WO2019156514A1 - 유황 분말, 유황 전극, 이를 포함하는 전지 및 제조 방법 - Google Patents

유황 분말, 유황 전극, 이를 포함하는 전지 및 제조 방법 Download PDF

Info

Publication number
WO2019156514A1
WO2019156514A1 PCT/KR2019/001609 KR2019001609W WO2019156514A1 WO 2019156514 A1 WO2019156514 A1 WO 2019156514A1 KR 2019001609 W KR2019001609 W KR 2019001609W WO 2019156514 A1 WO2019156514 A1 WO 2019156514A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
current collector
electrode
plate
thin film
Prior art date
Application number
PCT/KR2019/001609
Other languages
English (en)
French (fr)
Inventor
조규봉
김기원
안효준
안주현
노정필
조권구
남태현
Original Assignee
경상대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180016456A external-priority patent/KR102059583B1/ko
Priority claimed from KR1020180016464A external-priority patent/KR102026466B1/ko
Application filed by 경상대학교 산학협력단 filed Critical 경상대학교 산학협력단
Publication of WO2019156514A1 publication Critical patent/WO2019156514A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • C25D1/22Separating compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the present invention relates to a sulfur powder, a sulfur electrode, a battery and a manufacturing method including the same, and more particularly, to a sulfur powder, a sulfur electrode, a battery and a manufacturing method including the same can be produced in various shapes.
  • secondary batteries are used as a major power source for mobile devices including mobile phones.
  • Such secondary batteries are gradually expanding their application range from nanoscale micro devices to power storage devices for mobile devices such as laptops, electric vehicles, and smart grids.
  • lithium ion secondary batteries have been in the spotlight in electric vehicles and power storage.
  • secondary batteries In order to utilize secondary batteries in electric vehicles and electric power storage, secondary batteries must have low price and high energy density.
  • the battery may be composed of a positive electrode, a negative electrode, an electrolyte, a separator and a case for packaging them.
  • the positive electrode and the negative electrode may be composed of an active material, a conductive material and a binder.
  • the unit is the amount of energy contained per unit volume or per unit weight is calculated as the volume or weight of the electrolyte including the positive electrode, the negative electrode and the separator, or the current collector and the case The actual value including the weight of may be calculated.
  • lithium-ion secondary batteries Due to the high price of lithium-ion secondary batteries, electric vehicles often account for more than 70% of the cost of purchasing electric vehicles. In addition, even if a lithium ion secondary battery is used in an electric vehicle, a high energy density of 260 Wh / kg or more is difficult to be achieved, and a lithium ion secondary battery including an existing electrode material is implemented to have an energy density of 300 Wh / kg. It is difficult by the situation.
  • Li / S batteries are the most suitable systems among the candidate groups.
  • sulfur used as a positive electrode active material is inexpensive and has environmentally friendly advantages.
  • Li / S cells theoretically have very high energy densities of 2600 Wh / kg. Therefore, Li / S battery is a next-generation battery which is indispensable for electric vehicles and power storage.
  • the battery contains a conductive material, a binder, and the like in addition to the active material that participates in the actual battery reaction, the proportion of the active material (sulfur) in the sulfur electrode is considerably low. As a result, the actual energy density of the conventionally manufactured Li / S battery shows a large difference from the theoretical energy density.
  • a method of manufacturing sulfur powder including: placing an electrode plate connected to an anode of a power controller in an aqueous solution in which hydrogen sulfide is dissolved, and controlling the power of the power controller to control the electrode.
  • the method may include forming the sulfur powder into a thin film on a surface corresponding to a predetermined region of the plate and separating the formed sulfur powder from the electrode plate.
  • the hydrogen sulfide may be produced by reacting iron sulfide (FeS) or aluminum sulfide (Al 2 S 3) with hydrochloric acid (HCl).
  • FeS iron sulfide
  • Al 2 S 3 aluminum sulfide
  • HCl hydrochloric acid
  • the formed sulfur powder may be separated from the electrode plate using ultrasonic waves.
  • the sulfur powder may be porous spherical or linear and white.
  • the electrode plate comprises one of a metal and a carbon material to serve as an electron passage.
  • the forming of the thin film may control the current value of the power in the range of 2.1mA or more and 3.2mA or less, and the voltage value of the power in the range of 2.4V or less.
  • Method for manufacturing a sulfur electrode according to an embodiment of the present invention for achieving the above object is the step of placing a plate-shaped current collector connected to the positive electrode of the power controller in an aqueous solution of hydrogen sulfide dissolved by controlling the power of the power controller
  • the method may include forming the sulfur powder into a thin film on a surface corresponding to a predetermined region of the plate current collector.
  • the sulfur electrode manufacturing method may further include forming an upper current collector on a surface of the plate current collector to surround the thin film including the sulfur powder, and the upper current collector may include a porous carbon material.
  • the manufacturing method of the sulfur electrode further comprises the step of forming a binder on the surface corresponding to the predetermined region of the plate-shaped current collector, the binder is carbon nanotubes (CNT), carbon nanofibers (CNF) and It includes one of the nano-rods made of a metal, the metal may include at least one of copper, nickel, aluminum and titanium.
  • the binder is carbon nanotubes (CNT), carbon nanofibers (CNF) and It includes one of the nano-rods made of a metal, the metal may include at least one of copper, nickel, aluminum and titanium.
  • the plate current collector may have a three-dimensional network structure.
  • Sulfur electrode according to an embodiment of the present invention for achieving the above object performs a mechanism reaction of the plate-shaped current collector and the sulfur electrode that serves as an electron path and on a surface corresponding to the predetermined region of the plate-shaped current collector Including an active material formed of a thin film, the active material may include sulfur in the form of powder that is porous white.
  • the sulfur electrode further includes an upper current collector formed on a surface of the active material and a surface of an area other than a predetermined area of the plate current collector to allow electrons between the plate current collector and the active material to enter and exit.
  • the whole may comprise a porous carbon material that restricts access to the intermediate product dissolved in the electrolyte.
  • Sulfur electrode for achieving the above object is an active material that performs a mechanism reaction of the sulfur electrode and a porous carbon material current collector surrounding the whole of the active material so that electrons can enter and exit the active material It includes, and the active material includes sulfur in the form of a powder of a porous white, the porous carbon material current collector can limit the access of the intermediate product dissolved in the electrolyte.
  • the sulfur electrode may further include a plate current collector formed on one surface of the porous carbon current collector and serving as an electron path.
  • a plurality of porous carbon material current collectors surrounding the entire active material may be provided, and the plurality of porous carbon material current collectors may be stacked and formed as one.
  • a sulfur thin film may be formed on a metal current collector having high electrical conductivity, and a sulfur electrode having various forms and a battery including the same may be manufactured to improve electrode performance.
  • FIG. 1 is a flowchart illustrating a method of manufacturing sulfur powder according to an embodiment of the present invention.
  • FIGS. 2A and 2B are views illustrating a process of preparing sulfur powder according to an embodiment of the present invention.
  • 3a and 3b show the results of analyzing the formation of sulfur powder according to an embodiment of the present invention.
  • 4A and 4B are views showing sulfur powders formed linearly.
  • 5A and 5B are views showing sulfur powders formed in a spherical shape according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a sulfur electrode according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of manufacturing a sulfur electrode according to another embodiment of the present invention.
  • 8A and 8B are views illustrating a sulfur electrode manufactured according to an embodiment of the present invention.
  • 9A and 9B are views illustrating a sulfur electrode manufactured according to another embodiment of the present invention.
  • FIG. 10 is a view for explaining the structure of a sulfur battery according to an embodiment of the present invention.
  • 11A to 11E illustrate the structure of a sulfur electrode manufactured according to an embodiment of the present invention.
  • 12A to 12E show the structure of the sulfur electrode manufactured according to another embodiment of the present invention.
  • FIG. 13A to 13B illustrate a result of observing a sulfur structure formed on a sulfur electrode manufactured according to an embodiment of the present invention with a scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS).
  • SEM scanning electron microscope
  • EDS energy dispersive spectroscopy
  • FIG. 14A to 14B illustrate a result of observing a sulfur structure formed on a sulfur electrode manufactured according to another embodiment of the present invention with a scanning electron microscope (SEM) and an energy dispersive spectroscopy (EDS).
  • SEM scanning electron microscope
  • EDS energy dispersive spectroscopy
  • 15A to 15B illustrate a result of observing a sulfur structure formed on a sulfur electrode manufactured according to another embodiment of the present invention with a scanning electron microscope (SEM) and an energy dispersive spectroscopy (EDS) method.
  • SEM scanning electron microscope
  • EDS energy dispersive spectroscopy
  • 16A and 16B illustrate charging and discharging results of a battery including a sulfur positive electrode manufactured according to an embodiment of the present invention.
  • 17A and 17B illustrate charging and discharging results of a battery including a sulfur anode manufactured according to another embodiment of the present invention.
  • 18A and 18B illustrate charging and discharging results of a battery composed of a sulfur anode manufactured according to another embodiment of the present invention.
  • FIG. 1 is a flowchart illustrating a method of manufacturing sulfur powder according to an embodiment of the present invention.
  • an electrode plate connected to an anode of a power controller is positioned in an aqueous solution in which hydrogen sulfide (H 2 S) is dissolved (S110).
  • Sulfur powder is produced through a chemical reaction on the surface of the electrode plate in the aqueous solution in which hydrogen sulfide is dissolved according to the power control of the power supply controller. That is, when the power of the power controller is controlled so that a mechanism reaction occurs on the surface of the electrode plate, sulfur powder is formed as a thin film on the surface corresponding to the predetermined region of the electrode plate (S120).
  • the electrode plate may include one of a metal and a carbon material.
  • the electrode plate may include a three-dimensional network structure so that the amount of sulfur formed on the surface of the electrode plate is increased.
  • the current value per unit area of power controlled may be controlled in a range of 2.1 mA or more and 3.2 mA or less.
  • the voltage value may be controlled to about 2.4V or less.
  • the thin film including sulfur powder may be formed in the form of a black film.
  • the thin film in the form of a black film is a phenomenon that occurs when sulfur powder is not normally formed, and the thin film in the form of a black film has a problem of reducing voltage by performing a role as a resistance.
  • the thin film including the sulfur powder grows over a predetermined size as time passes, and the thin film including the grown sulfur powder is in the form of a black film. Can be formed. That is, when the current value per unit area is larger or smaller than the constant value, the thin film including the sulfur powder may not be formed normally.
  • the current value of the power controlled by the power controller so that the thin film including sulfur powder according to an embodiment of the present invention may be grown may be a value of 2.1 mA or more and 3.2 mA or less.
  • the voltage value may be controlled to about 2.4V or less. That is, while the voltage value is controlled to 2.4V or less to form the sulfur powder, the current value per unit area may be controlled to 2.1mV or more and 3.2mV or less.
  • the individual sulfur powders formed in the manner described above may be nano-sized spherical or linear and may be in porous form. Since the sulfur powder in the porous form includes a large surface area, the sulfur powder according to the present invention may exhibit improved reactivity compared to conventional sulfur. In addition, since the sulfur powder of the porous form described above may improve the reactivity with lithium ions as compared to the conventional, the battery containing the sulfur powder of the present invention may have a relatively large charging capacity. In addition, the sulfur powder prepared according to the present invention can be used in various industries where sulfur powder is used as well as batteries. Since the spherical sulfur powder containing porosity is white, a white sulfur thin film may be formed on the electrode plate.
  • Electrolysis refers to an involuntary redox reaction caused by electrical energy when the redox reaction does not occur spontaneously. In electrolysis, cations are reduced at the cathode and anions are oxidized at the anode.
  • an aqueous solution in which sodium sulfide (Na 2 S) is dissolved in water may be used to apply the principle of electrolysis.
  • Formula 1 below shows a reaction formula when sodium sulfide is dissolved in water.
  • sodium hydroxide is a representative substance of strong bases and can corrode other substances well.
  • Metals can generally react with acids to corrode. However, metals generally do not react with bases, but among metals there are metals which not only react with acids but also with bases. Substances that can react with both acids and bases are called amphoteric substances, and the metals exhibiting amphoteric properties are typically aluminum (Al), zinc (Zn), gallium (Ga), indium (In), and germanium (Ge). ), Tin (Sn), lead (Pb) and bismuth (Bi).
  • the electrode plate may be composed of any one of nickel (Ni), carbon material, and stainless steel (STS) by sodium hydroxide produced from an aqueous solution in which sodium sulfide (Na 2 S) is dissolved according to one embodiment of the present invention. have.
  • Hydrogen sulfide used to prepare the sulfur powder according to an embodiment of the present invention may be produced by the reaction of iron sulfide (FeS) and hydrochloric acid (HCl).
  • hydrogen sulfide may be produced by reaction of aluminum sulfide (Al 2 S 3 ) with hydrochloric acid. A detailed process will be described later with reference to FIGS. 2A and 2B.
  • the sulfur powder formed is separated from the electrode plate (S130).
  • the sulfur powder formed as a thin film on the surface of the electrode plate may be formed to a predetermined thickness after a predetermined time.
  • the binding force of the sulfur powder included in the edge of the thin film may be weakened. Therefore, sulfur powder, which has a weakened binding force, may be separated from the electrode plate and spontaneously floated on the surface of the aqueous solution. Therefore, the sulfur powder formed to a certain thickness after a predetermined time can be separated from the electrode plate.
  • the sulfur powder spontaneously separated from the electrode plate may be a smaller amount than the sulfur powder formed entirely.
  • the sulfur powder can be separated from the electrode plate by ultrasonic waves.
  • sulfur powder formed on the electrode plate may be separated from the electrode plate through an ultrasonic cleaning process for the electrode plate.
  • FIGS. 2A and 2B are views illustrating a process of preparing sulfur powder according to an embodiment of the present invention.
  • an electrode plate 240 connected to the anode of the power controller 230 may be positioned in an aqueous solution 220 in which hydrogen sulfide (H 2 S) 210 is dissolved.
  • H 2 S hydrogen sulfide
  • Hydrogen sulfide 210 used to manufacture the sulfur powder according to an embodiment of the present invention may be generated by the reaction of iron sulfide (FeS) 250 and hydrochloric acid (HCl).
  • FeS iron sulfide
  • HCl hydrochloric acid
  • the method of manufacturing the sulfur powder by the hydrogen sulfide 210 generated by the reaction of the iron sulfide 250 and hydrochloric acid is not limited thereto only as an example for describing an embodiment of the present invention.
  • the hydrogen sulfide 210 used to prepare the sulfur powder may be generated by the reaction of aluminum sulfide (Al 2 S 3 ) with hydrochloric acid.
  • Hydrogen sulfide 210 may be generated by the reaction of iron sulfide 250 and hydrochloric acid (HCl) according to Chemical Formula 2.
  • hydrogen sulfide 210 may be generated by the reaction of aluminum sulfide and hydrochloric acid according to Chemical Formula 3.
  • Hydrogen sulfide 210 has a boiling point of ⁇ 59.6 ° C. and a melting point of ⁇ 82.9 ° C. At room temperature, hydrogen sulfide 210 is a odorless colorless gas.
  • a test tube with side arm may be used so that the generated hydrogen sulfide 210 can be collected.
  • Branched test tube is a test tube with a short glass tube in the shape of a branch on the upper side of the general test tube may be a triangular flask with a branch or a round bottom flask with a branch.
  • a Kipp's apparatus may be used so that the hydrogen sulfide 210 may be collected.
  • Kip's device allows the gas generated by solid and liquid reagents to be drawn out through the cock.
  • the above-described experimental instruments are only examples for describing an embodiment of the present invention, and all the experimental instruments capable of collecting the gas generated by the reaction of the solid reagent and the liquid reagent may be used.
  • the electrode plate is made of nickel, carbon material and stainless steel (STS) due to the strong basicity of sodium hydroxide. It may include one of the. In general, however, the electrical conductivity of nickel, carbon material and stainless steel (STS) is lower than that of silver, copper, gold and aluminum. That is, when a metal such as silver, copper or the like is used as the electrode plate, sulfur powder can be produced more efficiently.
  • hydrogen sulfide 210 may be produced by reacting iron sulfide 250 or aluminum sulfide with hydrochloric acid. Iron sulfide 250 or aluminum sulfide does not react with hydrochloric acid to produce a substance such as sodium hydroxide, and the aqueous solution in which the resulting substance is dissolved does not exhibit basicity. Therefore, since the electrode plate 240 can be used without being limited in kind, one of a metal and a carbon material may be used as the electrode plate.
  • While the power value of the power controller 230 is controlled, sulfur powder 260 is oxidized on the surface of the electrode plate 240 connected to the anode of the power controller 230, and the sulfur powder 260 is formed on the surface of the electrode plate 240. A thin film including) may be formed.
  • the power value of the power controller 230 may be a current value. Or a current value and a voltage value.
  • hydrogen ions may be reduced to generate hydrogen gas.
  • the power of the power controller 230 may be controlled by the above-described method to form a thin film including the sulfur powder 260 on a surface corresponding to a predetermined region of the electrode plate 240.
  • Figure 2b is a circular frame, an electrode plate 240, a rubber ring 290 and a stainless steel plate (STS plate) 280 is cut in half to explain a method for producing sulfur powder according to an embodiment of the present invention The cross section is shown.
  • an aqueous solution 220 in which hydrogen sulfide generated by the above-described method is dissolved is contained in the circular mold, and the aqueous solution 220 and the electrode plate 240 may be in contact with the circular mold.
  • the bottom is drilled so that Hydrogen sulfide dissolved in the aqueous solution 220 may be formed of a thin film containing sulfur powder on the surface corresponding to the predetermined region of the electrode plate 240 by using the above-described principle of electrolysis.
