WO2019159444A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2019159444A1
WO2019159444A1 PCT/JP2018/040937 JP2018040937W WO2019159444A1 WO 2019159444 A1 WO2019159444 A1 WO 2019159444A1 JP 2018040937 W JP2018040937 W JP 2018040937W WO 2019159444 A1 WO2019159444 A1 WO 2019159444A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
analog
signal
region
switch
Prior art date
Application number
PCT/JP2018/040937
Other languages
English (en)
French (fr)
Inventor
光二 依田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/967,622 priority Critical patent/US11290670B2/en
Publication of WO2019159444A1 publication Critical patent/WO2019159444A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • H04N25/443Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by reading pixels from selected 2D regions of the array, e.g. for windowing or digital zooming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • This technology relates to an imaging device. Specifically, the present invention relates to an imaging device including an analog-digital converter for each of a plurality of pixel columns.
  • a column ADC Analog-to-Digital Converter
  • an analog / digital converter is provided for each column of pixels to convert a pixel signal into a digital value
  • an imaging apparatus in which a plurality of analog-digital converters are provided for each pixel column and different exposure times and gain settings are set for each ADC system (for example, see Patent Document 1). ).
  • the present technology has been created in view of such a situation, and an object thereof is to separately control output of pixels corresponding to a plurality of different regions in the entire region of the imaging element.
  • the present technology has been made in order to solve the above-described problems.
  • the first aspect of the present technology is that the first and second pixels of the image sensor that captures an image of the subject and the first and second pixels.
  • One of the first and second analog-digital converters that convert the pixel signal from the analog value into the digital value, and the pixel signal from the first pixel is one of the first and second analog-digital converters
  • a second switch for supplying a pixel signal from the second pixel to one of the first and second analog-digital converters.
  • the first and second pixels are supplied to one of the first and second analog-digital converters by the first and second switches.
  • the first pixel corresponds to the first region
  • the second pixel has at least a part of the second pixel that overlaps the first region in the column direction.
  • the first switch supplies the pixel signal of the first pixel to the first analog-to-digital converter
  • the second switch supplies the pixel signal of the second pixel to the region corresponding to the region. You may make it supply to a 2nd analog-digital converter.
  • the pixel signal is supplied to different first or second analog-digital converters.
  • the pixel signal from the third pixel is When the third pixel is supplied to the first analog-digital converter and the third pixel corresponds to the second region, the pixel signal from the third pixel is supplied to the second analog-digital converter. 3 and when the fourth pixel corresponds to the first region, the pixel signal from the fourth pixel is supplied to the first analog-digital converter so that the fourth pixel In the case of corresponding to the second region, a fourth switch for supplying a pixel signal from the fourth pixel to the second analog-digital converter may be further included.
  • the third and fourth switches are provided for the third and fourth pixels, respectively, and the pixel signal is supplied to the first or second analog-digital converter.
  • a plurality of imaging circuits including the first to fourth pixels, the first and second analog-digital converters, and the first to fourth switches may be provided.
  • the image sensor further includes third and fourth pixels of the image sensor, and the first switch includes the first switch when the third pixel corresponds to the first region.
  • the pixel signal from the third pixel is supplied to the first analog-digital converter, and the third pixel corresponds to the second region, the pixel signal from the third pixel is The second switch supplies the pixel signal from the fourth pixel to the first analog-digital converter when the fourth pixel corresponds to the first region.
  • the pixel signal from the fourth pixel may be supplied to the second analog-digital converter.
  • the pixel signals of the third and fourth pixels are supplied to the first or second analog-digital converter via the first and second switches, respectively.
  • a plurality of imaging circuits including the first to fourth pixels, the first and second analog-digital converters, and the first and second switches may be provided.
  • a plurality of imaging circuits including the first to fourth pixels, the first and second analog-digital converters, and the first and second switches may be provided.
  • the first flip-flop holding the first digital signal output from the first analog-digital converter and the second flip-flop output from the second analog-digital converter. And a second flip-flop for holding the digital signal.
  • the first and second digital signals output from the first and second analog / digital converters are held in the first and second flip-flops.
  • the first and second digital signals held in the first and second flip-flops are selected to be output to one of the first and second output units.
  • An output switch may be further included. Thereby, an effect of outputting a pixel signal of a predetermined region is brought about.
  • the first pixel corresponds to the first region
  • the second pixel has at least a part of the second pixel that overlaps the first region in the column direction.
  • the first switch supplies the pixel signal of the first pixel to the first analog-to-digital converter
  • the second switch supplies the pixel signal of the second pixel to the region corresponding to the region.
  • a second analog-digital converter, and the output switch outputs the first digital signal output from the first analog-digital converter to the first output unit, and the second analog-digital converter.
  • the second digital signal output from the converter may be output to the second output unit. This brings about the effect
  • the present technology it is possible to achieve an excellent effect that the pixels corresponding to a plurality of different areas in the entire area of the image sensor can be output separately.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • composition of an imaging device in an embodiment of this art It is a figure showing an example of composition of a pixel circuit in an embodiment of this art. It is a figure showing an example of composition of a unit sequence of an imaging device in a 1st embodiment of this art. It is a figure showing an example of composition of column selection part 190 in a 1st embodiment of this art. It is a figure showing an example of an operation outline of an imaging device in a 1st embodiment of this art. It is a figure showing an example of correspondence relation between an imaging device and a field in a 1st embodiment of this art. It is a figure showing an example of processing timing of field A in a 1st embodiment of this art.
  • FIG. 3 is a flowchart illustrating an example of a control processing procedure of the imaging apparatus according to the first embodiment of the present technology. It is a figure showing an example of composition of a unit sequence of an imaging device in a 2nd embodiment of this art. It is a figure showing an example of composition of column selection part 190 in a 2nd embodiment of this art.
  • FIG. 1 is a diagram illustrating a configuration example of an imaging device according to an embodiment of the present technology.
  • the imaging device in this embodiment includes a pixel array 101 including a plurality of pixel columns 110, a row selection unit 150 and an AD conversion unit 170 corresponding to each of the pixel columns 110, and a column selection unit 190.
  • the pixel column 110 is a pixel group of an image sensor that images a subject.
  • pixels are arranged in an array (matrix), and a pixel group obtained by dividing the pixels into columns is referred to as a pixel column 110.
  • the AD conversion unit 170 performs conversion (AD conversion) from an analog signal to a digital signal for the pixel signal selected by the corresponding row selection unit 150.
  • Each of the AD converters 170 includes a plurality of AD converters (ADC), and can perform AD conversion on a plurality of pixel signals at the same time.
  • ADC AD converters
  • the row selection unit 150 selects a pixel signal in a predetermined row from pixel signals from pixels in the corresponding pixel column 110.
  • Each of the row selection units 150 can select pixel signals of a plurality of rows at the same time, and connects the selected pixel signals to any of the plurality of AD converters of the AD conversion unit 170.
  • the column selection unit 190 holds pixel signals based on digital signals output from the AD conversion unit 170, and selects and outputs pixel signals in a predetermined column among these pixel signals.
  • the column selection unit 190 can hold a plurality of pixel signals for each column.
  • FIG. 2 is a diagram illustrating a configuration example of the pixel circuit in the embodiment of the present technology.
  • the pixels of the pixel array 110 may be configured by, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the pixel 111 includes a photodiode 117, a transfer transistor 112, a floating diffusion region 113, a reset transistor 114, an amplification transistor 115, and a selection transistor 116. These four transistors of the transfer transistor 112, the reset transistor 114, the amplification transistor 115, and the selection transistor 116 are referred to as pixel transistors. In this example, it is assumed that the pixel transistor is a MOS transistor having an N-type carrier polarity.
  • the pixel 111 three signal lines of a transfer signal line, a reset signal line, and a selection signal line are provided in the row direction, and a vertical signal line 119 is provided in the column direction.
  • the power supply voltage Vdd is supplied to the drain side of the reset transistor 114 and the amplification transistor 115.
  • the photodiode (PhotoPDDiode: PD) 117 is a photoelectric conversion unit that generates electric charge according to incident light.
  • the anode of the photodiode 117 is grounded.
  • the transfer transistor 112 is a transistor that transfers charges generated in the photodiode 117.
  • the transfer transistor 112 is provided between the cathode of the photodiode 117 and the floating diffusion region 113.
  • the transfer transistor 112 is turned on when a high-level signal is input via a transfer signal line connected to the gate of the transfer transistor 112, and transfers the charge photoelectrically converted in the photodiode 117 to the floating diffusion region 113.
  • the floating diffusion (FD) region 113 is a diffusion layer region that converts the charge transferred by the transfer transistor 112 into a voltage signal.
  • the voltage signal in the floating diffusion region 113 is connected to the drain of the reset transistor 114 and the gate of the amplification transistor 115.
  • the reset transistor 114 is a transistor for resetting the voltage of the floating diffusion region 113.
  • the reset transistor 114 is provided between the power supply voltage Vdd and the floating diffusion region 113.
  • the reset transistor 114 is turned on when a high level signal is input to the reset signal line connected to the gate thereof, and resets the potential of the floating diffusion region 113 to the power supply voltage Vdd.
  • the amplification transistor 115 is a transistor that amplifies the voltage signal in the floating diffusion region 113.
  • the gate of the amplification transistor 115 is connected to the floating diffusion region 113.
  • the drain of the amplification transistor 115 is connected to the power supply voltage Vdd, and the source of the amplification transistor 115 is connected to the vertical signal line 119 via the selection transistor 116.
  • the amplification transistor 115 amplifies the voltage signal in the floating diffusion region 113 and outputs the amplified signal to the selection transistor 116 as a pixel signal.
  • the selection transistor 116 is a transistor for selecting this pixel.
  • the selection transistor 116 is provided between the amplification transistor 115 and the vertical signal line 119.
  • the selection transistor 116 is turned on when a high-level signal is input to the selection signal line connected to the gate thereof, and outputs the voltage signal amplified by the amplification transistor 115 to the vertical signal line 119.
  • FIG. 3 is a diagram illustrating a configuration example of a unit column of the imaging device according to the first embodiment of the present technology.
  • the row selection unit 150 includes a plurality of switches 151 to 154 corresponding to the pixels 1 to 4 in the pixel column 110.
  • the switches 151 to 154 are switches that switch the image signals from the pixels 1 to 4 so as to be connected to one of the vertical signal lines 701 and 702.
  • the constant current circuit 160 includes constant current sources 161 and 162 connected to the vertical signal lines 701 and 702, respectively.
  • the constant current sources 161 and 162 supply current necessary for reading out pixel signals from the pixels 1 to 4.
  • the AD converter 170 includes comparators 711 and 721, DA converters 712 and 722, and counters 713 and 723.
  • the DA converters 712 and 722 supply ramp signals for AD conversion.
  • each of the AD conversion units 170 includes DA converters 712 and 722.
