WO2019156148A1 - Deck plate - Google Patents

Deck plate Download PDF

Info

Publication number
WO2019156148A1
WO2019156148A1 PCT/JP2019/004371 JP2019004371W WO2019156148A1 WO 2019156148 A1 WO2019156148 A1 WO 2019156148A1 JP 2019004371 W JP2019004371 W JP 2019004371W WO 2019156148 A1 WO2019156148 A1 WO 2019156148A1
Authority
WO
WIPO (PCT)
Prior art keywords
deck plate
ratio
width direction
protrusions
length
Prior art date
Application number
PCT/JP2019/004371
Other languages
French (fr)
Japanese (ja)
Inventor
裕織 安岡
勝輝 関
稜子 島田
Original Assignee
Jfe建材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019018175A external-priority patent/JP2019138138A/en
Application filed by Jfe建材株式会社 filed Critical Jfe建材株式会社
Priority to SG11202007369QA priority Critical patent/SG11202007369QA/en
Publication of WO2019156148A1 publication Critical patent/WO2019156148A1/en
Priority to PH12020551183A priority patent/PH12020551183A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/36Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
    • E04B5/38Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
    • E04B5/40Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element with metal form-slabs

Definitions

  • the present invention relates to a deck plate used for construction of a floor slab or a ceiling slab.
  • Deck plates are widely used in building floor slabs and ceiling slabs of building structures.
  • the deck plate is installed so as to be bridged between the beams, and both end portions of the deck plate are fixed to the upper surface of the beam.
  • concrete is placed on the deck plate, and the concrete is solidified to construct a floor structure or a ceiling structure.
  • the deck plate is formed by bending a metal plate by roll forming or the like.
  • the deck plate is formed with ribs for increasing rigidity (see, for example, Patent Document 1).
  • an object of the present invention is to provide a deck plate capable of suppressing a significant increase in weight while improving cross-sectional performance as compared with the conventional art.
  • the present invention is a deck plate formed of a metal plate and having surface portions and ribs formed alternately and continuously, and the surface portion protrudes toward one surface side.
  • the ratio of the length other than the protrusion in the width direction to the length in the width direction of the surface part is in the range of 0.5 to 0.7. To do.
  • the protrusions are formed side by side with a predetermined interval in the width direction.
  • a locking portion is formed on a surface portion on one end side in the width direction, and a receiving portion for receiving the locking portion is formed on a rib on the other end side in the width direction.
  • the length of the surface portion in the width direction is preferably 180 to 220 mm.
  • the width of the protrusion is preferably 20 to 25 mm.
  • the height of the protrusion is preferably 4 to 8 mm.
  • the distance between the centers of the rib and the ridge adjacent to the rib is preferably 20 to 50 mm.
  • the distance between the centers of the adjacent ridges is preferably 30 to 60 mm.
  • the bending radius of the curved portion of the metal plate in the protruding portion is preferably 3 to 5 mm.
  • the present invention it is possible to suppress a significant increase in weight while improving the cross-sectional performance of the deck plate as compared with the conventional one.
  • FIG. 1 shows the deck plate installed between the beams in 1st Embodiment. It is a perspective view of a deck plate in a 1st embodiment. It is sectional drawing of the deck plate in 1st Embodiment. It is an expanded sectional view of a protrusion part in a 1st embodiment.
  • the horizontal axis represents the ratio of the length other than the protrusions to the length in the width direction of the surface portion, and the vertical axis represents the rate of increase in the effective cross-section secondary moment. It is a graph.
  • the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken.
  • C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance.
  • the horizontal axis represents the ratio of the length other than the ridge portion to the length in the width direction of the surface portion, and the vertical axis represents the increase in effective cross-section secondary moment. It is the graph which took the rate.
  • the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken.
  • C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance.
  • the horizontal axis represents the ratio of the length other than the ridge to the length in the width direction of the surface portion, and the vertical axis represents the increase in the effective cross-section secondary moment. It is the graph which took the rate.
  • the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion
  • the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken.
  • (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance. It is sectional drawing of the deck plate in 2nd Embodiment. It is an expanded sectional view of a protrusion part in a 2nd embodiment.
  • (A) in 2nd Embodiment took the ratio of length other than a rib part with respect to the length of the width direction of a surface part on a horizontal axis, and took the increase rate of the effective cross-section secondary moment on the vertical axis
  • the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken.
  • (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance.
  • (a) shows the ratio of the length other than the ridge to the length in the width direction of the surface portion on the horizontal axis, and the increase in the effective moment of inertia on the vertical axis. It is the graph which took the rate.
  • the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion
  • the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken.
  • (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance.
  • the horizontal axis represents the ratio of the length other than the protrusions to the length in the width direction of the surface portion, and the vertical axis represents the increase in effective cross-section secondary moment. It is the graph which took the rate.
  • the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken.
  • (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance.
  • (a) shows the ratio of the length other than the ridge to the length in the width direction of the surface portion on the horizontal axis, and the increase in the effective section secondary moment on the vertical axis. It is the graph which took the rate.
  • the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion
  • the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken.
  • (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance.
  • (a) shows the ratio of the length other than the projecting portion with respect to the length in the width direction of the surface portion on the horizontal axis, and the increase in the effective section secondary moment on the vertical axis. It is the graph which took the rate.
  • the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken.
  • (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance. It is a figure which shows the deck plate installed between the beams toward the upper surface (concrete side) in which the rib is formed. It is a figure which shows the deck plate installed between the beams over several spans.
  • FIG. 1 is a view showing a deck plate installed between beams.
  • FIG. 2 is a perspective view of the deck plate.
  • FIG. 3 is a cross-sectional view of the deck plate.
  • FIG. 4 is an enlarged cross-sectional view of the protrusion.
  • the deck plate 10 becomes a concrete formwork placed when a floor structure (or ceiling structure) of a building structure is constructed.
  • the deck plate 10 is bridged between the beams 20 facing each other.
  • the deck plate 10 has one end placed on one beam 20 and fixed to the beam 20 by welding or the like, and the other end placed on the other beam 20 and fixed to the beam 20 by welding or the like.
  • the beam 20 is made of, for example, H-shaped steel, and each end portion of the deck plate 10 is placed on and fixed to a flange portion of the H-shaped steel constituting each beam 20.
  • the deck plate 10 is formed of a thin steel plate that has been subjected to a surface treatment such as galvanization.
  • the deck plate 10 is manufactured, for example, by roll-forming a flat steel plate with a roll forming machine.
  • the deck plate 10 is bent at a plurality of locations by a roll forming machine.
  • the thickness of the deck plate 10 is preferably 0.6 to 1.6 mm. In the present embodiment, the thickness of the deck plate 10 is 0.8 mm.
  • the deck plate 10 includes two ribs 1, 2, a surface portion 3, a protruding portion 4, a locking portion 5, and an end closing portion 6.
  • the rib 1 is formed by bending a steel plate.
  • the rib 1 is continuous to the curved portion 11 bent to one surface side of the steel plate, the curved portion 11, the linear portion 12 extending in a direction perpendicular to the surface portion 3, and the linear portion 12.
  • the folded portion 13 that is bent and folded over a plurality of times, the folded portion 13 is continuous, the straight portion 14 is extended so that the surface direction is along the straight portion 12, the straight portion 14 is continued, and the surface portion 3 is And a bending portion 15 bent toward the front.
  • the bending portion 11 and the bending portion 15 are formed so that the bending radius R thereof is 4 to 10 mm, for example, about 6 mm.
  • the straight line portion 12 and the straight line portion 14 are formed so that their surfaces come into contact with each other, and are connected by caulking or the like. As a result, the straight portion 12 and the straight portion 14 are not separated.
  • the folded portion 13 is formed in a substantially triangular shape in sectional view, and is folded so that the start point and the end point are adjacent to each other so that the straight portion 12 and the straight portion 14 come into contact with each other.
  • the rib 2 is formed by bending a steel plate.
  • the rib 2 is continuous to the curved portion 21 bent to one surface side of the steel plate, the curved portion 21, the straight portion 22 extending in a direction perpendicular to the surface portion 3, and the straight portion 22.
  • the folded portion 23 that is bent and folded over a plurality of times, the straight portion 24 that continues to the folded portion 23, the surface direction extends along the straight portion 22, the continuous straight portion 24, and the straight portion 22.
  • the surface direction extending along the straight portion 22, and continuous to the straight portion 26.
  • the bending portion 21 and the bending portion 27 are formed so that the bending radius R thereof is 4 to 10 mm, for example, about 6 mm. This is because bending by roll forming is relatively easy, and it is possible to prevent the waste of concrete from occurring due to an unnecessarily large depression formed between the curved portions 21 and 27.
  • the straight line portion 22 and the straight line portion 24 are formed so that their surfaces come into contact with each other, and are connected by caulking or the like. As a result, the straight portion 22 and the straight portion 24 are not separated.