  • the above-described circular frame is only an example for describing an embodiment of the present invention and is not limited thereto.
  • the electrode plate 240 may include one of nickel (Ni), a carbon material, and stainless steel (STS).
  • the electrode plate 240 may include one of a metal or a carbon material.
  • the electrode plate 240 having a circular shape in which a thin film containing sulfur powder may be formed so that the above-described principle of electrolysis is applied, a stainless steel plate (STS plate) connected to the anode of the power controller 230. 280 may be located at the top.
  • STS plate stainless steel plate
  • the position and shape of the above-described electrode plate 240 is only an example for describing an embodiment of the present invention, but is not limited thereto.
  • the above-described stainless steel plate 280 is only an example for describing an embodiment of the present invention and is not limited thereto. Any material may be used as long as the material is electrically conductive.
  • the rubber ring 290 may be positioned above the electrode plate 240 so that a powdery sulfur thin film is formed on a surface corresponding to a predetermined region of the electrode plate 240 having a circular shape.
  • the above-described rubber ring 290 is only an example for explaining an embodiment of the present invention is not limited thereto.
  • platinum (Pt) 270 may be located in the aqueous solution 220 in which hydrogen sulfide is dissolved by the various methods described above, and the platinum 270 located in the aqueous solution 220 may be a cathode of the power controller 230. Can be connected to.
  • the above-described platinum 270 is only an example for describing an embodiment of the present invention, but is not limited thereto.
  • Nickel (Ni), stainless steel (STS), and titanium (Ti) may be used instead of the platinum 270. Can be used.
  • a powdery sulfur thin film may be formed on a surface corresponding to a predetermined region of the electrode plate 240.
  • the sulfur particles included in the thin film 820 formed on the surface of the electrode plate 240 may be linear or spherical, and the predetermined region has a radius smaller than the radius of the electrode plate 240 having a circular shape. It may be a circular area.
  • the above-described circular shape and the preset area are merely examples for describing an embodiment of the present invention, but are not limited thereto.
  • 3a and 3b show the results of analyzing the formation of sulfur powder according to an embodiment of the present invention.
  • Figure 3a shows the result of analyzing through the differential scanning calorimetry (DSC) whether the sulfur powder according to an embodiment of the present invention was prepared.
  • Differential scanning calorimetry is an improvement on differential thermal analysis (DTA).
  • DTA Differential thermal analysis
  • DTA analyzes the thermal properties of a sample material by measuring the temperature difference between the reference material and the sample, which is caused by an endothermic or exothermic due to phase change and pyrolysis of the sample when the reference material and the sample are simultaneously heated at a constant rate of temperature rise. That's how.
  • Differential thermal analysis (DTA) is associated with heat conduction in the sample, but it is difficult to quantitatively measure the amount of heat.
  • differential scanning calorimetry is a method by which the temperature difference generated between the reference material and the sample in the differential thermal analysis (DTA) is offset by the operation of the compensating heater, and therefore when differential scanning calorimetry (DSC) is used, Specific heat or the temperature of the primary phase transition can be determined.
  • a nickel foil connected to a cathode of a power controller is located in an aqueous solution in which hydrogen sulfide is dissolved, and a current value per unit area of the power controller is controlled so that the group of nickel foil is controlled. It may be determined whether sulfur powder is included in the thin film formed on the surface corresponding to the set region.
  • the thin film manufactured by the above-described method was found to have a sulfur peak 310 corresponding to the melting point of sulfur at a temperature lower than about 120 ° C. through differential scanning calorimetry (DSC). Therefore, it can be confirmed that sulfur powder is included in the thin film produced by the above-described method.
  • the nickel foil is only an example for describing the experimental result of FIG. 3 (a) and is not limited thereto.
  • Figure 3b shows the result of the analysis by X-ray diffraction analysis (XRD) whether the sulfur powder was prepared according to an embodiment of the present invention.
  • X-ray diffractiometry is a method for obtaining information related to types and quantities.
  • FIG. 3B it is shown whether sulfur is included in the thin film formed on the surface corresponding to the predetermined region of the nickel foil.
  • the bottom of the X-ray diffraction analysis (XRD) shows the intensity of nickel, and it can be seen that peaks of nickel appear at 2 ⁇ around 45 degrees and about 52 degrees. It can be seen that it appears around 22 to 28 degrees.
  • FIGS. 5A to 5B are views showing sulfur powders formed linearly
  • FIGS. 5A to 5B are views showing sulfur powders formed in a spherical shape according to an embodiment of the present invention.
  • a linear sulfur powder is formed on the surface of the electrode plate 420.
  • a thin film including linear sulfur powder may be formed.
  • the voltage value may be controlled to 2.4V or less.
  • SEM scanning electron microscope
  • the form of sulfur may vary according to the applied current value. That is, linear or spherical sulfur powder may be formed according to the current value applied to the electrode plate.
  • FIG. 5A and 5B show spherical sulfur powders detected by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).
  • Energy dispersive X-ray spectroscopy (EDS) is an additional device attached to scanning electron microscopy (SEM) equipment that analyzes the composition of a sample by collecting specific X-rays of the sample generated by the SEM electron beam. That's how.
  • FIG. 5A is a view illustrating a spherical sulfur thin film formed by scanning electron microscopy (SEM), and FIG. 5B shows a mapping result by energy dispersive spectroscopy (EDS).
  • a thin film including spherical sulfur powder may be formed when a current is applied for less than 3 hours regardless of the current value applied per unit area.
  • a current is applied for less than 3 hours
  • a thin film including spherical sulfur powder may be formed.
  • the form of sulfur may vary according to the applied current value. At this time, the voltage value may be controlled to 2.4V or less.
  • a thin film including porous linear or spherical sulfur powder may be formed according to the control of the applied current value and the applied time per unit area according to the type of electrode plate.
  • Sulfur powder containing a porosity formed according to the above-described embodiment may exhibit an improved reactivity compared to the conventional sulfur.
  • the sulfur powder of the porous form described above may improve the reactivity with lithium ions as compared to the conventional, the battery containing the sulfur powder of the present invention may have a relatively large charging capacity.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a sulfur electrode according to an embodiment of the present invention.
  • a plate current collector connected to a positive electrode of a power controller is positioned in an aqueous solution in which hydrogen sulfide (H 2 S) is dissolved (S610).
  • the plate current collector may correspond to the electrode plate of the above-described method for producing sulfur powder. That is, the electrode plate and the plate-shaped current collector of the method for producing sulfur powder may have the same configuration. Therefore, sulfur powder may be formed on the surface of the electrode plate or the plate current collector according to the power control of the power supply controller. However, the sulfur powder formed on the surface of the electrode plate may be separated using ultrasonic waves or the like to be used as an active material of another electrode, and the sulfur powder formed on the surface of the plate current collector may be used as a sulfur electrode together with the plate current collector.
  • the battery may include an electrode (anode and cathode), an electrolyte, a separator, a current collector, and a case.
  • the current collector serves as a passage for transferring electrons from the outside to allow the electrochemical reaction to occur in the active material or for receiving electrons from the active material and flowing them to the outside.
  • a metal current collector having high electrical conductivity is used as the current collector.
  • the active material is a material that conducts a mechanism reaction of the electrode.
  • the active material is a material that can be reversibly combined with or separated from lithium ions and has the greatest influence on characteristics such as capacity and driving voltage of the battery.
  • the current collector can be used without particular limitation as long as it has high conductivity without causing chemical change in the battery.
  • Al (aluminum) for the positive electrode and Cu (copper) current collector are mainly used for the negative electrode.
  • the plate-shaped current collector may include one of a metal and a carbon material. Meanwhile, the plate current collector may be in the form of a thin plate. However, although the plate-shaped current collector can be called a plate shape because the thickness is relatively thin compared to the length of the horizontal and vertical, it is actually a three-dimensional form having a horizontal, vertical and thickness. Thus, the plate current collector may be substantially three-dimensional in shape, and the plate current collector may be implemented as a metal or carbon current collector having a three-dimensional network structure in order to increase the amount of sulfur formed.
  • the three-dimensional network structure refers to the form of a foam (poam) including the porosity on the surface or inside the current collector.
  • the current collector may be implemented in a structure similar to styrofoam or a structure similar to a sponge.
  • the resulting sulfur powder can be formed in the porous region on the inside or inside the current collector, so that a sulfur electrode including more sulfur powder can be produced, and the relative Can have a larger charging capacity.
  • the power of the power controller is controlled to cause a mechanism reaction on the surface of the current collector to form a powdery sulfur thin film on a surface corresponding to a predetermined region of the current collector (S620).
  • the current value per unit area may be a value of 2.1 mA or more and 3.2 mA or less.
  • the sulfur thin film may be formed in the form of a black film. Sulfur thin film in the form of a black film appears when the sulfur powder is not normally formed, the thin film in the form of a black film has a problem of reducing the voltage by acting as a resistance.
  • the current value per unit area controlled by the power controller is greater than 3.2 mA
  • sulfur powder included in the thin film is grown over a predetermined size as time passes, and the grown sulfur powder may be formed in a black film form. . That is, when the current value per unit area is larger or smaller than the constant value, the thin film including the sulfur powder may not be formed normally.
  • the current value per unit area controlled by the power controller is 2.1 mA or more to 3.2 mA so that the powdered sulfur, which may serve as a charge / discharge of the electrode, may be formed as a thin film on the surface of the plate current collector. It may be the following value.
  • the voltage value may be controlled to about 2.4V or less. That is, while the voltage value is controlled to 2.4V or less to form a thin film containing sulfur, the current value per unit area may be controlled to 2.1mV or more and 3.2mV or less.
  • the individual sulfur powders formed in the manner described above may be nano-sized spherical or linear and may be in porous form. Since the sulfur powder in the porous form includes a large surface area, the sulfur powder according to the present invention may exhibit improved reactivity compared to conventional sulfur. In addition, since the sulfur powder of the porous form described above may be improved in reactivity with lithium ions, the battery containing the sulfur powder of the present invention may include a high charging capacity. Since the sulfur powder in the porous form is white, the sulfur thin film formed may be white.
  • the sulfur electrode manufactured according to an embodiment of the present invention may be used in a primary battery or a secondary battery.
  • the sulfur electrode manufactured according to an embodiment of the present invention can be used as a positive electrode of a lithium-based battery, an alkaline-based, acidic battery.
  • an alkali type battery means the battery using alkali type metals, such as group 1 and group 2.
  • Group 1 elements such as H (hydrogen), Na (sodium), K (potassium), Rb (rubidium), Cs (cesium), and Fr (franxium), Be (beryllium), Mg (magnesium), Ca
  • Group 2 elements such as (calcium), Sr (strontium), Ba (barium), Ra (radium), Ni (nickel), Pb (lead), and the like.
  • Lithium is also an alkali-based metal, but generally lithium-based batteries are separately named so as to follow the present invention.
  • the acidic electrode may be a lead acid battery or the like.
  • the battery includes a positive electrode, an electrolyte, and a negative electrode, and the battery may be classified into a lithium ion battery, a lithium ion polymer battery, a lithium polymer battery, and the like according to the type of separator and electrolyte.
  • coin type button type
  • sheet type cylindrical type
  • cylindrical type cylindrical type
  • rectangular type pouch type, etc.
  • bulk type and thin film type according to the size.
  • FIG. 7 is a flowchart illustrating a method of manufacturing a sulfur electrode according to another embodiment of the present invention.
  • a porous carbon material layer is formed on the surface of the current collector (S710). Then, the plate current collector connected to the anode of the power controller is located in the aqueous solution in which hydrogen sulfide is dissolved (S720). As described above, hydrogen sulfide may be formed as the sodium sulfide is dissolved in water. However, as described above, since sodium sulfide, which is a representative material of the strong base, is also dissolved in the aqueous solution formed by dissolving sodium sulfide in water, the current collector may be composed of any one of nickel (Ni), carbon material, and stainless steel (STS). Can be.
  • the hydrogen sulfide used to manufacture the sulfur electrode according to an embodiment of the present invention may be generated by the reaction of iron sulfide (FeS) and hydrochloric acid (HCl).
  • hydrogen sulfide may be produced by reaction of aluminum sulfide (Al 2 S 3 ) with hydrochloric acid.
  • the current of the power controller is controlled to cause a mechanism reaction on the surface of the porous carbon material layer to form a sulfur thin film in a powder form on the surface corresponding to the predetermined region of the porous carbon material layer (S730). Similar to the above, the current value per unit area can be controlled to 2.1 mA or more and 3.2 mA or less, and the voltage value can be controlled to 2.4 V or less.
  • the upper current collector may be formed to surround the sulfur thin film on the surface of the porous carbon material layer on which the sulfur thin film in powder form is formed.
  • the upper current collector may include a porous carbon material, and the porous carbon material included in the upper current collector may be the same carbon material as the porous carbon material layer described above, but is not limited thereto.
  • 8A and 8B are views illustrating a sulfur electrode manufactured according to an embodiment of the present invention.
  • the sulfur electrode 800 manufactured according to an embodiment of the present invention may have a thin film thin film 820 formed on a surface corresponding to a predetermined region of the plate current collector 810 and the plate current collector 810. It may include.
  • the sulfur thin film 820 may function as an active material.
  • the sulfur electrode 801 may include an upper current collector 830 formed to surround the sulfur thin film 820 on the surface of the plate current collector 810 including the sulfur thin film 820.
  • the upper current collector 830 may include a porous carbon material.
  • the sulfur electrode 801 includes the upper current collector 830 including a porous carbon material, the sulfur thin film 820 is widened in contact with the current collectors 810 and 830.
  • the electrons may move from the current collectors 810 and 830, or the electrons may move from the current collectors 810 and 830 to the sulfur thin film 820. Therefore, since the electrical conductivity may be improved by the upper current collector 830, the performance of the sulfur electrode 801 may be improved.
  • 9A and 9B are views illustrating a sulfur electrode manufactured according to another embodiment of the present invention.
  • FIG. 9A illustrates a structure of a sulfur electrode in which sulfur powder is formed as a thin film 820 on a surface corresponding to a predetermined region of a plate-shaped current collector 810 according to an embodiment of the present invention.
  • a sulfur electrode further including an upper current collector 830 on the surface of the plate current collector 810 may be manufactured to surround the thin film 820.
  • the upper current collector 830 may include a porous carbon material.
  • a porous carbon material layer is formed on a surface of the plate-shaped current collector 810, and then a thin film 820 including sulfur powder is formed on a surface corresponding to a predetermined region of the formed porous carbon material layer.
  • a sulfur electrode having an upper current collector 830 formed on the surface of the porous carbon material layer may be manufactured to surround the formed thin film 820.
  • the upper current collector 830 may include a porous carbon material, and the porous carbon material included in the upper current collector 830 may be the same carbon material as the porous carbon material layer, but is not limited thereto.
  • the sulfur electrode may include the porous carbon material layer, the sulfur thin film 820, and the upper current collector 830 by removing the plate current collector 810.
  • Removal of the plate current collector 810 may be removed by an etching method.
  • the etching method used to remove the plate-shaped current collector 810 is only an example for describing an embodiment of the present invention, but is not limited thereto. Etching removes only the necessary parts by using a chemical solution or a gas, and removes the remaining parts, and wet etching using a chemical such as acid or alkali and dry etching using distilled gas. There is).
  • dry etching is a spatter etching method for etching surface atoms using an inert argon gas ionized by a high frequency discharge, or a gas containing a halogen element such as fluorine is almost plasma (plasma; electrons and cations).
  • Plasma etching may be used to etch the surface with a highly volatile compound that appears while being charged at the same density.
  • the sulfur electrode from which the plate current collector 810 is removed may be manufactured by the above-described method, and when the plate current collector 810 is removed, the weight of the battery may be light, so that the portable electrode can be easily carried.
  • a plurality of sulfur electrodes from which the plate current collector 810 is removed may be manufactured and stacked.
  • the capacity of a battery including an electrode in which a plurality of sulfur electrodes are stacked may be greater than that of a battery including a single non-stacked sulfur electrode.
  • a sulfur electrode including a binder 910 is shown.
  • the binding body 910 is formed on a surface of the plate current collector 810 corresponding to a predetermined region, and the thin film 820 including sulfur powder is formed on the surface of the plate current collector 810 in which the binding body 910 is formed. Sulfur electrodes can be produced while being formed.
  • the binder 910 includes one of carbon nanotubes (CNT), carbon nanofibers (CNF), and nanorods made of metal, and the metal may include at least one of copper, nickel, aluminum, and titanium.
  • CNT carbon nanotubes
  • CNF carbon nanofibers
  • nanorods made of metal
  • the metal may include at least one of copper, nickel, aluminum, and titanium.
  • the sulfur electrode may include a binder 910 and an upper current collector surrounding the sulfur thin film 820, and the binder 910, the sulfur thin film 820, and the binder 910 formed on the porous carbon material layer.
  • an upper current collector surrounding the sulfur thin film 820, a plate current collector may be removed, and a plurality of sulfur electrodes from which the plate current collector is removed may be stacked to be manufactured as one sulfur electrode.
