공중합체, 에틸렌 메틸메타크릴레이트((Ethylene Methylmethacrylate, EMMA) 공중합체, 에틸렌 부텐 공중합체(Ethylene Butene Copolymer, EB-Co) 및 에틸렌 옥텐 공중합체(Ethylene Octene Copolymer, EO-Co) 등일 수 있다.
바람직하게는 고탄성의 면에서 상기 에틸렌 공중합체는 에틸렌과 알파올레핀의 공중합체이다. 여기서 상기 알파 올레핀은 말단에 이중결합을 갖는 탄소수 3 이상의 올레핀이다. 전체 에틸렌 알파올레핀 공중합체에서 에틸렌을 제외한 실질적인 나머지는 바람직하게는 3개 이상의 탄소 원자를 갖는 알파 올레핀인 하나 이상의 기타 공단량체를 포함한다. 특히 상품화되어 입수용이성 측면에서 바람직하게는 상기 알파 올레핀은 부텐, 헥센 또는 옥텐이다. 예를 들어 에틸렌 옥텐 공중합체의 경우, 바람직한 조성물은 전체 중합체의 약 80 몰% 이상의 에틸렌 함량, 및 전체 중합체의 약 10 내지 약 15 몰%, 바람직하게는 약 15 내지 약 20 몰%의 옥텐 함량을 포함한다.
상기 에틸렌과 알파 올레핀 공중합체는 랜덤 공중합체 또는 블록 공중합체일 수 있으며 구체적인 예로 폴리올레핀 엘라스토머(POE)와 올레핀 블록공중합체(OBC)를 들 수 있다. 상용화된 제품으로 Dow Chemical의 Engage 및 Infuse, Mitsui의 Tafmer, Exxon Mobile의 Exact, LG화학의 LG-POE 등이 있다.
상기 염소화 폴리에틸렌 수지는 염소화 폴리에틸렌 단일중합체(homopolymer), 및 i) 에틸렌과 ii) 공중합 가능 단량체의 공중합 단위를 함유하는 염소화 공중합체(chlorinated copolymer)로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 염소화 폴리에틸렌 단독중합체의 구체적인 예는 염소화 고밀도 폴리에틸렌 단독중합체, 염소화 저밀도 폴리에틸렌 단독중합체, 및 염소화 초고밀도 폴리에틸렌 단독중합체를 포함할 수 있다.
상기 염소화 공중합체는 i) 에틸렌, 및 ii) C3-C10 알파 모노올레핀, C3-C20 모노카르복시산의 C1-C12 알킬 에스테르, 불포화 C3-C20 모노 또는 디카르복시산, 불포화 C4-C8 디카르복시산의 무수물 및 포화 C2-C18 카르복시산의 비닐 에스테르로 이루어진 군으로부터 선택되는 1종 이상의 에틸렌성 불포화 단량체의 염소화 공중합체일 수 있다. 또한 상기 염소화 공중합체에는 염소화 그라프트 공중합체가 포함될 수 있다.
상기 염소화 공중합체의 구체적인 예로는 염소화 에틸렌 비닐 아세테이트 공중합체, 염소화 에틸렌 아크릴산 공중합체, 염소화 에틸렌 메타크릴산 공중합체, 염소화 에틸렌 메틸 아크릴레이트 공중합체, 염소화 에틸렌 메틸 메타크릴레이트 공중합체, 염소화 에틸렌 부틸 아크릴레이트 공중합체, 염소화 에틸렌 부틸 메타크릴레이트 공중합체, 염소화 에틸렌 글리시딜 메타크릴레이트 공중합체, 에틸렌 및 말레산 무수물의 염소화 그라프트 공중합체, 및 프로필렌, 부텐, 3-메틸-1-펜텐 또는 옥텐과 에틸렌의 염소화 공중합체를 포함한다. 여기서 공중합체는 2원 공중합체, 3원 공중합체 또는 더 높은 차수의 공중합체일 수 있다.
바람직한 상기 염소화 폴리에틸렌은 염소화 폴리에틸렌 단일중합체, 염소화 에틸렌 비닐아세테이트, 염소화 에틸렌 부틸 아크릴레이트, 염소화 에틸렌 메틸 아크릴레이트, 염소화 에틸렌 메틸 메타크릴레이트, 염소화 에틸렌 부텐 공중합체 및 염소화 에틸렌 옥텐 공중합체 중에서 선택될 수 있다.
상기 염소화 폴리에틸렌 수지 내의 염소 함량은 상기 염소화 폴리에틸렌 수지 전체 중량 대비 30 내지 70 중량%, 바람직하게는 30 내지 50 중량%일 수 있다. 염소 함량이 상기 범위 미만에서는 폴리에틸렌에 가까워져서 반발탄성이 부족하고 뻣뻣하여 소기의 목적인 옥외용 폼으로 사용할 수 없고, 상기 범위 초과시엔 경도가 너무 높고 부스러지기 쉬워(brittle) 가공 및 발포가 어려워 폼 제작이 불가능해질 수 있다.
본 조성물의 과산화물 가교형 열가소성 수지는 지글러-나타 촉매, 메탈로센 또는 바나듐 기반의 배위 촉매나 자유 라디칼 개시제를 사용하여 제조될 수 있다. 상기 저밀도 폴리에틸렌(LDPE)의 밀도는 ASTM D-792에 의해 측정하였을 때, 약 0.910 g/㎤ 내지 약 0.930 g/㎤이다. 상기 선형 저밀도 폴리에틸렌(LLDPE)의 밀도는 약 0.850 g/㎤ 내지 약 0.940 g/㎤이며, ASTM 1238, 조건 I에 의해 측정하였을 때, 용융 지수는 10분당 약 0.01 내지 약 100 g이다. 바람직하게는, 용융 지수는 10분당 약 0.1 내지 약 50 g이다. 또한, 바람직하게는 LLDPE는 에틸렌과 탄소 원자가 3 내지 18개, 보다 바람직하게는 탄소 원자가 3 내지 8개인 1종 이상의 기타 알파-올레핀의 혼성중합체이다. 바람직한 공단량체에는 1-부텐, 4-메틸-1-펜텐, 1-헥센 및 1-옥텐이 포함된다. 상기 초저밀도 폴리에틸렌(ULDPE) 및 상기 극저밀도(VLDPE) 폴리에틸렌의 밀도는 약 0.860 g/㎤ 내지 약 0.910 g/㎤이다. 상기 중밀도 에틸렌 중합체(MDPE)는 일반적으로 밀도가 약 0.926 g/㎤ 내지 약 0.940 g/㎤인 단독중합체이다. 상기 고밀도 에틸렌 중합체(HDPE)는 일반적으로 밀도가 약 0.941 g/㎤ 내지 약 0.965 g/㎤인 단독중합체이다.
