WO2017152664A1 - 上行反馈信息的传输方法及装置 - Google Patents

上行反馈信息的传输方法及装置 Download PDF

Info

Publication number
WO2017152664A1
WO2017152664A1 PCT/CN2016/107327 CN2016107327W WO2017152664A1 WO 2017152664 A1 WO2017152664 A1 WO 2017152664A1 CN 2016107327 W CN2016107327 W CN 2016107327W WO 2017152664 A1 WO2017152664 A1 WO 2017152664A1
Authority
WO
WIPO (PCT)
Prior art keywords
uci
uplink
information
downlink data
data block
Prior art date
Application number
PCT/CN2016/107327
Other languages
English (en)
French (fr)
Inventor
杨立
苟伟
赵亚军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP16893307.5A priority Critical patent/EP3429287A4/en
Publication of WO2017152664A1 publication Critical patent/WO2017152664A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present invention relates to the field of communications, and in particular to a method and an apparatus for transmitting uplink feedback information.
  • LTE Long Term Evolution
  • 3rd Generation Partnership Project The 3GPP standards organization is researching and developing Enhanced Licensed Assisted Access (LAA) technology.
  • the unlicensed carrier has the following characteristics: on the one hand, since the unlicensed carrier does not require the operator to bid for purchase, or the carrier resource is zero cost, the unlicensed carrier can be utilized for free or low cost; on the other hand, since the individual and the enterprise also Both can participate in the deployment of related network equipment, so the admission conditions of unlicensed carriers are low; in addition, the unlicensed carriers are fair and shareable, and the different operators of the same system are shared by multiple different systems. When sharing operations, the utilization efficiency of carrier resources can be improved.
  • LTE technology has obvious commercial advantages in deploying unlicensed carriers, there are still problems in the process of deployment and operation; among them, there are many types of wireless access technologies (cross-standard communication standards, wireless) Collaboration between nodes is difficult, network topology is diverse, and there are many wireless access sites (large number of users, difficult cooperation, and large centralized management overhead). Therefore, for LTE deployment on unlicensed carriers, it is necessary to support the use of unlicensed carriers. Regulations. Most countries require that any communication system be deployed on an unlicensed carrier to support the basic mechanism of Listening Before Talk (LBT). By listening and speaking, it is possible to avoid interference and collision between adjacent wireless systems while using local unlicensed carrier resources.
  • LBT Listening Before Talk
  • a random competition fallback mechanism is introduced, that is, a neighboring system site (generally a neighboring transmission node of the same system) can avoid the simultaneous use of non-contiguous transit nodes of the same system through the competitive backoff mechanism. Interference caused by the authorization of the carrier. Regulations: Any device that uses unlicensed carrier resources (including LTE base station and User Equipment (UE)) needs to perform LBT operation (ie, Clear Channel Assessment (CCA)) before sending. When the channel is idle, the device can use the unlicensed carrier channel for data transmission for a period of time.
  • LBT operation ie, Clear Channel Assessment (CCA)
  • the downlink data can be transmitted, and the UE can successfully transmit through an LBT operation to preempt an unlicensed carrier channel.
  • the content sent here can be either a user service data block or a control information.
  • the UE needs to perform a feedback response (acknowledgeme, abbreviated as ACK)/Negative Acknowledgeme (NACK) for the relevant data block of the eNB downlink data transmission, and also needs feedback for a period of time.
  • Channel State Information (CSI) to assist The eNB performs scheduling (re)transmission of the future data, and the uplink control information (Uplink Control Info, UCI for short) sent by the UE is corresponding to one or more downlink subframes.
  • the UCI can be uplinked through a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the base station sends the downlink data block in the PDSCH channel corresponding to the downlink subframe n.
  • the UE needs to send the UCI information to the base station on the PUSCH channel corresponding to the uplink subframe n+4 or the specific physical resource block of the PUCCH channel
  • the UE transmits the uplink subframe position of the UCI feedback in a synchronous manner, and maintains a predetermined subframe interval relationship with the subframe position of the corresponding downlink data block sent by the base station, for example, a frequency division duplex (Frequency Division Duplex, A fixed sub-frame interval of n+4 (referred to as FDD) (the duration of each subframe is 1 ms); the time division duplex (TDD) needs to be configured according to the specific uplink and downlink subframes of the TDD.
  • FDD Frequency Division Duplex
  • TDD time division duplex
  • the standardized table can also determine the agreed subframe spacing relationship for n+x.
  • FIG. 1 the downlink scheduling transmission and the uplink feedback of the LTE FDD system are as shown in FIG. 1.
  • the base station sends the downlink data block to the UE in the subframe n
  • the UE needs to be in the agreed sub-subsequent after receiving the parsing into the data block.
  • the UCI feedback information is transmitted upstream in the frame n+4.
  • the above UCI feedback operation has the following problem for the unlicensed carrier: FIG.
  • FIG. 2 is a schematic diagram of the downlink scheduling transmission and the uplink feedback of the LAA system according to the related art.
  • the base station sends the downlink data block in the subframe n.
  • the UE After the UE receives the parsing into the data block, it also needs to send the UCI information in the uplink in the subframe n+4.
  • the UE needs to execute first because of the LBT regulation requirement on the unlicensed carrier.
  • the LBT operation is the CCA detection.
  • the UE can use the subframe n+4 to transmit the UCI.
  • the UE When the detection is non-idle (busy), The UE cannot use the subframe n+4 to transmit the UCI. Therefore, when the latter occurs, the UE will not be able to transmit UCI feedback information in the subframe position agreed with the base station, and the eNB cannot know the downlink data transmission status of the data block in the subframe n and the CSI measurement information in the past period, which cannot be further accurate. Downstream data scheduling.
  • the UCI uplink feedback may not be sent in time due to the failure of the LBT operation, and there is currently no effective solution.
  • the embodiment of the invention provides a method and a device for transmitting uplink feedback information, so as to solve at least the problem that the UCI uplink feedback may not be sent in time due to the failure of the LBT operation on the unlicensed carrier in the related art.
  • a method for transmitting uplink feedback information includes:
  • Receiving configuration information sent by the base station includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, the multiple uplink candidate subframes being used to send multiple uplink control information UCI;
  • the sending time-frequency position information of the multiple uplink candidate subframes includes: the interval information of the multiple candidate subframes
  • the interval information includes: an interval of uplink subframes, where the interval information indicates a time dimension interval between the UCI uplink sending time and the receiving time of the downlink data block.
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information and frequency information of the multiple candidate subframes.
  • the interval information includes: an interval of the uplink subframes
  • the frequency information includes: an index of the unlicensed carrier secondary serving cell, where the interval information indicates the UCI uplink sending time and the receiving time of the downlink data block.
  • the UCI corresponding to the downlink data block is sent on the multiple uplink candidate subframes:
  • the UCI corresponding to the downlink data block is uplinked on an uplink candidate subframe that is in the same frequency as the downlink data block;
  • the downlink data block is On the uplink candidate sub-frame of the different frequency, the UCI corresponding to the downlink data block is uplinked.
  • the UCI corresponding to the downlink data block is sent on an uplink candidate subframe of the multiple uplink candidate subframes, and the multiple configured after the uplink candidate subframe transmits the UCI successfully.
  • the uplink candidate sub-frames do not need to repeatedly transmit the same UCI.
  • joint feedback UCI includes: joint feedback information that whether the receiving of the downlink data blocks is successful Channel state information CSI related to the observation time of the channel corresponding to the plurality of the downlink data blocks.
  • the next UCI of the previous or previous UCIs is jointly uplinked. And sending the joint feedback UCI, where the joint feedback UCI carries information of the previous or previous multiple UCIs, wherein the coding manner of the joint feedback UCI including multiple UCI information adopts a carrier aggregation combined UCI coding manner.
  • the joint feedback UCI carries one or more recently received ones or more corresponding to the downlink data block.
  • the configuration information is carried in a dedicated radio resource control information RRC message or an RRC message broadcast by the system.
  • a method for transmitting uplink feedback information including:
  • configuration information includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, where the multiple uplink candidate subframes are used to send multiple uplink control information UCI;
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information of the multiple uplink candidate subframes, where the interval information includes: an interval of uplink subframes, the interval information indication a time dimension interval between the UCI uplink transmission time and the reception time of the downlink data block.
  • the information about the time-frequency position of the multiple uplink candidate subframes includes: interval information and frequency of the multiple uplink candidate subframes.
  • the interval information includes: an interval of the uplink subframes
  • the frequency information includes: an index of the unlicensed carrier secondary serving cell, where the interval information indicates the UCI uplink sending time and the receiving time of the downlink data block The time dimension interval between the UCI uplink transmission frequency or the reception frequency of the downlink data block or the frequency dimension interval between the secondary serving cells.
  • the sending the configuration information to the terminal includes:
  • the configuration information is sent to the terminal through a dedicated radio resource control information RRC message or an RRC message broadcast by the system.
  • the receiving the UCI corresponding to the downlink data block includes:
  • the joint feedback UCI and each downlink data block includes: information about whether the reception of the downlink data block is successful, and channel state information CSI of the channel reception observation time corresponding to the downlink data block.
  • a device for transmitting uplink feedback information which is located in the terminal, and includes:
  • the first receiving module is configured to receive configuration information sent by the base station, where the configuration information includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, where the multiple uplink candidate subframes are used to send multiple Uplink control information UCI;
  • a second receiving module configured to receive a downlink data block on the unlicensed carrier
  • the first sending module is configured to send, on the uplink candidate sub-frames, the UCI corresponding to the downlink data block.
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information of the multiple candidate subframes, where the interval information includes: an interval of uplink subframes, where the interval information indicates UCI uplink transmission time and Time dimension interval between reception times of the downlink data blocks.
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information and frequency information of the multiple candidate subframes.
  • the interval information includes: an interval of the uplink subframes
  • the frequency information includes: an index of the unlicensed carrier secondary serving cell, where the interval information indicates the UCI uplink sending time and the receiving time of the downlink data block.
  • the first sending module is further configured to preferentially send, according to an uplink candidate subframe that is in the same frequency as the downlink data block, uplink UCI corresponding to the downlink data block;
  • the first sending module is further configured to try to transmit the uplink UTI that is in the same frequency as the downlink data block, and the uplink transmission of the UCI corresponding to the downlink data block cannot be sent because the LBT fails after listening first. And transmitting UCI corresponding to the downlink data block in an uplink candidate subframe that is different from the downlink data block.
  • the first sending module is further configured to: attempt to send a UCI corresponding to the downlink data block in an uplink candidate subframe of the multiple uplink candidate subframes, where the uplink candidate subframe is sent. After the UCI is successfully configured, the configured uplink candidate subframes need not be repeatedly transmitted with the same UCI except for the uplink candidate subframes that are successfully transmitted.
  • the first sending module is further configured to: after receiving the downlink data block on the unlicensed carrier, send uplink multiple uplink data blocks in the multiple uplink candidate subframes
  • the joint feedback UCI includes: joint feedback information of whether the reception of the plurality of downlink data blocks is successful, and channel state information CSI related to channel reception observation time corresponding to the plurality of the downlink data blocks.
  • the first sending module is further configured to: after the LBT fails, after the previous or previous UCI in the UCI corresponding to the multiple downlink data blocks fails to be sent, the previous one or The latter UCI of the previous plurality of UCIs jointly sends the joint feedback UCI, and the joint feedback UCI simultaneously carries information of the previous or previous plurality of UCIs, wherein the joint feedback UCI containing multiple UCI information
  • the coding method adopts carrier aggregation combined with UCI coding.
  • the joint feedback UCI carries one or more recently received ones or more corresponding to the downlink data block.
  • the UCI in addition to the one or more of the downlink blocks received recently, the UCI information corresponding to other downlink data blocks is automatically discarded.
  • the configuration information is carried in a dedicated radio resource control information RRC message or an RRC message broadcast by the system.
  • a device for transmitting uplink feedback information where located in a base station, includes:
  • the second sending module is configured to send configuration information to the terminal, where the configuration information includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, where the multiple uplink candidate subframes are used to send multiple uplinks.
  • Control information UCI UCI
  • a third sending module configured to send, to the terminal, a downlink data block on the unlicensed carrier
  • the third receiving module is configured to receive, according to the multiple uplink candidate subframes, a UCI corresponding to the downlink data block.
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information of the multiple uplink candidate subframes, where the interval information includes: an interval of uplink subframes, the interval information indication a time dimension interval between the UCI uplink transmission time and the reception time of the downlink data block.
  • the information about the time-frequency position of the multiple uplink candidate subframes includes: interval information and frequency of the multiple uplink candidate subframes.
  • the interval information includes: an interval of the uplink subframes
  • the frequency information includes: an index of the unlicensed carrier secondary serving cell, where the interval information indicates the UCI uplink sending time and the receiving time of the downlink data block The time dimension interval between the UCI uplink transmission frequency or the reception frequency of the downlink data block or the frequency dimension interval between the secondary serving cells.
  • the sending the configuration information to the terminal includes:
  • the configuration information is sent to the terminal through a dedicated radio resource control information RRC message or an RRC message broadcast by the system.
  • the third receiving module is further configured to receive, according to an uplink candidate frame of the multiple uplink candidate subframes, a UCI corresponding to the downlink data block, according to the one uplink candidate subframe.
  • UCI, and the transmission time-frequency position information of the plurality of uplink candidate subframes determining a UCI of the candidate subframes other than the UCI of the one uplink candidate subframe except the one uplink candidate subframe, where
  • the UCI is a composite feedback UCI that carries a plurality of downlink data blocks.
  • the joint feedback UCI and each downlink data block includes: information about whether the reception of the downlink data block is successful, and channel state information CSI of the channel reception observation time corresponding to the downlink data block.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • Receiving configuration information sent by the base station includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, where the multiple uplink candidate subframes are used to send multiple uplink control information UCI; Deriving a downlink data block on the unlicensed carrier, and transmitting, on the plurality of uplink candidate subframes, a UCI corresponding to the downlink data block.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the configuration information includes: sending time and frequency of multiple uplink candidate subframes on the unlicensed carrier Location information, the multiple uplink candidate subframes are used to send multiple uplink control information UCI; the downlink data block on the unlicensed carrier is sent to the terminal; and the multiple uplink candidate subframes are received and UCI corresponding to the downlink data block.
  • the configuration information sent by the base station is received, where the configuration information includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, where the multiple uplink candidate subframes are used to send multiple uplink control information.
  • the UCI receives the downlink data block on the unlicensed carrier, and sends the UCI corresponding to the downlink data block on the multiple uplink candidate subframes, which solves that on the unlicensed carrier, the UCI uplink feedback may fail due to the LBT operation failure.
  • the problem of timely transmission increases the downlink data transmission efficiency of the LTE system on the unlicensed carrier.
  • FIG. 1 is a schematic diagram of downlink scheduling transmission and uplink feedback of an LTE FDD system according to related art
  • FIG. 2 is a schematic diagram of downlink scheduling transmission and uplink feedback of a LAA system according to related art
