WO2019157872A1 - 一种柔性单层导电微结构人工耳蜗电极及制作方法 - Google Patents

一种柔性单层导电微结构人工耳蜗电极及制作方法 Download PDF

Info

Publication number
WO2019157872A1
WO2019157872A1 PCT/CN2018/125450 CN2018125450W WO2019157872A1 WO 2019157872 A1 WO2019157872 A1 WO 2019157872A1 CN 2018125450 W CN2018125450 W CN 2018125450W WO 2019157872 A1 WO2019157872 A1 WO 2019157872A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
insulating material
flexible
lead
Prior art date
Application number
PCT/CN2018/125450
Other languages
English (en)
French (fr)
Inventor
田岚
陆小珊
白树忠
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2019157872A1 publication Critical patent/WO2019157872A1/zh
Priority to US16/987,500 priority Critical patent/US20200360685A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0541Cochlear electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • A61N1/36038Cochlear stimulation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/65Housing parts, e.g. shells, tips or moulds, or their manufacture
    • H04R25/658Manufacture of housing parts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/67Implantable hearing aids or parts thereof not covered by H04R25/606

Definitions

  • the invention relates to a flexible cochlear nerve stimulating electrode having a single-layer conductive film microstructure and a manufacturing method thereof.
  • a large number of nerve endings that can receive external call stimulation are distributed inside the cochlea.
  • the external sound signals can be collected, analyzed, coded, stimulated with appropriate electrical signals, docked with these nerve terminals, and activated the auditory nerve conduction pathway, which can be used for certain hearing.
  • the inside of the cochlea is a curved structure, the tube is narrow, and there are other tissue structures in the tube.
  • the sensing electrode for the auditory nerve stimulation needs to have good flexibility, the stimulating electrode is preferably non-directional, and has biocompatibility.
  • the shape, size, and distribution of the auditory nerve of the individual's cochlea may have certain specificity.
  • the electrode structure is easy to design and manufacture, which is very important for precise and individualized treatment.
  • a liquid metal-based cochlear electrode and a preparation method thereof are disclosed in the patent 201610534724.3, but have the following disadvantages:
  • Electrode array based on liquid metal Since the liquid metal is encapsulated by two layers of PDMS layer, the overall thickness of the electrode conductive microstructure is increased, which will occupy more thickness space for subsequent flipping and shape, and limit the increase of the number of electrodes in the future.
  • Liquid metal-based electrodes may cause deformation of the liquid metal channel due to local compression during cochlear implantation or use, affecting the conductivity of the liquid metal, and even breaking when severe, and there is a hidden danger of stimulating signal conduction.
  • Electrode array based on liquid metal If local electrode breakage occurs in the human body, liquid metal may leak and cause secondary damage to the cochlea.
  • the exposed conductive area of the liquid metal-based electrode array is in the shape of a point, and the neurons that can receive electrical stimulation are only distributed on the side of the worm shaft in the tympanic tube.
  • the electrode To make the implanted electrode play a role in stimulating the auditory nerve, the electrode must be made conductive.
  • the area is aligned with the direction of the worm axis, and the cochlear drum cavity is a long tube that is hovered two and a half times. It is necessary to ensure that the electrode points of the implanted electrode face the worm axis, which is too high for the doctor to operate and difficult to achieve.
  • the present invention discloses a flexible artificial auditory nerve stimulation electrode and a manufacturing method thereof.
  • a flexible single-layer electrically conductive microstructured cochlear electrode comprising a layer of flexible biocompatible insulating material, the upper layer of the layer of flexible biocompatible insulating material being a conductive metal layer, the conductive metal layer comprising an electrode region a lead region and a lead region; the lead region is etched with a plurality of leads, the electrode region is etched with a plurality of electrodes, and one electrode is connected to a lead, and each lead of the lead region is provided in the lead region A corresponding pin.
  • the flexible artificial auditory nerve stimulating electrode the electrode of the electrode region is exposed to the outside, in contact with the auditory neuron tissue, and the electrical signal is stimulated; the lead region is inside the layer wrapped by the flexible biocompatible insulating material layer.
  • the electrode around the volute may have a diameter of 0.2-1.0 mm, and the electrode at the volute may have a diameter of 1.0-5.0 mm.
  • the flexible artificial auditory nerve stimulation electrode described above is manufactured as follows:
  • Step 1 provides a rigid substrate on which a layer of flexible biocompatible insulating material is spin-coated
  • Step 2 spin-coating a photoresist on the insulating material layer, coating the mask having been designed, and exposing;
  • Step 3 The exposed film is developed in a developing solution and heated at a suitable temperature
  • Step 4 depositing or plating an adhesion layer on the side of the photoresist with electron beam evaporation
  • Step 5 depositing or plating a conductive metal layer on the side of the photoresist with electron beam evaporation