본 조성물에 사용되는 과산화물 가교형 열가소성 수지는 탄소원자 수 1000 당 CH3보다 더 큰 측쇄, 바람직하게는 탄소원자 수 1000 당 C2-C6 측쇄 분지 수가 0.01 내지 20이고, 탄소원자 수 1000 당 CH3보다 더 큰 측쇄, 바람직하게는 탄소원자 수 1000 당 C2-C6 측쇄 분지 수가 1 내지 15이고, 특히 바람직하게는 탄소원자 수 1000 당 CH3보다 더 큰 측쇄, 바람직하게는 탄소원자 수 1000 당 C2-C6 측쇄 분지 수가 2 내지 8이다. 탄소원자 수 1000 당 CH3보다 더 큰 측쇄 분지 수는 13C-NMR에 의해 결정하고, 이는 탄소원자 수 1000 당 CH3기보다 더 큰 측쇄의 총함량이다(말단기를 포함하지 않음).
본 조성물에 적합한 과산화물 가교형 열가소성 수지의 분자량 분포 폭은 Mw/Mn이 6 내지 100, 바람직하게는 11 내지 60, 특히 바람직하게는 20 내지 40의 범위이다. 본 조성물에 적합한 과산화물 가교형 열가소성 수지의 밀도는 0.89 내지 0.98 g/㎤, 바람직하게는 0.90 내지 0.97 g/㎤의 범위이다. 또한 본 조성물에 적합한 본 조성물의 과산화물 가교형 열가소성 수지의 중량평균분자량 Mw은 5,000 내지 700,000 g/mol, 바람직하게는 30,000 내지 550,000 g/mol, 특히 바람직하게는 70,000 g/mol 내지 450,000 g/mol의 범위이다. 상기와 같은 분자량, 분자량 분포, 밀도 범위에서 가공성이 뛰어나면서도 기계적 물성이 우수한 성형 폼이 만들어질 수 있다.
상기 과산화물 가교형 열가소성 수지의 용융 지수(MI)는 ASTM D1238 (190℃, 2.16kg)에 의해 측정 시, 1.0 내지 50 g/10 분, 바람직하게는 1.0 내지 30 g/10 분, 더욱 바람직하게는 2.0 내지 25 g/10 분의 범위인 것을 예시할 수 있다. 특히 바람직하게는 2.0 내지 20 g/10 분의 범위이다. 상기 열가소성 수지의 용융 지수가 높을수록 압출기 등으로 용융 혼련할 때 기기의 부하를 경감할 수 있다. 다만 상기 범위 미만에서는 가공 기기에 너무 높은 압력이 걸려 부하가 가중되고 시간 당 압출량이 너무 작아 경제성이 없고, 상기 범위 초과에서는 조성물의 점도가 낮아 혼합물이 압출 다이를 통과한 직후 점착성이 너무 높아질 수 있다. 이 경우 압출물의 절단이 잘 안되어 펠렛화 작업이 어려울 수 있다. 필요에 따라 함유될 수 있는 기타 첨가제를 포함한 전체 수지 조성물의 용융 지수도 동일한 이유로 상기 범위에서 제어되는 것이 바람직하다.
고무의 경우 과산화물에 의하여 가교가능한 과산화물 가교형 고무와 과산화물에 의하여 가교가 불가능한 과산화물 비가교형 고무로 나뉠 수 있다. 이중 과산화물 비가교형 고무로는 클로로프렌 고무(CR), 부틸 고무(IIR), 아크릴 고무, 불소 고무 등이 있다.
한편 일 구현예에 따른 저비중 성형 폼용 조성물에 사용되는 과산화물 가교형 고무는 천연고무(NR), 이소프렌 고무(IR), 스티렌 부타디엔 고무(SBR 고무), 부타디엔 고무(BR), 니트릴 부타디엔 고무(NBR), 수소화 니트릴 고무(HNBR), EPDM 고무(ethylene propylene diene monomer rubber), 클로로술폰화 폴리에틸렌 고무(chlorosulphonated polyethylene rubber) 및 실리콘 고무로 이루어진 군 중에서 선택되는 1종 이상일 수 있다.
열가소성 탄성체의 경우에도 과산화물에 의하여 가교가능한 과산화물 가교형 열가소성 탄성체와 과산화물에 의하여 가교가 불가능한 과산화물 비가교형 열가소성 탄성체로 나뉠 수 있다. 이중 과산화물 비가교형 탄성체로는 열가소성 폴리우레탄(TPU), 열가소성 폴리에스테르 탄성체(TPEE), 열가소성 폴리아마이드 탄성체(TPAE) 등이 있다.
한편 일 구현예에 따른 저비중 성형 폼용 조성물에 사용되는 과산화물 가교형 열가소성 탄성체는 스티렌-부타디엔-스티렌 블록 공중합체(SBS), 스티렌-이소프렌-스티렌 블록 공중합체(SIS), 스티렌-에틸렌-부타디엔-스티렌 블록 공중합체(SEBS), 스티렌-부틸렌-부타디엔-스티렌 블록 공중합체(SBBS) 및 스티렌-에틸렌-프로필렌-스티렌 블록 공중합체(SEPS)을 비롯한 스티렌 블록 공중합체, 1,2-폴리부타디엔(1,2-PB) 및 열가소성 폴리올레핀(TPO)으로 이루어진 군 중에서 선택되는 1종 이상일 수 있다.
한편, 본 명세서에 개시된 기술의 일 구현예에 따른 저비중 성형 폼용 조성물에서 사용되는 열팽창성 미소구(thermo-expandable microsphere)는 탄화수소류 발포성 화합물을 내포한 고분자 입자이다. 이는 상온에서는 일반 파우더 형상이나 일정 온도 이상에서 상기 탄화수소류 발포성 화합물는 기화되거나, 열에 의해 분해되면서 기체를 발생시킴으로써 열팽창성 미소구의 내부에 중공을 형성하고, 상기 고분자는 팽창하면서 쉘을 형성한다. 이때 상기 고분자는 매우 부드럽고 탄성이 뛰어나기 때문에 파열되지 않는다. 열팽창성 미소구가 팽창시 과열을 받아 파열되면, 성형 폼용 조성물의 성형시 열팽창성 미소구 내의 기체가 밖으로 빠져나와 소실되므로 팽창이 덜 되거나 안 일어나게 된다. 상기 고분자는 파열되지 않으면 우수한 표면 특성을 얻을 수 있게 한다.
상기 열팽창성 미소구는 상기 저비중 성형 폼용 조성물의 성형 과정에서 가열되어 팽창하게 되고, 상기 열팽창성 미소구를 포함한 조성물로부터 성형된 팽창품은 발포체를 형성할 수 있다.
상기 탄화수소류 발포성 화합물은 쉘을 형성하는 고분자를 용해시키지 않으면서, 비점이 쉘의 연화 온도 이하, 예를 들어 약 100 ℃ 이하에서 가공하는 것이 바람직하다. 통상적으로 휘발성 팽창제라고도 하는 비점이 낮은 액체상 물질이 사용되나, 열에 의해 분해되어 가스를 생성하는 고체상 물질도 사용될 수 있다.