  • FIG. 3 is a flowchart 1 of a method for transmitting uplink feedback information according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram 1 of an apparatus for transmitting uplink feedback information according to an embodiment of the present invention
  • FIG. 6 is a structural block diagram 2 of an apparatus for transmitting uplink feedback information according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of downlink scheduling transmission and enhanced intra-frequency uplink feedback of an LAA system according to a preferred embodiment of the present invention.
  • FIG. 8 is a schematic diagram of LAA system downlink scheduling transmission and enhanced multi-frequency uplink feedback according to a preferred embodiment of the present invention
  • FIG. 9 is a schematic diagram of deployment of a single LAA Scell on a Pcell+unlicensed carrier on a LAA authorized carrier in accordance with a preferred embodiment of the present invention.
  • FIG. 10 is a schematic diagram of downlink scheduling transmission and uplink feedback of a LAA system according to a preferred embodiment 1 of the present invention
  • FIG. 11 is a schematic diagram 1 of deployment of two LAA Scells on a Pcell+unlicensed carrier on a LAA authorized carrier according to a preferred embodiment of the present invention
  • FIG. 12 is a schematic diagram of downlink scheduling transmission and uplink feedback of a LAA system according to a preferred embodiment 2 of the present invention.
  • FIG. 13 is a second schematic diagram of deployment of two LAA Scells on a Pcell+unlicensed carrier on a LAA authorized carrier in accordance with a preferred embodiment of the present invention
  • FIG. 14 is a schematic diagram of downlink scheduling transmission and uplink feedback of a LAA system according to a preferred embodiment 3 of the present invention.
  • FIG. 3 is a flowchart 1 of a method for transmitting uplink feedback information according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 receiving configuration information sent by the base station, the configuration information includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, the multiple uplink candidate subframes are used to send multiple uplink control information UCI;
  • Step S304 Receive a downlink data block on the unlicensed carrier, and send a UCI corresponding to the downlink data block on the multiple uplink candidate subframes.
  • the configuration information sent by the base station includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, where the multiple uplink candidate subframes are used to send multiple uplink control information UCI, Receiving the downlink data block on the unlicensed carrier, and transmitting the UCI corresponding to the downlink data block on the multiple uplink candidate subframes, which solves that on the unlicensed carrier, the UCI uplink feedback may not be sent in time due to the failure of the LBT operation.
  • the problem is to improve the downlink data transmission efficiency of the LTE system on the unlicensed carrier.
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information of the multiple candidate subframes, where the interval information includes: an interval of uplink subframes, the interval information indicates the The time dimension interval between the UCI uplink transmission time and the reception time of the downlink data block.
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information and frequency of the multiple candidate subframes.
  • the interval information includes: an interval of the uplink subframes
  • the frequency information includes: an index of the unlicensed carrier secondary serving cell
  • the interval information indicating a time dimension between the UCI uplink sending time and the receiving time of the downlink data block
  • the frequency information indicates the UCI uplink transmission frequency or the secondary serving cell, and the frequency of the downlink data block or the frequency dimension interval between the secondary serving cells.
  • the UCI corresponding to the downlink data block is sent on the multiple uplink candidate subframes:
  • the UCI corresponding to the downlink data block is uplinked on an uplink candidate subframe that is in the same frequency as the downlink data block;
  • the frequency data is different from the downlink data block.
  • the UCI corresponding to the downlink data block is uplinked.
  • the UCI corresponding to the downlink data block is sent on an uplink candidate subframe of the multiple uplink candidate subframes, and the multiple configured after the uplink candidate subframe transmits the UCI successfully.
  • the uplink candidate sub-frames need not be repeatedly transmitted with the same UCI except for the uplink candidate subframes that are successfully transmitted.
  • the joint feedback UCI includes: a plurality of joint feedback information that is successfully received by the downlink data block, and multiple The channel corresponding to the downlink data block receives the channel state information CSI related to the observation time.
  • the joint feedback UCI is transmitted in the uplink, and the joint feedback UCI carries information of the previous or previous multiple UCIs.
  • the coding mode of the joint feedback UCI including multiple UCI information adopts a carrier aggregation combined UCI coding mode.
  • the joint feedback UCI if the feedback information of the joint feedback UCI exceeds the capacity of the uplink subframe in which the joint feedback UCI is located, the joint feedback UCI carries one or more recently received ones or more corresponding to the downlink data block. UCI, and abandon UCI information corresponding to other downlink data blocks in addition to the one or more of the recently received downlink data blocks.
  • the configuration information is carried in a dedicated radio resource control information RRC message or an RRC message broadcast by the system.
  • FIG. 4 is a flowchart 2 of a method for transmitting uplink feedback information according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps:
  • Step S402 the configuration information is sent to the terminal, the configuration information includes: the transmission time-frequency location information of the multiple uplink candidate subframes on the unlicensed carrier, the multiple uplink candidate subframes are used to send the multiple uplink control information UCI;
  • Step S404 sending a downlink data block on the unlicensed carrier to the terminal;
  • Step S406 Receive UCI corresponding to the downlink data block in the multiple uplink candidate subframes.
  • the configuration information is sent to the terminal, where the configuration information includes: the transmission time-frequency location information of the multiple uplink candidate subframes on the unlicensed carrier, where the multiple uplink candidate subframes are used to send multiple uplink control information UCI,
  • the terminal sends the downlink data block on the unlicensed carrier, and receives the UCI corresponding to the downlink data block in the multiple uplink candidate subframes, and solves that on the unlicensed carrier, the UCI uplink feedback may fail due to the LBT operation failure.
  • the problem of timely transmission increases the downlink data transmission efficiency of the LTE system on the unlicensed carrier.
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information of the multiple uplink candidate subframes, where the interval information includes: an interval of uplink subframes, the interval information indication The time dimension interval between the UCI uplink transmission time and the reception time of the downlink data block.
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information of the multiple uplink candidate subframes.
  • the interval information includes: an interval of the uplink subframes
  • the frequency information includes: an index of the unlicensed carrier secondary serving cell
  • the interval information indicates a time between the UCI uplink sending time and the receiving time of the downlink data block
  • the dimension interval indicates the UCI uplink transmission frequency or the frequency of the secondary serving cell and the downlink data block or the frequency dimension interval between the secondary serving cells.
  • the sending the configuration information to the terminal includes:
  • the configuration information is sent to the terminal through a dedicated radio resource control information RRC message or an RRC message broadcast by the system.
  • the receiving the UCI corresponding to the downlink data block includes:
  • the joint feedback UCI after receiving the joint feedback UCI related to the plurality of downlink data blocks on the multiple candidate subframes, deriving the joint feedback UCI according to the physical layer control information and each downlink data block is related.
  • the UCI information, the UCI information of each data block includes: information on whether the reception of the downlink data block is successful, and channel state information CSI of the channel reception observation time corresponding to the downlink data block.
  • a device for transmitting the uplink feedback information is provided, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 5 is a structural block diagram 1 of a device for transmitting uplink feedback information according to an embodiment of the present invention.
  • the device is located in a terminal. As shown in FIG. 5, the device includes:
  • the first receiving module 52 is configured to receive configuration information sent by the base station, where the configuration information includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, where the multiple uplink candidate subframes are used to send multiple uplinks. Control information UCI;
  • the second receiving module 54 is configured to receive a downlink data block on the unlicensed carrier
  • the first sending module 56 is configured to uplink transmit the UCI corresponding to the downlink data block in the multiple uplink candidate subframes.
  • the first receiving module 52 is configured to receive configuration information sent by the base station, where the configuration information includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, where the multiple uplink candidate subframes are used for sending
  • the plurality of uplink control information UCI the second receiving module 54 is configured to receive the downlink data block on the unlicensed carrier
  • the first sending module 56 is configured to: in the multiple uplink candidate subframes, the uplink sending corresponds to the downlink data block.
  • the UCI solves the problem that the UCI uplink feedback may not be transmitted in time due to the failure of the LBT operation on the unlicensed carrier, and improves the downlink data transmission efficiency of the LTE system on the unlicensed carrier.
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information of the multiple candidate subframes, where the interval information includes: an interval of uplink subframes, the interval information indicates the The time dimension interval between the UCI uplink transmission time and the reception time of the downlink data block.
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information and frequency of the multiple candidate subframes.
  • the information includes: an interval of the uplink subframes, where the frequency information includes: an index of the unlicensed carrier secondary serving cell, where the interval information indicates the UCI a time dimension interval between the uplink sending time and the receiving time of the downlink data block, where the frequency information indicates the UCI uplink sending frequency or the secondary serving cell, and the receiving frequency of the downlink data block or the frequency dimension interval between the secondary serving cell .
  • the first sending module 56 is further configured to preferentially transmit the UCI corresponding to the downlink data block in an uplink candidate subframe that is in the same frequency as the downlink data block;
  • the first sending module 56 is further configured to try to use the uplink candidate frame that is in the same frequency as the downlink data block, and if the LBT fails to be transmitted after the first listening, the UCI corresponding to the downlink data block cannot be sent.
  • the UCI corresponding to the downlink data block is uplinked on an uplink candidate subframe that is different from the downlink data block.
  • the first sending module 56 is further configured to: attempt to send a UCI corresponding to the downlink data block in an uplink candidate subframe of the multiple uplink candidate subframes, where the uplink candidate subframe After the UCI is successfully transmitted, the configured uplink candidate sub-frames need not be repeatedly transmitted with the same UCI except for the uplink candidate sub-frames that are successfully transmitted.
  • the first sending module 56 is further configured to: after receiving the downlink data block on the unlicensed carrier, send multiple uplinks and the downlink data block simultaneously on the multiple uplink candidate subframes.
  • the associated joint feedback UCI includes: joint feedback information of whether the reception of the downlink data block is successful and channel state information CSI related to the channel reception observation time corresponding to the plurality of downlink data blocks.
  • the first sending module 56 is further configured to: after the LBT fails, after the previous or previous UCI attempts in the UCI corresponding to the multiple downlink data blocks fail to be sent, the former The next UCI of the first or a plurality of UCIs jointly sends the joint feedback UCI, and the joint feedback UCI carries information of the previous or previous multiple UCIs, wherein the joint feedback UCI encoding method includes multiple UCI information. Carrier aggregation and UCI coding are adopted.
  • the joint feedback UCI if the feedback information of the joint feedback UCI exceeds the capacity of the uplink subframe in which the joint feedback UCI is located, the joint feedback UCI carries one or more recently received ones or more corresponding to the downlink data block.
  • the UCI in addition to the one or more of the downlink blocks received recently, the UCI information corresponding to the other downlink data blocks is automatically discarded.
  • the configuration information is carried in a dedicated radio resource control information RRC message or an RRC message broadcast by the system.
  • FIG. 6 is a structural block diagram 2 of a device for transmitting uplink feedback information according to an embodiment of the present invention.
  • the device is located in a base station. As shown in FIG. 6, the device includes:
  • the second sending module 62 is configured to send configuration information to the terminal, where the configuration information includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, where the multiple uplink candidate subframes are used to send multiple uplink control Information UCI;
  • the third sending module 64 is configured to send, to the terminal, a downlink data block on the unlicensed carrier;
  • the third receiving module 66 is configured to receive, on the multiple uplink candidate subframes, a UCI corresponding to the downlink data block.
  • the second sending module 62 is configured to send configuration information to the terminal, where the configuration information includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, where the multiple uplink candidate subframes are used for sending Uplink control
  • the UCI the third sending module 64 is configured to send the downlink data block on the unlicensed carrier to the terminal, and the third receiving module 66 is configured to receive the UCI corresponding to the downlink data block in the multiple uplink candidate subframes.
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information of the multiple uplink candidate subframes, where the interval information includes: an interval of uplink subframes, the interval information indication The time dimension interval between the UCI uplink transmission time and the reception time of the downlink data block.
  • the transmission time-frequency location information of the multiple uplink candidate subframes includes: interval information of the multiple uplink candidate subframes.
  • the interval information includes: an interval of the uplink subframes
  • the frequency information includes: an index of the unlicensed carrier secondary serving cell
  • the interval information indicates a time between the UCI uplink sending time and the receiving time of the downlink data block
  • the dimension interval indicates the UCI uplink transmission frequency or the frequency of the secondary serving cell and the downlink data block or the frequency dimension interval between the secondary serving cells.
  • the sending the configuration information to the terminal includes:
  • the configuration information is sent to the terminal through a dedicated radio resource control information RRC message or an RRC message broadcast by the system.
  • the third receiving module 66 is further configured to receive, according to the uplink candidate sub-frame, an UCI corresponding to the downlink data block, in an uplink candidate subframe of the multiple uplink candidate subframes.
  • the joint feedback UCI after receiving the joint feedback UCI related to the plurality of downlink data blocks on the multiple candidate subframes, deriving the joint feedback UCI according to the physical layer control information and each downlink data block is related.
  • the UCI information, the UCI information of each data block includes: information on whether the reception of the downlink data block is successful, and channel state information CSI of the channel reception observation time corresponding to the downlink data block.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are respectively located. Different processors.
  • the UE uplink UCI information feedback may not be at the current predetermined n+4 subframe position (or other subframe positions agreed by the system).
  • the transmission causes the base station to fail to receive UCI feedback in a timely manner.
  • the UCI feedback enhancement mechanism is introduced by the preferred embodiment of the present invention, so that the base station can receive UCI feedback (reducing the UCI reception delay) in a more timely manner, thereby improving the downlink data transmission efficiency of the LTE system on the unlicensed carrier.
  • FIG. 7 is a preferred embodiment in accordance with the present invention.
  • a schematic diagram of downlink scheduling transmission and enhanced intra-frequency uplink feedback of the LAA system, as shown in FIG. 7, the implementation manner includes:
  • the network side configures, for the plurality of UCIs on the same unlicensed carrier of the UE, the subframe position information, or the candidate subframe interval information.
  • the UE allows UCI uplink transmission to be attempted at these multiple candidate subframe positions; after the UCI associated with a downlink data block is successfully transmitted, the UE does not need to repeatedly transmit the same UCI content on other candidate subframes.
  • the UE may perform joint feedback of UCI on multiple downlink data blocks in a certain candidate subframe at the same time, that is, UCI information in the same subframe includes joint feedback and a longer period of time for multiple downlink data blocks received before.
  • the channel receives CSI measurement information of the observation time.
  • the network side attempts to receive the UCI feedback information at the multiple candidate subframe positions; the network side needs to be able to correctly associate the received UCI information with each downlink data block.
  • the UCI transmits subframe position information, or the candidate subframe interval information is a time dimension interval between the uplink UCI feedback information and the corresponding downlink data block.