  • the binding body 910 is formed, the structure and manufacturing method are the same as described above, so a detailed description thereof will be omitted.
  • FIG. 10 is a view for explaining the structure of a sulfur battery according to an embodiment of the present invention.
  • the cell includes a cathode, an anode, and an electrolyte 1020.
  • a lithium foil is connected to a negative electrode of a power source 1010 of a battery, and a sulfur electrode manufactured according to an embodiment of the present invention is connected to a positive electrode.
  • the sulfur electrode is a sulfur electrode in which a powdery sulfur thin film is formed on a surface corresponding to a predetermined region of the plate current collector 810, and an upper current collector 830 is formed on the surface of the plate current collector 810 to surround the sulfur thin film.
  • a porous carbon material may be included.
  • Lithium ions included in the lithium foil may be dissolved in the electrolyte 1020. Therefore, during charge and discharge of the battery, lithium ions may move to the positive electrode or the negative electrode of the battery through the electrolyte 1020. Number of lithium ions during discharge of the battery is moved through the electrolyte 1020 to the sulfur cathode, and anode in the sulfides of lithium in a lithium ion as the reaction of the sulfur move to the positive electrode of lithium poly (Li 2 S) and the linear structure sulfide (Li 2 S x ) may be generated. Meanwhile, in the case of sodium batteries, sodium sulfide (Na 2 S) and sodium polysulfide (Na 2 S x ) may be generated by reaction of sodium ions and sulfur.
  • Li 2 S 3 , Li 2 S 4 , Li 2 S 6 and Li 2 S 8 in the above-described lithium polysulfide (Li 2 S x ) having a linear structure may be dissolved in the electrolyte 1020. Therefore, in the conventional Li / S battery, the above-described Li 2 S 3 , Li 2 S 4 , Li 2 S 6, and Li 2 S 8 are dissolved in the electrolyte 1020, and the dissolved Li 2 S 3 , Li 2 S 4. There was a shuttle problem in which Li 2 S 6 and Li 2 S 8 moved to the negative electrode of the battery.
  • the sulfur electrode manufactured according to an embodiment of the present invention lithium ions pass, but lithium polysulfide (Li 2 S 3 , Li 2 S 4 , Li 2 S 6 and Li 2 S 8 ) dissolved in the electrolyte is allowed to pass in and out. And an upper current collector 830 comprising a porous carbon material to limit. Therefore, the battery including the sulfur electrode manufactured by the above method has the advantage that the performance of the battery can be improved while solving the conventional shuttle problem.
  • the use of the electrode according to the present invention in a lithium battery is only an example, and may be used as an electrode of a battery using another alkali metal.
  • Group 1 elements such as H (hydrogen), Na (sodium), K (potassium), Rb (rubidium), Cs (cesium), and Fr (franxium), Be (beryllium), Mg (magnesium), Ca
  • group 2 elements such as (calcium), Sr (strontium), Ba (barium), Ra (radium), Ni (nickel), Pb (lead), and the like.
  • the upper current collector 830 of the present invention can pass sodium ions, but can limit the access of sodium polysulfide dissolved in the electrolyte, thereby improving the performance of the battery while solving the existing shuttle problem. .
  • 11A to 11E illustrate the structure of a sulfur electrode manufactured according to an embodiment of the present invention.
  • an electrode according to an exemplary embodiment may have a plate current collector 810 that serves as an electron path, and a surface corresponding to a predetermined region of the plate current collector 810, which performs a mechanism reaction of the electrode.
  • the sulfur thin film 820 is formed in a thin film.
  • the sulfur thin film 820 may function as an active material as a porous white powder. That is, the active material may include the sulfur thin film 820.
  • an electrode according to another exemplary embodiment may include a plate-shaped current collector 810, a sulfur thin film 820 formed in a thin film on a surface corresponding to a predetermined region of the plate-shaped current collector 810, and a plate shape.
  • the upper current collector 830 is formed on the surface of the surface of the sulfur thin film 820 and the surface of the region except for the predetermined region of the plate-shaped current collector 810 to allow electrons between the current collector 810 and the sulfur thin film 820 to enter and exit. Include.
  • the upper current collector 830 may include a porous carbon material.
  • an electrode according to another embodiment of the present invention includes a porous carbon material current collector 840 that surrounds an entire sulfur thin film so that electrons can enter and exit the sulfur thin film 820 and the sulfur thin film 820.
  • the plate-shaped current collector 810 is formed on one surface of the porous carbon material current collector 840.
  • a porous carbon material layer is formed on the surface of the plate-shaped current collector 810, and the sulfur thin film having a powder form in a portion of the porous carbon material layer by the above-described electrolysis method ( 820 may be formed.
  • the porous carbon material current collector 840 may be formed by forming the porous carbon material layer again to surround the formed sulfur thin film 820.
  • the porous carbon current collector 840 allows lithium ions to pass through and out of lithium polysulfides (Li 2 S 3 , Li 2 S 4 , Li 2 S 6, and Li 2 S 8 ) dissolved in an electrolyte in the lithium polysulfide. You can limit it.
  • the porous carbon current collector 840 may pass sodium ions and restrict entry and exit of sodium polysulfide (Na 2 S x ) dissolved in the electrolyte.
  • an electrode according to another exemplary embodiment of the present disclosure may be manufactured while the plate current collector 810 is removed from the electrode manufactured in FIG. 11C. Accordingly, the electrode according to another embodiment of the present invention includes only the porous carbon material current collector 840 that surrounds the entire sulfur thin film 820 so that electrons can enter and exit the sulfur thin film 820 and the sulfur thin film 820. do.
  • Removal of the plate-shaped current collector 810 described above may be removed by an etching method.
  • the etching method used to remove the plate-shaped current collector 810 is only an example for describing an embodiment of the present invention, but is not limited thereto.
  • Etching removes only the necessary parts by using a chemical solution or a gas, and removes the remaining parts, and wet etching using a chemical such as acid or alkali and dry etching using distilled gas. There is).
  • dry etching is a spatter etching method for etching surface atoms using an inert argon gas ionized by a high frequency discharge, or a gas containing a halogen element such as fluorine is almost plasma (plasma; electrons and cations).
  • Plasma etching may be used to etch the surface with a highly volatile compound that appears while being charged at the same density.
  • the electrode from which the plate current collector 810 is removed may be manufactured by the above-described method, and the weight of the battery including the electrode from which the plate current collector 810 is removed includes the plate current collector 810 in the electrode. If it is lighter than there is an advantage that it is easy to carry.
  • a plurality of porous carbon material current collectors surrounding the entire sulfur thin film manufactured in FIG. 11D may be provided, and an electrode according to another embodiment of the present invention may include a plurality of porous carbon current collectors described above. It can be formed as one.
  • the capacity of a battery including an electrode formed by stacking a plurality of porous carbon current collectors has a greater effect than that of a battery including an electrode having a single porous carbon material current collector.
  • 12A to 12E show the structure of an electrode manufactured according to another embodiment of the present invention.
  • an electrode may have a plate current collector 810 that serves as an electron path, and a surface corresponding to a predetermined region of the plate current collector 810. And a sulfur thin film 820 formed as a thin film, wherein the sulfur thin film 820 is in the form of a powder which forms lithium sulfide (Li 2 S) and lithium polysulfide (Li 2 S x ) having a linear structure by reacting with lithium ions. It may include sulfur and may include sulfur in powder form that reacts with sodium ions to form sodium sulfide (Na 2 S) and sodium polysulfide (Na 2 S x ). A binder 910 for binding sulfur in powder form is included.
  • the binder 910 may include one of carbon nanotubes (CNT), carbon nanofibers (CNF), and nanorods composed of metal, and the above-described metal may include at least one of copper, nickel, aluminum, and titanium. Can be.
  • a binding body 910 is formed on a surface corresponding to a predetermined region of the plate-shaped current collector 810, and the plate-shaped collector in which the binding body 910 is formed by the above-described electrolysis method.
  • the active material thin film made of sulfur in powder form may be formed on a surface corresponding to a predetermined region of the whole 810.
  • the plate current collector 810 When hydrogen sulfide is produced by the reaction of sodium sulfide and water so that the above-described electrolysis method is used, the plate current collector 810 may be made of any one of nickel (Ni), carbon material, and stainless steel (STS), and hydrogen sulfide is iron sulfide When generated by the reaction of (FeS) and hydrochloric acid (HCl) or by the reaction of aluminum sulfide (Al 2 S 3 ) and hydrochloric acid, the plate current collector 810 may be composed of any one of a metal and a carbon material.
  • an electrode according to another exemplary embodiment may include a plate-shaped current collector 810, a sulfur thin film 820 formed in a thin film on a surface corresponding to a predetermined region of the plate-shaped current collector 810, and a plate shape.
  • the upper current collector 830 is formed on the surface of the surface of the sulfur thin film 820 and the surface of the region except for the predetermined region of the plate-shaped current collector 810 to allow electrons between the current collector 810 and the sulfur thin film 820 to enter and exit.
  • the sulfur thin film 820 includes the binding body 910.
  • the upper current collector 830 may include a porous carbon material.
  • an electrode according to another exemplary embodiment of the present disclosure may include a porous carbon material current collector 840 and a porous material covering the entire active material to allow electrons to enter and exit the sulfur thin film 820 and the sulfur thin film 820.
  • the plate-shaped current collector 810 is formed on one surface of the carbon-based current collector 840, the sulfur thin film 820 includes a binder 910.
  • a porous carbon material layer is formed on the surface of the plate-shaped current collector 810, a binder 910 is formed in a predetermined region of the porous carbon material layer, the electrolysis described above
  • the sulfur thin film 820 in powder form may be formed on the porous carbon material layer on which the binder 910 is formed.
  • the porous carbon material current collector 840 may be formed by forming the porous carbon material layer again to surround the formed sulfur thin film 820.
  • an electrode according to another exemplary embodiment may be manufactured while the plate current collector 810 is removed from the electrode manufactured in FIG. 12C. Accordingly, the electrode according to another embodiment of the present invention includes only the sulfur thin film 820 including the binding body 910 and the porous carbon material current collector 840 covering the entire sulfur thin film 820.
  • Removal of the plate-shaped current collector 810 described above may be removed by an etching method.
  • the etching method used to remove the plate-shaped current collector 810 is only an example for describing an embodiment of the present invention, but is not limited thereto.
  • an electrode from which the plate current collector 810 is removed may be manufactured by the above-described method, and the weight of the battery including the electrode from which the plate current collector 810 is removed may include the current collector 810 included in the electrode. If it is lighter than the case there is an advantage that it is easy to carry.
  • a plurality of porous carbon material collectors surrounding the entire active material including the binder prepared in FIG. 12C may be provided, and the electrode according to another embodiment of the present invention may include the plurality of porous carbon collectors described above. The whole may be stacked to form one.
  • the capacity of a battery including an electrode formed by stacking a plurality of porous carbon current collectors has a greater effect than that of a battery including an electrode having a single porous carbon material current collector.
  • FIG. 13A to 13B illustrate a result of observing a sulfur structure formed on an electrode manufactured according to an embodiment of the present invention by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).
  • SEM scanning electron microscopy
  • EDS energy dispersive spectroscopy
  • SEMs Scanning electron microscopes
  • the target sample can be observed. Therefore, SEM is not limited to the thickness, size and preparation of the sample and is mainly used to obtain information on the sample surface.
  • EDS Energy dispersive X-ray spectroscopy
  • SEM scanning electron microscopy
  • FIG. 13A and 13B a scanning electron microscope (SEM) shows a sulfur structure formed by controlling a current value per unit area of 2.1 mA in an electrode using stainless steel (STS) as a current collector according to an embodiment of the present invention.
  • SEM scanning electron microscope
  • STS stainless steel
  • EDS energy dispersive spectroscopy
  • FIG. 14A to 14B illustrate a result of observing a sulfur structure formed on an electrode manufactured according to another embodiment of the present invention by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). .
  • SEM scanning electron microscopy
  • EDS energy dispersive spectroscopy
  • FIG. 14A and 14B a scanning electron microscope (SEM) shows a sulfur structure formed by controlling a current value per unit area of 2.7 mA in an electrode using stainless steel (STS) as a current collector according to an embodiment of the present invention.
  • SEM scanning electron microscope
  • FIG. 14A The results observed (FIG. 14A) and the energy dispersive spectroscopy (EDS) mapping results (FIG. 14B) are shown.
  • 15A to 15B illustrate a result of observing a sulfur structure formed on an electrode manufactured according to another embodiment of the present invention with a scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). .
  • SEM scanning electron microscope
  • EDS energy dispersive spectroscopy
  • a scanning electron microscope shows a sulfur structure formed by controlling a current value per unit area of 3.2 mA in an electrode using stainless steel (STS) as a current collector according to an embodiment of the present invention.
  • STS stainless steel
  • the observed results Fig. 15a
  • EDS energy dispersive spectroscopy
  • 16A and 16B illustrate charging and discharging results of a battery including a sulfur positive electrode manufactured according to an embodiment of the present invention.
  • the cell includes a positive electrode, a negative electrode and an electrolyte.
  • a lithium foil is formed at a negative electrode of a battery in which an electrode manufactured according to an embodiment of the present invention is configured as a positive electrode, and as an electrolyte, lithium bisamide (LiTFSI) at a concentration of 1M and lithium nitrate at a concentration of 0.1M (LiNO 3) and dimethoxyethane (DME) / dioxolane (DOL) mixed in a 3 to 7 volume ratio.
  • LiTFSI lithium bisamide
  • LiNO 3 dimethoxyethane
  • DME dimethoxyethane
  • DOL dioxolane
  • 16A is a charge / discharge graph of a battery manufactured according to an embodiment of the present invention, which shows the results of two discharges and charges performed in a voltage range of 1.5V to 2.9V over time while maintaining a current of 10 ⁇ A. .
  • a cathode of a battery manufactured according to an exemplary embodiment of the present invention includes a sulfur thin film in powder form formed on a surface corresponding to a predetermined region of stainless steel by controlling a current value per unit area of 2.1 mA.
  • 16B is a charge / discharge graph of a battery manufactured according to an embodiment of the present invention, which shows the result of two discharges and charges performed in a voltage range of 1.5V to 2.9V over time while maintaining a current of 10 ⁇ A. .
  • the positive electrode of the battery manufactured according to the embodiment of the present invention further includes graphene on the surface of the stainless steel to surround the sulfur thin film included in the positive electrode of the battery of FIG. 16A.
  • 17A and 17B illustrate charging and discharging results of a battery including a sulfur anode manufactured according to another embodiment of the present invention.
  • the negative electrode and electrolyte of the battery used in FIGS. 17A and 17B are the same as the negative electrode and electrolyte used in FIGS. 16A and 16B.
  • 17A is a charge / discharge graph of a battery manufactured according to an embodiment of the present invention, which shows the results of two discharges and charges performed in a voltage range of 1.5V to 2.9V over time while maintaining a current of 10 ⁇ A. .
  • a positive electrode of a battery manufactured according to an exemplary embodiment of the present invention includes a powdery sulfur thin film formed on a surface corresponding to a predetermined region of stainless steel by controlling a current value per unit area of 2.7 mA.
  • 17B is a charge / discharge graph of a battery manufactured according to an embodiment of the present invention, which shows the results of two discharges and charges performed in a voltage range of 1.5V to 2.9V over time while maintaining a current of 10 ⁇ A. .
  • the cathode of the battery manufactured according to the exemplary embodiment of the present invention further includes graphene on the surface of the stainless steel to surround the sulfur thin film included in the anode of the battery of FIG. 17A.
  • the result of the graph shown in FIG. 17B shows that the flat voltage is shown at 2.35V and 2.1V during discharge. Therefore, it can be seen that the result of the graph described above is similar to the reaction of a typical Li / S battery during discharge.
  • the access of lithium polysulfide (Li 2 S 3 , Li 2 S 4 , Li 2 S 6 and Li 2 S 8 ) or sodium polysulfide (Na 2 S x ) that can be dissolved in the electrolyte by graphene is restricted.
  • the existing shuttle problem is solved, and the electrical performance between the sulfur thin film and the stainless steel is improved to confirm that the performance of the battery is improved.
  • 18A and 18B illustrate charging and discharging results of a battery composed of a sulfur anode manufactured according to another embodiment of the present invention.
  • the negative electrode and electrolyte of the battery used in FIGS. 18A and 18B are the same as the negative electrode and electrolyte used in FIGS. 16A and 16B.
  • 18A is a charge / discharge graph of a battery manufactured according to an exemplary embodiment of the present invention, which illustrates a result of performing discharge once in a voltage range of 1.6V to 2.2V over time while maintaining a current of 10 ⁇ A.
  • a positive electrode of a battery manufactured according to an exemplary embodiment of the present invention includes a powdery sulfur thin film formed on a surface corresponding to a predetermined region of stainless steel by controlling a current value per unit area of 3.2 mA.
  • Figure 18b is a discharge graph of a battery manufactured according to an embodiment of the present invention shows a result of performing a discharge once in the voltage range of 1.6V to 2.3V over time while maintaining a current of 10 ⁇ A.
  • the cathode of the battery manufactured according to the embodiment of the present invention further includes graphene on the surface of the stainless steel to surround the sulfur thin film included in the anode of the battery of FIG. 18A.
  • the performance of the electrode manufactured according to the embodiment of the present invention may be improved while the active material thin film is formed on the metal current collector having high electrical conductivity.
  • the electrode according to the present invention may be used as an electrode of a battery using not only lithium but also other alkali metals.
  • Group 1 elements such as H (hydrogen), Na (sodium), K (potassium), Rb (rubidium), Cs (cesium), and Fr (franxium), Be (beryllium), Mg (magnesium), Ca
  • group 2 elements such as (calcium), Sr (strontium), Ba (barium), Ra (radium), Ni (nickel), Pb (lead), and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