  • the folded portion 23 is formed in a substantially triangular shape in sectional view, and is folded so that the start point and the end point are adjacent to each other so that the straight portion 22 and the straight portion 24 come into contact with each other.
  • the inclined portion 25 is for forming a gap between the straight portion 22 and the straight portion 26. Due to the presence of the inclined portion 25, the gap formed between the straight portion 22 and the straight portion 26 is reduced.
  • the locking part 5 can be inserted as the receiving part 50 of the locking part 5.
  • the deck plate 10 is formed with two ribs 1 and 2.
  • the rib 1 and the rib 2 are spaced from each other at a distance of 180 to 220 mm along the width direction (short direction) of the deck plate 10 (between the centers). ).
  • the deck plate 10 is formed such that the length L in the width direction is 360 to 440 mm, and the rib 1 extends from one end in the width direction of the deck plate 10 to the center of the rib 1 (straight with the straight portion 12).
  • the distance L1 to the boundary surface with which the portion 14 comes into contact is set to be 180 to 220 mm.
  • the rib 2 is formed such that a distance L2 from the center of the rib 1 to the center of the rib 2 (the boundary surface where the straight portion 22 and the straight portion 24 abut on the center of the rib 2) is 180 to 220 mm.
  • a distance L2 from the center of the rib 1 to the center of the rib 2 is 180 to 220 mm.
  • the rib 1 is formed near the center of the deck plate 10 in the width direction
  • the rib 2 is formed near the end of the deck plate 10 in the width direction.
  • the ribs 1 and 2 are formed so as to extend along the length direction (longitudinal direction) of the deck plate 10. That is, the ribs 1 and 2 are continuously formed from one end to the other end along the direction of suspension to the beam 20.
  • the surface portion 3 is a portion of the deck plate 10 where the ribs 1 and 2 are mainly not formed, and is a surface that mainly receives the load of the concrete to be placed.
  • the surface portion 3 is formed next to the ribs 1 and 2 in the width direction of the deck plate 10. That is, in the deck plate 10, the ribs 1 and 2 and the surface portion 3 are alternately formed. In the deck plate 10, the surface portions 3 are formed on the same plane.
  • the two ribs 1 and 2 and the two surface portions 3 are formed, but it is preferable to form the same number of ribs and surface portions. In particular, it is preferable to form one to three ribs and one surface portion on each deck plate.
  • the protrusion 4 is formed by bending a steel plate.
  • the protrusion 4 is formed so as to protrude toward the surface where the ribs 1 and 2 are formed in the surface 3.
  • the surface part 3 becomes a surface where a flat part and a trough part (mountain part when it sees from the other side) continue alternately.
  • a plurality of protrusions 4 are formed side by side along the width direction of the deck plate 10, and for example, three protrusions 4 are formed per one surface portion 3.
  • the protrusion 4 has a ratio r1 of the length (L4 + L5 + L6 + L7) other than the protrusion 4 in the width direction to the length L1 in the width direction of the surface 3a of the deck plate 10 is 0.
  • the number and size of the protrusions 4 are determined so as to be in the range of 0.5 to 0.7.
  • the ratio r2 of the length (L8 + L9 + L10 + L11) other than the protruding portion 4 in the width direction to the length L2 in the width direction of the surface portion 3b is in the range of 0.5 to 0.7.
  • the number, width, and depth of the protrusions 4 are determined. More specifically, the number of the protrusions 4 depends on the width thereof, but is preferably limited to 3 to 5 per one surface portion 3 (3a, 3b), for example.
  • the protruding portion 4 is formed so as to extend along the longitudinal direction of the deck plate 10.
  • the protruding portion 4 has a width B of 20 to 25 mm along the width direction of the deck plate 10 and a height H2 (the portion of the portion that protrudes from the bottom surface of the surface portion 3 to the side closest to the ribs 1 and 2).
  • the length to the outer surface is preferably 4 to 8 mm.
  • the protrusion 4 is formed such that a valley 41 formed in the center in the width direction is deepest, and has inclined surfaces 42 having the same inclination on both sides in the width direction from the valley 41.
  • the protrusion 4 is preferably formed so that the bending radius R of the curved portion 43 (boundary portion and trough portion with the surface portion 3) where the metal plate is curved is 3 to 5 mm.
  • the distance L4 to the portion 4a is preferably 17.5 to 35 mm.
  • the distance L4 is 32.5 mm.
  • the distance L5 from the protrusion 4a to the protrusion 4b adjacent to the protrusion 4a and the distance L6 from the protrusion 4b to the protrusion 4c adjacent to the protrusion 4b are 10 It is preferable to form so as to be ⁇ 35 mm.
  • the distance L6 is 30 mm.
  • the distance L7 from the protrusion 4c to the center of the rib 1 adjacent to the protrusion 4c is preferably 17.5 to 35 mm.
  • the distance L7 is 32.5 mm.
  • the interval between the ribs 1 and 2 and the protrusions 4 adjacent to the ribs 1 and 2 and the interval between the adjacent protrusions 4 vary depending on the number of the protrusions 4, but are as equal as possible. It is preferable.
  • the distance L8 from the center of the rib 1 to the ridge 4d closest to the rib 1 is 17.5 to 35 mm. It is preferable to form it as follows. In the first embodiment, for example, when the number of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the distance L8 is 32.5 mm. Further, the distance L9 from the protrusion 4d to the protrusion 4e adjacent to the protrusion 4d and the distance L10 from the protrusion 4e to the protrusion 4f adjacent to the protrusion 4e are 10 It is preferable to form so as to be ⁇ 35 mm.
  • the distance L10 is 30 mm.
  • the distance L11 from the protrusion 4f to the center of the rib 2 adjacent to the protrusion 4f is preferably 17.5 to 35 mm.
  • the distance L11 is 32.5 mm.
  • the distance between the centers of the ribs 1 and the protrusions 4c adjacent to the ribs 1c is preferably within a range of 30 to 45 mm, and the distance between the centers of the adjacent protrusions 4 is , Preferably in the range of 35 to 55 mm.
  • the ratio r (r1, r2) of the length other than the protrusion 4 in the width direction is calculated by the following formulas (1) and (2).
  • r1 (L1 ⁇ B ⁇ n) / L1
  • r2 (L2 ⁇ B ⁇ n) / L2 (2) Therefore, the ratio r (r1, r2) has the following value.
  • the number of parts 4 is 3-4.
  • the locking portion 5 is formed at one end of the deck plate 10.
  • the locking portion 5 is an end portion of a steel material that is bent at a substantially right angle from the surface portion 3a, and is formed so as to extend along the height direction of the ribs 1 and 2.
  • the height h of the locking portion 5 is 10 to 25 mm.
  • the locking portion 5 is inserted into the receiving portion 50.
  • the distance L3 from the center of the rib 2 to the end of the extending portion 8 is 10 to 25 mm.
  • the locking portion 5 may be of a height that can be locked to the receiving portion 50, and is not necessarily within the range of 10 to 25 mm.
  • the surface portions may be overlapped, joined by welding, or connected by a fastener such as a screw without forming the locking portion 5.
  • the receiving part 50 is not limited to the range of 10 to 25 mm as long as the locking part 5 can be inserted into the receiving part 50.
  • the end close portions 6 are formed at both ends of the deck plate 10 in the length direction (longitudinal direction).
  • the end close portion 6 is formed by crushing both ends of the rib 1 and the rib 2 in a direction perpendicular to the surface of the deck plate 10.
  • the rib 1 and the rib 2 are formed in a cross section in which the end close portions 6 at both ends are crushed, and other portions sandwiched between the end close portions 6 are formed in a substantially triangular shape in cross section. Yes.
  • both end portions of the rib 1 and the rib 2 are lower in height than other portions, and thus can be placed on the upper surface of the flange portion of the beam 20.
  • the end close part 6 is formed so that the length along the extending direction of the rib 1 and the rib 2 is longer than the length to be placed on the upper surface of the flange part of the beam 20.
  • the protrusion 4 is formed on the surface portion 3 of the deck plate 10, the effective cross-sectional area can be increased by the protrusion 4 at a position away from the ribs 1 and 2 in the surface portion 3.
  • the cross-sectional performance of the deck plate 10 can be improved. Thereby, the allowable span of the deck plate 10 can be increased. Further, by improving the cross-sectional performance, the deck plate 10 can be made thinner and lighter than before.
  • the protruding portion 4 is formed such that a ratio r of the length other than the protruding portion 4 in the width direction to the length in the width direction of the surface portion 3 is in a range of 0.5 to 0.7. Yes.
  • all of the surface portions 3 can have an effective cross section, so that a sufficient amount of cross-sectional performance can be obtained with a small amount of ridge portions 4. Can be manufactured, and a significant increase in the weight of the deck plate 10 can be suppressed. Even if the deck plate 10 is made thin, the surface portion 3 between the ribs 1 and 2 does not bend when the concrete is placed.
  • the ratio r in the range of 0.5 to 0.7, the number of the ridges 4 can be suppressed to 3 to 5 per one surface portion 3, so that The amount of concrete that enters the formed depression is not significantly increased, and a significant increase in the weight of the floor structure (or ceiling structure) and a large increase in the concrete material can be suppressed. There is no need to increase the thickness.