  • the time dimension interval may be described by the number of interlaced subframes. For example, the current FDD system defaults to the time dimension interval, and the number of subframes is 4, and there may be more other values in the future.
  • the network side may configure the foregoing time dimension interval information set for the UE by using a UE-specific RRC message or a system broadcast RRC message.
  • the UE When the UE fails to successfully transmit UCI information 1 at a certain candidate subframe position due to the LBT failure, and then the UE continues to receive and parse several new downlink data blocks, thereby generating a corresponding new pending UCI information 2, the UE is under For a candidate subframe position, a joint transmission of UCI information 1+2 needs to be attempted. If the LBT fails again, and so on, the UE needs to try the UCI information 1+2+3. at the next candidate subframe position. . . The joint is sent.
  • the UCI joint feedback information cannot be accumulated indefinitely. Therefore, when the sub-frame capacity limit is exceeded, only the UCI information corresponding to the most recently received downlink data block is fed back. set.
  • the corresponding association between each UCI feedback information and the specific downlink data block may be derived through the physical layer control information, that is, extracted from the UCI joint feedback.
  • the physical layer control information that is, extracted from the UCI joint feedback.
  • FIG. 8 is a schematic diagram of LAA system downlink scheduling transmission and enhanced multi-frequency uplink feedback according to a preferred embodiment of the present invention. As shown in FIG. 8, the implementation includes :
  • the network side configures the UE to send the subframe position information of multiple UCIs on different unlicensed carriers. , or candidate subframe interval information.
  • the UE allows UCI uplink transmission to be attempted at these multiple candidate subframe positions; when the UCI associated with a downlink data block is successfully transmitted (possibly different from the transmission carrier frequency of the downlink data block, that is, the inter-frequency UCI feedback), the UE It is not necessary to repeatedly transmit the same UCI content on other candidate subframes.
  • the UE may perform joint UCI feedback on multiple downlink data blocks in a certain candidate subframe, that is, the UCI information in the same subframe includes multiple downlink data blocks previously received from multiple unlicensed carriers. Joint feedback and CSI measurement information for a longer channel receiving observation time.
  • the network side attempts to receive the UCI feedback information at the multiple candidate subframe positions; the network side needs to be able to correctly associate the received UCI information with each downlink data block, including the carrier frequency association and the subframe time. Association.
  • the UCI sends the subframe position information, or the candidate subframe interval information is a frequency dimension interval and a time dimension interval between the uplink UCI feedback information and the corresponding downlink data block.
  • the frequency dimension interval may be described by the index index of the unlicensed carrier secondary serving cell
  • the time dimension interval may be described by the number of subframes in the interval. For example, the number of subframes in the time dimension interval agreed by the current FDD system is 4, if The UCI feedback and the corresponding downlink data block are the same as the unlicensed carrier frequency, and the frequency dimension interval is 0. If different unlicensed carrier frequencies, such as the downlink data block, are sent on the secondary serving cell index 2, the UCI is supplemented.
  • the uplink frequency feedback is on the serving cell index 4, and the frequency dimension interval is 2.
  • the network side may configure the frequency dimension interval and the time dimension interval information set for the UE by using a UE-specific RRC message or a system broadcast RRC message.
  • the network side may configure different independent frequency dimension interval sets and time dimension interval sets for different unlicensed carrier secondary serving cells.
  • the UE preferably attempts to feed back the UCI information on the same frequency as the downlink data packet.
  • the UE fails to successfully transmit the UCI information 1 at a certain candidate subframe position in the same frequency due to the LBT failure, the UE immediately tries other candidates on the different frequency.
  • the UCI information is fed back at the frame position; if all the candidate subframe positions LBT/feedback UCI on the inter-frequency fails, the UE returns to the original downlink data packet to try to feed back the UCI information.
  • the UE continues to receive and parse a number of new downlink data blocks to generate corresponding new pending UCI information 2, and the UE needs to attempt joint transmission of UCI information 1+2 at the next candidate subframe position, and the UCI feedback candidate subframe.
  • the location is chosen as above. If the LBT fails again, and so on, the UE needs to try the UCI information 1+2+3. at the next candidate subframe position. . .
  • the joint is sent.
  • the UCI joint feedback information cannot be accumulated indefinitely. Therefore, when the sub-frame capacity limit is exceeded, only the UCI information corresponding to the most recently received downlink data block is fed back. set.
  • the corresponding association between each UCI feedback information and the specific downlink data block may be derived through the physical layer control information, that is, from the UCI.
  • the physical layer control information that is, from the UCI.
  • the joint feedback which UDP/NACK feedbacks of the downlink data blocks and the CSI measurement results of the observation time are extracted, which UCI 2 corresponds to which downlink data blocks receive ACK/NACK feedback and which observation time CSI measurement results, etc.
  • FIG. 9 is a schematic diagram of a single LAA Scell deployment on a Pcell+unlicensed carrier on a LAA authorized carrier according to a preferred embodiment of the present invention
  • FIG. 10 is a schematic diagram of downlink scheduling transmission and uplink feedback of a LAA system according to a preferred embodiment 1 of the present invention, as shown in FIG. 9 and FIG. 10, an operator deploys and utilizes LAA technology, has Pcell macro coverage on the licensed carrier, and has a LAA Scell hotspot coverage on the unlicensed carrier. At some point, the UE is under the public coverage of Pcell+LAA Scell.
  • the primary base station MeNB configures the LAA operation for the downlink data offloading for the UE, and performs self-carrier scheduling and UCI feedback on the LAA Scell.
  • the UE capability supports the first mode of the present invention. Since there are other WLAN nodes on the unlicensed carrier frequency point where the LAA Scell is located, they all need to compete for the local unlicensed carrier resources through the LBT.
  • the specific implementation steps of the present invention are as follows:
  • Step 901 The MeNB performs the LAA downlink data block transmission to the UE through the RRC proprietary message RRC Connection Reconfiguration, and uplinks the UCI information by using the Transmission Burst obtained by the competition on the LAA Scell.
  • the subframe time dimension interval set by the MeNB to be fed back to the UE UCI is ⁇ 4, 6 ⁇ , that is, corresponding to the downlink data block received at the time of the subframe N, the UE may have two uplink subframes at N+4 and N+6.
  • the location sends UCI.
  • Step 902 The MeNB successfully contends to a certain Transmission Burst resource through the LBT operation, and the MeNB continuously schedules and transmits three different data blocks in the downlink subframes N, N+1, and N+2.
  • the UE receives and parses the three different data blocks according to the normal timing, and performs CSI measurement at the same time, thereby generating corresponding UCI information.
  • Step 903 According to the configuration of the MeNB subframe time dimension interval set ⁇ 4, 6 ⁇ , the UE first attempts to perform a fast LBT operation before the uplink subframe N+4, but since the peripheral WLAN AP node of the UE is working, the local resource is occupied, The LBT of the UE fails. The fast LBT operation is performed again before the uplink subframe N+6. At this time, the WLAN AP node around the UE releases the occupied resources, so the LBT of the UE succeeds; the UE can be in the uplink subframe N. +6 position, uplink feedback UCI information.
  • Step 904 Since the UCI information corresponding to the three data blocks sent by the downlink subframes N, N+1, and N+2 has not been fed back, the UE needs to jointly feed back three UCI information in the uplink subframe N+6 position. And indicating the location relationship of the three UCI information by physical layer signaling, for example, indicating that the MeNB: the current UCI joint feedback contains three UCI information,
  • Step 905 After successfully receiving the UCI joint feedback information on the unfrequency carrier of the same frequency, the MeNB extracts UCI 1, UCI2, and UCI3 respectively, thereby knowing the positions of the previous downlink subframes N, N+1, and N+2. The data block received by the downlink data and the CSI measurement of that time.
  • FIG. 11 is a schematic diagram of two LAA Scell deployments on a Pcell+unlicensed carrier on a LAA authorized carrier according to a preferred embodiment of the present invention
  • FIG. 12 is a downlink scheduling transmission and uplink of a LAA system according to a preferred embodiment 2 of the present invention.
  • the schematic diagram of the feedback as shown in FIG. 11 and FIG. 12, an operator deploys and utilizes the LAA technology, has a Pcell macro coverage on the licensed carrier, and has two LAA Scells hotspot coverage on the unlicensed carrier.
  • the UE is in the common coverage of the Pcell+LAA Scell1+LAA Scell2, so that the primary base station MeNB configures the LAA operation for the downlink data offloading, and performs self-carrier scheduling and UCI feedback on the LAA Scells.
  • the UE capability supports the second mode of the present invention. Since there are other WLAN nodes on the unlicensed carrier frequency point where the LAA Scells are located, they all need to compete for the local unlicensed carrier resources through the LBT.
  • the specific implementation steps of the present invention are as follows:
  • Step 1101 The MeNB performs LAA downlink data block transmission to the UE through the RRC proprietary message RRC Connection Reconfiguration, and uplinks the UCI information by using the Transmission Burst obtained by the competition on the LAA Scell1 and the LAA Scell2.
  • MeNB configures the sub-frame frequency dimension interval set for UCI feedback of the UE on LAA Scell1 It is ⁇ 1, 2 ⁇ (1, 2 is the index of the LAA Scell secondary cell), and the time dimension interval set is ⁇ 4, 8 ⁇ , that is, corresponding to the downlink data block received at the time of subframe N on LAA Scell1, UE
  • the UCI may be transmitted at two uplink subframe positions of N+4 and N+8 of LAA Scell1 and two uplink subframe positions of N+4 and N+8 of LAA Scell2.
  • the MeNB can also configure the subframe frequency dimension interval set of the UCI feedback to the UE on the LAA Scell2 to be ⁇ 2, 1 ⁇ (1, 2 is the index of the LAA Scell secondary cell), and the time dimension interval set is ⁇ 2, 6 ⁇ . That is, corresponding to the downlink data block received at the time of subframe N on the LAA Scell2, the UE may have two uplink subframe positions of N+2 and N+6 of LAA Scell2, and N+2 and N+6 of LAA Scell1. The UCI is transmitted in the uplink subframe position.
  • Step 1102 The MeNB successfully contends to a certain Transmission Burst resource through the LBT operation, and the MeNB schedules and transmits two different data blocks in the downlink subframes N and N+2 on the LAA Scell1.
  • the UE receives and parses the two different data blocks according to the normal timing, and performs CSI measurement at the same time, thereby generating corresponding UCI information.
  • Step 1103 According to the configuration of the MeNB for the LAA Scell1 subframe frequency dimension interval ⁇ 1, 2 ⁇ and the time dimension interval set ⁇ 4, 8 ⁇ , the UE first attempts the uplink subframe N+4 on the LAA Scell1 and the LAA Scell2.
  • the fast LBT operation is performed before, but the LBT of the UE fails because the WLAN APs around the UE are working on the local resources, so the fast LBT operation is performed again before the uplink subframe N+8 on the LAA Scell1 and the LAA Scell2.
  • the WLAN AP node in the peripheral part of the UE releases the occupied resources, so the LBT of the UE on the LAA Scell2 is successful.
  • the UE can feed back the UCI information in the uplink subframe N+8 on the LAA Scell2.
  • Step 1104 The UCI information corresponding to the two data blocks sent by the N+2 is not fed back due to the downlink subframe N on the LAA Scell1. Therefore, the UE needs the uplink subframe N+8 position on the LAA Scell2, and the joint feedback. 2 pieces of UCI information and indicating the positional relationship of the two pieces of UCI information through physical layer signaling, for example, indicating that the MeNB: this UCI joint feedback contains 2 pieces of UCI information, all for LAA Scell1, in UCI 1, in chronological order. UCI2.
  • Step 1105 After successfully receiving the UCI joint feedback information on the inter-frequency unlicensed carrier LAA Scell2, the MeNB extracts UCI 1, UCI2, respectively, and knows the downlink subframe N and N+2 positions on the previous LAA Scell1. The data block received by the downlink data and the CSI measurement of that time.
  • FIG. 13 is a schematic diagram of two LAA Scells deployments on a Pcell+unlicensed carrier on a LAA authorized carrier according to a preferred embodiment of the present invention
  • FIG. 14 is a downlink scheduling transmission of a LAA system according to a preferred embodiment 3 of the present invention.
  • Schematic diagram of enhanced multi-frequency uplink feedback as shown in Figure 13 and Figure 14, an operator deploys and utilizes LAA-DC technology, has Pcell macro coverage on the MeNB's authorized carrier, and connects LAA-SeNB through X2 at the far end.
  • a base station that has two LAA Scells deployed on an unlicensed carrier for hotspot capacity enhancement.
  • the primary base station MeNB configures the LAA-DC operation for the downlink data splitting, and the UE can simultaneously send and receive data from the LAA MCG-link and the LAA SCG-link.
  • the LAA-SeNB base station performs self-carrier scheduling and UCI feedback on the LAA Scells.
  • the UE capability supports the second mode of the present invention. Since there are other WLAN nodes on the unlicensed carrier frequency point where the LAA Scells are located, they all need to compete for the local unlicensed carrier resources through the LBT.
  • the specific implementation steps of the present invention are as follows:
  • Step 1301 The MeNB performs LAA-DC dual connectivity operation for the UE through the RRC message RRC Connection Reconfiguration, and performs downlink data block offload transmission on the LAA-SCG side, and the LAA-SeNB passes the LAA Scell1 and the LAA.
  • the subframe frequency dimension interval set by the MeNB to the UE for UCI feedback on the LAA Scell1 is ⁇ 1, 2 ⁇ (1, 2 is the index of the LAA Scell secondary cell), and the time dimension interval set is ⁇ 2, 6 ⁇ and ⁇ 4 , 8 ⁇ , that is, corresponding to the downlink data block received at the time of subframe N on the LAA Scell1, the UE may be in the two uplink subframe positions of N+2 and N+6 of LAA Scell1, and the N+4 sum of LAA Scell2.
  • the UCI is transmitted by two uplink subframe positions of N+8.
  • the MeNB can also configure the subframe frequency dimension interval set of the UCI feedback to the UE on the LAA Scell2 to be ⁇ 2, 1 ⁇ (1, 2 is the index of the LAA Scell secondary cell), and the time dimension interval set is ⁇ 2, 6 ⁇ and ⁇ 4, 8 ⁇ , that is, corresponding to the downlink data block received at the time of subframe N on the LAA Scell2, the UE may have two uplink subframe positions of N+2 and N+6 of LAA Scell2, and N+ of LAA Scell1. 4 and N+8 transmit the UCI in two uplink subframe positions.
  • Step 1302 The LAA-SeNB successfully contends to a certain Transmission Burst resource through the LBT operation, and the LAA-SeNB separately schedules and transmits two different data blocks in the downlink subframes N, N+2 on the LAA Scell1.
  • the UE receives and parses the two different data blocks according to the normal timing, and performs CSI measurement at the same time, thereby generating corresponding UCI information.
  • Step 1303 According to the configuration of the MeNB for the LAA Scell1 subframe frequency dimension interval ⁇ 1, 2 ⁇ and the time dimension interval set ⁇ 2, 6 ⁇ and ⁇ 4, 8 ⁇ , the UE first attempts the uplink subframe N on the LAA Scell1.
  • the fast LBT operation is performed before the uplink subframe N+4 on the +2 and the LAA Scell2, but the UE occupies the local resource because the WLAN APs node around the UE is working, so the UE fails the LBT; then the uplink subframe on the LAA Scell1
  • the fast LBT operation is performed again before the uplink subframe N+8 on the N+6 and the LAA Scell2.
  • the LTE AP node in the peripheral part of the UE releases the occupied resources, so the LBT of the UE on the LAA Scell1 succeeds;
  • the UCI information can be fed back in the uplink subframe N+6 position on the LAA Scell1.
  • Step 1304 The UCI information corresponding to the two data blocks sent by the N+2 is not fed back due to the downlink subframe N on the LAA Scell1. Therefore, the UE needs the uplink subframe N+6 position on the LAA Scell1, and the joint feedback.
  • 2 pieces of UCI information and indicating the positional relationship of the two pieces of UCI information by physical layer signaling, for example, indicating LAA-SeNB This UCI joint feedback contains 2 pieces of UCI information, all for LAA Scell1, in UCI, in chronological order 1, UCI2.
  • Step 1305 After successfully receiving the UCI joint feedback information on the unlicensed carrier LAA Scell1 of the same frequency, the LAA-SeNB extracts UCI 1, UCI2, respectively, and knows the downlink subframe N, N+ on the previous LAA Scell1. 2 The data block reception status of the downlink data transmission and the CSI measurement result of that time.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the method of various embodiments of the present invention.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • receiving configuration information sent by the base station includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, the multiple uplink candidate subframes are used to send multiple uplink control information UCI;
  • the storage medium is further arranged to store program code for performing the method steps of the above-described embodiments:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs the method steps of the foregoing embodiments according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the configuration information sent by the base station is received, where the configuration information includes: sending time-frequency position information of multiple uplink candidate subframes on the unlicensed carrier, where the multiple uplink candidate subframes are used to send multiple uplink control information.
  • the UCI receives the downlink data block on the unlicensed carrier, and sends the UCI corresponding to the downlink data block on the multiple uplink candidate subframes, which solves that on the unlicensed carrier, the UCI uplink feedback may fail due to the LBT operation failure.
  • the problem of timely transmission increases the downlink data transmission efficiency of the LTE system on the unlicensed carrier.