유황 분말, 유황 전극, 이를 포함하는 전지 및 제조 방법이 개시된다. 유황 분말의 제조 방법은 황화수소가 용해된 수용액 내에 전원 제어기의 양극에 연결된 전극판을 위치시키는 단계, 전원 제어기의 전력을 제어하여 전극판의 기 설정된 영역에 대응하는 표면에 유황 분말을 박막으로 형성시키는 단계 및 형성된 유황 분말을 전극판으로부터 분리시키는 단계를 포함한다.

Description

유황 분말, 유황 전극, 이를 포함하는 전지 및 제조 방법
본 발명은 유황 분말, 유황 전극, 이를 포함하는 전지 및 제조 방법에 관한 것으로, 보다 상세하게는 다양한 형상으로 제조 가능한 유황 분말, 유황 전극, 이를 포함하는 전지 및 제조 방법에 관한 것이다.
현재 이차전지는 모바일 폰을 포함한 모바일 기기의 주요 전력원으로 활용되고 있다. 이러한 이차전지는 나노스케일의 초소형 장치에서부터, 노트북과 같은 이동형 장치, 전기자동차 및 스마트 그리드를 위한 전력저장용 장치까지 점차 적용범위가 확대되고 있다.
최근, 리튬이온 이차전지는 전기자동차 및 전력저장 분야에서 각광을 받고 있다. 전기자동차 및 전력저장 분야에서 이차전지를 활용하기 위해 이차전지는 낮은 가격과 높은 에너지밀도를 가져야한다.
일반적으로 전지는 양극, 음극, 전해질, 분리막 및 이들을 포장하는 케이스로 구성될 수 있다. 여기서 양극 및 음극은 활물질, 도전재 및 바인더로 구성될 수 있다.
한편 전지가 가지는 에너지의 양을 에너지 밀도로써 표시하는데 그 단위는 단위 부피당 또는 단위 중량당에 포함되어 있는 에너지량으로써 양극, 음극 및 분리막을 포함한 전해질의 부피 또는 무게로서 계산되며, 또는 집전체 및 케이스의 무게를 포함한 실질적인 값이 계산될 수도 있다.
리튬이온 이차전지의 경우, 전기자동차 및 스마트 그리드용 전력저장용으로 이용되기 위해 해결되어야 할 문제점이 있다.
리튬이온 이차전지는 높은 가격으로 인해, 전기자동차의 경우, 많게는 전기자동차 구매 비용의 70%이상을 차지하기도 한다. 또한 리튬이온 이차 전지가 전기자동차에 이용되어도 260Wh/kg이상의 높은 에너지밀도가 달성되기 어려우며, 기존 전극 물질을 포함하는 리튬이온 이차전지가 300Wh/kg의 에너지밀도를 갖도록 구현되는 것 또한 기술적인 한계에 의해 어려운 실정이다.
따라서 높은 에너지밀도와 낮은 가격을 달성할 수 있는 새로운 전지시스템이 요구되고 있으며, 그 후보군 중에서 가장 적합한 시스템으로는 Na/S, Mg/S, Li/S 전지가 있다. Li/S전지의 경우, 양극 활물질로 사용되는 유황은 값이 싸고, 친환경적인 장점을 가지고 있다. 또한, Li/S전지는 이론적으로 2600Wh/kg의 매우 높은 에너지밀도를 갖는다. 따라서 Li/S 전지는 전기자동차 및 전력저장용으로 빼놓을 수 없는 차세대 전지라고 할 수 있다.
기존의 유황 분말은 황화나트륨(Na2S)을 물과 반응시키고 유황 이온의 산화 반응을 통해 얻어졌다. 한편, 유황 분말은 낮은 전기전도도 등의 특성을 가지고 있기 때문에 전극으로 사용되기 위해서 도전재 및 바인더가 혼합된 슬러리 상태로 제작된다. 그리고, 슬러리 상태로 제작된 유황 분말이 집전체 위에 코팅되어 전지(또는, 전극)가 제작된다.
상술한 바와 같이, 전지는 실제 전지 반응에 참여하는 활물질 이외에 도전재, 바인더 등을 포함하기 때문에 유황 전극에서 활물질(유황)이 차지하는 비율이 상당히 낮다. 그 결과, 종래 제조된 Li/S 전지의 실제 에너지밀도는 이론적 에너지밀도와 큰 차이를 보인다.
따라서, 이론적 에너지밀도에 근접한 실제 고성능 Li/S 전지를 구현할 수 있는 다양한 방법들이 요구되고 있다.
본 발명이 해결하려는 과제는, 다양한 형상으로 제조 가능하면서도 전극 성능을 향상시킬 수 있는 유황 분말, 유황 전극, 이를 포함하는 전지 및 제조 방법을 제공함에 있다.
상술한 목적을 달성하기 위한 본 발명의 일 실시 예에 따른 유황 분말의 제조 방법은 황화수소가 용해된 수용액 내에 전원 제어기의 양극에 연결된 전극판을 위치시키는 단계, 상기 전원 제어기의 전력을 제어하여 상기 전극판의 기 설정된 영역에 대응하는 표면에 유황 분말을 박막으로 형성시키는 단계 및 상기 형성된 유황 분말을 상기 전극판으로부터 분리시키는 단계를 포함할 수 있다.
그리고, 상기 황화수소는 황화철(FeS) 또는 황화알루미늄(Al2S3)을 염산(HCl)과 반응시켜 생성될 수 있다.
또한, 상기 분리시키는 단계는 초음파를 이용하여 상기 형성된 유황 분말을 상기 전극판으로부터 분리시킬 수 있다.
한편, 상기 유황 분말은 다공성의 구형 또는 선형이고 백색일 수 있다.
그리고, 상기 전극판은 전자 통로의 역할을 수행하도록 금속 및 탄소 소재 중 하나를 포함하는, 유황 분말의 제조 방법.
또한, 상기 박막으로 형성시키는 단계는 상기 전력의 전류값을 2.1mA 이상 3.2mA 이하의 범위로 제어하고, 상기 전력의 전압값을 2.4V 이하의 범위로 제어할 수 있다.
상술한 목적을 달성하기 위한 본 발명의 일 실시 예에 따른 유황 전극의 제조 방법은 황화수소가 용해된 수용액 내에 전원 제어기의 양극에 연결된 판형 집전체를 위치시키는 단계 및 상기 전원 제어기의 전력을 제어하여 상기 판형 집전체의 기 설정된 영역에 대응하는 표면에 유황 분말을 박막으로 형성시키는 단계를 포함할 수 있다.
그리고, 유황 전극의 제조 방법은 상기 유황 분말을 포함하는 박막을 감싸도록 상기 판형 집전체 표면에 상부집전체를 형성하는 단계를 더 포함하고, 상기 상부집전체는 다공성 탄소 소재를 포함할 수 있다.
또한, 유황 전극의 제조 방법은 상기 판형 집전체의 기 설정된 영역에 대응하는 표면에 결속체를 형성하는 단계를 더 포함하고, 상기 결속체는 탄소나노튜브(CNT), 탄소나노파이버(CNF) 및 금속으로 구성된 나노 막대 중 하나를 포함하며, 상기 금속은 구리, 니켈, 알루미늄 및 타이타늄 중 적어도 하나를 포함할 수 있다.
한편, 상기 판형 집전체는 3차원 네트워크 구조일 수 있다.
상술한 목적을 달성하기 위한 본 발명의 일 실시 예에 따른 유황 전극은 전자 통로 역할을 수행하는 판형 집전체 및 상기 유황 전극의 기전 반응을 수행하며 상기 판형 집전체의 기 설정된 영역과 대응되는 표면에 박막으로 형성된 활물질을 포함하고, 상기 활물질은 다공성의 백색인 분말 형태의 유황을 포함할 수 있다.
그리고, 유황 전극은 상기 판형 집전체와 상기 활물질 간 전자가 출입될 수 있도록 상기 활물질의 표면 및 상기 판형 집전체의 기 설정된 영역을 제외한 영역의 표면에 형성된 상부집전체를 더 포함하고, 상기 상부집전체는 전해질에 용해되는 중간생성물의 출입을 제한하는 다공성 탄소 소재를 포함할 수 있다.
상술한 목적을 달성하기 위한 본 발명의 또 다른 일 실시 예에 따른 유황 전극은 상기 유황 전극의 기전 반응을 수행하는 활물질 및 상기 활물질로 전자가 출입될 수 있도록 상기 활물질 전체를 감싸는 다공성 탄소 소재 집전체를 포함하고, 상기 활물질은 다공성의 백색인 분말 형태의 유황을 포함하며, 상기 다공성 탄소 소재 집전체는 전해질에 용해되는 중간생성물의 출입을 제한할 수 있다.
그리고, 유황 전극은 상기 다공성 탄소 소재 집전체의 일면에 형성되고 전자 통로 역할을 수행하는 판형 집전체를 더 포함할 수 있다.
또한, 상기 활물질 전체를 감싸는 다공성 탄소 소재 집전체는 복수 개이고, 상기 복수 개의 다공성 탄소 소재 집전체는 적층되어 하나로 형성될 수 있다.
이상과 같은 본 발명의 실시 예에 따라 전기 전도도가 높은 금속 집전체에 유황 박막이 형성될 수 있고, 전극 성능이 향상되도록 다양한 형태를 가지는 유황 전극 및 이를 포함하는 전지가 제조될 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해 될 수 있을 것이다.
도 1은 본 발명의 일 실시 예에 따른 유황 분말을 제조하는 방법을 나타내는 흐름도이다.
도 2a 및 도 2b는 본 발명의 일 실시 예에 따른 유황 분말을 제조하는 과정을 설명하는 도면이다.
도 3a 및 도 3b는 본 발명의 일 실시 예에 따른 유황 분말 형성 여부를 분석한 결과를 나타낸 것이다.
도 4a 및 도 4b는 선형으로 형성된 유황 분말을 나타내는 도면이다.
도 5a 및 도 5b는 본 발명의 일 실시 예에 따른 구형으로 형성된 유황 분말을 나타내는 도면이다.
도 6은 본 발명의 일 실시 예에 따른 유황 전극을 제조하는 방법을 나타내는 흐름도이다.
도 7은 본 발명의 다른 실시 예에 따른 유황 전극을 제조하는 방법을 나타내는 흐름도이다.
도 8a 및 도 8b는 본 발명의 일 실시 예에 따라 제조된 유황 전극을 나타내는 도면이다.
도 9a 및 도 9b는 본 발명의 다른 실시 예에 따라 제조된 유황 전극을 나타내는 도면이다.
도 10은 본 발명의 일 실시 예에 따른 유황 전지의 구조를 설명하는 도면이다.
도 11a 내지 도 11e는 본 발명의 일 실시 예에 따라 제조된 유황 전극의 구조를 나타낸 것이다.
도 12a 내지 도 12e는 본 발명의 또 다른 일 실시 예에 따라 제조된 유황 전극의 구조를 나타낸 것이다.
도 13a 내지 도 13b는 본 발명의 일 실시 예에 따라 제조된 유황 전극에 형성된 유황 구조를 주사전자현미경(SEM)으로 관찰한 결과 및 에너지분산형 분광분석법(EDS)로 맵핑한 결과를 나타낸 것이다.
도 14a 내지 도 14b는 본 발명의 또 다른 일 실시 예에 따라 제조된 유황 전극에 형성된 유황 구조를 주사전자현미경(SEM)으로 관찰한 결과 및 에너지분산형 분광분석법(EDS)로 맵핑한 결과를 나타낸 것이다.
도 15a 내지 도 15b는 본 발명의 또 다른 일 실시 예에 따라 제조된 유황 전극에 형성된 유황 구조를 주사전자현미경(SEM)으로 관찰한 결과 및 에너지분산형 분광분석법(EDS)로 맵핑한 결과를 나타낸 것이다.
도 16a 및 도 16b는 본 발명의 일 실시 예에 따라 제조된 유황 양극으로 구성된 전지의 충방전 결과를 나타낸 것이다.
도 17a 및 도 17b는 본 발명의 또 다른 일 실시 예에 따라 제조된 유황 양극으로 구성된 전지의 충방전 결과를 나타낸 것이다.
도 18a 및 도 18b는 본 발명의 또 다른 일 실시 예에 따라 제조된 유황 양극으로 구성된 전지의 충방전 결과를 나타낸 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 게시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 게시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서, “가진다”, “가질 수 있다”, “포함한다” 또는 “포함할 수 있다”등의 표현은 해당 특징(예: 수치, 기능, 동작, 또는 부품 등의 구성요소)의 존재를 가리키며, 추가적인 특징의 존재를 배제하지 않는다.
도 1은 본 발명의 일 실시 예에 따른 유황 분말을 제조하는 방법을 나타내는 흐름도이다.
도 1을 참조하면, 황화수소(H2S)가 용해된 수용액 내에 전원 제어기의 양극에 연결된 전극판이 위치된다(S110). 전원 제어기의 전력 제어에 따라 황화수소가 용해된 수용액 내의 전극판 표면에서 화학 반응을 통해 유황 분말이 제조된다. 즉, 전극판 표면에서 기전 반응이 일어나도록 전원 제어기의 전력이 제어되면, 전극판의 기 설정된 영역에 대응되는 표면에 유황 분말이 박막으로 형성된다(S120).
예를 들어, 전극판은 금속 및 탄소 소재 중 하나를 포함할 수 있다. 또한 전극판은 전극판의 표면에 형성되는 유황의 양이 증대되도록 3차원 네트워크 구조를 포함할 수 있다.
본 발명의 일 실시 예에 따라 제어되는 전력의 단위 면적당 전류값은 2.1mA 이상 3.2mA 이하의 범위로 제어될 수 있다. 한편, 이때 전압값은 약 2.4V 이하로 제어될 수 있다.
구체적으로, 전원 제어기에서 제어되는 단위 면적당 전류값이 2.1mA보다 작은 경우 유황 분말을 포함하는 박막은 검은 필름 형태로 형성될 수 있다. 검은 필름 형태의 박막은 유황 분말이 정상적으로 형성되지 않았을 때 나타나는 현상이며, 검은 필름 형태의 박막은 저항과 같은 역할을 수행하여 전압을 감소시키는 문제점이 있다..
또한, 전원 제어기에서 제어되는 단위 면적당 전류값이 3.2mA보다 큰 경우 시간이 지남에 따라 유황 분말을 포함하는 박막이 기 설정된 크기 이상으로 성장되고, 성장된 유황 분말을 포함하는 박막은 검은 필름 형태로 형성될 수 있다. 즉, 단위 면적당 전류값이 일정한 값보다 크거나 작은 경우, 유황 분말을 포함하는 박막이 정상적으로 형성되지 않을 수 있다.
따라서, 본 발명의 일 실시 예에 따른 유황 분말을 포함하는 박막이 성장되도록 전원 제어기에서 제어되는 전력의 전류값은 2.1mA 이상 3.2mA 이하의 값일 수 있다. 이때, 전압값은 약 2.4V 이하로 제어될 수 있다. 즉, 유황 분말을 형성하기 위해 전압값이 2.4V 이하로 제어되면서, 단위 면적당 전류값은 2.1mV 이상 3.2mV 이하로 제어될 수 있다.
상술한 방식으로 형성된 개개의 유황 분말은 나노 크기의 구형 또는 선형일 수 있으며, 다공성 형태일 수 있다. 다공성 형태인 유황 분말은 넓은 표면적을 포함하므로 본 발명에 따른 유황 분말은 기존의 유황에 비해 향상된 반응성을 나타낼 수 있다. 또한, 상술한 다공성 형태의 유황 분말은 리튬 이온과의 반응성도 기존에 비해 향상될 수 있으므로, 본 발명의 유황 분말이 포함된 전지는 상대적으로 큰 충전용량을 가질 수 있다. 또한, 본 발명에 따라 제조된 유황 분말은 전지 뿐만 아니라 유황 분말이 이용되는 다양한 산업 분야에서 이용될 수 있다. 다공성을 포함하는 구 형태의 유황 분말은 백색이므로 전극판 상에는 백색의 유황 박막이 형성될 수 있다.
유황 분말의 제조 방법에는 전기분해의 원리가 이용될 수 있다. 전기분해란 자발적으로 산화환원반응이 일어나지 않는 경우 전기에너지에 의해 비자발적으로 산화환원반응을 일으키는 것을 나타낸다. 전기분해 시 음극에서는 양이온이 환원되고, 양극에서는 음이온이 산화된다.
본 발명의 일 실시 예에 따른 유황 분말을 제조하는 방법에는 전기분해의 원리가 적용되도록 물에 황화나트륨(Na2S)이 용해된 수용액이 이용될 수 있다. 아래의 화학식 1은 황화나트륨이 물에 용해되면서 나타나는 반응식을 나타낸 것이다.
[화학식 1]
Na2S + H2O → NaOH + H2S + H2O
화학식 1을 참조하면, 황화나트륨이 물에 용해되면서 황화수소가 용해된 수용액이 형성될 수 있지만, 수용액에는 수산화나트륨도 함께 용해될 수 있다. 수산화나트륨은 강염기의 대표적인 물질로 다른 물질을 잘 부식시킬 수 있다.
산은 염기와는 반응하지만 다른 산과는 반응하지 않는다. 마찬가지로 염기는 산과는 반응하지만 다른 염기와는 반응하지 않는다. 금속은 일반적으로 산과 반응하여 부식될 수 있다. 하지만, 금속은 일반적으로 염기와는 반응하지 않지만, 금속 중에서도 산과 반응할 뿐만 아니라 염기와도 반응하는 금속이 있다. 산과 염기에 모두 반응할 수 있는 물질을 양쪽성 물질이라고 부르며, 금속 중에서 양쪽성 성질을 나타내는 금속은 대표적으로 알루미늄(Al), 아연(Zn), 갈륨(Ga), 인듐(In), 게르마늄(Ge), 주석(Sn), 납(Pb) 및 비스무트(Bi)가 있다.
따라서, 본 발명의 일 실시 예에 따라 황화나트륨(Na2S)이 용해된 수용액으로부터 생성된 수산화나트륨에 의해 전극판은 니켈(Ni), 탄소 소재 및 스테인리스강(STS) 중 어느 하나로 구성될 수 있다.
본 발명의 일 실시 예에 따른 유황 분말을 제조하는데 이용되는 황화수소는 황화철(FeS)과 염산(HCl)의 반응으로 생성될 수 있다. 또는, 황화수소는 황화알루미늄(Al2S3)과 염산의 반응으로 생성될 수 있다. 구체적인 과정은 도 2a 및 도 2b를 참조하여 후술한다.
형성된 유황 분말은 전극판으로부터 분리된다(S130). 본 발명의 일 실시 예에 따르면, 전극판의 표면에 박막으로 형성된 유황 분말은 기 설정된 시간 이후 일정한 두께로 형성될 수 있다. 유황 분말을 포함하는 박막이 일정한 두께로 형성되면 박막의 가장자리에 포함된 유황 분말의 결합력이 약해질 수 있다. 따라서, 결합력이 약해진 유황 분말은 전극판으로부터 분리되어 자발적으로 수용액 표면으로 부유될 수 있다. 따라서, 기 설정된 시간 이후 일정한 두께로 형성된 유황 분말은 전극판으로부터 분리될 수 있다. 다만, 전극판으로부터 자발적으로 분리되는 유황 분말은 전체 형성된 유황 분말에 비해 적은 양일 수 있다.
따라서, 유황 분말은 초음파에 의해 전극판으로부터 분리될 수 있다. 구체적으로, 전극판에 대한 초음파 세척 과정을 통해 전극판에 형성된 유황 분말이 전극판으로부터 분리될 수 있다.
도 2a 및 도 2b는 본 발명의 일 실시 예에 따른 유황 분말을 제조하는 과정을 설명하는 도면이다.
도 2a를 참조하면, 황화수소(H2S)(210)가 용해된 수용액(220) 내에 전원 제어기(230)의 양극에 연결된 전극판(240)이 위치될 수 있다.