  • Step 6 removing the photoresist, and then peeling off the processed solid conductive biocompatible insulating material layer with a metal conductive structure from the hard substrate;
  • Step 8 fixes the package.
  • step 7 is:
  • the surface of the insulating material is inside, and the conductive metal layer starts to curl outside.
  • the electrode array film is formed such that all the pin discrimination layers are exposed to the lower half of the support; when crimped to the last turn, the electrode line of the electrode region is wound in the outermost direction of the long tapered tube in the direction of the vertical support rod axis.
  • An upper portion, and forming an array of conductive electrodes of approximately annular or U shape, and the leads wound into the lead region are separated from each other by an insulating film material;
  • the process of the step 8 is: applying a suitable adhesive (for example, liquid PDMS or other glue) on the inner side of the end of the electrode region, sticking the outermost edge of the curl, and standing and fixing; then, the electro-optic characteristics of the necessary electrode can be performed. Measurement and packaging of subsequent electronic circuits.
  • a suitable adhesive for example, liquid PDMS or other glue
  • the flexible biocompatible insulating material layer of step 1 may be polydimethylsiloxane or other flexible biocompatible insulating material.
  • the invention designs and fabricates a flexible electro-stimulation electrode array by using flexible, biocompatible film materials to prepare a film, a deposited metal, a curling shape, a fixed package, etc. according to the distribution rule of the end of the cochlear auditory nerve, and the design and the manufacturing method thereof It has the characteristics of firm electrode, dense contact, customizable, and fine overall diameter of the electrode array, which can meet individualized and precise treatment.
  • the invention adopts single-layer PDMS, which reduces the thickness of the electrode material, and is easy to form an electrode array with a fine diameter, which is convenient for increasing the number of electrodes and ensuring flexibility.
  • the conductive material used in the present invention is a solid metal, and a solid metal film having good ductility and high electrical conductivity can be selected, and the conductivity is relatively stable in curling and use.
  • the present invention uses solid metal, which is safer than liquid metal to avoid secondary damage caused by breakage and leakage.
  • the electrode array made by the invention facilitates the design of the annular or U-shaped electrode contacts, so that the conductive electrodes are easily aligned with the worm shaft, and the operation is convenient during the electrode implantation surgery, and the auditory nerve alignment problem is easily realized.
  • the invention has good electrical conductivity and excellent flexibility, safety (using biocompatible materials), precision (fine size, fine electrode contacts), reliability (electrodes are not easy to fall off), shaping Convenient (curing flexible film material with sticks), simple preparation process.
  • the invention has small volume and high flexibility, and can reduce physical damage during cochlear implantation.
  • FIG. 1 is a schematic view showing the microstructure distribution of the electrode array of the present invention and the shape of the film after film formation:
  • FIG. 2 is a schematic view showing the outline of an electrode array of the present invention
  • Figure 3 is a cross-sectional view of a film material of the present invention.
  • 1 is the electrode area
  • 2 is the lead area
  • 3 lead area is the lead area
  • 4 bracket stick 5 stimulating electrode
  • 6 is a layer of flexible biocompatible insulating material
  • 7 is an adhesive layer
  • 8 metal layer is the electrode area
  • the present application proposes a single layer + flipped microstructure flexible artificial auditory nerve stimulating electrode and a manufacturing method thereof.
  • the invention designs and fabricates a flexible electrical stimulation electrode array according to the distribution rule of the end of the cochlear auditory nerve, adopts a flexible and biocompatible film material, and uses a film as a base, a deposition metal, a curling shape, a fixed package and the like, and the design method is the same. It has the characteristics of firm electrode, dense contact, customizable, and fine overall electrode diameter, which can meet individualized and precise treatment.
  • a substrate such as a glass plate or a silicon wafer is provided.
  • the electrode array mask pattern is designed to include three parts: electrode area 1, lead area 2, and lead area 3.
  • Step 1 On the substrate, spin-coat a layer of flexible biocompatible insulating material, such as PDMS, to control the rotation speed and time to select a film thickness, for example, 50-100 um, to stand still to be cured;
  • a layer of flexible biocompatible insulating material such as PDMS
  • Step 2 spin-coating the photoresist on the insulating material layer, covering the mask (as shown in FIG. 1 , including the electrode region, the lead region and the lead region, not limited to this shape), and exposing.
  • Step 3 is developed in the developer and heated for a suitable time (e.g., 5-10 minutes) at a suitable temperature (e.g., 90 ° C) on a heating table.
  • a suitable time e.g., 5-10 minutes
  • a suitable temperature e.g., 90 ° C
  • an adhesion layer for example, titanium having a thickness of 3 to 20 nm, is deposited by electron beam evaporation.
  • Step 5 On the surface (or side) of the photoresist, an electron beam evaporation method is used to deposit a conductive metal layer with good ductility, good conductivity and good biocompatibility, such as gold, and the thickness is optional. 50-200 nm as a conductive layer.
