WO2019157678A1 - 传输信息的方法和设备 - Google Patents

传输信息的方法和设备 Download PDF

Info

Publication number
WO2019157678A1
WO2019157678A1 PCT/CN2018/076772 CN2018076772W WO2019157678A1 WO 2019157678 A1 WO2019157678 A1 WO 2019157678A1 CN 2018076772 W CN2018076772 W CN 2018076772W WO 2019157678 A1 WO2019157678 A1 WO 2019157678A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
indication
control information
uplink control
indication field
Prior art date
Application number
PCT/CN2018/076772
Other languages
English (en)
French (fr)
Inventor
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to AU2018409008A priority Critical patent/AU2018409008A1/en
Priority to CN202111514867.5A priority patent/CN114126074A/zh
Priority to RU2020129167A priority patent/RU2763504C1/ru
Priority to PCT/CN2018/076772 priority patent/WO2019157678A1/zh
Priority to SG11202007714WA priority patent/SG11202007714WA/en
Priority to EP18906628.5A priority patent/EP3755085A4/en
Priority to CN201880086344.5A priority patent/CN111602446A/zh
Priority to JP2020542994A priority patent/JP2021517756A/ja
Priority to KR1020207024989A priority patent/KR20200118454A/ko
Publication of WO2019157678A1 publication Critical patent/WO2019157678A1/zh
Priority to US16/992,617 priority patent/US20200374064A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • Embodiments of the present application relate to the field of communications, and, more particularly, to a method and apparatus for transmitting information.
  • both the uplink control information and the uplink data may be transmitted through a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the network device can expect whether the terminal device transmits the uplink control information and the uplink data in the PUSCH. Therefore, the network device can ensure the data by reserving appropriate resources and configuring appropriate modulation and coding modes.
  • the reliability of the transmission For the semi-persistently scheduled PUSCH, the reliability and delay requirements of the uplink service are not high. Even if the uplink control information is transmitted to the PUSCH and the uplink data is received incorrectly, the reliability of the data transmission can be ensured by retransmission.
  • the embodiment of the present application provides a method and device for transmitting information, which can achieve a compromise between data transmission reliability and transmission delay.
  • the first aspect provides a method for transmitting information, including: receiving, by a terminal device, first information sent by a network device; and determining, by the terminal device, an uplink transmission resource for transmitting uplink control information according to the first information. a resource; the terminal device transmits the uplink control information according to the first resource.
  • the resource for uplink control information transmission in the uplink transmission resource may be determined according to the first information configured by the network device, and further, the terminal device may be configured to transmit uplink control information.
  • the resource transmits the uplink control information, which is beneficial to avoid conflicts between the uplink control information and the uplink data transmission.
  • the first information is used to indicate at least one of the following:
  • the uplink control information can be transmitted in the uplink transmission resource, the number of resources that can be used for transmitting the uplink control information, the proportion of resources that can be used for transmitting the uplink control information, the number of bits of the uplink control information that can be transmitted, and the uplink control information that can be transmitted. Types of.
  • the terminal device can determine, according to the first information, whether the uplink transmission resource can transmit the UCI, and if it can be used to transmit the UCI, further, the transmission mode of the UCI can also be determined. For example, all bits of the UCI to be transmitted are transmitted, or the UCI to be transmitted is processed and then transmitted.
  • the first information is indicated by an explicit manner or an implicit manner.
  • the first information may be configured to the terminal device by displaying an instruction (eg, high layer signaling or physical layer signaling, etc.), or in a specific case or a specific scenario, the existing information or signaling may be used to indicate the first A message is not limited in this embodiment of the present application.
  • an instruction eg, high layer signaling or physical layer signaling, etc.
  • the existing information or signaling may be used to indicate the first A message is not limited in this embodiment of the present application.
  • the first information is carried in an indication field for indicating a modulation and coding scheme MCS offset of the uplink control information.
  • the first information may be carried by adding an existing length of the indication field for indicating the MCS offset, or may be carried by using the existing reserved bit in the indication field for indicating the MCS offset.
  • the first information is not limited in this embodiment of the present application.
  • the first information is carried in multiple indication domains for indicating an MCS offset of uplink control information, and each indication domain in the multiple indication domains respectively corresponds to a corresponding bit.
  • the number of bits and/or the type of uplink control information used for allowing UCI to be transmitted can be flexibly indicated by multiple indication fields, and the flexibility of UCI resource indication is improved.
  • the offset value indicated by the indication field satisfies the first condition, it is used to indicate that uplink control information cannot be transmitted through the uplink transmission resource.
  • the indicating that the offset value indicated by the indication field satisfies the first condition includes that the offset value indicated by the indication field is zero.
  • the existing indication domain to carry the first information
  • signaling overhead can be saved, and the MCS offset of the UCI can be flexibly configured.
  • UCI limited transmission can be implemented, thereby avoiding UCI and uplink.
  • the collision problem when the data is transmitted through the PUSCH can ensure the reliability of the uplink data transmission.
  • the first part of the indication field is used to indicate uplink control information for limiting transmission
  • the second part of the indication field is used for uplink control information for unrestricted transmission.
  • the existing indication domain to carry the first information
  • signaling overhead can be saved, and the MCS offset of the UCI can be flexibly configured.
  • UCI limited transmission can be implemented, thereby avoiding UCI and uplink.
  • the collision problem when the data is transmitted through the PUSCH can ensure the reliability of the uplink data transmission.
  • the indication field is used to indicate whether there is a restriction on the hybrid automatic repeat request HARQ-ACK information transmission.
  • the indication field is an indication field corresponding to the channel state information CSI, and when the offset indicated by the indication field meets a specific condition, the number of bits used to indicate that the uplink control information that can be transmitted is smaller than Or the value of N, and/or the type of uplink control information that can be transmitted is HARQ-ACK information, where N is a positive integer.
  • the first information can be indicated in a cross-implicit manner, and the flexibility of the first information indication is improved.
  • the indication manner can limit the transmission of the HARQ-ACK and the CSI at the same time, which is beneficial to ensure reliable uplink data transmission. Sex.
  • the embodiment of the present application preferentially limits the CSI transmission, so that when the transmission resource is limited, the CSI information is preferentially discarded, and the transmission of the HARQ-ACK information is ensured. Maximize the efficiency of downlink transmission.
  • a plurality of transmission modes can be implemented by explicitly limiting or implicitly limiting the number of bits/transmission resources of the HARQ-ACK transmission through the indication field of the CSI, for example, both CSI and HARQ-ACK are transmitted on demand (ie, unrestricted transmission); The CSI is not transmitted, the AHARQ-ACK restricts transmission, and neither CSI nor HARQ-ACKACK is transmitted, so that a compromise between the reliability of the uplink transmission and the transmission efficiency of the downlink transmission can be achieved.
  • the indicating that the offset of the indication field meets the specific condition may include that the indication value indicated by the indication field is zero.
  • the terminal device determines the first information according to a type of a data channel and/or a time domain length for data transmission.
  • the first information is semi-persistent resource-specific.
  • the uplink control information includes at least one of the following information:
  • HARQ-ACK rank indication RI
  • channel quality indication CQI channel quality indication
  • precoding matrix indication PMI channel state information reference signal resource indication CRI
  • strongest layer indication SLI layer 1 reference signal reception power L1-RSRP.
  • a second aspect provides a method for transmitting information, including: determining, by a network device, first information, where the first signal is used by a terminal device to determine a first resource used for transmitting uplink control information in an uplink transmission resource; The device sends the first information to the terminal device.
  • the first information is used to indicate at least one of the following:
  • the uplink control information can be transmitted in the uplink transmission resource, the number of resources that can be used for transmitting the uplink control information, the proportion of resources that can be used for transmitting the uplink control information, the number of bits of the uplink control information that can be transmitted, and the uplink control information that can be transmitted. Types of.
  • the first information is indicated by an explicit manner or an implicit manner.
  • the first information is carried in an indication field for indicating a modulation and coding scheme MCS offset of the uplink control information.
  • the first information is carried in multiple indication domains for indicating an MCS offset of uplink control information, and each indication domain in the multiple indication domains respectively corresponds to a corresponding bit.
  • the range of numbers is used to indicate a range of the number of bits used to limit the transmission of the downlink control information.
  • the offset value indicated by the indication field satisfies the first condition, it is used to indicate that uplink control information cannot be transmitted through the uplink transmission resource.
  • the indicating that the offset value indicated by the indication field satisfies the first condition includes that the offset value indicated by the indication field is zero.
  • the first part of the indication field is used to indicate uplink control information for limiting transmission
  • the second part of the indication field is used for uplink control information for unrestricted transmission.
  • the indication field is used to indicate whether there is a restriction on the hybrid automatic repeat request HARQ-ACK information transmission.
  • the indication field is an indication field corresponding to the channel state information CSI, and when the offset indicated by the indication field meets a specific condition, the number of bits used to indicate that the uplink control information that can be transmitted is smaller than Or the value of N, and/or the type of uplink control information that can be transmitted is HARQ-ACK information, where N is a positive integer.
  • the indicating that the offset of the indication field meets the specific condition may include that the indication value indicated by the indication field is zero.
  • the terminal device determines the first information according to a type of a data channel and/or a time domain length for data transmission.
  • the first information is semi-persistent resource-specific.
  • the uplink control information includes at least one of the following information:
  • HARQ-ACK rank indication RI
  • channel quality indication CQI channel quality indication
  • precoding matrix indication PMI channel state information reference signal resource indication CRI
  • strongest layer indication SLI layer 1 reference signal reception power L1-RSRP.
  • an apparatus for transmitting information configured to perform the method of any of the first aspect or the first aspect of the first aspect.
  • the apparatus comprises means configured to perform the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • an apparatus for transmitting information comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is configured to store instructions configured to execute the memory stored instructions configured to perform the method of any of the first aspect or the first aspect of the first aspect.
  • an apparatus for transmitting information configured to perform the method of any of the foregoing second aspect or any of the possible implementations of the second aspect.
  • the apparatus comprises means configured to perform the method of any of the possible implementations of the second aspect or the second aspect described above.
  • an apparatus for transmitting information comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is configured to store instructions configured to execute the memory stored instructions configured to perform the method of any of the possible implementations of the second aspect or the second aspect above.
  • a computer storage medium configured to store computer software instructions for performing the method of any of the first aspect or any of the possible implementations of the first aspect, comprising a configuration configured to perform the above aspects program.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the above-described first aspect or any of the alternative implementations of the first aspect.
  • a ninth aspect a computer storage medium configured to store computer software instructions for performing the method of any of the above second aspect or any of the possible implementations of the second aspect, comprising: configured to perform the above aspects program.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the alternative aspects of the second aspect or the second aspect.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for transmitting information according to an embodiment of the present application.
  • Figure 3 shows a schematic diagram of one way of processing downlink control information.
  • FIG. 4 shows a schematic diagram of another processing manner of downlink control information.
  • FIG. 5 is a schematic flowchart of a method for transmitting information according to another embodiment of the present application.
  • FIG. 6 is a schematic block diagram of an apparatus for transmitting information according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting information according to another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for transmitting information according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an apparatus for transmitting information according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UPD Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 100 can be a device that communicates with a terminal device.
  • Network device 100 may provide communication coverage for a particular geographic area and may communicate with terminal devices (e.g., UEs) located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device can be a relay station, an access point, an in-vehicle device, a wearable device, A network side device in a future 5G network or a network device in a publicly available Public Land Mobile Network (PLMN) in the future.
  • PLMN Public Land Mobile Network
  • the wireless communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110.
  • Terminal device 120 can be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the network device may configure a semi-persistent resource (or a non-dynamic resource, a Grant free resource) for the terminal device, where the semi-persistent resource is used for non-dynamic scheduling transmission (or semi-persistent transmission).
  • the non-dynamic scheduling is a scheduling manner other than dynamic scheduling (for example, by physical layer signaling scheduling), for example, a semi-static configuration (ie, Type 1 type) transmission mode, or a semi-static configuration plus dynamic triggering (That is, the Type 2 type) transmission method.
  • the network device may configure, for the terminal device, a Modulation and Coding Scheme (MCS) offset for controlling information transmission in uplink semi-persistent transmission, for example, Betaoffset indicates MCS offset.
  • MCS Modulation and Coding Scheme
  • FIG. 2 is a schematic flowchart of a method 200 for transmitting information provided by an embodiment of the present application.
  • the method 200 may be performed by a terminal device in the communication system 100 shown in FIG. 1.
  • the method 200 may include The following content:
  • the terminal device receives the first information sent by the network device.
  • the terminal device determines, according to the first information, a first resource used for transmitting uplink control information in an uplink transmission resource.
  • the terminal device transmits the uplink control information according to the first resource.
  • the terminal device can determine, according to the first information configured by the network device, the resource used for the uplink control information transmission in the uplink transmission resource, and further, the terminal device can be configured as the uplink control information.
  • the transmitted resource transmits the uplink control information, which is beneficial to avoid conflicts between the uplink control information and the uplink data transmission.
  • the uplink control information includes at least one of the following information:
  • Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK) information Channel Quality Indication (CQI), Precoding Matrix Indication (PMI), Rank Indication (RI), Channel state information reference signal resource indicator (CRI), Strongest Layer Indication (SLI), Layer 1 Reference Signal Received Power (L1-RSRP).
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • CLI Channel state information reference signal resource indicator
  • SLI Strongest Layer Indication
  • L1-RSRP Layer 1 Reference Signal Received Power
  • the uplink transmission resource may be a semi-persistent resource, for example, the uplink transmission resource may include a time domain resource, a frequency domain resource, or a code domain resource for non-dynamic scheduling transmission, and the like.
  • the uplink transmission resource does not limit this.
  • the first information may be semi-persistent resource-specific, that is, the first information may be used only for configuring a semi-persistent resource, or may be a bandwidth portion (BWP). It is exclusive to the carrier, and may be carrier-specific. This embodiment does not limit this.
  • the first information may be indicated by using a display manner, for example, the first information may be configured to the terminal device by using a display instruction, such as high layer signaling or physical layer signaling, or may be indicated by an implicit manner.
  • a display instruction such as high layer signaling or physical layer signaling
  • the existing information or signaling may be used to indicate the first information, which is not limited by the embodiment of the present application.
  • the first information may be used to indicate at least one of the following:
  • the uplink control information can be transmitted in the uplink transmission resource, the number of resources that can be used for transmitting the uplink control information, the proportion of resources that can be used for transmitting the uplink control information, the number of bits of the uplink control information that can be transmitted, and the uplink control information that can be transmitted. Types of.
  • the number of bits of the uplink control information that can be transmitted may be the maximum number of bits that can be used for transmitting the UCI, or may be the number of bits actually used for transmitting the UCI. This is not limited.
  • the content indicated above for the first information is only an example, and the first information may also be used to indicate other information, as long as the first information can be used to determine resources for transmitting uplink control information in the uplink transmission resource. It falls within the scope of protection of the embodiments of the present application.
  • the first information may be used to determine a resource for transmitting the UCI in the uplink transmission resource, so that the terminal device may determine, according to the first information, whether the uplink transmission resource can transmit the UCI, and if it can be used for transmitting the UCI, further And determining, according to the number of resources that can be used for transmitting the uplink control information, the proportion of the resources that can be used for transmitting the uplink control information, and the number of bits of the uplink control information that can be transmitted. At least one of information such as the type of uplink control information that can be transmitted determines the transmission mode of the UCI.
  • the sending manner of the UCI may include, but is not limited to, transmitting all the bits of the UCI to be sent, or sending the UCI to be sent after processing.
  • processing the UCI to be sent includes, but is not limited to, zero padding, repetition, compression, multiplexing, and discarding.
  • processing the UCI to be sent may include compressing the UCI.
  • the compression here may be to compress the UCI from at least one dimension of a code block group (CBG), a space domain, a carrier domain or a time domain, that is, in CBG, space, carrier or time,
  • CBG code block group
  • the UCI performs compression.
  • the UCIs belonging to the same carrier may be compressed together, or the UCIs belonging to the same CBG may be compressed together; or the processing of the UCI to be sent may also include discarding the UCI, for example, Some bits of the UCI to be sent may be discarded, so that the UCI of the final transmission is not greater than the maximum number of bits that can be transmitted, or the UCI may be processed in other manners, so that the UCI of the final transmission is not greater than the transmission.