Abstract

本发明提供了一种上行反馈信息的传输方法及装置,其中,该方法包括:接收基站发送的配置信息,该配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,该多个上行候选子帧用于发送多个上行控制信息UCI,接收该非授权载波上的下行数据块,在该多个上行候选子帧上发送与该下行数据块对应的UCI。采用上述技术方案,解决了在非授权载波上,UCI上行反馈由于LBT操作失败而可能不能及时发送的问题,提高LTE系统在非授权载波上的下行数据传输效率。

Description

上行反馈信息的传输方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种上行反馈信息的传输方法及装置。
背景技术
在相关技术中,长期演进技术(Long Term Evolution,简称为LTE)的通信网络都是部署在授权载波上工作运营的,随着LTE的发展,一些公司提出了“建议研究LTE部署在非授权载波中的课题”,例如美国的高通公司认为:随着数据业务的快速增长,在不久的将来,授权载波的资源将不能承受快速业务增长带来的巨大的数据量。考虑通过在非授权载波上部署LTE服务小区,以此来分担授权载波中的数据流量,可以解决业务增长带来的数据量压力;这就是第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)标准组织正在研究制定的增强辅助授权接入(Enhanced Licensed Assisted Access,简称为(e)LAA)技术。
非授权载波具有以下特点:一方面,由于非授权载波不需要运营商去竞标购买,或者载波资源为零成本,因此非授权载波能免费或低费用被利用;另一方面,由于个人、企业也都可以参与相关网络设备的部署,因此非授权载波的准入条件要求低;再者,非授权载波具有公平共享性,通过多个不同制式系统共享着运营其中,或者同一制式系统的不同运营商共享着运营其中时,可以提高载波资源的利用效率。
综上所述,虽然LTE技术部署在非授权载波上具有明显的商业优势,但是,在部署运营的过程中,依然存在问题;其中,无线接入技术种类多(跨不同制式的通信标准,无线节点间协作难,网络拓扑多样)和无线接入站点多(用户数量大,协作难度大,集中式管理开销大),因此,针对LTE部署在非授权载波上,需要支持非授权载波使用的管制条例。多数国家要求任何通信系统在非授权载波上部署时,需要支持先听后说(Listen before talk,简称为LBT)的基本机制。通过先听后说可以避免相邻的无线系统之间同时使用本地的非授权载波资源而彼此带来的干扰和冲突。并且为了进一步减少冲突干扰的概率,引入了随机竞争回退机制,即邻近的系统站点(一般是同一系统的邻近传输节点),通过竞争回退机制后可以避免相同系统的邻近传输节点同时使用非授权载波时带来的干扰。管制规定:任何使用非授权载波资源的设备(包括LTE基站和用户设备(User Equipment,简称为UE))在发送之前都需要进行LBT操作(即空闲信道评估(Clear Channel Assessment,CCA)),当信道空闲时,设备才能使用非授权载波信道进行一段时间的数据发送。比如eNB成功通过LBT操作,抢占到某个非授权载波信道,才可以下行数据发送,而UE成功通过LBT操作,抢占到某个非授权载波信道,才可以上行发送。这里发送的内容既可以是用户业务数据块,也可以是控制信息等。
在LTE系统中,UE需要对eNB下行数据发送的相关数据块进行是否接收成功的反馈应答(acknowledgeme,简称为ACK)/非应答(Negative Acknowledgeme,简称为NACK),并且还需要反馈过去一段时间内的信道状态信息(Channel State Information,简称为CSI),以辅助 eNB进行未来数据的调度(重)传输,上述UE上行发送的上行控制信息(Uplink Control Info,简称为UCI),对应着一个或者多个下行子帧。UCI既可以通过上行物理共享信道(Physical uplink shared channel,简称为PUSCH),也可以通过物理上行控制信道(Physical Uplink Control Channel,简称为PUCCH)来上行传输。例如,基站在下行子帧n对应的PDSCH信道中发送下行数据块,UE接收解析后需要在上行子帧n+4对应的PUSCH信道或者PUCCH信道的特定物理资源块上发送UCI信息给基站。
在LTE中,UE以同步方式发送UCI反馈的上行子帧位置,与基站发送的对应下行数据块的子帧位置保持着约定的子帧间隔关系,例如,频分双工方式(Frequency Division Duplex,简称为FDD)下为n+4的固定子帧间隔关系(LTE每个子帧时长为1ms);时分双工(Time Division Duplex,简称为TDD)下需要根据TDD具体的上下行子帧配置,根据标准化的表也可以确定n+x的约定子帧间隔关系。上述固定的子帧间隔关系对于授权载波上是很容易保障实现的,因为授权载波的上下行信道资源完全受到eNB的调度控制,eNB和UE可以在约定的子帧位置保证发送相关信息,图1是根据相关技术中LTE FDD系统下行调度传输和上行反馈的示意图,如图1中,当基站在子帧n中发送下行数据块给UE,UE接收解析到该数据块之后,需要在约定的子帧n+4中上行发送UCI反馈信息。但是上述UCI反馈操作对于非授权载波就会存在下面的问题:图2是根据相关技术中LAA系统下行调度传输和上行反馈的示意图,如图1中,当基站在子帧n中发送下行数据块给UE,UE接收解析到该数据块之后,也需要在子帧n+4中上行发送UCI信息,但在子帧n+4到达之前,由于非授权载波上LBT的管制需求,UE需要先执行LBT操作即CCA检测,当检测到该非授权载波信道空闲(检测信道中能量低于预设门限)时,UE才能使用子帧n+4来发送UCI,当检测为非空闲(忙)时,UE就不能使用子帧n+4来发送UCI。于是当后者发生时,UE将不能在与基站约定的子帧位置中发送UCI反馈信息,eNB无法知道子帧n中数据块的下行数据发送情况和过去一段时间CSI测量信息,无法进一步精确的下行数据调度。
针对相关技术中,在非授权载波上,UCI上行反馈由于LBT操作失败而可能不能及时发送的问题,目前还没有有效的解决方案。
发明内容
本发明实施例提供了一种上行反馈信息的传输方法及装置,以至少解决相关技术中在非授权载波上,UCI上行反馈由于LBT操作失败而可能不能及时发送的问题。
根据本发明实施例的一个方面,提供了一种上行反馈信息的传输方法,包括:
接收基站发送的配置信息,所述配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,所述多个上行候选子帧用于发送多个上行控制信息UCI;
接收所述非授权载波上的下行数据块,在所述多个上行候选子帧上发送与所述下行数据块对应的UCI。
可选地,所述多个上行候选子帧的发送时频位置信息包括:所述多个候选子帧的间隔信 息,所述间隔信息包括:间隔的上行子帧数量,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔。
可选地,在激活的所述非授权载波个数为多个的情况下,所述多个上行候选子帧的发送时频位置信息包括:所述多个候选子帧的间隔信息和频率信息,所述间隔信息包括:间隔的上行子帧数量,所述频率信息包括:非授权载波辅服务小区的索引,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔,所述频率信息指示所述UCI上行发送频率或者辅服务小区,与所述下行数据块的接收频率或者辅服务小区之间的频率维度间隔。
可选地,所述在所述多个上行候选子帧上,发送与所述下行数据块对应的UCI:
优先在和所述下行数据块同频的上行候选子帧上,上行发送与所述下行数据块对应的UCI;
在尝试和所述下行数据块同频的上行候选子帧上,在由于先听后说LBT失败导致上行发送与所述下行数据块对应的UCI无法发送的情况下,在和所述下行数据块异频的上行候选子帧上,上行发送与所述下行数据块对应的UCI。
可选地,尝试在所述多个上行候选子帧的一个上行候选子帧上发送与所述下行数据块对应的UCI,在所述上行候选子帧发送UCI成功后,配置的所述多个上行候选子帧中除了所述发送成功的上行候选子帧以外,其他上行候选子帧不需要再重复发送相同的UCI。
可选地,所述接收所述非授权载波上的下行数据块之后,包括,
在所述多个上行候选子帧上,同时上行发送多个和所述下行数据块相关的联合反馈UCI,所述联合反馈UCI包括:多个所述下行数据块的接收是否成功的联合反馈信息和与多个所述下行数据块对应的信道接收观测时间相关的信道状态信息CSI。
可选地,由于LBT失败导致在和多个所述下行数据块相对应的UCI中的前一个或前多个UCI尝试发送失败后,所述前一个或前多个UCI的后一个UCI联合上行发送所述联合反馈UCI,所述联合反馈UCI同时携带所述前一个或前多个UCI的信息,其中,含有多个UCI信息的所述联合反馈UCI的编码方式采取载波聚合联合UCI编码方式。
可选地,在所述联合反馈UCI的反馈信息超过所述联合反馈UCI所在上行子帧的容量的情况下,所述联合反馈UCI携带与最近接收的一个或多个与所述下行数据块对应的UCI,并且放弃除了所述最近接收的一个或多个所述下行数据块以外,与其他下行数据块对应的UCI信息。
可选地,所述配置信息携带在专用无线资源控制信息RRC消息中或者系统广播的RRC消息中。
根据本发明实施例的另一个方面,还提供了一种上行反馈信息的传输方法,包括:
向终端发送配置信息,所述配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,所述多个上行候选子帧用于发送多个上行控制信息UCI;
向终端发送所述非授权载波上的下行数据块;
在所述多个上行候选子帧上,接收与所述下行数据块对应的UCI。
可选地,所述多个上行候选子帧的发送时频位置信息包括:所述多个上行候选子帧的间隔信息,所述间隔信息包括:间隔的上行子帧数量,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔。
可选地,在激活的所述非授权载波个数为多个的情况下,所述多个上行候选子帧的发送时频位置信息包括:所述多个上行候选子帧的间隔信息和频率信息,所述间隔信息包括:间隔的上行子帧数量,所述频率信息包括:非授权载波辅服务小区的索引,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔,所述频率信息指示所述UCI上行发送频率或者辅服务小区与所述下行数据块的接收频率或者辅服务小区之间的频率维度间隔。
可选地,所述向终端发送配置信息包括:
通过专用无线资源控制信息RRC消息或者系统广播的RRC消息向所述终端发送配置信息。
可选地,所述接收与所述下行数据块对应的UCI包括:
在所述多个上行候选子帧的一个上行候选子帧上接收与所述下行数据块对应的UCI,依据所述一个上行候选子帧的UCI,以及所述多个上行候选子帧的发送时频位置信息,确定所述多个上行候选子帧中除去所述一个上行候选子帧的UCI以外的其他候选子帧的UCI,其中,所述UCI是携带多个和所述下行数据块相关的联合反馈UCI。
可选地,在所述多个候选子帧上接收和多个所述下行数据块相关的联合反馈UCI之后,依据物理层控制信息推导出所述联合反馈UCI中和每个下行数据块相关的UCI信息,每个数据块的UCI信息包括:所述下行数据块的接收是否成功的信息和与所述下行数据块对应的信道接收观测时间的信道状态信息CSI。
根据本发明实施例的另一个方面,还提供了一种上行反馈信息的传输装置,位于终端中,包括:
第一接收模块,设置为接收基站发送的配置信息,所述配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,所述多个上行候选子帧用于发送多个上行控制信息UCI;
第二接收模块,设置为接收所述非授权载波上的下行数据块;
第一发送模块,设置为在所述多个上行候选子帧上,上行发送与所述下行数据块对应的UCI。
可选地,所述多个上行候选子帧的发送时频位置信息包括:所述多个候选子帧的间隔信息,所述间隔信息包括:间隔的上行子帧数量,所述间隔信息指示所述UCI上行发送时间与 所述下行数据块的接收时间之间的时间维度间隔。