  • the DA converters 712 and 722 are not included, and the ramp signal is shared between the columns. May be.
  • Comparators 711 and 721 are connected to the vertical signal lines 701 and 702, respectively, to compare the pixel signals from the pixels 1 to 4 with the ramp signal.
  • Counters 713 and 723 are counters that count the comparison results of the comparators 711 and 721.
  • Comparators 711 and 721 and counters 713 and 723 constitute a single slope type column ADC, respectively.
  • the comparator 711 and the counter 713 are referred to as ADC 171, and the comparator 721 and the counter 723 are referred to as ADC 172. That is, in this example, the ADC 171 is connected to the vertical signal line 701, and the ADC 172 is connected to the vertical signal line 702. That is, each of the switches 151 to 154 of the row selection unit 150 connects the selected pixel signal to one of the ADCs 171 and 172. The output of the ADC 171 is supplied to the signal line 719, and the output of the ADC 172 is supplied to the signal line 729. These outputs are supplied to the column selection unit 190.
  • the control unit 180 is connected to the pixel column 110, the row selection unit 150, the constant current circuit 160, the AD conversion unit 170, and the column selection unit 190 in the imaging device, and controls the entire imaging device.
  • FIG. 4 is a diagram illustrating a configuration example of the column selection unit 190 according to the first embodiment of the present technology.
  • the column selection unit 190 includes two horizontal transfer units 191 and 192 having the same configuration.
  • the horizontal transfer unit 191 corresponds to the ADC 171
  • the horizontal transfer unit 192 corresponds to the ADC 172. Thereby, two systems of operations can be performed in parallel.
  • Each of the horizontal transfer units 191 and 192 includes a plurality of pixel signal holding units 910 corresponding to each column, column selection switches 921 and 922, and output holding units 931 and 932.
  • the pixel signal holding unit 910 holds the pixel signal from the AD conversion unit 170 of each column.
  • the pixel signal holding unit 910 includes an input selector 911 and a flip-flop 912.
  • the input selector 911 selects one of the pixel signal from the corresponding AD conversion unit 170 and the pixel signal shifted from the previous pixel signal holding unit 910 and inputs the selected pixel signal to the flip-flop 912.
  • the input selector 911 selects a signal from the AD conversion unit 170 when capturing a pixel signal from the AD conversion unit 170, and a signal from the previous pixel signal holding unit 910 when performing a shift operation in the row direction. Select.
  • the flip-flop 912 holds the pixel signal input from the input selector 911.
  • the column selection switches 921 and 922 are for selecting pixel signals in a predetermined column from among the pixel signals held in the plurality of pixel signal holding units 910.
  • the column selection switches 921 and 922 select one of the pixel signals with the pixel signals held in all corresponding pixel signal holding units 910 as inputs in the horizontal transfer units 191 or 192, respectively.
  • the output holding units 931 and 932 hold and output the pixel signals selected by the column selection switches 921 and 922.
  • the output holding unit 931 corresponds to the column selection switch 921
  • the output holding unit 932 corresponds to the column selection switch 922.
  • FIG. 5 is a diagram illustrating an example of an operation outline of the imaging device according to the first embodiment of the present technology.
  • region A there are four regions, region A, region B, region C, and region D, as partial regions of the entire region of the pixel array 101.
  • the scanning operation for reading out pixel signals is performed independently.
  • the pixel is scanned from left to right and from bottom to top in the region. This is the same as the normal raster scan order when mapping to an image sensor via a lens.
  • a predetermined row is selected by the row selection unit 150 for each pixel column as described above, and supplied to the AD conversion unit 170 and the column selection unit 190.
  • the AD conversion unit 170 and the column selection unit 190 it is assumed that two systems of ADC 171 and horizontal transfer unit 191 and ADC 172 and horizontal transfer unit 192 are provided.
  • the ADC 171 and the horizontal transfer unit 191 take in the pixel signals of the area A and the area B and output them.
  • the ADC 172 and the horizontal transfer unit 192 capture and output the pixel signals of the regions C and D. Since the ADC 171 and the horizontal transfer unit 191 and the ADC 172 and the horizontal transfer unit 192 can operate independently, the pixel signals in the region A and the region B and the pixel signals in the region C and the region D can be processed independently. It is. Further, since the horizontal transfer unit 191 includes two column selection switches 921 and 922, the pixel signal in the region A and the pixel signal in the region B can be output independently. Similarly, the horizontal transfer unit 192 can output the pixel signal of the region C and the pixel signal of the region D independently.
  • FIG. 6 is a diagram illustrating an example of a correspondence relationship between the imaging device and the region according to the first embodiment of the present technology.
  • Region A is a four-pixel region of pixels 11, 12, 21 and 22.
  • Region B is a region of two pixels, pixels 13 and 14.
  • Region C is a four-pixel region of pixels 32, 33, 42, and 43.
  • a region D is a two-pixel region of the pixels 34 and 44.
  • a row selection unit 51 is connected to the pixel columns of the pixels 11, 21, 31, and 41 to select pixel signals in a predetermined row.
  • a row selection unit 52 is connected to the pixel columns of the pixels 12, 22, 32, and 42 to select pixel signals in a predetermined row.
  • a row selection unit 53 is connected to the pixel columns of the pixels 13, 23, 33, and 43 to select pixel signals in a predetermined row.
  • a row selection unit 54 is connected to the pixel columns of the pixels 14, 24, 34, and 44 to select pixel signals in a predetermined row.
  • the row selection unit 51 is connected to two systems of an ADC 61 and a flip-flop 81, and an ADC 71 and a flip-flop 91.
  • Two systems of an ADC 62 and a flip-flop 82, and an ADC 72 and a flip-flop 92 are connected to the row selection unit 52.
  • Two systems of ADC 63 and flip-flop 83, ADC 73 and flip-flop 93 are connected to row selection unit 53.
  • Two systems of an ADC 64 and a flip-flop 84, and an ADC 74 and a flip-flop 94 are connected to the row selection unit 54.
  • the flip-flops 81 to 84 correspond to the horizontal transfer unit 191 described above.
  • the two column selection switches 88 and 89 connected to the flip-flops 81 to 84 correspond to the column selection switches 921 and 922 and the output holding units 931 and 932 in the horizontal transfer unit 191 described above.
  • the flip-flops 91 to 94 correspond to the horizontal transfer unit 192 described above, and the two column selection switches 98 and 99 connected to the flip-flops 91 to 94 are the column selection switch 921 and the horizontal transfer unit 192 described above. 922 and output holding units 931 and 932.
  • the area A is processed by the ADC 61 and the flip-flop 81, the ADC 62 and the flip-flop 82, and the column selection switch 89.
  • the region B is processed by the ADC 63 and the flip-flop 83, the ADC 64 and the flip-flop 84, and the column selection switch 88.
  • the area C is processed by the ADC 72 and the flip-flop 92, the ADC 73 and the flip-flop 93, and the column selection switch 99.
  • the region D is processed by the ADC 74, the flip-flop 94, and the column selection switch 98.
  • FIG. 7 is a diagram illustrating an example of the processing timing of the area A according to the first embodiment of the present technology.
  • Area A is an area of 4 pixels and requires 4 cycles as a vertical (V) period.
  • the pixel signal of the pixel 21 is supplied to the ADC 61, and the pixel signal of the pixel 22 is supplied to the ADC 62.
  • the pixel signal of the pixel 21 is held in the flip-flop 81, and the pixel signal of the pixel 22 is held in the flip-flop 82.
  • the pixel signal of the pixel 21 is selected and held by the column selection switch 89 at T3.
  • the pixel signal of the pixel 22 is shifted and held in the flip-flop 81 at T3, and is selected and held by the column selection switch 89 at T4.
  • the pixel signal of the pixel 11 is supplied to the ADC 61, and the pixel signal of the pixel 12 is supplied to the ADC 62.
  • the pixel signal of the pixel 11 is held in the flip-flop 81, and the pixel signal of the pixel 12 is held in the flip-flop 82.
  • the pixel signal of the pixel 11 is selected and held by the column selection switch 89 at T5.
  • the pixel signal of the pixel 12 is shifted and held in the flip-flop 82 at T5, and is selected and held by the column selection switch 89 at T6.
  • FIG. 8 is a diagram illustrating an example of the processing timing of the region B in the first embodiment of the present technology.
  • Area B is an area of 2 pixels and requires 2 cycles as a vertical period.
  • the pixel signal of the pixel 13 is supplied to the ADC 63, and the pixel signal of the pixel 14 is supplied to the ADC 64.
  • the pixel signal of the pixel 13 is held in the flip-flop 83, and the pixel signal of the pixel 14 is held in the flip-flop 84.
  • the pixel signal of the pixel 13 is selected and held by the column selection switch 88 at T3.
  • the pixel signal of the pixel 14 is shifted and held in the flip-flop 83 at T3, and is selected and held by the column selection switch 88 at T4.
  • FIG. 9 is a diagram illustrating an example of processing timing of the region C according to the first embodiment of the present technology.
  • Area C is an area of 4 pixels and requires 4 cycles as a vertical period.
  • the pixel signal of the pixel 42 is supplied to the ADC 72, and the pixel signal of the pixel 43 is supplied to the ADC 73.
  • the pixel signal of the pixel 42 is held in the flip-flop 92, and the pixel signal of the pixel 43 is held in the flip-flop 93.
  • the pixel signal of the pixel 42 is selected and held by the column selection switch 99 at T3.
  • the pixel signal of the pixel 43 is shifted and held in the flip-flop 92 at T3, and is selected and held by the column selection switch 99 at T4.
  • the pixel signal of the pixel 32 is supplied to the ADC 72, and the pixel signal of the pixel 33 is supplied to the ADC 73.
  • the pixel signal of the pixel 32 is held in the flip-flop 92, and the pixel signal of the pixel 33 is held in the flip-flop 93.
  • the pixel signal of the pixel 32 is selected and held by the column selection switch 99 at T5.
  • the pixel signal of the pixel 33 is shifted and held in the flip-flop 93 at T5, and is selected and held by the column selection switch 99 at T6.
  • FIG. 10 is a diagram illustrating an example of the processing timing of the region D according to the first embodiment of the present technology.
  • Area D is an area of 2 pixels and requires 2 cycles as a vertical period.
  • the pixel signal of the pixel 44 is supplied to the ADC 74.
  • the pixel signal of the pixel 44 is held in the flip-flop 94 at T2.
  • the pixel signal of the pixel 44 is selected and held by the column selection switch 98 at T3.
  • the pixel signal of the pixel 34 is supplied to the ADC 74.
  • the pixel signal of the pixel 34 is held in the flip-flop 94 at T3.
  • the pixel signal of the pixel 34 is selected and held by the column selection switch 98 at T4.
  • FIG. 11 is a flowchart illustrating an example of a control processing procedure of the imaging apparatus according to the first embodiment of the present technology.
  • control unit 180 accepts an external request (step S811).
  • This request includes designation of an area in the pixel array 101.
  • the control unit 180 controls selection of AD converters in each row for each pixel column in accordance with the received request (step S812). Thereby, switching of the switch 151 and the like in the row selection unit 150 is controlled, and a corresponding AD converter is selected.
  • control unit 180 controls the AD converter to control the setting of each column ADC (step S813).
  • the control unit 180 controls the column selection unit 190 to control column selection in the horizontal transfer units 191 and 192 (step S814).
  • control unit 180 controls the pixel array 101, the row selection unit 150, the constant current circuit 160, the AD conversion unit 170, and the column selection unit 190 to control the driving of each unit (step S815).
  • control unit 180 ends the control process.
  • Second Embodiment> In the first embodiment described above, a switch is separately provided for each row of the pixel column to select the ADC. In this case, however, the switches are required by the number corresponding to the number of rows. . In the first embodiment described above, a column selection switch for selecting a pixel column is provided. In this case, however, input corresponding to the number of pixel columns is required. Therefore, in the second embodiment, processing units in rows or columns are combined into a plurality of pixels to simplify the circuit.
  • the overall configuration of the imaging apparatus is the same as that of the first embodiment described above, and a detailed description thereof is omitted.
  • FIG. 12 is a diagram illustrating a configuration example of a unit string of the imaging device according to the second embodiment of the present technology.