  • the maximum number of bits the embodiment of the present application does not specifically limit the processing manner of the UCI.
  • the terminal device can compress the 13-bit HARQ-ACK information, for example, according to The time domain compresses the 13-bit HARQ-ACK information. As shown in FIG.
  • the transport block (Transmit Block, TB) 1 on the component carrier (CC) 1 and the TB2 on the TB4, CC2 and TB5, TB3 on CC3 and HARQ-ACK information in TB7 on CC4 and CC4 are compressed into 1-bit UCI transmission, TB8 on CC1, TB11 on CC2, TB9 on CC3 and TB10 on TB12 and CC4
  • the HARQ-ACK information in TB13 is compressed into a 1-bit UCI transmission.
  • the last 11 bits of the 13-bit HARQ-ACK information may be discarded, and only the first two bits are transmitted, that is, only the HARQ-ACK information in TB1 and TB4 on CC1 is transmitted.
  • Embodiment 1 The first information is used to indicate the number of resources in the uplink transmission resource that can be used for transmitting uplink control information.
  • the terminal device For example, if the number of resources that can be used to transmit the uplink control information indicated by the first information is N, that is, the number of resources that can be used for transmitting UCI in the uplink transmission resource configured by the network device for the terminal device is N, the terminal device The maximum number of bits M of the UCI that can be transmitted can be determined according to the number of the resources N and the MCS offset for the UCI transmission. Further, the terminal device can determine the number of bits L of the UCI to be transmitted and the maximum number of bits M. The transmission mode of the UCI, for example, if L ⁇ M, that is, the maximum number of bits of the uplink transmission resource that can be used for transmitting UCI is sufficient to transmit all the bits of the UCI to be transmitted.
  • the terminal device can transmit the UCI. All bits, or, if L>M, the terminal device can process the UCI to be sent, so that the number of bits occupied by the finally transmitted UCI is not greater than the maximum number of bits M, and then the processed UCI is transmitted, that is, the final transmission
  • the number of bits of the UCI is the minimum value of the number of bits L of the UCI to be transmitted and the maximum number of bits M of the UCI that can be transmitted.
  • Embodiment 2 The first information may be carried in an existing indication field for indicating MCS offset.
  • the network device may multiplex the existing indication field for indicating the MCS offset to carry the first information, so that the indication field for indicating the MCS offset can be used not only to indicate the MCS offset but also to indicate the first
  • the information so that the terminal device can obtain the MCS offset and the first information from the indication field for indicating the MCS offset, and further, according to the first information carried in the indication domain, whether it can be sent in the uplink transmission resource.
  • the UCI if it is determined that the UCI can be transmitted in the uplink transmission resource, further, the terminal device may further determine, according to the first information, a transmission mode of the UCI.
  • the existing indication domain to carry the first information
  • signaling overhead can be saved, and the MCS offset of the UCI can be flexibly configured.
  • UCI limited transmission can be implemented, thereby avoiding UCI and uplink.
  • the collision problem when the data is transmitted through the PUSCH can ensure the reliability of the uplink data transmission.
  • the first information may be carried by adding an existing length of the indication field for indicating the MCS offset, or the existing indication field for indicating the MCS offset may also be utilized.
  • the reserved field is used to carry the first information, which is not limited by the embodiment of the present application.
  • the manner of indicating the first information may include the following:
  • Case 1 When the offset value of the indication field indicating the MCS offset satisfies the first condition, it may be used to indicate that the UCI cannot be transmitted in the uplink transmission resource, and if the terminal device determines that the offset value of the indication domain corresponding to the UCI is satisfied. In the first condition, it can be determined that the UCI cannot be transmitted in the uplink transmission resource.
  • the offset value of the indication field used to indicate the MCS offset may satisfy the first condition, and the offset value of the indication field used to indicate the MCS offset may be zero, or may also be other values having a specific meaning.
  • the reserved value (Reserved), etc. is not limited in this embodiment of the present application.
  • Case 2 When the offset value of the indication field indicating the MCS offset satisfies the second condition, it may be used to indicate the proportion of resources that can be used for transmitting the uplink control information, and if the terminal device determines the offset value of the indication domain corresponding to the UCI When the second condition is met, the terminal device may determine, in the uplink transmission resource, an uplink transmission resource transmission UCI that is not greater than the resource ratio.
  • the offset value of the indication field used to indicate the MCS offset satisfies the second condition, which may include the positive value indicating that the offset value of the indication domain of the MCS offset is less than 1, or may be other specific
  • the value of the meaning is, for example, a reserved value, and the like, which is not limited by the embodiment of the present application.
  • the Betaoffset table for carrying the first information may be as shown in Table 1, where I represents a UCI index, and Betaoffset represents an MCS offset. If the number of resources of the uplink transmission resource is 100, if the corresponding value is determined according to the UCI index, The value of the resource ratio is 0.1, and the terminal device can determine that the number of resources used for transmitting the UCI is at most 10. Further, the terminal device can determine the sending mode of the UCI according to the determined uplink transmission resource and the MCS offset. Narration.
  • Betaoffset Resource ratio I Betaoffset Resource ratio 0 2.000 0.01 8 12.625 0.05 1 2.500 0.01 9 15.875 0.05 2 3.125 0.01 10 20.000 0.1 3 4.000 0.01 11 31.000 0.1 4 5.000 0.01 12 50.000 0.1 5 6.250 0.05 13 80.000 0.1 6 8.000 0.05 14 126.000 0.1 7 10.000 0.05 15 1.0 0.1
  • the first information may be used to indicate that all bits of the UCI can be transmitted. Further, the terminal device may be based on the MCS corresponding to the UCI.
  • the modulation and coding mode of the offset and the uplink data determines the modulation and coding mode of the UCI, so that the terminal device can combine the number of bits of the UCI according to the modulation and coding mode of the UCI to be transmitted, and transmit the UCI to be transmitted. The specific implementation process is not described here.
  • the offset value of the indication field used to indicate the MCS offset satisfies the third condition, which may include the positive value indicating that the offset value of the indication domain of the MCS offset is greater than 1, or may also have other specific meanings.
  • the value of the present invention is not limited to the embodiment of the present application.
  • the foregoing indication manners for the first information are only examples.
  • the embodiment of the present application may also indicate that the UCI is transmitted in a restricted manner or in a non-restricted manner, and the embodiment of the present application indicates the first information.
  • the method is not limited.
  • Embodiment 3 The indication field division condition indicating the MCS offset indicates the MCS offset and the first information.
  • the existing Betaoffset may be used to indicate the MCS offset or indicate the first information, but the Betaoffset indicates that the MCS offset or the first information may correspond to different situations or correspond to different scenarios, so that the specific configuration information may be Performing information analysis on the indication field, for example, determining whether the BetaOffset indicates the MCS offset or the first information according to the configuration information of the type of the data channel, the length of the data transmission, and the like. limited.
  • the Betaoffset indicates that the MCS offset or the first information can respectively correspond to different types of data channels.
  • the Betaoffset can be used to indicate the MCS offset, the data channel.
  • the type is TypeB (for example, a slot type)
  • the Betaoffset can be used to indicate the first information
  • the terminal device can parse the information of the Betaoffset into an MCS offset when the type of the data channel is TypeA, in the data channel.
  • the type is TypeB
  • the information of the Betaoffset is parsed into the first information.
  • the Betaoffset indicates that the MCS offset or the first information can respectively correspond to different time domain lengths for data transmission, for example, if the time domain length for data transmission falls within the first length range, the Betaoffset is used for Instructing the MCS offset, when the time domain length for data transmission falls within the second length range, the Betaoffset can be used to indicate the first information, and the terminal device can fall within the first length range in the time domain length for data transmission.
  • the information of the Betaoffset is parsed into an MCS offset, and when the time domain length for data transmission falls within the second length range, the information of the Betaoffset is parsed into the first information.
  • Beta offset indicates the MCS offset or the first information
  • the embodiment of the present application may also determine, according to other information, whether the Betaoffset indicates the MCS offset or the first information. The embodiment does not limit this.
  • Embodiment 4 The first part of the indication field for indicating the MCS offset is used to indicate uplink control information for limiting transmission, and the second part of the indication field for indicating MCS offset is used for unrestricted transmission. Uplink control information.
  • the first part of the value in the Betaoffset can be used to determine which UCIs are transmitted by means of restricted transmission, and the second part of the value can be used to determine which UCIs are used in an unrestricted manner, that is, all the UCIs can be sent. Bit.
  • the method for limiting the transmission may be: after processing the UCI to be sent, and then sending the processed UCI, where the processing includes but is not limited to zero padding, repetition, compression, multiplexing, and discarding. the way.
  • the UCI that can be used to indicate that the UCI index is 0-3 is transmitted in a restricted transmission manner, and the UCI with the UCI index of 4-15 is transmitted in an unrestricted transmission manner, that is, the UCI cannot be processed and transmitted. All bits of the UCI.
  • Embodiment 5 Determine, according to the indication field of the second UCI for indicating the MCS offset, the first information corresponding to the first UCI.
  • each UCI may correspond to a respective indication field for indicating an MCS offset.
  • the multiple UCIs include a first UCI and a second UCI, where the second UCI
  • the indication field may be used to indicate the MCS offset for transmitting the second UCI.
  • the indication field of the second UCI may also be used to determine a transmission mode of the first UCI, for example, whether the limited transmission mode is used, or Unrestricted transmission mode, if the restricted transmission mode is adopted, the number of bits used for transmission is limited.
  • the first UCI when the offset value indicated by the indication field of the second UCI satisfies a certain condition, the first UCI may be instructed to transmit by using restricted transmission, and further, may also be used to indicate the number of bits used for limiting transmission, etc.
  • the first UCI when the offset value indicated by the indication field of the second UCI satisfies a certain condition, the first UCI is instructed to adopt an unrestricted transmission manner or the like.
  • the first UCI is HARQ-ACK information
  • the second UCI is a CSI example, indicating the indication manner of the first information.
  • the first UCI and the second UCI Other UCIs are also possible, and embodiments of the present application are not limited thereto.
  • the indication domain corresponding to the first UCI is recorded as the first indication domain
  • the indication domain corresponding to the second UCI is recorded as the second indication domain
  • Embodiment 6 The first indication field and the second indication field both include a configuration with an offset value of zero.
  • the indication field for indicating the MCS offset may be an MCS offset table.
  • the MCS offset table corresponding to the HARQ-ACK information may be as shown in Table 2, CSI.
  • the corresponding MCS offset table can be as shown in Table 3.
  • I_HARQ-ACK is an index of HARQ-ACK information
  • Betaoffset_HARQ-ACK is an MCS offset corresponding to HARQ-ACK information.
  • I_CSI is an index of CSI
  • Betaoffset_CSI is an MCS offset of CSI.
  • the offset value of the second indication field when the offset value of the second indication field satisfies the first specific condition, it may be used to indicate that the first UCI is transmitted in the uplink transmission resource by using the restricted transmission mode (referred to as mode 1). Or when the offset value of the second indication field satisfies the second specific condition, may be used to indicate that the first UCI is transmitted in an unrestricted transmission manner in the uplink transmission resource (referred to as mode 2), or in the first When the offset value of the indication field satisfies the third specific condition, it may be used to indicate that the second UCI is transmitted in the uplink transmission resource by using the restricted transmission mode (referred to as mode 3).
  • the offset value of the second indication field satisfies the first specific condition that the Betaoffset of the second indication domain is 0, and the offset value of the second indication domain satisfies the second specific condition that the Betaoffset of the second indication domain is greater than 0.
  • the offset value of the first indication field satisfies the third specific condition that the offset value of the first indication field is 0.
  • the embodiment of the present application is also applicable to other specific conditions, and the embodiment of the present application is not limited. herein.
  • Betaoffset_CSI corresponding to the I_CSI may be used to indicate that only the HARQ-ACK information is transmitted, and further, may also be used to indicate that the HARQ-ACK information adopts a transmission mode that restricts transmission, for example, restricting transmission of HARQ-
  • the maximum number of bits of the ACK information may be N. For example, if the N may be 2, the maximum number of bits N transmitted according to the restriction may be combined with the Betaoffset_HARQ-ACK in the MCS offset table corresponding to the HARQ-ACK information to transmit the HARQ- ACK information, the specific process is not described here.
  • the terminal device may determine that the number of bits for transmitting the HARQ-ACK information is not limited, that is, the HARQ-ACK may be transmitted according to the actual number of bits of the HARQ-ACK information to be transmitted.
  • Information wherein the MCS level used for transmitting the HARQ-ACK information may be determined according to the BetaOffset_HARQ-ACK shown in Table 2, and the MCS level used for transmitting the CSI may be determined according to the BetaOffset_CSI shown in Table 3.
  • the terminal device may determine not to transmit the HARQ-ACK information. In this case, it may further determine that the CSI transmission is performed by using the restricted transmission mode.
  • the first information can be indicated in a cross-implicit manner, and the flexibility of the first information indication is improved.
  • the indication manner the transmission of the HARQ-ACK and the CSI can be restricted at the same time, which is beneficial to Guarantee the reliability of uplink data transmission.
  • the embodiment of the present application preferentially limits the CSI transmission, so that when the transmission resource is limited, the CSI information is preferentially discarded, and the transmission of the HARQ-ACK information is ensured. Maximize the efficiency of downlink transmission.
  • a plurality of transmission modes can be implemented by explicitly limiting or implicitly limiting the number of bits/transmission resources of the HARQ-ACK transmission through the indication field of the CSI, for example, both CSI and HARQ-ACK are transmitted on demand (ie, unrestricted transmission); The CSI is not transmitted, the AHARQ-ACK restricts transmission, and neither CSI nor HARQ-ACKACK is transmitted, so that a compromise between the reliability of the uplink transmission and the transmission efficiency of the downlink transmission can be achieved.
  • Embodiment 7 Only one indication domain in the first indication domain and the second indication domain includes a configuration in which the Betaoffset takes a value of 0.
  • the indication field for indicating the MCS offset may be an MCS offset table.
  • the MCS offset table corresponding to the HARQ-ACK information may be as shown in Table 4, CSI.
  • the corresponding MCS offset table can be as shown in Table 3.
  • the I_HARQ-ACK is the index of the HARQ-ACK information
  • the Betaoffset_HARQ-ACK is the MCS offset corresponding to the HARQ-ACK information
  • the MCS offset table corresponding to the CSI that is, the Table 3 includes the Betaoffset value of 0. Configuration.
  • the method when the offset value of the second indication field satisfies the fourth specific condition, the method may be used to indicate that the first UCI is transmitted by using the restricted transmission mode in the uplink transmission resource.
  • the offset value of the second indication field when the offset value of the second indication field satisfies the fifth specific condition, it may be used to indicate that the first UCI is transmitted in an unrestricted transmission manner in the uplink transmission resource (referred to as mode 5).
  • the offset value of the second indication domain satisfies the fourth specific condition that the Betaoffset of the second indication domain is 0, and the offset value of the second indication domain satisfies the fifth specific condition that the Betaoffset of the second indication domain is greater than 0. It should be noted that, of course, the embodiments of the present application are also applicable to other specific conditions, and the embodiments of the present application are not limited thereto.
  • Betaoffset_CSI corresponding to the I_CSI When the value of the Betaoffset_CSI corresponding to the I_CSI is 0, it may be used to indicate that only the HARQ-ACK information is transmitted, and the maximum number of bits for transmitting the HARQ-ACK information may be N.
  • the N may be 2, where the transmission is
  • the MCS level adopted by the HARQ-ACK information may refer to a BetaOffset_HARQ-ACK corresponding to the HARQ-ACK information, for example, Betaoffset_HARQ-ACK in Table 4.
  • the number of bits for transmitting the HARQ-ACK information is not limited, that is, the HARQ-ACK information may be transmitted according to the actual number of bits of the HARQ-ACK information to be transmitted, that is, the HARQ is transmitted. All bits of the ACK information, wherein the MCS level used for transmitting the HARQ-ACK information can be determined according to the Betaoffset_HARQ-ACK shown in Table 4, and the MCS level used for transmitting the CSI can be determined according to the BetaOffset_CSI shown in Table 5.
  • the first information can be indicated in a cross-implicit manner, and the flexibility of the first information indication is improved, and the transmission of the HARQ-ACK and the CSI can be restricted at the same time, which is beneficial to Guarantee the reliability of uplink data transmission.
  • the embodiment of the present application preferentially limits the CSI transmission, so that when the transmission resource is limited, the CSI information is preferentially discarded, and the transmission of the HARQ-ACK information is ensured. Maximize the efficiency of downlink transmission.
  • multiple transmission modes can be implemented, for example, both CSI and HARQ-ACK are transmitted on demand (ie, unrestricted transmission); The CSI is not transmitted, the AHARQ-ACK restricts transmission, and neither CSI nor HARQ-ACKACK is transmitted, so that a compromise between the reliability of the uplink transmission and the transmission efficiency of the downlink transmission can be achieved.
  • Embodiment 7 more configuration is used for the HARQ-ACK resource indication, which increases the flexibility of the HARQ-ACK indication.
  • Embodiment 8 The first indication domain and the first indication domain in the second indication domain include a plurality of MCS offset tables.
  • the first indication domain may include multiple MCS offset tables, and each MCS offset table may correspond to different situations or different scenarios, for example, for uplink data transmission with high reliability requirements.
  • the offset range needs to be small, and the granularity needs to be fine.
  • the MCS offset table with smaller offset range and finer granularity in the multiple MCS offset tables may be used; or the uplink with less reliability requirement
  • an MCS offset table having a larger offset range and a coarser granularity in the plurality of MCS offset tables may be used.
  • the first indication field includes two MCS offset tables as an example.
  • the first indication field may also include more MCS offset tables, when the first indication field includes more MCS offset tables.
  • the instructions are similar and will not be described here.
  • Table 1 and Table 4 may be two MCS offset tables corresponding to HARQ-ACK information, which are respectively recorded as Table a and Table b.
