WO2019159739A1 - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
WO2019159739A1
WO2019159739A1 PCT/JP2019/003869 JP2019003869W WO2019159739A1 WO 2019159739 A1 WO2019159739 A1 WO 2019159739A1 JP 2019003869 W JP2019003869 W JP 2019003869W WO 2019159739 A1 WO2019159739 A1 WO 2019159739A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
transistors
transistor
memory cell
gate
Prior art date
Application number
PCT/JP2019/003869
Other languages
English (en)
French (fr)
Inventor
真一 森脇
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to JP2020500401A priority Critical patent/JPWO2019159739A1/ja
Publication of WO2019159739A1 publication Critical patent/WO2019159739A1/ja
Priority to US16/993,403 priority patent/US11062765B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • G11C5/025Geometric lay-out considerations of storage- and peripheral-blocks in a semiconductor storage device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/18Peripheral circuit regions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/02Arrangements for writing information into, or reading information out from, a digital store with means for avoiding parasitic signals

Definitions

  • the present disclosure relates to a semiconductor integrated circuit device including a vertical nanowire (VNW: Vertical Nanowire) FET (Field Effect Transistor), and more particularly to a SRAM (Static Random Access Memory) memory cell layout structure.
  • VNW Vertical Nanowire
  • SRAM Static Random Access Memory
  • Transistors which are the basic components of LSIs, have achieved improved integration, reduced operating voltage, and increased operating speed by reducing (scaling) the gate length.
  • off current due to excessive scaling and a significant increase in power consumption due to this have become a problem.
  • VNW FETs vertical nanowire FETs
  • Patent Document 1 discloses a layout of an SRAM memory cell using a VNW FET.
  • the size of the drive transistor is larger than the sizes of the other transistors.
  • the SNM Static Noise Margin
  • the drive transistor is disposed on one side with respect to the load transistor. That is, the arrangement of the transistors constituting the SRAM memory cell does not have symmetry. For this reason, asymmetry occurs in the device characteristics. This causes problems such as deterioration of device characteristics, reliability, and yield.
  • This disclosure is intended to provide a layout structure that can improve SNM and have high symmetry in transistor arrangement for SRAM memory cells using VNW FETs.
  • the SRAM memory cell in a semiconductor integrated circuit device including an SRAM (Static Random Access Memory) memory cell, includes a first storage node, a second storage node, a high-voltage power supply line, A first conductivity type first transistor provided between the first storage node and a second conductivity type second transistor provided in parallel between a low-voltage power supply line and the first storage node. And a third transistor, a fourth transistor of the first conductivity type provided between the high voltage side power supply line and the second storage node, and the low voltage side power supply line and the second storage node.
  • SRAM Static Random Access Memory
  • the second conductivity type which is provided between the fifth and sixth transistors of the second conductivity type provided in parallel, and between the bit line and the first storage node, and whose gate is connected to the word line 7th transistor and inversion A gate of the first, second, and third transistors, and an eighth transistor of the second conductivity type that is provided between the gate line and the second storage node and has a gate connected to the word line.
  • the first to eighth transistors are VNW (Vertical Nanowire) FETs, and the second and third transistors are arranged on both sides in the first direction of the first transistor, respectively.
  • the fifth and sixth transistors are arranged on both sides of the fourth transistor in the first direction, respectively, and the seventh transistor
  • the eighth transistor is disposed on the first side of the first transistor in the first direction, while the eighth transistor is a second side opposite to the first side in the first direction of the fourth transistor. Arranged on the side.
  • one drive transistor is constituted by the second and third transistors connected in parallel, and the other drive transistor is the fifth and sixth transistors connected in parallel. It is constituted by.
  • the SNM can be improved.
  • the arrangement of the first to eighth transistors constituting the SRAM memory cell has high symmetry. Therefore, asymmetry in the device characteristics is suppressed, so that the device characteristics can be improved, the reliability of the semiconductor integrated circuit device can be improved, and the yield can be increased.
  • FIG. 3 is a plan view showing an example of the layout structure of the SRAM memory cell according to the first embodiment.
  • (b) is sectional drawing which shows the layout structure of FIG. FIG. 3 is a circuit diagram of each cell in FIG.
  • the top view which shows the example of the layout structure of the tap cell in 1st Embodiment The top view according to the layer which shows the layout structure of FIG. The top view according to the layer which shows the layout structure of FIG. The top view according to the layer which shows the layout structure of FIG. The top view according to the layer which shows the layout structure of FIG. The top view according to the layer which shows the layout structure of FIG. The top view which shows the example of the layout structure of the tap cell in 1st Embodiment 14 is a plan view by layer showing the layout structure of FIG. 14 is a plan view by layer showing the layout structure of FIG. 14 is a plan view by layer showing the layout structure of FIG. 14 is a plan view by layer showing the layout structure of FIG. 14 is a plan view by layer showing the layout structure of FIG.
  • FIG. 7 is a plan view showing an example of a layout structure of an SRAM memory cell according to the second embodiment.
  • the top view according to the layer which shows the layout structure of FIG. The top view according to the layer which shows the layout structure of FIG.
  • the top view which shows the example of the layout structure of the tap cell in 2nd Embodiment The top view which shows the example of the layout structure of the tap cell in 2nd Embodiment
  • a semiconductor integrated circuit device includes an SRAM memory cell, and the SRAM memory cell includes a so-called vertical nanowire FET (VNW FET).
  • VNW FET vertical nanowire FET
  • FIG. 24 is a schematic diagram showing an example of the basic structure of a VNW FET, where (a) is a sectional view and (b) is a plan view.
  • FIG. 24B illustration of metal wiring is omitted, and components that are not visible in an actual plan view are illustrated for ease of understanding.
  • a P-type well 502 and an N-type well 503 are formed on a semiconductor substrate 501.
  • the semiconductor substrate 501 is a P-type substrate, the P-type well need not be formed.
  • a VNW FET 510 that is an N-type transistor is formed on the P-type well 502, and a VNW FET 520 that is a P-type transistor is formed on the N-type well 503.
  • Reference numeral 504 denotes an insulating film
  • 505 denotes an interlayer insulating film.
  • the VNW FET 510 has a bottom electrode 511 serving as a source / drain electrode, a top electrode 512 serving as a source / drain electrode, and a vertical direction (a direction perpendicular to the substrate surface) between the bottom electrode 511 and the top electrode 512. And formed nanowires 513.
  • the bottom electrode 511 and the top electrode 512 are doped to N conductivity type. At least a part of the nanowire 513 becomes a channel region.
  • a gate insulating film 515 is formed around the nanowire 513, and a gate electrode 514 is formed around the gate insulating film 515.
  • the gate electrode 514 may surround the entire periphery of the nanowire 513, or may surround only a part of the periphery of the nanowire 513. In the case where the gate electrode 514 surrounds only a part of the periphery of the nanowire 513, the gate insulating film 515 may be formed only in a portion where the gate electrode 514 surrounds the nanowire 513.
  • the bottom electrode 511 is connected to a bottom region 516 formed so as to spread along the upper surface of the semiconductor substrate 501.
  • the bottom region 516 is also doped with N conductivity type.
  • a silicide region 517 is formed on the surface of the bottom region 516.
  • a sidewall 518 is formed around the top electrode 512.
  • a silicide region 519 is formed on the top electrode 512. However, the sidewall 518 and the silicide region 519 are not necessarily formed.
  • the VNW FET 520 includes a bottom electrode 521 serving as a source / drain electrode, a top electrode 522 serving as a source / drain electrode, and a nanowire 523 formed between the bottom electrode 521 and the top electrode 522 in a vertical direction. Is provided.
  • the bottom electrode 521 and the top electrode 522 are doped to P conductivity type. At least a part of the nanowire 523 becomes a channel region.
  • a gate insulating film 525 is formed around the nanowire 523, and a gate electrode 524 is formed around the gate insulating film 525.
  • the bottom electrode 521 is connected to a bottom region 526 formed so as to spread along the upper surface of the semiconductor substrate 501.
  • the bottom region 526 is also doped to P conductivity type.
  • a silicide region 527 is formed on the surface of the bottom region 526.
  • a sidewall 528 is formed around the top electrode 522.
  • a silicide region 529 is formed on the top electrode 522. However, the sidewall 528 and the silicide region 529 are not necessarily formed.
  • the gate electrode region 514 of the VNW FET 510 and the gate electrode region 524 of the VNW FET 520 are connected by the gate wiring 531. Further, the bottom region 516, the silicide region 519, the gate wiring 531, the silicide region 529, and the bottom region 526 are connected to the wiring 542 formed in the metal wiring layer M1 through the contact 532 and the contact 541, respectively. In addition, a metal wiring layer can be laminated
  • the semiconductor substrate 501 is made of, for example, bulk Si, germanium, a compound or alloy thereof.
  • N-type dopants include As, P, Sb, N, C, or combinations thereof.
  • P-type dopants include B, BF2, In, N, C, or combinations thereof.
  • planar shape of VNW FETs 510 and 520 may be, for example, a circle, a rectangle, an ellipse, or the like.
  • the material of the insulating film 504 is, for example, SiN, SiCN, or the like.
  • Examples of the material of the interlayer insulating film 505 include SiO, TEOS, PSG, BPSG, FSG, SiOC, SOG, Spin-on-Polymers, SiC, or a mixture thereof.
  • the material of the silicide regions 517 and 527 is, for example, NiSi, CoSi, TiSi, WSi or the like.
  • the materials of the gate electrodes 514 and 524 and the gate wiring 531 are, for example, TiN, TaN, TiAl, Ti-containing metal, Ta-containing metal, Al-containing metal, W-containing metal, TiSi, NiSi, PtSi, polysilicon with silicide, and combinations of these.
  • Examples of the material of the gate insulating films 515 and 525 include SiON, Si3N4, Ta2O5, Al2O3, Hf oxide, Ta oxide, and Al oxide.
  • the k value is preferably 7 or more.
  • Examples of the material of the silicide regions 519 and 529 provided on the top electrodes 512 and 522 include NiSi, CoSi, MoSi, WSi, PtSi, TiSi, and combinations thereof.
  • a metal such as W, Cu, or Al, an alloy such as TiN or TaN, a semiconductor into which impurities are implanted, or a combination thereof may be used.
  • Examples of the material of the sidewalls 518 and 528 include SiN, SiON, SiC, SiCN, and SiOCN.
  • Examples of the material of the contact 532 include Ti, TiN, Ta, and TaN. Further, there are Cu, Cu-arroy, W, Ag, Au, Ni, Al and the like. Alternatively, Co or Ru may be used.
  • FIG. 25 is a basic structure example of a VNW FET and shows a structure example using local wiring.
  • a local wiring 534 is formed between the metal wiring layer M1 and the top electrode 512 of the VNW FET 510 and the top electrode 522 of the VNW FET 520.
  • Bottom regions 516 and 526 and gate wiring 531 are connected to wiring 542 formed in metal wiring layer M1 through contact 533, local wiring 534 and contact 541, respectively.
  • the silicide regions 519 and 529 are connected to the wiring 542 formed in the metal wiring layer M1 through the local wiring 534 and the contact 541, respectively.
  • a local wiring 535 is formed between the metal wiring layer M1 and the bottom regions 516 and 526.
  • the local wiring 535 corresponds to a combination of the contact 533 and the local wiring 534 in FIG.
  • the silicide region 536 is used as an etching stopper in the process of forming the local wiring 535.
  • VNW the bottom electrode, top electrode, and gate electrode of the VNW FET are simply referred to as “bottom, top, and gate” as appropriate.
  • VNW the unit configuration
  • VDD indicates a power supply voltage or a high voltage side power supply line
  • VVSS indicates a power supply voltage or a low voltage side power supply line.
  • the horizontal direction of the drawing is the X direction (corresponding to the first direction), and the vertical direction of the drawing is the Y direction (corresponding to the second direction).
  • an expression such as “same wiring width” or the like that means that the width is the same includes a variation range in manufacturing.
  • FIG. 1 is a diagram showing an example of the overall configuration of a circuit block in a semiconductor integrated circuit device.
  • the circuit block in FIG. 1 includes an SRAM memory cell using VNW FETs (hereinafter simply referred to as a memory cell as appropriate).
  • Each of the memory cell arrays 1 and 2 includes a plurality of memory cells 3 arranged in an array in the X direction and the Y direction.
  • the memory cell arrays 1 and 2 are arranged side by side in the Y direction.
  • Dummy memory cells 4 are arranged around the memory cell arrays 1 and 2.
  • the dummy memory cell 4 is disposed in order to suppress manufacturing variations of VNW FETs and the like constituting the memory cell at the end of the memory cell arrays 1 and 2.
  • Tap cells 5 are arranged above and below the memory cell arrays 1 and 2. The tap cell 5 supplies a power supply voltage to the substrate or well.
  • FIG. 2 to 7 are diagrams showing examples of the layout structure of the memory cell according to the first embodiment.
  • FIG. 2 is an overall plan view
  • FIGS. 3 to 6 are layer-wise plan views. Specifically, FIG. 3 shows the VNW FET and the layer below it, FIG. 4 shows the local wiring and the M1 wiring, FIG. 5 shows the M1 and M2 wiring, and FIG. 6 shows the M2 and M3 wiring.
  • 7 (a) and 7 (b) are cross-sectional views in the horizontal direction of FIG. 2, FIG. 7 (a) is a cross section taken along line AA ′, and FIG. 7 (b) is a cross section taken along line BB ′. It is.
  • the dotted line that runs vertically and horizontally in the plan view of FIG. 2 and the like, and the dotted line that runs vertically in the cross-sectional view of FIG. 7 and the like indicate grids used for component placement during design.