  • the locking portion 5 is formed at one end of the deck plate 10 and the receiving portion 50 is formed in the rib 2 near the other end, one deck plate is overlapped with the other deck plate. By simply inserting the locking portion 5 into the receiving portion 50, the two deck plates 10 can be easily connected, and workability can be improved.
  • by forming the ridges 4 it becomes difficult for an operator to slip when working on the deck plate 10, and work efficiency can be improved.
  • FIG. 5A is a graph in which the horizontal axis represents the ratio r of the length other than the protrusion 4 to the length in the width direction of the surface portion 3, and the vertical axis represents the increase rate of the effective cross-section secondary moment. .
  • the horizontal axis represents the ratio r of the length other than the protrusion 4 to the length in the width direction of the surface portion 3, and the vertical axis represents the increase rate of the effective cross-section secondary moment. .
  • FIG. 5C is a graph in which the graphs of FIG. 5A and FIG. 5B are combined into one and shows a range with excellent cross-sectional performance.
  • variety of the protrusion part was 25 mm
  • height was 6 mm
  • the bending radius R of the curved part was 3 mm.
  • R2 are all the same value, and in the following, when the ratio r) is 0.9), the increase rate of the effective sectional secondary moment is less than 1.3. Further, in the range of the ratio r of 0.7 to 1.0, the increase rate of the effective cross-sectional secondary moment increases rapidly as the number of the protrusions 4 increases (the ratio r decreases). When the ratio r is 0.3 to 0.7, the increase rate of the effective section secondary moment exceeds 1.6.
  • the ratio r is 0.3 to 0.5
  • the increasing rate of the effective sectional second moment is slightly lower than when the ratio r is 0.5 to 0.7.
  • FIG. 5B even if the ratio of the increase rate of the effective sectional secondary moment and the increase rate of the weight of the deck plate 10 by increasing the protrusion 4 (decreasing the ratio r) is compared.
  • the ratio r is in the vicinity of 0.6
  • the highest numerical value exceeding 1.6 is shown.
  • the protrusion 4 is further increased (decreasing the ratio r)
  • the increase rate of the effective section secondary moment is increased.
  • the ratio of the weight increase rate gradually decreases.
  • the protrusions 4 so that the ratio r is in the range of 0.5 to 0.7 on one surface part 3 improves the cross-sectional performance.
  • the ratio r is in the vicinity of 0.6.
  • the ratio r in the range of 0.5 to 0.7 is suitable because, in FIG. 5 (b), the increase rate of the effective sectional secondary moment exceeds 1.6 and is almost horizontal.
  • the ratio is about 5% lower than the maximum ratio of the effective cross-section secondary moment increase rate and weight increase rate. This is due to the fact that up to is recognized as a range in which the cross-sectional efficiency is good.
  • the calculation is performed with the deflection coefficient C being 1.6, but the ratio r of the surface 3 is within the range of 0.5 to 0.7.
  • the deflection coefficient C is 1.0. Further, by forming the ridge portion 4 so that the ratio r is in the range of 0.5 to 0.7 on one surface portion 3, the thickness of the deck plate 10 is 0.8 mm, and the yield point of the steel material is set. When 235 N / mm 2 and the slab thickness are 150 mm, the allowable span of the deck plate 10 can be increased from 3300 mm (when there are no ridges) to 3860 mm (when there are three ridges).
  • the protruding portion 4 is not limited to the above width and height.
  • the width of the protrusion 4 may be 20 mm and the height may be 7 mm.
  • FIG. 6A shows the ratio r of the length other than the ridge portion 4 to the length in the width direction of the surface portion 3 on the horizontal axis, and the vertical axis of the effective cross-section secondary moment in the first modification. It is the graph which took the increase rate. In FIG.
  • FIG. 6C is a graph in which the graphs of FIG. 6A and FIG. 6B are combined into one, and shows a range with excellent cross-sectional performance.
  • the ratio other than the protrusion 4 in one surface part 3 When r is in the range of 0.7 to 1.0, the increase rate of the effective section secondary moment increases as the number of the protrusions 4 increases (the ratio r decreases). Even if it is reduced from the vicinity, the increase rate of the effective sectional secondary moment is only slightly increased, and no significant effect is observed. On the other hand, regarding the ratio between the increase rate of the effective sectional secondary moment and the increase rate of the weight, since the weight of the deck plate 10 increases as the number of the protrusions 4 is increased (the ratio r is decreased), the ratio r is 0. In the case of .7, the highest value is shown as 1.6, and even if the ratio r is reduced, the ratio of the increase rate of the effective section secondary moment and the increase rate of the weight gradually decreases.
  • the ridge portion 4 is set so that the ratio r is within the range of 0.5 to 0.7 for one surface portion 3 as in the section S in FIG. It can be seen that forming is preferable from the viewpoint of improving the cross-sectional performance, reducing the weight of the deck plate, and economically. Further, when the protrusion 4 is not formed, as described above, the calculation is performed with the deflection coefficient C being 1.6, but when the ratio r is in the range of 0.5 to 0.7, the protrusion Compared with the case where the strip 4 is not formed, the cross-sectional performance is remarkably improved, the effective cross-section secondary moment is 1.6 times or more, and the entire area of the surface portion 3 can be considered as an effective cross-section.
  • the deflection coefficient C is 1.0.
  • the lengths L1 and L2 in the width direction of the one surface 3a and 3b When the ratio r (r1, r2) of the length other than the ridges 4 in the width direction is calculated using the above formulas (1) and (2), the following values are obtained.
  • the protrusion 4 may have a width of 20 mm and a height of 8 mm.
  • FIG. 7A shows the ratio r of the length other than the protrusion 4 to the length in the width direction of the surface portion 3 on the horizontal axis in the modified example 2, and the effective cross-section second moment of the vertical axis on the vertical axis. It is the graph which took the increase rate.
  • FIG. 7A shows the ratio r of the length other than the protrusion 4 to the length in the width direction of the surface portion 3 on the horizontal axis in the modified example 2, and the effective cross-section second moment of the vertical axis on the vertical axis. It is the graph which took the increase rate.
  • FIG. 7C is a graph in which the graphs of FIG. 7A and FIG. 7B are combined into one, and shows a range with excellent cross-sectional performance.
  • the width of the protrusion 4 is 5 mm smaller and the height is 2 mm larger.
  • the ratio of the one surface 3 other than the protrusion 4 is as follows.
  • r is in the range of 0.7 to 1.0
  • the increase rate of the effective section secondary moment increases as the number of the protrusions 4 increases (the ratio r decreases). Even if it is reduced from the vicinity, the increase rate of the effective sectional secondary moment is only slightly increased, and no significant effect is observed.
  • the ratio r is 0. In the case of .7, the highest value is shown in the vicinity of 1.6, and even if the ratio r is decreased, the ratio of the increase rate of the effective sectional secondary moment to the increase rate of the weight gradually decreases.
  • the ridge portion 4 has a ratio r within a range of 0.5 to 0.7 on one surface portion 3 as in the section S in FIG. It can be seen that forming is preferable from the viewpoint of improving the cross-sectional performance, reducing the weight of the deck plate, and economically. Further, when the protrusion 4 is not formed, as described above, the calculation is performed with the deflection coefficient C being 1.6, but when the ratio r is in the range of 0.5 to 0.7, the protrusion Compared with the case where the strip 4 is not formed, the cross-sectional performance is remarkably improved, the effective cross-section secondary moment is 1.6 times or more, and the entire area of the surface portion 3 can be considered as an effective cross-section.
  • the deflection coefficient C is 1.0.
  • the lengths L1 and L2 in the width direction of one of the surface portions 3a and 3b are as follows.
  • the ratio r (r1, r2) of the length other than the ridges 4 in the width direction is calculated using the above formulas (1) and (2), the following values are obtained.
  • Second Embodiment A configuration of a deck plate 100 according to a second embodiment will be described with reference to FIGS.
  • the deck plate 100 according to the second embodiment is obtained by changing the number of ribs 1 and 2 and the height of the ribs 1 and 2 of the deck plate 10 according to the first embodiment described above. Yes, the configuration of other parts is the same. Therefore, in the following, the same components as those of the deck plate 10 according to the first embodiment are denoted by the same reference numerals as those of the deck plate 10 and description thereof is omitted.
  • the deck plate 100 includes three ribs 101a, 101b, and 101c, a surface portion 3, a ridge portion 4, a locking portion 5, and an end closing portion 6 (see FIG. 2). I have.
  • the thickness of the deck plate 100 is preferably 0.6 to 1.6 mm, like the deck plate 10 in the first embodiment. In the second embodiment, the thickness of the deck plate 10 is 0.8 mm.
  • the deck plate 100 is formed with three ribs 101a, 101b, and 101c.