상기 액체상 물질의 예로는, 예를 들면 탄소수 3∼8의 직쇄상의 지방족 탄화수소 및 그 플루오로화물, 탄소수 3∼8의 분지상의 지방족 탄화수소 및 그 플루오로화물, 탄소수 3∼8의 직쇄상의 지환족 탄화수소 및 그 플루오로화물, 탄소수 2∼8의 탄화수소기를 갖는 에테르 화합물, 또는 그 탄화수소기의 수소 원자의 일부가 불소 원자에 의해서 치환된 화합물 등이 있다. 구체적으로는 프로판, 시클로프로판, 부탄, 시클로부탄, 이소부탄, 펜탄, 시클로펜탄, 네오펜탄, 이소펜탄, 헥산, 시클로헥산, 2-메틸펜탄, 2,2-디메틸부탄, 헵탄, 시클로헵탄, 옥탄, 시클로옥탄, 메틸헵탄류, 트리메틸펜탄류, 1-펜텐, 1-헥센, C3F7OCH3, C4F9OCH3, C4F9OC2H5 등의 하이드로플루오로에테르류를 들 수 있다. 이들은 1종 또는 그 이상의 혼합물로서 사용된다. 통상 대기압에서 60℃ 미만의 비점을 갖는 탄화수소가 바람직하다. 일례로 중공 미소구 내부의 바람직한 액체는 이소부탄이다. 고체상 물질로는 가열에 의해 열분해하여 가스상태가 되는 아조비스이소부티로니트릴(AIBN)를 들 수 있다.
열팽창성 미소구에 내포된 탄화수소류 발포성 화합물의 내포율에 대해서는 용도에 따라 달리할 수 있으므로 특별히 한정되지는 않으나, 예를 들면 열팽창성 미소구의 전체 중량에 대하여 약 0.5 내지 약 15 중량%, 바람직하게는 약 1 내지 약 10 중량%일 수 있다. 열팽창성 미소구는 일반적으로 물과 같은 비상용성 액체에 중합성 단량체 및 발포제 등을 함유하는 중합성 단량체 혼합물을 기계적으로 분산시킨 상태에서, 단량체 유적을 중합시키는 현탁중합방법에 의해 제조될 수 있다.
상기 저비중 성형 폼용 조성물에 포함되는 열팽창성 미소구는 팽창하기 전의 평균 입경이 약 5 내지 약 60㎛일 수 있고, 예를 들어 약 10 내지 약 50㎛이고, 다른 예를 들면 약 20 내지 약 35㎛ 이다. 약 5 내지 약 60㎛의 평균 입경을 갖는 열팽창성 미소구인 경우 팽창 시 파열되지 않으면서도 적당한 두께의 쉘을 형성하며 열팽창 거동이 신속해질 수 있다. 한편 상기 탄화수소류의 발포성 화합물의 끓는점과 팽창시 쉘을 형성하는 상기 고분자의 유리전이온도(Tg)에 따라서 팽창시작온도(Tstart) 및 최대팽창온도(Tmax) 등을 결정할 수 있다.
팽창시 쉘을 형성하는 상기 고분자는 상기 팽창시작온도에서 내부 가스로 인한 팽창이 가능하도록 유연해질 수 있는 열가소성 수지이면 기본적으로 가능하다. 구체적으로는 아크릴계 수지, 염화비닐리덴계 수지, 아크릴로니트릴계 수지, ABS 수지, 폴리에틸렌, 폴리에틸렌 테레프탈레이트, 폴리프로필렌, 폴리스티렌, 염화비닐 수지, 아세탈 수지, 셀룰로스 에스테르, 초산 셀룰로스, 불소 수지, 메틸펜텐 폴리머 또는 이들을 혼합하여 만든 열가소성 고분자 등이 사용될 수 있으며, 이에 한정되지 않는다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴, 메틸 메타크릴레이트, 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, n-부틸 아크릴레이트, 이소부틸 아크릴레이트, t-부틸 아크릴레이트, 2-에틸헥실 아크릴레이트, n-옥틸 아크릴레이트, 라우릴 아크릴레이트, 스테아릴 아크릴레이트, 2-히드록시에틸 아크릴레이트, 폴리에틸렌 글리콜 아크릴레이트, 메톡시폴리에틸렌 글리콜 아크릴레이트, 글리시딜 아크릴레이트, 디메틸아미노에틸 아크릴레이트, 디에틸아미노에틸 아크릴레이트, 비닐리덴 클로라이드, 부타디엔, 스티렌, p- 또는 m- 메틸스티렌, p- 또는 m- 에틸스티렌, p- 또는 m-클로로스티렌, p- 또는 m-클로로메틸스티렌, 스티렌술폰산, p- 또는 m- t-부톡시스티렌, 비닐 아세테이트, 비닐 프로피오네이트, 비닐 부티레이트, 비닐 에테르, 알릴 부틸 에테르, 알릴 글리시틸에테르, (메타)아크릴산 또는 말레산을 포함하는 불포화 카르복시산, 및 알킬(메타)아크릴아마이드 등의 적어도 1종을 포함하는 중합체 또는 공중합체일 수 있고 이에 한정되지 않는다. 이러한 고분자는 그 연화온도, 내열성, 내약품성 등 원하는 용도에 따라 선택할 수 있다. 예를 들면 염화비닐리덴을 포함하는 공중합체는 가스배리어성이 우수하고, 니트릴계 단량체를 약 80 중량% 이상 포함하는 공중합체는 내열성, 내약품성이 우수하다. 바람직하게는 본 조성물의 경우는 내열성을 위하여 상기 열팽창성 미소구의 쉘은 니트릴계 단량체와 (메타)아크릴산 에스테르계 단량체를 주성분으로 한 아크릴계 공중합체, 즉 아크릴로니트릴 공중합체로 구성될 수 있다.
상기 열팽창성 미소구는 과산화물 가교형 열가소성 수지, 고무, 열가소성 탄성체와 같은 상기 고분자 성분 100 중량부에 대하여 1 중량부 내지 20 중량부로 상기 조성물에 포함될 수 있고, 3 중량부 내지 15 중량부로 포함되는 것이 좋다. 만일 그 사용량이 상기 범위 미만이면 발포가 덜 될 수 있고, 상기 범위 초과이면 발포가 너무 많이 되어 성형 폼의 강도가 낮아져 사용상 문제가 될 수 있다
또한 상기 조성물에는 가공특성을 돕고 발포체의 물성 향상을 위해 발포체의 제조시 일반적으로 사용되는 금속산화물 및 산화방지제로 이루어지는 군 중에서 선택되는 1종 이상의 첨가제가 더 포함될 수 있다.