  • the grids are arranged at equal intervals in the X direction and are arranged at equal intervals in the Y direction.
  • the grid spacing may be the same or different in the X direction and the Y direction.
  • the grid interval may be different for each layer.
  • the grid of the VNW FET and the grid of the M1 wiring may be arranged at different intervals.
  • each part does not necessarily have to be arranged on a grid. However, from the viewpoint of suppressing manufacturing variations, it is preferable that the components are arranged on a grid.
  • the device structure according to this embodiment is based on the structure shown in FIG. However, the structure shown in FIG. 24 and FIG. 25B or a structure based on another device structure can be used. The same applies to the following embodiments. For the sake of clarity, the illustration of the well, the STI, each insulating film, the silicide layer on the bottom, the silicide layer on the top, and the sidewall on the top is omitted. The same applies to the subsequent figures.
  • FIG. 8A is a circuit diagram of the memory cell shown in FIGS.
  • the memory cell according to the present embodiment realizes a 1-port memory cell shown in FIG. Note that the connection position of the bit line BL and the inverted bit line BLX may be reversed for the sake of layout.
  • FIGS. 8B to 8D are circuit diagrams of dummy memory cells to be described later.
  • the basic configuration of the memory cell according to the present embodiment is the same as that of the 6T type 1-port memory cell.
  • the drive transistor is composed of two transistors connected in parallel. Specifically, one drive transistor is composed of transistors PD1 and PD2 connected in parallel, and the other transistor is composed of transistors PD3 and PD4 connected in parallel. That is, the transistor PU1 and the transistors PD1 and PD2 connected in parallel are connected in series between VDD and VSS. The gates of the transistors PU1, PD1, and PD2 are connected to each other. The transistor PU2 and the transistors PD3 and PD4 connected in parallel are connected in series between VDD and VSS.
  • the memory cell according to the present embodiment includes transistors PG1 and PG2, which are access transistors whose gates are connected to the word line WL.
  • the transistors PU1 and PU2 are of P conductivity type, and the transistors PD1, PD2, PD3, PD4, PG1, and PG2 are of N conductivity type.
  • the connection node of the transistors PU1, PD1, and PD2 is the storage node A, and is connected to the gates of the transistors PU2, PD3, and PD4.
  • connection node of the transistors PU2, PD3, and PD4 is the storage node B, and is connected to the gates of the transistors PU1, PD1, and PD2.
  • the transistor PG1 is connected between the storage node A and the inverted bit line BLX
  • the transistor PG2 is connected between the storage node B and the bit line BL.
  • FIGS. 2 to 6 show four memory cells MC1, MC2, MC3, MC4 arranged adjacent to each other and the layout of the periphery thereof.
  • the memory cell array includes four memory cells MC1, MC2, MC3, and MC4, and dummy memory cells are arranged around the memory cell array.
  • Dummy memory cells DCA1 to DCA4 are arranged above and below the memory cell array (on both sides in the Y direction).
  • Dummy memory cells DCB1 to DCB4 are arranged on the left and right sides (both sides in the X direction) of the memory cell array.
  • Dummy memory cells DCC1 to DCC4 are arranged at the four corners of the memory cell array.
  • the memory cells MC1 to MC4 basically have the same structure.
  • the memory cell MC2 has a structure in which the memory cell MC1 is inverted in the vertical direction (Y direction)
  • the memory cell MC3 has a structure in which the memory cell MC1 is inverted in the horizontal direction (X direction)
  • the memory cell MC4 has the structure in which the memory cell MC3 is inverted.
  • the structure is inverted vertically (the memory cell MC2 is also inverted horizontally).
  • 8B is a circuit diagram of the dummy memory cells DCA1 to DCA4
  • FIG. 8C is a circuit diagram of the dummy memory cells DCB1 to DCB4
  • FIG. 8D is a circuit diagram of the dummy memory cells DCC1 to DCC4. is there.
  • Transistors PU1, PU2, PD1, PD2, PD3, PD4, PG1, and PG2 are VNW FETs, each of which includes one VNW.
  • the transistors PU1, PD1, PD2, and PG1 are arranged side by side in the X direction.
  • the transistors PU2, PD3, PD4, and PG2 are arranged side by side in the X direction.
  • Transistors PD1 and PD2 are arranged on the left and right sides (both sides in the X direction) of the transistor PU1, respectively.
  • Transistors PD3 and PD4 are arranged on the left and right sides (both sides in the X direction) of the transistor PU2, respectively.
  • the transistors PU1 and PU2 are arranged side by side in the Y direction.
  • the transistor PG1 is disposed on the left side (first side in the X direction) of the transistor PU1 and further to the left of the transistor PD1.
  • the transistor PG2 is disposed on the right side (second side in the X direction) of the transistor PU2 and further to the right of the transistor PD4.
  • N wells are formed under the P conductivity type transistors PU1 and PU2 (not shown), and there is a P substrate under the N conductivity type transistors PG1, PG2, PD1, PD2, PD3, and PD4. Alternatively, a P-well is formed.
  • Bottom wirings 11, 12, 13, 14, 15, 16, and 17 are formed.
  • the bottom wirings 11, 12, 13, 14, 15, 16, and 17 extend in the Y direction over the entire memory cell array.
  • the bottom wirings 11, 13, 15, and 17 supply the power supply voltage VSS.
  • the bottom wiring 14 supplies the power supply voltage VDD.
  • the bottom wiring 12 is a bit line BL connected to the memory cells MC1 and MC2, and the bottom wiring 16 is an inverted bit line BLX connected to the memory cells MC1 and MC2.
  • the bottoms of the transistors PU1 and PU2 are connected to a bottom wiring 14 that supplies a power supply voltage VDD.
  • the bottoms of the transistors PD1 and PD3 are connected to a bottom wiring 13 that supplies a power supply voltage VSS.
  • the bottoms of the transistors PD2 and PD4 are connected to a bottom wiring 15 that supplies a power supply voltage VSS.
  • the bottom of the transistor PG1 is connected to the bottom wiring 12 that is the bit line BL.
  • the bottom of the transistor PG2 is connected to the bottom wiring 16 that is the inverted bit line BLX.
  • the gates of the transistors PU1, PD1, and PD2 are connected by a gate wiring 21 that extends in the X direction.
  • the gate wiring 21 is drawn from the gate of the transistor PD2 to the right side in the drawing in the X direction.
  • a gate wiring 22 is drawn from the gate of the transistor PG1 on the left side of the drawing in the X direction.
  • the gates of the transistors PU2, PD3, and PD4 are connected by a gate wiring 23 that extends in the X direction.
  • the gate wiring 23 is drawn from the gate of the transistor PD3 to the left side in the drawing in the X direction.
  • a gate wiring 24 is led out from the gate of the transistor PG2 on the right side in the drawing in the X direction.
  • the tops of the transistors PU1, PD1, PD2, PG1 are connected to a local wiring 31 extending in the X direction.
  • the local wiring 31 is connected to the M1 wiring 41 extending in the Y direction via a via.
  • the M1 wiring 41 extends to a range overlapping with the gate wiring 23 in plan view, and is connected to the gate wiring 23 through a via and a local wiring. That is, the tops of the transistors PU1, PD1, PD2, and PG1 and the gates of the transistors PU2, PD3, and PD4 are connected via the local wiring 31, the M1 wiring 41, and the gate wiring 23.
  • the local wiring 31, the M1 wiring 41, and the gate wiring 23 correspond to the storage node A.
  • the local wiring 31 is an example of a first signal wiring.
  • the M1 wiring 41 is an example of a first connection wiring.
  • the tops of the transistors PU2, PD3, PD4, and PG2 are connected to a local wiring 32 extending in the X direction.
  • the local wiring 32 is connected to an M1 wiring 42 extending in the Y direction via a via.
  • the M1 wiring 42 extends to a range overlapping with the gate wiring 21 in plan view, and is connected to the gate wiring 21 through a via and a local wiring. That is, the tops of the transistors PU2, PD3, PD4, and PG2 and the gates of the transistors PU1, PD1, and PD2 are connected via the local wiring 32, the M1 wiring 42, and the gate wiring 21.
  • the local wiring 32, the M1 wiring 42, and the gate wiring 21 correspond to the storage node B.
  • the local wiring 32 is an example of a second signal wiring.
  • the M1 wiring 42 is an example of a second connection wiring.
  • the M2 wiring 51 which is the word line WL extends in the X direction.
  • the M2 wiring 51 is connected to the gate wiring 22 through the M1 wiring 43 extending in the Y direction, local wiring, and vias.
  • the M2 wiring 51 is connected to the gate wiring 24 through the M1 wiring 44 extending in the Y direction, local wiring, and vias. That is, the gates of the transistors PG1 and PG2 are connected to the M2 wiring 51, that is, the word line WL via the M1 wirings 43 and 44.
  • the M2 wirings 52 and 53 that supply the power supply voltage VSS extend in the X direction so as to overlap with the memory cell MC1 in a plan view. However, the M2 wirings 52 and 53 are not directly connected to the memory cell MC1.
  • M3 wirings 61, 62, 63, 64, 65, 66, 67 are formed.
  • the M3 wirings 61, 62, 63, 64, 65, 66, and 67 extend in the Y direction over the entire memory cell array.
  • the M3 wiring 62 is a bit line BL connected to the memory cells MC1 and MC2, and the M3 wiring 66 is an inverted bit line BLX connected to the memory cells MC1 and MC2.
  • the M3 wirings 62 and 66 are not directly connected to the memory cell MC1. However, as will be described later, in the tap cell, the M3 wiring 62 is connected to the bottom wiring 12 corresponding to the bit line BL, and the M3 wiring 66 is connected to the bottom wiring 16 corresponding to the inverted bit line BLX. .
  • the M3 wirings 61, 63, 65, 67 supply the power supply voltage VSS.
  • the M3 wiring 64 supplies the power supply voltage VDD.
  • the M3 wirings 61, 63, 65, 67 and the M3 wiring 64 are not directly connected to the memory cell MC1.
  • the M3 wirings 61, 63, 65, and 67 are connected to the M2 wirings 52 and 53 through vias.
  • one drive transistor is constituted by two transistors PD1 and PD2 connected in parallel, and the other drive transistor is constituted by two transistors PD3 and PD4 connected in parallel.
  • the size of the drive transistor can be increased, so that the SNM can be improved and the yield can be increased.
  • the read current of the memory cell is increased, the read speed is increased.
  • the arrangement of the transistors PU1, PU2, PD1, PD2, PD3, PD4, PG1, and PG2 constituting the SRAM memory cell has high symmetry. Therefore, asymmetry in the device characteristics is suppressed, so that the device characteristics can be improved, the reliability of the semiconductor integrated circuit device can be improved, and the yield can be increased.
  • each bottom wiring extends in the Y direction, the wiring width is the same, and the wiring pitch is constant.
  • Each gate wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
  • Each local wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
  • Each M1 wiring extends in the Y direction, the wiring width is the same, and the wiring pitch is constant.
  • Each M2 wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
  • Each M3 wiring extends in the Y direction, the wiring width is the same, and the wiring pitch is constant.
  • the tap cell has a configuration in which the bottom wiring and the M3 wiring corresponding to the bit line BL are connected, and the bottom wiring and the M3 wiring corresponding to the inverted bit line BLX are connected.
  • FIGS. 9 to 13 are examples of tap cell layout configurations in the present embodiment.
  • FIG. 9 is an overall plan view
  • FIGS. 10 to 13 are plan views according to layers. Specifically, FIG. 10 shows a VNW FET and the layers below it, FIG. 11 shows local wiring and M1 wiring, FIG. 12 shows M1 and M2 wiring, and FIG. 13 shows M2 and M3 wiring.
  • the layouts shown in FIGS. 9 to 13 are located on the lower side of the above-described memory cell array, and another memory cell array is arranged on the lower side.
  • the tap cell TCA1 is arranged at a position aligned with the memory cells MC1, MC2 in the Y direction
  • the tap cell TCA2 is arranged at a position aligned with the memory cells MC3, MC4 in the Y direction.
  • Bottom regions 111, 112, and 113 are provided at the center in the Y direction of the tap cell TCA1.
  • the bottom region 111 is of N conductivity type and is provided on the N well.
  • the bottom regions 112 and 113 are of P conductivity type and are provided on the P substrate or P well.
  • An M2 wiring 153 that supplies the power supply voltage VDD and an M2 wiring 154 that supplies the power supply voltage VSS extend in the X direction.
  • the M2 wiring 153 is connected to the bottom region 111 via the M1 wiring 145. That is, the M2 wiring 153 supplies the power supply voltage VDD to the N well through the M1 wiring 145 and the bottom region 111.
  • the M2 wiring 154 is connected to the bottom regions 112 and 113 via the M1 wirings 146a and 146b. That is, the M2 wiring 154 supplies the power supply voltage VSS to the P substrate or the P well via the M1 wirings 146a and 146b and the bottom regions 112 and 113.
  • the M2 wirings 153 and 154 are not connected to other wirings that supply the power supply voltage to the memory cells. That is, the power supply voltage to the substrate or well is supplied separately from the power supply voltage of the memory cell.
  • the M2 wiring 153 and the M3 wiring 64 are connected, and the M2 wiring 154 and the M2 wiring 63 and 65 are connected so that the power supply voltage to the substrate or well and the power supply voltage of the memory cell are not separated. It may be supplied.
  • the tap cell TCA1 overlaps the bottom wirings 12 and 16 that are the bit line pair BL and BLX and the M3 wirings 62 and 66 that are the bit line pair BL and BLX in a plan view.
  • the bottom wiring 12 is connected to the M3 wiring 62 through the local wiring, the M1 wiring 141, and the M2 wiring 151.
  • the bottom wiring 16 is connected to the M3 wiring 66 through the local wiring, the M1 wiring 142, and the M2 wiring 152.
  • the tap cell TCA1 includes a bit line connection portion that electrically connects the bottom wiring 12 and the M3 wiring 62 that are the bit lines BL and electrically connects the bottom wiring 16 and the M3 wiring 66 that are the inverted bit lines BLX.
  • the bit line pair BL, BLX is provided in the M3 wiring layer, and is connected to the bit line pair BL, BLX of the bottom wiring by the bit line connection portion in the tap cell, thereby reducing the low resistance of the bit line pair BL, BLX. Can be realized.
  • FIGS. 14 to 18 show other layout configuration examples of the tap cell in this embodiment.
  • FIG. 14 is a plan view