  • Step 6 cleans the photoresist and peels off the processed cured film with a metal conductive structure from the hard substrate.
  • Step 7 Shape: Use a long column or long tapered filament as the support stick 4 (metal or non-metallic), as the axis, at a certain angle, from the edge of the electrode away from the electrode area ( Figure 1 Starting from the right end), the surface of the insulating material is inside, and the conductive metal layer starts to curl the electrode array film prepared above, so that the lead layers of all the electrodes are layered and exposed on the lower part of the support rod (see the pin area of Fig. 2).
  • Step 8 Fixing the package: Apply the inner side of the electrode area with a suitable adhesive (such as liquid PDMS or glue), stick the outermost edge of the curl, and fix it. Subsequently, the necessary electrode point-by-point electrical characteristic measurement and subsequent electronic circuit packaging can be performed.
  • a suitable adhesive such as liquid PDMS or glue
  • each electrode contact may be annular, U-shaped, etc., determined by curling and molding.
  • the needle electrode region of the cochlear electrode prepared by this method may have a diameter around the vortex of 0.2-1.0 mm, and the electrode at the volute may have a diameter of 1.0-5.0 mm.
  • the spacing between the electrodes of the adjacent electrode regions can be selected in a wide range depending on the specific situation, for example, 50 um - 500 um.
  • a layer of bonding material may be added.
  • the bottom pin area (shown in Figure 1) is designed to be specially shaped to expose the electrode leads when the film is crimped for subsequent testing and connection.
  • the long column or the long tapered filament is used for the stent rod to curl and expose the pins, and the stick is implanted and edged during the implantation of the electrode array into the cochlea. Draw it out and finally take out the filament stick.
  • the design and manufacturing method of the electrode has the characteristics of firm electrode, high frequency resolution of the sensing electrode, customizable, slim electrode needle, etc., and can meet the individualized and accurate hearing disability treatment, and can interface with various types of sound coding processors. .
  • step 1 Before step 1 is applied to the layer of flexible insulating material, the anti-adhesion layer is pre-coated on the substrate to facilitate stripping of the film at a later stage.
  • the electrode area is in the same layer as the lead area; during the shaping process, the filament rod is crimped and the electrode pins are exposed. After crimping, the electrode area is exposed to the upper part of the long spinal canal and the lead area is in the lower part of the long cone (see Figure 2).
  • the shape of each electrode contact can be determined by the degree of curling, and can be customized according to actual requirements, such as ring, u-shaped, rectangular, etc.; the bottom lead area of the planar electrode array (see Figure 1) can be designed into a special shape (such as rectangular, rhombic, Triangles, etc., can be used to layer and expose each pin during crimping, which is convenient for testing and connection.
  • the electrode made by the above embodiment 1 comprises a layer 5 of a flexible biocompatible insulating material, and the upper layer of the layer of flexible biocompatible insulating material is a conductive metal layer 7 and an adhesion layer 6, said conductive
  • the metal layer comprises an electrode region 1, a lead region 2 and a lead region 3; the lead region 2 is etched with a plurality of leads, the electrode region 1 is etched with a plurality of electrodes, and one electrode is connected with a lead.
  • the leg region 3 has pins one-to-one corresponding to each lead of the lead region 2.
  • the electrode of the electrode region 1 is exposed to the outside, in contact with the auditory neuron tissue, and conducts an electrical signal; the lead region is inside the layer surrounded by the layer of flexible biocompatible insulating material.
  • the invention adopts single-layer PDMS, which reduces the thickness of the electrode material, and is easy to form an electrode array with a fine diameter, which is convenient for increasing the number of electrodes and ensuring flexibility.
  • the conductive material used in the present invention is a solid metal, and a solid metal film having good ductility and high electrical conductivity can be selected, and the conductivity is relatively stable in curling and use.
  • the present invention uses solid metal, which is safer than liquid metal to avoid secondary damage caused by breakage and leakage.
  • the electrode array made by the invention facilitates the design of the annular or U-shaped electrode contacts, so that the conductive electrodes are easily aligned with the worm shaft, and the operation is convenient during the electrode implantation surgery, and the auditory nerve alignment problem is easily realized.
  • the invention has good electrical conductivity and excellent flexibility, safety (using biocompatible materials), precision (fine size, fine electrode contacts), reliability (electrodes are not easy to fall off), shaping Convenient (curing flexible film material with sticks), simple preparation process.
  • the invention has small volume and high flexibility, and can reduce physical damage during cochlear implantation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Neurosurgery (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Toxicology (AREA)
  • Electrotherapy Devices (AREA)
  • Prostheses (AREA)