상기 첨가제는 저비중 성형 폼용 조성물의 상기 고분자 성분 100 중량부에 대하여 0.01 내지 5 중량부가 사용될 수 있다. 상기 금속산화물로는 산화아연, 산화티타늄, 산화카드뮴, 산화마그네슘, 산화수은, 산화주석, 산화납, 산화칼슘 등을 발포체의 물성 향상을 위해 사용할 수 있으며, 상기 고분자 성분 100 중량부에 대하여 1 내지 4 중량부 사용될 수 있다. 상기 산화방지제로는 선녹(sonnoc), 비에에치티이(BHT, butylated hydroxy toluene), 송녹스 1076(songnox 1076, octadecyl-3,5-di-tert-butyl-hydroxy hydrocinnamate) 등을 사용하며, 상기 고분자 성분 100 중량부에 대하여 0.25 내지 2 중량부 사용될 수 있다.
상기 발포용 조성물에서 가교가 먼저 일어나면 상기 고분자가 잘 발포되지 않기 때문에 발포가 효율적으로 이루어지도록 상기 열팽창성 미소구의 팽창시작온도(Tstart)가 상기 유기 과산화물 가교제의 1분 반감기 온도 이하인 것이 바람직하다.
상기 유기 과산화물 가교제는 1분 반감기 온도가 130 내지 180 ℃인 것을 사용할 수 있다. 상기 유기 과산화물 가교제의 구체적인 예로는 t-부틸퍼옥시이소프로필카르보네이트, t-부틸퍼옥시라우릴레이트, t-부틸퍼옥시아세테이트, 디-t-부틸퍼옥시프탈레이트, t-디부틸포옥시말레인산, 시클로헥사논퍼옥사이드, t-부틸큐밀퍼옥사이드, t-부틸히드로퍼옥사이드, t-부틸퍼옥시벤조에이트, 디큐밀퍼옥사이드, 1,3-비스(t-부틸퍼옥시이소프로필)벤젠, 메틸에틸케톤퍼옥사이드, 2,5-디메틸-2,5-디(벤조일옥시)헥산, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 디-t-부틸퍼옥사이드, 2,5-디메틸-2,5-(t-부틸퍼옥시)-3-헥산, n-부틸-4, 4-비스(t-부틸퍼옥시)발러레이트, a,a'-비스(t-부틸퍼옥시)디이소프로필벤젠 등을 사용할 수 있다.
본 명세서에 개시된 기술의 일 구현예에 따른 저비중 성형 폼용 조성물은 상기 고분자 성분 100 중량부 기준으로 상기 유기 과산화물 가교제를 0.02 내지 4 중량부, 바람직하게는 0.02 내지 3 중량부, 더욱 바람직하게는 0.05 내지 1.5 중량부로 포함할 수 있다. 그 사용량에 있어서 0.02 중량부 미만이면 가교가 부족하여 성형 폼의 내마모성이 저하되고, 4 중량부를 초과하면 과가교로 인하여 경도가 급격히 높아질 수 있다.
본 명세서에 개시된 기술의 다른 측면에 따르면, 저비중 성형 폼의 제조방법이 제공된다. 도 1은 저비중 성형 폼의 제조방법의 일 구현예를 나타낸 공정순서도이다. 도 1을 참조하면, 단계 S1에서 과산화물 가교형 열가소성 수지, 과산화물 가교형 고무 및 과산화물 가교형 열가소성 탄성체로 이루어진 군으로부터 선택된 1종 이상의 고분자 성분, 열팽창성 미소구 및 유기 과산화물 가교제의 혼합물을 포함하는 발포용 조성물을 제공한다.
상기 발포용 조성물은 상기 혼합물을 압출가공하여 제조된 것일 수 있다. 상기 압출가공은 부스니더(buss kneader), 일축 압출기(single screw extruder) 또는 이축 압출기(twin screw extruder)를 포함한 다양한 압출기를 이용하여 수행될 수 있다. 상기 압출기의 스크류 조합(screw configuration)이나 설정 온도, 스크류 회전속도, 압출량 등 공정 조건의 변화를 통해 다양한 제품의 생산이 가능하다.
상기 압출기의 호퍼를 통해 투입된 상기 혼합물이 스크류에 의하여 이송되면서 상기 압출기의 실린더 내에서 용융 및 믹싱이 이루어진다. 상기 실린더의 온도는 상기 혼합물이 용융되어 적절한 흐름성을 가질 수 있으며, 상기 고분자의 융점 이상 및 상기 열팽창성 미소구의 Tstart 이하의 온도에서 제어되는 것이 바람직하다. 다만 상기 실린더의 온도가 지나치게 높으면 상기 열팽창성 미소구가 팽창이 되어 압출로 얻어지는 펠렛이 발포되어버려 소기의 목적을 달성할 수 없다. 상기 실린더의 온도는 사용하는 상기 고분자의 종류에 따라 달라질 수 있으나 통상 80 내지 120℃일 수 있고, 스크류 회전속도와 압출량은 발포되어 나오는 압출물의 비중과 모양에 따라 적당하게 제어될 수 있으며, 필요에 따라 공정 조건은 다양하게 제어될 수 있다.
상기 압출 가공에 의해 상기 고분자 성분과 상기 열팽창성 미소구가 골고루 섞일 수 있으며, 압출 및 절단에 의해 상기 발포용 조성물이 추후 금형 내에서 가공에 적절한 크기를 가지는 규격을 가질 수 있다. 압출 가공된 상기 발포용 조성물은 펠렛, 봉상 또는 시트 형태를 가질 수 있다. 다양한 형상의 성형 폼을 만들 수 있다는 점에서 바람직하게는 상기 발포용 조성물은 압출된 펠렛의 형태를 갖는다. 압출 가공된 상기 펠렛의 규격은 압출기의 다이의 규격 및 형상에 따라 결정될 수 있으며 그 형상에 따라 직경, 두께, 길이 중 가장 작은 부분을 기준으로 0.1 내지 10mm, 바람직하게는 1 내지 5mm의 크기를 가질 수 있다. 상기 범위에서 금형 가공 시 펠렛들 간의 접착이 잘되고 발포 효율이 우수할 수 있다.
압출 후 상기 발포용 조성물은 미발포 상태 또는 저발포 상태가 될 수 있으며, 추후 금형 내에서 원활한 발포를 위해 압출물의 밀도는 0.70g/cm3 이상인 것이 바람직하다. 예를 들어 상기 압출물의 밀도는 0.80 내지 1.00g/cm3일 수 있다. 상기 비중 미만에서는 금형 내 성형시 열전도율이 나빠 발포가 잘 안되거나 장시간이 걸릴 수 있다.
상기 고분자와 상기 열팽창성 미소구의 혼합물이 압출 가공 과정에서 미발포 상태를 유지하도록 상기 열팽창성 미소구의 팽창시작온도는 압출 가공 온도보다 높은 것이 바람직하다. 필요에 따라 약간의 예비발포를 위해 상기 열팽창성 미소구의 팽창시작온도가 압출 시 가공 온도보다 5℃ 이내의 범위에서 낮을 수도 있다.
