WO2019160080A1 - 磁性材料および磁性素子 - Google Patents
磁性材料および磁性素子 Download PDFInfo
- Publication number
- WO2019160080A1 WO2019160080A1 PCT/JP2019/005561 JP2019005561W WO2019160080A1 WO 2019160080 A1 WO2019160080 A1 WO 2019160080A1 JP 2019005561 W JP2019005561 W JP 2019005561W WO 2019160080 A1 WO2019160080 A1 WO 2019160080A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic material
- magnetic
- insulator
- metal atom
- oso
- Prior art date
Links
- 239000000696 magnetic material Substances 0.000 title claims abstract description 59
- 230000005291 magnetic effect Effects 0.000 title claims description 27
- 239000012212 insulator Substances 0.000 claims abstract description 26
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 13
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 12
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 12
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 150000003624 transition metals Chemical group 0.000 claims abstract description 8
- 230000005308 ferrimagnetism Effects 0.000 claims abstract description 5
- 230000005307 ferromagnetism Effects 0.000 claims abstract description 5
- 150000001342 alkaline earth metals Chemical group 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 8
- 239000003302 ferromagnetic material Substances 0.000 claims description 3
- 125000004429 atom Chemical group 0.000 abstract description 4
- 125000004430 oxygen atom Chemical group O* 0.000 abstract description 4
- 229910052712 strontium Inorganic materials 0.000 abstract description 4
- 229910052762 osmium Inorganic materials 0.000 abstract description 3
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical group [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 abstract description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical group [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 abstract description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 13
- 239000000758 substrate Substances 0.000 description 11
- 230000005415 magnetization Effects 0.000 description 9
- 229910002367 SrTiO Inorganic materials 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000001451 molecular beam epitaxy Methods 0.000 description 4
- 230000005293 ferrimagnetic effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000000731 high angular annular dark-field scanning transmission electron microscopy Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002128 reflection high energy electron diffraction Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/18—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/40—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
- H01F1/401—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted
- H01F1/407—Diluted non-magnetic ions in a magnetic cation-sublattice, e.g. perovskites, La1-x(Ba,Sr)xMnO3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/82—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Magnetic active materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/34—Three-dimensional structures perovskite-type (ABO3)
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/18—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
- H01F10/193—Magnetic semiconductor compounds
- H01F10/1933—Perovskites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/20—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation
- H01F41/205—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation by laser ablation, e.g. pulsed laser deposition [PLD]
Definitions
- the present invention relates to a magnetic material having ferromagnetism or ferrimagnetism and a magnetic element using this magnetic material.
- Magnetic materials which are ferromagnetic or ferrimagnetic insulators (hereinafter referred to as ferromagnetic insulators), have a feature that their specific resistance is higher than that of ferromagnetic metals, and are widely used for permanent magnets, magnetic core materials, isolators and circulators. There are applications.
- Typical characteristics (physical property values) of the ferromagnetic insulator described above include the Curie temperature (T C ), initial permeability, relative loss coefficient, saturation magnetic flux density, coercivity, and the like.
- T C is a temperature at which the ferromagnetic (or ferrimagnetic) property is lost and becomes paramagnetic. The higher T C , the higher the thermal stability and the stable operating characteristics up to a high temperature.
- ferromagnetic insulators having a perovskite structure or a double perovskite structure are highly compatible with SrTiO 3 (perovskite structure), which is a typical oxide electronics material. It is promising toward a memory (MRAM), spin MOSFET, etc. (Non-patent Document 1).
- T C of the existing typical ferromagnetic insulator, saturation magnetization shows a crystalline form (Non-Patent Document 2).
- the highest conventional T C is 943K in LiFe 5 O 8 having a spinel structure.
- T C 725K in Sr 2 CrOsO 6 is the highest value.
- the conventional ferromagnetic insulator described above has a problem that the Curie temperature is lower than a value required for providing high thermal stability as a spintronic device.
- the present invention has been made to solve the above problems, and an object thereof is to realize a magnetic material having a higher Curie temperature.