Abstract

一种柔性单层导电微结构人工耳蜗电极及制作方法,根据耳蜗听神经末端占位分布规律,采用具有生物相容性的绝缘柔性薄膜材料,以制备基底薄膜、沉积粘附层、金属层、剥离薄膜、卷曲塑形、固定封装等步骤,设计制作柔性人工耳蜗电极阵列部件,具体的,在基板上,旋涂柔性生物相容性绝缘材料层;在绝缘材料层上旋涂光刻胶,覆上已设计好的基底掩膜板,并曝光;在显影液中显影曝光后薄膜材料,在适当的温度下进行加热;在上述有光刻胶的一侧使用电子束蒸发沉积或镀一层粘附层;在上述有光刻胶的一侧使用电子束蒸发再沉积或镀一层导电金属层;清洗掉光刻胶,再从硬质基板上将已加工固化的带金属导电结构的柔性薄膜剥离下来;塑形;固定封装。

Description

一种柔性单层导电微结构人工耳蜗电极及制作方法 技术领域
本发明涉及一种具有单层导电薄膜微结构的柔性人工耳蜗神经刺激电极及制作方法。
技术背景
耳蜗内部按位置分布着大量可接收外来电刺激的神经末梢,外部声音信号可通过信号采集、分析、编码,以适当的电信号刺激,对接这些神经末端,激活听神经传导通路,可用于某些听觉系统残疾的治疗,例如电子耳蜗或人工耳蜗。
耳蜗内部是弯曲结构,管道狭窄,管内有其它组织结构,用于听神经刺激的传感电极需具有良好的柔性、刺激电极最好无方向性,同时具有生物相容性。
病人个体耳蜗形状、尺寸、听神经分布等可能具有一定特异性,电极结构便于设计制作,对精准化、个体化治疗非常重要。
在满足治疗要求的情况下尽量多的电极触点、长锥形的电极阵列整体口径纤细,也是精准治疗必不可少的要求。
在专利201610534724.3中公开了一种基于液态金属的人工耳蜗电极及其制备方法,但存在以下缺点:
1.基于液态金属的电极阵列由于采用两层PDMS层封装液态金属,电极导电微结构整体厚度加大,对后续翻转塑形将占用更多的厚度空间,限制将来的电极数量的增加。
2.基于液态金属的电极在耳蜗植入或使用中由于局部受压,可能会造成液态金属沟道的变形,影响液态金属导电率,严重时甚至会断开,存在刺激信号传导不稳定隐患。
3.基于液态金属的电极阵列在人体中若出现局部电极破损,可能会导致液态金属泄露,对耳蜗造成二次伤害。
4.基于液态金属的电极阵列的裸露导电区为点形状,而可接受电刺激的神经元只分布在鼓阶管内蜗轴一侧,要使植入电极发挥刺激听神经的作用,必须使电极导电区对准蜗轴方向,而耳蜗鼓阶腔是盘旋两圈半的长管,要保证植入的电极其电极点都朝向蜗轴,对医生手术操作要求过高、很难达到。
发明内容
为了解决背景技术部分提出的技术问题,本发明公开了一种柔性人工听觉神经刺激电极及制作方法。
本发明采用的技术方案如下:
一种柔性单层导电微结构人工耳蜗电极,包括一个柔性生物相容性绝缘材料层,在所述柔性生物相容性绝缘材料层的上层是导电金属层,所述的导电金属层包括电极区、引线区和引脚区;所述的引线区刻蚀有多条引线,所述的电极区刻蚀有多个电极,一个电极连接一条引线,在引脚区有与引线区每条引线一一对应的引脚。
进一步的,柔性人工听觉神经刺激电极,所述的电极区的电极暴露在外部,与听神经元组织接触,传导刺激电信号;所述引线区在被柔性生物相容性绝缘材料层包裹的内部。
进一步的,所述耳蜗电极的针状电极区,蜗顶处电极围绕直径可为0.2-1.0mm,蜗底处电极围绕直径可为1.0-5.0mm。
上述所述的柔性人工听觉神经刺激电极的制作方法如下:
步骤1提供硬质基板,在所述基板上,旋涂柔性生物相容性绝缘材料层;
步骤2在所述的绝缘材料层上旋涂光刻胶,覆上已设计好的掩膜板,曝光;
步骤3曝光后的薄膜在显影液中显影,在适当的温度下进行加热;
步骤4在上述有光刻胶的一侧使用电子束蒸发沉积或镀一层粘附层;
步骤5在上述有光刻胶的一侧使用电子束蒸发再沉积或镀一层导电金属层;
步骤6清洗掉光刻胶,再从硬质基板上将已加工固化的带金属导电结构的柔性生物相容性绝缘材料层剥离下来;