  • FIGS. 15 to 18 are plan views according to layers. Specifically, FIG. 15 shows a VNW FET and the layer below it, FIG. 16 shows local wiring and M1 wiring, FIG. 17 shows M1 and M2 wiring, and FIG. 18 shows M2 and M3 wiring.
  • the layout shown in FIGS. 14 to 18 is located above the memory cell array described above.
  • the tap cell TCB1 is arranged at a position aligned with the memory cells MC1, MC2 in the Y direction
  • the tap cell TCB2 is arranged at a position aligned with the memory cells MC3, MC4 in the Y direction.
  • the details of the layout structure will be described using the tap cell TCB1 as an example.
  • the configurations of the tap cells TCB1 and TCB2 are the same as the configuration of the lower half of the tap cell TCA1 described above, and the description thereof may be omitted here.
  • Bottom regions 114, 115, and 116 are provided in the upper portion of the tap cell TCB1 in the Y direction.
  • the bottom region 114 is of N conductivity type and is provided on the N well.
  • the bottom regions 115 and 116 are of P conductivity type and are provided on a P substrate or a P well.
  • An M2 wiring 157 that supplies the power supply voltage VDD and an M2 wiring 158 that supplies the power supply voltage VSS extend in the X direction.
  • the M2 wiring 157 is connected to the bottom region 114 via the M1 wiring 147. That is, the M2 wiring 157 supplies the power supply voltage VDD to the N well through the M1 wiring 147 and the bottom region 114.
  • the M2 wiring 158 is connected to the bottom regions 115 and 116 via the M1 wirings 148a and 148b. That is, the M2 wiring 158 supplies the power supply voltage VSS to the P substrate or the P well through the M1 wirings 148a and 148b and the bottom regions 115 and 116.
  • the M2 wirings 157 and 158 are not connected to other wirings that supply the power supply voltage to the memory cells. That is, the power supply voltage to the substrate or well is supplied separately from the power supply voltage of the memory cell.
  • the M2 wiring 157 and the M3 wiring 64 are connected, and the M2 wiring 158 and the M2 wiring 63 and 65 are connected so that the power supply voltage to the substrate or well and the power supply voltage of the memory cell are not separated. It may be supplied.
  • the tap cell TCB1 overlaps the bottom wirings 12 and 16 that are the bit line pair BL and BLX and the M3 wirings 62 and 66 that are the bit line pair BL and BLX in a plan view.
  • the bottom wiring 12 is connected to the M3 wiring 62 through the local wiring, the M1 wiring 143, and the M2 wiring 155.
  • the bottom wiring 16 is connected to the M3 wiring 66 through the local wiring, the M1 wiring 144, and the M2 wiring 156.
  • the tap cell TCB1 includes a bit line connection portion that electrically connects the bottom wiring 12 and the M3 wiring 62 that are the bit lines BL, and that electrically connects the bottom wiring 16 and the M3 wiring 66 that are the inverted bit lines BLX. ing.
  • the bit line pair BL, BLX is provided in the M3 wiring layer, and is connected to the bit line pair BL, BLX of the bottom wiring by the bit line connection portion in the tap cell, thereby reducing the low resistance of the bit line pair BL, BLX. Can be realized.
  • FIGS. 20 and 21 are diagrams showing examples of the layout structure of the memory cell according to the second embodiment.
  • FIG. 19 is an overall plan view
  • FIGS. 20 and 21 are plan views according to layers. Specifically, FIG. 20 shows the VNW FET and the layer below it, and FIG. 21 shows the local wiring and the M1 wiring.
  • the memory cell according to the present embodiment realizes the 1-port memory cell shown in FIG.
  • the memory cell array includes four memory cells MC1, MC2, MC3, and MC4, and dummy memory cells are arranged around the memory cell array.
  • Dummy memory cells DCA1 to DCA4 are arranged above and below the memory cell array (on both sides in the Y direction).
  • Dummy memory cells DCB1 to DCB4 are arranged on the left and right sides (both sides in the X direction) of the memory cell array.
  • Dummy memory cells DCC1 to DCC4 are arranged at the four corners of the memory cell array.
  • the memory cells MC1 to MC4 basically have the same structure.
  • Memory cell MC2 has the same layout as memory cell MC1.
  • the memory cell MC3 has a structure in which the memory cell MC1 is inverted left and right (X direction).
  • Memory cell MC4 has the same layout as memory cell MC3.
  • the dummy memory cells arranged around the memory cell array have a layout that matches the arrangement of the memory cells MC1 to MC4.
  • the layout structure is almost the same as that of the first embodiment except that the memory cell MC2 is not inverted with respect to the memory cell MC1 and the memory cell MC4 is not inverted with respect to the memory cell MC3. For this reason, the plan view and sectional view of each layer above the M2 wiring are omitted.
  • Transistors PU1, PU2, PD1, PD2, PD3, PD4, PG1, and PG2 are VNW FETs, each of which includes one VNW.
  • the transistors PU1, PD1, PD2, and PG1 are arranged side by side in the X direction.
  • the transistors PU2, PD3, PD4, and PG2 are arranged side by side in the X direction.
  • Transistors PD1 and PD2 are arranged on the left and right sides (both sides in the X direction) of the transistor PU1, respectively.
  • Transistors PD3 and PD4 are arranged on the left and right sides (both sides in the X direction) of the transistor PU2, respectively.
  • the transistors PU1 and PU2 are arranged side by side in the Y direction.
  • the transistor PG1 is disposed on the right side of the transistor PU1 and further on the right side of the transistor PD2.
  • the transistor PG2 is disposed on the left side of the transistor PU2 and further on the left side of the transistor PD3.
  • N wells are formed under the P conductivity type transistors PU1 and PU2 (not shown), and there is a P substrate under the N conductivity type transistors PG1, PG2, PD1, PD2, PD3, and PD4. Alternatively, a P-well is formed.
  • Bottom wirings 211, 212, 213, 214, 215, 216, and 217 are formed.
  • the bottom wirings 211, 212, 213, 214, 215, 216, and 217 extend in the Y direction over the entire memory cell array.
  • the bottom wirings 211, 213, 215, and 217 supply the power supply voltage VSS.
  • the bottom wiring 214 supplies the power supply voltage VDD.
  • the bottom wiring 212 is a bit line BL connected to the memory cells MC1 and MC2
  • the bottom wiring 216 is an inverted bit line BLX connected to the memory cells MC1 and MC2.
  • the bottoms of the transistors PU1 and PU2 are connected to a bottom wiring 214 that supplies a power supply voltage VDD.
  • the bottoms of the transistors PD1 and PD3 are connected to a bottom wiring 213 that supplies a power supply voltage VSS.
  • the bottoms of the transistors PD2 and PD4 are connected to a bottom wiring 215 that supplies a power supply voltage VSS.
  • the bottom of the transistor PG1 is connected to the bottom wiring 216 that is the inverted bit line BLX.
  • the bottom of the transistor PG2 is connected to the bottom wiring 212 that is the bit line BL.
  • the gates of the transistors PU1, PD1, and PD2 are connected by a gate wiring 221 that extends in the X direction.
  • the gate wiring 221 is drawn from the gate of the transistor PD1 to the left side in the drawing in the X direction.
  • a gate line 222 is drawn from the gate of the transistor PG1 on the right side of the drawing in the X direction.
  • the gates of the transistors PU2, PD3, and PD4 are connected by a gate wiring 223 that extends in the X direction.
  • the gate wiring 223 is drawn from the gate of the transistor PD4 to the right side in the drawing in the X direction.
  • a gate wiring 224 is drawn from the gate of the transistor PG2 on the left side of the drawing in the X direction.
  • the tops of the transistors PU1, PD1, PD2, PG1 are connected to a local wiring 231 extending in the X direction.
  • the local wiring 231 is connected to the gate wiring 223 through the M1 wiring 241. That is, the tops of the transistors PU1, PD1, PD2, and PG1 and the gates of the transistors PU2, PD3, and PD4 are connected to each other through the local wiring 231, the M1 wiring 241, and the gate wiring 223.
  • the local wiring 231, the M1 wiring 241, and the gate wiring 223 correspond to the storage node A.
  • the local wiring 231 is an example of a first signal wiring.
  • the M1 wiring 241 is an example of a first connection wiring.
  • the tops of the transistors PU2, PD3, PD4, and PG2 are connected to a local wiring 232 extending in the X direction.
  • the local wiring 232 is connected to the gate wiring 221 through the M1 wiring 242. That is, the tops of the transistors PU 2, PD 3, PD 4, and PG 2 and the gates of the transistors PU 1, PD 1, and PD 2 are connected via the local wiring 232, the M1 wiring 242, and the gate wiring 221.
  • the local wiring 232, the M1 wiring 242 and the gate wiring 221 correspond to the storage node B.
  • the local wiring 232 is an example of a second signal wiring.
  • the M1 wiring 242 is an example of a second connection wiring.
  • the M2 wiring 251 that is the word line WL extends in the X direction.
  • the M2 wiring 251 is connected to the gate wiring 224 through an M1 wiring 243 extending in the Y direction, a local wiring, and a via. Further, the M2 wiring 251 is connected to the gate wiring 222 through the M1 wiring 244 extending in the Y direction, the local wiring, and the via. That is, the gates of the transistors PG1 and PG2 are connected to the M2 wiring 251 or the word line WL.
  • the M2 wirings 252 and 253 that supply the power supply voltage VSS extend in the X direction so as to overlap with the memory cell MC1 in a plan view. However, the M2 wirings 252 and 253 are not directly connected to the memory cell MC1.
  • M3 wirings 261, 262, 263, 264, 265, 266, 267 are formed.
  • the M3 wirings 261, 262, 263, 264, 265, 266, and 267 extend in the Y direction over the entire memory cell array.
  • the M3 wiring 262 is a bit line BL connected to the memory cells MC1 and MC2, and the M3 wiring 266 is an inverted bit line BLX connected to the memory cells MC1 and MC2.
  • the M3 wirings 262 and 266 are not directly connected to the memory cell MC1.
  • the M3 wiring 262 is connected to the bottom wiring 212 corresponding to the bit line BL, and the M3 wiring 266 is connected to the bottom wiring 216 corresponding to the inverted bit line BLX. .
  • the M3 wirings 261, 263, 265, and 267 supply the power supply voltage VSS.
  • the M3 wiring 264 supplies the power supply voltage VDD.
  • the M3 wirings 261, 263, 265, 267 and the M3 wiring 264 are not directly connected to the memory cell MC1.
  • one drive transistor is constituted by two transistors PD1 and PD2 connected in parallel, and the other drive transistor is constituted by two transistors PD3 and PD4 connected in parallel.
  • the size of the drive transistor can be increased, so that the SNM can be improved and the yield can be increased.
  • the arrangement of the transistors PU1, PU2, PD1, PD2, PD3, PD4, PG1, and PG2 constituting the SRAM memory cell has high symmetry. Therefore, asymmetry in the device characteristics is suppressed, so that the device characteristics can be improved, the reliability of the semiconductor integrated circuit device can be improved, and the yield can be increased.
  • each bottom wiring extends in the Y direction, the wiring width is the same, and the wiring pitch is constant.
  • Each gate wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
  • Each local wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
  • Each M1 wiring extends in the Y direction, the wiring width is the same, and the wiring pitch is constant.
  • Each M2 wiring extends in the X direction, the wiring width is the same, and the wiring pitch is constant.
  • Each M3 wiring extends in the Y direction, the wiring width is the same, and the wiring pitch is constant.
  • FIG. 22 and FIG. 23 are overall plan views showing examples of the layout configuration of tap cells in the present embodiment. Since the layout structure described here is substantially the same as that of the first embodiment, the plan view by layer is omitted.
  • FIG. 22 shows adjacently arranged tap cells TCA1 and TCA2 and their surrounding layout.
  • the tap cell TCA1 is arranged at a position aligned with the memory cells MC1, MC2 in the Y direction
  • the tap cell TCA2 is arranged at a position aligned with the memory cells MC3, MC4 in the Y direction.
  • the M2 wiring 353 that supplies the power supply voltage VDD and the M2 wiring 354 that supplies the power supply voltage VSS extend in the X direction.
  • the M2 wiring 353 supplies the power supply voltage VDD to the N well through the M1 wiring and the bottom region.
  • the M2 wiring 354 supplies the power supply voltage VSS to the P substrate or the P well through the M1 wiring and the bottom region.
  • FIG. 23 shows adjacently arranged tap cells TCB1 and TCB2 and their surrounding layout.
  • the tap cell TCB1 is arranged at a position aligned with the memory cells MC1, MC2 in the Y direction
  • the tap cell TCB2 is arranged at a position aligned with the memory cells MC3, MC4 in the Y direction.
  • the M2 wiring 357 for supplying the power supply voltage VDD and the M2 wiring 358 for supplying the power supply voltage VSS extend in the X direction.
  • the M2 wiring 357 supplies the power supply voltage VDD to the N well through the M1 wiring and the bottom region.
  • the M2 wiring 358 supplies the power supply voltage VSS to the P substrate or the P well through the M1 wiring and the bottom region.
  • the tap cells TCA1 and TCB1 electrically connect the bottom wiring 212 and the M3 wiring 262 that are the bit lines BL, and electrically connect the bottom wiring 216 and the M3 wiring 266 that are the inverted bit lines BLX.
  • the resistance of the bit line pair BL, BLX can be reduced. Can do.
  • the planar shape of the VNW is circular, but the planar shape of the VNW is not limited to a circle. For example, it may be a rectangle or an oval. For example, in the case of an oval, the area of VNW per unit area is increased, so that a larger amount of current can flow through the transistor, and the semiconductor integrated circuit device can be speeded up.
  • planar shape of the VNW is a shape that extends long in one direction such as an oval
  • the extending direction is the same.
  • the positions of the ends are aligned.
  • VNWs having different planar shapes may be mixed.
  • a circular VNW and an oval VNW may be mixed.
  • one transistor is composed of one VNW.
  • one transistor may be composed of a plurality of VNWs.
  • bit line connection portion in the tap cell electrically connects the bottom wiring and the M3 wiring that are the bit lines BL, and electrically connects the bottom wiring and the M3 wiring that are the inverted bit lines BLX. did.
  • bit line connection unit described above may be provided in the circuit block separately from the tap cell.
  • bit line BL and the inverted bit line BLX are formed in the M3 wiring layer.
  • bit line BL and the inverted bit line BLX may be formed in another metal wiring layer. It doesn't matter.
  • the SRAM memory cell using the VNW FET improves SNM and realizes a layout with high symmetry of transistor arrangement, which is useful for improving the performance of a semiconductor chip, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