- Magnetic material of the present invention Sr 3-x A x Os 1-y B y O 6 (-0.5 ⁇ x ⁇ 0.5, -0.5 ⁇ y ⁇ 0.5, A: an alkali metal or An alkaline earth metal atom, B: a transition metal atom, an alkali metal atom, or an alkaline earth metal atom), and an insulator having a double perovskite structure having ferromagnetism or ferrimagnetism, and the atomic composition percentage of Sr is 25 It is supposed to be ⁇ 35at%.
- the insulator is made of Sr 3 OsO 6 .
- the insulator has a cubic crystal structure.
- a magnetic element according to the present invention includes a magnetic layer made of the above-described ferromagnetic material, and a first electrode and a second electrode formed with the magnetic layer interposed therebetween.
- FIG. 1 is a perspective view showing a crystal structure of Sr 3 OsO 6 used as a magnetic material in an embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing a state in which a magnetic material layer 202 made of Sr 3 OsO 6 is formed on a growth substrate 201 made of SrTiO 3 (001).
- FIG. 3 is a photograph showing a high-angle scattering annular dark field scanning transmission microscope image of the magnetic material layer 202.
- FIG. 4 is a photograph showing a transmission electron microscope image at the interface between the growth substrate 201 and the magnetic material layer 202.
- FIG. 5 is a characteristic diagram showing the temperature dependence of the magnetization of the magnetic material layer 202 in a magnetic field of 2000 Oe.
- FIG. 6 is a characteristic diagram showing the temperature dependence of the specific resistance ( ⁇ ) of the magnetic material layer 202.
- FIG. 7 is a cross-sectional view showing the configuration of the magnetic element according to the embodiment of the present invention.
- the magnetic material Sr 3-x A x Os 1-y B y O 6 (-0.5 ⁇ x ⁇ 0.5, -0.5 ⁇ y ⁇ 0.5, A: alkali metal or alkaline earth Metal atom, B: transition metal atom, alkali metal atom, or alkaline earth metal atom), and is composed of an insulator having a double perovskite structure having ferromagnetism or ferrimagnetism. Further, this magnetic material has an atomic composition percentage of Sr of 25 to 35 at%.
- the Sr 3 OsO 6 constituting the magnetic material in the embodiment has a cubic crystal structure in which strontium atoms 101, osmium atoms 102, and oxygen atoms 103 are arranged with lattice points.
- the magnetic material composed of Sr 3 OsO 6 which is the simplest composition, can be produced only from three constituent elements (Sr, Os, O), the conventional double perovskite structure composed of the four elements shown in Table 1 Compared to other ferromagnetic insulators, the composition can be easily controlled.
- a magnetic material made of Sr 3 OsO 6 was produced.
- a magnetic material layer 202 was formed by growing Sr 3 OsO 6 on a growth substrate 201 made of SrTiO 3 (001) for growth by a well-known molecular beam epitaxy method.
- the growth substrate may be made of a material such as MgO (001), (La 0.3 Sr 0.7 ) (Al 0.65 Ta 0.35 ) O 3 (001).
- the atomic beam of the alkaline earth metal Sr and the 5d transition metal Os has a predetermined composition ratio in the ultrahigh vacuum processing tank at the substrate temperature of 650 ° C.
- Sr 3 OsO 6 was grown by supplying in an active oxygen atmosphere of about 10 ⁇ 6 Torr.
- the magnetic material layer 202 was formed with a layer thickness of 300 nm.
- FIG. 3A is an image obtained by making an electron beam incident on the magnetic material layer 202 from the [100] direction.
- FIG. 3B is an image obtained by making an electron beam incident on the magnetic material layer 202 from the [110] direction.
- the magnetic material layer 202 is a single crystal having a cubic perovskite structure in which Sr and Os atoms are arranged in a highly ordered manner.
- the arrangement of oxygen atoms was confirmed by an annular bright field scanning transmission microscope (ABF-STEM) image.
- the magnetic material layer 202 thus produced has a cubic double perovskite structure, which means that reflection high-energy electron diffraction (RHEED) measurement in a vacuum in a molecular beam epitaxy apparatus, and the outside of the molecular beam epitaxy apparatus. It was also confirmed by X-ray diffraction (XRD) ⁇ -2 ⁇ measurement in the atmosphere.