상기 열팽창성 미소구는 팽창시작온도가 약 130 내지 약 220℃이고, 예를 들면 약 140 내지 약 200℃일 수 있다. 또한 최대팽창온도는 약 150 내지 280℃이고, 예를 들면 약 170 내지 270℃일 수 있으며, 필요한 용도에 따라서 적절히 선택할 수 있다.
상기 열팽창성 미소구는 최대팽창온도에서 체적으로 약 10배 내지 약 100배 증가할 수 있고, 예를 들면 약 30배 내지 약 60배 증가할 수 있다. 상기 열팽창성 미소구를 포함하는 상기 저비중 성형 폼용 조성물을 가열하면 열팽창성 미소구가 팽창되고 제조된 성형품은 팽창된 상태의 열팽창성 미소구를 포함하게 된다. 상기 성형품에서 열팽창성 미소구는 팽창 전 대비하여 체적으로 약 10배 내지 약 50배 증가된 상태일 수 있고, 예를 들면 약 20배 내지 약 40배 증가될 수 있다.
팽창된 열팽창성 미소구는 초경량의 중공미소구이므로 최종 제품의 경량화에 기여할 수 있으며 자체가 우수한 탄성을 가지고 있어서 최종 제품의 기계적 강도를 유지 및 향상시켜줄 수 있다. 또한 일반 발포제와 달리 열팽창성 미소구는 팽창 후 제품 내에 일정 크기의 미세 독립 기포(closed cell)가 형성되도록 하여 최종 제품의 표면 특성이 개선되며 독립 기포의 탄성이 최종 제품의 수축 방지에도 기여할 수 있다.
단계 S2에서, 상기 발포용 조성물을 성형 폼을 제조하기 위한 금형 내에 도입한다. 이때 상기 발포용 조성물을 상기 금형 내에 도입시 상기 금형 용적의 50% 이하의 양, 예를 들어 10 내지 50%가 되도록 상기 금형을 채우는 것이 바람직하다. 상기 발포용 조성물을 상기 범위의 양으로 성형 시 사용하면 저비중 용도에 적합한 0.5 이하, 예를 들어 0.1 내지 0.5의 낮은 비중을 갖는 성형 폼을 얻을 수 있으면서도, 상기 금형의 모양대로 성형 폼을 가공할 수 있다. 상기 발포용 조성물을 상기 금형 용적을 기준으로 50% 넘게 채울 경우 성형폼 비중이 0.5를 넘게 되어 성형 폼의 실용성이 떨어질 수 있다.
상기 금형 내에 도입되는 상기 발포용 조성물이 미발포 상태인 것이거나 0.7 내지 0.9의 비중을 갖도록 저발포된 것일 수 있다. 이와 같이 상기 발포용 조성물이 미발포 또는 저발포 입자로부터 출발할 경우 상기 금형 내에서 발포 가공시 열전도가 좋아 조성물을 빠른 시간에 팽창시킬 수 있다. 만일 상기 범위보다 작은 비중을 갖는 조성물을 사용할 경우에 열전도 효율이 떨어져서 발포가 잘 되지 않아 팽창품이 금형을 채우지 못하여 불량이 생길 수 있다.
단계 S3에서, 상기 발포용 조성물을 상기 열팽창성 미소구의 팽창시작온도(Tstart) 이상으로 승온시켜 상기 발포용 조성물을 상기 금형 내에서 팽창시킨다. 상기 발포용 조성물의 승온은 상기 금형을 열원으로 직접 또는 간접적으로 가열하여 승온하는 것일 수 있다. 예를 들어 상기 금형을 전기를 이용한 열원으로 가열함으로써 상기 금형의 온도를 충분히 높일 수 있다.
원료의 종류, 발포 조성물의 비중에 따라 다르지만 상기 금형을 140℃ 초과 230℃ 미만의 온도, 예를 들어 150 내지 210℃, 바람직하게는 160 내지 190℃의 온도로 가열할 수 있다. 상기 금형의 온도가 상기 범위 미만에서는 발포가 충분하지 못하고 상기 범위 초과에서는 성형 폼이 변형, 변색 또는 수축될 우려가 있다.
일 구현예에 있어서, 상기 발포용 조성물의 팽창시 상기 금형의 내부를 진공 상태로 유지하는 것이 바람직하다. 상기 금형 내부에 진공이 걸리면 상기 열팽창성 미소구가 팽창을 시작할 때 진공의 힘에 의해 팽창이 빨라지고 쉬워지며 팽창 배율이 커질 수 있다. 결국 금형 내부를 채우기 위해 많은 양의 열팽창성 미소구를 사용하지 않고도 발포가 양호하게 이루어진 저비중 팽창품을 얻을 수 있다. 예를 들어 진공을 사용할 경우 진공을 사용하지 않을 경우보다 열팽창성 미소구의 양을 10% 이상 줄일 수 있다.
금형 내에서 진공을 유지하기 위해 금형 가공 기기의 가압장치가 진공프레스인 것을 사용할 수 있다. 이때 가압장치인 프레스의 열판들 사이가 진공이며 그 곳에 금형이 존재하는 형태를 가질 수 있다. 한편 가압장치가 일반 프레스인 경우 금형의 캐비티(cavity)의 주변에 진공 홈을 만들고 그 진공 홈의 출구에 진공 펌프의 연결구를 연결시킬 수 있다.
단계 S4에서, 상기 발포용 조성물이 팽창되어 상기 금형을 채운 상태에서 성형 폼을 형성시킨다. 이때 상기 발포용 조성물이 팽창하여 상기 금형을 실질적으로 가득 채운 상태에서 성형온도를 유지하여 상기 금형 대 상기 성형 폼이 부피비로 1:1 내지 1:1.1 규격이 되도록 상기 성형 폼을 완성시킨다. 제품의 크기와 두께에 따라 다르지만 예를 들어 금형 온도와 진공을 조절하여 5 내지 40 분간 성형할 수 있다. 성형 시간은 성형 온도와 압출물의 비중에 따라 열전도 효율이 달라지므로, 이러한 조건을 제어하여 동일 형상의 제품이라도 성형시간을 단축시킬 수 있다. 제품의 크기와 두께에 따라 다르지만 생산성을 고려하여 바람직하게는 10분 내외이다. 이 과정에서 가교가 충분히 이뤄지도록 하는 것이 내구성이 뛰어난 성형 폼 제품을 얻을 수 있으므로 바람직하다.
단계 S5에서, 상기 금형으로부터 상기 성형 폼을 탈형시킨다.
상기 발포용 조성물을 상기 금형 내에서 팽창시킨 후 팽창이 다 된 상태에서 가교가 이루어지므로 상기 성형 폼이 탈형 후에도 수축되지 않는다.