可选地,在激活的所述非授权载波个数为多个的情况下,所述多个上行候选子帧的发送时频位置信息包括:所述多个候选子帧的间隔信息和频率信息,所述间隔信息包括:间隔的上行子帧数量,所述频率信息包括:非授权载波辅服务小区的索引,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔,所述频率信息指示所述UCI上行发送频率或者辅服务小区,与所述下行数据块的接收频率或者辅服务小区之间的频率维度间隔。
可选地,所述第一发送模块,还设置为优先在和所述下行数据块同频的上行候选子帧上,上行发送与所述下行数据块对应的UCI;
所述第一发送模块,还设置为尝试在和所述下行数据块同频的上行候选子帧上,由于先听后说LBT失败,上行发送与所述下行数据块对应的UCI无法发送的情况下,在和所述下行数据块异频的上行候选子帧上,上行发送与所述下行数据块对应的UCI。
可选地,所述第一发送模块,还设置为尝试在所述多个上行候选子帧的一个上行候选子帧上发送与所述下行数据块对应的UCI,在所述上行候选子帧发送UCI成功后,配置的所述多个上行候选子帧除了所述发送成功的上行候选子帧以外,其他上行候选子帧不需要再重复发送相同的UCI。
可选地,所述第一发送模块,还设置为接收所述非授权载波上的下行数据块之后,在所述多个上行候选子帧上,同时上行发送多个和所述下行数据块相关的联合反馈UCI,所述联合反馈UCI包括:多个所述下行数据块的接收是否成功的联合反馈信息和与多个所述下行数据块对应的信道接收观测时间相关的信道状态信息CSI。
可选地,所述第一发送模块,还设置为由于LBT失败,在和多个所述下行数据块相对应的UCI中的前一个或前多个UCI尝试发送失败后,所述前一个或前多个UCI的后一个UCI联合上行发送所述联合反馈UCI,所述联合反馈UCI同时携带所述前一个或前多个UCI的信息,其中,含有多个UCI信息的所述联合反馈UCI的编码方式采取载波聚合联合UCI编码方式。
可选地,在所述联合反馈UCI的反馈信息超过所述联合反馈UCI所在上行子帧的容量的情况下,所述联合反馈UCI携带与最近接收的一个或多个与所述下行数据块对应的UCI,除了所述最近接收的一个或多个所述下行数据块以外,与其他下行数据块对应的UCI信息自动放弃。
可选地,其中,所述配置信息携带在专用无线资源控制信息RRC消息中或者系统广播的RRC消息中。
根据本发明实施例的另一个方面,还提供了一种上行反馈信息的传输装置,其中,位于基站中,包括:
第二发送模块,设置为向终端发送配置信息,所述配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,所述多个上行候选子帧用于发送多个上行控制信息UCI;
第三发送模块,设置为向终端发送所述非授权载波上的下行数据块;
第三接收模块,设置为在所述多个上行候选子帧上,接收与所述下行数据块对应的UCI。
可选地,所述多个上行候选子帧的发送时频位置信息包括:所述多个上行候选子帧的间隔信息,所述间隔信息包括:间隔的上行子帧数量,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔。
可选地,在激活的所述非授权载波个数为多个的情况下,所述多个上行候选子帧的发送时频位置信息包括:所述多个上行候选子帧的间隔信息和频率信息,所述间隔信息包括:间隔的上行子帧数量,所述频率信息包括:非授权载波辅服务小区的索引,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔,所述频率信息指示所述UCI上行发送频率或者辅服务小区与所述下行数据块的接收频率或者辅服务小区之间的频率维度间隔。
可选地,所述向终端发送配置信息包括:
通过专用无线资源控制信息RRC消息或者系统广播的RRC消息向所述终端发送配置信息。
可选地,所述第三接收模块,还设置为在所述多个上行候选子帧的一个上行候选子帧上接收与所述下行数据块对应的UCI,依据所述一个上行候选子帧的UCI,以及所述多个上行候选子帧的发送时频位置信息,确定所述多个上行候选子帧中除去所述一个上行候选子帧的UCI以外的其他候选子帧的UCI,其中,所述UCI是携带多个和所述下行数据块相关的联合反馈UCI。
可选地,在所述多个候选子帧上接收和多个所述下行数据块相关的联合反馈UCI之后,依据物理层控制信息推导出所述联合反馈UCI中和每个下行数据块相关的UCI信息,每个数据块的UCI信息包括:所述下行数据块的接收是否成功的信息和与所述下行数据块对应的信道接收观测时间的信道状态信息CSI。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
接收基站发送的配置信息,所述配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,所述多个上行候选子帧用于发送多个上行控制信息UCI;接收所述非授权载波上的下行数据块,在所述多个上行候选子帧上发送与所述下行数据块对应的UCI。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
向终端发送配置信息,所述配置信息包括:非授权载波上多个上行候选子帧的发送时频 位置信息,所述多个上行候选子帧用于发送多个上行控制信息UCI;向终端发送所述非授权载波上的下行数据块;在所述多个上行候选子帧上,接收与所述下行数据块对应的UCI。
通过本发明实施例,接收基站发送的配置信息,该配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,该多个上行候选子帧用于发送多个上行控制信息UCI,接收该非授权载波上的下行数据块,在该多个上行候选子帧上发送与该下行数据块对应的UCI,解决了在非授权载波上,UCI上行反馈由于LBT操作失败而可能不能及时发送的问题,提高LTE系统在非授权载波上的下行数据传输效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据相关技术中LTE FDD系统下行调度传输和上行反馈的示意图;
图2是根据相关技术中LAA系统下行调度传输和上行反馈的示意图;
图3是根据本发明实施例的一种上行反馈信息的传输方法的流程图一;
图4是根据本发明实施例的一种上行反馈信息的传输方法的流程图二;
图5是根据本发明实施例的一种上行反馈信息的传输装置的结构框图一;
图6是根据本发明实施例的一种上行反馈信息的传输装置的结构框图二;
图7是根据本发明优选实施例的LAA系统下行调度传输和增强的同频上行反馈的示意图;
图8是根据本发明优选实施例的LAA系统下行调度传输和增强的多频上行反馈的示意图;
图9是根据本发明优选实施例的LAA授权载波上的Pcell+非授权载波上单个LAA Scell部署示意图;
图10是根据本发明优选实施例1的LAA系统下行调度传输和上行反馈的示意图;
图11是根据本发明优选实施例的LAA授权载波上的Pcell+非授权载波上两个LAA Scell部署示意图一;
图12是根据本发明优选实施例2的LAA系统下行调度传输和上行反馈的示意图;
图13是根据本发明优选实施例的LAA授权载波上的Pcell+非授权载波上两个LAA Scells部署的示意图二;
图14是根据本发明优选实施例3的LAA系统下行调度传输和上行反馈的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种上行反馈信息的传输方法,图3是根据本发明实施例的一种上行反馈信息的传输方法的流程图一,如图3所示,该流程包括如下步骤:
步骤S302,接收基站发送的配置信息,该配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,该多个上行候选子帧用于发送多个上行控制信息UCI;
步骤S304,接收该非授权载波上的下行数据块,在该多个上行候选子帧上发送与该下行数据块对应的UCI。
通过上述步骤,接收基站发送的配置信息,该配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,该多个上行候选子帧用于发送多个上行控制信息UCI,接收该非授权载波上的下行数据块,在该多个上行候选子帧上发送与该下行数据块对应的UCI,解决了在非授权载波上,UCI上行反馈由于LBT操作失败而可能不能及时发送的问题,提高LTE系统在非授权载波上的下行数据传输效率。
在本发明的实施例中,该多个上行候选子帧的发送时频位置信息包括:该多个候选子帧的间隔信息,该间隔信息包括:间隔的上行子帧数量,该间隔信息指示该UCI上行发送时间与该下行数据块的接收时间之间的时间维度间隔。
在本发明的实施例中,在激活的该非授权载波个数为多个的情况下,该多个上行候选子帧的发送时频位置信息包括:该多个候选子帧的间隔信息和频率信息,该间隔信息包括:间隔的上行子帧数量,该频率信息包括:非授权载波辅服务小区的索引,该间隔信息指示该UCI上行发送时间与该下行数据块的接收时间之间的时间维度间隔,该频率信息指示该UCI上行发送频率或者辅服务小区,与该下行数据块的接收频率或者辅服务小区之间的频率维度间隔。
在本发明的实施例中,该在该多个上行候选子帧上,发送与该下行数据块对应的UCI:
优先在和该下行数据块同频的上行候选子帧上,上行发送与该下行数据块对应的UCI;
在尝试和该下行数据块同频的上行候选子帧上,在由于先听后说LBT失败导致上行发送与该下行数据块对应的UCI无法发送的情况下,在和该下行数据块异频的上行候选子帧上,上行发送与该下行数据块对应的UCI。
在本发明的实施例中,尝试在该多个上行候选子帧的一个上行候选子帧上发送与该下行数据块对应的UCI,在该上行候选子帧发送UCI成功后,配置的该多个上行候选子帧中除了该发送成功的上行候选子帧以外,其他上行候选子帧不需要再重复发送相同的UCI。
在本发明的实施例中,该接收该非授权载波上的下行数据块之后,包括,
在该多个上行候选子帧上,同时上行发送多个和该下行数据块相关的联合反馈UCI,该联合反馈UCI包括:多个该下行数据块的接收是否成功的联合反馈信息和与多个该下行数据块对应的信道接收观测时间相关的信道状态信息CSI。
在本发明的实施例中,由于LBT失败导致在和多个该下行数据块相对应的UCI中的前一个或前多个UCI尝试发送失败后,该前一个或前多个UCI的后一个UCI联合上行发送该联合反馈UCI,该联合反馈UCI同时携带该前一个或前多个UCI的信息,其中,含有多个UCI信息的该联合反馈UCI的编码方式采取载波聚合联合UCI编码方式。
在本发明的实施例中,在该联合反馈UCI的反馈信息超过该联合反馈UCI所在上行子帧的容量的情况下,该联合反馈UCI携带与最近接收的一个或多个与该下行数据块对应的UCI,并且放弃除了该最近接收的一个或多个该下行数据块以外,与其他下行数据块对应的UCI信息。
在本发明的实施例中,该配置信息携带在专用无线资源控制信息RRC消息中或者系统广播的RRC消息中。
在本实施例中提供了一种上行反馈信息的传输方法,图4是根据本发明实施例的一种上行反馈信息的传输方法的流程图二,如图4所示,该流程包括如下步骤:
步骤S402,向终端发送配置信息,该配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,该多个上行候选子帧用于发送多个上行控制信息UCI;
步骤S404,向终端发送该非授权载波上的下行数据块;
步骤S406,在该多个上行候选子帧上,接收与该下行数据块对应的UCI。
通过上述步骤,向终端发送配置信息,该配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,该多个上行候选子帧用于发送多个上行控制信息UCI,向终端发送该非授权载波上的下行数据块,在该多个上行候选子帧上,接收与该下行数据块对应的UCI,解决了在非授权载波上,UCI上行反馈由于LBT操作失败而可能不能及时发送的问题,提高LTE系统在非授权载波上的下行数据传输效率。
在本发明的实施例中,该多个上行候选子帧的发送时频位置信息包括:该多个上行候选子帧的间隔信息,该间隔信息包括:间隔的上行子帧数量,该间隔信息指示该UCI上行发送时间与该下行数据块的接收时间之间的时间维度间隔。
在本发明的实施例中,在激活的该非授权载波个数为多个的情况下,该多个上行候选子帧的发送时频位置信息包括:该多个上行候选子帧的间隔信息和频率信息,该间隔信息包括:间隔的上行子帧数量,该频率信息包括:非授权载波辅服务小区的索引,该间隔信息指示该UCI上行发送时间与该下行数据块的接收时间之间的时间维度间隔,该频率信息指示该UCI上行发送频率或者辅服务小区与该下行数据块的接收频率或者辅服务小区之间的频率维度间隔。
在本发明的实施例中,该向终端发送配置信息包括:
通过专用无线资源控制信息RRC消息或者系统广播的RRC消息向该终端发送配置信息。