- RHEED reflection high-energy electron diffraction
- FIG. 4 shows a transmission electron microscope image at the interface between the growth substrate 201 and the magnetic material layer 202. It can be seen that the magnetic material layer 202 is epitaxially single crystal grown from the growth substrate 201. The crystal orientation relationship between the magnetic material layer 202 and the growth substrate 201 is Sr 3 OsO 6 [001] // SrTiO 3 [001] and Sr 3 OsO 6 [100] // SrTiO 3 [100].
- FIG. 5 shows the temperature dependence of the magnetization of the magnetic material layer 202 in a magnetic field of 2000 Oe. And remain 5 emu / cc or more magnetization even at 1000 K, has a more T C 1000 K.
- the saturation magnetization of the magnetic material layer 202 in a 70000 Oe magnetic field at 1.9 K is 49 emu / cc, which is a small value compared to the typical ferromagnetic insulator (or ferrimagnetic insulator) shown in Table 1. have.
- the coercive force of the magnetic material layer 202 at 1.9 K was 100 Oe.
- the composition of each element of the magnetic material layer 202, 1000 K or more higher T C is obtained if the deviation of the atomic percent composition is within 5% ⁇ .
- FIG. 6 shows the temperature dependence of the specific resistance ( ⁇ ) of the magnetic material layer 202.
- the specific resistance is 75 ⁇ cm, and the specific resistance has typical insulator electrical characteristics that increase exponentially with decreasing temperature.
- the magnetic material layer 202 is an insulator having a high specific resistance of 10 ⁇ cm or more at room temperature.
- specific resistance and temperature (T) have a relationship of In ( ⁇ ) ⁇ T ⁇ 1/4 , electric conduction occurs by variable-range-hopping.
- Sr 3 OsO 6 has been described as an example.
- Sr 3-X A X OsO 6 in which a part of Sr is substituted with an alkali atom or an alkaline earth atom (A) ⁇ 0.5 If it is in the range of ⁇ X ⁇ 0.5, a high T C of 1000 K or more can be obtained.
- Sr3 -X A X Os 1-Y B Y O 6 in which a part of Os is substituted with a transition metal atom (B) if K is in the range of ⁇ 0.5 ⁇ Y ⁇ 0.5, 1000 K higher than T C is obtained.
- the magnetic material Sr 3-x A x Os 1-y B y O 6 (-0.5 ⁇ x ⁇ 0.5, -0.5 ⁇ y ⁇ 0.5, A: an alkali metal or If it is made of an insulator having a double perovskite structure composed of an alkaline earth metal atom, B: a transition metal atom, an alkali metal atom, or an alkaline earth metal atom, a high T C of 1000 K or more can be obtained as described above. It is thought that
- Sr 3 OsO 6 do not depend on the growth method. For example, the same result can be obtained even when a magnetic material layer is formed by sputtering or pulse laser ablation.
- This magnetic element includes a magnetic layer 301 made of the above-described ferromagnetic material, and a first electrode 302 and a second electrode 303 formed with the magnetic layer 301 interposed therebetween.
- This magnetic element is, for example, a tunnel magnetoresistive (TMR) element.
- the first electrode 302 is a conductive oxide substrate such as Nb: SrTiO 3 , for example.
- the second electrode 303 may be made of a ferromagnetic metal such as Fe or Co.
- the second electrode 303 may be manufactured by a film forming method such as a sputtering method or an electron beam evaporation method.
- the second electrode 303 may be formed to a thickness of about 20-30 nm.
- the tunnel magnetoresistance ratio when a voltage of 5 mV is applied to the manufactured magnetic element is 500% or more at room temperature (300 K), and the magnetic element using the magnetic material layer 202 exhibits a very large tunnel magnetoresistance ratio. .
- Sr 3-x A x Os 1-y B y O 6 (-0.5 ⁇ x ⁇ 0.5, -0.5 ⁇ y ⁇ 0.5, (A: Alkali metal or alkaline earth metal atom, B: transition metal atom, alkali metal atom, or alkaline earth metal atom), a magnetic material having a higher Curie temperature can be realized.
- the magnetic material of the present invention with an extremely high T C (the highest value for all oxides and insulators) has good thermal stability and can withstand operation at high temperatures. Also, by using this magnetic material, a magnetic element that has good thermal stability and can withstand operation at high temperatures can be manufactured.