본 명세서에 개시된 기술의 다른 측면에 따르면, 상술한 제조방법에 의하여 비중이 0.5 이하인 성형 폼이 제공된다. 이러한 성형 폼은 수축이 없어 치수안정성이 뛰어나고 저비중 제품 용도에 응용이 가능하다.
본 명세서에 개시된 기술에 따른 저비중 성형 폼 조성물 및 이를 이용한 저비중 성형 폼의 제조방법에 따르면 아래와 같은 다양한 장점이 있다. 첫째 성형 폼의 제품수축이 없고 불량율이 적으며, 내마모성, 내미끄럼성이 좋을 뿐 아니라 가수분해가 되지 않는다. 둘째 금형 내부에 진공을 걸 수 있어 적은 양의 열팽창성 미소구로 큰 팽창을 얻을 수 있다. 셋째 미팽창 또는 저팽창 입자로부터 출발하기 때문에 열전도가 좋아 빨리 팽창하기 때문에 에너지 효율이 좋다. 넷째 금형온도를 충분히 올릴 수 있으므로 팽창된 펠렛끼리의 접착강도가 높아 성형 폼의 강도가 높고 제조 중 불량의 위험이 적다.
PVC나 열가소성 고무에 발포제나 열팽창성 미소구를 혼합하고 사출기의 실린다 내에서 팽창시킨 뒤 상온 상태의 금형에 사출하여 냉각 된 뒤 탈형하여 성형 폼을 제조하는 방법에 비해 본 조성물을 이용하여 상술한 방법으로 제조할 경우 치수안정성 및 내구성이 뛰어난 0.5 이하의 저비중 성형 폼을 얻을 수 있다.
이하 본 명세서에 개시된 기술에 대하여 다양한 실시예를 통해 본 명세서에 개시된 기술에 대해 보다 상세히 설명하고자 하나 이는 설명의 편의를 위한 것으로 본 명세서에 개시된 기술의 청구범위의 기술적 사상이 이에 의해 제한되는 것이 아니다.
<실시예>
1) 성형 폼 원료
하기의 원료들이 비교예 및 실시예의 성형 폼 제조에 사용되었다.
i) 고분자 성분
EVA-1: Elvax 550 (Dupont제, VA 15%, DSC 융점 89℃, MI(190℃, 2.16kg) 8.0)
LDPE-1: LDPE 303 (한화제), 비중 0.919, MI(190℃, 2.16kg) 6.0, DSC융점 106℃)
HDPE-1: M690 (대한유화제, 비중 0.965, MI(190℃, 2.16kg) 12.0, DSC융점 135℃)
BR-1: BR 01 (금호제, Cis 96%, ML 1+4(100℃) 45)
EPDM-1: KEP 210 (금호제, ML 1+4(125℃) 25, Ethylene 65%, ENB 5.7%)
ii) 열팽창성 미소구
TEMS-1: Expancel 930 DU 120 (Akzo Nobel제, Tstart 127℃, Tmax 196℃)
TEMS-2: Expancel 980 DU 120 (Akzo Nobel제, Tstart 165℃, Tmax 225℃)
iii) 발포제
Blowing Agent-1: DX-74 (Dongjin Senichem제, Azodicarbonamide, 분해 온도: 155℃)
iv) 유기 과산화물 가교제
Peroxide-1: Dicumyl Peroxide (1분 반감기온도: 175℃)
Peroxide-2: Luperox 231 (Arkema제, 1분 반감기 온도: 145℃)
2) 성형 폼의 제조
고분자 성분, 열팽창성 미소구, 발포제 및 유기 과산화물 가교제를 하기 표 1 및 2의 배합비 (각 수치는 중량부로 표시됨)로 니더(kneader)에서 혼합한 후 L/D=36/1인 압출기에서 소정의 온도로 압출하여 언더워터 컷팅으로 직경 3mm의 펠렛을 얻었다. 언더워터 컷팅에는 물 대신에 스테아린산 아연(zinc stearate)을 5% 유화시킨 유화액을 사용하였다. 그 펠렛을 100mm x 200mm x 20mm(용적 400CC)의 금형에 소정량(표 1 및 2에 표시)을 투입하고 금형온도와 진공을 조절하며 성형하였다. 금형온도와 진공을 조절하며 10분간 가열하였다가 탈형하였다.
비교예 1 | 비교예 2 | 비교예 3 | 비교예 4 | 실시예 1 | 실시예 2 | 실시예 3 | 비교예 5 | 실시예 4 | 비교예 6 | |
EVA-1 | 100 | 100 | 100 | 100 | 100 | |||||
LDPE-1 | 100 | 100 | ||||||||
HDPE-1 | 100 | |||||||||
BR-1 | 100 | |||||||||
EPDM-1 | 100 | |||||||||
TEMS-1 | 5.0 | 5.0 | 5.0 | 5.0 | ||||||
TEMS-2 | 5.0 | 5.0 | ||||||||
Blowing Agent-1 | 5.0 | 5.0 | 5.0 | 5.0 | ||||||
Peroxide-1 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | ||
Peroxide-2 | 1.0 | 1.0 | ||||||||
압출 온도 ℃ | 100 | 120 | 100 | 100 | 100 | 100 | 100 | 100 | 120 | 145 |
펠렛비중 | 0.91 | 0.89 | 0.88 | 0.84 | 0.92 | 0.92 | 0.92 | 0.92 | 0.90 | (0.30) |
금형투입량 g | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
금형온도 ℃ | 160 | 160 | 160 | 160 | 160 | 160 | 180 | 180 | 160 | 160 |
가교시간 분 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
진공유무 | 유 | 유 | 유 | 유 | 무 | 무 | 무 | 무 | 무 | 무 |
발포상태 | (발포 안됨) | (발포 안됨) | (발포 안됨) | (발포 안됨) | 발포 됨 | 발포 됨 | 발포 됨 | (발포 거의 안됨) | 발포 됨 | (발포 진행 늦음) |
팽창품의 금형채움상태 | (안참) | (안참) | (안참) | (안참) | 참 | 참 | 참 | (안참) | 참 | (안참) |
성형품 비중 | (0.89) | (0.88) | (0.86) | (0.83) | 0.25 | 0.25 | 0.25 | (0.85) | 0.25 | 0.29 |
저비중 성형 폼 가부 | (불가) | (불가) | (불가) | (불가) | 가 | 가 | 가 | (불가) | (불가) | 가 |