在本发明的实施例中,该接收与该下行数据块对应的UCI包括:
在该多个上行候选子帧的一个上行候选子帧上接收与该下行数据块对应的UCI,依据该一个上行候选子帧的UCI,以及该多个上行候选子帧的发送时频位置信息,确定该多个上行候选子帧中除去该一个上行候选子帧的UCI以外的其他候选子帧的UCI,其中,该UCI是携带多个和该下行数据块相关的联合反馈UCI。
在本发明的实施例中,在该多个候选子帧上接收和多个该下行数据块相关的联合反馈UCI之后,依据物理层控制信息推导出该联合反馈UCI中和每个下行数据块相关的UCI信息,每个数据块的UCI信息包括:该下行数据块的接收是否成功的信息和与该下行数据块对应的信道接收观测时间的信道状态信息CSI。
在本实施例中还提供了一种上行反馈信息的传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本发明实施例的一种上行反馈信息的传输装置的结构框图一,位于终端中,如图5所示,该装置包括:
第一接收模块52,设置为接收基站发送的配置信息,该配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,该多个上行候选子帧用于发送多个上行控制信息UCI;
第二接收模块54,设置为接收该非授权载波上的下行数据块;
第一发送模块56,设置为在该多个上行候选子帧上,上行发送与该下行数据块对应的UCI。
通过上述装置,第一接收模块52设置为接收基站发送的配置信息,该配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,该多个上行候选子帧用于发送多个上行控制信息UCI,第二接收模块54设置为接收该非授权载波上的下行数据块,第一发送模块56设置为在该多个上行候选子帧上,上行发送与该下行数据块对应的UCI,解决了在非授权载波上,UCI上行反馈由于LBT操作失败而可能不能及时发送的问题,提高LTE系统在非授权载波上的下行数据传输效率。
在本发明的实施例中,该多个上行候选子帧的发送时频位置信息包括:该多个候选子帧的间隔信息,该间隔信息包括:间隔的上行子帧数量,该间隔信息指示该UCI上行发送时间与该下行数据块的接收时间之间的时间维度间隔。
在本发明的实施例中,在激活的该非授权载波个数为多个的情况下,该多个上行候选子帧的发送时频位置信息包括:该多个候选子帧的间隔信息和频率信息,该间隔信息包括:间隔的上行子帧数量,该频率信息包括:非授权载波辅服务小区的索引,该间隔信息指示该UCI 上行发送时间与该下行数据块的接收时间之间的时间维度间隔,该频率信息指示该UCI上行发送频率或者辅服务小区,与该下行数据块的接收频率或者辅服务小区之间的频率维度间隔。
在本发明的实施例中,该第一发送模块56,还设置为优先在和该下行数据块同频的上行候选子帧上,上行发送与该下行数据块对应的UCI;
该第一发送模块56,还设置为尝试在和该下行数据块同频的上行候选子帧上,由于先听后说LBT失败,上行发送与该下行数据块对应的UCI无法发送的情况下,在和该下行数据块异频的上行候选子帧上,上行发送与该下行数据块对应的UCI。
在本发明的实施例中,该第一发送模块56,还设置为尝试在该多个上行候选子帧的一个上行候选子帧上发送与该下行数据块对应的UCI,在该上行候选子帧发送UCI成功后,配置的该多个上行候选子帧除了该发送成功的上行候选子帧以外,其他上行候选子帧不需要再重复发送相同的UCI。
在本发明的实施例中,该第一发送模块56,还设置为接收该非授权载波上的下行数据块之后,在该多个上行候选子帧上,同时上行发送多个和该下行数据块相关的联合反馈UCI,该联合反馈UCI包括:多个该下行数据块的接收是否成功的联合反馈信息和与多个该下行数据块对应的信道接收观测时间相关的信道状态信息CSI。
在本发明的实施例中,该第一发送模块56,还设置为由于LBT失败,在和多个该下行数据块相对应的UCI中的前一个或前多个UCI尝试发送失败后,该前一个或前多个UCI的后一个UCI联合上行发送该联合反馈UCI,该联合反馈UCI同时携带该前一个或前多个UCI的信息,其中,含有多个UCI信息的该联合反馈UCI的编码方式采取载波聚合联合UCI编码方式。
在本发明的实施例中,在该联合反馈UCI的反馈信息超过该联合反馈UCI所在上行子帧的容量的情况下,该联合反馈UCI携带与最近接收的一个或多个与该下行数据块对应的UCI,除了该最近接收的一个或多个该下行数据块以外,与其他下行数据块对应的UCI信息自动放弃。
在本发明的实施例中,该配置信息携带在专用无线资源控制信息RRC消息中或者系统广播的RRC消息中。
图6是根据本发明实施例的一种上行反馈信息的传输装置的结构框图二,位于基站中,如图6所示,该装置包括:
第二发送模块62,设置为向终端发送配置信息,该配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,该多个上行候选子帧用于发送多个上行控制信息UCI;
第三发送模块64,设置为向终端发送该非授权载波上的下行数据块;
第三接收模块66,设置为在该多个上行候选子帧上,接收与该下行数据块对应的UCI。
通过上述装置,第二发送模块62设置为向终端发送配置信息,该配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,该多个上行候选子帧用于发送多个上行控制 信息UCI,第三发送模块64设置为向终端发送该非授权载波上的下行数据块,第三接收模块66设置为在该多个上行候选子帧上,接收与该下行数据块对应的UCI,解决了在非授权载波上,UCI上行反馈由于LBT操作失败而可能不能及时发送的问题,提高LTE系统在非授权载波上的下行数据传输效率。
在本发明的实施例中,该多个上行候选子帧的发送时频位置信息包括:该多个上行候选子帧的间隔信息,该间隔信息包括:间隔的上行子帧数量,该间隔信息指示该UCI上行发送时间与该下行数据块的接收时间之间的时间维度间隔。
在本发明的实施例中,在激活的该非授权载波个数为多个的情况下,该多个上行候选子帧的发送时频位置信息包括:该多个上行候选子帧的间隔信息和频率信息,该间隔信息包括:间隔的上行子帧数量,该频率信息包括:非授权载波辅服务小区的索引,该间隔信息指示该UCI上行发送时间与该下行数据块的接收时间之间的时间维度间隔,该频率信息指示该UCI上行发送频率或者辅服务小区与该下行数据块的接收频率或者辅服务小区之间的频率维度间隔。
在本发明的实施例中,该向终端发送配置信息包括:
通过专用无线资源控制信息RRC消息或者系统广播的RRC消息向该终端发送配置信息。
在本发明的实施例中,该第三接收模块66,还设置为在该多个上行候选子帧的一个上行候选子帧上接收与该下行数据块对应的UCI,依据该一个上行候选子帧的UCI,以及该多个上行候选子帧的发送时频位置信息,确定该多个上行候选子帧中除去该一个上行候选子帧的UCI以外的其他候选子帧的UCI,其中,该UCI是携带多个和该下行数据块相关的联合反馈UCI。
在本发明的实施例中,在该多个候选子帧上接收和多个该下行数据块相关的联合反馈UCI之后,依据物理层控制信息推导出该联合反馈UCI中和每个下行数据块相关的UCI信息,每个数据块的UCI信息包括:该下行数据块的接收是否成功的信息和与该下行数据块对应的信道接收观测时间的信道状态信息CSI。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述各个模块均位于同一处理器中;或者,上述各个模块分别位于不同的处理器中。
下面结合优选实施例和实施方式对本发明进行详细说明。
当LTE系统工作在非授权载波上,有下行数据块传输的时候,由于LBT管制要求,UE上行UCI信息反馈可能无法在当前预定n+4子帧位置(或者系统约定的其它子帧位置)上发送,从而导致基站无法适时的接收到UCI反馈。通过本发明的优选实施例引入UCI反馈增强机制,可以使得基站相对更加适时的接收到UCI反馈(减少UCI的接收延时),从而提高LTE系统在非授权载波上的下行数据传输效率。
在主要面向单个非授权载波辅服务小区配置的场景下,图7是根据本发明优选实施例的 LAA系统下行调度传输和增强的同频上行反馈的示意图,如图7所示,实施方式包括:
针对在某非授权载波上的某同一下行数据块,网络侧配置给UE相同非授权载波上的多个UCI发送子帧位置信息,或候选子帧间隔信息。UE允许在这些多个候选子帧位置上尝试UCI上行发送;当和某下行数据块相关的UCI被发送成功后,UE不需要在其他候选子帧上重复发送相同的UCI内容。
UE可以在某个候选子帧内,同时对多个下行数据块做UCI的联合反馈,即相同子帧内的UCI信息包含了对之前接收到的多个下行数据块的联合反馈和更长一段信道接收观测时间的CSI测量信息。
网络侧在该多个候选子帧位置上尝试接收UCI反馈信息;网络侧需要能把接收到的UCI信息和每个下行数据块做正确的关联对应。
UCI发送子帧位置信息,或候选子帧间隔信息是描述上行UCI反馈信息与对应的下行数据块之间的时间维度间隔。其中,时间维度间隔可以通过间隔的子帧数量来描述,例如当前FDD系统默认约定的时间维度间隔的子帧数量为4,未来还可以有更多其他值。
网络侧可以通过UE专用RRC消息或系统广播RRC消息为UE配置上述时间维度间隔信息集合。
当UE由于LBT失败,未能在某个候选子帧位置上成功发送UCI信息1,而后UE又继续接收解析到若干新的下行数据块,从而产生对应的新待发UCI信息2,则UE在下一个候选子帧位置,需要尝试UCI信息1+2的联合发送。如果LBT再失败,以此类推,UE在下一个候选子帧位置,需要尝试UCI信息1+2+3.。。。的联合发送。
由于受到PUSCH和PUCCH单子帧内信道资源容量的限制,UCI联合的反馈信息无法无限的被累加,因此当超过子帧容量限制的时候,仅仅反馈和最近接收到的下行数据块相对应的UCI信息集合。
网络侧在RRC高层信令配置的时间维度间隔集合基础之上,可以通过物理层控制信息推导出每个UCI反馈信息和具体的下行数据块之间相对应的关联,即从UCI联合反馈中提取出UCI 1对应着哪些下行数据块的接收ACK/NACK反馈和哪段观测时间内的CSI测量结果,UCI2对应着哪些下行数据块的接收ACK/NACK反馈和哪段观测时间内的CSI测量结果等。
在适用于多个非授权载波辅服务小区配置的场景下,图8是根据本发明优选实施例的LAA系统下行调度传输和增强的多频上行反馈的示意图,如图8所示,实施方式包括:
如果网络和UE同时被配置且激活了多个非授权载波,针对在某非授权载波上的某同一下行数据块,网络侧配置给UE在不同非授权载波上的多个UCI发送子帧位置信息,或候选子帧间隔信息。UE允许在这些多个候选子帧位置上尝试UCI上行发送;当和某下行数据块相关的UCI被发送成功后(可能和下行数据块的发送载波频点不同,即异频UCI反馈),UE不需要在其他候选子帧上重复发送相同的UCI内容。
UE可以在某个候选子帧内,同时对多个下行数据块做UCI的联合反馈,即相同子帧内的UCI信息包含了对之前从多个非授权载波上接收到的多个下行数据块的联合反馈和更长一段信道接收观测时间的CSI测量信息。
网络侧在该多个候选子帧位置上尝试接收UCI反馈信息;网络侧需要能把接收到的UCI信息和每个下行数据块做正确的关联对应,既包含载波频率关联,也包含子帧时刻关联。
UCI发送子帧位置信息,或候选子帧间隔信息是描述上行UCI反馈信息与对应的下行数据块之间的频率维度间隔和时间维度间隔。其中,频率维度间隔可以通过非授权载波辅服务小区的索引index来描述,时间维度间隔可以通过间隔的子帧数量来描述,例如当前FDD系统默认约定的时间维度间隔的子帧数量为4,如果UCI反馈和对应的下行数据块是同非授权载波频点则频率维度间隔是0,如果在不同的非授权载波频点,比如下行数据块在辅服务小区索引2上下行数据发送,UCI在辅服务小区索引4上上行反馈,则频率维度间隔是2。
网络侧可以通过UE专用RRC消息或系统广播RRC消息为UE配置上述频率维度间隔和时间维度间隔信息集合。网络侧可以为不同的非授权载波辅服务小区配置独立不同的频率维度间隔集合和时间维度间隔集合。
UE首选在和下行数据包同频上尝试反馈UCI信息,当UE由于LBT失败,未能在同频某个候选子帧位置上成功发送UCI信息1,则立刻尝试在异频上的其它候选子帧位置上反馈UCI信息;如果异频上的所有候选子帧位置LBT/反馈UCI都失败,则UE重新回到原下行数据包同频点上尝试反馈UCI信息。而后UE又继续接收解析到若干新的下行数据块,从而产生对应的新待发UCI信息2,则UE在下一个候选子帧位置,需要尝试UCI信息1+2的联合发送,UCI反馈候选子帧位置的选取同上。如果LBT再失败,以此类推,UE在下一个候选子帧位置,需要尝试UCI信息1+2+3.。。。的联合发送。