- the saturation magnetization of the magnetic material composed of Sr 3 OsO 6 is as small as 49 emu / cc, the leakage magnetic field from the magnetic material is small, and the magnetic elements using this magnetic material are highly integrated. Magnetic interference is reduced. Moreover, the small saturation magnetization enables spin injection magnetization reversal with low power consumption.
- the magnetic material of the present invention is a material that can be easily epitaxially grown on a single crystal on an oxide substrate, for example, and is highly compatible with other electronic elements using oxides.
- a TMR element using a magnetic layer made of a magnetic material made of Sr 3 OsO 6 has a large magnetoresistance ratio of 500% or more at room temperature. Promising.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Thin Magnetic Films (AREA)
Abstract
キュリー温度がより高い磁性材料が実現できるようにする。 この磁性材料は、Sr3-xAxOs1-yByO6(-0.5≦x≦0.5,-0.5≦y≦0.5,A:アルカリ金属またはアルカリ土類金属原子、B:遷移金属原子,アルカリ金属原子,またはアルカリ土類金属原子)からなり、強磁性またはフェリ磁性を有するダブルペロブスカイト構造の絶縁体から構成されている。絶縁体は、x=y=0としたSr3OsO6であればよい。Sr3OsO6は、ストロンチウム原子101、オスミウム原子102、酸素原子103が、格子点に配置された立方晶系の結晶構造とされている。
Description
本発明は、強磁性またはフェリ磁性を有する磁性材料およびこの磁性材料を用いた磁性素子に関する。
強磁性またはフェリ磁性を有する絶縁体である磁性材料(以降では強磁性絶縁体と称する)は、強磁性金属に比べ比抵抗が大きいという特徴を持ち、永久磁石、磁心材料、アイソレーターやサーキュレーターなど幅広い応用先がある。上述した強磁性絶縁体の代表的な特性(物性値)としては、キュリー温度(TC)、初透磁率、相対損失係数、飽和磁束密度、保磁力などがあげられる。特にTCは、強磁性(またはフェリ磁性)の性質を失い常磁性となる温度であり、TCが高いほど熱安定性が高く、高温まで安定な動作特性が得られる。
また、ペロブスカイト構造またはダブルペロブスカイト構造を有する強磁性絶縁体は、代表的な酸化物エレクトロニクス材料であるSrTiO3(ペロブスカイト構造)との整合性が高いため、酸化物を利用したスピンエレクトロニクス応用[磁気抵抗メモリ(MRAM)やスピンMOSFETなど]へ向けて有望である(非特許文献1)。
表1に既存の代表的な強磁性絶縁体のTC、飽和磁化、結晶形を示す(非特許文献2)。従来の最高のTCは、スピネル型構造を有するLiFe5O8における943Kである。また、ダブルペロブスカイト構造を有する強磁性絶縁体としては、Sr2CrOsO6におけるTC=725Kが最高値である。
S. Sugahara, and M. Tanaka, "A spin metal-oxide-semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain", Applied Physics Letters, vol. 84, no. 13, pp. 2307-2309, 2004.
P. D. BABA, et al., "Fabrication and Properties of Microwave Lithium Ferrites", IEEE Transactions on Magnetics, vol. MAG-8, no. 1, pp. 83-94, 1972.