  • the row selection unit 150 in the second embodiment includes switches 151 and 152. Pixel signals from the pixels 3 and 4 in the pixel row 110 are input to the switch 151. The switch 151 switches the pixel signals from the pixels 3 and 4 so as to be connected to one of the vertical signal lines 701 and 702. Similarly, pixel signals from the pixels 1 and 2 in the pixel column 110 are input to the switch 152. The switch 152 switches so that the pixel signals from the pixels 1 and 2 are connected to one of the vertical signal lines 701 and 702.
  • each of the switches 151 and 152 in the row selection unit 150 is shared by two pixels, and the switches 151 and 152 are compared with the first embodiment described above. The number of can be reduced.
  • the pixel array 101, the constant current circuit 160, and the AD conversion unit 170 other than the row selection unit 150 are the same as those in the first embodiment described above.
  • FIG. 13 is a diagram illustrating a configuration example of the column selection unit 190 according to the second embodiment of the present technology.
  • the column selection switches 921 and 922 in the second embodiment are held in the pixel signal holding unit 910 that goes back every other stage from the last stage of the corresponding pixel signal holding unit 910 in each of the horizontal transfer units 191 or 192.
  • the pixel signal to be selected is selected. That is, in the first embodiment described above, the pixel signals held in all the pixel signal holding units 910 are input, but in this second embodiment, the pixels held in half the pixel signal holding units 910. Input signal. Therefore, the number of inputs of the column selection switches 921 and 922 can be reduced to half compared to the above-described first embodiment.
  • the circuit scale of the imaging circuit can be simplified by controlling the row and the column in units of two pixels.
  • FIG. 14 is a diagram illustrating a configuration example of a unit column of the imaging device according to the first modification example of the embodiment of the present technology. In this first modification, two rows are read simultaneously in the first embodiment described above.
  • pixel signals from the pixels 1 to 8 in the pixel column 110 are input to the switches 151 to 158 of the row selection unit 150.
  • Switches 151, 153, 155 and 157 are switches for switching the image signals from the pixels 1, 3, 5 and 7 to be connected to one of the vertical signal lines 701 and 703.
  • Constant current sources 161 and 163 are connected to the vertical signal lines 701 and 703, respectively.
  • ADCs 171 and 173 are connected to the vertical signal lines 701 and 703, respectively.
  • the switches 152, 154, 156, and 158 are switches that switch the image signals from the pixel 2, the pixel 4, the pixel 6, and the pixel 8 to be connected to any one of the vertical signal lines 702 and 704.
  • Constant current sources 162 and 164 are connected to the vertical signal lines 702 and 704, respectively.
  • ADCs 172 and 174 are connected to the vertical signal lines 702 and 704, respectively.
  • the switches 151, 153, 155 and 157 and the switches 152, 154, 156 and 158 can operate independently.
  • the ADCs 171 and 173 and the ADCs 172 and 174 can operate independently. Therefore, two adjacent rows of pixels in the pixel column 110 can be read out simultaneously.
  • FIG. 15 is a diagram illustrating a configuration example of a unit string of the imaging device according to the second modification example of the embodiment of the present technology. In this second modification, two rows are read simultaneously in the second embodiment described above.
  • pixel signals from the pixels 1 to 8 in the pixel column 110 are input to the switches 151 to 154 of the row selection unit 150.
  • the switch 151 is a switch for switching the image signal from the pixel 1 or the pixel 3 so as to be connected to one of the vertical signal lines 701 and 703.
  • the switch 153 is a switch for switching the image signal from the pixel 5 or the pixel 7 so as to be connected to one of the vertical signal lines 701 and 703.
  • Constant current sources 161 and 163 are connected to the vertical signal lines 701 and 703, respectively.
  • ADCs 171 and 173 are connected to the vertical signal lines 701 and 703, respectively.
  • the switch 152 is a switch for switching the image signal from the pixel 2 or the pixel 4 so as to be connected to one of the vertical signal lines 702 and 704.
  • the switch 154 is a switch for switching the image signal from the pixel 6 or the pixel 8 so as to be connected to one of the vertical signal lines 702 and 704.
  • Constant current sources 162 and 164 are connected to the vertical signal lines 702 and 704, respectively.
  • ADCs 172 and 174 are connected to the vertical signal lines 702 and 704, respectively.
  • the switches 151 and 153 and the switches 152 and 154 can operate independently.
  • the ADCs 171 and 173 and the ADCs 172 and 174 can operate independently. Therefore, two adjacent rows of pixels in the pixel column 110 can be read out simultaneously.
  • FIG. 16 is a diagram illustrating a specific configuration example of an imaging system that is an application example of the embodiment of the present technology.
  • the imaging system 300 is a device that images a subject and outputs an image of the subject as an electrical signal.
  • the imaging system 300 includes an optical system element 311, an imaging element 312, an operation unit 314, a control unit 315, an image processing unit 316, a display unit 317, an encoding processing unit 318, and a recording unit 319.
  • the optical system element 311 includes a lens, a diaphragm, and the like.
  • the optical system element 311 is controlled by the control unit 315 to adjust the focus to the subject, collect light from the focused position, and supply the light to the image sensor 312.
  • the image sensor 312 is an image sensor that captures an image of a subject.
  • the image sensor 312 is controlled by the control unit 315, photoelectrically converts incident light, and AD-converts the pixel value of each pixel to obtain captured image data of the subject.
  • the imaging element 312 is controlled by the control unit 315 and supplies captured image data obtained by the imaging to the image processing unit 316.
  • the operation unit 314 includes, for example, a jog dial (trademark), a key, a button, or a touch panel, and receives an operation input from the user and supplies a signal corresponding to the operation input to the control unit 315.
  • control unit 315 Based on the signal corresponding to the user's operation input input by the operation unit 314, the control unit 315 includes the optical system element 311, the image sensor 312, the image processing unit 316, the display unit 317, the encoding processing unit 318, and the recording unit.
  • the drive of 319 is controlled to cause each unit to perform processing related to imaging.
  • the image processing unit 316 performs various image processing such as black level correction, color mixture correction, defect correction, demosaic processing, matrix processing, gamma correction, and YC conversion on the image signal supplied from the image sensor 312. .
  • the content of this image processing is arbitrary, and processing other than that described above may be performed.
  • the image processing unit 316 supplies the image signal subjected to the image processing to the display unit 317 and the encoding processing unit 318.
  • the display unit 317 is configured, for example, as a liquid crystal display or the like, and displays an image of a subject based on an image signal from the image processing unit 316.
  • the encoding processing unit 318 performs a predetermined encoding process on the image signal from the image processing unit 316 and supplies the image data obtained as a result of the encoding process to the recording unit 319.
  • the recording unit 319 records the image data from the encoding processing unit 318.
  • the image data recorded in the recording unit 319 is read by the image processing unit 316 as necessary, and then supplied to the display unit 317, where a corresponding image is displayed.
  • the imaging element 312 has the same configuration as the imaging device in the above-described embodiment.
  • the image sensor 312 uses the row selection unit 150 to select an ADC that is a pixel signal output destination in the pixel column 110.
  • the pixel signal from the pixel column 110 is selected by the column selection unit 190. Thereby, reading can be controlled for each partial region in the pixel array 101.
  • Computer system The above-described series of processing can be executed by hardware or can be executed by software.
  • a program constituting the software is installed in the computer.
  • the computer is a general-purpose computer that can execute various functions by installing a computer incorporated in dedicated hardware, such as the control unit 315 described above, or various programs. Includes computers.
  • FIG. 17 is a diagram illustrating a specific configuration example of a computer system which is an application example of the embodiment of the present technology.
  • a CPU (Central Processing Unit) 401 of the computer system 400 performs various processes according to a program stored in a ROM (Read Only Memory) 402 or a program loaded from a storage unit 413 to a RAM (Random Access Memory) 403. Execute.
  • the RAM 403 appropriately stores data necessary for the CPU 401 to execute various processes.
  • the CPU 401, the ROM 402, and the RAM 403 are connected to each other via a bus 404.
  • An input / output interface 410 is also connected to the bus 404.
  • the input / output interface 410 is connected to an input unit 411 including a keyboard and a mouse, a display including a CRT (Cathode Ray Tube) and an LCD (Liquid Crystal Display), and an output unit 412 including a speaker.
  • the input / output interface 410 is connected to a storage unit 413 configured from a hard disk and a communication unit 414 configured from a modem.
  • the communication unit 414 performs communication processing via a network including the Internet.
  • a drive 415 is connected to the input / output interface 410 as necessary, and a removable medium 421 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is appropriately mounted. And the computer program read from them is installed in the memory
  • a program constituting the software is installed from a network or a recording medium.
  • the recording medium is distributed to distribute the program to the user separately from the main body of the apparatus, and includes a magnetic disk (including a flexible disk) on which the program is recorded, an optical disk (CD-ROM (Compact Disc-Read) Only removable memory 421, DVD (including digital versatile disc), magneto-optical disk (including MD (mini disc)), or removable media 421 including a semiconductor memory or the like.
  • the recording medium is configured by a ROM 402 in which a program is recorded in a state of being preinstalled in the apparatus main body, a hard disk included in the storage unit 413, and the like.
  • this technique can also take the following structures.
  • first and second pixels of an image sensor that images a subject First and second analog-to-digital converters for converting pixel signals from the first and second pixels from analog values to digital values;
  • a first switch for supplying a pixel signal from the first pixel to one of the first and second analog-digital converters;
  • An image pickup apparatus comprising: a second switch that supplies a pixel signal from the second pixel to one of the first and second analog-digital converters.
  • the first pixel corresponds to a first region;
  • the second pixel corresponds to a second region at least partially overlapping the first region in the column direction,
  • the first switch supplies a pixel signal of the first pixel to the first analog-digital converter,
  • the imaging device according to (1), wherein the second switch supplies a pixel signal of the second pixel to the second analog-digital converter.
  • the image pickup apparatus according to (2) further including: a fourth switch that supplies a pixel signal from the fourth pixel to the second analog-digital converter in the case of corresponding to.
  • the first switch supplies a pixel signal from the third pixel to the first analog-digital converter when the third pixel corresponds to the first region, and the third switch If a pixel corresponds to the second region, supply a pixel signal from the third pixel to the second analog-digital converter;
  • the second switch supplies a pixel signal from the fourth pixel to the first analog-digital converter when the fourth pixel corresponds to the first region, and the fourth switch
  • the imaging device according to (2) wherein when a pixel corresponds to the second region, a pixel signal from the fourth pixel is supplied to the second analog-digital converter.
  • the apparatus according to (5) including a plurality of imaging circuits including the first to fourth pixels, the first and second analog-digital converters, and the first and second switches.
  • Imaging device. (7) a first flip-flop that holds the first digital signal output from the first analog-digital converter;
  • An output switch that further selects the first and second digital signals held in the first and second flip-flops to be output to one of the first and second output units.
  • the first pixel corresponds to a first region;
  • the second pixel corresponds to a second region at least partially overlapping the first region in the column direction,
  • the first switch supplies a pixel signal of the first pixel to the first analog-digital converter,
  • the second switch supplies a pixel signal of the second pixel to the second analog-digital converter;
  • the output switch outputs a first digital signal output from the first analog-digital converter to the first output unit, and a second digital signal output from the second analog-digital converter. Is output to the second output unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