由于受到PUSCH和PUCCH单子帧内信道资源容量的限制,UCI联合的反馈信息无法无限的被累加,因此当超过子帧容量限制的时候,仅仅反馈和最近接收到的下行数据块相对应的UCI信息集合。
网络侧在RRC高层信令配置的频率维度间隔和时间维度间隔集合基础之上,可以通过物理层控制信息推导出每个UCI反馈信息和具体的下行数据块之间相对应的关联,即从UCI联合反馈中提取出UCI 1对应着哪些下行数据块的接收ACK/NACK反馈和哪段观测时间内的CSI测量结果,UCI 2对应着哪些下行数据块的接收ACK/NACK反馈和哪段观测时间内的CSI测量结果等。
实施例1:
图9是根据本发明优选实施例的LAA授权载波上的Pcell+非授权载波上单个LAA Scell部署示意图,图10是根据本发明优选实施例1的LAA系统下行调度传输和上行反馈的示意图,如图9和图10所示,某运营商部署和利用了LAA技术,在授权载波上有Pcell宏覆盖,在非授权载波上有一个LAA Scell热点覆盖。某时UE处于Pcell+LAA Scell的公共覆盖下, 从而主基站MeNB为UE配置了LAA操作进行下行数据分流,并且在LAA Scell上进行自载波调度和UCI反馈。UE能力支持本发明方式1,由于LAA Scell所在的非授权载波频点上有其他WLAN节点,因此它们都需要通过LBT去竞争本地的非授权载波资源。本发明的具体实施步骤如下:
步骤901:MeNB通过RRC专有消息RRC Connection Reconfiguration配置给UE进行LAA下行数据块传输,并且通过LAA Scell上竞争获得的Transmission Burst来上行反馈UCI信息。MeNB配置给UE UCI反馈的子帧时间维度间隔集合为{4,6},即对应于在子帧N时刻接收到的下行数据块,UE可以在N+4和N+6两个上行子帧位置发送UCI。
步骤902:MeNB通过LBT操作成功竞争到某个Transmission Burst资源,MeNB在下行子帧N,N+1,N+2连续调度和发送了3个不同的数据块。UE按照正常时序,接收解析这3个不同的数据块,同时进行着CSI的测量,从而产生了对应的UCI信息。
步骤903:根据MeNB子帧时间维度间隔集合{4,6}的配置,UE先尝试在上行子帧N+4前执行快速LBT操作,但是由于UE周边WLAN AP节点正在工作占用了本地资源,因此UE此次LBT失败;于是在上行子帧N+6前再次执行快速LBT操作,此时由于UE周边WLAN AP节点释放掉了占用的资源,因此UE此次LBT成功;UE能够在上行子帧N+6位置,上行反馈UCI信息。
步骤904:由于下行子帧N,N+1,N+2发送的3个数据块对应的UCI信息都还没有反馈,因此UE需要在上行子帧N+6位置,同时联合反馈3份UCI信息并且通过物理层信令指示这三份UCI信息的位置关系,比如指示MeNB:本次UCI联合反馈中含有3份UCI信息,
按照时间先后顺序分别为UCI 1,UCI2,UCI3。
步骤905:MeNB在同频的非授权载波上成功接收解析到UCI联合反馈信息后,从中分别提取出UCI 1,UCI2,UCI3,从而知道了之前下行子帧N,N+1,N+2位置下行数据发送的数据块接收情况和那段时间的CSI测量结果。
实施例2:图11是根据本发明优选实施例的LAA授权载波上的Pcell+非授权载波上两个LAA Scell部署示意图一,图12是根据本发明优选实施例2的LAA系统下行调度传输和上行反馈的示意图,如图11和图12所示,,某运营商部署和利用了LAA技术,在授权载波上有Pcell宏覆盖,在非授权载波上有两个LAA Scells的热点覆盖。某时UE处于Pcell+LAA Scell1+LAA Scell2的公共覆盖下,从而主基站MeNB为UE配置了LAA操作进行下行数据分流,并且在LAA Scells上进行自载波调度和UCI反馈。UE能力支持本发明方式2,由于LAA Scells所在的非授权载波频点上有其他WLAN节点,因此它们都需要通过LBT去竞争本地的非授权载波资源。本发明的具体实施步骤如下:
步骤1101:MeNB通过RRC专有消息RRC Connection Reconfiguration配置给UE进行LAA 下行数据块传输,并且通过LAA Scell1和LAA Scell2上竞争获得的Transmission Burst来上行反馈UCI信息。MeNB配置给UE在LAA Scell1上UCI反馈的子帧频率维度间隔集合 为{1,2}(1,2即为LAA Scell辅小区的索引),时间维度间隔集合为{4,8},即对应于在LAA Scell1上子帧N时刻接收到的下行数据块,UE可以在LAA Scell1的N+4和N+8两个上行子帧位置,和LAA Scell2的N+4和N+8两个上行子帧位置发送UCI。同时MeNB还可以配置给UE在LAA Scell2上UCI反馈的子帧频率维度间隔集合为{2,1}(1,2即为LAA Scell辅小区的索引)时间维度间隔集合为{2,6},即对应于在LAA Scell2上子帧N时刻接收到的下行数据块,UE可以在LAA Scell2的N+2和N+6两个上行子帧位置,和LAA Scell1的N+2和N+6两个上行子帧位置发送UCI。
步骤1102:MeNB通过LBT操作成功竞争到某个Transmission Burst资源,MeNB在LAA Scell1上的下行子帧N,N+2分别调度和发送了2个不同的数据块。UE按照正常时序,接收解析这2个不同的数据块,同时进行着CSI的测量,从而产生了对应的UCI信息。
步骤1103:根据MeNB对LAA Scell1子帧频率维度间隔集合{1,2}和时间维度间隔集合{4,8}的配置,UE先同时尝试在LAA Scell1和LAA Scell2上的上行子帧N+4前执行快速LBT操作,但是由于UE周边WLAN APs节点正在工作占用了本地资源,因此UE此次LBT都失败;于是在LAA Scell1和LAA Scell2上的上行子帧N+8前再次执行快速LBT操作,此时由于UE周边部分WLAN AP节点释放掉了占用的资源,因此UE此次在LAA Scell2上的LBT成功;UE能够在LAA Scell2上的上行子帧N+8位置,上行反馈UCI信息。
步骤1104:由于LAA Scell1上的下行子帧N,N+2发送的2个数据块对应的UCI信息都还没有反馈,因此UE需要在LAA Scell2上的上行子帧N+8位置,同时联合反馈2份UCI信息并且通过物理层信令指示这2份UCI信息的位置关系,比如指示MeNB:本次UCI联合反馈中含有2份UCI信息,全部针对LAA Scell1,按照时间先后顺序分别为UCI 1,UCI2。
步骤1105:MeNB在异频的非授权载波LAA Scell2上成功接收解析到UCI联合反馈信息后,从中分别提取出UCI 1,UCI2,从而知道了之前LAA Scell1上的下行子帧N,N+2位置下行数据发送的数据块接收情况和那段时间的CSI测量结果。
实施例3:图13是根据本发明优选实施例的LAA授权载波上的Pcell+非授权载波上两个LAA Scells部署的示意图二,图14是根据本发明优选实施例3的LAA系统下行调度传输和增强的多频上行反馈的示意图,如图13和图14所示,某运营商部署和利用了LAA-DC技术,在MeNB的授权载波上有Pcell宏覆盖,在远端通过X2连接LAA-SeNB基站,它在非授权载波上有两个LAA Scells的部署,用于热点容量增强。某时UE处于Pcell+LAA Scell1+LAA Scell2的公共覆盖下,从而主基站MeNB为UE配置了LAA-DC操作进行下行数据分流,UE可以同时从LAA MCG-link和LAA SCG-link上下行收发数据。LAA-SeNB基站在LAA Scells上进行自载波调度和UCI反馈。UE能力支持本发明方式2,由于LAA Scells所在的非授权载波频点上有其他WLAN节点,因此它们都需要通过LBT去竞争本地的非授权载波资源。本发明的具体实施步骤如下:
步骤1301:MeNB通过RRC消息RRC Connection Reconfiguration配置给UE进行LAA-DC双连接操作,并且LAA-SCG侧进行下行数据块分流传输,LAA-SeNB通过LAA Scell1和LAA  Scell2上竞争获得的Transmission Burst来上行反馈UCI信息。MeNB配置给UE在LAA Scell1上UCI反馈的子帧频率维度间隔集合为{1,2}(1,2即为LAA Scell辅小区的索引),时间维度间隔集合为{2,6}和{4,8},即对应于在LAA Scell1上子帧N时刻接收到的下行数据块,UE可以在LAA Scell1的N+2和N+6两个上行子帧位置,和LAA Scell2的N+4和N+8两个上行子帧位置发送UCI。同时MeNB还可以配置给UE在LAA Scell2上UCI反馈的子帧频率维度间隔集合为{2,1}(1,2即为LAA Scell辅小区的索引)时间维度间隔集合为{2,6}和{4,8},即对应于在LAA Scell2上子帧N时刻接收到的下行数据块,UE可以在LAA Scell2的N+2和N+6两个上行子帧位置,和LAA Scell1的N+4和N+8两个上行子帧位置发送UCI。
步骤1302:LAA-SeNB通过LBT操作成功竞争到某个Transmission Burst资源,LAA-SeNB在LAA Scell1上的下行子帧N,N+2分别调度和发送了2个不同的数据块。UE按照正常时序,接收解析这2个不同的数据块,同时进行着CSI的测量,从而产生了对应的UCI信息。
步骤1303:根据MeNB对LAA Scell1子帧频率维度间隔集合{1,2}和时间维度间隔集合{2,6}和{4,8}的配置,UE先尝试在LAA Scell1上的上行子帧N+2和LAA Scell2上的上行子帧N+4前执行快速LBT操作,但是由于UE周边WLAN APs节点正在工作占用了本地资源,因此UE此次LBT都失败;于是在LAA Scell1上的上行子帧N+6和LAA Scell2上的上行子帧N+8前再次执行快速LBT操作,此时由于UE周边部分WLAN AP节点释放掉了占用的资源,因此UE此次在LAA Scell1上的LBT成功;UE能够在LAA Scell1上的上行子帧N+6位置,上行反馈UCI信息。
步骤1304:由于LAA Scell1上的下行子帧N,N+2发送的2个数据块对应的UCI信息都还没有反馈,因此UE需要在LAA Scell1上的上行子帧N+6位置,同时联合反馈2份UCI信息并且通过物理层信令指示这2份UCI信息的位置关系,比如指示LAA-SeNB:本次UCI联合反馈中含有2份UCI信息,全部针对LAA Scell1,按照时间先后顺序分别为UCI 1,UCI2。
步骤1305:LAA-SeNB在同频的非授权载波LAA Scell1上成功接收解析到UCI联合反馈信息后,从中分别提取出UCI 1,UCI2,从而知道了之前LAA Scell1上的下行子帧N,N+2位置下行数据发送的数据块接收情况和那段时间的CSI测量结果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例该的方法。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,接收基站发送的配置信息,该配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,该多个上行候选子帧用于发送多个上行控制信息UCI;
S2,接收该非授权载波上的下行数据块,在该多个上行候选子帧上发送与该下行数据块对应的UCI。
可选地,存储介质还被设置为存储用于执行上述实施例的方法步骤的程序代码:
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上该仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明实施例,接收基站发送的配置信息,该配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,该多个上行候选子帧用于发送多个上行控制信息UCI,接收该非授权载波上的下行数据块,在该多个上行候选子帧上发送与该下行数据块对应的UCI,解决了在非授权载波上,UCI上行反馈由于LBT操作失败而可能不能及时发送的问题,提高LTE系统在非授权载波上的下行数据传输效率。