VNW(縦型ナノワイヤ) FETを用いたSRAMメモリセル(MC1)において、トランジスタ(PU1)のX方向における両側に、ドライブトランジスタを構成するトランジスタ(PD1,PD2)がそれぞれ配置され、トランジスタ(PU2)のX方向における両側に、ドライブトランジスタを構成するトランジスタ(PD3,PD4)がそれぞれ配置される。アクセストランジスタ(PG1)は、トランジスタ(PU1)のX方向における一方の側に配置され、アクセストランジスタ(PG2)は、トランジスタ(PU2)のX方向における他方の側に配置される。

Description

半導体集積回路装置
 本開示は、縦型ナノワイヤ(VNW:Vertical Nanowire)FET(Field Effect Transistor)を備えた半導体集積回路装置に関し、特にSRAM(Static Random Access Memory)のメモリセルレイアウト構造に関する。
 LSIの基本構成要素であるトランジスタは、ゲート長の縮小(スケーリング)により、集積度の向上、動作電圧の低減、および動作速度の向上を実現してきた。しかし近年、過度なスケーリングによるオフ電流と、それによる消費電力の著しい増大が問題となっている。この問題を解決するため、トランジスタ構造を従来の平面型から立体型に変更した立体構造トランジスタが盛んに研究されている。その1つとして、縦型ナノワイヤFET(以下、適宜、VNW FETという)が注目されている。
 特許文献1では、VNW FETを用いたSRAMメモリセルのレイアウトが開示されている。
米国特許第9646973号明細書(図25A)
 特許文献1に開示されたレイアウトでは、ドライブトランジスタのサイズが、他のトランジスタのサイズよりも大きくなっている。ドライブトランジスタのサイズを大きくすることによって、SNM(Static Noise Margin)が向上し、デバイスの歩留まりが高まる。ところがその一方で、特許文献1に開示されたレイアウトでは、ドライブトランジスタがロードトランジスタに対して一方の側に配置されている。すなわち、SRAMメモリセルを構成するトランジスタの配置が、対称性を有していない。このため、デバイス特性に非対称性が生じてしまう。これは、デバイス特性の悪化や信頼性低下、歩留まり低下等の問題が生じる原因となる。
 本開示は、VNW FETを用いたSRAMメモリセルについて、SNMを向上させることができ、かつ、トランジスタ配置の対称性が高いレイアウト構造を提供することを目的とする。
 本開示の第1態様では、SRAM(Static Random Access Memory)メモリセルを備えた半導体集積回路装置において、前記SRAMメモリセルは、第1記憶ノードと、第2記憶ノードと、高電圧側電源線と前記第1記憶ノードとの間に設けられた第1導電型の第1トランジスタと、低電圧側電源線と前記第1記憶ノードとの間に、並列に設けられた第2導電型の第2および第3トランジスタと、前記高電圧側電源線と前記第2記憶ノードとの間に設けられた前記第1導電型の第4トランジスタと、前記低電圧側電源線と前記第2記憶ノードとの間に、並列に設けられた前記第2導電型の第5および第6トランジスタと、ビット線と前記第1記憶ノードとの間に設けられ、ゲートがワード線と接続された前記第2導電型の第7トランジスタと、反転ビット線と前記第2記憶ノードとの間に設けられ、ゲートが前記ワード線と接続された前記第2導電型の第8トランジスタとを備え、前記第1、第2および第3トランジスタのゲートは、互いに接続されており、かつ、前記第2記憶ノードと接続されており、前記第4、第5および第6トランジスタのゲートは、互いに接続されており、かつ、前記第1記憶ノードと接続されており、前記第1~第8トランジスタは、VNW(Vertical Nanowire:縦型ナノワイヤ) FETであり、前記第2および第3トランジスタは、前記第1トランジスタの第1方向における両側に、それぞれ配置されており、前記第5および第6トランジスタは、前記第4トランジスタの前記第1方向における両側に、それぞれ配置されており、前記第7トランジスタは、前記第1トランジスタの前記第1方向における第1の側に配置されている一方、前記第8トランジスタは、前記第4トランジスタの前記第1方向における、前記第1の側の反対側である第2の側に配置されている。
 この態様によると、SRAMメモリセルにおいて、一方のドライブトランジスタが、並列接続された第2および第3トランジスタによって構成されており、また、他方のドライブトランジスタが、並列接続された第5および第6トランジスタによって構成されている。このため、ドライブトランジスタのサイズを大きくすることができるので、SNMを向上させることができる。加えて、SRAMメモリセルを構成する第1~第8トランジスタの配置が、高い対称性を有している。このため、デバイス特性における非対称性が抑制されるので、デバイス特性を向上させることができるとともに、半導体集積回路装置の信頼性を高め、歩留まりを高めることができる。
 本開示によると、VNW FETを用いたSRAMメモリセルについて、SNMを向上させることができ、かつ、トランジスタ配置の対称性が高いレイアウト構造を実現することができる。
VNW FETを用いたSRAMメモリセルを備えた回路ブロックの全体構成例を示す図 第1実施形態に係るSRAMメモリセルのレイアウト構造の例を示す平面図 図2のレイアウト構造を示す層別の平面図 図2のレイアウト構造を示す層別の平面図 図2のレイアウト構造を示す層別の平面図 図2のレイアウト構造を示す層別の平面図 (a),(b)は図2のレイアウト構造を示す断面図 図2の各セルの回路図であり、(a)はSRAMメモリセル、(b)~(d)はダミーメモリセル 第1実施形態におけるタップセルのレイアウト構造の例を示す平面図 図9のレイアウト構造を示す層別の平面図 図9のレイアウト構造を示す層別の平面図 図9のレイアウト構造を示す層別の平面図 図9のレイアウト構造を示す層別の平面図 第1実施形態におけるタップセルのレイアウト構造の例を示す平面図 図14のレイアウト構造を示す層別の平面図 図14のレイアウト構造を示す層別の平面図 図14のレイアウト構造を示す層別の平面図 図14のレイアウト構造を示す層別の平面図 第2実施形態に係るSRAMメモリセルのレイアウト構造の例を示す平面図 図19のレイアウト構造を示す層別の平面図 図19のレイアウト構造を示す層別の平面図 第2実施形態におけるタップセルのレイアウト構造の例を示す平面図 第2実施形態におけるタップセルのレイアウト構造の例を示す平面図 縦型ナノワイヤFETの基本構造例を示す模式図であり、(a)は断面図、(b)は平面図 (a),(b)は縦型ナノワイヤFETの基本構造例であって、ローカル配線を用いた構造例を示す模式平面図
 以下、実施の形態について、図面を参照して説明する。以下の実施の形態では、半導体集積回路装置はSRAMメモリセルを備えており、このSRAMメモリセルは、いわゆる縦型ナノワイヤFET(VNW FET)を備えるものとする。
 図24はVNW FETの基本構造例を示す模式図であり、(a)は断面図、(b)は平面図である。なお、図24(b)では、メタル配線の図示を省いており、また、理解のしやすさのために、実際の平面視では見えない構成要素を図示している。
 図24に示すように、半導体基板501上に、P型ウェル502とN型ウェル503が形成されている。ただし、半導体基板501がP型基板であるとき、P型ウェルを形成しなくてもよい。P型ウェル502上に、N型トランジスタであるVNW FET510が形成されており、N型ウェル503上に、P型トランジスタであるVNW FET520が形成されている。504は絶縁膜、505は層間絶縁膜である。
 VNW FET510は、ソース/ドレイン電極となるボトム電極511と、ソース/ドレイン電極となるトップ電極512と、ボトム電極511とトップ電極512との間に、縦方向(基板面に対して垂直方向)に形成されたナノワイヤ513とを備える。ボトム電極511およびトップ電極512は、N導電型にドーピングされている。ナノワイヤ513の少なくとも一部がチャネル領域となる。ナノワイヤ513の周囲にはゲート絶縁膜515が形成されており、さらにその周囲にゲート電極514が形成されている。なお、ゲート電極514はナノワイヤ513の周囲全体を囲んでいてもよいし、ナノワイヤ513の周囲の一部のみを囲んでいてもよい。ゲート電極514がナノワイヤ513の周囲の一部のみを囲んでいる場合は、ゲート絶縁膜515はゲート電極514がナノワイヤ513を囲んでいる部分にのみ形成されていてもよい。
 ボトム電極511は、半導体基板501の上面に沿って広がるように形成されたボトム領域516と接続されている。ボトム領域516も、N導電型にドーピングされている。ボトム領域516の表面にはシリサイド領域517が形成されている。また、トップ電極512の周囲に、サイドウォール518が形成されている。トップ電極512の上に、シリサイド領域519が形成されている。ただし、サイドウォール518およびシリサイド領域519は形成しなくてもよい。
 同様に、VNW FET520は、ソース/ドレイン電極となるボトム電極521と、ソース/ドレイン電極となるトップ電極522と、ボトム電極521とトップ電極522との間に、縦方向に形成されたナノワイヤ523とを備える。ボトム電極521およびトップ電極522は、P導電型にドーピングされている。ナノワイヤ523の少なくとも一部がチャネル領域となる。ナノワイヤ523の周囲にはゲート絶縁膜525が形成されており、さらにその周囲にゲート電極524が形成されている。
 ボトム電極521は、半導体基板501の上面に沿って広がるように形成されたボトム領域526と接続されている。ボトム領域526も、P導電型にドーピングされている。ボトム領域526の表面にはシリサイド領域527が形成されている。また、トップ電極522の周囲に、サイドウォール528が形成されている。トップ電極522の上に、シリサイド領域529が形成されている。ただし、サイドウォール528およびシリサイド領域529は形成しなくてもよい。
 図24の構造では、VNW FET510のゲート電極領域514とVNW FET520のゲート電極領域524とが、ゲート配線531によって接続されている。また、ボトム領域516、シリサイド領域519、ゲート配線531、シリサイド領域529およびボトム領域526は、それぞれ、コンタクト532およびコンタクト541を介して、メタル配線層M1に形成された配線542に接続されている。なお、メタル配線層M1のさらに上層に、メタル配線層を積層することができる。
 半導体基板501は、例えば、バルクSi、ゲルマニウム、その化合物や合金等によって構成されている。N型ドーパントの例としては、As、P、Sb、N、Cまたはこれらの組み合わせ等がある。P型ドーパントの例としては、B、BF2、In、N、Cまたはこれらの組み合わせ等がある。また、VNW FET510,520の平面形状(ナノワイヤ513,523の横断面形状)は、例えば、円形、矩形、楕円形等であってもよい。
 絶縁膜504の材質は、例えば、SiN、SiCN等である。層間絶縁膜505の材料は、例えば、SiO、TEOS、PSG、BPSG、FSG、SiOC、SOG、Spin on Polymers、SiC、または、これらの混合物等がある。シリサイド領域517,527の材質は、例えば、NiSi、CoSi、TiSi、WSi等である。
 ゲート電極514,524、および、ゲート配線531の材料は、例えば、TiN、TaN、TiAl、Ti-containing Metal、Ta-containing Metal、Al-containing Metal、W-containing Metal、TiSi、NiSi、PtSi、polysilicon with silicide、これらの組み合わせ等がある。ゲート絶縁膜515,525の材料は、例えば、SiON、Si3N4、Ta2O5、Al2O3、Hf oxide、Ta oxide、Al oxide等がある。また、k値は7以上であることが好ましい。
 トップ電極512,522上に設けるシリサイド領域519,529の材料としては、NiSi、CoSi、MoSi、WSi、PtSi、TiSiまたはこれらの組み合わせ等がある。また、他の構成として、W、Cu、Al等のメタルや、TiN、TaN等の合金等、不純物注入された半導体等、またはこれらの組み合わせとしてもよい。サイドウォール518,528の材料としては、例えば、SiN、SiON、SiC、SiCN、SiOCN等がある。