  • the method when the offset value of the second indication field satisfies the sixth specific condition, the method may be used to indicate that the first UCI is transmitted by using the restricted transmission mode in the uplink transmission resource. Or, when the offset value of the second indication field satisfies the seventh specific condition, it may be used to indicate that the first UCI is transmitted in an unrestricted transmission manner in the uplink transmission resource (referred to as mode 7).
  • the offset value of the second indication field satisfies the sixth specific condition that the Betaoffset of the second indication domain is 0, and the offset value of the second indication domain satisfies the seventh specific condition that the Betaoffset of the second indication domain is greater than 0. It should be noted that, of course, the embodiments of the present application are also applicable to other specific conditions, and the embodiments of the present application are not limited thereto.
  • the two MCS offset tables included in the first indication field may have the following features, for example, the maximum value of the Betaoffset in the table a is smaller than the maximum value of the Betaoffset in the table b, or Table a includes a configuration with a Betaoffset value of zero.
  • Betaoffset_CSI corresponding to the I_CSI When the value of the Betaoffset_CSI corresponding to the I_CSI is 0, it may be used to indicate that only the HARQ-ACK information is transmitted, and the maximum number of bits for transmitting the HARQ-ACK information may be N. For example, the N may be 2, in this scenario.
  • the MCS level used for transmitting HARQ-ACK information refer to Table a.
  • the number of bits for transmitting the HARQ-ACK information is not limited, that is, the HARQ-ACK information may be transmitted according to the actual number of bits of the HARQ-ACK information to be sent.
  • the MCS level used for transmitting the HARQ-ACK information refer to the table b.
  • the MCS level used for transmitting the CSI may refer to the MCS offset table corresponding to the CSI.
  • the first information can be indicated in a cross-implicit manner, and the flexibility of the first information indication is improved, and the transmission of the HARQ-ACK and the CSI can be restricted at the same time, which is beneficial to Guarantee the reliability of uplink data transmission.
  • the embodiment of the present application preferentially limits the CSI transmission, so that when the transmission resource is limited, the CSI information is preferentially discarded, and the transmission of the HARQ-ACK information is ensured. Maximize the efficiency of downlink transmission.
  • a plurality of transmission modes can be implemented by explicitly limiting or implicitly limiting the number of bits/transmission resources of the HARQ-ACK transmission through the indication field of the CSI, for example, both CSI and HARQ-ACK are transmitted on demand (ie, unrestricted transmission); The CSI is not transmitted, the AHARQ-ACK restricts transmission, and neither CSI nor HARQ-ACKACK is transmitted, so that a compromise between the reliability of the uplink transmission and the transmission efficiency of the downlink transmission can be achieved.
  • one UCI can correspond to multiple MCS offset tables, so that the indication range of the MCS offset is more flexible, and the MCS offset table suitable for the scenario can be configured for multiple scenarios, which is beneficial to meet the requirements of data transmission. .
  • Embodiment 9 The first information is carried in multiple indication domains for indicating an MCS offset, and each indication domain in the multiple indication domains respectively corresponds to a corresponding range of bit numbers, where the number of bits ranges And indicating a range of the number of bits used to limit the transmission of the downlink control information.
  • the first information may be carried in three indication domains, and each indication domain in the three indication domains may correspond to a corresponding range of bit numbers.
  • the three indication domains may include indication domain 1, indication domain 2 And indication field 3, wherein the number of bits corresponding to the indication field 1 may be 0 to 2, that is, a UCI capable of transmitting a maximum of 2 bits, and the number of bits corresponding to the indication field 2 may be greater than 2 and less than 11, the indication domain The corresponding number of bits may be greater than 11, and the range of the number of bits used for transmitting the UCI may be indicated by configuring the offset values of the three indication fields.
  • the MCS betaoffset table corresponding to the indication domain 1 may be as shown in Table 5
  • indicating that the MCS betaoffset table corresponding to domain 2 may be As shown in Table 6
  • the MCS betaoffset table corresponding to the indication domain 3 can be as shown in Table 7.
  • the betaoffset configuration in the indication domain 3 and the indication domain 2 when the betaoffset configuration in the indication domain 3 and the indication domain 2 is 0, and indicates that the betaoffset in the domain 1 is configured to be greater than 0, it is used to indicate a maximum of 2 bits of HARQ-ACK; Indicates that the betaoffset configuration in field 2 is 0, and indicates that the betaoffset configuration in domain 3 is greater than 0, indicating that a HARQ-ACK greater than 11 bits can be transmitted; in the indication domain 1 and the indication domain 3, the betaoffset configuration is 0, and When the betaoffset in the indication field 2 is configured to be greater than 0, it indicates that 3 to 11 bits of HARQ-ACK can be transmitted.
  • the indication manner of indicating the range of the number of bits used by the downlink control information transmission by the multiple indication fields is only an example, and the embodiment of the present application may also be used.
  • the other indication manner determines the range of the number of bits used for the transmission of the downlink control information, and the embodiment of the present application is not limited thereto.
  • the number of bits used for transmitting the UCI can be flexibly indicated by the multiple indication fields, and the flexibility of the UCI resource indication is improved.
  • a method for transmitting information according to an embodiment of the present application is described in detail from the perspective of a terminal device.
  • the transmission information according to another embodiment of the present application is described in detail from the perspective of the network device with reference to FIG. 5 .
  • Methods It should be understood that the description on the network device side and the description on the terminal device side correspond to each other. For a similar description, refer to the above. To avoid repetition, details are not described herein again.
  • FIG. 5 is a schematic flowchart of a method 300 for transmitting information according to another embodiment of the present application.
  • the method 300 may be performed by a network device in the communication system shown in FIG. 1. As shown in FIG. 5, the method 300 includes The following content:
  • the network device determines first information, where the first signal is used to determine a first resource used for transmitting uplink control information in an uplink transmission resource.
  • the network device sends the first information to the terminal device.
  • the first information is used to indicate at least one of the following:
  • the uplink control information can be transmitted in the uplink transmission resource, the number of resources that can be used for transmitting the uplink control information, the proportion of resources that can be used for transmitting the uplink control information, the number of bits of the uplink control information that can be transmitted, and the uplink control information that can be transmitted. Types of.
  • the first information is indicated in an explicit manner or in an implicit manner.
  • the first information is carried in an indication field for indicating a modulation and coding scheme MCS offset of the uplink control information.
  • the first information is carried in multiple indication domains that are used to indicate an MCS offset of the uplink control information, and each of the multiple indication domains respectively corresponds to a corresponding A range of bit numbers used to indicate a range of the number of bits used to limit the transmission of the downlink control information.
  • the offset value indicated by the indication field satisfies the first condition, it is used to indicate that uplink control information cannot be transmitted by using the uplink transmission resource.
  • the indication value indicated by the indication field satisfies the first condition that the offset value indicated by the indication field is zero.
  • the first part of the indication field is used to indicate uplink control information for limiting transmission
  • the second part of the indication field is used for uplink control information for unrestricted transmission.
  • the indication field is used to indicate whether there is a restriction on the hybrid automatic repeat request HARQ-ACK information transmission.
  • the indication field is an indication field corresponding to channel state information CSI, and the number of bits used to indicate uplink control information that can be transmitted when the indication indicated by the indication field meets a specific condition.
  • the type of uplink control information that is less than or equal to N, and/or capable of being transmitted is HARQ-ACK information, where N is a positive integer.
  • the indicating that the offset indicated by the indication domain meets the specific condition may include that the indication value indicated by the indication domain is zero.
  • the terminal device determines the first information according to a type of a data channel and/or a time domain length for data transmission.
  • the first information is semi-continuous resource specific.
  • the uplink control information includes at least one of the following information:
  • HARQ-ACK rank indication RI
  • channel quality indication CQI channel quality indication
  • precoding matrix indication PMI channel state information reference signal resource indication CRI
  • strongest layer indication SLI layer 1 reference signal reception power L1-RSRP.
  • the first information is semi-continuous resource specific.
  • the embodiment of the method of the present application is described in detail below with reference to FIG. 2 to FIG. 5 .
  • the device embodiment of the present application is described in detail below with reference to FIG. 6 to FIG. 9 . It should be understood that the device embodiment and the method embodiment correspond to each other, similarly. The description of the method can be referred to the method embodiment.
  • FIG. 6 shows a schematic block diagram of an apparatus 400 for transmitting information in accordance with an embodiment of the present application.
  • the device 400 includes:
  • the communication module 410 is configured to receive the first information sent by the network device
  • the determining module 420 is configured to determine, according to the first information, a first resource used for transmitting uplink control information in an uplink transmission resource;
  • the communication module 410 is further configured to transmit the uplink control information according to the first resource.
  • the first information is used to indicate at least one of the following:
  • the uplink control information can be transmitted in the uplink transmission resource, the number of resources that can be used for transmitting the uplink control information, the proportion of resources that can be used for transmitting the uplink control information, the number of bits of the uplink control information that can be transmitted, and the uplink control information that can be transmitted. Types of.
  • the first information is indicated in an explicit manner or in an implicit manner.
  • the first information is carried in an indication field for indicating a modulation and coding scheme MCS offset of the uplink control information.
  • the first information is carried in multiple indication domains that are used to indicate an MCS offset of the uplink control information, and each of the multiple indication domains respectively corresponds to a corresponding A range of bit numbers used to indicate a range of the number of bits used to limit the transmission of the downlink control information.
  • the offset value indicated by the indication field satisfies the first condition, it is used to indicate that uplink control information cannot be transmitted by using the uplink transmission resource.
  • the indication value indicated by the indication field satisfies the first condition that the offset value indicated by the indication field is zero.
  • the first part of the indication field is used to indicate uplink control information for limiting transmission
  • the second part of the indication field is used for uplink control information for unrestricted transmission.
  • the indication field is used to indicate whether there is a restriction on the hybrid automatic repeat request HARQ-ACK information transmission.
  • the indication field is an indication field corresponding to channel state information CSI, and the number of bits used to indicate uplink control information that can be transmitted when the indication indicated by the indication field meets a specific condition.
  • the type of uplink control information that is less than or equal to N, and/or capable of being transmitted is HARQ-ACK information, where N is a positive integer.
  • the indicating that the offset indicated by the indication domain meets the specific condition may include that the indication value indicated by the indication domain is zero.
  • the terminal device determines the first information according to a type of a data channel and/or a time domain length for data transmission.
  • the first information is semi-continuous resource specific.
  • the uplink control information includes at least one of the following information:
  • HARQ-ACK rank indication RI
  • channel quality indication CQI channel quality indication
  • precoding matrix indication PMI channel state information reference signal resource indication CRI
  • strongest layer indication SLI layer 1 reference signal reception power L1-RSRP.
  • the first information is semi-continuous resource specific.
  • the apparatus 400 for transmitting information may correspond to the terminal apparatus in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the apparatus 400 are respectively implemented to implement FIG.
  • the corresponding process of the terminal device in the method 200 is not described here for brevity.
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting information according to an embodiment of the present application.
  • the device 500 of Figure 7 includes:
  • the determining module 510 is configured to determine first information, where the first signal is used to determine a first resource used for transmitting uplink control information in an uplink transmission resource;
  • the communication module 520 is configured to send the first information to the terminal device.
  • the first information is used to indicate at least one of the following:
  • the uplink control information can be transmitted in the uplink transmission resource, the number of resources that can be used for transmitting the uplink control information, the proportion of resources that can be used for transmitting the uplink control information, the number of bits of the uplink control information that can be transmitted, and the uplink control information that can be transmitted. Types of.
  • the first information is indicated in an explicit manner or in an implicit manner.
  • the first information is carried in an indication field for indicating a modulation and coding scheme MCS offset of the uplink control information.
  • the first information is carried in multiple indication domains that are used to indicate an MCS offset of the uplink control information, and each of the multiple indication domains respectively corresponds to a corresponding A range of bit numbers used to indicate a range of the number of bits used to limit the transmission of the downlink control information.
  • the offset value indicated by the indication field satisfies the first condition, it is used to indicate that uplink control information cannot be transmitted by using the uplink transmission resource.
  • the indication value indicated by the indication field satisfies the first condition that the offset value indicated by the indication field is zero.
  • the first part of the indication field is used to indicate uplink control information for limiting transmission
  • the second part of the indication field is used for uplink control information for unrestricted transmission.
  • the indication field is used to indicate whether there is a restriction on the hybrid automatic repeat request HARQ-ACK information transmission.
  • the indication field is an indication field corresponding to channel state information CSI, and the number of bits used to indicate uplink control information that can be transmitted when the indication indicated by the indication field meets a specific condition.
  • the type of uplink control information that is less than or equal to N, and/or capable of being transmitted is HARQ-ACK information, where N is a positive integer.
  • the indicating that the offset indicated by the indication domain meets the specific condition may include that the indication value indicated by the indication domain is zero.
  • the terminal device determines the first information according to a type of a data channel and/or a time domain length for data transmission.
  • the first information is semi-continuous resource specific.
  • the uplink control information includes at least one of the following information:
  • HARQ-ACK rank indication RI
  • channel quality indication CQI channel quality indication
  • precoding matrix indication PMI channel state information reference signal resource indication CRI
  • strongest layer indication SLI layer 1 reference signal reception power L1-RSRP.
  • the first information is semi-continuous resource specific.
  • the device 500 may correspond to (for example, may be configured or be itself) the network device described in the foregoing method 300, and each module or unit in the device 500 is used to perform the network device in the method 300, respectively.
  • Each of the operations or processes performed is omitted here for the sake of avoiding redundancy.
  • the embodiment of the present application further provides a device 600 for transmitting information, which may be the device 400 in FIG. 6 , which can be used to execute a terminal device corresponding to the method 200 in FIG. 2 .
  • the device 600 includes an input interface 610, an output interface 620, a processor 630, and a memory 640.
  • the input interface 610, the output interface 620, the processor 630, and the memory 640 can be connected by a bus system.
  • the memory 640 is configured to store programs, instructions or code.
  • the processor 630 is configured to execute a program, instruction or code in the memory 640 to control the input interface 610 to receive signals, control the output interface 620 to transmit signals, and perform operations in the foregoing method embodiments.
  • the processor 630 may be a central processing unit (“CPU"), and the processor 630 may also be other general-purpose processors, digital signal processors ( DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 640 can include read only memory and random access memory and provides instructions and data to the processor 630. A portion of the memory 640 can also include a non-volatile random access memory. For example, the memory 640 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 630 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 640, and the processor 630 reads the information in the memory 640 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the communication module 410 included in the device 400 of FIG. 6 can be implemented by using the output interface 620 and the input interface 610 of FIG. 8.
  • the determining module 420 included in the device 400 of FIG. The processor 630 is implemented.
  • the embodiment of the present application further provides a device 700 for transmitting information, which may be the device 500 in FIG. 7 , which can be configured to execute a network device corresponding to the method 300 in FIG. 5 .
  • the device 700 includes an input interface 710, an output interface 720, a processor 730, and a memory 740, and the input interface 710, the output interface 720, the processor 730, and the memory 740 can be connected by a bus system.
  • the memory 740 is configured to store programs, instructions or code.
  • the processor 730 is configured to execute a program, instruction or code in the memory 740 to control the input interface 710 to receive signals, control the output interface 720 to transmit signals, and perform operations in the foregoing method embodiments.
  • the processor 730 may be a central processing unit (“CPU"), and the processor 730 may also be other general-purpose processors, digital signal processors ( DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 740 can include read only memory and random access memory and provides instructions and data to the processor 730. A portion of the memory 740 can also include a non-volatile random access memory. For example, the memory 740 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 730 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 740, and the processor 730 reads the information in the memory 740 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the determining module 510 included in the device 500 of FIG. 7 can be implemented by the processor 730 of FIG. 9, and the communication module 520 included in the device 500 of FIG. 7 can use the input interface 710 of FIG.
  • the output interface 720 is implemented.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs including instructions, when the portable electronic device is included in a plurality of applications When executed, the portable electronic device can be caused to perform the method of the embodiment shown in Figures 2 and 5.
  • the embodiment of the present application also proposes a computer program comprising instructions which, when executed by a computer, cause the computer to perform the corresponding flow of the method of the embodiment shown in Figures 2 and 5.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present application, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种传输信息的方法和设备,该方法包括:终端设备接收网络设备发送的第一信息;所述终端设备根据所述第一信息,确定上行传输资源中用于传输上行控制信息的第一资源;所述终端设备根据所述第一资源,传输所述上行控制信息。