Claims (30)

  1. 一种上行反馈信息的传输方法,包括:
    接收基站发送的配置信息,所述配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,所述多个上行候选子帧用于发送多个上行控制信息UCI;
    接收所述非授权载波上的下行数据块,在所述多个上行候选子帧上发送与所述下行数据块对应的UCI。
  2. 根据权利要求1所述的方法,其中,所述多个上行候选子帧的发送时频位置信息包括:所述多个候选子帧的间隔信息,所述间隔信息包括:间隔的上行子帧数量,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔。
  3. 根据权利要求1所述的方法,其中,
    在激活的所述非授权载波个数为多个的情况下,所述多个上行候选子帧的发送时频位置信息包括:所述多个候选子帧的间隔信息和频率信息,所述间隔信息包括:间隔的上行子帧数量,所述频率信息包括:非授权载波辅服务小区的索引,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔,所述频率信息指示所述UCI上行发送频率或者辅服务小区,与所述下行数据块的接收频率或者辅服务小区之间的频率维度间隔。
  4. 根据权利要求3所述的方法,其中,所述在所述多个上行候选子帧上,发送与所述下行数据块对应的UCI:
    优先在和所述下行数据块同频的上行候选子帧上,上行发送与所述下行数据块对应的UCI;
    在尝试和所述下行数据块同频的上行候选子帧上,在由于先听后说LBT失败导致上行发送与所述下行数据块对应的UCI无法发送的情况下,在和所述下行数据块异频的上行候选子帧上,上行发送与所述下行数据块对应的UCI。
  5. 根据权利要求1所述的方法,其中,还包括:
    尝试在所述多个上行候选子帧的一个上行候选子帧上发送与所述下行数据块对应的UCI,在所述上行候选子帧发送UCI成功后,配置的所述多个上行候选子帧中除了所述发送成功的上行候选子帧以外,其他上行候选子帧不需要再重复发送相同的UCI。
  6. 根据权利要求1所述的方法,其中,所述接收所述非授权载波上的下行数据块之后,包括,
    在所述多个上行候选子帧上,同时上行发送多个和所述下行数据块相关的联合反馈UCI,所述联合反馈UCI包括:多个所述下行数据块的接收是否成功的联合反馈信息和与多个所述下行数据块对应的信道接收观测时间相关的信道状态信息CSI。
  7. 根据权利要求6所述的方法,其中,
    由于LBT失败导致在和多个所述下行数据块相对应的UCI中的前一个或前多个UCI尝试发送失败后,所述前一个或前多个UCI的后一个UCI联合上行发送所述联合反馈UCI,所述联合反馈UCI同时携带所述前一个或前多个UCI的信息,其中,含有多个UCI信息的所述联合反馈UCI的编码方式采取载波聚合联合UCI编码方式。
  8. 根据权利要求6所述的方法,其中,
    在所述联合反馈UCI的反馈信息超过所述联合反馈UCI所在上行子帧的容量的情况下,所述联合反馈UCI携带与最近接收的一个或多个与所述下行数据块对应的UCI,并且放弃除了所述最近接收的一个或多个所述下行数据块以外,与其他下行数据块对应的UCI信息。
  9. 根据权利要求1所述的方法,其中,所述配置信息携带在专用无线资源控制信息RRC消息中或者系统广播的RRC消息中。
  10. 一种上行反馈信息的传输方法,包括:
    向终端发送配置信息,所述配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,所述多个上行候选子帧用于发送多个上行控制信息UCI;
    向终端发送所述非授权载波上的下行数据块;
    在所述多个上行候选子帧上,接收与所述下行数据块对应的UCI。
  11. 根据权利要求10所述的方法,其中,所述多个上行候选子帧的发送时频位置信息包括:所述多个上行候选子帧的间隔信息,所述间隔信息包括:间隔的上行子帧数量,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔。
  12. 根据权利要求10所述的方法,其中,
    在激活的所述非授权载波个数为多个的情况下,所述多个上行候选子帧的发送时频位置信息包括:所述多个上行候选子帧的间隔信息和频率信息,所述间隔信息包括:间隔的上行子帧数量,所述频率信息包括:非授权载波辅服务小区的索引,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔,所述频率信息指示所述UCI上行发送频率或者辅服务小区与所述下行数据块的接收频率或者辅服务小区之间的频率维度间隔。
  13. 根据权利要求10所述的方法,其中,所述向终端发送配置信息包括:
    通过专用无线资源控制信息RRC消息或者系统广播的RRC消息向所述终端发送配置信息。
  14. 根据权利要求10所述的方法,其中,所述接收与所述下行数据块对应的UCI包括:
    在所述多个上行候选子帧的一个上行候选子帧上接收与所述下行数据块对应的UCI,依据所述一个上行候选子帧的UCI,以及所述多个上行候选子帧的发送时频位置信息, 确定所述多个上行候选子帧中除去所述一个上行候选子帧的UCI以外的其他候选子帧的UCI,其中,所述UCI是携带多个和所述下行数据块相关的联合反馈UCI。
  15. 根据权利要求14所述的方法,其中,
    在所述多个候选子帧上接收和多个所述下行数据块相关的联合反馈UCI之后,依据物理层控制信息推导出所述联合反馈UCI中和每个下行数据块相关的UCI信息,每个数据块的UCI信息包括:所述下行数据块的接收是否成功的信息和与所述下行数据块对应的信道接收观测时间的信道状态信息CSI。
  16. 一种上行反馈信息的传输装置,位于终端中,包括:
    第一接收模块,设置为接收基站发送的配置信息,所述配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,所述多个上行候选子帧用于发送多个上行控制信息UCI;
    第二接收模块,设置为接收所述非授权载波上的下行数据块;
    第一发送模块,设置为在所述多个上行候选子帧上,上行发送与所述下行数据块对应的UCI。
  17. 根据权利要求16所述的装置,其中,所述多个上行候选子帧的发送时频位置信息包括:所述多个候选子帧的间隔信息,所述间隔信息包括:间隔的上行子帧数量,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔。
  18. 根据权利要求16所述的装置,其中,
    在激活的所述非授权载波个数为多个的情况下,所述多个上行候选子帧的发送时频位置信息包括:所述多个候选子帧的间隔信息和频率信息,所述间隔信息包括:间隔的上行子帧数量,所述频率信息包括:非授权载波辅服务小区的索引,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔,所述频率信息指示所述UCI上行发送频率或者辅服务小区,与所述下行数据块的接收频率或者辅服务小区之间的频率维度间隔。
  19. 根据权利要求18所述的装置,其中,
    所述第一发送模块,还设置为优先在和所述下行数据块同频的上行候选子帧上,上行发送与所述下行数据块对应的UCI;
    所述第一发送模块,还设置为尝试在和所述下行数据块同频的上行候选子帧上,由于先听后说LBT失败,上行发送与所述下行数据块对应的UCI无法发送的情况下,在和所述下行数据块异频的上行候选子帧上,上行发送与所述下行数据块对应的UCI。
  20. 根据权利要求16所述的装置,其中,
    所述第一发送模块,还设置为尝试在所述多个上行候选子帧的一个上行候选子帧上 发送与所述下行数据块对应的UCI,在所述上行候选子帧发送UCI成功后,配置的所述多个上行候选子帧除了所述发送成功的上行候选子帧以外,其他上行候选子帧不需要再重复发送相同的UCI。
  21. 根据权利要求16所述的装置,其中,
    所述第一发送模块,还设置为接收所述非授权载波上的下行数据块之后,在所述多个上行候选子帧上,同时上行发送多个和所述下行数据块相关的联合反馈UCI,所述联合反馈UCI包括:多个所述下行数据块的接收是否成功的联合反馈信息和与多个所述下行数据块对应的信道接收观测时间相关的信道状态信息CSI。
  22. 根据权利要求21所述的装置,其中,
    所述第一发送模块,还设置为由于LBT失败,在和多个所述下行数据块相对应的UCI中的前一个或前多个UCI尝试发送失败后,所述前一个或前多个UCI的后一个UCI联合上行发送所述联合反馈UCI,所述联合反馈UCI同时携带所述前一个或前多个UCI的信息,其中,含有多个UCI信息的所述联合反馈UCI的编码方式采取载波聚合联合UCI编码方式。
  23. 根据权利要求22所述的装置,其中,
    在所述联合反馈UCI的反馈信息超过所述联合反馈UCI所在上行子帧的容量的情况下,所述联合反馈UCI携带与最近接收的一个或多个与所述下行数据块对应的UCI,除了所述最近接收的一个或多个所述下行数据块以外,与其他下行数据块对应的UCI信息自动放弃。
  24. 根据权利要求16所述的装置,其中,所述配置信息携带在专用无线资源控制信息RRC消息中或者系统广播的RRC消息中。
  25. 一种上行反馈信息的传输装置,位于基站中,包括:
    第二发送模块,设置为向终端发送配置信息,所述配置信息包括:非授权载波上多个上行候选子帧的发送时频位置信息,所述多个上行候选子帧用于发送多个上行控制信息UCI;
    第三发送模块,设置为向终端发送所述非授权载波上的下行数据块;
    第三接收模块,设置为在所述多个上行候选子帧上,接收与所述下行数据块对应的UCI。
  26. 根据权利要求25所述的装置,其中,所述多个上行候选子帧的发送时频位置信息包括:所述多个上行候选子帧的间隔信息,所述间隔信息包括:间隔的上行子帧数量,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔。
  27. 根据权利要求25所述的装置,其中,
    在激活的所述非授权载波个数为多个的情况下,所述多个上行候选子帧的发送时频位置信息包括:所述多个上行候选子帧的间隔信息和频率信息,所述间隔信息包括:间隔的上行子帧数量,所述频率信息包括:非授权载波辅服务小区的索引,所述间隔信息指示所述UCI上行发送时间与所述下行数据块的接收时间之间的时间维度间隔,所述频率信息指示所述UCI上行发送频率或者辅服务小区与所述下行数据块的接收频率或者辅服务小区之间的频率维度间隔。
  28. 根据权利要求25所述的装置,其中,所述向终端发送配置信息包括:
    通过专用无线资源控制信息RRC消息或者系统广播的RRC消息向所述终端发送配置信息。
  29. 根据权利要求25所述的装置,其中,
    所述第三接收模块,还设置为在所述多个上行候选子帧的一个上行候选子帧上接收与所述下行数据块对应的UCI,依据所述一个上行候选子帧的UCI,以及所述多个上行候选子帧的发送时频位置信息,确定所述多个上行候选子帧中除去所述一个上行候选子帧的UCI以外的其他候选子帧的UCI,其中,所述UCI是携带多个和所述下行数据块相关的联合反馈UCI。
  30. 根据权利要求29所述的装置,其中,
    在所述多个候选子帧上接收和多个所述下行数据块相关的联合反馈UCI之后,依据物理层控制信息推导出所述联合反馈UCI中和每个下行数据块相关的UCI信息,每个数据块的UCI信息包括:所述下行数据块的接收是否成功的信息和与所述下行数据块对应的信道接收观测时间的信道状态信息CSI。
PCT/CN2016/107327 2016-03-09 2016-11-25 上行反馈信息的传输方法及装置 WO2017152664A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16893307.5A EP3429287A4 (en) 2016-03-09 2016-11-25 METHOD AND DEVICE FOR TRANSMITTING UPLINK FEEDBACK INFORMATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610133814.1 2016-03-09
CN201610133814.1A CN107182126B (zh) 2016-03-09 2016-03-09 上行反馈信息的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2017152664A1 true WO2017152664A1 (zh) 2017-09-14

Family

ID=59788907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107327 WO2017152664A1 (zh) 2016-03-09 2016-11-25 上行反馈信息的传输方法及装置

Country Status (3)

Country Link
EP (1) EP3429287A4 (zh)
CN (1) CN107182126B (zh)
WO (1) WO2017152664A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157678A1 (zh) * 2018-02-13 2019-08-22 Oppo广东移动通信有限公司 传输信息的方法和设备
WO2019183396A1 (en) * 2018-03-23 2019-09-26 Qualcomm Incorporated Uplink control information transmission on autonomous uplink in new radio-unlicensed (nr-u)
RU2781243C2 (ru) * 2017-11-10 2022-10-10 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ и устройство для передачи данных
US11800508B2 (en) 2017-11-10 2023-10-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for transmitting and receiving uplink data

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110086585B (zh) * 2018-03-21 2020-07-21 中国信息通信研究院 一种上行控制信息传输方法及设备
CN108702265B (zh) * 2018-05-18 2022-02-08 北京小米移动软件有限公司 信息传输方法及装置
CN110691361A (zh) 2018-07-06 2020-01-14 北京展讯高科通信技术有限公司 非授权信道的共享方法及装置、存储介质、终端、基站
CN110891311A (zh) * 2018-09-07 2020-03-17 华为技术有限公司 反馈信息传输的方法和通信装置
CN110913478A (zh) * 2018-09-15 2020-03-24 华为技术有限公司 一种信息发送、接收方法及通信装置
CN111262668B (zh) * 2018-12-12 2021-10-12 维沃移动通信有限公司 物理上行控制信道传输方法、网络侧设备和终端
WO2020124499A1 (zh) * 2018-12-20 2020-06-25 北京小米移动软件有限公司 传输上行信息的方法、装置、基站及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045861A (zh) * 2011-01-04 2011-05-04 大唐移动通信设备有限公司 上行控制信息的调度及上报方法、系统和设备
CN102594437A (zh) * 2011-01-12 2012-07-18 中兴通讯股份有限公司 一种数据传输的方法和系统
WO2015089292A1 (en) * 2013-12-13 2015-06-18 Qualcomm Incorporated Csi feedback in lte/lte-advanced systems with unlicensed spectrum
CN105207756A (zh) * 2014-06-21 2015-12-30 上海朗帛通信技术有限公司 一种利用非授权频谱通信的方法和装置
CN105897387A (zh) * 2015-01-26 2016-08-24 中兴通讯股份有限公司 一种数据传输方法、装置及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166682A (ja) * 2010-02-15 2011-08-25 Ntt Docomo Inc 移動端末装置および上り制御情報信号の送信方法
CN102625457B (zh) * 2011-02-01 2018-01-05 中兴通讯股份有限公司 下行控制信息的发送、接收和传输方法及相关装置
US9031017B2 (en) * 2012-06-21 2015-05-12 Nokia Solutions And Networks Oy Power control for LTE deployment in unlicensed band
KR20160003090A (ko) * 2013-05-09 2016-01-08 후지쯔 가부시끼가이샤 업링크 제어 정보를 전송하는 방법, ue 및 기지국
CN105356967B (zh) * 2014-08-22 2020-08-11 中兴通讯股份有限公司 一种实现数据处理的方法、基站及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045861A (zh) * 2011-01-04 2011-05-04 大唐移动通信设备有限公司 上行控制信息的调度及上报方法、系统和设备
CN102594437A (zh) * 2011-01-12 2012-07-18 中兴通讯股份有限公司 一种数据传输的方法和系统
WO2015089292A1 (en) * 2013-12-13 2015-06-18 Qualcomm Incorporated Csi feedback in lte/lte-advanced systems with unlicensed spectrum
CN105207756A (zh) * 2014-06-21 2015-12-30 上海朗帛通信技术有限公司 一种利用非授权频谱通信的方法和装置
CN105897387A (zh) * 2015-01-26 2016-08-24 中兴通讯股份有限公司 一种数据传输方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3429287A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2781243C2 (ru) * 2017-11-10 2022-10-10 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ и устройство для передачи данных
US11800508B2 (en) 2017-11-10 2023-10-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for transmitting and receiving uplink data
WO2019157678A1 (zh) * 2018-02-13 2019-08-22 Oppo广东移动通信有限公司 传输信息的方法和设备
RU2763504C1 (ru) * 2018-02-13 2021-12-29 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ и устройство для передачи информации
CN114126074A (zh) * 2018-02-13 2022-03-01 Oppo广东移动通信有限公司 传输信息的方法和设备
WO2019183396A1 (en) * 2018-03-23 2019-09-26 Qualcomm Incorporated Uplink control information transmission on autonomous uplink in new radio-unlicensed (nr-u)
US11540257B2 (en) 2018-03-23 2022-12-27 Qualcomm Incorporated Uplink control information transmission on autonomous uplink in new radio-unlicensed (NR-U)

Also Published As

Publication number Publication date
EP3429287A4 (en) 2019-06-26
EP3429287A1 (en) 2019-01-16
CN107182126A (zh) 2017-09-19
CN107182126B (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2017152664A1 (zh) 上行反馈信息的传输方法及装置
WO2017152645A1 (zh) 上行反馈信息的传输方法及装置
CN112534897A (zh) 通信系统、通信终端及基站
WO2016119454A1 (zh) 非授权载波资源的使用方法及装置
CN109845382A (zh) 用于发送上行链路信号的方法和用户设备
US20220182899A1 (en) Pucch transmission method, user equipment, and network device
US10772126B2 (en) Communication method on unlicensed frequency band, terminal device, and network device
US10461976B2 (en) Cyclic prefix management in new radio
JP2019510420A (ja) キャリアアグリゲーションに関するサウンディング基準信号送信
US20210385710A1 (en) Apparatus and method for supporting vehicle-to-everything in wireless communication system
JP2017523655A (ja) 搬送波感知による共用スペクトルにおけるlte波形を送信するための方法及び装置
CN104010368B (zh) Tdd配置更新方法、装置及系统
CN108292983A (zh) 业务传输的方法和装置
US20170359728A1 (en) Unlicensed spectrum communications retransmission method, and base station and user equipment
CN109076514A (zh) 上行信息传输方法、基站与用户设备
US20230180338A1 (en) Communication control method
EP3498026A1 (en) Cell level isolation for network slicing and network sharing
CN117561744A (zh) 针对条件主辅小区添加或改变的报告
WO2017113395A1 (zh) 一种无线通信方法、设备及系统
CN109155990A (zh) 一种计数方法及装置
WO2019205024A1 (zh) 信号传输的方法和通信设备
US10986651B2 (en) Information transmission method and apparatus
WO2014000689A1 (zh) Tdd上下行配置的传输反馈方法及装置
JP6029952B2 (ja) 物理ハイブリッド自動再送要求指示チャネル情報の伝送方法およびその装置
US11758495B2 (en) Signal transmission method and apparatus and computer storage medium

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016893307

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016893307

Country of ref document: EP

Effective date: 20181009

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893307

Country of ref document: EP

Kind code of ref document: A1