 コンタクト532の材料としては、例えば、Ti、TiN、Ta、TaN等がある。また、Cu、Cu-arroy、W、Ag、Au、Ni、Al等がある。あるいは、Co、Ruでもよい。
 図25はVNW FETの基本構造例であって、ローカル配線を用いた構造例を示す。図25(a)では、メタル配線層M1と、VNW FET510のトップ電極512およびVNW FET520のトップ電極522との間に、ローカル配線534が形成されている。ボトム領域516,526およびゲート配線531は、それぞれ、コンタクト533、ローカル配線534およびコンタクト541を介して、メタル配線層M1に形成された配線542に接続されている。また、シリサイド領域519,529は、それぞれ、ローカル配線534およびコンタクト541を介して、メタル配線層M1に形成された配線542に接続されている。
 図25(b)では、メタル配線層M1とボトム領域516,526との間に、ローカル配線535が形成されている。言い換えると、ローカル配線535は、図25(a)におけるコンタクト533およびローカル配線534が一体となったものに相当する。シリサイド領域536は、ローカル配線535を形成する工程において、エッチングストッパとして用いられる。
 以下の説明では、VNW FETのボトム電極、トップ電極、ゲート電極のことを、適宜、単にボトム、トップ、ゲートという。また、縦型ナノワイヤ、トップ、ボトムおよびゲートからなる単位構成が、1個または複数個によって、1個のVNW FETを構成する場合、この単位構成のことを単に「VNW」といい、VNW FETと区別するものとする。また、「VDD」は電源電圧または高電圧側電源線を示し、「VSS」は電源電圧または低電圧側電源線を示す。
 なお、以下の説明では、図2等の平面図において、図面横方向をX方向(第1方向に相当)、図面縦方向をY方向(第2方向に相当)としている。また、本明細書において、「同一配線幅」等のように、幅等が同じであることを意味する表現は、製造上のばらつき範囲を含んでいるものとする。
 (第1実施形態)
 図1は半導体集積回路装置における回路ブロックの全体構成例を示す図である。図1の回路ブロックは、VNW FETを用いたSRAMメモリセル(以下、適宜、単にメモリセルという)を含む。メモリセルアレイ1,2は、それぞれ、X方向およびY方向にアレイ状に配置された複数のメモリセル3を含む。メモリセルアレイ1,2はY方向に並べて配置されている。メモリセルアレイ1,2の周囲には、ダミーメモリセル4が配置されている。ダミーメモリセル4は、メモリセルアレイ1,2の端部のメモリセルを構成するVNW FET等の製造ばらつきを抑制するために配置されている。メモリセルアレイ1,2の上下には、タップセル5が配置されている。タップセル5は基板またはウェルに電源電圧を供給する。
 図2~図7は第1実施形態に係るメモリセルのレイアウト構造の例を示す図である。図2は全体平面図、図3~図6は層別の平面図である。具体的には、図3はVNW FETおよびその下の層を示し、図4はローカル配線およびM1配線を示し、図5はM1およびM2配線を示し、図6はM2およびM3配線を示す。図7(a),(b)は図2の平面視横方向の断面図であり、図7(a)は線A-A’の断面、図7(b)は線B-B’の断面である。
 なお、図2等の平面図において縦横に走る点線、および、図7等の断面図において縦に走る点線は、設計時に部品配置を行うために用いるグリッドを示す。グリッドは、X方向において等間隔に配置されており、またY方向において等間隔に配置されている。なお、グリッド間隔は、X方向とY方向とにおいて同じであってもよいし異なっていてもよい。また、グリッド間隔は、層ごとに異なっていてもかまわない。例えば、VNW FETのグリッドとM1配線のグリッドとが、異なる間隔で配置されていてもよい。さらに、各部品は必ずしもグリッド上に配置される必要はない。ただし、製造ばらつきを抑制する観点から、部品はグリッド上に配置される方が好ましい。
 また、本実施形態に係るデバイス構造は、図25(a)の構造を前提としている。ただし、図24や図25(b)の構造や、他のデバイス構造を前提とした構造にもなり得る。以降の実施形態についても同様である。また、図を分かりやすくするために、ウェル、STI、各絶縁膜、ボトム上のシリサイド層、トップ上のシリサイド層、および、トップのサイドウォールについては、図示を省略している。以降の図についても同様である。
 また図8(a)は図2~図7に示すメモリセルの回路図である。本実施形態に係るメモリセルは、図8(a)に示す1ポートメモリセルを実現している。なお、レイアウトの都合上、ビット線BLと反転ビット線BLXの接続位置が逆になっている場合がある。また、図8(b)~(d)は、後述するダミーメモリセルの回路図である。
 図8(a)に示すように、本実施形態に係るメモリセルは、基本的な構成は6T型の1ポートメモリセルと同様である。ただし、ドライブトランジスタが、並列接続された2個のトランジスタによって構成されている。具体的には、一方のドライブトランジスタが、並列接続されたトランジスタPD1,PD2によって構成されており、他方のトランジスタが、並列接続されたトランジスタPD3,PD4によって構成されている。すなわち、トランジスタPU1と、並列接続されたトランジスタPD1,PD2とが、VDD-VSS間に直列に接続されている。トランジスタPU1,PD1,PD2はゲート同士が接続されている。トランジスタPU2と、並列接続されたトランジスタPD3,PD4とが、VDD-VSS間に直列に接続されている。トランジスタPU2,PD3,PD4はゲート同士が接続されている。さらに、本実施形態に係るメモリセルは、ゲートがワード線WLに接続されたアクセストランジスタであるトランジスタPG1,PG2を有する。トランジスタPU1,PU2はP導電型であり、トランジスタPD1,PD2,PD3,PD4,PG1,PG2はN導電型である。トランジスタPU1,PD1,PD2の接続ノードは記憶ノードAであり、トランジスタPU2,PD3,PD4のゲートと接続されている。トランジスタPU2,PD3,PD4の接続ノードは記憶ノードBであり、トランジスタPU1,PD1,PD2のゲートと接続されている。トランジスタPG1は記憶ノードAと反転ビット線BLXとの間に接続されており、トランジスタPG2は記憶ノードBとビット線BLとの間に接続されている。
 図2~図6では、隣接配置された4個のメモリセルMC1,MC2,MC3,MC4と、その周辺のレイアウトを示している。なお、ここでは説明の便宜上、メモリセルアレイは4個のメモリセルMC1,MC2,MC3,MC4からなり、メモリセルアレイの周囲にダミーメモリセルが配置されているものとしている。メモリセルアレイの上下(Y方向における両側)に、ダミーメモリセルDCA1~DCA4が配置されている。メモリセルアレイの左右(X方向における両側)に、ダミーメモリセルDCB1~DCB4が配置されている。メモリセルアレイの四隅の先に、ダミーメモリセルDCC1~DCC4が配置されている。
 各メモリセルMC1~MC4は、基本的には、同一構造を有する。ただし、メモリセルMC2はメモリセルMC1を上下(Y方向)に反転した構造であり、メモリセルMC3はメモリセルMC1を左右(X方向)に反転した構造であり、メモリセルMC4はメモリセルMC3を上下に反転した構造(メモリセルMC2を左右に反転した構造でもある)である。また、図8(b)はダミーメモリセルDCA1~DCA4の回路図、図8(c)はダミーメモリセルDCB1~DCB4の回路図、図8(d)はダミーメモリセルDCC1~DCC4の回路図である。
 以下、メモリセルMC1を例にとって、レイアウト構造の詳細について説明する。
 トランジスタPU1,PU2,PD1,PD2,PD3,PD4,PG1,PG2は、VNW FETであり、それぞれ1個のVNWからなる。トランジスタPU1,PD1,PD2,PG1は、X方向に並んで配置されている。トランジスタPU2,PD3,PD4,PG2は、X方向に並んで配置されている。トランジスタPU1の左右(X方向における両側)に、トランジスタPD1,PD2がそれぞれ配置されている。トランジスタPU2の左右(X方向における両側)に、トランジスタPD3,PD4がそれぞれ配置されている。トランジスタPU1,PU2はY方向に並んで配置されている。トランジスタPG1は、トランジスタPU1の左側(X方向における第1の側)であって、トランジスタPD1のさらに左に配置されている。トランジスタPG2は、トランジスタPU2の右側(X方向における第2の側)であって、トランジスタPD4のさらに右に配置されている。P導電型のトランジスタPU1,PU2の下にはNウェルが形成されており(図示は省略)、N導電型のトランジスタPG1,PG2,PD1,PD2,PD3,PD4の下には、P基板がある、または、Pウェルが形成されている。
 ボトム配線11,12,13,14,15,16,17が形成されている。ボトム配線11,12,13,14,15,16,17は、メモリセルアレイ全体にわたって、Y方向に延びている。ボトム配線11,13,15,17は電源電圧VSSを供給する。ボトム配線14は電源電圧VDDを供給する。ボトム配線12はメモリセルMC1,MC2に接続されるビット線BLであり、ボトム配線16はメモリセルMC1,MC2に接続される反転ビット線BLXである。
 トランジスタPU1,PU2のボトムは、電源電圧VDDを供給するボトム配線14に接続されている。トランジスタPD1,PD3のボトムは、電源電圧VSSを供給するボトム配線13に接続されている。トランジスタPD2,PD4のボトムは、電源電圧VSSを供給するボトム配線15に接続されている。トランジスタPG1のボトムは、ビット線BLであるボトム配線12に接続されている。トランジスタPG2のボトムは、反転ビット線BLXであるボトム配線16に接続されている。
 トランジスタPU1,PD1,PD2のゲート同士は、X方向に延びるゲート配線21によって接続されている。ゲート配線21は、トランジスタPD2のゲートから、X方向における図面右側に引き出されている。トランジスタPG1のゲートから、X方向における図面左側にゲート配線22が引き出されている。トランジスタPU2,PD3,PD4のゲート同士は、X方向に延びるゲート配線23によって接続されている。ゲート配線23は、トランジスタPD3のゲートから、X方向における図面左側に引き出されている。トランジスタPG2のゲートから、X方向における図面右側にゲート配線24が引き出されている。
 トランジスタPU1,PD1,PD2,PG1のトップは、X方向に延びるローカル配線31に接続されている。ローカル配線31は、ビアを介して、Y方向に延びるM1配線41と接続されている。M1配線41は、平面視でゲート配線23と重なりを有する範囲まで延びており、ビアおよびローカル配線を介して、ゲート配線23と接続されている。すなわち、トランジスタPU1,PD1,PD2,PG1のトップと、トランジスタPU2,PD3,PD4のゲートとが、ローカル配線31、M1配線41、および、ゲート配線23を介して接続されている。ローカル配線31、M1配線41、および、ゲート配線23が、記憶ノードAに対応する。ローカル配線31は、第1信号配線の一例である。M1配線41は、第1接続配線の一例である。
 トランジスタPU2,PD3,PD4,PG2のトップは、X方向に延びるローカル配線32に接続されている。ローカル配線32は、ビアを介して、Y方向に延びるM1配線42と接続されている。M1配線42は、平面視でゲート配線21と重なりを有する範囲まで延びており、ビアおよびローカル配線を介して、ゲート配線21と接続されている。すなわち、トランジスタPU2,PD3,PD4,PG2のトップと、トランジスタPU1,PD1,PD2のゲートとが、ローカル配線32、M1配線42、および、ゲート配線21を介して接続されている。ローカル配線32、M1配線42、および、ゲート配線21が、記憶ノードBに対応する。ローカル配線32は、第2信号配線の一例である。M1配線42は、第2接続配線の一例である。