Description

传输信息的方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种传输信息的方法和设备。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,当上行控制信息传输和上行数据传输冲突时,可以将上行控制信息和上行数据都通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输。对于动态调度的PUSCH,网络设备能够预期终端设备是否把上行控制信息和上行数据都放在PUSCH中传输,所以,网络设备可以通过预留合适的资源,以及配置合适的调制编码方式,来保证数据传输的可靠性。对于半持续调度的PUSCH,由于上行业务的可靠性和时延要求不高,即使上行控制信息放到PUSCH中传输导致上行数据接收错误,也可以通过重传来保证其数据传输的可靠性。
但是,在5G新无线(New Radio,NR)系统中,半持续调度也可以用于传输高可靠性低时延业务,那么对于半持续调度方式,如果将上行控制信息和上行数据都放在PUSCH中传输,可能不能保证上行数据传输的可靠性和时延要求,因此,需要一种技术方案,能够解决上述问题。
发明内容
本申请实施例提供了一种传输信息的方法和设备,能够实现数据传输的可靠性和传输时延的折中。
第一方面,提供了一种传输信息的方法,包括:终端设备接收网络设备发送的第一信息;所述终端设备根据所述第一信息,确定上行传输资源中用于传输上行控制信息的第一资源;所述终端设备根据所述第一资源,传输所述上行控制信息。
因此,根据本申请实施例的传输信息的方法,能够根据网络设备配置的第一信息,确定上行传输资源中用于上行控制信息传输的资源,进一步地,终端设备可以配置为上行控制信息传输的资源传输该上行控制信息,有利于避免上行控制信息和上行数据传输的冲突问题。
在一种可能的实现方式中,所述第一信息用于指示以下中的至少一项:
上行传输资源中能否传输上行控制信息,能够用于传输上行控制信息的资源数,能够用于传输上行控制信息的资源比例,能够传输的上行控制信息的比特数和能够传输的上行控制信息的类型。
因此,终端设备可以根据该第一信息确定上行传输资源是否能够传输UCI,若能够用于传输UCI,进一地,还可以确定该UCI的发送方式。例如,传输待发送的UCI的所有比特,还是将待发送UCI进行处理之后再发送。
在一种可能的实现方式中,所述第一信息通过显性方式或隐性方式指示。
例如,可以通过显示指令(例如高层信令或物理层信令等)向终端设备配置该第一信息,或者,在特定情况或特定场景下,现有的信息或信令可以用于指示该第一信息,本申请实施例对此不作限定。
在一种可能的实现方式中,所述第一信息承载于用于指示上行控制信息的调制和编码方案MCS偏移的指示域。
可选地,可以在增加现有的用于指示MCS offset的指示域的长度来承载该第一信息,或者也可以利用该现有的用于指示MCS offset的指示域中的预留位来承载该第一信息,本申请实施例对此不作限定。
在一种可能的实现方式中,所述第一信息承载于用于指示上行控制信息的MCS偏移的多个指示域中,所述多个指示域中的每个指示域分别对应相应的比特数范围和/或上行 控制信息类型,所述比特数范围用于指示限制所述下行控制信息传输所使用的比特数的范围。
因此,可以通过多个指示域灵活指示允许传输UCI所采用的比特数和/或上行控制信息类型,提高了UCI资源指示的灵活性。
在一种可能的实现方式中,在所述指示域指示的偏移值满足第一条件时,用于指示不能通过所述上行传输资源传输上行控制信息。
在一种可能的实现方式中,所述指示域指示的偏移值满足第一条件包括所述指示域指示的偏移值为零。
因此,通过复用现有的指示域来承载该第一信息,能够节省信令开销,同时能够实现UCI的MCS offset的灵活配置,例如,可以实现UCI的限制传输,从而可以避免在UCI和上行数据都通过PUSCH传输时的冲突问题,能够保证上行数据传输的可靠性。
在一种可能的实现方式中,所述指示域的第一部分取值用于指示限制传输的上行控制信息,所述指示域的第二部分取值用于非限制传输的上行控制信息。
因此,通过复用现有的指示域来承载该第一信息,能够节省信令开销,同时能够实现UCI的MCS offset的灵活配置,例如,可以实现UCI的限制传输,从而可以避免在UCI和上行数据都通过PUSCH传输时的冲突问题,能够保证上行数据传输的可靠性。
在一种可能的实现方式中,所述指示域用于指示混合自动重传请求HARQ-ACK信息传输是否有限制。
在一种可能的实现方式中,所述指示域为信道状态信息CSI对应的指示域,在所述指示域指示的偏移满足特定条件时,用于指示能够传输的上行控制信息的比特数小于或等于N,和/或能够传输的上行控制信息的类型为HARQ-ACK信息,其中,所述N为正整数。
因此,可以通交叉隐式的方式指示该第一信息,提升了该第一信息指示的灵活性,通过该指示方式,能够同时限制HARQ-ACK和CSI的传输,有利于保证上行数据传输的可靠性。
并且,由于CSI的重要性/紧急程度低于HARQ-ACK信息,本申请实施例优先考虑限制CSI传输,从而在传输资源有限的情况下,优先丢弃CSI信息,保证HARQ-ACK信息的传输,能够实现下行传输效率的最大化。
此外,通过CSI的指示域显式限制或隐性限制HARQ-ACK传输的比特数/传输资源,可以实现多种传输方式,例如,CSI和HARQ-ACK都按需传输(即非限制传输);CSI不传输,AHARQ-ACK限制传输,CSI和HARQ-ACKACK都不传输等,从而能够实现上行传输的可靠性和下行传输的传输效率的折中。
在一种可能的实现方式中,所述指示域指示的偏移满足特定条件可以包括所述指示域指示的偏移值为零。
在一种可能的实现方式中,所述终端设备根据数据信道的类型和/或用于数据传输的时域长度确定所述第一信息。
在一种可能的实现方式中,所述第一信息是半持续资源专属的。
在一种可能的实现方式中,所述上行控制信息包括以下信息中的至少一种:
HARQ-ACK,秩指示RI,信道质量指示CQI,预编码矩阵指示PMI,信道状态信息参考信号资源指示CRI,最强层指示SLI和层1参考信号接收功率L1-RSRP。
第二方面,提供了一种传输信息的方法,包括:网络设备确定第一信息,所述第一信号用于终端设备确定上行传输资源中用于传输上行控制信息的第一资源;所述网络设备向所述终端设备发送第一信息。
在一种可能的实现方式中,所述第一信息用于指示以下中的至少一项:
上行传输资源中能否传输上行控制信息,能够用于传输上行控制信息的资源数,能够用于传输上行控制信息的资源比例,能够传输的上行控制信息的比特数和能够传输的 上行控制信息的类型。
在一种可能的实现方式中,所述第一信息通过显性方式或隐性方式指示。
在一种可能的实现方式中,所述第一信息承载于用于指示上行控制信息的调制和编码方案MCS偏移的指示域。
在一种可能的实现方式中,所述第一信息承载于用于指示上行控制信息的MCS偏移的多个指示域中,所述多个指示域中的每个指示域分别对应相应的比特数范围,所述比特数范围用于指示限制所述下行控制信息传输所使用的比特数的范围。
在一种可能的实现方式中,在所述指示域指示的偏移值满足第一条件时,用于指示不能通过所述上行传输资源传输上行控制信息。
在一种可能的实现方式中,所述指示域指示的偏移值满足第一条件包括所述指示域指示的偏移值为零。
在一种可能的实现方式中,所述指示域的第一部分取值用于指示限制传输的上行控制信息,所述指示域的第二部分取值用于非限制传输的上行控制信息。
在一种可能的实现方式中,所述指示域用于指示混合自动重传请求HARQ-ACK信息传输是否有限制。
在一种可能的实现方式中,所述指示域为信道状态信息CSI对应的指示域,在所述指示域指示的偏移满足特定条件时,用于指示能够传输的上行控制信息的比特数小于或等于N,和/或能够传输的上行控制信息的类型为HARQ-ACK信息,其中,所述N为正整数。
在一种可能的实现方式中,所述指示域指示的偏移满足特定条件可以包括所述指示域指示的偏移值为零。
在一种可能的实现方式中,所述终端设备根据数据信道的类型和/或用于数据传输的时域长度确定所述第一信息。
在一种可能的实现方式中,所述第一信息是半持续资源专属的。
在一种可能的实现方式中,所述上行控制信息包括以下信息中的至少一种:
HARQ-ACK,秩指示RI,信道质量指示CQI,预编码矩阵指示PMI,信道状态信息参考信号资源指示CRI,最强层指示SLI和层1参考信号接收功率L1-RSRP。
第三方面,提供了一种传输信息的设备,配置为执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该设备包括配置为执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第四方面,提供了一种传输信息的设备,该设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器配置为存储指令,该处理器配置为执行该存储器存储的指令,配置为执行上述第一方面或第一方面的任一可能的实现方式中的方法。
第五方面,提供了一种传输信息的设备,配置为执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该设备包括配置为执行上述第二方面或第二方面的任一可能的实现方式中的方法的单元。
第六方面,提供了一种传输信息的设备,该设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器配置为存储指令,该处理器配置为执行该存储器存储的指令,配置为执行上述第二方面或第二方面的任一可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,配置为储存为执行上述第一方面或第一方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含配置为执行上述方面所设计的程序。
第八方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法。
第九方面,提供了一种计算机存储介质,配置为储存为执行上述第二方面或第二方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含配置为执行上述方面所设计的程序。
第十方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任一可选的实现方式中的方法。
附图说明
图1示出了本申请实施例一个应用场景的示意图。
图2示出了本申请实施例的传输信息的方法的示意性流程图。
图3示出了下行控制信息的一种处理方式的示意图。
图4示出了下行控制信息的另一种处理方式的示意图。
图5示出了本申请另一实施例的传输信息的方法的示意性流程图。
图6示出了本申请实施例的传输信息的设备的示意性框图。
图7示出了本申请另一实施例的传输信息的设备的示意性框图。
图8示出了本申请实施例的传输信息的设备的示意性框图。
图9示出了本申请另一实施例的传输信息的设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或未来的5G系统等。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
在本申请实施例中,网络设备可以为终端设备配置半持续资源(或称非动态资源、免授权(Grant free)资源),该半持续资源为用于非动态调度传输(或称半持续传输)的资源,所述非动态调度为动态调度(例如,通过物理层信令调度)以外的其他调度方式,例如,半静态配置(即Type1类型)的传输方式,或半静态配置加动态触发(即Type2类型)的传输方式。
在本申请实施例中,网络设备可以为终端设备配置上行半持续传输中用于控制信息传输的调制和编码方案(Modulation and Coding Scheme,MCS)偏移(offset),例如,Betaoffset指示MCS offset的索引
图2是本申请实施例提供的传输信息的方法200的示意性流程图,该方法200可以由图1所示的通信系统100中的终端设备执行,如图2所示,该方法200可以包括如下内容:
S210,终端设备接收网络设备发送的第一信息;
S220,所述终端设备根据所述第一信息,确定上行传输资源中用于传输上行控制信息的第一资源;
S230,所述终端设备根据所述第一资源,传输所述上行控制信息。
因此,根据本申请实施例的传输信息的方法,终端设备能够根据网络设备配置的第一信息,确定上行传输资源中用于上行控制信息传输的资源,进一步地,终端设备可以配置为上行控制信息传输的资源传输该上行控制信息,有利于避免上行控制信息和上行数据传输的冲突问题。
作为示例而非限定,所述上行控制信息(Uplink Control Information,DCI)包括以下信息中的至少一种:
混合自动重传请求(Hybrid Automatic Repeat reQuest ACKnowledgement,HARQ-ACK)信息,信道质量指示(Channel Quality Indication,CQI),预编码矩阵指示(Precoding Matrix Indication,PMI),秩指示(Rank Indication,RI),信道状态信息参考信号资源指示(Channel state information reference signal Resource Indicator,CRI),最强层指示(Strongest Layer Indication,SLI),层1参考信号接收功率(Layer1-Reference Signal Received Power,L1-RSRP)。
可选地,在本申请实施例中,该上行传输资源可以为半持续资源,例如,该上行传输资源可以包括用于非动态调度传输的时域资源、频域资源或码域资源等,本申请实施例对此不作限定。
可选地,在本申请实施例中,该第一信息可以为半持续资源专属的,即所述第一信息可以只用于配置半持续资源,或者也可以是带宽部分(BandWidth Part,BWP)专属的,或者也可以是载波专属的,本申请实施例对此不作限定。
可选地,该第一信息可以通过显示方式指示,例如,可以通过显示指令(例如高层信令或物理层信令等)向终端设备配置该第一信息,或者也可以通过隐式方式指示,例如,在特定情况或特定场景下,现有的信息或信令可以用于指示该第一信息,本申请实施例对此不作限定。
可选地,在一些实施例中,该第一信息可以用于指示以下中的至少一项:
上行传输资源中能否传输上行控制信息,能够用于传输上行控制信息的资源数,能够用于传输上行控制信息的资源比例,能够传输的上行控制信息的比特数和能够传输的上行控制信息的类型。
需要说明的是,在本申请实施例中,该能够传输的上行控制信息的比特数可以为能够用于传输UCI的最大比特数,或者可以为实际用于传输UCI的比特数,本申请实施例对此不作限定。
应理解,以上对于所述第一信息所指示的内容仅为示例,该第一信息也可以用于指示其他信息,只要该第一信息能够用于确定上行传输资源中传输上行控制信息的资源都 落入本申请实施例的保护范围。
即,该第一信息可以用于确定上行传输资源中用于传输UCI的资源,从而,终端设备可以根据该第一信息确定上行传输资源是否能够传输UCI,若能够用于传输UCI,进一地,还可以确定该UCI的发送方式,可选地,该终端设备可以根据能够用于传输上行控制信息的资源数,能够用于传输上行控制信息的资源比例,能够传输的上行控制信息的比特数和能够传输的上行控制信息的类型等信息中的至少一项确定该UCI的发送方式。可选地,该UCI的发送方式可以包括但不限于传输待发送的UCI的所有比特,或者将待发送UCI进行处理之后再发送。
应理解,在本申请实施例中,对待发送的UCI的处理包括但不限于补零,重复、压缩,复用和丢弃等处理方式,例如,对待发送的UCI进行处理可以包括对该UCI进行压缩,这里的压缩可以是从码本分组(Code Block Group,CBG),空域、载波域或时间域中的至少一个维度对该UCI进行压缩,即可以以CBG、空间、载波或时间为单位,对UCI进行压缩,例如,可以将属于同一个载波的UCI压缩在一起,或将属于同一个CBG的UCI压缩在一起;或者,对待发送的UCI的处理也可以包括对该UCI进行丢弃处理,例如,可以将待发送的UCI的部分比特作丢弃处理,以使得最终传输的UCI不大于能够传输的最大比特数,或者也可以采用其他方式对该UCI进行处理,使得最终传输的UCI不大于能够传输的最大比特数,本申请实施例并不特别限定该UCI的处理方式。
以下,结合图3和图4所示的具体示例,以该UCI为HARQ-ACK信息,说明对UCI的处理方式。
例如,若有13比特的HARQ-ACK信息待反馈,若上行传输资源中只能传输2比特的HARQ-ACK信息,则终端设备可以对该13比特的HARQ-ACK信息进行压缩,例如,可以按照时间域将该13比特的HARQ-ACK信息进行压缩,如图3所示,可以将成员载波(Component Carrier,CC)1上的传输块(Transmit Block,TB)1和TB4,CC2上的TB2和TB5,CC3上的TB3和TB6和CC4上的TB7中的HARQ-ACK信息压缩为1比特的UCI传输,将CC1上的TB8,CC2上的TB11,CC3上的TB9和TB12和CC4上的TB10和TB13中的HARQ-ACK信息压缩为1比特的UCI传输。
或者,如图4所示,也可以将该13比特的HARQ-ACK信息中的后11比特信息丢弃,只传前两个比特,即只传CC1上的TB1和TB4中的HARQ-ACK信息。
以下,结合具体实施例,详细说明该第一信息的指示方式。
实施例1:该第一信息用于指示该上行传输资源中能够用于传输上行控制信息的资源数。