撮像素子の全領域における異なる複数の領域(ROI)に対応する画素を、別々に出力制御する。 被写体を撮像する撮像素子は、第1および第2の画素を備える。第1および第2のアナログデジタル変換器は、第1および第2の画素からの画素信号をアナログ値からデジタル値に変換する。第1のスイッチは、第1の画素からの画素信号を、第1および第2のアナログデジタル変換器のいずれか一方に供給する。第2のスイッチは、第2の画素からの画素信号を、第1および第2のアナログデジタル変換器のいずれか一方に供給する。

Description

撮像装置
 本技術は、撮像装置に関する。詳しくは、複数の画素の列毎にアナログデジタル変換器を備える撮像装置に関する。
 被写体を撮像する撮像素子において、画素の列毎にアナログデジタル変換器を設けて画素信号をデジタル値に変換するカラムADC(Analog-to-Digital Convertor)方式が知られている。このカラムADC方式においては、画素の列毎にアナログデジタル変換器を複数設けて、ADCの系統毎に異なる露光時間やゲイン設定等を行う撮像装置が提案されている(例えば、特許文献1参照。)。
特開2013-55589号公報
 上述の従来技術では、画素の列毎にアナログデジタル変換器を複数設けることにより、ADCの系統毎に異なる露光時間やゲイン設定等を行うことを可能としている。一方、近年では、画像処理等を行う際、画像内の特定の領域に着目して処理が行われることがあり、その領域は関心領域(ROI:Region Of Interest)と呼ばれる。上述の従来技術では、画素アレイの全領域を対象としており、複数の部分領域について領域制御を行うには不十分であった。
 本技術はこのような状況に鑑みて生み出されたものであり、撮像素子の全領域における異なる複数の領域に対応する画素を、別々に出力制御することを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、被写体を撮像する撮像素子の第1および第2の画素と、上記第1および第2の画素からの画素信号をアナログ値からデジタル値に変換する第1および第2のアナログデジタル変換器と、上記第1の画素からの画素信号を上記第1および第2のアナログデジタル変換器のいずれか一方に供給する第1のスイッチと、上記第2の画素からの画素信号を上記第1および第2のアナログデジタル変換器のいずれか一方に供給する第2のスイッチとを具備する撮像装置である。これにより、第1および第2の画素を、第1および第2のスイッチによって、第1および第2のアナログデジタル変換器の何れか一方に供給するという作用をもたらす。
 また、この第1の側面において、上記第1の画素は、第1の領域に対応し、上記第2の画素は、少なくとも一部が上記第1の領域と列方向でオーバーラップする第2の領域に対応し、上記第1のスイッチは、上記第1の画素の画素信号を上記第1のアナログデジタル変換器に供給し、上記第2のスイッチは、上記第2の画素の画素信号を上記第2のアナログデジタル変換器に供給するようにしてもよい。これにより、第1および第2の画素が異なる領域に対応する場合に、その画素信号をそれぞれ異なる第1または第2のアナログデジタル変換器に供給するという作用をもたらす。
 また、この第1の側面において、上記撮像素子の第3および第4の画素と、上記第3の画素が上記第1の領域に対応する場合には上記第3の画素からの画素信号を上記第1のアナログデジタル変換器に供給して上記第3の画素が上記第2の領域に対応する場合には上記第3の画素からの画素信号を上記第2のアナログデジタル変換器に供給する第3のスイッチと、上記第4の画素が上記第1の領域に対応する場合には上記第4の画素からの画素信号を上記第1のアナログデジタル変換器に供給して上記第4の画素が上記第2の領域に対応する場合には上記第4の画素からの画素信号を上記第2のアナログデジタル変換器に供給する第4のスイッチとをさらに具備してもよい。これにより、第3および第4の画素に対してそれぞれ第3および第4のスイッチを設けて、その画素信号を第1または第2のアナログデジタル変換器に供給するという作用をもたらす。また、この場合において、上記第1乃至第4の画素と、上記第1および第2のアナログデジタル変換器と、上記第1乃至第4のスイッチとからなる撮像回路を複数具備してもよい。これにより、複数の撮像回路により同時に読出しを行うという作用をもたらす。
 また、この第1の側面において、上記撮像素子の第3および第4の画素をさらに具備し、上記第1のスイッチは、上記第3の画素が上記第1の領域に対応する場合には上記第3の画素からの画素信号を上記第1のアナログデジタル変換器に供給し、上記第3の画素が上記第2の領域に対応する場合には上記第3の画素からの画素信号を上記第2のアナログデジタル変換器に供給し、上記第2のスイッチは、上記第4の画素が上記第1の領域に対応する場合には上記第4の画素からの画素信号を上記第1のアナログデジタル変換器に供給し、上記第4の画素が上記第2の領域に対応する場合には上記第4の画素からの画素信号を上記第2のアナログデジタル変換器に供給するようにしてもよい。これにより、第3および第4の画素の画素信号を、それぞれ第1および第2のスイッチを介して、第1または第2のアナログデジタル変換器に供給するという作用をもたらす。また、この場合において、上記第1乃至第4の画素と、上記第1および第2のアナログデジタル変換器と、上記第1および第2のスイッチとからなる撮像回路を複数具備してもよい。これにより、複数の撮像回路により同時に読出しを行うという作用をもたらす。
 また、この第1の側面において、上記第1のアナログデジタル変換器から出力された第1のデジタル信号を保持する第1のフリップフロップと、上記第2のアナログデジタル変換器から出力された第2のデジタル信号を保持する第2のフリップフロップとをさらに具備してもよい。これにより、第1および第2のアナログデジタル変換器から出力された第1および第2のデジタル信号を、第1および第2のフリップフロップに保持させるという作用をもたらす。
 また、この第1の側面において、上記第1および第2のフリップフロップに保持される上記第1および第2のデジタル信号を第1および第2の出力部のいずれか一方へ出力するように選択する出力スイッチをさらに具備してもよい。これにより、所定の領域の画素信号を出力するという作用をもたらす。
 また、この第1の側面において、上記第1の画素は、第1の領域に対応し、上記第2の画素は、少なくとも一部が上記第1の領域と列方向でオーバーラップする第2の領域に対応し、上記第1のスイッチは、上記第1の画素の画素信号を上記第1のアナログデジタル変換器に供給し、上記第2のスイッチは、上記第2の画素の画素信号を上記第2のアナログデジタル変換器に供給し、上記出力スイッチは、上記第1のアナログデジタル変換器から出力された第1のデジタル信号を上記第1の出力部に出力し、上記第2のアナログデジタル変換器から出力された第2のデジタル信号を上記第2の出力部に出力するようにしてもよい。これにより、複数の領域の画素信号を出力するという作用をもたらす。
 本技術によれば、撮像素子の全領域における異なる複数の領域に対応する画素を、別々に出力制御することができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の実施の形態における撮像装置の構成例を示す図である。 本技術の実施の形態における画素回路の構成例を示す図である。 本技術の第1の実施の形態における撮像装置の単位列の構成例を示す図である。 本技術の第1の実施の形態における列選択部190の構成例を示す図である。 本技術の第1の実施の形態における撮像装置の動作概要の一例を示す図である。 本技術の第1の実施の形態における撮像装置と領域との対応関係の一例を示す図である。 本技術の第1の実施の形態における領域Aの処理タイミングの一例を示す図である。 本技術の第1の実施の形態における領域Bの処理タイミングの一例を示す図である。 本技術の第1の実施の形態における領域Cの処理タイミングの一例を示す図である。 本技術の第1の実施の形態における領域Dの処理タイミングの一例を示す図である。 本技術の第1の実施の形態における撮像装置の制御処理手順の一例を示す流れ図である。 本技術の第2の実施の形態における撮像装置の単位列の構成例を示す図である。 本技術の第2の実施の形態における列選択部190の構成例を示す図である。 本技術の実施の形態の第1の変形例における撮像装置の単位列の構成例を示す図である。 本技術の実施の形態の第2の変形例における撮像装置の単位列の構成例を示す図である。 本技術の実施の形態の適用例である撮像システムの具体的な構成例を示す図である。 本技術の実施の形態の適用例であるコンピュータシステムの具体的な構成例を示す図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(1×1画素単位で領域制御を行う例)
 2.第2の実施の形態(2×2画素単位で領域制御を行う例)
 3.変形例
 4.適用例
 <1.第1の実施の形態>
 [撮像装置の構成]
 図1は、本技術の実施の形態における撮像装置の構成例を示す図である。この実施の形態における撮像装置は、複数の画素列110を備える画素アレイ101と、画素列110の各々に対応する行選択部150およびAD変換部170と、列選択部190とを備える。
 画素列110は、被写体を撮像する撮像素子の画素群である。画素アレイ101においいては画素がアレイ(行列)状に配置されており、その画素を列(カラム)毎に分けた画素群を画素列110と称する。
 AD変換部170は、対応する行選択部150によって選択された画素信号について、アナログ信号からデジタル信号への変換(AD変換)を行うものである。このAD変換部170の各々は、複数のAD変換器(ADC)を備え、同時に複数の画素信号についてAD変換を行うことができる。
 行選択部150は、対応する画素列110における画素からの画素信号のうち、所定の行の画素信号を選択するものである。この行選択部150の各々は、同時に複数の行の画素信号を選択することができ、選択した画素信号をAD変換部170の複数のAD変換器の何れかに接続する。
 列選択部190は、AD変換部170から出力されたデジタル信号による画素信号を保持して、それらの画素信号のうち、所定の列の画素信号を選択して出力するものである。この列選択部190は、列毎に複数の画素信号を保持することができる。
 図2は、本技術の実施の形態における画素回路の構成例を示す図である。画素列110の画素は、例えばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサやCCD(Charge Coupled Device)イメージセンサなどにより構成され得る。ここでは、CMOSイメージセンサを利用した画素回路の例について説明する。
 画素111は、フォトダイオード117と、転送トランジスタ112と、フローティングディフュージョン領域113と、リセットトランジスタ114と、増幅トランジスタ115と、選択トランジスタ116とを備える。これら転送トランジスタ112、リセットトランジスタ114、増幅トランジスタ115および選択トランジスタ116の4つのトランジスタを画素トランジスタと称する。なお、この例では、画素トランジスタは、キャリア極性がN型のMOSトランジスタであるものと想定する。