步骤7塑形;
步骤8固定封装。
进一步的,步骤7中塑形的方法是:
以一根长柱形或长锥形细丝做支架棍4,以此为轴,以一定角度,从远离电极区的引脚边开始,绝缘材料面在内、导电金属层在外开始卷曲上述制成的电极阵列薄膜,这样,使所有引脚区分层暴露在支棍下半部;卷曲到最后一圈,将电极区的电极线近似垂直支棍轴方向卷在长锥管最外层的上部,并构成近似环形或 U形的导电电极阵列,被卷入引线区的各引线均以绝缘薄膜材料为间隔,相互隔离绝缘;
进一步的,步骤8的过程是:以适当粘合剂(例如液态PDMS或其它胶水)涂抹在电极区末端内侧,粘住卷曲最外边沿,静置固定;随后,可进行必要电极逐点电特性测量和后续电子线路的封装。
进一步的,其中步骤1所述柔性生物相容性绝缘材料层可为聚二甲基硅氧烷或其它柔性生物相容性绝缘材料。
本发明根据耳蜗听神经末端占位分布规律,采用柔性、生物相容性薄膜材料,以制备薄膜、沉积金属、卷曲塑形、固定封装等步骤,设计制作柔性电刺激电极阵列,该设计和制作方法,具有电极牢固、触点可密布、可定制、电极阵列整体管径纤细等特点,可满足个体化、精准化治疗。
本发明的有益效果:
1.本发明采用单层PDMS,减少了电极材料厚度,容易制成口径纤细的电极阵列,方便增加电极数量,且能保证柔性。
2.本发明采用的导电材料为固态金属,可选用延展性好、导电率高的固态金属制膜,在卷曲及使用中导电率相对稳定。
3.本发明使用固态金属,相比液态金属可避免破损泄露可能造成的二次伤害,更安全。
4.本发明制成的电极阵列便于设计环形或U形电极触点,使导电电极容易对准蜗轴,在电极植入手术过程中,操作方便,容易实现听神经对准问题。
5.除此之外本发明具有良好的导电性和极佳的柔顺性、安全(采用生物相容性材料)、精准(尺寸纤细、电极触点精细)、可靠(电极不易脱落)、塑形方便(以支棍卷曲柔性薄膜材料)、制备工艺简单。本发明体积小柔性高,可以减小耳蜗植入过程中的物理伤害。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明的电极阵列微结构分布示意与制膜后卷曲定型示意图:
图2为本发明电极阵列外形示意图;
图3为本发明薄膜材料截面图。
图中:1为电极区,2为引线区,3引脚区,4支架棍,5刺激电极,6为柔性生物相容性绝缘材料层,7为粘附层,8金属层。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中存在耳蜗植入电极的设计和制作存在不易增加电极数量、有时电极不够牢固易脱落、个体化电极设计不易、手术要求过高不易实现等问题,本发明为了解决如上的技术问题,本申请提出了一种单层+翻转微结构的柔性人工听觉神经刺激电极及制作方法。
本发明根据耳蜗听神经末端占位分布规律,采用柔性、生物相容性薄膜材料,以薄膜为基底、沉积金属、卷曲塑形、固定封装等步骤,设计制作柔性电刺激电极阵列,该设计制作方法,具有电极牢固、触点可密布、可定制、电极整体管径纤细等特点,可满足个体化、精准化治疗。
实施例1
本发明采用的具体步骤如下:
准备工作:
提供基板,例如玻璃板、硅片。设计电极阵列掩膜版图案,其中包含电极区1、引线区2、引脚区3三部分。
步骤1在所述基板上,旋涂柔性生物相容性绝缘材料层,例如PDMS,控制转速和时间选定薄膜厚度,例如,50-100um,静置待其固化;
步骤2在所述的绝缘材料层上旋涂光刻胶,覆上掩膜板(如图1所示,含电极区、引线区和引脚区,不限此形状),并曝光。
步骤3在显影液中显影,再在加热台上适当温度(如90℃)条件下加热适当时间(如5-10分钟)。
步骤4在上述有光刻胶的面(或侧),使用电子束蒸发沉积一层粘附层,例如厚度为3-20nm厚的钛。
步骤5在上述有光刻胶的面(或侧),使用电子束蒸发方式,再沉积一层延展性好、导电性好、生物相容性好的导电金属层,如金,厚度可选,50-200nm,作为导电层。