例如,若该第一信息指示的能够用于传输上行控制信息的资源数为N,即网络设备为终端设备配置的该上行传输资源中能够用于传输UCI的资源数为N,则该终端设备可以根据该资源数N和用于UCI传输的MCS offset,确定能够传输的UCI的最大比特数M,进一步地,该终端设备可以根据待发送的UCI的比特数L和该最大比特数M,确定该UCI的发送方式,例如,若L≤M,即该上行传输资源中能够用于传输UCI的最大比特数足够传输该待发送的UCI的全部比特,此情况下,该终端设备可以发送UCI的全部比特,或者,若L>M,该终端设备可以对待发送的UCI进行处理,使得最终传输的UCI所占用的比特数不大于该最大比特数M,然后发送处理后的UCI,即最终传输的UCI的比特数为待发送UCI的比特数L与能够传输的UCI的最大比特数M中的最小值,对该UCI的处理方式可以参考前文的相关描述,这里不再赘述。
实施例2:该第一信息可以承载于现有的用于指示MCS offset的指示域中。
即网络设备可以复用现有的用于指示MCS offset的指示域来承载该第一信息,从而该用于指示MCS offset的指示域不仅可以用于指示MCS offset,还可以用于指示该第一信息,从而终端设备可以从该用于指示MCS offset的指示域中获取该MCS offset和该第一信息,进一步地,根据该指示域中承载的该第一信息确定是否能够在上行传输资源中 发送UCI,若确定能够在该上行传输资源中传输UCI,进一步地,该终端设备还可以根据该第一信息确定UCI的发送方式。
因此,通过复用现有的指示域来承载该第一信息,能够节省信令开销,同时能够实现UCI的MCS offset的灵活配置,例如,可以实现UCI的限制传输,从而可以避免在UCI和上行数据都通过PUSCH传输时的冲突问题,能够保证上行数据传输的可靠性。
可选地,在本申请实施例中,可以通过增加现有的用于指示MCS offset的指示域的长度来承载该第一信息,或者也可以利用该现有的用于指示MCS offset的指示域中的预留域来承载该第一信息,本申请实施例对此不作限定。
作为示例而非限定,该第一信息的指示方式可以包括如下情况:
情况1:该用于指示MCS offset的指示域的偏移值满足第一条件时,可以用于指示不能在该上行传输资源中传输UCI,若终端设备确定UCI对应的指示域的偏移值满足第一条件时,则可以确定不能在上行传输资源中传输UCI。
可选地,用于指示MCS offset的指示域的偏移值满足第一条件可以包括该用于指示MCS offset的指示域的偏移值为零,或者也可以为其他具有特定含义的取值,例如,预留值(Reserved)等,本申请实施例对此不作限定。
情况2:该用于指示MCS offset的指示域的偏移值满足第二条件时,可以用于指示能够用于传输上行控制信息的资源比例,若终端设备确定UCI对应的指示域的偏移值满足该第二条件时,则该终端设备可以在上行传输资源中确定不大于该资源比例的上行传输资源传输UCI。
可选地,该用于指示MCS offset的指示域的偏移值满足第二条件可以包括该用于指示MCS offset的指示域的偏移值为小于1的正数,或者也可以为其他具有特定含义的取值,例如,预留值(Reserved)等,本申请实施例对此不作限定。
例如,用于承载该第一信息的Betaoffset表格可以如表1所示,其中,I表示UCI索引,Betaoffset表示MCS offset,若该上行传输资源的资源数为100,若根据该UCI索引确定对应的资源比例的取值为0.1,则该终端设备可以确定用于传输UCI的资源数最大为10,进一步地,该终端设备可以根据确定的上行传输资源以及MCS offset确定UCI的发送方式,这里不再赘述。
表1
I Betaoffset 资源比例 I Betaoffset 资源比例
0 2.000 0.01 8 12.625 0.05
1 2.500 0.01 9 15.875 0.05
2 3.125 0.01 10 20.000 0.1
3 4.000 0.01 11 31.000 0.1
4 5.000 0.01 12 50.000 0.1
5 6.250 0.05 13 80.000 0.1
6 8.000 0.05 14 126.000 0.1
7 10.000 0.05 15 1.0 0.1
情况3:该用于指示MCS offset的指示域的偏移值满足第三条件时,该第一信息可以用于指示能够传输UCI的全部比特,进一步地,该终端设备可以根据该UCI对应的MCS offset和上行数据的调制编码方式确定UCI的调制编码方式,从而终端设备可以根据待发送的UCI的调制编码方式结合该UCI的比特数,传输该待发送的UCI,具体实现过程这里不再赘述。
可选地,用于指示MCS offset的指示域的偏移值满足第三条件可以包括该用于指示MCS offset的指示域的偏移值为大于1的正数,或者也可以为其他具有特定含义的取值,例如,预留值(Reserved)等,本申请实施例对此不作限定。
应理解,以上对于该第一信息的指示方式仅为示例,本申请实施例也可以采用其他方式指示UCI是采用限制方式传输,或者非限制方式传输,本申请实施例对于该第一信息的指示方式不作限定。
实施例3:该用于指示MCS offset的指示域分情况指示MCS offset和该第一信息。
即可以采用现有的Betaoffset可以指示MCS offset或指示该第一信息,但是该Betaoffset指示MCS offset还是该第一信息可以分别对应不同的情况,或者对应不同的场景,这样,可以根据特定的配置信息对该指示域进行信息解析,例如,可以根据数据信道的类型、用于数据传输的时域长度等配置信息,确定该Betaoffset指示的是MCS offset还是该第一信息,本申请实施例对此不作限定。
例如,该Betaoffset指示MCS offset或该第一信息可以分别对应不同的数据信道的类型,例如,数据信道的类型为TypeA(例如微时隙类型)时,该Betaoffset可以用于指示MCS offset,数据信道的类型为TypeB(例如时隙类型)时,该Betaoffset可以用于指示第一信息,则该终端设备可以在数据信道的类型为TypeA时,将该Betaoffset的信息解析为MCS offset,在数据信道的类型为TypeB时,将该Betaoffset的信息解析为第一信息。
再例如,该Betaoffset指示MCS offset或该第一信息可以分别对应不同的用于数据传输的时域长度,例如,若用于数据传输的时域长度落入第一长度范围时,该Betaoffset用于指示MCS offset,用于数据传输的时域长度落入第二长度范围时,该Betaoffset可以用于指示第一信息,则该终端设备可以在用于数据传输的时域长度落入第一长度范围时,将该Betaoffset的信息解析为MCS offset,在用于数据传输的时域长度落入第二长度范围时,将该Betaoffset的信息解析为该第一信息。
需要说明的是,以上确定Betaoffset指示的是MCS offset还是该第一信息的方式仅为示例,本申请实施例也可以根据其他信息,确定该Betaoffset指示的是MCS offset还是该第一信息,本申请实施例对此不作限定。
实施例4:所述用于指示MCS offset的指示域的第一部分取值用于指示限制传输的上行控制信息,所述用于指示MCS offset的指示域的第二部分取值用于非限制传输的上行控制信息。
也就是说,Betaoffset中的第一部分取值可以用于确定哪些UCI采用限制传输的方式发送,第二部分取值可以用于确定哪些UCI采用非限制传输的方式方式,即可以发送该UCI的所有比特。
需要说明的是,这里限制传输的方式可以为对该待发送的UCI进行处理后,再发送该处理后的UCI,这里的处理包括但不限于补零,重复、压缩,复用和丢弃等处理方式。
例如,对于表1,可以用于指示UCI索引为0-3的UCI采用限制传输的方式传输,UCI索引为4-15的UCI采用非限制传输的方式传输,即可以不对该UCI进行处理,传输该UCI的全部比特。
实施例5:根据第二UCI的用于指示MCS offset的指示域确定所述第一UCI对应的第一信息。
在本申请实施例中,若存在多个UCI,每个UCI可以对应各自的用于指示MCS offset的指示域,例如,该多个UCI包括第一UCI和第二UCI,该第二UCI的该指示域可以用于指示传输该第二UCI的MCS offset,在该实施例5中,该第二UCI的指示域还可以用于确定第一UCI的传输方式,例如,是采用限制传输方式,还是非限制传输方式,如果采用限制传输方式,限制传输所采用的比特数信息等。
例如,可以在第二UCI的指示域指示的偏移值满足某个条件时,指示第一UCI采用限制传输的方式传输,进一步地,还可以用于指示限制传输所使用的比特数信息等,或者,在第二UCI的指示域指示的偏移值满足某个条件时,指示该第一UCI采用非限制传输的方式等。
以下,结合实施例6至实施例8,以该第一UCI为HARQ-ACK信息,该第二UCI 为CSI例,说明该第一信息的指示方式,当然,该第一UCI和该第二UCI也可以为其他UCI,本申请实施例并不限于此。
为便于区分和理解,将该第一UCI对应的指示域记为第一指示域,该第二UCI对应的指示域记为第二指示域。
实施例6:所述第一指示域和所述第二指示域都包括偏移值为0的配置。
应理解,在本申请实施例中,该用于指示MCS offset的指示域可以为一个MCS偏移表格,作为示例而非限定,HARQ-ACK信息对应的MCS offset表格可以如表2所示,CSI对应的MCS offset表格可以如表3所示。其中,在表2中,I_HARQ-ACK为HARQ-ACK信息的索引,Betaoffset_HARQ-ACK为HARQ-ACK信息对应的MCS offset,在表3中,I_CSI为CSI的索引,Betaoffset_CSI为CSI的MCS offset。
可选地,在该实施例中,当第二指示域的偏移值满足第一特定条件时,可以用于指示在上行传输资源中采用限制传输方式传输该第一UCI(记为方式1),或者,在当第二指示域的偏移值满足第二特定条件时,可以用于指示在上行传输资源中采用非限制传输方式传输该第一UCI(记为方式2),或者在当第一指示域的偏移值满足第三特定条件时,可以用于指示在上行传输资源中采用限制传输方式传输该第二UCI(记为方式3)。
以下,以第二指示域的偏移值满足第一特定条件为该第二指示域的Betaoffset为0,第二指示域的偏移值满足第二特定条件为该第二指示域的Betaoffset大于0,该第一指示域的偏移值满足第三特定条件为该第一指示域的偏移值为0来说明,当然,本申请实施例同样适用于其他特定条件,本申请实施例并不限定于此。
方式1:当I_CSI对应的Betaoffset_CSI取值为0,可以用于指示仅传输HARQ-ACK信息,进一步地,还可以用于指示该HARQ-ACK信息采用限制传输的传输方式,例如,限制传输HARQ-ACK信息的最大比特数可以为N,例如,该N可以为2,则可以根据该限制传输的最大比特数N,结合该HARQ-ACK信息对应的MCS offset表格中的Betaoffset_HARQ-ACK,传输HARQ-ACK信息,具体过程这里不作详细说明。
方式2:若I_CSI对应的Betaoffset_CSI取值大于0,则该终端设备可以确定传输HARQ-ACK信息的比特数不受限,即可以按照待发送的HARQ-ACK信息的实际比特数传输该HARQ-ACK信息,其中,传输HARQ-ACK信息所采用的MCS等级可以根据表2所示的Betaoffset_HARQ-ACK确定,传输CSI所采用的MCS等级可以根据表3所示的Betaoffset_CSI确定。
方式3:若I_HARQ-ACK对应的Betaoffset_HARQ-ACK取值为0时,该终端设备可以确定不传输该HARQ-ACK信息,此情况下,还可以进一步确定采用限制传输方式进行CSI的传输。
因此,在实施例6中,可以通交叉隐式的方式指示该第一信息,提升了该第一信息指示的灵活性,通过该指示方式,能够同时限制HARQ-ACK和CSI的传输,有利于保证上行数据传输的可靠性。
并且,由于CSI的重要性/紧急程度低于HARQ-ACK信息,本申请实施例优先考虑限制CSI传输,从而在传输资源有限的情况下,优先丢弃CSI信息,保证HARQ-ACK信息的传输,能够实现下行传输效率的最大化。
此外,通过CSI的指示域显式限制或隐性限制HARQ-ACK传输的比特数/传输资源,可以实现多种传输方式,例如,CSI和HARQ-ACK都按需传输(即非限制传输);CSI不传输,AHARQ-ACK限制传输,CSI和HARQ-ACKACK都不传输等,从而能够实现上行传输的可靠性和下行传输的传输效率的折中。
表2
I_HARQ-ACK Betaoffset_HARQ-ACK I_HARQ-ACK Betaoffset_HARQ-ACK
0 0 8 10.000
1 2.000 9 12.625
2 2.500 10 15.875
3 3.125 11 20.000
4 4.000 12 31.000
5 5.000 13 50.000
6 6.250 14 80.000
7 8.000 15 1.0
表3
I_HARQ-CSI Betaoffset_CSI I_CSI Betaoffset_CSI
0 0 8 6.250
1 1.250 9 8.000
2 1.625 10 10.000
3 2.000 11 12.625
4 2.500 12 15.875
5 3.125 13 20.000
6 4.000 14 预留
7 5.000 15 预留
实施例7:所述第一指示域和所述第二指示域中只有一个指示域包括Betaoffset取值为0的配置。
应理解,在本申请实施例中,该用于指示MCS offset的指示域可以为一个MCS偏移表格,作为示例而非限定,HARQ-ACK信息对应的MCS offset表格可以如表4所示,CSI对应的MCS offset表格可以如表3所示。其中,在表4中,I_HARQ-ACK为HARQ-ACK信息的索引,Betaoffset_HARQ-ACK为HARQ-ACK信息对应的MCS offset,在CSI对应的MCS offset表格,即表3中包括Betaoffset取值为0的配置。
可选地,在该实施例7中,当第二指示域的偏移值满足第四特定条件时,可以用于指示在上行传输资源中采用限制传输方式传输该第一UCI(记为方式4),或者,在当第二指示域的偏移值满足第五特定条件时,可以用于指示在上行传输资源中采用非限制传输方式传输该第一UCI(记为方式5)。
以下,以第二指示域的偏移值满足第四特定条件为该第二指示域的Betaoffset为0,第二指示域的偏移值满足第五特定条件为该第二指示域的Betaoffset大于0来说明,当然,本申请实施例同样适用于其他特定条件,本申请实施例并不限定于此。
方式4:当I_CSI对应的Betaoffset_CSI取值为0时,可以用于指示仅传输HARQ-ACK信息,并且传输HARQ-ACK信息的最大比特数可以为N,例如,该N可以为2,其中,传输HARQ-ACK信息所采用的MCS等级可以参考该HARQ-ACK信息对应的Betaoffset_HARQ-ACK,例如,表4中的Betaoffset_HARQ-ACK。
方式5:若I_CSI对应的Betaoffset_CSI取值大于0,则传输HARQ-ACK信息的比特数不受限,即可以按照待发送的HARQ-ACK信息的实际比特数传输该HARQ-ACK信息,即传输HARQ-ACK信息的全部比特,其中,传输HARQ-ACK信息所采用的MCS等级可以根据表4所示的Betaoffset_HARQ-ACK确定,传输CSI所采用的MCS等级可以根据表5所示的Betaoffset_CSI确定。
因此,在实施例7中,可以通交叉隐式的方式指示该第一信息,提升了该第一信息指示的灵活性,通过该指示方式,能够同时限制HARQ-ACK和CSI的传输,有利于保证上行数据传输的可靠性。
并且,由于CSI的重要性/紧急程度低于HARQ-ACK信息,本申请实施例优先考虑限制CSI传输,从而在传输资源有限的情况下,优先丢弃CSI信息,保证HARQ-ACK信息的传输,能够实现下行传输效率的最大化。
此外,通过CSI的指示域显式限制或隐性限制HARQ-ACK传输的比特数/传输资源, 可以实现多种传输方式,例如,CSI和HARQ-ACK都按需传输(即非限制传输);CSI不传输,AHARQ-ACK限制传输,CSI和HARQ-ACKACK都不传输等,从而能够实现上行传输的可靠性和下行传输的传输效率的折中。
从另一方面来讲,在实施例7中,更多的配置用于HARQ-ACK资源指示,增加了HARQ-ACK指示的灵活性。
表4
I_HARQ-ACK Betaoffset_HARQ-ACK I_HARQ-ACK Betaoffset_HARQ-ACK
0 2.000 8 12.625
1 2.500 9 15.875
2 3.125 10 20.000
3 4.000 11 31.000
4 5.000 12 50.000
5 6.250 13 80.000
6 8.000 14 126.000
7 10.000 15 1.0
实施例8:所述第一指示域和所述第二指示域中的第一指示域包括多个MCS offset表格。
在该实施例8中,该第一指示域可以包括多个MCS偏移表格,每个MCS偏移表格可以对应不同的情况,或不同的场景,例如,对于可靠性要求高的上行数据传输,offset范围需要较小,颗粒度需要较细,此情况下,可以使用该多个MCS偏移表格中offset范围较小,颗粒度较细的MCS偏移表格;或者对于可靠性要求不高的上行数据传输,可以使用该多个MCS偏移表格中offset范围较大,颗粒度较粗的MCS偏移表格。
以下,以该第一指示域包括两个MCS offset表格为例说明,当然,该第一指示域也可以包括更多个MCS offset表格,当该第一指示域包括更多个MCS offset表格时的指示方式类似,这里不再赘述。
作为示例而非限定,表1和表4可以为HARQ-ACK信息对应的两个MCS offset表格,分别记为表格a和表格b。
可选地,在该实施例8中,当第二指示域的偏移值满足第六特定条件时,可以用于指示在上行传输资源中采用限制传输方式传输该第一UCI(记为方式6),或者,在当第二指示域的偏移值满足第七特定条件时,可以用于指示在上行传输资源中采用非限制传输方式传输该第一UCI(记为方式7)。
以下,以第二指示域的偏移值满足第六特定条件为该第二指示域的Betaoffset为0,第二指示域的偏移值满足第七特定条件为该第二指示域的Betaoffset大于0来说明,当然,本申请实施例同样适用于其他特定条件,本申请实施例并不限定于此。