비교예 7 | 실시예 5 | 비교예 8 | 비교예 9 | 실시예 6 | 비교예 10 | 실시예 7 | 비교예 11 | 비교예 12 | 실시예 8 | |
EVA-1 | 50 | 50 | 50 | 50 | ||||||
LDPE-1 | ||||||||||
HDPE-1 | 100 | 100 | 100 | |||||||
BR-1 | 50 | 50 | ||||||||
EPDM-1 | 50 | 50 | 100 | 100 | 100 | |||||
TEMS-1 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | ||
TEMS-2 | 5.0 | 5.0 | 5.0 | 5.0 | ||||||
Blowing Agent-1 | ||||||||||
Peroxide-1 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
Peroxide-2 | 1.0 | |||||||||
압출 온도 ℃ | 145 | 145 | 145 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
펠렛비중 | (0.30) | 0.95 | 0.95 | 0.90 | 0.90 | 0.87 | 0.87 | 0.89 | 0.86 | 0.86 |
금형투입량 g | 100 | 100 | 100 | 100 | 190 | 100 | 190 | 200 | 280 | 190 |
금형온도 ℃ | 160 | 180 | 180 | 160 | 160 | 160 | 160 | 160 | 160 | 160 |
가교시간 분 | (40) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | ||
진공유무 | 무 | 무 | 무 | 무 | 무 | 무 | 무 | 무 | 무 | 유 |
발포상태 | 발포됨 | 발포됨 | (발포 거의 안됨) | (발포 조금 됨) | 발포됨 | (발포 조금 됨) | 발포됨 | (발포 조금 됨) | 발포 됨 | 발포됨 |
팽창품의 금형채움상태 | 참 | 참 | (안참) | (안참) | 참 | (안참) | 참 | (안참) | 참 | 참 |
성형품 비중 | 0.25 | 0.25 | (0.89) | (0.55) | 0.45 | 0.48 | 0.45 | (0.75) | (0.70) | 0.45 |
저비중 성형 폼 가부 | (불가) | 가 | (불가) | (불가) | 가 | (불가) | 가 | (불가) | (불가) | 가 |
- 괄호 안의 수치 및 설명은 부적합한 물성을 나타냄
- 비교예 5와 비교예 8은 가교가 먼저 진행되어 열팽창성 미소구의 팽창이 억제되고, 비교예 6과 비교예 7은 펠렛이 먼저 발포되어서 금형 내에서는 펠렛 내부까지 열전도 속도가 느려 발포 진행이 늦고, 가교시간을 대폭 늘여야 열팽창성 미소구의 나머지 팽창이 진행되고 가교가 되는 것을 확인할 수 있음
Claims (17)
- 과산화물 가교형 열가소성 수지, 과산화물 가교형 고무 및 과산화물 가교형 열가소성 탄성체로 이루어진 군으로부터 선택된 1종 이상의 고분자 성분, 열팽창성 미소구 및 유기 과산화물 가교제의 혼합물을 포함하는 발포용 조성물을 제공하는 단계;상기 발포용 조성물을 성형 폼을 제조하기 위한 금형 내에 도입하는 단계;상기 발포용 조성물을 상기 열팽창성 미소구의 팽창시작온도(Tstart) 이상으로 승온시켜 상기 발포용 조성물을 상기 금형 내에서 팽창시키는 단계;상기 발포용 조성물이 팽창되어 상기 금형을 채운 상태에서 성형 폼을 형성시키는 단계; 및상기 금형으로부터 상기 성형 폼을 탈형시키는 단계를 포함하는 저비중 성형 폼의 제조방법.
- 제1 항에 있어서,상기 발포용 조성물은 상기 혼합물을 압출하여 제조한 것인 저비중 성형 폼의 제조방법.
- 제1 항에 있어서,상기 발포용 조성물은 펠렛, 봉상 또는 시트 형태를 갖는 것인 저비중 성형 폼의 제조방법.
- 제1 항에 있어서,상기 발포용 조성물을 상기 금형 내에 도입시 상기 금형 용적의 50% 이하의 양이 되도록 상기 금형을 채우는 것인 저비중 성형 폼의 제조방법.
- 제1 항에 있어서,상기 금형 내에 도입되는 상기 발포용 조성물이 미발포 상태인 것이거나 0.7 내지 0.9의 비중을 갖도록 저발포된 것인 저비중 성형 폼의 제조방법.
- 제1 항에 있어서,상기 발포용 조성물의 승온은 상기 금형을 열원으로 직접 또는 간접적으로 가열하여 승온하는 것인 저비중 성형 폼의 제조방법.
- 제6 항에 있어서,상기 금형을 140℃ 초과 230℃ 미만의 온도로 가열하는 것인 저비중 성형 폼의 제조방법.
- 제1 항에 있어서,상기 열팽창성 미소구의 팽창시작온도(Tstart)가 상기 유기 과산화물 가교제의 1분 반감기 온도 이하인 것인 저비중 성형 폼의 제조방법.
- 제1 항에 있어서,상기 열팽창성 미소구의 쉘의 재질이 아크릴로니트릴 공중합체인 것인 저비중 성형 폼의 제조방법.
- 제1 항에 있어서,상기 발포용 조성물의 팽창시 상기 금형의 내부를 진공 상태로 유지하는 것인 저비중 성형 폼의 제조방법.
- 제1 항에 있어서,상기 발포용 조성물이 팽창하여 상기 금형을 실질적으로 가득 채운 상태에서 성형온도를 유지하여 상기 금형 대 상기 성형 폼이 부피비로 1:1 내지 1:1.1 규격이 되도록 상기 성형 폼을 완성시키는 것인 저비중 성형 폼의 제조방법.
- 제1 항에 있어서,상기 탈형 단계에서 상기 발포용 조성물을 상기 금형 내에서 팽창시켜 상기 금형을 실질적으로 가득 채운 상태에서 가교시킨 후에 탈형시키는 것인 저비중 성형 폼의 제조방법.
- 제1 항 내지 제12 항 중 어느 한 항의 제조방법으로 제조된 비중이 0.5 이하인 저비중 성형 폼.
- 과산화물 가교형 열가소성 수지, 과산화물 가교형 고무 및 과산화물 가교형 열가소성 탄성체로 이루어진 군으로부터 선택된 1종 이상의 고분자 성분;열팽창성 미소구; 및유기 과산화물 가교제를 포함하는 저비중 성형 폼용 조성물.
- 제14 항에 있어서,상기 열팽창성 미소구의 팽창시작온도(Tstart)가 상기 유기 과산화물 가교제의 1분 반감기 온도 이하인 것인 저비중 성형 폼용 조성물.
- 제14 항에 있어서,상기 고분자 100 중량부를 기준으로 상기 열팽창성 미소구가 1 내지 20 중량부 포함된 것인 저비중 성형 폼용 조성물.