步骤6清洗掉光刻胶,再从硬质基板上将已加工固化的带金属导电结构的柔性薄膜剥离下来。
步骤7塑形:以一根长柱形或长锥形细丝做支架棍4(金属的或非金属的),以此为轴,以一定角度,从远离电极区的引脚边(图1所示右端)开始,绝缘材料面在内、导电金属层在外开始卷曲上述制成的电极阵列薄膜,这样,所有电极的引脚分层暴露在支棍的下部(见图2引脚区),卷曲到最后一圈(或层),电极区的所有电极线近似垂直地绕在长锥管上部的最外层,并近似构成环形或U形导电电极阵列,引线区被逐层包裹在长锥管内部,其中各引线四周均以绝缘薄膜材料为间隔,相互绝缘。
步骤8:固定封装:以适当粘合剂(例如液态PDMS或胶水)涂抹在电极区末端内侧,粘住卷曲最外边沿,静置固定。随后,可进行必要电极逐点电特性测量和后续电子线路的封装。
进一步的,卷曲成相应形状,例如耳蜗针状,听觉下丘核处层状或球冠状;每个电极触点可环形、U型等,由卷曲、成型决定。
用此方法制作的耳蜗电极针状电极区,蜗顶处电极围绕直径可为0.2-1.0mm,蜗底处电极围绕直径可为1.0-5.0mm。
进一步优选的,相邻区电极区电极之间的间距可根据具体情况在很大范围选择,例如50um—500um。
在基底柔性绝缘材料薄膜层与金属导电层之间,为提高金属的附着力,可加入一层粘结材料层。
在底部引脚区(见图1所示)设计为特殊形状,可在卷曲薄膜时使电极引脚分层露出,以方便后续测试、连接。
进一步优选的,在塑形过程中,使用长柱形或长锥形细丝为支架棍卷曲,并使各引脚露出,该支棍在电极阵列往耳蜗植入过程中,边植入、边往外抽,最终取出细丝支棍。
该电极的设计和制作方法,具有电极牢固、传感电极频率分辨率高、可定制、电极针纤细等特点,可满足个体化、精准化听觉残疾治疗,可对接各种类型的声音编码处理器。
其中步骤1旋涂柔性绝缘材料层前,基板上先预涂抗粘连层,方便后期薄膜剥离。
电极区与引线区在同一层中;塑形过程中,使用细丝支棍卷曲,并使电极引脚都外露出。经过卷曲,电极区暴露在长椎管上部,引脚区在长锥形下部(如图2)。每个电极触点形状可由卷曲程度决定,可按实际要求定制,如环形、u型、长方形等;平面电极阵列底部引脚区(见图1)可设计为特殊形状(如长方形、斜方形、三角形等),可在卷曲时使每个引脚分层露出,方便测试、连接。
实施例2
由上面的实施例1制作的电极,包括一个柔性生物相容性绝缘材料层5,在所述柔性生物相容性绝缘材料层的上层是导电金属层7和粘附层6,所述的导电金属层包括电极区1、引线区2和引脚区3;所述的引线区2刻蚀有多条引线,所述的电极区1刻蚀有多个电极,一个电极连接一条引线,在引脚区3有与引线区2每条引线一一对应的引脚。所述的电极区1的电极暴露在外部,与听神经元组织接触,传导刺激电信号;所述引线区在被柔性生物相容性绝缘材料层包裹的内部。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
1.本发明采用单层PDMS,减少了电极材料厚度,容易制成口径纤细的电极阵列,方便增加电极数量,且能保证柔性。
2.本发明采用的导电材料为固态金属,可选用延展性好、导电率高的固态金属制膜,在卷曲及使用中导电率相对稳定。
3.本发明使用固态金属,相比液态金属可避免破损泄露可能造成的二次伤害,更安全。
4.本发明制成的电极阵列便于设计环形或U形电极触点,使导电电极容易对准蜗轴,在电极植入手术过程中,操作方便,容易实现听神经对准问题。
5.除此之外本发明具有良好的导电性和极佳的柔顺性、安全(采用生物相容性材料)、精准(尺寸纤细、电极触点精细)、可靠(电极不易脱落)、塑形方便(以支棍卷曲柔性薄膜材料)、制备工艺简单。本发明体积小柔性高,可以减小耳蜗植入过程中的物理伤害。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (7)