  • Each rib 101a, 101b, 101c has the curved part 11, the linear part 12, the folding
  • the ribs 101a and 101b, and the ribs 101b and 101c are formed at intervals of 180 to 220 mm (distance between centers) along the width direction (short direction) of the deck plate 100, respectively.
  • the deck plate 100 is formed such that the length L in the width direction is 540 to 660 mm, and the rib 101a extends from one end in the width direction of the deck plate 100 to the center of the rib 101a (straight with the straight portion 12).
  • the distance La to the boundary surface where the portion 14 abuts the center of the rib 101a is 180 to 220 mm.
  • the rib 101b is formed such that the distance Lb from the center of the rib 101a to the center of the rib 101b (the boundary surface where the straight portion 12 and the straight portion 14 abut on the center of the rib 101b) is 180 to 220 mm. Has been.
  • the rib 101c is formed such that the distance Lc from the center of the rib 101b to the center of the rib 101c (the boundary surface where the straight portion 12 and the straight portion 14 abut on the center of the rib 101c) is 180 to 220 mm.
  • the rib 101a is formed on one end side (left side in FIG. 8) from the center in the width direction of the deck plate 100, and the rib 101b and the rib 101c are on the other end side from the center in the width direction of the deck plate 100. (The right side in FIG. 8).
  • the surface portion 3 is a portion where the ribs 101 a, 101 b, and 101 c are mainly not formed on the deck plate 100, and is a surface that mainly receives the load of the concrete to be placed.
  • the surface portion 3 is formed next to the ribs 101a, 101b, 101c in the width direction of the deck plate 100. That is, in the deck plate 100, the ribs 101a, 101b, 101c and the surface portion 3 are alternately formed. In the deck plate 100, the surface portions 3 are formed on the same plane. In the second embodiment, the three ribs 101a, 101b, 101c and the three surface portions 3 are formed, but it is preferable to form the same number of ribs and surface portions.
  • the protrusion 4 is formed by bending a steel plate.
  • the protrusion 4 is formed so as to protrude toward the surface where the ribs 101a, 101b, and 101c are formed on the surface 3.
  • the surface part 3 becomes a surface where a flat part and a trough part (mountain part when it sees from the other side) continue alternately.
  • a plurality of protrusions 4 are formed side by side along the width direction of the deck plate 100, and for example, three protrusions 4 are formed per one surface portion 3.
  • the ratio ra of the length (L4 + L5 + L6 + L7) other than the protrusion 4 in the width direction to the length La in the width direction of the surface portion 3 a of the deck plate 100 is 0.
  • the number and size of the protrusions 4a, 4b, and 4c are determined so as to be within the range of 0.5 to 0.7.
  • the ratio rb of the length (L8 + L9 + L10 + L11) other than the protruding portion 4 in the width direction to the length Lb in the width direction of the surface portion 3b is in the range of 0.5 to 0.7.
  • the number, width, and depth of the protrusions 4d, 4e, and 4f are determined. Also in the surface portion 3c of the deck plate 100, the ratio rc of the length (L12 + L13 + L14 + L15) other than the protruding portion 4 in the width direction to the length Lc in the width direction of the surface portion 3c is in the range of 0.5 to 0.7. As described above, the number, width, and depth of the protrusions 4g, 4h, and 4i are determined. More specifically, the number of protrusions 4 depends on the width thereof, but is preferably limited to, for example, 3 to 5 per one surface 3 (3a, 3b, 3c).
  • the protruding portion 4 has a width B of 25 mm along the width direction of the deck plate 100 and a height H4 (the outer surface of the portion that protrudes from the lower surface of the surface portion 3 most from the ribs 101a, 101b, 101c side). Is preferably 6 mm.
  • the protrusion 4 is preferably formed so that the bending radius R of the curved portion 43 (boundary portion and trough portion with the surface portion 3) where the metal plate is curved is 3 to 5 mm.
  • the protrusion closest to the one end of the deck plate 100 from one end of the deck plate 100 is formed to be 37.5 mm when the number of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm.
  • the distance L5 from the ridge 4a to the ridge 4b adjacent to the ridge 4a and the distance L6 from the ridge 4b to the ridge 4c adjacent to the ridge 4b are 30 mm. It is formed to become.
  • the distance L7 from the protrusion 4c to the center of the rib 101a adjacent to the protrusion 4c is 37.5 mm.
  • the distance L8 from the center of the rib 101a to the protrusion 4d closest to the rib 101a is the number of protrusions 4
  • the width B of the protrusion 4 is 25 mm, it is formed to be 37.5 mm.
  • the distance L9 from the protrusion 4d to the protrusion 4e adjacent to the protrusion 4d, and the distance L10 from the protrusion 4e to the protrusion 4f adjacent to the protrusion 4e are 30 mm. It is formed to become.
  • the distance L11 from the protrusion 4f to the center of the rib 101b adjacent to the protrusion 4f is 37.5 mm.
  • the distance L12 from the center of the rib 101c to the protrusion 4g closest to the rib 101c is the number of the protrusions 4
  • the width B of the protrusion 4 is 25 mm, it is formed to be 37.5 mm.
  • the distance L13 from the ridge 4g to the ridge 4h adjacent to the ridge 4g and the distance L14 from the ridge 4h to the ridge 4i adjacent to the ridge 4h are 30 mm. It is formed to become.
  • the distance L15 from the protrusion 4i to the center of the rib 101c adjacent to the protrusion 4i is formed to be 37.5 mm.
  • the ribs 101a and the protrusions 4c adjacent to the ribs 101a are as follows. , 50 mm.
  • interval between the centers of the adjacent protrusion part 4 is 55 mm.
  • the length La in the width direction of one of the surface portions 3a, 3b, 3c , Lb, Lc, the ratio r (ra, rb, rc) of the length other than the protruding portion 4 in the width direction is calculated by the following equations (3), (4), and (5).
  • ra (La ⁇ B ⁇ n) / La (3)
  • rb (Lb ⁇ B ⁇ n) / Lb (4)
  • rc (Lc ⁇ B ⁇ n) / Lc (5) Therefore, the ratio r (ra, rb, rc) has the following value.
  • the number of parts 4 is 3-4.
  • FIG. 10A is a graph in which the horizontal axis represents the ratio r of the length other than the protrusions 4 to the length in the width direction of the surface portion 3, and the vertical axis represents the increase rate of the effective cross-sectional secondary moment. .
  • the horizontal axis represents the ratio r of the length other than the ridges 4 to the width of the surface 3 in the width direction
  • the vertical axis represents the rate of increase of the effective sectional secondary moment and the weight of the deck plate 100. It is the graph which took ratio with the increase rate.
  • FIG. 10C summarizes the graphs of FIG. 10A and FIG. 10B into one, and is a graph showing a range with excellent cross-sectional performance.
  • Ratio r (ra, rb, rc are all the same value, and hereinafter, simply referred to as ratio r) is 0.9, the rate of increase in effective moment of inertia is 1.3. Is also less.
  • the increase rate of the effective cross-sectional secondary moment increases rapidly as the number of the protrusions 4 increases (the ratio r decreases).
  • the increase rate of the effective section secondary moment exceeds 1.6.
  • the ratio r is 0.3 to 0.5
  • the increasing rate of the effective sectional second moment is slightly lower than when the ratio r is 0.5 to 0.7. As shown in FIG.
  • the protrusions 4 so that the ratio r is in the range of 0.5 to 0.7 on one surface 3 improves the cross-sectional performance.
  • the ratio r is in the vicinity of 0.6.
  • the ratio r in the range of 0.5 to 0.7 is suitable because, in FIG. 10B, the rate of increase of the effective section secondary moment exceeds 1.6 and is almost horizontal.
  • the ratio is about 5% lower than the maximum ratio of the effective cross-section secondary moment increase rate and weight increase rate. This is due to the fact that up to is recognized as a range in which the cross-sectional efficiency is good.
  • the calculation is performed with the deflection coefficient C being 1.6, but the ratio r of the surface 3 is within the range of 0.5 to 0.7.
  • the deflection coefficient C is 1.0. Further, by forming the ridge portion 4 so that the ratio r is in the range of 0.5 to 0.7 on one surface portion 3, the thickness of the deck plate 10 is 0.8 mm, and the yield point of the steel material is set. When 235 N / mm 2 and the slab thickness are 150 mm, the allowable span of the deck plate 10 can be increased from 2530 mm (when there are no ridges) to 2780 mm (when there are three ridges).
  • FIG. 11A shows the ratio r of the length other than the ridge portion 4 to the length in the width direction of the surface portion 3 on the horizontal axis, and the vertical axis of the effective cross-section secondary moment in the first modification.
  • FIG. 11 (b) the horizontal axis represents the ratio r of the length other than the ridges 4 to the length of the surface portion 3 in the width direction, and the vertical axis represents the increase rate of the effective moment of inertia and the weight of the deck plate 100. It is the graph which took ratio with the increase rate.
  • FIG. 11C summarizes the graphs of FIG. 11A and FIG. 11B into one, and is a graph showing a range with excellent cross-sectional performance.