본 발명의 일 실시 예에 따른 유황 분말을 제조하는데 이용되는 황화수소(210)는 황화철(FeS)(250)과 염산(HCl)의 반응으로 생성될 수 있다. 단, 황화철(250)과 염산의 반응으로 생성된 황화수소(210)에 의해 유황 분말을 제조하는 방법은 본 발명의 일 실시 예를 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니다. 예를 들어, 유황 분말을 제조하는데 이용되는 황화수소(210)는 황화알루미늄(Al2S3)과 염산의 반응으로도 생성될 수 있다.
아래의 화학식 2 및 3을 참조하여 유황 분말의 제조 방법을 설명하도록 한다.
[화학식 2]
FeS(s) + 2HCl(aq) + H2O(aq) → FeCl2(aq) + H2S(g) + H2O(aq)
[화학식 3]
Al2S3(s) + 6HCl(aq) + H2O(aq) → 2AlCl3(aq) + 3H2S(g) + H2O(aq)
화학식 2에 따라 황화철(250)과 염산(HCl)의 반응으로 황화수소(210)가 생성될 수 있다. 또한, 화학식 3에 따라 황화알루미늄과 염산의 반응으로 황화수소(210)가 생성될 수 있다.
황화수소(210)의 성질은 끓는점 -59.6℃, 녹는점 -82.9℃로 상온에서 황화수소(210)는 악취를 가진 무색의 기체이다. 따라서, 생성된 황화수소(210)가 수집될 수 있도록 가지 달린 시험관(test tube with side arm)이 이용될 수 있다. 가지 달린 시험관은 일반적인 시험관의 상단 일측에 가지 모양의 짧은 유리관이 달려있는 시험관으로 가지 달린 삼각플라스크 또는 가지 달린 둥근 바닥 플라스크가 이용될 수 있다. 또한, 황화수소(210)가 수집될 수 있도록 킵의 장치(Kipp's apparatus)가 이용될 수 있다. 킵의 장치는 고체시약과 액체시약에 의해 발생된 기체를 콕을 통해 밖으로 빼낼 수 있는 장치이다. 단, 상술한 실험 기구들은 본 발명의 일 실시 예를 설명하기 위한 예시일 뿐 고체 시약과 액체 시약의 반응으로 생성된 기체를 수집할 수 있는 모든 실험 기구들이 사용될 수 있다.
도 1에서 설명한 바와 같이, 황화나트륨과 물의 반응으로 생성되는 수용액에는 황화수소뿐만 아니라 강한 염기성인 수산화나트륨도 용해되어 있으므로, 수산화나트륨의 강한 염기성으로 인해 전극판은 니켈, 탄소 소재 및 스테인리스강(STS) 중 하나를 포함할 수 있다. 하지만, 일반적으로 은, 구리, 금 및 알루미늄의 전기 전도율보다 니켈, 탄소 소재 및 스테인리스강(STS)의 전기 전도율이 더 낮다. 즉, 은, 구리 등과 같은 금속이 전극판으로 이용되는 경우, 유황 분말은 더 효율적으로 생성될 수 있다.
본 발명의 일 실시 예에 따른 유황 분말의 제조 방법은 황화철(250) 또는 황화알루미늄을 염산에 반응시켜 황화수소(210)를 생성할 수 있다. 황화철(250) 또는 황화알루미늄은 염산과 반응하여 수산화나트륨과 같은 물질을 생성하지 않고, 생성된 물질이 용해된 수용액은 염기성을 나타내지 않는다. 따라서, 전극판(240)은 종류에 제한받지 않고 사용될 수 있으므로 금속 및 탄소 소재 중 하나가 전극판으로 사용될 수 있다.
전원 제어기(230)의 전력값이 제어되면서, 전원 제어기(230)의 양극에 연결된 전극판(240)의 표면에서 유황 분말(260)이 산화되어, 전극판(240)의 표면에는 유황 분말(260)을 포함하는 박막이 형성될 수 있다. 전원 제어기(230)의 전력값은 전류값일 수 있다. 또는 전류값 및 전압값일 수도 있다. 또한, 전원 제어기(230)의 음극에 연결된 전도성 물질에서는 수소 이온이 환원되어 수소 기체가 발생될 수 있다.
따라서, 상술한 방법에 의해 전원 제어기(230)의 전력이 제어되어 전극판(240)의 기 설정된 영역에 대응되는 표면에 유황 분말(260)을 포함하는 박막이 형성될 수 있다.
도 2b는 본 발명의 일 실시 예에 따른 유황 분말의 제조 방법을 설명하기 위해 원형의 틀, 전극판(240), 고무링(290) 및 스테인리스강 판(STS plate)(280)이 절반으로 잘린 단면도를 나타낸 것이다.
도 2b를 참조하면, 원형의 틀 내부에는 상술한 방법에 의해 생성된 황화수소가 용해되어 있는 수용액(220)을 포함하고, 원형의 틀 내부에는 수용액(220)과 전극판(240)이 접촉될 수 있도록 바닥이 뚫려 있다. 수용액(220)에 용해된 황화수소는 상술한 전기분해의 원리가 이용됨으로써 전극판(240)의 기 설정된 영역에 대응되는 표면에 유황 분말을 포함하는 박막이 형성될 수 있다. 단, 상술한 원형의 틀은 본 발명의 일 실시 예를 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니다.
황화수소가 황화나트륨과 물의 반응으로 생성된 경우 전극판(240)은 니켈(Ni), 탄소 소재 및 스테인리스강(STS) 중 하나를 포함할 수 있다.
또는, 황화철(FeS) 또는 황화알루미늄(Al2S3)과 염산(HCl)의 반응으로 황화수소가 생성되는 경우, 전극판(240)은 금속 또는 탄소 소재 중 하나를 포함할 수 있다.
구체적으로, 상술한 전기분해의 원리가 적용되도록 유황 분말을 포함하는 박막이 형성될 수 있는 원형의 모양을 지닌 전극판(240)은 전원 제어기(230)의 양극에 연결된 스테인리스강 판(STS plate)(280)의 상부에 위치될 수 있다. 단, 상술한 전극판(240)의 위치 및 모양은 본 발명의 일 실시 예를 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니다. 또한, 상술한 스테인리스강 판(280)은 본 발명의 일 실시 예를 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니며 전기가 통하는 물질이면 어느 물질이든 이용될 수 있다.
원형의 모양을 지닌 전극판(240)의 기 설정된 영역에 대응되는 표면에 분말 형태의 유황 박막이 형성되도록 고무링(290)이 전극판(240)의 상부에 위치될 수 있다. 단, 상술한 고무링(290)은 본 발명의 일 실시 예를 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니다.
또한, 상술한 다양한 방법 의해 생성된 황화수소가 용해된 수용액(220) 내에 백금(Pt)(270)이 위치될 수 있고, 수용액(220) 내에 위치된 백금(270)은 전원 제어기(230)의 음극에 연결될 수 있다. 단, 상술한 백금(270)은 본 발명의 일 실시 예를 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니며, 백금(270) 대신에 니켈(Ni), 스테인리스강(STS) 및 티타늄(Ti)이 이용될 수 있다.
따라서, 전원 제어기(230)의 단위 면적당 전류값이 제어됨으로써 전극판(240)의 기 설정된 영역에 대응되는 표면에 분말 형태의 유황 박막이 형성될 수 있다. 구체적으로, 전극판(240)의 표면에 형성된 박막(820)에 포함된 유황 입자는 선형 또는 구형일 수 있고, 기 설정된 영역은 원형의 모양을 지닌 전극판(240)의 반지름보다 작은 반지름을 지니는 원형의 영역일 수 있다. 단, 상술한 원형의 형태 및 기 설정된 영역은 본 발명의 일 실시 예를 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니다.
도 3a 및 도 3b는 본 발명의 일 실시 예에 따른 유황 분말 형성 여부를 분석한 결과를 나타낸 것이다.
도 3a는 본 발명의 일 실시 예에 따른 유황 분말이 제조되었는지 여부를 시차주사 열량측정법(DSC)를 통해 분석한 결과를 나타낸 것이다.
시차주사 열량측정법(differential scanning calorimetry, DSC)은 시차 열분석(differential thermal analysis, DTA)의 개량법이다. 시차 열분석(DTA)은 기준 물질과 시료가 동시에 일정한 온도 상승률로 가열되면 시료의 상변화와 열분해로 인한 흡열 혹은 발열로 인하여 발생되는 기준 물질과 시료 간에 온도차를 측정하여 시료 물질의 열적 특성을 해석하는 방법이다. 시차 열분석(DTA)은 시료내의 열전도와 관련이 있지만, 열량의 정량적 측정이 곤란한 문제점이 있다. 하지만, 시차주사 열량측정법(DSC)은 시차 열분석(DTA)에서 기준물질과 시료 간에 발생되는 온도 차가 보상 히터의 작동으로 상쇄시키는 방법이고, 따라서 시차주사 열량측정법(DSC)가 이용되는 경우 시료의 비열이나 1차상 전이의 온도 등이 결정될 수 있다.
도 3a를 참조하면, 본 발명의 일 실시 예에 따라 황화수소가 용해된 수용액 내에 전원 제어기의 양극에 연결된 니켈 포일(Ni foil)이 위치되고, 전원 제어기의 단위 면적당 전류값이 제어되어 니켈 포일의 기 설정된 영역에 대응되는 표면에 형성된 박막에 유황 분말이 포함되어 있는지 여부를 확인할 수 있다. 상술한 방법에 의해 제조된 박막은 시차주사 열량측정법(DSC)을 통해 약 120℃ 보다 낮은 온도에서 유황의 융점에 해당되는 유황의 피크(310)가 발생된 것을 확인할 수 있었다. 따라서, 상술한 방법에 의해 제조된 박막에 유황 분말이 포함되어 있다는 것을 확인할 수 있다. 단, 니켈 포일은 도 3(a)의 실험 결과를 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니다.
도 3b는 본 발명의 일 실시 예에 따라 유황 분말이 제조되었는지 여부를 X-ray 회절 분석법(XRD)을 통해 분석한 결과를 나타낸 것이다.
분석하고자 하는 결정에 X선이 부딪히면서 X선 중 일부는 회절이 발생되는데, 회절에 의해 발생되는 회절각과 강도는 물질 고유의 값에 해당되므로 상술한 회절 X선을 이용하여 분석하고자 하는 결정성 물질의 종류 및 양에 관계된 정보를 구하는 방법이 X-ray 회절 분석법(X-ray diffractiometry, XRD)이다.
도 3b를 참조하면, 니켈 포일의 기 설정된 영역에 대응되는 표면에 형성된 박막에 유황이 포함되어 있는지 여부를 보여준다. X-ray 회절 분석(XRD) 중 가장 하단은 니켈의 강도(intensity)를 나타낸 것으로 2θ가 약 45도 및 약 52도 근처에서 니켈의 피크가 나타나는 것을 확인할 수 있으며, 유황의 경우 피크는 2θ가 약 22도 내지 28도 근처에서 나타나는 것을 확인할 수 있다.
본 발명의 일 실시 예에 따라 전류 제어에 의해 형성된 5가지 종류의 박막 중 상단으로부터 1번째 및 2번째 박막에서는 2θ가 약 22도 내지 28도 근처에서 피크가 나타나지 않았으며, 3번째 내지 5번째 박막에서만 2θ가 약 22도 내지 28도 근처에서 피크가 나타난 것을 확인할 수 있었다.
따라서, 본 발명의 일 실시 예에 따라 니켈 포일의 표면에 형성된 박막 중 상단으로부터 3번째 내지 5번째 박막에서는 유황의 피크가 관찰되므로 니켈 포일의 표면에 순수한 유황이 형성되었다는 것을 확인할 수 있다.
도 4a 내지 도 4b는 선형으로 형성된 유황 분말을 나타내는 도면이고, 도 5a 내지 도 5b는 본 발명의 일 실시 예에 따른 구형으로 형성된 유황 분말을 나타내는 도면이다.
도 4a를 참조하면 전극판(420) 표면에 선형의 유황 분말이 형성된 도면이 도시되어 있다. 일 실시 예로서, 니켈 포일에 단위 면적당 3.2mA 전류가 3시간 동안 인가되면 선형의 유황 분말을 포함하는 박막이 형성될 수 있다. 이때, 전압값은 2.4V 이하로 제어될 수 있다.
도 4b를 참조하면 주사전자현미경(scanning electron microscope, SEM)으로 관찰한 선형의 유황 분말이 도시되어 있다. 주사전자현미경은 시료면 상부에서 전자선이 주사(scanning)될 때 시료에서 발생되는 여러 가지 신호 중 그 발생확률이 가장 많은 이차전자(secondary electron) 또는 반사전자(back scattered electron)를 검출하는 것으로 대상 시료를 관찰할 수 있다. 따라서, SEM은 시료의 두께, 크기 및 준비에 크게 제한을 받지 않으며 주로 시료 표면의 정보를 얻는데 이용된다.
한편, 전극판으로 스테인리스가 사용되고, 3시간 미만으로 전류가 전극판에 인가되는 경우, 인가되는 전류 값에 따라 유황의 형태가 달라질 수 있다. 즉, 전극판에 인가되는 전류값에 따라 선형 또는 구형의 유황 분말이 형성될 수 있다.
도 5a 및 도 5b에는 주사전자현미경(SEM) 및 에너지분산형 분광분석법(EDS)에 의해 검출된 구형의 유황 분말이 도시되어 있다. 에너지분산형 분광분석법(energy dispersive X-ray spectroscopy, EDS)은 주사전자현미경(SEM) 장비에 부가적으로 달린 장비로서 SEM의 전자빔으로 인해 발생되는 샘플의 특정 X선을 수집하여 샘플의 성분을 분석하는 방법이다. 도 5a에는 구형으로 형성된 유황 박막을 주사전자현미경(SEM)으로 관찰한 도면이 도시되어 있고, 도 5b에는 에너지분산형 분광분석법(EDS)로 맵핑 결과가 도시되어 있다.
예를 들어, 전극판으로 니켈이 사용될 경우 단위 면적당 인가되는 전류 값에 관계없이 3시간 미만으로 전류가 인가되면 구형의 유황 분말을 포함하는 박막이 형성될 수 있다. 일 실시 예로서, 니켈 포일에 단위 면적당 3.2mA 전류가 3시간 미만으로 인가되면 구형의 유황 분말을 포함하는 박막이 형성될 수 있다. 한편, 상술한 바와 같이, 전극판으로 스테인리스가 사용되고, 3시간 미만으로 전류가 전극판에 인가되는 경우, 인가되는 전류 값에 따라 유황의 형태가 달라질 수 있다. 이때, 전압값은 2.4V 이하로 제어될 수 있다.
즉, 전극판의 종류에 따라 단위 면적당 인가되는 전류값 및 인가되는 시간의 제어에 따라 다공성의 선형 또는 구형의 유황 분말을 포함하는 박막이 형성될 수 있다. 상술한 실시 예에 따라 형성된 다공성을 포함하는 유황 분말은 기존의 유황에 비해 향상된 반응성을 나타낼 수 있다. 또한, 상술한 다공성 형태의 유황 분말은 리튬 이온과의 반응성도 기존에 비해 향상될 수 있으므로, 본 발명의 유황 분말이 포함된 전지는 상대적으로 큰 충전용량을 가질 수 있다.
한편, 상술한 선형 또는 구형의 다공성 유황 분말을 포함하는 전지가 제조될 수 있다. 도 6은 본 발명의 일 실시 예에 따른 유황 전극을 제조하는 방법을 나타내는 흐름도이다.
도 6을 참조하면, 황화수소(H2S)가 용해된 수용액 내에 전원 제어기의 양극에 연결된 판형 집전체가 위치된다(S610). 판형 집전체는 상술한 유황 분말의 제조 방법의 전극판에 대응될 수 있다. 즉, 유황 분말의 제조 방법의 전극판과 판형 집전체는 동일한 구성일 수 있다. 따라서, 전원 제어기의 전력 제어에 따라 전극판 또는 판형 집전체 표면에 유황 분말이 형성될 수 있다. 다만, 전극판 표면에 형성된 유황 분말은 초음파 등을 이용하여 분리되어 타 전극의 활물질로 사용될 수 있고, 판형 접전체 표면에 형성된 유황 분말은 판형 집전체와 함께 유황 전극으로 사용될 수 있다.
전지는 전극(양극과 음극), 전해질, 분리막, 집전체 및 케이스를 포함할 수 있다. 집전체는 활물질에서 전기 화학반응이 일어나도록 전자를 외부에서 전달하거나 또는 활물질에서 전자를 받아 외부로 흘려보내는 통로 역할을 한다. 일반적으로 집전체는 전기 전도도가 높은 금속 집전체가 이용되고 있다. 활물질은 전극의 기전 반응을 수행하는 물질이다. 예를 들어, 리튬 이차 전지가 이용되는 경우, 활물질은 리튬 이온과 가역적으로 결합 또는 분리될 수 있는 물질로 전지의 용량, 구동 전압 등의 특성에 가장 큰 영향을 미치는 물질이다. 따라서, 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 한정되지 않고 이용될 수 있다. 일반적으로 리튬 이차 전지에서 양극에는 Al(알루미늄), 음극에는 Cu(구리) 집전체가 주로 사용된다.
본 발명의 일 실시 예에 따르면, 판형 집전체는 금속 및 탄소 소재 중 하나를 포함할 수 있다. 한편, 판형 집전체는 얇은 판의 형태일 수 있다. 그러나, 판형 집전체는 가로 및 세로의 길이에 비해 두께가 상대적으로 얇기 때문에 판형이라고 부를 수 있지만, 실제로는 가로, 세로 및 두께를 가지는 입체 형태이다. 따라서, 판형 집전체는 실질적으로 입체 형태일 수 있고, 판형 집전체는 형성되는 유황의 양을 증대시키기 위하여 3차원 네트워크 구조를 갖는 금속 또는 탄소 집전체로 구현될 수 있다.
3차원 네트워크 구조란 집전체 표면 또는 내부에 다공성을 포함하는 폼(foam) 형태를 의미한다. 예를 들어, 집전체는 스티로폼과 유사한 구조 또는 스펀지와 유사한 구조로 구현될 수 있다. 집전체가 표면 또는 내부에 다공성을 포함하는 폼 형태인 경우, 생성된 유황 분말이 집전체 표면 또는 내부의 다공성 영역에 형성될 수 있으므로 더 많은 유황 분말을 포함하는 유황 전극이 제조될 수 있고, 상대적으로 더 큰 충전 용량을 가질 수 있다.