可选地,在本申请实施例中,该第一指示域包括的两个MCS offset表格可以具有如下特征,例如,表格a中的Betaoffset的最大值小于表格b中的Betaoffset的最大值,或,表格a中包括Betaoffset取值为零的配置。
方式6:当I_CSI对应的Betaoffset_CSI取值为0时,可以用于指示仅传输HARQ-ACK信息,并且传输HARQ-ACK信息的最大比特数可以为N,例如,该N可以为2,在此场景中,传输HARQ-ACK信息所采用的MCS等级可以参考表格a。
方式7:若I_CSI对应的Betaoffset_CSI取值大于0,则传输HARQ-ACK信息的比特数不受限,即可以按照待发送的HARQ-ACK信息的实际比特数传输该HARQ-ACK信息,此场景中,传输HARQ-ACK信息所采用的MCS等级可以参考表格b,传输CSI所采用的MCS等级可以参考CSI对应的MCS offset表格。
因此,在实施例8中,可以通交叉隐式的方式指示该第一信息,提升了该第一信息指示的灵活性,通过该指示方式,能够同时限制HARQ-ACK和CSI的传输,有利于保 证上行数据传输的可靠性。
并且,由于CSI的重要性/紧急程度低于HARQ-ACK信息,本申请实施例优先考虑限制CSI传输,从而在传输资源有限的情况下,优先丢弃CSI信息,保证HARQ-ACK信息的传输,能够实现下行传输效率的最大化。
此外,通过CSI的指示域显式限制或隐性限制HARQ-ACK传输的比特数/传输资源,可以实现多种传输方式,例如,CSI和HARQ-ACK都按需传输(即非限制传输);CSI不传输,AHARQ-ACK限制传输,CSI和HARQ-ACKACK都不传输等,从而能够实现上行传输的可靠性和下行传输的传输效率的折中。
并且,在实施例8中,一个UCI可以对应多个MCS offset表格,从而使得MCS offset的指示范围更加灵活,并且能够针对多种场景配置适合该场景的MCS offset表格,有利于满足数据传输的需求。
实施例9:所述第一信息承载于用于指示MCS偏移的多个指示域中,所述多个指示域中的每个指示域分别对应相应的比特数范围,所述比特数范围用于指示限制所述下行控制信息传输所使用的比特数的范围。
例如,该第一信息可以承载在三个指示域中,该三个指示域中的每个指示域可以对应相应的比特数范围,例如,该三个指示域可以包括指示域1、指示域2和指示域3,其中,该指示域1对应的比特数范围可以为0~2,即最多能传输2比特的UCI,该指示域2对应的比特数范围可以为大于2小于11,该指示域3对应的比特数范围可以为大于11,通过配置该三个指示域的偏移值可以指示传输该UCI所使用的比特数范围。
作为示例而非限定,指示域1,指示域2,指示域3都包含betaoffset为0的配置,该指示域1对应的MCS betaoffset表格可以如表5所示,指示域2对应的MCS betaoffset表格可以如表6所示,指示域3分别对应的MCS betaoffset表格可以如表7所示。
作为示例而非限定,当指示域3和指示域2中betaoffset配置为0,并且,指示域1中的betaoffset配置为大于0时,用于指示最多传2bit的HARQ-ACK;在指示域1和指示域2中betaoffset配置为0,并且,指示域3中的betaoffset配置为大于0时,指示能够传输大于11比特的HARQ-ACK;在指示域1和指示域3中betaoffset配置为0,并且,指示域2中的betaoffset配置为大于0时,指示能够传输3至11比特的HARQ-ACK。
表5
I_HARQ-ACK Betaoffset_HARQ-ACK I_HARQ-ACK Betaoffset_HARQ-ACK
0 0 8 10.000
1 2.000 9 12.625
2 2.500 10 15.875
3 3.125 11 20.000
4 4.000 12 31.000
5 5.000 13 50.000
6 6.250 14 80.000
7 8.000 15 1.0
表6
I_HARQ-ACK Betaoffset_HARQ-ACK I_HARQ-ACK Betaoffset_HARQ-ACK
0 0 8 10.000
1 2.000 9 12.625
2 2.500 10 15.875
3 3.125 11 20.000
4 4.000 12 25.00
5 5.000 13 30.00
6 6.250 14 35.00
7 8.000 15 1.0
表7
I_HARQ-ACK Betaoffset_HARQ-ACK I_HARQ-ACK Betaoffset_HARQ-ACK
0 0 8 10.000
1 2.000 9 12.625
2 2.500 10 15.875
3 3.125 11 17.00
4 4.000 12 19.00
5 5.000 13 21.00
6 6.250 14 23.00
7 8.000 15 25.00
应理解,以上,通过该多个指示域指示所述下行控制信息传输所使用的比特数的范围的指示方式仅为示例,而不应对本申请实施例构成任何限定,本申请实施例也可以采用其他指示方式确定所述下行控制信息传输所使用的比特数的范围,本申请实施例并不限于此。
因此,在该实施例9中,可以通过多个指示域灵活指示传输UCI所采用的比特数,提高了UCI资源指示的灵活性。
上文结合图2至图4,从终端设备的角度详细描述了根据本申请实施例的传输信息的方法,下文结合图5,从网络设备的角度详细描述根据本申请另一实施例的传输信息的方法。应理解,网络设备侧的描述与终端设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图5是根据本申请另一实施例的传输信息的方法300的示意性流程图,该方法300可以由图1所示的通信系统中的网络设备执行,如图5所示,该方法300包括如下内容:
S310,网络设备确定第一信息,所述第一信号用于确定上行传输资源中用于传输上行控制信息的第一资源;
S320,所述网络设备向终端设备发送第一信息。
可选地,在一些实施例中,所述第一信息用于指示以下中的至少一项:
上行传输资源中能否传输上行控制信息,能够用于传输上行控制信息的资源数,能够用于传输上行控制信息的资源比例,能够传输的上行控制信息的比特数和能够传输的上行控制信息的类型。
可选地,在一些实施例中,所述第一信息通过显性方式或隐性方式指示。
可选地,在一些实施例中,所述第一信息承载于用于指示上行控制信息的调制和编码方案MCS偏移的指示域。
可选地,在一些实施例中,所述第一信息承载于用于指示上行控制信息的MCS偏移的多个指示域中,所述多个指示域中的每个指示域分别对应相应的比特数范围,所述比特数范围用于指示限制所述下行控制信息传输所使用的比特数的范围。
可选地,在一些实施例中,在所述指示域指示的偏移值满足第一条件时,用于指示不能通过所述上行传输资源传输上行控制信息。
可选地,在一些实施例中,所述指示域指示的偏移值满足第一条件包括所述指示域指示的偏移值为零。
可选地,在一些实施例中,所述指示域的第一部分取值用于指示限制传输的上行控制信息,所述指示域的第二部分取值用于非限制传输的上行控制信息。
可选地,在一些实施例中,所述指示域用于指示混合自动重传请求HARQ-ACK信息传输是否有限制。
可选地,在一些实施例中,所述指示域为信道状态信息CSI对应的指示域,在所述指示域指示的偏移满足特定条件时,用于指示能够传输的上行控制信息的比特数小于或等于N,和/或能够传输的上行控制信息的类型为HARQ-ACK信息,其中,所述N为正 整数。
可选地,在一些实施例中,所述指示域指示的偏移满足特定条件可以包括所述指示域指示的偏移值为零。
可选地,在一些实施例中,所述终端设备根据数据信道的类型和/或用于数据传输的时域长度确定所述第一信息。
可选地,在一些实施例中,所述第一信息是半持续资源专属的。
可选地,在一些实施例中,所述上行控制信息包括以下信息中的至少一种:
HARQ-ACK,秩指示RI,信道质量指示CQI,预编码矩阵指示PMI,信道状态信息参考信号资源指示CRI,最强层指示SLI和层1参考信号接收功率L1-RSRP。
可选地,在一些实施例中,所述第一信息是半持续资源专属的。
上文结合图2至图5,详细描述了本申请的方法实施例,下文结合图6至图9,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图6示出了根据本申请实施例的传输信息的设备400的示意性框图。如图6所示,该设备400包括:
通信模块410,配置为接收网络设备发送的第一信息;
确定模块420,配置为根据所述第一信息,确定上行传输资源中用于传输上行控制信息的第一资源;
所述通信模块410还配置为根据所述第一资源,传输所述上行控制信息。
可选地,在一些实施例中,所述第一信息用于指示以下中的至少一项:
上行传输资源中能否传输上行控制信息,能够用于传输上行控制信息的资源数,能够用于传输上行控制信息的资源比例,能够传输的上行控制信息的比特数和能够传输的上行控制信息的类型。
可选地,在一些实施例中,所述第一信息通过显性方式或隐性方式指示。
可选地,在一些实施例中,所述第一信息承载于用于指示上行控制信息的调制和编码方案MCS偏移的指示域。
可选地,在一些实施例中,所述第一信息承载于用于指示上行控制信息的MCS偏移的多个指示域中,所述多个指示域中的每个指示域分别对应相应的比特数范围,所述比特数范围用于指示限制所述下行控制信息传输所使用的比特数的范围。
可选地,在一些实施例中,在所述指示域指示的偏移值满足第一条件时,用于指示不能通过所述上行传输资源传输上行控制信息。
可选地,在一些实施例中,所述指示域指示的偏移值满足第一条件包括所述指示域指示的偏移值为零。
可选地,在一些实施例中,所述指示域的第一部分取值用于指示限制传输的上行控制信息,所述指示域的第二部分取值用于非限制传输的上行控制信息。
可选地,在一些实施例中,所述指示域用于指示混合自动重传请求HARQ-ACK信息传输是否有限制。
可选地,在一些实施例中,所述指示域为信道状态信息CSI对应的指示域,在所述指示域指示的偏移满足特定条件时,用于指示能够传输的上行控制信息的比特数小于或等于N,和/或能够传输的上行控制信息的类型为HARQ-ACK信息,其中,所述N为正整数。
可选地,在一些实施例中,所述指示域指示的偏移满足特定条件可以包括所述指示域指示的偏移值为零。
可选地,在一些实施例中,所述终端设备根据数据信道的类型和/或用于数据传输的时域长度确定所述第一信息。
可选地,在一些实施例中,所述第一信息是半持续资源专属的。
可选地,在一些实施例中,所述上行控制信息包括以下信息中的至少一种:
HARQ-ACK,秩指示RI,信道质量指示CQI,预编码矩阵指示PMI,信道状态信息参考信号资源指示CRI,最强层指示SLI和层1参考信号接收功率L1-RSRP。
可选地,在一些实施例中,所述第一信息是半持续资源专属的。
应理解,根据本申请实施例的传输信息的设备400可对应于本申请方法实施例中的终端设备,并且设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图7是根据本申请实施例的传输信息的设备的示意性框图。图7的设备500包括:
确定模块510,配置为备确定第一信息,所述第一信号用于确定上行传输资源中用于传输上行控制信息的第一资源;
通信模块520,配置为向终端设备发送第一信息。
可选地,在一些实施例中,所述第一信息用于指示以下中的至少一项:
上行传输资源中能否传输上行控制信息,能够用于传输上行控制信息的资源数,能够用于传输上行控制信息的资源比例,能够传输的上行控制信息的比特数和能够传输的上行控制信息的类型。
可选地,在一些实施例中,所述第一信息通过显性方式或隐性方式指示。
可选地,在一些实施例中,所述第一信息承载于用于指示上行控制信息的调制和编码方案MCS偏移的指示域。
可选地,在一些实施例中,所述第一信息承载于用于指示上行控制信息的MCS偏移的多个指示域中,所述多个指示域中的每个指示域分别对应相应的比特数范围,所述比特数范围用于指示限制所述下行控制信息传输所使用的比特数的范围。
可选地,在一些实施例中,在所述指示域指示的偏移值满足第一条件时,用于指示不能通过所述上行传输资源传输上行控制信息。
可选地,在一些实施例中,所述指示域指示的偏移值满足第一条件包括所述指示域指示的偏移值为零。
可选地,在一些实施例中,所述指示域的第一部分取值用于指示限制传输的上行控制信息,所述指示域的第二部分取值用于非限制传输的上行控制信息。
可选地,在一些实施例中,所述指示域用于指示混合自动重传请求HARQ-ACK信息传输是否有限制。
可选地,在一些实施例中,所述指示域为信道状态信息CSI对应的指示域,在所述指示域指示的偏移满足特定条件时,用于指示能够传输的上行控制信息的比特数小于或等于N,和/或能够传输的上行控制信息的类型为HARQ-ACK信息,其中,所述N为正整数。
可选地,在一些实施例中,所述指示域指示的偏移满足特定条件可以包括所述指示域指示的偏移值为零。
可选地,在一些实施例中,所述终端设备根据数据信道的类型和/或用于数据传输的时域长度确定所述第一信息。
可选地,在一些实施例中,所述第一信息是半持续资源专属的。
可选地,在一些实施例中,所述上行控制信息包括以下信息中的至少一种:
HARQ-ACK,秩指示RI,信道质量指示CQI,预编码矩阵指示PMI,信道状态信息参考信号资源指示CRI,最强层指示SLI和层1参考信号接收功率L1-RSRP。
可选地,在一些实施例中,所述第一信息是半持续资源专属的。
具体地,该设备500可以对应(例如,可以配置于或本身即为)上述方法300中描述的网络设备,并且,该设备500中的各模块或单元分别用于执行上述方法300中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
如图8所示,本申请实施例还提供了一种传输信息的设备600,所述设备600可以为 图6中的设备400,其能够用于执行与图2中方法200对应的终端设备的内容。所述设备600包括:输入接口610、输出接口620、处理器630以及存储器640,所述输入接口610、输出接口620、处理器630和存储器640可以通过总线系统相连。所述存储器640配置为存储包括程序、指令或代码。所述处理器630,配置为执行所述存储器640中的程序、指令或代码,以控制输入接口610接收信号、控制输出接口620发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,所述处理器630可以是中央处理单元(Central Processing Unit,简称为“CPU”),所述处理器630还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等。
所述存储器640可以包括只读存储器和随机存取存储器,并向处理器630提供指令和数据。存储器640的一部分还可以包括非易失性随机存取存储器。例如,存储器640还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器630中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。所述存储介质位于存储器640,处理器630读取存储器640中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图6中设备400包括的通信模块410可以用图8的所述输出接口620和所述输入接口610实现,图6中设备400包括的确定模块420可以用图8的所述处理器630实现。
如图9所示,本申请实施例还提供了一种传输信息的设备700,所述设备700可以为图7中的设备500,其能够配置为执行与图5中方法300对应的网络设备的内容。所述设备700包括:输入接口710、输出接口720、处理器730以及存储器740,所述输入接口710、输出接口720、处理器730和存储器740可以通过总线系统相连。所述存储器740配置为存储包括程序、指令或代码。所述处理器730,配置为执行所述存储器740中的程序、指令或代码,以控制输入接口710接收信号、控制输出接口720发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,所述处理器730可以是中央处理单元(Central Processing Unit,简称为“CPU”),所述处理器730还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等。
所述存储器740可以包括只读存储器和随机存取存储器,并向处理器730提供指令和数据。存储器740的一部分还可以包括非易失性随机存取存储器。例如,存储器740还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器730中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。所述存储介质位于存储器740,处理器730读取存储器740中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图7中设备500包括的确定模块510可以用图9的所述处理器730实现,图7中设备500包括的通信模块520可以用图9的所述输入接口710和 所述输出接口720实现。
本申请实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行图2和图5所示实施例的方法。
本申请实施例还提出了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行图2和图5所示实施例的方法的相应流程。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应所述理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (56)