しかしながら、上述した従来の強磁性絶縁体では、スピントロニクスデバイスとして、高い熱安定性を備えるために要求されている値より、キュリー温度が低いという問題があった。
本発明は、以上のような問題点を解消するためになされたものであり、キュリー温度がより高い磁性材料が実現できるようにすることを目的とする。
本発明に係る磁性材料は、Sr3-xAxOs1-yByO6(-0.5≦x≦0.5,-0.5≦y≦0.5,A:アルカリ金属またはアルカリ土類金属原子、B:遷移金属原子,アルカリ金属原子,またはアルカリ土類金属原子)からなり、強磁性またはフェリ磁性を有するダブルペロブスカイト構造の絶縁体から構成され、Srの原子組成百分率が25~35at%とされている。
上記磁性材料において、絶縁体は、Sr3OsO6から構成されている。
上記磁性材料において、絶縁体は、立方晶系の結晶構造とされている。
本発明に係る磁性素子は、上述した強磁性材料からなる磁性層と、磁性層を挟んで形成された第1電極および第2電極とを備える。
以上説明したように、本発明によれば、Sr3-xAxOs1-yByO6からなる絶縁体を用いるようにしたので、キュリー温度がより高い磁性材料が実現できるという優れた効果が得られる。
以下、本発明の実施の形態おける磁性材料について説明する。この磁性材料は、Sr3-xAxOs1-yByO6(-0.5≦x≦0.5,-0.5≦y≦0.5,A:アルカリ金属またはアルカリ土類金属原子、B:遷移金属原子,アルカリ金属原子,またはアルカリ土類金属原子)からなり、強磁性またはフェリ磁性を有するダブルペロブスカイト構造の絶縁体から構成されている。また、この磁性材料は、Srの原子組成百分率が25~35at%とされている。ここで、上述した絶縁体は、x=y=0としたSr3OsO6であればよい。
また、実施の形態における磁性体を構成するSr3OsO6は、図1に示すように、ストロンチウム原子101、オスミウム原子102、酸素原子103が、格子点の配置された立方晶系の結晶構造とされている。最も簡単な組成であるSr3OsO6から構成した磁性材料は、3構成元素(Sr,Os,O)のみから作製可能なため、表1に記載した従来の4元素から構成されるダブルペロブスカイト構造の強磁性絶縁体に比べ、組成を制御しやすいという利点も持つ。Sr3OsO6から構成した実施の形態における磁性材料は、キュリー温度TC=1060Kである。なお、立方晶系に限らず、斜方晶形(直方晶系)、正方晶系であってもよい。
以下、実験の結果を用いてより詳細に説明する。
まず、実験では、Sr3OsO6による磁性材料を作製した。図2に示すように、成長のためのSrTiO3(001)からなる成長基板201の上に、よく知られた分子線エピタキシー法によりSr3OsO6を成長し、磁性材料層202を形成した。なお、成長基板は、MgO(001)、(La0.3Sr0.7)(Al0.65Ta0.35)O3(001)などの材料を用いてもよい。
分子線エピタキシーによる磁性材料層202の形成では、超高真空とした処理槽内で、基板温度650℃の条件で、アルカリ土類金属Sr、5d遷移金属Osの原子線を所定の組成比となるように10-6Torr程度の活性酸素雰囲気下で供給することによりSr3OsO6を成長した。磁性材料層202は、層厚300nmに形成した。
作製した磁性材料層202について、高角散乱環状暗視野走査透過顕微鏡(HAADF-STEM)により観察した結果(顕微鏡像)について、図3を用いて説明する。図3の(a)は、磁性材料層202に、[100]方向から電子線を入射して取得した像である。また、図3の(b)は、磁性材料層202に、[110]方向から電子線を入射して取得した像である。
図3に示すように、磁性材料層202は、SrとOs原子が高秩序に配列しており、立方晶のダブルペロブスカイト型構造を有する単結晶であることがわかる。酸素原子の配列は、環状明視野走査透過顕微鏡(ABF-STEM)像によって確かめられた。また、作製した磁性材料層202が、立方晶のダブルペロブスカイト構造を有していることは、分子線エピタキシー装置内における真空一貫での反射高速電子線回折(RHEED)測定、分子線エピタキシー装置外の大気中でのX線回折(XRD)θ-2θ測定からも確かめられた。
図4に、成長基板201と磁性材料層202との界面における透過型電子顕微鏡像を示す。磁性材料層202が、成長基板201からエピタキシャルに単結晶成長していることが分かる。磁性材料層202と成長基板201の結晶方位関係は、Sr3OsO6[001]//SrTiO3[001]ならびにSr3OsO6[100]//SrTiO3[100]である。
図5に2000Oeの磁場中における磁性材料層202の磁化の温度依存性を示す。1000Kにおいても5emu/cc以上の磁化が残っており、1000K以上のTCを有している。また、磁性材料層202の1.9Kにおける70000Oe磁場中での飽和磁化は49emu/ccであり、表1に示した代表的な強磁性絶縁体(またはフェリ磁性絶縁体)と比較して小さな値を持つ。磁性材料層202の1.9Kにおける保磁力は100Oeであった。また、磁性材料層202の自発磁化は、700Kにおいて消失した。なお、磁性材料層202の各元素の組成は、原子組成百分率のずれが±5%以内であれば1000K以上の高いTCが得られる。
図6に磁性材料層202の比抵抗(ρ)の温度依存性を示す。室温付近の300Kにおいて、比抵抗は75Ωcmであり、比抵抗は温度低下と共に指数関数的に上昇する典型的な絶縁体の電気特性を有している。この結果よりわかるように、磁性材料層202は、室温において10Ωcm以上の高い比抵抗を持つ絶縁体である。なお、比抵抗と温度(T)はIn(ρ)∝T-1/4の関係を持っていることから、電気伝導は、バリアブルレンジホッピング(Variable-Range-Hopping)により起こっている。