 また、画素111に対して、行方向に転送信号線、リセット信号線および選択信号線の3本の信号線が設けられ、列方向に垂直信号線119が設けられる。また、リセットトランジスタ114および増幅トランジスタ115のドレイン側には電源電圧Vddが供給される。
 フォトダイオード(Photo Diode:PD)117は、入射光に応じた電荷を発生する光電変換部である。なお、このフォトダイオード117のアノードは接地される。
 転送トランジスタ112は、フォトダイオード117において生じた電荷を転送するトランジスタである。この転送トランジスタ112は、フォトダイオード117のカソードと、フローティングディフュージョン領域113との間に設けられる。この転送トランジスタ112は、そのゲートに接続される転送信号線を介してハイレベルの信号が入力された際にオン状態となり、フォトダイオード117において光電変換された電荷をフローティングディフュージョン領域113に転送する。
 フローティングディフュージョン(Floating Diffusion:FD)領域113は、転送トランジスタ112によって転送された電荷を電圧信号に変換する拡散層領域である。このフローティングディフュージョン領域113の電圧信号は、リセットトランジスタ114のドレインおよび増幅トランジスタ115のゲートに接続される。
 リセットトランジスタ114は、フローティングディフュージョン領域113の電圧をリセットするためのトランジスタである。このリセットトランジスタ114は、電源電圧Vddとフローティングディフュージョン領域113との間に設けられる。このリセットトランジスタ114は、そのゲートに接続するリセット信号線にハイレベルの信号が入力された際にオン状態となり、フローティングディフュージョン領域113の電位を電源電圧Vddにリセットする。
 増幅トランジスタ115は、フローティングディフュージョン領域113の電圧信号を増幅するトランジスタである。この増幅トランジスタ115のゲートは、フローティングディフュージョン領域113に接続される。増幅トランジスタ115のドレインは、電源電圧Vddに接続され、増幅トランジスタ115のソースは、選択トランジスタ116を介して垂直信号線119に接続される。この増幅トランジスタ115は、フローティングディフュージョン領域113の電圧信号を増幅し、その増幅信号を画素信号として選択トランジスタ116に出力する。
 選択トランジスタ116は、この画素を選択するためのトランジスタである。この選択トランジスタ116は、増幅トランジスタ115と垂直信号線119との間に設けられる。この選択トランジスタ116は、そのゲートに接続する選択信号線にハイレベルの信号が入力された際にオン状態となり、増幅トランジスタ115で増幅された電圧信号を垂直信号線119に出力する。
 図3は、本技術の第1の実施の形態における撮像装置の単位列の構成例を示す図である。
 ここでは、画素列110における4つの画素1乃至4が示されている。行選択部150は、画素列110における画素1乃至4に対応して複数のスイッチ151乃至154を備える。スイッチ151乃至154は、画素1乃至4からの画像信号を、垂直信号線701および702の何れかに接続するように切り替えるスイッチである。
 定電流回路160は、垂直信号線701および702にそれぞれ接続される定電流源161および162を備える。この定電流源161および162は、画素1乃至4からの画素信号の読出しの際に必要な電流を供給するものである。
 AD変換部170は、比較器711および721と、DA変換器712および722と、カウンタ713および723とを備える。DA変換器712および722は、AD変換のためのランプ信号を供給するものである。なお、この例ではAD変換部170の各々がDA変換器712および722を備えることを想定しているが、DA変換器712および722を備えずに列間でランプ信号を共有するように構成してもよい。
 比較器711および721は、垂直信号線701および702にそれぞれ接続されて、画素1乃至4からの画素信号とランプ信号とを比較する比較器である。カウンタ713および723は、比較器711および721の比較結果を計数するカウンタである。比較器711および721とカウンタ713および723は、それぞれシングルスロープ型のカラムADCを構成する。
 以下では、比較器711およびカウンタ713をADC171と称し、比較器721およびカウンタ723をADC172と称する。すなわち、この例においては、垂直信号線701にADC171が接続され、垂直信号線702にADC172が接続される。すなわち、行選択部150のスイッチ151乃至154の各々は、選択した画素信号をADC171および172の何れかに接続する。ADC171の出力は信号線719に供給され、ADC172の出力は信号線729に供給される。これらの出力は、列選択部190に供給される。
 制御部180は、撮像装置における画素列110、行選択部150、定電流回路160、AD変換部170および列選択部190に接続され、撮像装置の全体を制御するものである。
 図4は、本技術の第1の実施の形態における列選択部190の構成例を示す図である。
 この列選択部190は、同一の構成を有する2つの水平転送部191および192を備える。水平転送部191はADC171に対応し、水平転送部192はADC172に対応する。これにより、2系統の動作を同時並行に行うことができる。水平転送部191および192の各々は、列毎に対応する複数の画素信号保持部910と、列選択スイッチ921および922と、出力保持部931および932とを備える。
 画素信号保持部910は、各列のAD変換部170からの画素信号を保持するものである。この画素信号保持部910は、入力選択器911とフリップフロップ912とを備える。入力選択器911は、対応するAD変換部170からの画素信号と、前段の画素信号保持部910からシフトされた画素信号との何れかを選択してフリップフロップ912に入力するものである。この入力選択器911は、AD変換部170から画素信号を取り込む際にはAD変換部170からの信号を選択し、行方向にシフト動作を行う際には前段の画素信号保持部910からの信号を選択する。フリップフロップ912は、入力選択器911から入力された画素信号を保持するものである。
 列選択スイッチ921および922は、複数の画素信号保持部910に保持される画素信号のうち、所定の列の画素信号を選択するものである。この列選択スイッチ921および922は、水平転送部191または192のそれぞれにおいて、対応する全ての画素信号保持部910に保持される画素信号を入力として、いずれか1つの画素信号を選択する。
 出力保持部931および932は、列選択スイッチ921および922によって選択された画素信号を保持して、出力するものである。出力保持部931は列選択スイッチ921に対応し、出力保持部932は列選択スイッチ922に対応する。
 [撮像装置の動作]
 図5は、本技術の第1の実施の形態における撮像装置の動作概要の一例を示す図である。
 ここでは、画素アレイ101の全領域のうちの部分領域として、領域A、領域B、領域Cおよび領域Dの4領域が存在することを想定する。各領域において、画素信号を読み出すスキャン動作は独立に行われる。この例では、領域内において画素が、左から右に、下から上にスキャンされる様子を示している。これは、レンズを介してイメージセンサに写像した場合における、通常のラスタスキャンの順序と同様である。
 画素アレイ101においてスキャンされた画素信号は、上述のように画素列毎に行選択部150において所定の行が選択されて、AD変換部170および列選択部190に供給される。ここでは、ADC171および水平転送部191と、ADC172および水平転送部192との2系統が設けられていることを想定する。
 ADC171および水平転送部191は、領域Aおよび領域Bの画素信号を取り込んで出力する。一方、ADC172および水平転送部192は、領域Cおよび領域Dの画素信号を取り込んで出力する。ADC171および水平転送部191と、ADC172および水平転送部192とは、独立して動作可能であるため、領域Aおよび領域Bの画素信号と領域Cおよび領域Dの画素信号とを独立して処理可能である。また、水平転送部191は、2つの列選択スイッチ921および922を備えるため、領域Aの画素信号と領域Bの画素信号とを独立して出力可能である。同様に、水平転送部192は、領域Cの画素信号と領域Dの画素信号とを独立して出力可能である。
 図6は、本技術の第1の実施の形態における撮像装置と領域との対応関係の一例を示す図である。
 この例では、4×4画素の領域において、4つの領域A、領域B、領域Cおよび領域Dが存在する場合の各部の割当て例を示している。領域Aは、画素11、12、21および22の4画素の領域である。領域Bは、画素13および14の2画素の領域である。領域Cは、画素32、33、42および43の4画素の領域である。領域Dは、画素34および44の2画素の領域である。
 画素11、21、31および41の画素列には、行選択部51が接続され、所定の行の画素信号を選択する。画素12、22、32および42の画素列には、行選択部52が接続され、所定の行の画素信号を選択する。画素13、23、33および43の画素列には、行選択部53が接続され、所定の行の画素信号を選択する。画素14、24、34および44の画素列には、行選択部54が接続され、所定の行の画素信号を選択する。
 行選択部51には、ADC61およびフリップフロップ81と、ADC71およびフリップフロップ91との2系統が接続される。行選択部52には、ADC62およびフリップフロップ82と、ADC72およびフリップフロップ92との2系統が接続される。行選択部53には、ADC63およびフリップフロップ83と、ADC73およびフリップフロップ93との2系統が接続される。行選択部54には、ADC64およびフリップフロップ84と、ADC74およびフリップフロップ94との2系統が接続される。
 フリップフロップ81乃至84は、上述の水平転送部191に対応する。また、フリップフロップ81乃至84に接続する2つの列選択スイッチ88および89は、上述の水平転送部191における列選択スイッチ921および922ならびに出力保持部931および932に対応する。同様に、フリップフロップ91乃至94は、上述の水平転送部192に対応し、フリップフロップ91乃至94に接続する2つの列選択スイッチ98および99は、上述の水平転送部192における列選択スイッチ921および922ならびに出力保持部931および932に対応する。
 この構成において、領域Aは、ADC61およびフリップフロップ81と、ADC62およびフリップフロップ82と、列選択スイッチ89とにより処理される。また、領域Bは、ADC63およびフリップフロップ83と、ADC64およびフリップフロップ84と、列選択スイッチ88とにより処理される。また、領域Cは、ADC72およびフリップフロップ92と、ADC73およびフリップフロップ93と、列選択スイッチ99とにより処理される。また、領域Dは、ADC74およびフリップフロップ94と、列選択スイッチ98とにより処理される。