 ワード線WLであるM2配線51は、X方向に延びている。M2配線51は、Y方向に延びるM1配線43、ローカル配線、および、ビアを介して、ゲート配線22と接続されている。また、M2配線51は、Y方向に延びるM1配線44、ローカル配線、および、ビアを介して、ゲート配線24と接続されている。すなわち、トランジスタPG1,PG2のゲートは、M1配線43,44を介して、M2配線51すなわちワード線WLに接続されている。
 また、電源電圧VSSを供給するM2配線52,53は、平面視でメモリセルMC1と重なるように、X方向に延びている。ただし、M2配線52,53は、メモリセルMC1と直接には接続されていない。
 M3配線61,62,63,64,65,66,67が形成されている。M3配線61,62,63,64,65,66,67は、メモリセルアレイ全体にわたって、Y方向に延びている。M3配線62はメモリセルMC1,MC2に接続されるビット線BLであり、M3配線66はメモリセルMC1,MC2に接続される反転ビット線BLXである。M3配線62,66は、メモリセルMC1と直接には接続されていない。ただし、後述するように、タップセルにおいて、M3配線62は、ビット線BLに対応するボトム配線12と接続されており、M3配線66は、反転ビット線BLXに対応するボトム配線16と接続されている。
 また、M3配線61,63,65,67は電源電圧VSSを供給する。M3配線64は電源電圧VDDを供給する。ただし、M3配線61,63,65,67およびM3配線64は、メモリセルMC1と直接には接続されていない。M3配線61,63,65,67は、M2配線52,53と、ビアを介して接続されている。
 本実施形態に係るSRAMメモリセルでは、一方のドライブトランジスタが並列接続された2個のトランジスタPD1,PD2によって構成されており、他方のドライブトランジスタが並列接続された2個のトランジスタPD3,PD4によって構成されている。これにより、ドライブトランジスタのサイズを大きくすることができるので、SNMが向上し、歩留まりを高めることができる。また、メモリセルの読み出し電流が増加するため、読み出し速度が速くなる。加えて、SRAMメモリセルを構成するトランジスタPU1,PU2,PD1,PD2,PD3,PD4,PG1,PG2の配置が、高い対称性を有している。このため、デバイス特性における非対称性が抑制されるので、デバイス特性を向上させることができるとともに、半導体集積回路装置の信頼性を高め、歩留まりを高めることができる。
 また、各ボトム配線はY方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各ゲート配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各ローカル配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各M1配線はY方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各M2配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各M3配線はY方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。
 したがって、半導体集積回路装置の製造精度が向上し、デバイス特性のばらつきが抑制される。なお、各層における配線は、必ずしも全てが、方向、配線幅、または、配線ピッチが同一でなくてもかまわない。
 (タップセルのレイアウト)
 タップセルの機能は、基板またはウェルに電源電位を供給することである。これに加えて本実施形態では、タップセルは、ビット線BLに対応するボトム配線およびM3配線を接続するとともに、反転ビット線BLXに対応するボトム配線およびM3配線を接続する構成を有している。
 図9~図13は本実施形態におけるタップセルのレイアウト構成例である。図9は全体平面図、図10~図13は層別の平面図である。具体的には、図10はVNW FETおよびその下の層を示し、図11はローカル配線およびM1配線を示し、図12はM1およびM2配線を示し、図13はM2およびM3配線を示す。図9~図13に示すレイアウトは、上述したメモリセルアレイの図面下側に位置しており、さらに下側には、別のメモリセルアレイが配置されている。
 図9~図13では、隣接配置されたタップセルTCA1,TCA2およびその周辺のレイアウトを示している。タップセルTCA1は、メモリセルMC1,MC2とY方向に並ぶ位置に配置されており、タップセルTCA2は、メモリセルMC3,MC4とY方向に並ぶ位置に配置されている。タップセルTCA1,TCA2の図面上側には、上述したダミーメモリセルDCA3,DCA4がある。
 以下、タップセルTCA1を例にとって、レイアウト構造の詳細について説明する。
 タップセルTCA1におけるY方向中央部に、ボトム領域111,112,113が設けられている。ボトム領域111は、N導電型であり、Nウェル上に設けられている。ボトム領域112,113は、P導電型であり、P基板またはPウェル上に設けられている。電源電圧VDDを供給するM2配線153、および、電源電圧VSSを供給するM2配線154が、X方向に延びている。M2配線153は、M1配線145を介してボトム領域111と接続されている。すなわち、M2配線153は、M1配線145およびボトム領域111を介して、Nウェルに電源電圧VDDを供給する。M2配線154は、M1配線146a,146bを介して、ボトム領域112,113と接続されている。すなわち、M2配線154は、M1配線146a,146bおよびボトム領域112,113を介して、P基板またはPウェルに電源電圧VSSを供給する。
 ここでは、M2配線153,154は、メモリセルに電源電圧を供給する他の配線とは接続されていない。すなわち、基板またはウェルへの電源電圧は、メモリセルの電源電圧とは分離して供給される。なお、例えばM2配線153とM3配線64とを接続し、M2配線154とM2配線63,65とを接続して、基板またはウェルへの電源電圧とメモリセルの電源電圧とを、分離せずに供給してもかまわない。
 また、タップセルTCA1は、ビット線対BL,BLXであるボトム配線12,16、および、ビット線対BL,BLXであるM3配線62,66と、平面視で重なりを有している。そしてタップセルTCA1において、ボトム配線12は、ローカル配線、M1配線141、M2配線151を介して、M3配線62と接続されている。また、ボトム配線16は、ローカル配線、M1配線142、M2配線152を介して、M3配線66と接続されている。
 すなわち、タップセルTCA1は、ビット線BLであるボトム配線12およびM3配線62を電気的に接続し、反転ビット線BLXであるボトム配線16およびM3配線66を電気的に接続するビット線接続部を備えている。このように、ビット線対BL,BLXをM3配線層に設けて、タップセルにおけるビット線接続部によって、ボトム配線のビット線対BL,BLXと接続することによって、ビット線対BL,BLXの低抵抗化を実現することができる。
 図14~図18は本実施形態におけるタップセルの他のレイアウト構成例である。図14は平面図、図15~図18は層別の平面図である。具体的には、図15はVNW FETおよびその下の層を示し、図16はローカル配線およびM1配線を示し、図17はM1およびM2配線を示し、図18はM2およびM3配線を示す。図14~図18に示すレイアウトは、上述したメモリセルアレイの上側に位置している。
 図14~図18では、隣接配置されたタップセルTCB1,TCB2およびその周辺のレイアウトを示している。タップセルTCB1は、メモリセルMC1,MC2とY方向に並ぶ位置に配置されており、タップセルTCB2は、メモリセルMC3,MC4とY方向に並ぶ位置に配置されている。タップセルTCB1,TCB2の図面下側には、上述したダミーメモリセルDCA1,DCA2がある。
 以下、タップセルTCB1を例にとって、レイアウト構造の詳細について説明する。なお、タップセルTCB1,TCB2の構成は、上述したタップセルTCA1の図面下側半分の構成と同様であり、ここでは説明を省略する場合がある。
 タップセルTCB1におけるY方向上側部分に、ボトム領域114,115,116が設けられている。ボトム領域114は、N導電型であり、Nウェル上に設けられている。ボトム領域115,116は、P導電型であり、P基板またはPウェル上に設けられている。電源電圧VDDを供給するM2配線157、および、電源電圧VSSを供給するM2配線158が、X方向に延びている。M2配線157は、M1配線147を介してボトム領域114と接続されている。すなわち、M2配線157は、M1配線147およびボトム領域114を介して、Nウェルに電源電圧VDDを供給する。M2配線158は、M1配線148a,148bを介して、ボトム領域115,116と接続されている。すなわち、M2配線158は、M1配線148a,148bおよびボトム領域115,116を介して、P基板またはPウェルに電源電圧VSSを供給する。
 ここでは、M2配線157,158は、メモリセルに電源電圧を供給する他の配線とは接続されていない。すなわち、基板またはウェルへの電源電圧は、メモリセルの電源電圧とは分離して供給される。なお、例えばM2配線157とM3配線64とを接続し、M2配線158とM2配線63,65とを接続して、基板またはウェルへの電源電圧とメモリセルの電源電圧とを、分離せずに供給してもかまわない。
 また、タップセルTCB1は、ビット線対BL,BLXであるボトム配線12,16、および、ビット線対BL,BLXであるM3配線62,66と、平面視で重なりを有している。そしてタップセルTCB1において、ボトム配線12は、ローカル配線、M1配線143、M2配線155を介して、M3配線62と接続されている。また、ボトム配線16は、ローカル配線、M1配線144、M2配線156を介して、M3配線66と接続されている。
 すなわち、タップセルTCB1は、ビット線BLであるボトム配線12およびM3配線62を電気的に接続し、反転ビット線BLXであるボトム配線16およびM3配線66を電気的に接続するビット線接続部を備えている。このように、ビット線対BL,BLXをM3配線層に設けて、タップセルにおけるビット線接続部によって、ボトム配線のビット線対BL,BLXと接続することによって、ビット線対BL,BLXの低抵抗化を実現することができる。
 (第2実施形態)
 図19~図21は第2実施形態に係るメモリセルのレイアウト構造の例を示す図である。図19は全体平面図、図20および図21は層別の平面図である。具体的には、図20はVNW FETおよびその下の層を示し、図21はローカル配線およびM1配線を示す。
 図19~図21では、隣接配置された4個のメモリセルMC1,MC2,MC3,MC4と、その周辺のレイアウトを示している。本実施形態に係るメモリセルは、第1実施形態と同様に、図8(a)に示す1ポートメモリセルを実現している。なお、ここでは説明の便宜上、メモリセルアレイは4個のメモリセルMC1,MC2,MC3,MC4からなり、メモリセルアレイの周囲にダミーメモリセルが配置されているものとしている。メモリセルアレイの上下(Y方向における両側)に、ダミーメモリセルDCA1~DCA4が配置されている。メモリセルアレイの左右(X方向における両側)に、ダミーメモリセルDCB1~DCB4が配置されている。メモリセルアレイの四隅の先に、ダミーメモリセルDCC1~DCC4が配置されている。
 各メモリセルMC1~MC4は、基本的には、同一構造を有する。メモリセルMC2はメモリセルMC1と同一レイアウトを有する。メモリセルMC3はメモリセルMC1を左右(X方向)に反転した構造である。メモリセルMC4はメモリセルMC3と同一レイアウトを有する。また、メモリセルアレイの周囲に配置されたダミーメモリセルは、メモリセルMC1~MC4の配置に合わせたレイアウトを有している。ただし、メモリセルMC2がメモリセルMC1に対して反転されておらず、メモリセルMC4がメモリセルMC3に対して反転されていないことを除けば、レイアウト構造は第1実施形態とほぼ同様である。このため、M2配線より上の層別の平面図や、断面図は省略している。
 以下、メモリセルMC1を例にとって、レイアウト構造の詳細について説明する。ただし、第1実施形態と同様の構成については、その説明を省略する場合がある。