ところで、上述では、Sr3OsO6を例にして説明したが、Srの一部をアルカリ原子またはアルカリ土類原子(A)で置換したSr3-XAXOsO6においても、-0.5<X<0.5の範囲であれば、1000K以上の高いTCが得られる。また、Osの一部を遷移金属原子(B)で置換したSr3-XAXOs1-YBYO6においても、-0.5<Y<0.5の範囲であれば、1000K以上の高いTCが得られる。このように、磁性材料は、Sr3-xAxOs1-yByO6(-0.5≦x≦0.5,-0.5≦y≦0.5,A:アルカリ金属またはアルカリ土類金属原子、B:遷移金属原子,アルカリ金属原子,またはアルカリ土類金属原子)からなるダブルペロブスカイト構造の絶縁体から構成されていれば、上述同様に、1000K以上の高いTCが得られるものと考えられる。
なお、Sr3OsO6の特性は、成長方法に依存しない。例えば、スパッタリングやパルスレーザーアブレーションを用いて磁性材料の層を形成しても同様の結果が得られる。
このような1000K以上のTCを持つ強磁性絶縁体の報告例はなく、今回初めて合成されたものである。本発明により、熱安定性の良い強磁性絶縁体を用いたデバイス応用が可能になる。
次に、本発明の実施の形態における磁性素子について図7を参照して説明する。この磁性素子は、上述した強磁性材料からなる磁性層301と、磁性層301を挟んで形成された第1電極302および第2電極303とを備える。この磁性素子は、例えば、トンネル磁気抵抗(TMR)素子である。第1電極302は、例えば、Nb:SrTiO3のような導電性の酸化物基板である。また、第2電極303は、例えば、FeやCoのような強磁性金属から構成すればよい。第2電極303は、スパッタ法、電子ビーム蒸着法などの成膜法により作製すればよい。第2電極303は、厚さ20-30nm程度に形成すればよい。作製した磁性素子に5mVの電圧を印加した際のトンネル磁気抵抗比は、室温(300K)において500%以上であり、磁性材料層202を用いた磁性素子は、非常に大きなトンネル磁気抵抗比を示す。
以上に説明したように、本発明によれば、Sr3-xAxOs1-yByO6(-0.5≦x≦0.5,-0.5≦y≦0.5,A:アルカリ金属またはアルカリ土類金属原子、B:遷移金属原子,アルカリ金属原子,またはアルカリ土類金属原子)から磁性材料を構成したので、キュリー温度がより高い磁性材料が実現できる。
極めて高いTC(すべての酸化物および絶縁体において最高値)を持つ本発明の磁性材料は、熱安定性が良く、高温での動作にも耐えうる。また、この磁性材料を用いることで、熱安定性が良く、高温での動作にも耐えうる磁性素子が作製できる。
また、Sr3OsO6から構成した磁性材料は、飽和磁化が49emu/ccと小さいため、磁性材料からの漏洩磁場は小さく、この磁性材料を用いた磁性素子を高集積化した際の素子間の磁気的干渉が低減される。また、小さな飽和磁化は、低消費電力でのスピン注入磁化反転を可能にする。
また、本発明の磁性材料は、例えば、酸化物基板の上に単結晶エピタキシャル成長させることが容易であり、酸化物を用いた他の電子素子と非常に整合性の高い材料である。また、例えば、Sr3OsO6からなる磁性材料による磁性層を用いたTMR素子は、室温において500%以上の大きな磁気抵抗比が得られ、上述した各特徴とあわせて、スピンエレクトロニクス素子として非常に有望である。
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
101…ストロンチウム原子、102…オスミウム原子、103…酸素原子、201…成長基板、202…磁性材料層、301…磁性層、302…第1電極、303…第2電極。
Claims (4)
- Sr3-xAxOs1-yByO6(-0.5≦x≦0.5,-0.5≦y≦0.5,A:アルカリ金属またはアルカリ土類金属原子、B:遷移金属原子,アルカリ金属原子,またはアルカリ土類金属原子)からなり、強磁性またはフェリ磁性を有するダブルペロブスカイト構造の絶縁体から構成され、
Srの原子組成百分率が25~35at%とされている
ことを特徴とする磁性材料。 - 請求項1記載の磁性材料において、
前記絶縁体は、Sr3OsO6から構成されていることを特徴とする磁性材料。 - 請求項1または2記載の磁性材料において、
前記絶縁体は、立方晶系の結晶構造とされていることを特徴とする磁性材料。 - 請求項1~3のいずれか1項に記載の強磁性材料からなる磁性層と、
前記磁性層を挟んで形成された第1電極および第2電極と
を備えることを特徴とする磁性素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/963,562 US11393618B2 (en) | 2018-02-16 | 2019-02-15 | Magnetic material and magnetic element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-025897 | 2018-02-16 | ||
JP2018025897A JP7003719B2 (ja) | 2018-02-16 | 2018-02-16 | 磁性材料および磁性素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019160080A1 true WO2019160080A1 (ja) | 2019-08-22 |
Family
ID=67619487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/005561 WO2019160080A1 (ja) | 2018-02-16 | 2019-02-15 | 磁性材料および磁性素子 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11393618B2 (ja) |