집전체 표면에서 기전 반응이 일어나도록 전원 제어기의 전력이 제어되어 집전체의 기 설정된 영역에 대응되는 표면에 분말 형태의 유황 박막이 형성된다(S620). 일 실시 예로서, 단위 면적당 전류값은 2.1mA 이상 3.2mA 이하의 값일 수 있다. 구체적으로, 전원 제어기에서 제어되는 단위 면적당 전류값이 2.1mA보다 작은 경우 유황 박막은 검은 필름 형태로 형성될 수 있다. 흑색 필름 형태의 유황 박막은 유황 분말이 정상적으로 형성되지 않을 때 나타나며, 흑색 필름 형태의 박막은 저항과 같은 역할을 수행하여 전압을 감소시키는 문제점이 있다.
또한, 전원 제어기에서 제어되는 단위 면적당 전류값이 3.2mA보다 큰 경우 시간이 지남에 따라 박막에 포함된 유황 분말이 기 설정된 크기 이상으로 성장되고, 성장된 유황 분말은 검은 필름 형태로 형성될 수 있다. 즉, 단위 면적당 전류값이 일정한 값보다 크거나 작은 경우, 유황 분말을 포함하는 박막이 정상적으로 형성되지 않을 수 있다.
따라서, 본 발명의 일 실시 예에 따라 전극의 충방전 역할을 할 수 있는 분말 형태의 유황이 판형 집전체 표면에 박막으로 형성될 수 있도록 전원 제어기에서 제어되는 단위 면적당 전류값은 2.1mA 이상 3.2mA 이하의 값일 수 있다. 이때, 전압값은 약 2.4V 이하로 제어될 수 있다. 즉, 유황을 포함하는 박막을 형성하기 위해 전압값이 2.4V 이하로 제어되면서, 단위 면적당 전류값은 2.1mV 이상 3.2mV 이하로 제어될 수 있다.
상술한 방식으로 형성된 개개의 유황 분말은 나노 크기의 구형 또는 선형일 수 있으며, 다공성 형태일 수 있다. 다공성 형태인 유황 분말은 넓은 표면적을 포함하므로 본 발명에 따른 유황 분말은 기존의 유황에 비해 향상된 반응성을 나타낼 수 있다. 또한, 상술한 다공성 형태의 유황 분말은 리튬 이온과의 반응성도 기존에 비해 향상될 수 있으므로, 본 발명의 유황 분말이 포함된 전지는 높은 충전용량을 포함할 수 있다. 다공성 형태의 유황 분말은 백색이므로 형성된 유황 박막은 백색일 수 있다.
본 발명의 일 실시 예에 따라 제조된 유황 전극은 일차 전지 또는 이차 전지에 이용될 수 있다. 또한, 본 발명의 일 실시 예에 따라 제조된 유황 전극은 리튬계 전지, 알칼리계, 산성계 전지의 양극으로 이용될 수 있다. 여기서, 알칼리계 전지란, 1족, 2족 등의 알칼리계 금속을 이용하는 전지를 의미한다. 예를 들어, H(수소), Na(나트륨), K(칼륨), Rb(루비듐), Cs(세슘), Fr(프랑슘) 등의 1족 원소, Be(베릴륨), Mg(마그네슘), Ca(칼슘), Sr(스트론튬), Ba(바륨), Ra(라듐) 등의 2족 원소, Ni(니켈), Pb(납) 등을 이용하는 전지가 될 수 있다. 리튬 또한, 알칼리계 금속이지만, 일반적으로 리튬계 전지는 별도로 분리하여 명칭하므로 본 발명에서도 이를 따르도록 한다. 한편, 산성계 전극이란 납축전지 등이 될 수 있다.
그리고, 전지는 양극, 전해질 및 음극을 포함하며, 전지는 분리막과 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지, 및 리튬 폴리머 전지 등으로 분류될 수 있다.
또한, 형태에 따라 코인형(버튼형), 시트형, 실린더형, 원통형, 각형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 분류될 수 있다.
이하에서는 설명의 편의를 위하여 본 발명의 일 실시 예에 따라 제조된 유황 전극이 리튬계 전지의 양극에 이용되는 경우를 예를 들어 설명하도록 한다. 하지만, 후술하는 내용은 리튬계 전지 외에 상술한 다른 금속들을 이용하는 전지의 경우에도 이용되는 금속 고유의 성질에 의해 달라지는 구성을 제외하고는 동일하게 적용될 수 있다.
도 7은 본 발명의 다른 실시 예에 따른 유황 전극을 제조하는 방법을 나타내는 흐름도이다.
도 7을 참조하면, 집전체의 표면에 다공성 탄소 소재 층이 형성된다(S710). 그리고, 황화수소가 용해된 수용액 내에 전원 제어기의 양극에 연결된 판형 집전체가 위치된다(S720). 상술한 바와 같이, 황화수소는 같이 황화나트륨이 물에 용해되면서 형성될 수 있다. 단, 상술한 바와 같이 황화나트륨이 물에 용해되면서 형성되는 수용액에는 강염기의 대표적인 물질인 수산화나트륨도 함께 용해되어 있으므로 집전체는 니켈(Ni), 탄소 소재 및 스테인리스강(STS) 중 어느 하나로 구성될 수 있다. 또한, 본 발명의 일 실시 예에 따른 유황 전극을 제조하는데 이용되는 황화수소는 황화철(FeS)과 염산(HCl)의 반응으로 생성될 수 있다. 또는, 황화수소는 황화알루미늄(Al2S3)과 염산의 반응으로 생성될 수 있다.
다공성 탄소 소재 층 표면에서 기전반응이 일어나도록 전원 제어기의 전류이 제어되어 다공성 탄소 소재 층의 기 설정된 영역에 대응되는 표면에 분말 형태의 유황 박막이 형성된다(S730). 상술한 바와 유사하게, 단위 면적당 전류값은 2.1mA 이상 3.2mA 이하로 제어되고, 전압값은 2.4V 이하로 제어될 수 있다.
한편, 분말 형태의 유황 박막이 형성된 다공성 탄소 소재 층 표면에 유황 박막을 감싸도록 상부집전체가 형성될 수 있다. 상부집전체는 다공성 탄소 소재를 포함할 수 있고, 상부집전체에 포함되는 다공성 탄소 소재는 상술한 다공성 탄소 소재 층과 동일한 탄소 소재일 수 있으나 이에 한정되는 것은 아니다.
도 8a 및 도 8b는 본 발명의 일 실시 예에 따라 제조된 유황 전극을 나타내는 도면이다.
도 8a를 참조하면, 본 발명의 일 실시 예에 따라 제조된 유황 전극(800)은 판형 집전체(810) 및 판형 집전체(810)의 기 설정된 영역에 대응되는 표면에 형성된 유황 박막(820)을 포함할 수 있다. 유황 박막(820)은 활물질의 기능을 수행할 수 있다.
도 8b를 참조하면, 유황 전극(801)은 유황 박막(820)을 포함하는 판형 집전체(810) 표면에 유황 박막(820)을 감싸도록 형성된 상부집전체(830)를 포함할 수 있다. 상부집전체(830)는 다공성 탄소 소재를 포함할 수 있다.
유황의 성질 및 유황 박막(820)이 판형 집전체(810)와 접촉되는 구조에 따라 유황 박막(820)에서 판형 집전체(810)로 전자가 이동하거나, 판형 집전체(810)에서 유황 박막(820)으로 전자가 이동하는 것이 용이하지 않을 수 있다. 하지만, 유황 전극(801)에 다공성 탄소 소재를 포함하는 상부집전체(830)가 포함되는 경우, 유황 박막(820)이 집전체(810, 830)와 접촉되는 면적이 넓어지기 때문에 유황 박막(820)에서 집전체(810, 830)로 전자가 이동하거나, 집전체(810, 830)에서 유황 박막(820)으로 전자가 이동하는 것이 용이할 수 있다. 따라서, 상부집전체(830)에 의해 전기 전도성이 향상될 수 있으므로, 유황 전극(801)의 성능이 향상될 수 있다.
도 9a 및 도 9b는 본 발명의 다른 실시 예에 따라 제조된 유황 전극을 나타내는 도면이다.
도 9a는 본 발명의 일 실시 예에 따라 판형 집전체(810)의 기 설정된 영역에 대응되는 표면에 유황 분말이 박막(820)으로 형성된 유황 전극의 구조를 나타낸 것이다. 상술한 구조 이외에도 박막(820)을 감싸도록 판형 집전체(810) 표면에 상부집전체(830)를 더 포함하는 유황 전극이 제조될 수 있다. 상부집전체(830)는 다공성 탄소 소재를 포함할 수 있다.
그리고, 다른 실시 예로서, 먼저 판형 집전체(810)의 표면에 다공성 탄소 소재 층이 형성된 후, 형성된 다공성 탄소 소재 층의 기 설정된 영역에 대응되는 표면에 유황 분말을 포함하는 박막(820)이 형성될 수 있다. 그리고, 형성된 박막(820)을 감싸도록 다공성 탄소 소재 층 표면에 상부집전체(830)가 형성된 유황 전극이 제조될 수 있다. 상부집전체(830)는 다공성 탄소 소재를 포함할 수 있고, 상부집전체(830)에 포함된 다공성 탄소 소재는 다공성 탄소 소재 층과 동일한 탄소 소재일 수 있으나 이에 한정되는 것은 아니다.
또한, 유황 전극은 판형 집전체(810)가 제거되어 다공성 탄소 소재 층, 유황 박막(820) 및 상부집전체(830)를 포함할 수 있다. 판형 집전체(810)의 제거는 에칭에 의한 방법으로 제거될 수 있다. 단, 판형 집전체(810)를 제거하기 위해 사용되는 에칭 방법은 본 발명의 일 실시 예를 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니다. 에칭은 화학 용액이나 가스를 이용하여 필요한 부분만을 남겨놓고 나머지 부분을 제거하는 것으로, 이혼화한 가스 등이 사용되는 드라이 에칭(dry etching) 및 산이나 알칼리 등의 화학약품이 사용되는 웨트 에칭(wet etching)이 있다. 구체적으로, 드라이 에칭은 고주파 방전으로 이온화된 비활성 아르곤 가스를 이용하여 표면 원자를 에칭하는 스패터 에칭(spatter etching)법 또는 플루오르와 같은 할로겐 원소가 포함된 가스가 플라즈마(plasma;전자와 양이온이 거의 같은 밀도로 존재하는 하전입자화)되면서 나타나는 휘발성이 높은 화합물로 표면을 에칭하는 플라스마 에칭(plasma etching)법이 이용될 수 있다.
따라서, 상술한 방법에 의해 판형 집전체(810)가 제거된 유황 전극이 제조될 수 있으며, 판형 집전체(810)가 제거는 경우 전지의 무게는 가벼워질 수 있기 때문에 휴대가 용이할 수 있다.
또한, 판형 집전체(810)가 제거된 유황 전극이 복수 개 제작되어 적층될 수 있다. 복수 개의 유황 전극이 적층된 전극을 포함하는 전지의 용량은 적층되지 않은 단일의 유황 전극을 포함하는 전지의 용량보다 더 커질 수 있다.
도 9b를 참조하면, 결속체(910)를 포함하는 유황 전극이 도시되어 있다. 판형 집전체(810)의 기 설정된 영역에 대응되는 표면에 결속체(910)가 형성되고, 결속체(910)가 형성된 판형 집전체(810)의 표면에 유황 분말을 포함하는 박막(820)이 형성되면서 유황 전극이 제조될 수 있다.
결속체(910)는 탄소나노튜브(CNT), 탄소나노파이버(CNF) 및 금속으로 구성된 나노 막대 중 하나를 포함하며, 금속은 구리, 니켈, 알루미늄 및 타이타늄 중 적어도 하나를 포함할 수 있다. 결속체(910)가 형성됨으로써 박막(820)에 포함된 유황 분말 간에 결속력이 강해지고, 기전 반응이 향상되는 효과가 있다.
상술한 구조 이외에도 결속체(910)가 포함된다는 점만 제외하면 상술한 구조 및 방식에 따라 다양한 유황 전극이 제조될 수 있다. 즉, 유황 전극은 결속체(910) 및 유황 박막(820)을 감싸는 상부집전체를 포함할 수 있고, 다공성 탄소 소재 층 상에 형성된 결속체(910)와 유황 박막(820), 결속체(910)와 유황 박막(820)을 감싸는 상부집전체를 포함할 수 있으며, 판형 집전체가 제거될 수 있고, 판형 집전체가 제거된 복수의 유황 전극을 적층하여 하나의 유황 전극으로 제조될 수도 있다. 결속체(910)가 형성된다는 점만 제외하면 구조 및 제조 방식은 상술한 바와 동일하므로 구체적인 설명은 생략한다.
도 10은 본 발명의 일 실시 예에 따른 유황 전지의 구조를 설명하는 도면이다.
전지는 양극(cathode), 음극(anode) 및 전해질(1020)을 포함한다. 도 10을 참조하면, 전지의 전원(1010)의 음극에는 리튬 포일(Li foil)이 연결되어 있으며, 양극에는 본 발명의 일 실시 예에 따라 제조된 유황 전극이 연결되어 있다. 유황 전극은 판형 집전체(810)의 기 설정된 영역에 대응되는 표면에 분말 형태의 유황 박막이 형성되고, 유황 박막을 감싸도록 판형 집전체(810) 표면에 상부집전체(830)가 형성된 유황 전극으로, 상부집전체(830)에는 다공성 탄소 소재가 포함될 수 있다.
리튬 포일에 포함되는 리튬 이온은 전해질(1020)에 용해될 수 있다. 따라서, 전지의 충방전시 리튬 이온은 전해질(1020)을 통해 전지의 양극 또는 음극으로 이동할 수 있다. 전지의 방전시 리튬 이온이 전해질(1020)을 통해 유황 양극으로 이동할 수 있고, 양극에서는 양극으로 이동한 리튬 이온과 유황의 반응으로 리튬설파이드(Li2S) 및 선형 구조의 리튬폴리설파이드(Li2Sx)가 생성될 수 있다. 한편, 나트륨 전지의 경우 나트륨 이온과 유황의 반응으로 나트륨설파이드(Na2S) 및 나트륨폴리설파이드(Na2Sx)가 생성될 수 있다.
하지만, 상술한 선형 구조의 리튬폴리설파이드(Li2Sx) 중 Li2S3, Li2S4, Li2S6 및 Li2S8는 전해질(1020)에 용해될 수 있는 성질이 있다. 따라서, 기존의 Li/S 전지에서는 상술한 Li2S3, Li2S4, Li2S6 및 Li2S8이 전해질(1020)에 용해되고, 용해된 Li2S3, Li2S4, Li2S6 및 Li2S8이 전지의 음극으로 이동하는 셔틀 문제가 있었다.
본 발명의 일 실시 예에 따라 제조된 유황 전극에서는 리튬 이온은 통과시키지만, 전해질에 용해되는 리튬폴리설파이드( Li2S3, Li2S4, Li2S6 및 Li2S8)의 출입을 제한시키는 다공성 탄소 소재를 포함하는 상부집전체(830)를 포함한다. 따라서, 상술한 방법에 의해 제조된 유황 전극을 포함하는 전지의 경우 기존의 셔틀 문제가 해결되면서 전지의 성능이 향상될 수 있는 장점이 있다.
다만, 상기에서도 언급한 바와 같이 본 발명에 따른 전극을 리튬 전지에 이용하는 것은 일 실시 예에 불과하며, 다른 알칼리계 금속을 이용하는 전지의 전극으로 이용되는 것도 가능하다. 예를 들어, H(수소), Na(나트륨), K(칼륨), Rb(루비듐), Cs(세슘), Fr(프랑슘) 등의 1족 원소, Be(베릴륨), Mg(마그네슘), Ca(칼슘), Sr(스트론튬), Ba(바륨), Ra(라듐) 등의 2족 원소, Ni(니켈), Pb(납) 등을 이용하는 전지의 전극으로 이용될 수 있다.
예를 들어, 나트륨 전지의 경우, 나트륨폴리설파이드(Na2Sx) 전해질(1020)에 용해될 수 있는 성질이 있다. 따라서, 기존의 Na/S 전지에서는 상술한 Na2Sx가 전해질(1020)에 용해되고, 용해된 나트륨폴리설파이드는 전지의 음극으로 이동하는 셔틀 문제가 있었다. 그러나, 본 발명의 상부집전체(830)는 나트륨 이온은 통과시키지만, 전해질에 용해되는 나트륨폴리설파이드의 출입을 제한시킬 수 있으므로 기존의 셔틀 문제가 해결되면서 전지의 성능이 향상될 수 있는 장점이 있다.
도 11a 내지 도 11e는 본 발명의 일 실시 예에 따라 제조된 유황 전극의 구조를 나타낸 것이다.
도 11a를 참조하면, 본 발명의 일 실시 예에 따른 전극은 전자 통로 역할을 수행하는 판형 집전체(810) 및 전극의 기전 반응을 수행하며 판형 집전체(810)의 기 설정된 영역과 대응되는 표면에 박막으로 형성된 유황 박막(820)을 포함한다. 유황 박막(820)은 다공성의 백색 분말 형태로서 활물질의 기능을 수행할 수 있다. 즉, 활물질은 유황 박막(820)을 포함할 수 있다.
도 11b를 참조하면, 본 발명의 또 다른 일 실시 예에 따른 전극은 판형 집전체(810), 판형 집전체(810)의 기 설정된 영역과 대응되는 표면에 박막으로 형성된 유황 박막(820) 및 판형 집전체(810)와 유황 박막(820) 간 전자가 출입될 수 있도록 유황 박막(820)의 표면 및 판형 집전체(810)의 기 설정된 영역을 제외한 영역의 표면에 형성된 상부집전체(830)를 포함한다. 상부집전체(830)는 다공성 탄소 소재를 포함할 수 있다.
도 11c를 참조하면, 본 발명의 또 다른 일 실시 예에 따른 전극은 유황 박막(820), 유황 박막(820)으로 전자가 출입될 수 있도록 유황 박막 전체를 감싸는 다공성 탄소 소재 집전체(840) 및 다공성 탄소 소재 집전체(840)의 일면에 형성된 판형 집전체(810)를 포함한다.
본 발명의 또 다른 일 실시 예에 따른 전극에는 판형 집전체(810)의 표면에 다공성 탄소 소재 층이 형성되고, 상술한 전기분해 방법에 의해 다공성 탄소 소재 층의 일부 영역에 분말 형태인 유황 박막(820)이 형성될 수 있다. 그리고, 형성된 유황 박막(820)을 감싸도록 다시 다공성 탄소 소재 층이 형성됨으로써 다공성 탄소 소재 집전체(840)가 형성될 수 있다.
다공성 탄소 소재 집전체(840)는 리튬이온은 통과시키고 상기 리튬폴리설파이드 중 전해질에 용해되는 리튬폴리설파이드(Li2S3, Li2S4, Li2S6 및 Li2S8)의 출입을 제한할 수 있다. 또는, 다공성 탄소 소재 집전체(840)는 나트륨이온은 통과시키고 전해질에 용해되는 나트륨폴리설파이드(Na2Sx)의 출입을 제한할 수 있다.
도 11d를 참조하면, 본 발명의 또 다른 일 실시 예에 따른 전극은 도 11c에서 제조된 전극에서 판형 집전체(810)가 제거되면서 제조될 수 있다. 따라서, 본 발명의 또 다른 일 실시 예에 따른 전극은 유황 박막(820) 및 유황 박막(820)으로 전자가 출입될 수 있도록 유황 박막(820) 전체를 감싸는 다공성 탄소 소재 집전체(840)만을 포함한다.