  • variety of the protrusion part 4 becomes 5 mm smaller and the height H4 becomes 1 mm larger, in this case, other than the protrusion part 4 in one surface part 3
  • the ratio r is in the range of 0.7 to 1.0, the increase rate of the effective cross-section secondary moment increases as the number of the protrusions 4 increases (the ratio r decreases).
  • the ratio r is reduced from 0.7, the rate of increase of the effective sectional secondary moment gradually decreases and no significant effect is observed.
  • the ratio r is 0. In the case of .7, the highest value is shown as 1.6, and even if the ratio r is reduced, the ratio of the increase rate of the effective section secondary moment and the increase rate of the weight gradually decreases.
  • the ridge portion 4 has a ratio r within a range of 0.5 to 0.7 on one surface portion 3 as in the section S in FIG. It can be seen that forming is preferable from the viewpoint of improving the cross-sectional performance, reducing the weight of the deck plate, and economically.
  • the length La in the width direction of one of the surface portions 3a, 3b, 3c When the ratio r (ra, rb, rc) of the length other than the protrusions 4 in the width direction with respect to Lb, Lc is calculated using the above formulas (3), (4), and (5), It becomes the following values.
  • FIG. 12A shows the ratio r of the length other than the ridge portion 4 to the length in the width direction of the surface portion 3 on the horizontal axis, and the vertical axis of the effective cross-section secondary moment in the second modification. It is the graph which took the increase rate.
  • FIG. 12C summarizes the graphs of FIG. 12A and FIG. 12B into one, and is a graph showing a range with excellent cross-sectional performance.
  • the width of the protrusion 4 is 5 mm smaller and the height H4 is 2 mm larger.
  • the ratio r other than 4 is in the range of 0.7 to 1.0, the rate of increase of the effective section secondary moment increases as the number of the protrusions 4 increases (the ratio r decreases). However, even if the ratio r is reduced from the vicinity of 0.7, the increase rate of the effective section secondary moment gradually decreases, and no significant effect is observed.
  • the ratio r is 0. In the case of .7, the highest value is shown in the vicinity of 1.6, and even if the ratio r is decreased, the ratio of the increase rate of the effective sectional secondary moment to the increase rate of the weight gradually decreases.
  • the length La in the width direction of one of the surface portions 3a, 3b, 3c When the ratio r (ra, rb, rc) of the length other than the protrusions 4 in the width direction with respect to Lb, Lc is calculated using the above formulas (3), (4), and (5), It becomes the following values.
  • the deck plate 100 in which the three ribs 101a, 101b, and 101c are formed and the height H3 of the ribs 101a, 101b, and 101c is 75 mm is not limited to the above plate thickness.
  • the thickness of the deck plate 100 may be 0.6 mm.
  • FIG. 13A shows the ratio r of the length other than the ridge portion 4 to the length in the width direction of the surface portion 3 on the horizontal axis, and the vertical axis of the effective cross-section secondary moment in the modified example 3. It is the graph which took the increase rate.
  • FIG. 13A shows the ratio r of the length other than the ridge portion 4 to the length in the width direction of the surface portion 3 on the horizontal axis, and the vertical axis of the effective cross-section secondary moment in the modified example 3. It is the graph which took the increase rate.
  • FIG. 13B is a graph in which the graphs of FIG. 13A and FIG. 13B are combined into one and shows a range with excellent cross-sectional performance.
  • the plate thickness is 0.2 mm thinner.
  • the ratio r of the one surface portion 3 other than the protrusion 4 is 0.7 to 1.0.
  • the increasing rate of the effective cross-section secondary moment increases as the number of the protrusions 4 increases (the ratio r decreases).
  • the rate of increase of the effective sectional secondary moment is only slightly increased in the range of the ratio r from 0.6 to 0.7, and the ratio r is decreased from 0.6. However, it gradually decreases and no significant effect is seen.
  • the ratio r is 0. In the case of the vicinity of .6, the highest value is shown as 1.75, and even if the ratio r is reduced, the ratio between the increase rate of the effective sectional secondary moment and the increase rate of the weight gradually decreases.
  • the third modification for example, when the number n of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the length La in the width direction of one surface 3a, 3b, 3c,
  • the ratio r (ra, rb, rc) of the length other than the protrusions 4 in the width direction with respect to Lb, Lc is calculated using the above formulas (3), (4), and (5), It becomes the following values.
  • the number of ridges 4 is 3-4.
  • the deck plate 100 in which the three ribs 101a, 101b, and 101c are formed and the height H3 of the ribs 101a, 101b, and 101c is 75 mm is not limited to the above plate thickness.
  • the thickness of the deck plate 100 may be 1.2 mm.
  • FIG. 14A shows the ratio r of the length other than the protrusion 4 to the length in the width direction of the surface portion 3 on the horizontal axis in the modified example 4, and the effective section secondary moment of the vertical axis on the vertical axis. It is the graph which took the increase rate.
  • FIG. 14A shows the ratio r of the length other than the protrusion 4 to the length in the width direction of the surface portion 3 on the horizontal axis in the modified example 4, and the effective section secondary moment of the vertical axis on the vertical axis. It is the graph which took the increase rate.
  • FIG. 14A shows the ratio r of the length other than the protrusion 4 to the length in the width direction of the surface portion 3 on the horizontal axi
  • FIG. 14C is a graph in which the graphs of FIG. 14A and FIG. 14B are combined into one and shows a range with excellent cross-sectional performance.
  • the plate thickness is 0.4 mm thick.
  • the ratio r of the one surface portion 3 other than the protrusion 4 is 0.7 to 1.0.
  • the increasing rate of the effective cross-section secondary moment increases as the number of the protrusions 4 increases (the ratio r decreases).
  • the ratio r is reduced from 0.7, the rate of increase of the effective sectional secondary moment gradually decreases and no significant effect is observed.
  • the ratio r is 0. In the case of .7, the highest value is shown as 1.45 and the ratio of the increase rate of the effective cross-section second moment and the increase rate of the weight gradually decreases even if the ratio r is reduced.
  • the ridge portion 4 is formed on the surface portion 3 in the same manner as the deck plate 10 according to the first embodiment of the present invention described above. Since the ratio r of the length other than the protrusions 4 in the width direction to the length in the width direction is in the range of 0.5 to 0.7, while improving the cross-sectional performance, A significant increase in weight can be suppressed.
  • the present invention is not limited to the above embodiment.
  • the folded portions 13 and 23 are not limited to a substantially triangular shape, and may be folded when the straight portion 12 and the straight portion 14 are in contact with each other and the straight portion 22 and the straight portion 24 are in contact with each other. Can be changed freely.
  • the deck plates 10 and 100 are not limited to steel plates, and any material may be used as long as the deck plates 10 and 100 are metal plates that satisfy a predetermined cross-sectional performance.
  • the deck plates 10 and 100 are not only as a formwork for placing concrete, but also as a part of the floor structure (or ceiling structure), the floor is integrated with the concrete after the concrete is solidified.
  • the rigidity of the structure (or ceiling structure) can also be increased.
  • the deck plates 10 and 100 are not limited to the case of constructing a steel structure building, but may be used as a formwork for constructing a reinforced concrete structure or a formwork for producing precast concrete. .
  • the ribs 1 and 2 (or the ribs 101a, 101b, and 101c) of the deck plate 10 (100) are formed. It is also possible to mount the ribs 1 and 2 (101a, 101b, 101c) on the concrete placed on the deck plate 10 (100) with the surface being placed facing upward (concrete side). Good. In this case, after the concrete is solidified, the ribs 1 and 2 (101a, 101b, and 101c) can be deeply cut into the concrete, and the concrete and the deck plate 10 (100) are integrated to form a composite structure of steel concrete. Thus, the rigidity of the floor structure (or ceiling structure) can be increased.
  • the rigidity of the floor structure (or ceiling structure) can be further increased.
  • the deck placed between the beams 20 by placing the surface of the deck plate 10 (100) on which the ribs 1 and 2 (101a, 101b, 101c) are formed upward (concrete side). Since the ribs 1 and 2 (101a, 101b, and 101c) do not protrude below the plate 10 (100), the total length of one deck plate 10 (100) is increased as shown in FIG.
  • One deck plate 10 (100) can be placed between the beams 20 (a plurality of spans).

Abstract

Provided is a deck plate having higher cross-sectional performance than conventional deck plates. A deck plate (10) which is formed from a metal plate and on which surface sections (3) and ribs (1, 2) are continuously and alternately formed has formed thereon ridges (4) protruding toward one surface side. The ratio of the length, in a width direction, of portions other than the ridges to the length, in the width direction, of the surface sections is in the range of 0.5 to 0.7.

Description

デッキプレートDeck plate
 本発明は、床スラブや天井スラブの構築に用いるデッキプレートに関する。 The present invention relates to a deck plate used for construction of a floor slab or a ceiling slab.