- 제14 항에 있어서,상기 고분자 100 중량부를 기준으로 상기 유기 과산화물 가교제가 0.02 내지 4 중량부인 것인 저비중 성형 폼용 조성물.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/616,887 US20200094440A1 (en) | 2018-02-13 | 2019-02-12 | Composition for low specific gravity molded foam and method for producing molded foam using the composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20180017663 | 2018-02-13 | ||
KR10-2018-0017663 | 2018-02-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019160295A1 true WO2019160295A1 (ko) | 2019-08-22 |
Family
ID=67619827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/001678 WO2019160295A1 (ko) | 2018-02-13 | 2019-02-12 | 저비중 성형 폼 조성물 및 이를 이용한 성형 폼의 제조방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200094440A1 (ko) |
KR (1) | KR102010457B1 (ko) |
WO (1) | WO2019160295A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3705513A1 (en) * | 2019-03-06 | 2020-09-09 | Borealis AG | Foamable polyolefin composition providing increased flexibility |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024089208A1 (en) * | 2022-10-26 | 2024-05-02 | Nouryon Chemicals International B.V. | Post heating of cellulose-based expandable microspheres |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040082121A (ko) * | 2003-03-18 | 2004-09-24 | 주식회사 엘지화학 | 신발 안창용 수지 조성물 |
KR20070010207A (ko) * | 2007-01-02 | 2007-01-22 | 영보화학 주식회사 | 화학 가교 열가소성 올레핀계 복합탄성체 폼 제조방법 |
KR20080093788A (ko) * | 2007-04-18 | 2008-10-22 | 현대모비스 주식회사 | 고유동 흐름성을 갖는 열가소성 수지 조성물 |
JP2016512860A (ja) * | 2013-12-30 | 2016-05-09 | 広州石頭造環保科技股▲ふん▼有限公司 | 高充填、高弾性軟質発泡ポリエチレン材料及びその調製方法 |
KR20170037876A (ko) * | 2015-04-03 | 2017-04-05 | 닛토덴코 가부시키가이샤 | 발포 수지 시트 및 이것을 구비하는 전기ㆍ전자 기기 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030176516A1 (en) * | 2002-03-15 | 2003-09-18 | Greene, Tweed Of Delaware, Inc. | Cellular perfluoroelastomeric compositions, sealing members, methods of making the same and cellular materials for medical applications |
GB0722193D0 (en) * | 2007-11-12 | 2007-12-19 | Zotefoams Plc | Fluoropolymer foams prepared with the use of blowing agents and applicants thereof |
JP5485611B2 (ja) * | 2008-08-07 | 2014-05-07 | 積水化学工業株式会社 | 熱膨張性マイクロカプセル及び発泡成形体 |
JP6777978B2 (ja) * | 2015-10-06 | 2020-10-28 | 松本油脂製薬株式会社 | 発泡成形体の製造方法 |
CN107922665A (zh) * | 2015-10-19 | 2018-04-17 | 埃拉斯托米克斯株式会社 | 橡胶组合物及交联橡胶制品及其制造方法 |
-
2018
- 2018-10-31 KR KR1020180131600A patent/KR102010457B1/ko active IP Right Grant
-
2019
- 2019-02-12 US US16/616,887 patent/US20200094440A1/en not_active Abandoned
- 2019-02-12 WO PCT/KR2019/001678 patent/WO2019160295A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040082121A (ko) * | 2003-03-18 | 2004-09-24 | 주식회사 엘지화학 | 신발 안창용 수지 조성물 |
KR20070010207A (ko) * | 2007-01-02 | 2007-01-22 | 영보화학 주식회사 | 화학 가교 열가소성 올레핀계 복합탄성체 폼 제조방법 |
KR20080093788A (ko) * | 2007-04-18 | 2008-10-22 | 현대모비스 주식회사 | 고유동 흐름성을 갖는 열가소성 수지 조성물 |
JP2016512860A (ja) * | 2013-12-30 | 2016-05-09 | 広州石頭造環保科技股▲ふん▼有限公司 | 高充填、高弾性軟質発泡ポリエチレン材料及びその調製方法 |
KR20170037876A (ko) * | 2015-04-03 | 2017-04-05 | 닛토덴코 가부시키가이샤 | 발포 수지 시트 및 이것을 구비하는 전기ㆍ전자 기기 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3705513A1 (en) * | 2019-03-06 | 2020-09-09 | Borealis AG | Foamable polyolefin composition providing increased flexibility |
WO2020178381A1 (en) * | 2019-03-06 | 2020-09-10 | Borealis Ag | Foamable polyolefin composition providing increased flexibility |
US20220135758A1 (en) * | 2019-03-06 | 2022-05-05 | Borealis Ag | Foamable polyolefin composition providing increased flexibility |
Also Published As
Publication number | Publication date |
---|---|
US20200094440A1 (en) | 2020-03-26 |
KR102010457B1 (ko) | 2019-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8476371B2 (en) | Interpolymer resin particles | |
EP0846035B1 (en) | Microcellular foam | |
CN100497461C (zh) | 聚烯烃树脂发泡体用组合物、其发泡体、和发泡体的制法 | |
JP3380816B2 (ja) | 超低密度ポリオレフィン発泡体、発泡可能なポリオレフィン組成物及びそれらを製造する方法 | |
US7413785B2 (en) | Heat-recoverable foam tubing | |
WO2019160293A1 (ko) | 프로필렌계 고분자를 이용한 저비중 성형 폼의 제조방법 | |
WO2019160295A1 (ko) | 저비중 성형 폼 조성물 및 이를 이용한 성형 폼의 제조방법 | |
WO2020076037A1 (ko) | 고탄성 압출 폼 조성물 | |
JP4025423B2 (ja) | 熱可塑性エラストマー発泡体 | |
JP4238032B2 (ja) | 改良された弾性率ならびに溶融強度を備えたエチレンポリマーのブレンドおよびこれらのブレンドから製造した物品 | |
JPH0739502B2 (ja) | 発泡性ポリビニル(ビニリデン)芳香族粒子及びその製法 | |
JP4083807B2 (ja) | 自動車バンパー芯材 | |
US8168722B2 (en) | Interpolymer resin particles | |
WO2019135489A1 (ko) | 충격흡수용 탄성 복합체 | |
JP2009214372A (ja) | ポリプロピレン系樹脂積層発泡シート及びその成形体 | |
WO2019194590A1 (ko) | 다색 신발창의 제조방법 | |
KR20180115913A (ko) | 성형 폼의 제조방법 | |
JP3727182B2 (ja) | 改質ポリプロピレン系樹脂組成物からなる発泡シート、その製造方法およびその成形体 | |
JP3707939B2 (ja) | 改質ポリプロピレン系樹脂発泡シート、該発泡シートからの積層発泡シートおよびそれらの成形体 | |
JP3706753B2 (ja) | 改質ポリプロピレン系樹脂組成物からなる発泡シートおよび成形体 | |
JP2001139014A (ja) | ポリプロピレン系樹脂発泡成形容器 | |
JPS6031538A (ja) | ポリオレフィン共重合発泡体の製造方法 | |
CN113912929A (zh) | 一种发泡母粒及其制备方法和用途 | |
JPH08311229A (ja) | ポリオレフィン系樹脂発泡体 | |
MXPA06007126A (en) | Interpolymer resin particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19754573 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19754573 Country of ref document: EP Kind code of ref document: A1 |