 トランジスタPU1,PU2,PD1,PD2,PD3,PD4,PG1,PG2は、VNW FETであり、それぞれ1個のVNWからなる。トランジスタPU1,PD1,PD2,PG1は、X方向に並んで配置されている。トランジスタPU2,PD3,PD4,PG2は、X方向に並んで配置されている。トランジスタPU1の左右(X方向における両側)に、トランジスタPD1,PD2がそれぞれ配置されている。トランジスタPU2の左右(X方向における両側)に、トランジスタPD3,PD4がそれぞれ配置されている。トランジスタPU1,PU2はY方向に並んで配置されている。トランジスタPG1は、トランジスタPU1の右側であって、トランジスタPD2のさらに右に配置されている。トランジスタPG2は、トランジスタPU2の左側であって、トランジスタPD3のさらに左に配置されている。P導電型のトランジスタPU1,PU2の下にはNウェルが形成されており(図示は省略)、N導電型のトランジスタPG1,PG2,PD1,PD2,PD3,PD4の下には、P基板がある、または、Pウェルが形成されている。
 ボトム配線211,212,213,214,215,216,217が形成されている。ボトム配線211,212,213,214,215,216,217は、メモリセルアレイ全体にわたって、Y方向に延びている。ボトム配線211,213,215,217は電源電圧VSSを供給する。ボトム配線214は電源電圧VDDを供給する。ボトム配線212はメモリセルMC1,MC2に接続されるビット線BLであり、ボトム配線216はメモリセルMC1,MC2に接続される反転ビット線BLXである。
 トランジスタPU1,PU2のボトムは、電源電圧VDDを供給するボトム配線214に接続されている。トランジスタPD1,PD3のボトムは、電源電圧VSSを供給するボトム配線213に接続されている。トランジスタPD2,PD4のボトムは、電源電圧VSSを供給するボトム配線215に接続されている。トランジスタPG1のボトムは、反転ビット線BLXであるボトム配線216に接続されている。トランジスタPG2のボトムは、ビット線BLであるボトム配線212に接続されている。
 トランジスタPU1,PD1,PD2のゲート同士は、X方向に延びるゲート配線221によって接続されている。ゲート配線221は、トランジスタPD1のゲートから、X方向における図面左側に引き出されている。トランジスタPG1のゲートから、X方向における図面右側にゲート配線222が引き出されている。トランジスタPU2,PD3,PD4のゲート同士は、X方向に延びるゲート配線223によって接続されている。ゲート配線223は、トランジスタPD4のゲートから、X方向における図面右側に引き出されている。トランジスタPG2のゲートから、X方向における図面左側にゲート配線224が引き出されている。
 トランジスタPU1,PD1,PD2,PG1のトップは、X方向に延びるローカル配線231に接続されている。ローカル配線231は、M1配線241を介して、ゲート配線223と接続されている。すなわち、トランジスタPU1,PD1,PD2,PG1のトップと、トランジスタPU2,PD3,PD4のゲートとが、ローカル配線231、M1配線241、および、ゲート配線223を介して接続されている。ローカル配線231、M1配線241、および、ゲート配線223が、記憶ノードAに対応する。ローカル配線231は、第1信号配線の一例である。M1配線241は、第1接続配線の一例である。
 トランジスタPU2,PD3,PD4,PG2のトップは、X方向に延びるローカル配線232に接続されている。ローカル配線232は、M1配線242を介して、ゲート配線221と接続されている。すなわち、トランジスタPU2,PD3,PD4,PG2のトップと、トランジスタPU1,PD1,PD2のゲートとが、ローカル配線232、M1配線242、および、ゲート配線221を介して接続されている。ローカル配線232、M1配線242、および、ゲート配線221が、記憶ノードBに対応する。ローカル配線232は、第2信号配線の一例である。M1配線242は、第2接続配線の一例である。
 ワード線WLであるM2配線251は、X方向に延びている。M2配線251は、Y方向に延びるM1配線243、ローカル配線、および、ビアを介して、ゲート配線224と接続されている。また、M2配線251は、Y方向に延びるM1配線244、ローカル配線、および、ビアを介して、ゲート配線222と接続されている。すなわち、トランジスタPG1,PG2のゲートは、M2配線251すなわちワード線WLに接続されている。
 また、電源電圧VSSを供給するM2配線252,253は、平面視でメモリセルMC1と重なるように、X方向に延びている。ただし、M2配線252,253は、メモリセルMC1と直接には接続されていない。
 M3配線261,262,263,264,265,266,267が形成されている。M3配線261,262,263,264,265,266,267は、メモリセルアレイ全体にわたって、Y方向に延びている。M3配線262はメモリセルMC1,MC2に接続されるビット線BLであり、M3配線266はメモリセルMC1,MC2に接続される反転ビット線BLXである。M3配線262,266は、メモリセルMC1と直接には接続されていない。ただし、後述するように、タップセルにおいて、M3配線262は、ビット線BLに対応するボトム配線212と接続されており、M3配線266は、反転ビット線BLXに対応するボトム配線216と接続されている。
 また、M3配線261,263,265,267は電源電圧VSSを供給する。M3配線264は電源電圧VDDを供給する。ただし、M3配線261,263,265,267およびM3配線264は、メモリセルMC1と直接には接続されていない。
 本実施形態に係るSRAMメモリセルでは、一方のドライブトランジスタが並列接続された2個のトランジスタPD1,PD2によって構成されており、他方のドライブトランジスタが並列接続された2個のトランジスタPD3,PD4によって構成されている。これにより、ドライブトランジスタのサイズを大きくすることができるので、SNMが向上し、歩留まりを高めることができる。加えて、SRAMメモリセルを構成するトランジスタPU1,PU2,PD1,PD2,PD3,PD4,PG1,PG2の配置が、高い対称性を有している。このため、デバイス特性における非対称性が抑制されるので、デバイス特性を向上させることができるとともに、半導体集積回路装置の信頼性を高め、歩留まりを高めることができる。
 また、各ボトム配線はY方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各ゲート配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各ローカル配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各M1配線はY方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各M2配線はX方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。各M3配線はY方向に延びており、配線幅は同一であり、かつ、配線ピッチは一定である。
 したがって、半導体集積回路装置の製造精度が向上し、デバイス特性のばらつきが抑制される。なお、各層における配線は、必ずしも全てが、方向、配線幅、または、配線ピッチが同一でなくてもかまわない。
 (タップセルのレイアウト)
 図22および図23は、本実施形態におけるタップセルのレイアウト構成例を示す全体平面図である。なお、ここで説明するレイアウト構造は、第1実施形態とほぼ同様であるため、層別の平面図は省略している。
 図22では、隣接配置されたタップセルTCA1,TCA2およびその周辺のレイアウトを示している。タップセルTCA1は、メモリセルMC1,MC2とY方向に並ぶ位置に配置されており、タップセルTCA2は、メモリセルMC3,MC4とY方向に並ぶ位置に配置されている。タップセルTCA1,TCA2の図面上側には、上述したダミーメモリセルDCA3,DCA4がある。
 電源電圧VDDを供給するM2配線353、および、電源電圧VSSを供給するM2配線354が、X方向に延びている。M2配線353は、M1配線およびボトム領域を介して、Nウェルに電源電圧VDDを供給する。M2配線354は、M1配線およびボトム領域を介して、P基板またはPウェルに電源電圧VSSを供給する。
 図23では、隣接配置されたタップセルTCB1,TCB2およびその周辺のレイアウトを示している。タップセルTCB1は、メモリセルMC1,MC2とY方向に並ぶ位置に配置されており、タップセルTCB2は、メモリセルMC3,MC4とY方向に並ぶ位置に配置されている。タップセルTCB1,TCB2の図面下側には、上述したダミーメモリセルDCA1,DCA2がある。
 電源電圧VDDを供給するM2配線357、および、電源電圧VSSを供給するM2配線358が、X方向に延びている。M2配線357は、M1配線およびボトム領域を介して、Nウェルに電源電圧VDDを供給する。M2配線358は、M1配線およびボトム領域を介して、P基板またはPウェルに電源電圧VSSを供給する。
 その他の構成については、第1実施形態と同様であり、ここではその詳細な説明を省略する。本実施形態に係るタップセルによって、第1実施形態と同様の作用効果が得られる。
 すなわち、タップセルTCA1,TCB1は、ビット線BLであるボトム配線212およびM3配線262を電気的に接続し、反転ビット線BLXであるボトム配線216およびM3配線266を電気的に接続している。このように、ビット線対BL,BLXをM3配線層に設けて、タップセルにおいて、ボトム配線のビット線対BL,BLXと接続することによって、ビット線対BL,BLXの低抵抗化を実現することができる。
 (他の実施形態)
 (その1)
 上述したレイアウト構造の例では、VNWの平面形状は円形であるものとしたが、VNWの平面形状は円形に限られるものではない。例えば、矩形、長円形などであってもかまわない。例えば長円形の場合、単位面積当たりのVNWの面積が大きくなるので、トランジスタに電流をより多く流すことができ、半導体集積回路装置の高速化が実現できる。
 また、VNWの平面形状が、長円形のように一方向に長く延びる形状である場合には、延びる方向は同一であるのが好ましい。また、端の位置はそろっていることが好ましい。
 また、SRAMメモリセルにおいて、全てのVNWを同一形状にする必要はなく、異なる平面形状を有するVNWが混在していてもかまわない。例えば、円形のVNWと長円形のVNWとが混在していてもかまわない。
 また、上述の実施形態では、1個のトランジスタは1個のVNWからなるものとしたが、1個のトランジスタを複数のVNWによって構成してもかまわない。
 (その2)
 上述の実施形態では、タップセルにおけるビット線接続部が、ビット線BLであるボトム配線およびM3配線を電気的に接続し、反転ビット線BLXであるボトム配線およびM3配線を電気的に接続するものとした。ただし、上述したビット線接続部は、タップセルとは別個に、回路ブロックに設けてもかまわない。
 また、上述の実施形態では、ビット線BLおよび反転ビット線BLXをM3配線層に形成した例について説明したが、ビット線BLおよび反転ビット線BLXを他の層のメタル配線層に形成してもかまわない。
 本開示では、VNW FETを用いたSRAMメモリセルについて、SNMを向上させ、かつ、トランジスタ配置の対称性が高いレイアウトが実現されるので、例えば半導体チップの性能向上に有用である。
MC1~MC4 SRAMメモリセル
A 第1記憶ノード
B 第2記憶ノード
PU1 第1トランジスタ
PD1 第2トランジスタ
PD2 第3トランジスタ
PU2 第4トランジスタ
PD3 第5トランジスタ
PD4 第6トランジスタ
PG1 第7トランジスタ
PG2 第8トランジスタ
BL ビット線
BLX 反転ビット線
1,2 メモリセルアレイ
3 SRAMメモリセル
14 ボトム配線
21 ゲート配線
23 ゲート配線
31 ローカル配線(第1信号配線)
32 ローカル配線(第2信号配線)
41 M1配線(第1接続配線)
42 M1配線(第2接続配線)
214 ボトム配線
221 ゲート配線
223 ゲート配線
231 ローカル配線(第1信号配線)
232 ローカル配線(第2信号配線)
241 M1配線(第1接続配線)
242 M1配線(第2接続配線)