  1. 一种柔性单层导电微结构人工耳蜗电极,其特征在于,包括一个柔性生物相容性绝缘材料层,在所述柔性生物相容性绝缘材料层的上层是导电金属层和粘附层,所述的导电金属层包括电极区、引线区和引脚区;所述的引线区刻蚀有多条引线,所述的电极区刻蚀有多个电极,一个电极连接一条引线,在引脚区有与引线区每条引线一一对应的引脚。
  2. 如权利要求1所述的柔性单层导电微结构人工耳蜗电极,其特征在于,所述的电极区的电极暴露在外部,与听神经元组织接触,传导刺激电信号;所述引线区在被柔性生物相容性绝缘材料层包裹的内部。
  3. 如权利要求1所述的柔性单层导电微结构人工耳蜗电极,其特征在于,所述耳蜗电极的针状电极区,蜗顶处电极围绕直径可为0.2-1.0mm,蜗底处电极围绕直径可为1.0-5.0mm。
  4. 如权利要求1所述的柔性单层导电微结构人工耳蜗电极的制作方法,其特征在于,如下:
    步骤1提供基板,在所述基板上,旋涂柔性生物相容性绝缘材料层;
    步骤2在所述的绝缘材料层上旋涂光刻胶,覆上已设计好的掩膜板,曝光;
    步骤3曝光后的薄膜在显影液中显影,在适当的温度下进行加热;
    步骤4在上述有光刻胶的一侧使用电子束蒸发沉积或镀一层粘附层;
    步骤5在上述有光刻胶的一侧使用电子束蒸发再沉积或镀一层导电金属层;
    步骤6清洗掉光刻胶,再从硬质基板上将已加工固化的带金属导电结构的柔性生物相容性绝缘材料层剥离下来;
    步骤7塑形;
    步骤8固定封装。
  5. 如权利要求4所述的柔性单层导电微结构人工耳蜗电极的制作方法,其特征在于,
    步骤7中塑形的方法是:
    以一根长柱形或长锥形细丝做支架棍,以此为轴,以一定角度,从远离电极区的引脚边开始,绝缘材料面在内、导电金属层在外开始卷曲上述制成的电极阵列薄膜,使引脚区分层暴露在支棍下部,卷曲到最后一圈,将电极区的各电极近似垂直卷在支棍最外层的上部,并构成近似环形或U形的导电电极阵列,被卷入 的引线区,各线四周均以绝缘薄膜材料为间隔,相互隔离绝缘。
  6. 如权利要求3所述的柔性单层导电微结构人工耳蜗电极的制作方法,其特征在于,
    步骤8的过程是:以适当粘合剂涂抹在电极区末端内侧,粘住卷曲最外层,静置、固定;随后,可进行必要电极逐点电特性测量和后续线路的封装。
  7. 柔性单层导电微结构人工耳蜗电极的制作方法,其特征在于,其中步骤1所述柔性生物相容性绝缘材料层可为聚二甲基硅氧烷或其它柔性生物相容性绝缘材料。
PCT/CN2018/125450 2018-02-13 2018-12-29 一种柔性单层导电微结构人工耳蜗电极及制作方法 WO2019157872A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/987,500 US20200360685A1 (en) 2018-02-13 2020-08-07 Flexible single-sided conductive microstructure artificial cochlea electrode and production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810148399.6A CN108261605B (zh) 2018-02-13 2018-02-13 一种柔性单层导电微结构人工耳蜗电极及制作方法
CN201810148399.6 2018-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/987,500 Continuation US20200360685A1 (en) 2018-02-13 2020-08-07 Flexible single-sided conductive microstructure artificial cochlea electrode and production method