  1. 一种传输信息的方法,包括:
    终端设备接收网络设备发送的第一信息;
    所述终端设备根据所述第一信息,确定上行传输资源中用于传输上行控制信息的第一资源;
    所述终端设备根据所述第一资源,传输所述上行控制信息。
  2. 根据权利要求1所述的方法,其中,所述第一信息用于指示以下中的至少一项:
    上行传输资源中能否传输上行控制信息,能够用于传输上行控制信息的资源数,能够用于传输上行控制信息的资源比例,能够传输的上行控制信息的比特数和能够传输的上行控制信息的类型。
  3. 根据权利要求1或2所述的方法,其中,所述第一信息通过显性方式或隐性方式指示。
  4. 根据权利要求3所述的方法,其中,所述第一信息承载于用于指示上行控制信息的调制和编码方案MCS偏移的指示域。
  5. 根据权利要求4所述的方法,其中,所述第一信息承载于用于指示MCS偏移的多个指示域中,所述多个指示域中的每个指示域分别对应相应的比特数范围和/或上行控制信息类型,所述比特数范围用于指示限制所述下行控制信息传输所使用的比特数的范围。
  6. 根据权利要求4或5所述的方法,其中,在所述指示域指示的偏移值满足第一条件时,用于指示不能通过所述上行传输资源传输上行控制信息。
  7. 根据权利要求6所述的方法,其特征在于,所述指示域指示的偏移值满足第一条件包括所述指示域指示的偏移值为零。
  8. 根据权利要求4所述的方法,其中,所述指示域的第一部分取值用于指示限制传输的上行控制信息,所述指示域的第二部分取值用于非限制传输的上行控制信息。
  9. 根据权利要求4所述的方法,其中,所述指示域用于指示混合自动重传请求HARQ-ACK信息传输是否有限制。
  10. 根据权利要求9所述的方法,其中,所述指示域为信道状态信息CSI对应的指示域,在所述指示域指示的偏移满足特定条件时,用于指示能够传输的上行控制信息的比特数小于或等于N,和/或能够传输的上行控制信息的类型为HARQ-ACK信息,其中,所述N为正整数。
  11. 根据权利要求10所述的方法,其中,所述指示域指示的偏移满足特定条件可以包括所述指示域指示的偏移值为零。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述终端设备根据数据信道的类型和/或用于数据传输的时域长度确定所述第一信息。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述第一信息是半持续资源专属的。
  14. 根据权利要求1至13中任一项所述的方法,其中,所述上行控制信息包括以下信息中的至少一种:
    HARQ-ACK,秩指示RI,信道质量指示CQI,预编码矩阵指示PMI,信道状态信息参考信号资源指示CRI,最强层指示SLI和层1参考信号接收功率L1-RSRP。
  15. 一种传输信息的方法,包括:
    网络设备确定第一信息,所述第一信号用于终端设备确定上行传输资源中用于传输上行控制信息的第一资源;
    所述网络设备向所述终端设备发送第一信息。
  16. 根据权利要求15所述的方法,其中,所述第一信息用于指示以下中的至少一项:
    上行传输资源中能否传输上行控制信息,能够用于传输上行控制信息的资源数,能 够用于传输上行控制信息的资源比例,能够传输的上行控制信息的比特数和能够传输的上行控制信息的类型。
  17. 根据权利要求15或16所述的方法,其中,所述第一信息通过显性方式或隐性方式指示。
  18. 根据权利要求17所述的方法,其中,所述第一信息承载于用于指示上行控制信息的调制和编码方案MCS偏移的指示域。
  19. 根据权利要求18所述的方法,其中,所述第一信息承载于用于指示上行控制信息的MCS偏移的多个指示域中,所述多个指示域中的每个指示域分别对应相应的比特数范围,所述比特数范围用于指示限制所述下行控制信息传输所使用的比特数的范围。
  20. 根据权利要求18或19所述的方法,其中,在所述指示域指示的偏移值满足第一条件时,用于指示不能通过所述上行传输资源传输上行控制信息。
  21. 根据权利要求20所述的方法,其中,所述指示域指示的偏移值满足第一条件包括所述指示域指示的偏移值为零。
  22. 根据权利要求18所述的方法,其中,所述指示域的第一部分取值用于指示限制传输的上行控制信息,所述指示域的第二部分取值用于非限制传输的上行控制信息。
  23. 根据权利要求18所述的方法,其中,所述指示域用于指示混合自动重传请求HARQ-ACK信息传输是否有限制。
  24. 根据权利要求23所述的方法,其中,所述指示域为信道状态信息CSI对应的指示域,在所述指示域指示的偏移满足特定条件时,用于指示能够传输的上行控制信息的比特数小于或等于N,和/或能够传输的上行控制信息的类型为HARQ-ACK信息,其中,所述N为正整数。
  25. 根据权利要求24所述的方法,其中,所述指示域指示的偏移满足特定条件可以包括所述指示域指示的偏移值为零。
  26. 根据权利要求15至25中任一项所述的方法,其中,所述终端设备根据数据信道的类型和/或用于数据传输的时域长度确定所述第一信息。
  27. 根据权利要求15至26中任一项所述的方法,其中,所述第一信息是半持续资源专属的。
  28. 根据权利要求15至27中任一项所述的方法,其中,所述上行控制信息包括以下信息中的至少一种:
    HARQ-ACK,秩指示RI,信道质量指示CQI,预编码矩阵指示PMI,信道状态信息参考信号资源指示CRI,最强层指示SLI和层1参考信号接收功率L1-RSRP。
  29. 一种传输信息的设备,包括:
    通信模块,配置为接收网络设备发送的第一信息;
    确定模块,配置为根据所述第一信息,确定上行传输资源中用于传输上行控制信息的第一资源;
    所述通信模块还配置为根据所述第一资源,传输所述上行控制信息。
  30. 根据权利要求29所述的设备,其中,所述第一信息用于指示以下中的至少一项:
    上行传输资源中能否传输上行控制信息,能够用于传输上行控制信息的资源数,能够用于传输上行控制信息的资源比例,能够传输的上行控制信息的比特数和能够传输的上行控制信息的类型。
  31. 根据权利要求29或30所述的设备,其中,所述第一信息通过显性方式或隐性方式指示。
  32. 根据权利要求31所述的设备,其中,所述第一信息承载于用于指示上行控制信息的调制和编码方案MCS偏移的指示域。
  33. 根据权利要求32所述的设备,其中,所述第一信息承载于用于指示MCS偏移的多个指示域中,所述多个指示域中的每个指示域分别对应相应的比特数范围,所述比 特数范围用于指示限制所述下行控制信息传输所使用的比特数的范围。
  34. 根据权利要求32或33所述的设备,其中,在所述指示域指示的偏移值满足第一条件时,用于指示不能通过所述上行传输资源传输上行控制信息。
  35. 根据权利要求34所述的设备,其中,所述指示域指示的偏移值满足第一条件包括所述指示域指示的偏移值为零。
  36. 根据权利要求32所述的设备,其中,所述指示域的第一部分取值用于指示限制传输的上行控制信息,所述指示域的第二部分取值用于非限制传输的上行控制信息。
  37. 根据权利要求32所述的设备,其中,所述指示域用于指示混合自动重传请求HARQ-ACK信息传输是否有限制。
  38. 根据权利要求37所述的设备,其中,所述指示域为信道状态信息CSI对应的指示域,在所述指示域指示的偏移满足特定条件时,用于指示能够传输的上行控制信息的比特数小于或等于N,和/或能够传输的上行控制信息的类型为HARQ-ACK信息,其中,所述N为正整数。
  39. 根据权利要求38所述的设备,其中,所述指示域指示的偏移满足特定条件可以包括所述指示域指示的偏移值为零。
  40. 根据权利要求29至39中任一项所述的设备,其中,所述终端设备根据数据信道的类型和/或用于数据传输的时域长度确定所述第一信息。
  41. 根据权利要求29至40中任一项所述的设备,其中,所述第一信息是半持续资源专属的。
  42. 根据权利要求29至41中任一项所述的设备,其中,所述上行控制信息包括以下信息中的至少一种:
    HARQ-ACK,秩指示RI,信道质量指示CQI,预编码矩阵指示PMI,信道状态信息参考信号资源指示CRI,最强层指示SLI和层1参考信号接收功率L1-RSRP。
  43. 一种传输信息的设备,包括:
    确定模块,配置为备确定第一信息,所述第一信号用于终端设备确定上行传输资源中用于传输上行控制信息的第一资源;
    通信模块,配置为向所述终端设备发送第一信息。
  44. 根据权利要求43所述的设备,其中,所述第一信息用于指示以下中的至少一项:
    上行传输资源中能否传输上行控制信息,能够用于传输上行控制信息的资源数,能够用于传输上行控制信息的资源比例,能够传输的上行控制信息的比特数和能够传输的上行控制信息的类型。
  45. 根据权利要求43或44所述的设备,其中,所述第一信息通过显性方式或隐性方式指示。
  46. 根据权利要求45所述的设备,其中,所述第一信息承载于用于指示上行控制信息的调制和编码方案MCS偏移的指示域。
  47. 根据权利要求46所述的设备,其中,所述第一信息承载于用于指示上行控制信息的MCS偏移的多个指示域中,所述多个指示域中的每个指示域分别对应相应的比特数范围,所述比特数范围用于指示限制所述下行控制信息传输所使用的比特数的范围。
  48. 根据权利要求46或47所述的设备,其中,在所述指示域指示的偏移值满足第一条件时,用于指示不能通过所述上行传输资源传输上行控制信息。
  49. 根据权利要求48所述的设备,其中,所述指示域指示的偏移值满足第一条件包括所述指示域指示的偏移值为零。
  50. 根据权利要求46所述的设备,其中,所述指示域的第一部分取值用于指示限制传输的上行控制信息,所述指示域的第二部分取值用于非限制传输的上行控制信息。
  51. 根据权利要求46所述的设备,其中,所述指示域用于指示混合自动重传请求HARQ-ACK信息传输是否有限制。
  52. 根据权利要求51所述的设备,其中,所述指示域为信道状态信息CSI对应的指示域,在所述指示域指示的偏移满足特定条件时,用于指示能够传输的上行控制信息的比特数小于或等于N,和/或能够传输的上行控制信息的类型为HARQ-ACK信息,其中,所述N为正整数。
  53. 根据权利要求52所述的设备,其中,所述指示域指示的偏移满足特定条件可以包括所述指示域指示的偏移值为零。
  54. 根据权利要求43至53中任一项所述的设备,其中,所述终端设备根据数据信道的类型和/或用于数据传输的时域长度确定所述第一信息。
  55. 根据权利要求43至54中任一项所述的设备,其中,所述第一信息是半持续资源专属的。
  56. 根据权利要求43至55中任一项所述的设备,其中,所述上行控制信息包括以下信息中的至少一种:
    HARQ-ACK,秩指示RI,信道质量指示CQI,预编码矩阵指示PMI,信道状态信息参考信号资源指示CRI,最强层指示SLI和层1参考信号接收功率L1-RSRP。
PCT/CN2018/076772 2018-02-13 2018-02-13 传输信息的方法和设备 WO2019157678A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU2018409008A AU2018409008A1 (en) 2018-02-13 2018-02-13 Method and device for transmitting information
CN202111514867.5A CN114126074A (zh) 2018-02-13 2018-02-13 传输信息的方法和设备
RU2020129167A RU2763504C1 (ru) 2018-02-13 2018-02-13 Способ и устройство для передачи информации
PCT/CN2018/076772 WO2019157678A1 (zh) 2018-02-13 2018-02-13 传输信息的方法和设备
SG11202007714WA SG11202007714WA (en) 2018-02-13 2018-02-13 Method and device for transmitting information
EP18906628.5A EP3755085A4 (en) 2018-02-13 2018-02-13 PROCESS AND DEVICE FOR TRANSMISSION OF INFORMATION
CN201880086344.5A CN111602446A (zh) 2018-02-13 2018-02-13 传输信息的方法和设备
JP2020542994A JP2021517756A (ja) 2018-02-13 2018-02-13 情報伝送方法及び装置
KR1020207024989A KR20200118454A (ko) 2018-02-13 2018-02-13 정보 전송 방법 및 기기
US16/992,617 US20200374064A1 (en) 2018-02-13 2020-08-13 Method and device for information transmission, and non-transitory computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076772 WO2019157678A1 (zh) 2018-02-13 2018-02-13 传输信息的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/992,617 Continuation US20200374064A1 (en) 2018-02-13 2020-08-13 Method and device for information transmission, and non-transitory computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2019157678A1 true WO2019157678A1 (zh) 2019-08-22