 図7は、本技術の第1の実施の形態における領域Aの処理タイミングの一例を示す図である。
 領域Aは4画素の領域であり、垂直(V:Vertical)周期として4サイクルを要する。まず、T1において、画素21の画素信号がADC61に供給され、画素22の画素信号がADC62に供給される。そして、T2において、画素21の画素信号がフリップフロップ81に保持され、画素22の画素信号がフリップフロップ82に保持される。画素21の画素信号は、T3において列選択スイッチ89によって選択され、保持される。画素22の画素信号は、T3においてフリップフロップ81にシフトして保持され、T4において列選択スイッチ89によって選択され、保持される。
 また、T3において、画素11の画素信号がADC61に供給され、画素12の画素信号がADC62に供給される。そして、T4において、画素11の画素信号がフリップフロップ81に保持され、画素12の画素信号がフリップフロップ82に保持される。画素11の画素信号は、T5において列選択スイッチ89によって選択され、保持される。画素12の画素信号は、T5においてフリップフロップ82にシフトして保持され、T6において列選択スイッチ89によって選択され、保持される。
 図8は、本技術の第1の実施の形態における領域Bの処理タイミングの一例を示す図である。
 領域Bは2画素の領域であり、垂直周期として2サイクルを要する。まず、T1において、画素13の画素信号がADC63に供給され、画素14の画素信号がADC64に供給される。そして、T2において、画素13の画素信号がフリップフロップ83に保持され、画素14の画素信号がフリップフロップ84に保持される。画素13の画素信号は、T3において列選択スイッチ88によって選択され、保持される。画素14の画素信号は、T3においてフリップフロップ83にシフトして保持され、T4において列選択スイッチ88によって選択され、保持される。
 図9は、本技術の第1の実施の形態における領域Cの処理タイミングの一例を示す図である。
 領域Cは4画素の領域であり、垂直周期として4サイクルを要する。まず、T1において、画素42の画素信号がADC72に供給され、画素43の画素信号がADC73に供給される。そして、T2において、画素42の画素信号がフリップフロップ92に保持され、画素43の画素信号がフリップフロップ93に保持される。画素42の画素信号は、T3において列選択スイッチ99によって選択され、保持される。画素43の画素信号は、T3においてフリップフロップ92にシフトして保持され、T4において列選択スイッチ99によって選択され、保持される。
 また、T3において、画素32の画素信号がADC72に供給され、画素33の画素信号がADC73に供給される。そして、T4において、画素32の画素信号がフリップフロップ92に保持され、画素33の画素信号がフリップフロップ93に保持される。画素32の画素信号は、T5において列選択スイッチ99によって選択され、保持される。画素33の画素信号は、T5においてフリップフロップ93にシフトして保持され、T6において列選択スイッチ99によって選択され、保持される。
 図10は、本技術の第1の実施の形態における領域Dの処理タイミングの一例を示す図である。
 領域Dは2画素の領域であり、垂直周期として2サイクルを要する。まず、T1において、画素44の画素信号がADC74に供給される。画素44の画素信号は、T2においてフリップフロップ94に保持される。そして、画素44の画素信号は、T3において列選択スイッチ98によって選択され、保持される。
 T2において、画素34の画素信号がADC74に供給される。画素34の画素信号は、T3においてフリップフロップ94に保持される。そして、画素34の画素信号は、T4において列選択スイッチ98によって選択され、保持される。
 図11は、本技術の第1の実施の形態における撮像装置の制御処理手順の一例を示す流れ図である。
 制御処理を開始すると、制御部180は、外部からの要求を受け付ける(ステップS811)。この要求には、画素アレイ101における領域の指定が含まれる。
 制御部180は、受け付けた要求に応じて、画素列毎に各行のAD変換器の選択を制御する(ステップS812)。これにより、行選択部150におけるスイッチ151等の切替えが制御され、対応するAD変換器が選択される。
 また、制御部180は、AD変換器を制御して、各カラムADCの設定を制御する(ステップS813)。
 そして、制御部180は、列選択部190を制御して、水平転送部191および192における列の選択を制御する(ステップS814)。
 そして、制御部180は、画素アレイ101、行選択部150、定電流回路160、AD変換部170および列選択部190を制御して、各部の駆動を制御する(ステップS815)。
 画素信号の読出しが終了すると、制御部180は、制御処理を終了する。
 [効果]
 このように、本技術の第1の実施の形態によれば、画素アレイ101における部分領域毎に読出しを制御することができる。すなわち、関心領域(ROI)毎に、露光時間、ゲイン設定、フレームレート、および、出力タイミング等を独立して制御することができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態においては、画素列の各行についてそれぞれ別々にスイッチを設けてADCを選択するように構成していたが、その場合、スイッチが行数に対応する数分必要になる。また、上述の第1の実施の形態においては、画素列を選択する列選択スイッチを設けていたが、その場合、画素列の数に対応する入力が必要になる。そこで、この第2の実施の形態では、行または列における処理単位を複数画素にまとめて、回路の簡素化を図る。なお、撮像装置の全体構成については上述の第1の実施の形態と同様であるため、詳細な説明は省略する。
 図12は、本技術の第2の実施の形態における撮像装置の単位列の構成例を示す図である。
 この第2の実施の形態における行選択部150は、スイッチ151および152を備える。スイッチ151には、画素列110における画素3および画素4からの画素信号が入力される。そして、スイッチ151は、その画素3および画素4からの画素信号を、垂直信号線701および702の何れかに接続するように切り替える。同様に、スイッチ152には、画素列110における画素1および画素2からの画素信号が入力される。そして、スイッチ152は、その画素1および画素2からの画素信号を、垂直信号線701および702の何れかに接続するように切り替える。
 すなわち、この第2の実施の形態においては、行選択部150におけるスイッチ151および152の各々は、それぞれ2つの画素に共有されており、上述の第1の実施の形態と比べてスイッチ151および152の数を削減することができる。
 なお、行選択部150以外の、画素アレイ101、定電流回路160およびAD変換部170については、上述の第1の実施の形態と同様である。
 図13は、本技術の第2の実施の形態における列選択部190の構成例を示す図である。
 この第2の実施の形態における列選択スイッチ921および922は、水平転送部191または192のそれぞれにおいて、対応する画素信号保持部910の最終段から1つ置きに遡った画素信号保持部910に保持される画素信号を選択する。すなわち、上述の第1の実施の形態では全ての画素信号保持部910に保持される画素信号を入力としていたが、この第2の実施の形態では半数の画素信号保持部910に保持される画素信号を入力とする。したがって、上述の第1の実施の形態と比べて、列選択スイッチ921および922の入力数を半数に削減することができる。
 このように、本技術の第2の実施の形態によれば、行および列について2画素ずつを単位として制御することにより、撮像回路の回路規模を簡素化することができる。
 <3.変形例>
 上述の実施の形態では、画素信号の読出しを1行ずつ行う例について説明したが、複数行を同時に読み出すことも可能である。以下の変形例では、画素信号の読出しを2行同時に行う例について説明する。
 [第1の変形例]
 図14は、本技術の実施の形態の第1の変形例における撮像装置の単位列の構成例を示す図である。この第1の変形例は、上述の第1の実施の形態において2行同時読出しを行うものである。
 この第1の変形例では、画素列110における画素1乃至8からの画素信号が、行選択部150のスイッチ151乃至158に入力される。
 スイッチ151、153、155および157は、画素1、画素3、画素5および画素7からの画像信号を、垂直信号線701および703の何れかに接続するように切り替えるスイッチである。垂直信号線701および703には、それぞれ定電流源161および163が接続される。また、垂直信号線701および703には、それぞれADC171および173が接続される。
 スイッチ152、154、156および158は、画素2、画素4、画素6および画素8からの画像信号を、垂直信号線702および704の何れかに接続するように切り替えるスイッチである。垂直信号線702および704には、それぞれ定電流源162および164が接続される。また、垂直信号線702および704には、それぞれADC172および174が接続される。
 同図において画素列110の上下に分けて示したように、スイッチ151、153、155および157と、スイッチ152、154、156および158とは、独立して動作することができる。また、ADC171および173とADC172および174は、独立して動作することができる。したがって、画素列110において隣接する2行の画素は同時に読み出すことが可能である。
 このように、本技術の第1の変形例によれば、上述の第1の実施の形態と比べて2倍の速度で画素の読出しを行うことができる。
 [第2の変形例]
 図15は、本技術の実施の形態の第2の変形例における撮像装置の単位列の構成例を示す図である。この第2の変形例は、上述の第2の実施の形態において2行同時読出しを行うものである。
 この第2の変形例では、画素列110における画素1乃至8からの画素信号が、行選択部150のスイッチ151乃至154に入力される。
 スイッチ151は、画素1または画素3からの画像信号を、垂直信号線701および703の何れかに接続するように切り替えるスイッチである。スイッチ153は、画素5または画素7からの画像信号を、垂直信号線701および703の何れかに接続するように切り替えるスイッチである。垂直信号線701および703には、それぞれ定電流源161および163が接続される。また、垂直信号線701および703には、それぞれADC171および173が接続される。
 スイッチ152は、画素2または画素4からの画像信号を、垂直信号線702および704の何れかに接続するように切り替えるスイッチである。スイッチ154は、画素6または画素8からの画像信号を、垂直信号線702および704の何れかに接続するように切り替えるスイッチである。垂直信号線702および704には、それぞれ定電流源162および164が接続される。また、垂直信号線702および704には、それぞれADC172および174が接続される。