 建築構造物の床スラブや天井スラブを構築する際に、デッキプレートが広く用いられている。デッキプレートは、梁間に架け渡されるように設置されており、デッキプレートの両端部が梁の上面に固定されている。デッキプレートを固定した後、デッキプレートの上にはコンクリートが打設され、コンクリートが固化することにより、床構造体または天井構造体が構築される。
 デッキプレートは、ロール成形などによって金属板に曲げ加工を施すことで形成される。デッキプレートには、剛性を高めるためのリブが形成されている(例えば、特許文献1参照)。
Deck plates are widely used in building floor slabs and ceiling slabs of building structures. The deck plate is installed so as to be bridged between the beams, and both end portions of the deck plate are fixed to the upper surface of the beam. After the deck plate is fixed, concrete is placed on the deck plate, and the concrete is solidified to construct a floor structure or a ceiling structure.
The deck plate is formed by bending a metal plate by roll forming or the like. The deck plate is formed with ribs for increasing rigidity (see, for example, Patent Document 1).
特開2017-120014号公報JP 2017-122014 A
 上記の特許文献1においては、リブ間に形成された平面部に、上面が上方に突出する平坦な突条部が形成されており、デッキプレート全体の断面性能及び座屈強度を向上させることができるようになっている。
 しかし、このような突条部を平面部に形成したとしても、性能の向上には限界があった。具体的には、通常、デッキプレートでは、たわみ算定式に用いるたわみ係数Cを1.6として算定を行っているが、特許文献1におけるデッキプレートにおいては、たわみ係数Cを1.33に改善しているに過ぎず、断面性能をより向上させることが求められている。また、デッキプレートの断面性能を向上させるために突条部を多く形成することは、デッキプレートの重量増加を招くため、最適な数の突条部を形成してデッキプレートの重量増加を抑えることが望まれている。
 ここで、デッキプレートのたわみ量は、デッキプレートの断面の全領域を有効とした断面二次モーメントを用いて算定されており、たわみ係数Cは、デッキプレートの有効に働く領域を考慮してその剛性低下の影響を見込んだ補正係数である。上述したように、通常、デッキプレートのたわみ係数Cは、C=1.6である。
 たわみ量の算定式は、たわみ量をδ、たわみ係数をC、施工時の鉛直荷重をW、スパン長をL、ヤング係数をE、デッキプレートの断面の全領域を有効とした断面二次モーメントをIとすると、
   δ=C{5WL/(384EI)}
となる。
In the above-mentioned Patent Document 1, a flat ridge portion whose upper surface protrudes upward is formed on the flat portion formed between the ribs, and the cross-sectional performance and buckling strength of the entire deck plate can be improved. It can be done.
However, even if such protrusions are formed on the flat surface, there is a limit to improving the performance. Specifically, in the deck plate, the deflection coefficient C used in the deflection calculation formula is normally calculated as 1.6, but in the deck plate in Patent Document 1, the deflection coefficient C is improved to 1.33. However, there is a demand for further improving the cross-sectional performance. In addition, forming a large number of protrusions to improve the cross-sectional performance of the deck plate leads to an increase in the weight of the deck plate, so an optimal number of protrusions are formed to suppress an increase in the weight of the deck plate. Is desired.
Here, the deflection amount of the deck plate is calculated by using the second moment of section which makes the whole area of the cross section of the deck plate effective, and the deflection coefficient C takes into account the effective working area of the deck plate. This is a correction coefficient that anticipates the effect of reduced rigidity. As described above, the deflection coefficient C of the deck plate is normally C = 1.6.
The deflection calculation formula is δ for deflection, C for deflection, W for vertical load during construction, L for span length, E for Young's modulus, and secondary moment of inertia for all areas of deck plate cross section. If I is I,
δ = C {5WL 4 / (384EI)}
It becomes.
 そこで、本発明は、上記課題に鑑みてなされたものであり、従来よりも断面性能を向上させつつも、重量の大幅な増加を抑制することができるデッキプレートを提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a deck plate capable of suppressing a significant increase in weight while improving cross-sectional performance as compared with the conventional art.
 上記の課題を解決するため、本発明は、金属板から形成され、面部とリブとが交互に連続して形成されたデッキプレートであって、前記面部には、一方の面側に向けて突出する突条部が形成されており、面部の幅方向の長さに対する当該幅方向における前記突条部以外の長さの割合は、0.5~0.7の範囲内であることを特徴とする。 In order to solve the above-described problems, the present invention is a deck plate formed of a metal plate and having surface portions and ribs formed alternately and continuously, and the surface portion protrudes toward one surface side. The ratio of the length other than the protrusion in the width direction to the length in the width direction of the surface part is in the range of 0.5 to 0.7. To do.
 また、前記面部と前記リブを同数形成することが好ましい。 Further, it is preferable to form the same number of the surface portions and the ribs.
 また、前記突条部は、幅方向に所定間隔をあけて並んで形成されていることが好ましい。 Moreover, it is preferable that the protrusions are formed side by side with a predetermined interval in the width direction.
 また、幅方向における一端側の面部には、係止部が形成されており、幅方向における他端側のリブには、前記係止部を受容する受容部が形成されていることが好ましい。 Further, it is preferable that a locking portion is formed on a surface portion on one end side in the width direction, and a receiving portion for receiving the locking portion is formed on a rib on the other end side in the width direction.
 また、前記面部の幅方向の長さは、180~220mmであることが好ましい。 Further, the length of the surface portion in the width direction is preferably 180 to 220 mm.
 また、前記突条部の幅は、20~25mmであることが好ましい。 The width of the protrusion is preferably 20 to 25 mm.
 また、前記突条部の高さは、4~8mmであることが好ましい。 The height of the protrusion is preferably 4 to 8 mm.
 また、前記リブとこのリブに隣接する突条部との中心間の間隔は、20~50mmであることが好ましい。 Further, the distance between the centers of the rib and the ridge adjacent to the rib is preferably 20 to 50 mm.
 また、隣接する前記突条部の中心間の間隔は、30~60mmであることが好ましい。 Further, the distance between the centers of the adjacent ridges is preferably 30 to 60 mm.
 また、前記突条部における金属板の湾曲部の曲げ半径は、3~5mmであることが好ましい。 Further, the bending radius of the curved portion of the metal plate in the protruding portion is preferably 3 to 5 mm.
 また、前記突条部は、一つの面部あたり3~5つ形成されていることが好ましい。 Further, it is preferable that 3 to 5 protrusions are formed per one surface portion.
 本発明によれば、デッキプレートの断面性能を従来よりも向上させつつも、重量の大幅な増加を抑制することができる。 According to the present invention, it is possible to suppress a significant increase in weight while improving the cross-sectional performance of the deck plate as compared with the conventional one.
第1の実施の形態における、梁間に設置されたデッキプレートを示す図である。It is a figure which shows the deck plate installed between the beams in 1st Embodiment. 第1の実施の形態における、デッキプレートの斜視図である。It is a perspective view of a deck plate in a 1st embodiment. 第1の実施の形態における、デッキプレートの断面図である。It is sectional drawing of the deck plate in 1st Embodiment. 第1の実施の形態における、突条部の拡大断面図である。It is an expanded sectional view of a protrusion part in a 1st embodiment. 第1の実施の形態における、(a)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。(b)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率とデッキプレートの重量増加率との比をとったグラフである。(c)は、(a)と(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。In (a) in the first embodiment, the horizontal axis represents the ratio of the length other than the protrusions to the length in the width direction of the surface portion, and the vertical axis represents the rate of increase in the effective cross-section secondary moment. It is a graph. In (b), the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken. (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance. 第1の実施の形態の変形例1における、(a)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。(b)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率とデッキプレートの重量増加率との比をとったグラフである。(c)は、(a)と(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。(A) in the first modification of the first embodiment, the horizontal axis represents the ratio of the length other than the ridge portion to the length in the width direction of the surface portion, and the vertical axis represents the increase in effective cross-section secondary moment. It is the graph which took the rate. In (b), the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken. (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance. 第1の実施の形態の変形例2における、(a)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。(b)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率とデッキプレートの重量増加率との比をとったグラフである。(c)は、(a)と(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。(A) in the second modification of the first embodiment, the horizontal axis represents the ratio of the length other than the ridge to the length in the width direction of the surface portion, and the vertical axis represents the increase in the effective cross-section secondary moment. It is the graph which took the rate. In (b), the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken. (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance. 第2の実施の形態における、デッキプレートの断面図である。It is sectional drawing of the deck plate in 2nd Embodiment. 第2の実施の形態における、突条部の拡大断面図である。It is an expanded sectional view of a protrusion part in a 2nd embodiment. 第2の実施の形態における、(a)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。(b)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率とデッキプレートの重量増加率との比をとったグラフである。(c)は、(a)と(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。(A) in 2nd Embodiment took the ratio of length other than a rib part with respect to the length of the width direction of a surface part on a horizontal axis, and took the increase rate of the effective cross-section secondary moment on the vertical axis | shaft. It is a graph. In (b), the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken. (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance. 第2の実施の形態の変形例1における、(a)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。(b)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率とデッキプレートの重量増加率との比をとったグラフである。(c)は、(a)と(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。In the first modification of the second embodiment, (a) shows the ratio of the length other than the ridge to the length in the width direction of the surface portion on the horizontal axis, and the increase in the effective moment of inertia on the vertical axis. It is the graph which took the rate. In (b), the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken. (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance. 第2の実施の形態の変形例2における、(a)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。(b)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率とデッキプレートの重量増加率との比をとったグラフである。(c)は、(a)と(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。(A) in the second modification of the second embodiment, the horizontal axis represents the ratio of the length other than the protrusions to the length in the width direction of the surface portion, and the vertical axis represents the increase in effective cross-section secondary moment. It is the graph which took the rate. In (b), the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken. (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance. 第2の実施の形態の変形例3における、(a)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。(b)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率とデッキプレートの重量増加率との比をとったグラフである。(c)は、(a)と(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。In the third modification of the second embodiment, (a) shows the ratio of the length other than the ridge to the length in the width direction of the surface portion on the horizontal axis, and the increase in the effective section secondary moment on the vertical axis. It is the graph which took the rate. In (b), the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken. (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance. 第2の実施の形態の変形例4における、(a)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。(b)は、横軸に面部の幅方向の長さに対する突条部以外の長さの割合をとり、縦軸に有効断面二次モーメントの増加率とデッキプレートの重量増加率との比をとったグラフである。(c)は、(a)と(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。In the modified example 4 of the second embodiment, (a) shows the ratio of the length other than the projecting portion with respect to the length in the width direction of the surface portion on the horizontal axis, and the increase in the effective section secondary moment on the vertical axis. It is the graph which took the rate. In (b), the horizontal axis represents the ratio of the length other than the ridges to the length in the width direction of the surface portion, and the vertical axis represents the ratio between the increase rate of the effective sectional secondary moment and the weight increase rate of the deck plate. It is a graph taken. (C) is a graph that summarizes the graphs of (a) and (b) into one, and shows a range with excellent cross-sectional performance. リブが形成されている面を上側(コンクリート側)に向けて梁間に設置したデッキプレートを示す図である。It is a figure which shows the deck plate installed between the beams toward the upper surface (concrete side) in which the rib is formed. 複数のスパンにわたって梁間に設置したデッキプレートを示す図である。It is a figure which shows the deck plate installed between the beams over several spans.