JP (1) | JP7003719B2 (ja) |
WO (1) | WO2019160080A1 (ja) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989007087A1 (en) * | 1988-02-04 | 1989-08-10 | E.I. Du Pont De Nemours And Company | SUPERCONDUCTING Bi-Sr-Ca-Cu OXIDE COMPOSITONS AND PROCESS FOR MANUFACTURE |
CA1341504C (en) * | 1988-03-25 | 2006-04-11 | Jun Akimitsu | Substituted superconductive bi-sr-ca-cu oxide and bi-sr-ca-ln-cu oxide compositions |
NZ228132A (en) * | 1988-04-08 | 1992-04-28 | Nz Government | Metal oxide material comprising various mixtures of bi, tl, pb, sr, ca, cu, y and ag |
US5189010A (en) * | 1990-07-20 | 1993-02-23 | Eastman Kodak Company | Process for preparing superconductive thick films |
DE69309306T2 (de) * | 1992-12-15 | 1997-09-04 | Du Pont | Elektrische Verbindungsstrukturen |
JP5082688B2 (ja) * | 2007-08-30 | 2012-11-28 | Tdk株式会社 | スピントランジスタ及び半導体メモリ |
US8326500B2 (en) * | 2009-11-17 | 2012-12-04 | Deere & Company | Row unit wheel turning monitor for an agricultural machine |
NL2014577B1 (en) * | 2015-04-02 | 2017-01-11 | Univ Leiden | Electrocatalysts for Efficient Water Electrolysis |
KR101800410B1 (ko) | 2016-11-18 | 2017-11-22 | 창원대학교 산학협력단 | 프라세오디뮴이 첨가되어 향상된 자기적 특성을 갖는 이중 페로브스카이트 화합물 |
-
2018
- 2018-02-16 JP JP2018025897A patent/JP7003719B2/ja active Active
-
2019
- 2019-02-15 WO PCT/JP2019/005561 patent/WO2019160080A1/ja active Application Filing
- 2019-02-15 US US16/963,562 patent/US11393618B2/en active Active
Non-Patent Citations (2)
Title |
---|
FAIZAN,M ET AL.: "First-principles study of the double perovskites Sr2X0s06 (X=Li, Na, Ca) for spintoronics applications", BULL. MATER. SCI., vol. 39, no. 6, October 2016 (2016-10-01), pages 1419 - 1425, XP036075262, doi:10.1007/s12034-016-1288-6 * |
MOHITKAR, SHRIKANT A. ET AL.: "Sr2OsO5 and Sr7Os4O19, Two Structurally Related, Mott Insulating Osmates(VI) Exhibiting Substantially Reduced Spin Paramagnetic Response", INORG. CHEM., vol. 55, no. 16, 15 August 2016 (2016-08-15), pages 8201 - 8206, XP055634609 * |
Also Published As
Publication number | Publication date |
---|---|
JP7003719B2 (ja) | 2022-02-04 |
US11393618B2 (en) | 2022-07-19 |
JP2019145560A (ja) | 2019-08-29 |
US20200357555A1 (en) | 2020-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Emori et al. | Ferrimagnetic insulators for spintronics: Beyond garnets | |
US11056639B2 (en) | Magnetoresistance effect element | |
Hu et al. | Magnetocrystalline anisotropy and FMR linewidth of Zr and Zn-doped Ba-hexaferrite films grown on MgO (111) | |