 同図において画素列110の上下に分けて示したように、スイッチ151および153と、スイッチ152および154とは、独立して動作することができる。また、ADC171および173とADC172および174は、独立して動作することができる。したがって、画素列110において隣接する2行の画素は同時に読み出すことが可能である。
 このように、本技術の第2の変形例によれば、上述の第2の実施の形態と比べて2倍の速度で画素の読出しを行うことができる。
 <4.適用例>
 [撮像システム]
 図16は、本技術の実施の形態の適用例である撮像システムの具体的な構成例を示す図である。
 この撮像システム300は、被写体を撮像し、その被写体の画像を電気信号として出力する装置である。この撮像システム300は、光学系素子311、撮像素子312、操作部314、制御部315、画像処理部316、表示部317、符号化処理部318および記録部319を備える。
 光学系素子311は、レンズや絞り等を備える。光学系素子311は、制御部315に制御されて、被写体までの焦点を調整し、焦点が合った位置からの光を集光して、撮像素子312に供給する。
 撮像素子312は、被写体を撮像するイメージセンサであり、制御部315に制御されて、入射光を光電変換し、各画素の画素値をAD変換することにより、被写体の撮像画像データを得る。撮像素子312は、制御部315に制御されて、その撮像により得られた撮像画像データを画像処理部316に供給する。
 操作部314は、例えば、ジョグダイヤル(商標)、キー、ボタン、またはタッチパネル等により構成され、ユーザによる操作入力を受けて、その操作入力に対応する信号を制御部315に供給する。
 制御部315は、操作部314により入力されたユーザの操作入力に対応する信号に基づいて、光学系素子311、撮像素子312、画像処理部316、表示部317、符号化処理部318および記録部319の駆動を制御して、各部に対して撮像に関する処理を行わせる。
 画像処理部316は、撮像素子312から供給された画像信号に対して、例えば、黒レベル補正や、混色補正、欠陥補正、デモザイク処理、マトリックス処理、ガンマ補正およびYC変換等の各種画像処理を施す。この画像処理の内容は任意であり、上述した以外の処理が行われてもよい。画像処理部316は、画像処理を施した画像信号を表示部317および符号化処理部318に供給する。
 表示部317は、例えば、液晶ディスプレイ等として構成され、画像処理部316からの画像信号に基づいて、被写体の画像を表示する。
 符号化処理部318は、画像処理部316からの画像信号に対して、所定の方式の符号化処理を施し、符号化処理の結果得られた画像データを記録部319に供給する。
 記録部319は、符号化処理部318からの画像データを記録する。記録部319に記録された画像データは、必要に応じて画像処理部316に読み出されることにより、表示部317に供給され、対応する画像が表示される。
 撮像素子312は、上述の実施の形態における撮像装置と同様の構成を備える。すなわち、撮像素子312は、画素列110における画素信号の出力先とするADCを行選択部150により選択する。また、画素列110からの画素信号を列選択部190により選択する。これにより、画素アレイ101における部分領域毎に読出しを制御することができる。
 [コンピュータシステム]
 上述した一連の処理は、ハードウエアにより実行することもでき、また、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、例えば、上述の制御部315のような、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることにより各種の機能を実行することが可能な汎用のコンピュータなどが含まれる。
 図17は、本技術の実施の形態の適用例であるコンピュータシステムの具体的な構成例を示す図である。コンピュータシステム400のCPU(Central Processing Unit)401は、ROM(Read Only Memory)402に記憶されているプログラム、または、記憶部413からRAM(Random Access Memory)403にロードされたプログラムに従って、各種の処理を実行する。また、RAM403は、CPU401が各種の処理を実行する上において必要なデータなども適宜記憶する。
 CPU401、ROM402およびRAM403は、バス404を介して相互に接続されている。このバス404にはまた、入出力インターフェース410も接続されている。
 入出力インターフェース410には、キーボード、マウスなどよりなる入力部411、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)などよりなるディスプレイ、スピーカなどよりなる出力部412が接続される。また、この入出力インターフェース410には、ハードディスクなどより構成される記憶部413、モデムなどより構成される通信部414が接続される。通信部414は、インターネットを含むネットワークを介して通信処理を行う。
 入出力インターフェース410にはまた、必要に応じてドライブ415が接続され、磁気ディスク、光ディスク、光磁気ディスク、または、半導体メモリなどのリムーバブルメディア421が適宜装着される。そして、それらから読み出されたコンピュータプログラムが、必要に応じて記憶部413にインストールされる。
 上述した一連の処理をソフトウエアにより実行させる場合には、そのソフトウエアを構成するプログラムが、ネットワークや記録媒体からインストールされる。
 この記録媒体は、例えば、装置本体とは別に、ユーザにプログラムを配信するために配布される、プログラムが記録されている磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc - Read Only Memory)、DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、または、半導体メモリなどよりなるリムーバブルメディア421により構成される。また、この記録媒体は、装置本体に予め組み込まれた状態でユーザに配布されて、プログラムが記録されているROM402や、記憶部413に含まれるハードディスクなどにより構成される。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)被写体を撮像する撮像素子の第1および第2の画素と、
 前記第1および第2の画素からの画素信号をアナログ値からデジタル値に変換する第1および第2のアナログデジタル変換器と、
 前記第1の画素からの画素信号を前記第1および第2のアナログデジタル変換器のいずれか一方に供給する第1のスイッチと、
 前記第2の画素からの画素信号を前記第1および第2のアナログデジタル変換器のいずれか一方に供給する第2のスイッチと
を具備する撮像装置。
(2)前記第1の画素は、第1の領域に対応し、
 前記第2の画素は、少なくとも一部が前記第1の領域と列方向でオーバーラップする第2の領域に対応し、
 前記第1のスイッチは、前記第1の画素の画素信号を前記第1のアナログデジタル変換器に供給し、
 前記第2のスイッチは、前記第2の画素の画素信号を前記第2のアナログデジタル変換器に供給する
前記(1)に記載の撮像装置。
(3)前記撮像素子の第3および第4の画素と、
 前記第3の画素が前記第1の領域に対応する場合には前記第3の画素からの画素信号を前記第1のアナログデジタル変換器に供給し、前記第3の画素が前記第2の領域に対応する場合には前記第3の画素からの画素信号を前記第2のアナログデジタル変換器に供給する第3のスイッチと、
 前記第4の画素が前記第1の領域に対応する場合には前記第4の画素からの画素信号を前記第1のアナログデジタル変換器に供給し、前記第4の画素が前記第2の領域に対応する場合には前記第4の画素からの画素信号を前記第2のアナログデジタル変換器に供給する第4のスイッチと
をさらに具備する前記(2)に記載の撮像装置。
(4)前記第1乃至第4の画素と、前記第1および第2のアナログデジタル変換器と、前記第1乃至第4のスイッチとからなる撮像回路を複数具備する前記(3)に記載の撮像装置。
(5)前記撮像素子の第3および第4の画素をさらに具備し、
 前記第1のスイッチは、前記第3の画素が前記第1の領域に対応する場合には前記第3の画素からの画素信号を前記第1のアナログデジタル変換器に供給し、前記第3の画素が前記第2の領域に対応する場合には前記第3の画素からの画素信号を前記第2のアナログデジタル変換器に供給し、
 前記第2のスイッチは、前記第4の画素が前記第1の領域に対応する場合には前記第4の画素からの画素信号を前記第1のアナログデジタル変換器に供給し、前記第4の画素が前記第2の領域に対応する場合には前記第4の画素からの画素信号を前記第2のアナログデジタル変換器に供給する
前記(2)に記載の撮像装置。
(6)前記第1乃至第4の画素と、前記第1および第2のアナログデジタル変換器と、前記第1および第2のスイッチとからなる撮像回路を複数具備する前記(5)に記載の撮像装置。
(7)前記第1のアナログデジタル変換器から出力された第1のデジタル信号を保持する第1のフリップフロップと、
 前記第2のアナログデジタル変換器から出力された第2のデジタル信号を保持する第2のフリップフロップと
をさらに具備する前記(1)から(6)のいずれかに記載の撮像装置。
(8)前記第1および第2のフリップフロップに保持される前記第1および第2のデジタル信号を第1および第2の出力部のいずれか一方へ出力するように選択する出力スイッチをさらに具備する前記(7)に記載の撮像装置。
(9)前記第1の画素は、第1の領域に対応し、
 前記第2の画素は、少なくとも一部が前記第1の領域と列方向でオーバーラップする第2の領域に対応し、
 前記第1のスイッチは、前記第1の画素の画素信号を前記第1のアナログデジタル変換器に供給し、
 前記第2のスイッチは、前記第2の画素の画素信号を前記第2のアナログデジタル変換器に供給し、
 前記出力スイッチは、前記第1のアナログデジタル変換器から出力された第1のデジタル信号を前記第1の出力部に出力し、前記第2のアナログデジタル変換器から出力された第2のデジタル信号を前記第2の出力部に出力する
前記(8)に記載の撮像装置。
 1~44、111 画素
 51~54 行選択部
 61~64、71~74 AD変換器(ADC)
 81~84、91~94 フリップフロップ
 88、89、98、99 列選択スイッチ
 101 画素アレイ
 110 画素列
 112 転送トランジスタ
 113 フローティングディフュージョン領域
 114 リセットトランジスタ
 115 増幅トランジスタ
 116 選択トランジスタ
 117 フォトダイオード
 150 行選択部
 151~158 スイッチ
 160 定電流回路
 161~164 定電流源
 170 AD変換部
 171~174 AD変換器(ADC)
 180 制御部
 190 列選択部
 191、192 水平転送部
 701~704、119  垂直信号線
 711、721 比較器
 712、722 DA変換器
 713、723 カウンタ
 910 画素信号保持部
 911 入力選択器
 912 フリップフロップ
 921、922 列選択スイッチ
 931、932 出力保持部