 本発明の好ましい実施の形態について、図面を参照しながら説明する。なお、以下に示す実施の形態は一例であり、本発明の範囲において、種々の実施の形態をとりうる。 Preferred embodiments of the present invention will be described with reference to the drawings. The following embodiment is merely an example, and various embodiments can be employed within the scope of the present invention.
1.第1の実施の形態
 第1の実施の形態に係るデッキプレート10の構成について、図1から図4を参照しながら説明する。図1は、梁間に設置されたデッキプレートを示す図である。図2は、デッキプレートの斜視図である。図3は、デッキプレートの断面図である。図4は、突条部の拡大断面図である。
 図1から図3に示すように、デッキプレート10は、建築構造物の床構造物(または天井構造物)を構築する際に打設されるコンクリートの型枠になる。
1. First Embodiment A configuration of a deck plate 10 according to a first embodiment will be described with reference to FIGS. 1 to 4. FIG. 1 is a view showing a deck plate installed between beams. FIG. 2 is a perspective view of the deck plate. FIG. 3 is a cross-sectional view of the deck plate. FIG. 4 is an enlarged cross-sectional view of the protrusion.
As shown in FIGS. 1 to 3, the deck plate 10 becomes a concrete formwork placed when a floor structure (or ceiling structure) of a building structure is constructed.
<デッキプレートの構成>
 図1に示すように、デッキプレート10は、対向する梁20間に架け渡されている。デッキプレート10は、一端が一方の梁20に載置され、溶接等によって梁20に固定されており、他端が他方の梁20に載置され、溶接等によって梁20に固定されている。具体的に、梁20は、例えば、H形鋼によって構成されており、デッキプレート10の各端部はそれぞれの梁20を構成するH形鋼のフランジ部に載置され、固定されている。
<Configuration of deck plate>
As shown in FIG. 1, the deck plate 10 is bridged between the beams 20 facing each other. The deck plate 10 has one end placed on one beam 20 and fixed to the beam 20 by welding or the like, and the other end placed on the other beam 20 and fixed to the beam 20 by welding or the like. Specifically, the beam 20 is made of, for example, H-shaped steel, and each end portion of the deck plate 10 is placed on and fixed to a flange portion of the H-shaped steel constituting each beam 20.
 図2、図3に示すように、デッキプレート10は、亜鉛メッキ等の表面処理が施された薄板状の鋼板から形成されている。デッキプレート10は、例えば、平板状の鋼板をロール成形機によってロール成形することにより製造される。デッキプレート10は、ロール成形機によって複数の箇所で曲げ加工が施される。ここで、デッキプレート10の板厚は、0.6~1.6mmであることが好ましい。本実施の形態では、デッキプレート10の板厚を0.8mmとしている。
 デッキプレート10は、二つのリブ1,2と、面部3と、突条部4と、係止部5と、エンドクローズ部6と、を備えている。
As shown in FIGS. 2 and 3, the deck plate 10 is formed of a thin steel plate that has been subjected to a surface treatment such as galvanization. The deck plate 10 is manufactured, for example, by roll-forming a flat steel plate with a roll forming machine. The deck plate 10 is bent at a plurality of locations by a roll forming machine. Here, the thickness of the deck plate 10 is preferably 0.6 to 1.6 mm. In the present embodiment, the thickness of the deck plate 10 is 0.8 mm.
The deck plate 10 includes two ribs 1, 2, a surface portion 3, a protruding portion 4, a locking portion 5, and an end closing portion 6.
(リブ)
 図3に示すように、リブ1は、鋼板が曲げ加工されることによって形成されている。リブ1は、鋼板の一方の面側に折り曲げられた湾曲部11と、湾曲部11に連続し、面方向が面部3に直交する方向に延在する直線部12と、直線部12に連続し、複数回にわたって湾曲されて折り返された折返部13と、折返部13に連続し、面方向が直線部12に沿うように延在する直線部14と、直線部14に連続し、面部3に向かって折り曲げられた湾曲部15と、を有している。
 湾曲部11と湾曲部15は、その曲げ半径Rが4~10mm、例えば、6mm程度となるように形成されている。これは、ロール成形による曲げ加工が比較的容易で、湾曲部11,15との間に形成される窪みが必要以上に大きくなることによってコンクリートの無駄が発生することを防止するためである。
 直線部12と直線部14は、互いの面同士が当接するように形成され、カシメ加工等によって連結されている。これによって、直線部12と直線部14とが離れないようになっている。
 折返部13は、断面視略三角形状に形成されており、直線部12と直線部14とが当接するよう、始点と終点が隣接するように折り返されている。
(rib)
As shown in FIG. 3, the rib 1 is formed by bending a steel plate. The rib 1 is continuous to the curved portion 11 bent to one surface side of the steel plate, the curved portion 11, the linear portion 12 extending in a direction perpendicular to the surface portion 3, and the linear portion 12. The folded portion 13 that is bent and folded over a plurality of times, the folded portion 13 is continuous, the straight portion 14 is extended so that the surface direction is along the straight portion 12, the straight portion 14 is continued, and the surface portion 3 is And a bending portion 15 bent toward the front.
The bending portion 11 and the bending portion 15 are formed so that the bending radius R thereof is 4 to 10 mm, for example, about 6 mm. This is because bending by roll forming is relatively easy, and it is possible to prevent the waste of concrete from occurring due to an unnecessarily large depression formed between the curved portions 11 and 15.
The straight line portion 12 and the straight line portion 14 are formed so that their surfaces come into contact with each other, and are connected by caulking or the like. As a result, the straight portion 12 and the straight portion 14 are not separated.
The folded portion 13 is formed in a substantially triangular shape in sectional view, and is folded so that the start point and the end point are adjacent to each other so that the straight portion 12 and the straight portion 14 come into contact with each other.
 図3に示すように、リブ2は、鋼板が曲げ加工されることによって形成されている。リブ2は、鋼板の一方の面側に折り曲げられた湾曲部21と、湾曲部21に連続し、面方向が面部3に直交する方向に延在する直線部22と、直線部22に連続し、複数回にわたって湾曲されて折り返された折返部23と、折返部23に連続し、面方向が直線部22に沿うように延在する直線部24と、直線部24に連続し、直線部22から離間する方向に面部3に向かって斜め方向に傾斜する傾斜部25と、傾斜部25に連続し、面方向が直線部22に沿うように延在する直線部26と、直線部26に連続し、面部3に向かって折り曲げられた湾曲部27と、を有している。 As shown in FIG. 3, the rib 2 is formed by bending a steel plate. The rib 2 is continuous to the curved portion 21 bent to one surface side of the steel plate, the curved portion 21, the straight portion 22 extending in a direction perpendicular to the surface portion 3, and the straight portion 22. The folded portion 23 that is bent and folded over a plurality of times, the straight portion 24 that continues to the folded portion 23, the surface direction extends along the straight portion 22, the continuous straight portion 24, and the straight portion 22. In the direction away from the inclined surface 25 inclined toward the surface portion 3, continuous to the inclined portion 25, and continuous to the straight portion 26, the surface direction extending along the straight portion 22, and continuous to the straight portion 26. And a curved portion 27 bent toward the surface portion 3.