Family

ID=67618849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076772 WO2019157678A1 (zh) 2018-02-13 2018-02-13 传输信息的方法和设备

Country Status (9)

Country Link
US (1) US20200374064A1 (zh)
EP (1) EP3755085A4 (zh)
JP (1) JP2021517756A (zh)
KR (1) KR20200118454A (zh)
CN (2) CN114126074A (zh)
AU (1) AU2018409008A1 (zh)
RU (1) RU2763504C1 (zh)
SG (1) SG11202007714WA (zh)
WO (1) WO2019157678A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104972A (zh) * 2010-05-24 2011-06-22 电信科学技术研究院 Uci信息传输的配置方法和设备
CN103209483A (zh) * 2012-01-12 2013-07-17 华为技术有限公司 传输上行控制信息的方法、用户设备和基站
CN105207754A (zh) * 2014-05-30 2015-12-30 中兴通讯股份有限公司 信息发送方法、信息接收方法、装置及系统
WO2017152664A1 (zh) * 2016-03-09 2017-09-14 中兴通讯股份有限公司 上行反馈信息的传输方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539396B (zh) * 2009-01-30 2018-04-20 三星电子株式会社 在数据或控制信道上发送上行链路控制信息的方法和装置
US10135595B2 (en) * 2010-06-21 2018-11-20 Telefonaktiebolaget L M Ericsson (Publ) Uplink control information (UCI) mapping indicator for long term evolution (LTE) carrier aggregation
US10555286B2 (en) * 2013-07-30 2020-02-04 Qualcomm Incorporated Uplink control information (UCI) transmission with bundling considerations
WO2015109571A1 (zh) * 2014-01-26 2015-07-30 华为技术有限公司 免授权频段的信道竞争方法、装置及系统
US10356761B2 (en) * 2016-03-30 2019-07-16 Qualcomm Incorporated Techniques for configuring uplink control channel transmissions in a shared radio frequency spectrum band
JP7132241B2 (ja) * 2017-11-16 2022-09-06 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
EP3685535B1 (en) * 2018-01-24 2022-05-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Transmission channel assignment apparatus and method for controlling a transmission over a transmission channel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104972A (zh) * 2010-05-24 2011-06-22 电信科学技术研究院 Uci信息传输的配置方法和设备
CN103209483A (zh) * 2012-01-12 2013-07-17 华为技术有限公司 传输上行控制信息的方法、用户设备和基站
CN105207754A (zh) * 2014-05-30 2015-12-30 中兴通讯股份有限公司 信息发送方法、信息接收方法、装置及系统
WO2017152664A1 (zh) * 2016-03-09 2017-09-14 中兴通讯股份有限公司 上行反馈信息的传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3755085A4 *

Also Published As

Publication number Publication date
JP2021517756A (ja) 2021-07-26
AU2018409008A1 (en) 2020-09-17
US20200374064A1 (en) 2020-11-26
SG11202007714WA (en) 2020-09-29
CN111602446A (zh) 2020-08-28
KR20200118454A (ko) 2020-10-15
EP3755085A4 (en) 2020-12-30
EP3755085A1 (en) 2020-12-23
RU2763504C1 (ru) 2021-12-29
CN114126074A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US20210250131A1 (en) Transmission method and apparatus
US11088941B2 (en) Method for transmitting data, terminal device, and network device
CN110830176B (zh) 一种harq-ack发送方法、接收方法、终端及基站
WO2019233339A1 (zh) 传输信息的方法和通信设备
US11191075B2 (en) Data transmission method, device, and communications system
CN114531734B (zh) 信息传输方法及相关装置
WO2016155305A1 (zh) 用户设备、网络设备和确定物理上行控制信道资源的方法
CN113068259B (zh) 无线通信方法和设备
US20210297188A1 (en) Data transmission method and communication apparatus
CN113678558B (zh) 信息传输方法及相关装置
WO2018152790A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2020056632A1 (zh) 一种信息传输方法及装置、终端
WO2021013088A1 (zh) 传输方式确定、信息配置方法和设备
EP3720021A1 (en) Information transmission method and device
CN110730513B (zh) 一种通信方法及装置
WO2020073623A1 (zh) 一种资源配置方法及装置、通信设备
CN111277371B (zh) 数据传输方法及设备
WO2018223399A1 (zh) 无线通信方法和设备
US20200015233A1 (en) Data Transmission Method and Apparatus
US11856595B2 (en) Wireless communication method and apparatus
WO2019157678A1 (zh) 传输信息的方法和设备
WO2020143743A1 (zh) 接收数据的方法和装置
WO2019153250A1 (zh) 传输信息的方法和终端设备
US20240080846A1 (en) Method for transmitting control information and apparatus
WO2021262071A1 (en) Enhanced hybrid arq (harq) for a wireless network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542994

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207024989

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018409008

Country of ref document: AU

Date of ref document: 20180213

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018906628

Country of ref document: EP

Effective date: 20200914