Wu et al. | Self-biased magnetoelectric switching at room temperature in three-phase ferroelectric–antiferromagnetic–ferrimagnetic nanocomposites | |
Yan et al. | Role of Pb (Zr0. 52Ti0. 48) O3 substitution in multiferroic properties of polycrystalline BiFeO3 thin films | |
US20130236720A1 (en) | Rare-earth-free or noble metal-free large magnetic coercivity nanostructured films | |
Niesen et al. | Structural and Magnetic Properties of Sputter-Deposited Mn–Fe–Ga Thin Films | |
Borisenko et al. | Metal-insulator transition in epitaxial films of LaMnO 3 manganites grown by magnetron sputtering | |
WO2019160080A1 (ja) | 磁性材料および磁性素子 | |
JPWO2013141337A1 (ja) | 高い垂直磁気異方性を示す極薄垂直磁化膜、その製造方法及び用途 | |
Zhou et al. | Optimization of room temperature multiferroic properties and magnetoelectric coupling effect in MnO2 doped BiFeO3− Bi0. 5K0. 5TiO3 ceramics | |
Kim et al. | Ferroelectric and magnetic properties of CdMnS films prepared by coevaporation | |
Zhang et al. | Improved electric insulation ability and ferromagnetic property in Nb 2 O 5 doped BiFeO 3-based multiferroic ceramics | |
Matsumoto et al. | Large negative uniaxial magnetic anisotropy in epitaxially strained nickel ferrite films | |
Zhang et al. | Flexible La0. 67Sr0. 33MnO3: ZnO Nanocomposite Thin Films Integrated on Mica | |
Dau et al. | Perpendicular magnetic anisotropy in the Heusler alloy Co2TiSi/GaAs (001) hybrid structure | |
Zhao et al. | Strain-induced high coercivity in La 0.7 Sr 0.3 CoO 3 films | |
Watanabe | Structural and magnetic properties in sputtered iron oxide epitaxial thin films--Magnetite Fe $ _3 $ O $ _4 $ and epsilon ferrite e-Fe $ _2 $ O $ _3$ | |
JP7450353B2 (ja) | マグネタイト薄膜および磁気トンネル接合素子 | |
Lee et al. | Tunnel magnetoresistance of ferromagnetic antiperovskite MnGaN/MgO/CoFeB perpendicular magnetic tunnel junctions | |
Orna et al. | Fe $ _ {3} $ O $ _ {4} $/MgO/Fe Heteroepitaxial Structures for Magnetic Tunnel Junctions | |
Suzuki et al. | Effect of buffer layer annealing on the growth of (001)-textured MnGa ultrathin films with perpendicular magnetic anisotropy | |
Arias et al. | Production and structural and magnetic characterization of copper oxide nanocrystals with large Fe contents | |
JP2019038715A (ja) | 積層体、および薄膜の製造方法 | |
WO2021192128A1 (ja) | ワイルフェルミオンの輸送現象を発現する物質および磁気抵抗素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19753715 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19753715 Country of ref document: EP Kind code of ref document: A1 |