상술한 판형 집전체(810)의 제거는 에칭에 의한 방법으로 제거될 수 있다. 단, 판형 집전체(810)를 제거하기 위해 사용되는 에칭 방법은 본 발명의 일 실시 예를 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니다.
에칭은 화학 용액이나 가스를 이용하여 필요한 부분만을 남겨놓고 나머지 부분을 제거하는 것으로, 이혼화한 가스 등이 사용되는 드라이 에칭(dry etching) 및 산이나 알칼리 등의 화학약품이 사용되는 웨트 에칭(wet etching)이 있다.
구체적으로, 드라이 에칭은 고주파 방전으로 이온화된 비활성 아르곤 가스를 이용하여 표면 원자를 에칭하는 스패터 에칭(spatter etching)법 또는 플루오르와 같은 할로겐 원소가 포함된 가스가 플라즈마(plasma;전자와 양이온이 거의 같은 밀도로 존재하는 하전입자화)되면서 나타나는 휘발성이 높은 화합물로 표면을 에칭하는 플라스마 에칭(plasma etching)법이 이용될 수 있다.
따라서, 상술한 방법에 의해 판형 집전체(810)가 제거된 전극이 제조될 수 있으며, 판형 집전체(810)가 제거된 전극을 포함하는 전지의 무게는 전극에 판형 집전체(810)가 포함되는 경우 보다 가벼워 휴대하기에 용이한 장점이 있다.
도 11e를 참조하면, 도 11d에서 제조된 유황 박막 전체를 감싸는 다공성 탄소 소재 집전체가 복수 개일 수 있고, 본 발명의 또 다른 일 실시 예에 따른 전극은 상술한 복수 개의 다공성 탄소 집전체가 적층되어 하나로 형성될 수 있다.
따라서, 복수 개의 다공성 탄소 집전체가 적층되어 하나로 형성된 전극을 포함하는 전지의 용량은 다공성 탄소 소재 집전체가 한 개인 전극을 포함하는 전지의 용량보다 더 큰 효과가 있다.
도 12a 내지 도 12e는 본 발명의 또 다른 일 실시 예에 따라 제조된 전극의 구조를 나타낸 것이다.
도 12a를 참조하면, 본 발명의 일 실시 예에 따른 전극은 전자 통로 역할을 수행하는 판형 집전체(810) 및 전극의 기전 반응을 수행하며 판형 집전체(810)의 기 설정된 영역과 대응되는 표면에 박막으로 형성된 유황 박막(820)을 포함하며, 유황 박막(820)은 리튬이온과 반응하여 리튬설파이드(Li2S) 및 선형 구조의 리튬폴리설파이드(Li2Sx)를 형성하는 분말 형태의 유황을 포함할 수 있고, 나트륨이온과 반응하여 나트륨설파이드(Na2S) 및 나트륨폴리설파이드(Na2Sx)를 형성하는 분말 형태의 유황을 포함할 수 있다. 분말 형태의 유황을 결속시키는 결속체(910)를 포함한다.
결속체(910)는 탄소나노튜브(CNT), 탄소나노파이버(CNF) 및 금속으로 구성된 나노 막대 중 하나를 포함할 수 있으며, 상술한 금속은 구리, 니켈, 알루미늄 및 타이타늄 중 적어도 하나를 포함할 수 있다. 상술한 결속체(910)가 형성됨으로써 분말 형태의 유황 간에 결속력이 강해지고, 기전 반응이 향상되는 효과가 있다.
본 발명의 일 실시 예에 따른 전극은 판형 집전체(810)의 기 설정된 영역에 대응되는 표면에 결속체(910)가 형성되고, 상술한 전기분해 방법에 의해 결속체(910)가 형성된 판형 집전체(810)의 기 설정된 영역에 대응되는 표면에 분말 형태의 유황으로 구성된 활물질 박막이 형성되면서 제조될 수 있다.
상술한 전기분해 방법이 이용되도록 황화수소가 황화나트륨과 물의 반응으로 생성된 경우 판형 집전체(810)는 니켈(Ni), 탄소 소재 및 스테인리스강(STS) 중 어느 하나로 구성될 수 있고, 황화수소가 황화철(FeS)과 염산(HCl)의 반응으로 생성되거나 황화알루미늄(Al2S3)과 염산의 반응으로 생성되는 경우 판형 집전체(810)는 금속 및 탄소 소재 중 어느 하나로 구성될 수 있다.
도 12b를 참조하면, 본 발명의 또 다른 일 실시 예에 따른 전극은 판형 집전체(810), 판형 집전체(810)의 기 설정된 영역과 대응되는 표면에 박막으로 형성된 유황 박막(820) 및 판형 집전체(810)와 유황 박막(820) 간 전자가 출입될 수 있도록 유황 박막(820)의 표면 및 판형 집전체(810)의 기 설정된 영역을 제외한 영역의 표면에 형성된 상부집전체(830)를 포함하고, 유황 박막(820)은 결속체(910)를 포함한다. 상부집전체(830)는 다공성 탄소 소재를 포함할 수 있다.
도 12c를 참조하면, 본 발명의 또 다른 일 실시 예에 따른 전극은 유황 박막(820), 유황 박막(820)으로 전자가 출입될 수 있도록 활물질 전체를 감싸는 다공성 탄소 소재 집전체(840) 및 다공성 탄소 소재 집전체(840)의 일면에 형성된 판형 집전체(810)를 포함하고, 유황 박막(820)은 결속체(910)를 포함한다.
본 발명의 또 다른 일 실시 예에 따른 전극에는 판형 집전체(810)의 표면에 다공성 탄소 소재 층이 형성되고, 다공성 탄소 소재 층의 일정 영역에 결속체(910)가 형성되며, 상술한 전기분해 방법에 의해 결속체(910)가 형성된 다공성 탄소 소재 층에 분말 형태인 유황 박막(820)이 형성될 수 있다. 그리고, 형성된 유황 박막(820)을 감싸도록 다시 다공성 탄소 소재 층이 형성됨으로써 다공성 탄소 소재 집전체(840)가 형성될 수 있다.
도 12d를 참조하면, 본 발명의 또 다른 일 실시 예에 따른 전극은 도 12c에서 제조된 전극에서 판형 집전체(810)가 제거되면서 제조될 수 있다. 따라서, 본 발명의 또 다른 일 실시 예에 따른 전극은 결속체(910)를 포함하는 유황 박막(820) 및 유황 박막(820) 전체를 감싸는 다공성 탄소 소재 집전체(840)만을 포함한다.
상술한 판형 집전체(810)의 제거는 에칭에 의한 방법으로 제거될 수 있다. 단, 판형 집전체(810)를 제거하기 위해 사용되는 에칭 방법은 본 발명의 일 실시 예를 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니다.
따라서, 상술한 방법에 의해 판형 집전체(810)가 제거된 전극이 제조될 수 있으며, 판형 집전체(810)가 제거된 전극을 포함하는 전지의 무게는 전극에 집전체(810)가 포함되는 경우 보다 가벼워 휴대하기에 용이한 장점이 있다.
도 12e를 참조하면, 도 12c에서 제조된 결속체를 포함하는 활물질 전체를 감싸는 다공성 탄소 소재 집전체가 복수 개일 수 있고, 본 발명의 또 다른 일 실시 예에 따른 전극은 상술한 복수 개의 다공성 탄소 집전체가 적층되어 하나로 형성될 수 있다.
따라서, 복수 개의 다공성 탄소 집전체가 적층되어 하나로 형성된 전극을 포함하는 전지의 용량은 다공성 탄소 소재 집전체가 한 개인 전극을 포함하는 전지의 용량보다 더 큰 효과가 있다.
도 13a 내지 도 13b는 본 발명의 일 실시 예에 따라 제조된 전극에 형성된 유황 구조를 주사전자현미경(SEM)으로 관찰한 결과 및 에너지분산형 분광분석법(EDS)로 맵핑한 결과를 나타낸 것이다.
주사전자현미경(scanning electron microscope, SEM)은 시료면 상부에서 전자선이 주사(scanning)될 때 시료에서 발생되는 여러 가지 신호 중 그 발생확률이 가장 많은 이차전자(secondary electron) 또는 반사전자(back scattered electron)를 검출하는 것으로 대상 시료를 관찰할 수 있다. 따라서, SEM은 시료의 두께, 크기 및 준비에 크게 제한을 받지 않으며 주로 시료 표면의 정보를 얻는데 이용된다.
에너지분산형 분광분석법(energy dispersive X-ray spectroscopy, EDS)은 주사전자현미경(SEM) 장비에 부가적으로 달린 장비로서 SEM의 전자빔으로 인해 발생되는 샘플의 특정 X선을 수집하여 샘플의 성분을 분석하는 방법이다.
도 13a 및 도 13b를 참조하면, 본 발명의 일 실시 예에 따라 집전체로서 스테인리스강(STS)이 이용된 전극에서 단위 면적당 전류값이 2.1mA로 제어되어 형성된 유황 구조를 주사전자현미경(SEM)으로 관찰한 결과(도 13a) 및 에너지분산형 분광분석법(EDS)로 맵핑한 결과(도 13b)를 나타낸 것이다.
도 13a를 참조하면, 상술한 방법에 의해 제조된 전극에서 유황 구조가 SEM으로 관찰된 것을 확인할 수 있다.
도 13b를 참조하면, 상술한 방법에 의해 제조된 전극이 SEM으로 관찰된 유황 구조와 동일한 형태로 유황이 분포되어 있는 것을 확인할 수 있다.
도 14a 내지 도 14b는 본 발명의 또 다른 일 실시 예에 따라 제조된 전극에 형성된 유황 구조를 주사전자현미경(SEM)으로 관찰한 결과 및 에너지분산형 분광분석법(EDS)로 맵핑한 결과를 나타낸 것이다.
도 14a 및 도 14b를 참조하면, 본 발명의 일 실시 예에 따라 집전체로서 스테인리스강(STS)이 이용된 전극에서 단위 면적당 전류값이 2.7mA로 제어되어 형성된 유황 구조를 주사전자현미경(SEM)으로 관찰한 결과(도 14a) 및 에너지분산형 분광분석법(EDS)로 맵핑한 결과(도 14b)를 나타낸 것이다.
도 14a를 참조하면, 상술한 방법에 의해 제조된 전극에서 유황 구조가 SEM으로 관찰된 것을 확인할 수 있다.
도 14b를 참조하면, 상술한 방법에 의해 제조된 전극이 SEM으로 관찰된 유황 구조와 동일한 형태로 유황이 분포되어 있는 것을 확인할 수 있다.
도 15a 내지 도 15b는 본 발명의 또 다른 일 실시 예에 따라 제조된 전극에 형성된 유황 구조를 주사전자현미경(SEM)으로 관찰한 결과 및 에너지분산형 분광분석법(EDS)로 맵핑한 결과를 나타낸 것이다.
도 15a 및 도 15b를 참조하면, 본 발명의 일 실시 예에 따라 집전체로서 스테인리스강(STS)이 이용된 전극에서 단위 면적당 전류값이 3.2mA로 제어되어 형성된 유황 구조를 주사전자현미경(SEM)으로 관찰한 결과(도 15a) 및 에너지분산형 분광분석법(EDS)로 맵핑한 결과(도 15b)를 나타낸 것이다.
도 15a를 참조하면, 상술한 방법에 의해 제조된 전극에서 유황 구조가 SEM으로 관찰된 것을 확인할 수 있다.
도 15b를 참조하면, 상술한 방법에 의해 제조된 전극이 SEM으로 관찰된 유황 구조와 동일한 형태로 유황이 분포되어 있는 것을 확인할 수 있다.
도 16a 및 도 16b는 본 발명의 일 실시 예에 따라 제조된 유황 양극으로 구성된 전지의 충방전 결과를 나타낸 것이다.
전지는 양극, 음극 및 전해질을 포함한다. 구체적으로, 본 발명의 일 실시 예에 따라 제조된 전극이 양극으로 구성된 전지의 음극에는 리튬 포일(Li foil)이 구성되며, 전해질로서는 1M 농도의 리튬비스마이드(LiTFSI), 0.1M 농도의 질산리튬(LiNO3) 및 3 대 7 부피 비율로 혼합된 디메톡시에탄(dimethoxyethane, DME)/디옥솔란(dioxolane, DOL)이 포함된다. 단, 상술한 음극 및 전해질에 포함되는 구성은 본 발명의 일 실시 예를 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니다.
도 16a는 본 발명의 일 실시 예에 따라 제조된 전지의 충방전 그래프로 10μA의 전류를 유지한 채 시간이 지남에 따라 1.5V 내지 2.9V 전압 범위에서 방전과 충전을 2회 실시한 결과를 나타낸 것이다.
도 16a와 관련하여, 본 발명의 일 실시 예에 따라 제조된 전지의 양극은 단위 면적당 전류값이 2.1mA로 제어되어 스테인리스강의 기 설정된 영역과 대응되는 표면에 형성된 분말 형태의 유황 박막을 포함한다.
도 16b는 본 발명의 일 실시 예에 따라 제조된 전지의 충방전 그래프로 10μA의 전류를 유지한 채 시간이 지남에 따라 1.5V 내지 2.9V 전압 범위에서 방전과 충전을 2회 실시한 결과를 나타낸 것이다.
도 16b와 관련하여, 본 발명의 일 실시 예에 따라 제조된 전지의 양극은 도 16a에서 제조된 전지의 양극에 포함된 유황 박막을 감싸도록 스테인리스강 표면에 그래핀(graphene)을 더 포함한다.
도 16b에 나타난 그래프의 방전 곡선에서 시간이 지남에 따라 감소하는 전압은 도 16a에 나타난 방전 곡선에서의 전압보다 더 적게 감소하는 것을 확인할 수 있다.
따라서, 도 16b에 나타난 그래프에서는 일반적인 Li/S 전지의 기본 개형인 2단의 충방전 그래프가 나타나는 것을 확인할 수 있다. 또한, 그래핀에 의해 전해질에 용해될 수 있는 리튬폴리설파이드(Li2S3, Li2S4, Li2S6 및 Li2S8) 또는 나트륨폴리설파이드(Na2Sx)의 출입이 제한됨으로써 기존에 존재했던 셔틀 문제가 해결되고, 유황 박막과 스테인리스강 사이의 전기 전도성을 향상시켜 전지의 성능이 향상되는 것을 확인할 수 있다.
도 17a 및 도 17b는 본 발명의 또 다른 일 실시 예에 따라 제조된 유황 양극으로 구성된 전지의 충방전 결과를 나타낸 것이다.
도 17a 및 도 17b에서 이용되는 전지의 음극 및 전해질은 도 16a 및 도 16b에서 이용된 음극 및 전해질과 동일하다.
도 17a는 본 발명의 일 실시 예에 따라 제조된 전지의 충방전 그래프로 10μA의 전류를 유지한 채 시간이 지남에 따라 1.5V 내지 2.9V 전압 범위에서 방전과 충전을 2회 실시한 결과를 나타낸 것이다.
도 17a와 관련하여, 본 발명의 일 실시 예에 따라 제조된 전지의 양극은 단위 면적당 전류값이 2.7mA로 제어되어 스테인리스강의 기 설정된 영역과 대응되는 표면에 형성된 분말 형태의 유황 박막을 포함한다.
도 17b는 본 발명의 일 실시 예에 따라 제조된 전지의 충방전 그래프로 10μA의 전류를 유지한 채 시간이 지남에 따라 1.5V 내지 2.9V 전압 범위에서 방전과 충전을 2회 실시한 결과를 나타낸 것이다.
도 17b와 관련하여, 본 발명의 일 실시 예에 따라 제조된 전지의 양극은 도 17a에서 제조된 전지의 양극에 포함된 유황 박막을 감싸도록 스테인리스강 표면에 그래핀(graphene)을 더 포함한다.
도 17b에 나타난 그래프의 방전 곡선에서 시간이 지남에 따라 감소하는 전압은 도 17a에 나타난 방전 곡선에서의 전압보다 더 적게 감소하는 것을 확인할 수 있다.
또한, 시간이 지남에 따라 도 17b의 그래프에 나타난 방전 곡선에서의 전압 감소는 도 16b의 그래프에 나타난 방전 곡선에서의 전압 감소 보다 더 적은 것을 확인할 수 있다.
도 17b에 나타난 그래프의 결과는 방전 시 2.35V와 2.1V에서 평탄전압이 나타나는 것을 보여준다. 따라서, 상술한 그래프의 결과는 방전 시 일반적인 Li/S 전지의 반응과 유사하게 나타나는 것을 확인할 수 있다. 또한, 그래핀에 의해 전해질에 용해될 수 있는 리튬폴리설파이드(Li2S3, Li2S4, Li2S6 및 Li2S8) 또는 나트륨폴리설파이드(Na2Sx)의 출입이 제한됨으로써 기존에 존재했던 셔틀 문제가 해결되고, 유황 박막과 스테인리스강 사이의 전기 전도성을 향상시켜 전지의 성능이 향상되는 것을 확인할 수 있다.
도 18a 및 도 18b는 본 발명의 또 다른 일 실시 예에 따라 제조된 유황 양극으로 구성된 전지의 충방전 결과를 나타낸 것이다.
도 18a 및 도 18b에서 이용되는 전지의 음극 및 전해질은 도 16a 및 도 16b에서 이용된 음극 및 전해질과 동일하다.
도 18a는 본 발명의 일 실시 예에 따라 제조된 전지의 충방전 그래프로 10μA의 전류를 유지한 채 시간이 지남에 따라 1.6V 내지 2.2V 전압 범위에서 방전을 1회 실시한 결과를 나타낸 것이다.
도 18a와 관련하여, 본 발명의 일 실시 예에 따라 제조된 전지의 양극은 단위 면적당 전류값이 3.2mA로 제어되어 스테인리스강의 기 설정된 영역과 대응되는 표면에 형성된 분말 형태의 유황 박막을 포함한다.
도 18b는 본 발명의 일 실시 예에 따라 제조된 전지의 방전 그래프는 10μA의 전류를 유지한 채 시간이 지남에 따라 1.6V 내지 2.3V 전압 범위에서 방전을 1회 실시한 결과를 나타낸 것이다.
도 18b와 관련하여, 본 발명의 일 실시 예에 따라 제조된 전지의 양극은 도 18a에서 제조된 전지의 양극에 포함된 유황 박막을 감싸도록 스테인리스강 표면에 그래핀(graphene)을 더 포함한다.
도 18b에 나타난 그래프의 방전 곡선에서 시간이 지남에 따라 감소하는 전압은 도 18a에 나타난 방전 곡선에서의 전압보다 더 적게 감소하는 것을 확인할 수 있다.
따라서, 상술한 바와 같이 본 발명의 실시 예에 따라 제조된 전극의 성능은 전기 전도도가 높은 금속 집전체에 활물질 박막이 형성되면서 향상될 수 있다.
다만, 상기에서도 언급한 바와 같이 본 발명에 따른 전극은 리튬 뿐만 아니라 다른 알칼리계 금속을 이용하는 전지의 전극으로 이용되는 것도 가능하다. 예를 들어, H(수소), Na(나트륨), K(칼륨), Rb(루비듐), Cs(세슘), Fr(프랑슘) 등의 1족 원소, Be(베릴륨), Mg(마그네슘), Ca(칼슘), Sr(스트론튬), Ba(바륨), Ra(라듐) 등의 2족 원소, Ni(니켈), Pb(납) 등을 이용하는 전지의 전극으로 이용될 수 있다.
이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.