Claims (5)

  1.  SRAM(Static Random Access Memory)メモリセルを備えた半導体集積回路装置であって、
     前記SRAMメモリセルは、
     第1記憶ノードと、
     第2記憶ノードと、
     高電圧側電源線と前記第1記憶ノードとの間に設けられた第1導電型の第1トランジスタと、
     低電圧側電源線と前記第1記憶ノードとの間に、並列に設けられた第2導電型の第2および第3トランジスタと、
     前記高電圧側電源線と前記第2記憶ノードとの間に設けられた前記第1導電型の第4トランジスタと、
     前記低電圧側電源線と前記第2記憶ノードとの間に、並列に設けられた前記第2導電型の第5および第6トランジスタと、
     ビット線と前記第1記憶ノードとの間に設けられ、ゲートがワード線と接続された前記第2導電型の第7トランジスタと、
     反転ビット線と前記第2記憶ノードとの間に設けられ、ゲートが前記ワード線と接続された前記第2導電型の第8トランジスタとを備え、
     前記第1、第2および第3トランジスタのゲートは、互いに接続されており、かつ、前記第2記憶ノードと接続されており、
     前記第4、第5および第6トランジスタのゲートは、互いに接続されており、かつ、前記第1記憶ノードと接続されており、
     前記第1~第8トランジスタは、VNW(Vertical Nanowire:縦型ナノワイヤ) FETであり、
     前記第2および第3トランジスタは、前記第1トランジスタの第1方向における両側に、それぞれ配置されており、
     前記第5および第6トランジスタは、前記第4トランジスタの前記第1方向における両側に、それぞれ配置されており、
     前記第7トランジスタは、前記第1トランジスタの前記第1方向における第1の側に配置されている一方、前記第8トランジスタは、前記第4トランジスタの前記第1方向における、前記第1の側の反対側である第2の側に配置されている
    ことを特徴とする半導体集積回路装置。
  2.  請求項1記載の半導体集積回路装置において、
     前記SRAMメモリセルは、
     前記第1方向に延びており、前記第1、第2、第3および第7トランジスタのトップ電極と接続された第1信号配線と、
     前記第1方向に延びており、前記第4、第5、第6および第8トランジスタのトップ電極と接続された第2信号配線とを備える
    ことを特徴とする半導体集積回路装置。
  3.  請求項2記載の半導体集積回路装置において、
     前記SRAMメモリセルは、
     前記第1方向に延びており、前記第1、第2および第3トランジスタのゲートと接続され、前記第3トランジスタから前記第2の側に引き出された第1ゲート配線と、
     前記第1方向に延びており、前記第4、第5および第6トランジスタのゲートと接続され、前記第5トランジスタから前記第1の側に引き出された第2ゲート配線とを備え、
     前記第1信号配線は、前記第2ゲート配線と、前記第1方向と垂直をなす第2方向に延びる第1接続配線を介して、電気的に接続されており、
     前記第2信号配線は、前記第1ゲート配線と、前記第2方向に延びる第2接続配線を介して、電気的に接続されている
    ことを特徴とする半導体集積回路装置。
  4.  請求項1記載の半導体集積回路装置において、
     前記第1および第4トランジスタは、前記第1方向と垂直をなす第2方向において、並べて配置されている
    ことを特徴とする半導体集積回路装置。
  5.  請求項4記載の半導体集積回路装置において、
     前記SRAMメモリセルは、
     前記第2方向に延びており、平面視で前記第1および第4トランジスタと重なりを有しており、前記第1および第4トランジスタのボトム電極と接続された第1ボトム配線を備える
    ことを特徴とする半導体集積回路装置。
PCT/JP2019/003869 2018-02-15 2019-02-04 半導体集積回路装置 WO2019159739A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020500401A JPWO2019159739A1 (ja) 2018-02-15 2019-02-04 半導体集積回路装置
US16/993,403 US11062765B2 (en) 2018-02-15 2020-08-14 Semiconductor integrated circuit device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-025367 2018-02-15
JP2018025367 2018-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/993,403 Continuation US11062765B2 (en) 2018-02-15 2020-08-14 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
WO2019159739A1 true WO2019159739A1 (ja) 2019-08-22

Family

ID=67619860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003869 WO2019159739A1 (ja) 2018-02-15 2019-02-04 半導体集積回路装置

Country Status (3)

Country Link
US (1) US11062765B2 (ja)
JP (1) JPWO2019159739A1 (ja)
WO (1) WO2019159739A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI801832B (zh) * 2020-03-31 2023-05-11 台灣積體電路製造股份有限公司 記憶體電路、記憶體單元以及記憶體單元的操作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205168A (ja) * 2007-02-20 2008-09-04 Fujitsu Ltd 半導体装置及びその製造方法
WO2012017535A1 (ja) * 2010-08-05 2012-02-09 ルネサスエレクトロニクス株式会社 半導体装置
JP2013528931A (ja) * 2010-04-13 2013-07-11 インターナショナル・ビジネス・マシーンズ・コーポレーション 整合されたデバイスにおけるナノワイヤ回路
WO2014184933A1 (ja) * 2013-05-16 2014-11-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Sgtを有する半導体装置の製造方法
US20150318289A1 (en) * 2014-04-30 2015-11-05 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device and manufacturing method thereof
WO2016162927A1 (ja) * 2015-04-06 2016-10-13 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体メモリ装置と、その製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10103154B2 (en) 2013-05-16 2018-10-16 Unisantis Electronics Singapore Pte. Ltd. Method for producing an SGT-including semiconductor device
US9646973B2 (en) * 2015-03-27 2017-05-09 Taiwan Semiconductor Manufacturing Company, Ltd. Dual-port SRAM cell structure with vertical devices
US9620509B1 (en) * 2015-10-30 2017-04-11 Taiwan Semiconductor Manufacturing Co., Ltd. Static random access memory device with vertical FET devices
WO2018193699A1 (ja) * 2017-04-20 2018-10-25 株式会社ソシオネクスト 半導体記憶回路、半導体記憶装置及びデータ検出方法
US10157987B1 (en) * 2017-08-14 2018-12-18 Taiwan Semiconductor Manufacturing Co., Ltd. Fin-based strap cell structure
US10211206B1 (en) * 2017-11-01 2019-02-19 Globalfoundries Inc. Two-port vertical SRAM circuit structure and method for producing the same
JPWO2019155559A1 (ja) * 2018-02-07 2021-01-28 株式会社ソシオネクスト 半導体集積回路装置
WO2019167215A1 (ja) * 2018-03-01 2019-09-06 株式会社ソシオネクスト 半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205168A (ja) * 2007-02-20 2008-09-04 Fujitsu Ltd 半導体装置及びその製造方法
JP2013528931A (ja) * 2010-04-13 2013-07-11 インターナショナル・ビジネス・マシーンズ・コーポレーション 整合されたデバイスにおけるナノワイヤ回路
WO2012017535A1 (ja) * 2010-08-05 2012-02-09 ルネサスエレクトロニクス株式会社 半導体装置
WO2014184933A1 (ja) * 2013-05-16 2014-11-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Sgtを有する半導体装置の製造方法
US20150318289A1 (en) * 2014-04-30 2015-11-05 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device and manufacturing method thereof
WO2016162927A1 (ja) * 2015-04-06 2016-10-13 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体メモリ装置と、その製造方法

Also Published As

Publication number Publication date
US11062765B2 (en) 2021-07-13
US20200372952A1 (en) 2020-11-26
JPWO2019159739A1 (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
WO2019155559A1 (ja) 半導体集積回路装置
US8987831B2 (en) SRAM cells and arrays
US8675397B2 (en) Cell structure for dual-port SRAM
TWI710064B (zh) 記憶體裝置
US20230105495A1 (en) Four-Poly-Pitch Sram Cell With Backside Metal Tracks
TWI768249B (zh) 半導體結構
US11569218B2 (en) Semiconductor integrated circuit device
US11587872B2 (en) Interconnect structure for improving memory performance and/or logic performance
TW202209637A (zh) 半導體結構及其製造方法
US9768179B1 (en) Connection structures for routing misaligned metal lines between TCAM cells and periphery circuits
US11450674B2 (en) Semiconductor integrated circuit device
JPWO2019194007A1 (ja) 半導体集積回路装置
US11295987B2 (en) Output circuit
WO2019159739A1 (ja) 半導体集積回路装置
TW202109749A (zh) 半導體裝置
JP7060814B2 (ja) 半導体集積回路装置
TWI801832B (zh) 記憶體電路、記憶體單元以及記憶體單元的操作方法
US11309320B2 (en) Semiconductor storage device
JP7174263B2 (ja) 半導体集積回路装置
US20240105258A1 (en) Memory device and method for forming the same
US20240008241A1 (en) Memory structure
TW202240695A (zh) 半導體裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500401

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19755169

Country of ref document: EP

Kind code of ref document: A1