Claims (9)

  1.  被写体を撮像する撮像素子の第1および第2の画素と、
     前記第1および第2の画素からの画素信号をアナログ値からデジタル値に変換する第1および第2のアナログデジタル変換器と、
     前記第1の画素からの画素信号を前記第1および第2のアナログデジタル変換器のいずれか一方に供給する第1のスイッチと、
     前記第2の画素からの画素信号を前記第1および第2のアナログデジタル変換器のいずれか一方に供給する第2のスイッチと
    を具備する撮像装置。
  2.  前記第1の画素は、第1の領域に対応し、
     前記第2の画素は、少なくとも一部が前記第1の領域と列方向でオーバーラップする第2の領域に対応し、
     前記第1のスイッチは、前記第1の画素の画素信号を前記第1のアナログデジタル変換器に供給し、
     前記第2のスイッチは、前記第2の画素の画素信号を前記第2のアナログデジタル変換器に供給する
    請求項1記載の撮像装置。
  3.  前記撮像素子の第3および第4の画素と、
     前記第3の画素が前記第1の領域に対応する場合には前記第3の画素からの画素信号を前記第1のアナログデジタル変換器に供給し、前記第3の画素が前記第2の領域に対応する場合には前記第3の画素からの画素信号を前記第2のアナログデジタル変換器に供給する第3のスイッチと、
     前記第4の画素が前記第1の領域に対応する場合には前記第4の画素からの画素信号を前記第1のアナログデジタル変換器に供給し、前記第4の画素が前記第2の領域に対応する場合には前記第4の画素からの画素信号を前記第2のアナログデジタル変換器に供給する第4のスイッチと
    をさらに具備する請求項2記載の撮像装置。
  4.  前記第1乃至第4の画素と、前記第1および第2のアナログデジタル変換器と、前記第1乃至第4のスイッチとからなる撮像回路を複数具備する請求項3記載の撮像装置。
  5.  前記撮像素子の第3および第4の画素をさらに具備し、
     前記第1のスイッチは、前記第3の画素が前記第1の領域に対応する場合には前記第3の画素からの画素信号を前記第1のアナログデジタル変換器に供給し、前記第3の画素が前記第2の領域に対応する場合には前記第3の画素からの画素信号を前記第2のアナログデジタル変換器に供給し、
     前記第2のスイッチは、前記第4の画素が前記第1の領域に対応する場合には前記第4の画素からの画素信号を前記第1のアナログデジタル変換器に供給し、前記第4の画素が前記第2の領域に対応する場合には前記第4の画素からの画素信号を前記第2のアナログデジタル変換器に供給する
    請求項2記載の撮像装置。
  6.  前記第1乃至第4の画素と、前記第1および第2のアナログデジタル変換器と、前記第1および第2のスイッチとからなる撮像回路を複数具備する請求項5記載の撮像装置。
  7.  前記第1のアナログデジタル変換器から出力された第1のデジタル信号を保持する第1のフリップフロップと、
     前記第2のアナログデジタル変換器から出力された第2のデジタル信号を保持する第2のフリップフロップと
    をさらに具備する請求項1記載の撮像装置。
  8.  前記第1および第2のフリップフロップに保持される前記第1および第2のデジタル信号を第1および第2の出力部のいずれか一方へ出力するように選択する出力スイッチをさらに具備する請求項7記載の撮像装置。
  9.  前記第1の画素は、第1の領域に対応し、
     前記第2の画素は、少なくとも一部が前記第1の領域と列方向でオーバーラップする第2の領域に対応し、
     前記第1のスイッチは、前記第1の画素の画素信号を前記第1のアナログデジタル変換器に供給し、
     前記第2のスイッチは、前記第2の画素の画素信号を前記第2のアナログデジタル変換器に供給し、
     前記出力スイッチは、前記第1のアナログデジタル変換器から出力された第1のデジタル信号を前記第1の出力部に出力し、前記第2のアナログデジタル変換器から出力された第2のデジタル信号を前記第2の出力部に出力する
    請求項8記載の撮像装置。
PCT/JP2018/040937 2018-02-15 2018-11-05 撮像装置 WO2019159444A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/967,622 US11290670B2 (en) 2018-02-15 2018-11-05 Imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018024888A JP2019140636A (ja) 2018-02-15 2018-02-15 撮像装置
JP2018-024888 2018-02-15

Publications (1)

Publication Number Publication Date
WO2019159444A1 true WO2019159444A1 (ja) 2019-08-22

Family

ID=67618555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040937 WO2019159444A1 (ja) 2018-02-15 2018-11-05 撮像装置

Country Status (3)

Country Link
US (1) US11290670B2 (ja)
JP (1) JP2019140636A (ja)
WO (1) WO2019159444A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199658A1 (ja) * 2020-03-31 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 撮像装置およびその制御方法
US20220217295A1 (en) * 2021-01-05 2022-07-07 Facebook Technologies, Llc Image sub-sampling with a color grid array
CN115002371A (zh) * 2022-05-31 2022-09-02 成都微光集电科技有限公司 像素处理电路及其读取方法、图像传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340358A (ja) * 2005-05-31 2006-12-14 Avago Technologies General Ip (Singapore) Private Ltd ピクセルアレイの読み出しノイズを低減するためのシステム及び方法
JP2008172609A (ja) * 2007-01-12 2008-07-24 Sony Corp 固体撮像装置、撮像装置
JP2013255035A (ja) * 2012-06-05 2013-12-19 Nikon Corp 撮像素子
WO2016121352A1 (ja) * 2015-01-28 2016-08-04 パナソニックIpマネジメント株式会社 固体撮像装置およびカメラ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1428380A2 (en) * 2001-08-17 2004-06-16 Micron Technology, Inc. Doubling of speed in cmos sensor with column-parallel adcs
JP5264095B2 (ja) * 2007-04-09 2013-08-14 キヤノン株式会社 固体撮像装置
DE102010051438B4 (de) * 2010-11-15 2024-03-14 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Bildsensor
JP5862126B2 (ja) 2011-09-06 2016-02-16 ソニー株式会社 撮像素子および方法、並びに、撮像装置
WO2017061191A1 (ja) * 2015-10-09 2017-04-13 ソニー株式会社 固体撮像素子、固体撮像素子の駆動方法、及び、電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340358A (ja) * 2005-05-31 2006-12-14 Avago Technologies General Ip (Singapore) Private Ltd ピクセルアレイの読み出しノイズを低減するためのシステム及び方法
JP2008172609A (ja) * 2007-01-12 2008-07-24 Sony Corp 固体撮像装置、撮像装置
JP2013255035A (ja) * 2012-06-05 2013-12-19 Nikon Corp 撮像素子
WO2016121352A1 (ja) * 2015-01-28 2016-08-04 パナソニックIpマネジメント株式会社 固体撮像装置およびカメラ

Also Published As

Publication number Publication date
US20210281794A1 (en) 2021-09-09
JP2019140636A (ja) 2019-08-22
US11290670B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
US7839439B2 (en) Solid-state imaging device and imaging device
USRE41664E1 (en) Solid-state imaging device, driving method therefor, and imaging apparatus
KR101461155B1 (ko) 고체 촬상장치, 고체 촬상장치의 신호 처리 방법, 및촬상장치
EP2549743B1 (en) Imaging apparatus
US20080259178A1 (en) Solid-state imaging device, signal processing method for the same, and imaging apparatus
JP4379504B2 (ja) 固体撮像素子、およびカメラシステム
JP5256874B2 (ja) 固体撮像素子およびカメラシステム
US20110304755A1 (en) Solid-state image pickup element and camera system
US10523882B2 (en) Ad converter, signal processing method, solid-state imaging device, and electronic apparatus
US9826185B2 (en) High signal to noise ratio of image based on signals with different sensitivities
JP2014060573A (ja) 固体撮像素子、制御方法、および電子機器
WO2019159444A1 (ja) 撮像装置
WO2011083541A1 (ja) 固体撮像装置および撮像装置
JP6632242B2 (ja) 撮像装置及び撮像システム
US8710422B2 (en) Imaging device
US8411180B2 (en) Solid-state imaging device, camera system, solid-state imaging device reading method and program
US20140320719A1 (en) Solid-state image device, method for driving same, and camera system
US10834353B2 (en) Image sensor and control method therefor, and image capturing apparatus
US20150206910A1 (en) Solid-state imaging device, imaging system, and copier
JP6213596B2 (ja) 撮像装置
JP2013102312A (ja) 固体撮像装置、撮像装置および撮像方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906588

Country of ref document: EP

Kind code of ref document: A1