Claims (15)

  1. 황화수소가 용해된 수용액 내에 전원 제어기의 양극에 연결된 전극판을 위치시키는 단계;
    상기 전원 제어기의 전력을 제어하여 상기 전극판의 기 설정된 영역에 대응하는 표면에 유황 분말을 박막으로 형성시키는 단계; 및
    상기 형성된 유황 분말을 상기 전극판으로부터 분리시키는 단계;를 포함하는 유황 분말의 제조 방법.
  2. 제1항에 있어서,
    상기 황화수소는,
    황화철(FeS) 또는 황화알루미늄(Al2S3)을 염산(HCl)과 반응시켜 생성된, 유황 분말의 제조 방법.
  3. 제1항에 있어서,
    상기 분리시키는 단계는,
    초음파를 이용하여 상기 형성된 유황 분말을 상기 전극판으로부터 분리시키는 유황 분말의 제조 방법.
  4. 제1항에 있어서,
    상기 유황 분말은,
    다공성의 구형 또는 선형이고 백색인, 유황 분말의 제조 방법.
  5. 제1항에 있어서,
    상기 전극판은,
    전자 통로의 역할을 수행하도록 금속 및 탄소 소재 중 하나를 포함하는, 유황 분말의 제조 방법.
  6. 제1항에 있어서,
    상기 박막으로 형성시키는 단계는,
    상기 전력의 전류값을 2.1mA 이상 3.2mA 이하의 범위로 제어하고, 상기 전력의 전압값을 2.4V 이하의 범위로 제어하는 유황 분말의 제조 방법.
  7. 황화수소가 용해된 수용액 내에 전원 제어기의 양극에 연결된 판형 집전체를 위치시키는 단계; 및
    상기 전원 제어기의 전력을 제어하여 상기 판형 집전체의 기 설정된 영역에 대응하는 표면에 유황 분말을 박막으로 형성시키는 단계;를 포함하는 유황 전극의 제조 방법.
  8. 제7항에 있어서,
    상기 유황 분말을 포함하는 박막을 감싸도록 상기 판형 집전체 표면에 상부집전체를 형성하는 단계;를 더 포함하고,
    상기 상부집전체는,
    다공성 탄소 소재를 포함하는, 유황 전극의 제조 방법.
  9. 제7항에 있어서,
    상기 판형 집전체의 기 설정된 영역에 대응하는 표면에 결속체를 형성하는 단계;를 더 포함하고,
    상기 결속체는,
    탄소나노튜브(CNT), 탄소나노파이버(CNF) 및 금속으로 구성된 나노 막대 중 하나를 포함하며,
    상기 금속은,
    구리, 니켈, 알루미늄 및 타이타늄 중 적어도 하나를 포함하는, 유황 전극의 제조 방법.
  10. 제7항에 있어서,
    상기 판형 집전체는,
    3차원 네트워크 구조인, 유황 전극의 제조 방법.
  11. 유황 전극에 있어서,
    전자 통로 역할을 수행하는 판형 집전체; 및
    상기 유황 전극의 기전 반응을 수행하며 상기 판형 집전체의 기 설정된 영역과 대응되는 표면에 박막으로 형성된 활물질;을 포함하고,
    상기 활물질은,
    다공성의 백색인 분말 형태의 유황을 포함하는, 유황 전극.
  12. 제11항에 있어서,
    상기 판형 집전체와 상기 활물질 간 전자가 출입될 수 있도록 상기 활물질의 표면 및 상기 판형 집전체의 기 설정된 영역을 제외한 영역의 표면에 형성된 상부집전체;를 더 포함하고,
    상기 상부집전체는,
    전해질에 용해되는 중간생성물의 출입을 제한하는 다공성 탄소 소재를 포함하는, 유황 전극.
  13. 유황 전극에 있어서,
    상기 유황 전극의 기전 반응을 수행하는 활물질; 및
    상기 활물질로 전자가 출입될 수 있도록 상기 활물질 전체를 감싸는 다공성 탄소 소재 집전체;를 포함하고,
    상기 활물질은,
    다공성의 백색인 분말 형태의 유황을 포함하며,
    상기 다공성 탄소 소재 집전체는,
    전해질에 용해되는 중간생성물의 출입을 제한하는, 유황 전극.
  14. 제13항에 있어서,
    상기 다공성 탄소 소재 집전체의 일면에 형성되고 전자 통로 역할을 수행하는 판형 집전체;를 더 포함하는 유황 전극.
  15. 제13항에 있어서,
    상기 활물질 전체를 감싸는 다공성 탄소 소재 집전체는 복수 개이고,
    상기 복수 개의 다공성 탄소 소재 집전체는 적층되어 하나로 형성되는, 유황 전극.
PCT/KR2019/001609 2018-02-09 2019-02-11 유황 분말, 유황 전극, 이를 포함하는 전지 및 제조 방법 WO2019156514A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0016456 2018-02-09
KR1020180016456A KR102059583B1 (ko) 2018-02-09 2018-02-09 유황 분말 및 유황 전극의 제조 방법
KR1020180016464A KR102026466B1 (ko) 2018-02-09 2018-02-09 전극 및 이를 포함하는 전지
KR10-2018-0016464 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019156514A1 true WO2019156514A1 (ko) 2019-08-15

Family

ID=67548008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001609 WO2019156514A1 (ko) 2018-02-09 2019-02-11 유황 분말, 유황 전극, 이를 포함하는 전지 및 제조 방법

Country Status (1)

Country Link
WO (1) WO2019156514A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081894A1 (en) * 2001-02-20 2004-04-29 Polyplus Battery Company Electrolytes with strong oxidizing additives for lithium/sulfur batteries
KR20130078646A (ko) * 2011-12-30 2013-07-10 경상대학교산학협력단 3차원 다공성 집전체를 이용한 전극, 이를 이용한 전지 및 그 제조방법
KR20140122886A (ko) * 2013-04-11 2014-10-21 한국과학기술원 고분자 나노섬유, 알루미늄 박막, 탄소나노튜브 및 유황의 복합체를 이용한 리튬-황 이차전지용 전극 및 그 제조 방법
KR20160098372A (ko) * 2013-12-16 2016-08-18 가부시키가이샤 알박 리튬 유황 이차전지용 양극 및 그 형성방법
KR20160143550A (ko) * 2015-06-05 2016-12-14 경상대학교산학협력단 전극, 전지 및 전극의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081894A1 (en) * 2001-02-20 2004-04-29 Polyplus Battery Company Electrolytes with strong oxidizing additives for lithium/sulfur batteries
KR20130078646A (ko) * 2011-12-30 2013-07-10 경상대학교산학협력단 3차원 다공성 집전체를 이용한 전극, 이를 이용한 전지 및 그 제조방법
KR20140122886A (ko) * 2013-04-11 2014-10-21 한국과학기술원 고분자 나노섬유, 알루미늄 박막, 탄소나노튜브 및 유황의 복합체를 이용한 리튬-황 이차전지용 전극 및 그 제조 방법
KR20160098372A (ko) * 2013-12-16 2016-08-18 가부시키가이샤 알박 리튬 유황 이차전지용 양극 및 그 형성방법
KR20160143550A (ko) * 2015-06-05 2016-12-14 경상대학교산학협력단 전극, 전지 및 전극의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SELVARAJ ET AL.: "Recovery of solid sulfur from hydrogen sulfide gas by an electrochemical membrane ceil.", RSC ADVANCES, vol. 6, no. 5, 2016, pages 3735 - 3741, XP055629764 *

Similar Documents

Publication Publication Date Title
WO2014126413A1 (ko) 나트륨 이차전지용 음극활물질, 이를 이용한 전극의 제조방법 및 이를 포함하는 나트륨 이차전지
WO2019039856A1 (ko) 다공성 실리콘-탄소 복합체의 제조방법, 상기 제조방법에 의해 제조된 다공성 실리콘-탄소 복합체를 포함하는 이차전지 음극 및 상기 이차전지 음극을 포함하는 이차전지
WO2016052934A1 (ko) 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법
WO2015084036A1 (ko) 다공성 실리콘계 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020040446A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2017213462A1 (ko) 소듐 이차전지용 양극활물질, 및 이의 제조 방법
WO2021182762A1 (en) All-solid secondary battery and method of preparing the same
US4208474A (en) Cell containing alkali metal anode, cathode and alkali metal-metal-chalcogenide compound solid electrolyte
WO2016036175A1 (ko) 리튬 공기 전지, 및 그 제조 방법
WO2018034501A1 (ko) 촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지
WO2020235909A1 (ko) 칼슘 도핑된 나트륨 이차전지용 양극활물질 및 이를 포함하는 나트륨 이차전지
WO2015111803A1 (ko) 아연공기 이차전지 및 이의 제조방법
WO2022119359A1 (ko) 리튬 금속 전지용 음극 집전체, 그 제조 방법 및 이를 포함하는 리튬 금속 전지
WO2019107877A1 (ko) 이온 전도성 바인더, 이를 포함하는 전고체 전지 및 그 제조 방법
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019156514A1 (ko) 유황 분말, 유황 전극, 이를 포함하는 전지 및 제조 방법
WO2018236060A1 (ko) 수산화철(FeOOH)의 제조방법 및 수산화철을 포함하는 리튬-황 전지용 양극
WO2020197278A1 (ko) 리튬 이차 전지
WO2021194205A1 (ko) 음극의 제조방법
WO2020180125A1 (ko) 리튬 이차전지
WO2021075619A1 (ko) 음극, 이를 포함하는 이차 전지, 및 이의 제조방법
WO2022080707A1 (ko) 전고체 이차 전지 및 그 충전 방법
WO2020009313A1 (ko) 리튬-전해질 용매의 공삽입을 통해 전기화학특성이 향상된 몰리브덴 설파이드 전극을 포함하는 이차전지 시스템
WO2023101495A1 (ko) 복합 코팅층을 포함하고 있는 양극 활물질
WO2024080417A1 (ko) 이차 전지용 리튬 금속 전극, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751335

Country of ref document: EP

Kind code of ref document: A1