Publications (1)

Publication Number Publication Date
WO2019157872A1 true WO2019157872A1 (zh) 2019-08-22

Family

ID=62774090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125450 WO2019157872A1 (zh) 2018-02-13 2018-12-29 一种柔性单层导电微结构人工耳蜗电极及制作方法

Country Status (3)

Country Link
US (1) US20200360685A1 (zh)
CN (1) CN108261605B (zh)
WO (1) WO2019157872A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108261605B (zh) * 2018-02-13 2021-07-30 山东大学 一种柔性单层导电微结构人工耳蜗电极及制作方法
CN115611230B (zh) * 2022-10-28 2023-09-15 华中科技大学 一种微电极及其制备方法和应用
CN117154454B (zh) * 2023-09-07 2024-03-15 珩星电子(连云港)股份有限公司 一种用于人工耳蜗的电连接器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104622457A (zh) * 2015-02-15 2015-05-20 山东大学 多通道同步耳蜗听神经动作电位测量系统和测量方法
CN105596119A (zh) * 2016-01-27 2016-05-25 山东大学 增强音乐旋律感知的耳蜗电极主辅布置、装置、系统及方法
CN107661571A (zh) * 2017-05-19 2018-02-06 山东大学 多层结构柔性人工听觉神经刺激电极及制作方法
CN108261605A (zh) * 2018-02-13 2018-07-10 山东大学 一种柔性单层导电微结构人工耳蜗电极及制作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7085605B2 (en) * 2003-01-23 2006-08-01 Epic Biosonics Inc. Implantable medical assembly
AU2003901868A0 (en) * 2003-04-17 2003-05-08 Cochlear Limited Electrode array with bendable tip
CN103202690B (zh) * 2013-03-14 2015-04-15 深圳先进技术研究院 柔性心外膜心电电极芯片
CN104473718B (zh) * 2014-12-29 2015-10-07 阜阳师范学院 一种导电-导光的人工耳蜗电极及其制备方法
CN107534217B (zh) * 2015-04-24 2019-12-17 领先仿生公司 与经皮供电的医疗植入物一起使用的天线
CN105169554B (zh) * 2015-09-14 2017-12-15 上海交通大学 一种视觉假体柔性神经微电极焊盘的制备方法
CN106182975B (zh) * 2016-07-07 2018-04-10 清华大学 一种基于液态金属的人工耳蜗电极及其制备方法
CN106362279B (zh) * 2016-08-01 2018-11-02 深圳硅基仿生科技有限公司 刺激电极结构及人工视网膜的植入装置
CN107434239A (zh) * 2017-07-25 2017-12-05 清华大学 一种可应用于人工耳蜗的mems薄膜电极阵列及加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104622457A (zh) * 2015-02-15 2015-05-20 山东大学 多通道同步耳蜗听神经动作电位测量系统和测量方法
CN105596119A (zh) * 2016-01-27 2016-05-25 山东大学 增强音乐旋律感知的耳蜗电极主辅布置、装置、系统及方法
CN107661571A (zh) * 2017-05-19 2018-02-06 山东大学 多层结构柔性人工听觉神经刺激电极及制作方法
CN108261605A (zh) * 2018-02-13 2018-07-10 山东大学 一种柔性单层导电微结构人工耳蜗电极及制作方法

Also Published As

Publication number Publication date
CN108261605A (zh) 2018-07-10
CN108261605B (zh) 2021-07-30
US20200360685A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2018209872A1 (zh) 多层结构柔性人工听觉神经刺激电极及制作方法
WO2019157872A1 (zh) 一种柔性单层导电微结构人工耳蜗电极及制作方法
US11730953B2 (en) Deep brain stimulation lead
CN108751116B (zh) 用于生物电记录或电刺激的翘曲型柔性电极及其制备方法
CN101912666B (zh) 一种基于pdms的柔性植入式神经微电极及制作方法
CN109205551B (zh) 一种锥形阵列柔性电极及其制备方法
Wang et al. Fabrication and characterization of a parylene-based three-dimensional microelectrode array for use in retinal prosthesis
CN108975266A (zh) 基于针尖阵列结构的石墨烯-pdms柔性衬底心电干电极及其制备方法
CN104340956B (zh) 可植入多通道柔性微管电极及其制备方法
US20200085375A1 (en) Electrode fabrication and design
US8927876B2 (en) Electrode array and method of fabrication
CN110327544B (zh) 一种植入式高密度电极点柔性探针电极及制备方法
CN114631822A (zh) 一种柔性神经电极、制备方法及设备
JP2017533053A (ja) 埋め込み式電極装置、並びに、その製造方法
JP4828124B2 (ja) 電極支持体ガイド、前記ガイドを備える蝸牛移植体、及び、その製造方法
KR20150095964A (ko) 플렉시블 전극 및 그 제조방법
CN115054825A (zh) 一种用于针灸的柔性电极及其制造方法
US11975198B2 (en) Nerve stimulator and manufacturing method thereof
WO2023240686A1 (zh) 用于与seeg电极结合的柔性电极装置及其制造方法
WO2021104149A1 (zh) 微电极及其制作和使用方法、塞类装置和微电极系统
CN107224666B (zh) 一种神经刺激电极及其制造方法
Leber et al. Novel method of fabricating self-dissolvable and freely floating neural array
KR101731231B1 (ko) 복합신경 자극용 이식형 리드 및 그 제조방법
Wu et al. A curvature-controlled 3D micro-electrode array for cochlear implants
WO2023240693A1 (zh) 一种用于周围神经的柔性电极及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906420

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18906420

Country of ref document: EP

Kind code of ref document: A1