 湾曲部21と湾曲部27は、その曲げ半径Rが4~10mm、例えば、6mm程度となるように形成されている。これは、ロール成形による曲げ加工が比較的容易で、湾曲部21,27との間に形成される窪みが必要以上に大きくなることによってコンクリートの無駄が発生することを防止するためである。
 直線部22と直線部24は、互いの面同士が当接するように形成され、カシメ加工等によって連結されている。これによって、直線部22と直線部24とが離れないようになっている。
 折返部23は、断面視略三角形状に形成されており、直線部22と直線部24とが当接するよう、始点と終点が隣接するように折り返されている。
 傾斜部25は、直線部22と直線部26との間に隙間を形成するためのものであり、この傾斜部25の存在により、直線部22と直線部26との間に形成された隙間を係止部5の受容部50として係止部5を挿入することができる。
The bending portion 21 and the bending portion 27 are formed so that the bending radius R thereof is 4 to 10 mm, for example, about 6 mm. This is because bending by roll forming is relatively easy, and it is possible to prevent the waste of concrete from occurring due to an unnecessarily large depression formed between the curved portions 21 and 27.
The straight line portion 22 and the straight line portion 24 are formed so that their surfaces come into contact with each other, and are connected by caulking or the like. As a result, the straight portion 22 and the straight portion 24 are not separated.
The folded portion 23 is formed in a substantially triangular shape in sectional view, and is folded so that the start point and the end point are adjacent to each other so that the straight portion 22 and the straight portion 24 come into contact with each other.
The inclined portion 25 is for forming a gap between the straight portion 22 and the straight portion 26. Due to the presence of the inclined portion 25, the gap formed between the straight portion 22 and the straight portion 26 is reduced. The locking part 5 can be inserted as the receiving part 50 of the locking part 5.
 デッキプレート10には、リブ1とリブ2の二つのリブが形成されており、リブ1とリブ2は、デッキプレート10の幅方向(短手方向)に沿って180~220mmの間隔(中心間の距離)をあけて形成されている。具体的には、デッキプレート10は、その幅方向の長さLが360~440mmに形成されており、リブ1は、デッキプレート10の幅方向の一端からリブ1の中心(直線部12と直線部14とが当接する境界面をリブ1の中心とする)までの距離L1が180~220mmとなるように形成されている。また、リブ2は、リブ1の中心からリブ2の中心(直線部22と直線部24とが当接する境界面をリブ2の中心とする)までの距離L2が180~220mmとなるように形成されている。すなわち、リブ1は、デッキプレート10の幅方向の中央近傍に形成されており、リブ2は、デッキプレート10の幅方向の端部近傍に形成されている。ここで、距離L1と距離L2は等しいことが好ましく、第1の実施の形態においては、L1=L2=200mm、L=400mmとなるように形成されている。つまり、各平面部3の幅方向の長さは、L1,L2と同じ200mmとなる。
 リブ1,2は、デッキプレート10の長さ方向(長手方向)に沿って延在するように形成されている。すなわち、リブ1,2は、梁20への懸架方向に沿って一端から他端にわたって連続して形成されている。
 リブ1,2は、その下端から面部3の上端(上面)までの高さが75~100mmとなるように形成されていることが好ましい。第1の実施の形態においては、その高さH1がH1=100mmとなるように形成されている。
The deck plate 10 is formed with two ribs 1 and 2. The rib 1 and the rib 2 are spaced from each other at a distance of 180 to 220 mm along the width direction (short direction) of the deck plate 10 (between the centers). ). Specifically, the deck plate 10 is formed such that the length L in the width direction is 360 to 440 mm, and the rib 1 extends from one end in the width direction of the deck plate 10 to the center of the rib 1 (straight with the straight portion 12). The distance L1 to the boundary surface with which the portion 14 comes into contact is set to be 180 to 220 mm. The rib 2 is formed such that a distance L2 from the center of the rib 1 to the center of the rib 2 (the boundary surface where the straight portion 22 and the straight portion 24 abut on the center of the rib 2) is 180 to 220 mm. Has been. That is, the rib 1 is formed near the center of the deck plate 10 in the width direction, and the rib 2 is formed near the end of the deck plate 10 in the width direction. Here, it is preferable that the distance L1 and the distance L2 are equal, and in the first embodiment, the distance L1 is formed to be L2 = 200 mm and L = 400 mm. That is, the length in the width direction of each plane portion 3 is 200 mm, which is the same as L1 and L2.
The ribs 1 and 2 are formed so as to extend along the length direction (longitudinal direction) of the deck plate 10. That is, the ribs 1 and 2 are continuously formed from one end to the other end along the direction of suspension to the beam 20.
The ribs 1 and 2 are preferably formed such that the height from the lower end to the upper end (upper surface) of the surface portion 3 is 75 to 100 mm. In the first embodiment, the height H1 is formed to be H1 = 100 mm.
(面部)
 図3に示すように、面部3は、デッキプレート10において、主に、リブ1,2が形成されていない部分であり、打設されるコンクリートの荷重を主に受ける面である。面部3は、デッキプレート10の幅方向におけるリブ1,2の隣に形成されている。すなわち、デッキプレート10において、リブ1,2と面部3とは交互に形成されている。デッキプレート10において、各面部3は、同一平面上に形成されている。
 なお、第1の実施の形態においては、二つのリブ1,2と二つの面部3とが形成されているが、リブと面部を同じ数だけ形成することが好ましい。特に、一つのデッキプレートにおいて、リブと面部をそれぞれ1~3つずつ形成することが好ましい。
(Face part)
As shown in FIG. 3, the surface portion 3 is a portion of the deck plate 10 where the ribs 1 and 2 are mainly not formed, and is a surface that mainly receives the load of the concrete to be placed. The surface portion 3 is formed next to the ribs 1 and 2 in the width direction of the deck plate 10. That is, in the deck plate 10, the ribs 1 and 2 and the surface portion 3 are alternately formed. In the deck plate 10, the surface portions 3 are formed on the same plane.
In the first embodiment, the two ribs 1 and 2 and the two surface portions 3 are formed, but it is preferable to form the same number of ribs and surface portions. In particular, it is preferable to form one to three ribs and one surface portion on each deck plate.
(突条部)
 図3、図4に示すように、突条部4は、鋼板が曲げ加工されることによって形成されている。突条部4は、面部3において、リブ1,2が形成されている面側に向けて突出するように形成されている。これにより、面部3は、平坦部と谷部(反対側から見ると山部)とが交互に続く面となっている。
 突条部4は、デッキプレート10の幅方向に沿って並んで複数形成されており、例えば、一つの面部3あたり3つ形成されている。ここで、図3に示すように、突条部4は、デッキプレート10の面部3aの幅方向の長さL1に対する当該幅方向における突条部4以外の長さ(L4+L5+L6+L7)の割合r1が0.5~0.7の範囲内となるように、突条部4の数、大きさが決定される。デッキプレート10の面部3bにおいても、面部3bの幅方向の長さL2に対する当該幅方向における突条部4以外の長さ(L8+L9+L10+L11)の割合r2が0.5~0.7の範囲内となるように、突条部4の数、幅、深さが決定される。より具体的には、突条部4の数は、その幅にもよるが、例えば、一つの面部3(3a,3b)あたり3~5つに抑えることが好ましい。突条部4は、デッキプレート10の長手方向に沿って延在するように形成されている。
(Projection)
As shown in FIGS. 3 and 4, the protrusion 4 is formed by bending a steel plate. The protrusion 4 is formed so as to protrude toward the surface where the ribs 1 and 2 are formed in the surface 3. Thereby, the surface part 3 becomes a surface where a flat part and a trough part (mountain part when it sees from the other side) continue alternately.
A plurality of protrusions 4 are formed side by side along the width direction of the deck plate 10, and for example, three protrusions 4 are formed per one surface portion 3. Here, as shown in FIG. 3, the protrusion 4 has a ratio r1 of the length (L4 + L5 + L6 + L7) other than the protrusion 4 in the width direction to the length L1 in the width direction of the surface 3a of the deck plate 10 is 0. The number and size of the protrusions 4 are determined so as to be in the range of 0.5 to 0.7. Also in the surface portion 3b of the deck plate 10, the ratio r2 of the length (L8 + L9 + L10 + L11) other than the protruding portion 4 in the width direction to the length L2 in the width direction of the surface portion 3b is in the range of 0.5 to 0.7. As described above, the number, width, and depth of the protrusions 4 are determined. More specifically, the number of the protrusions 4 depends on the width thereof, but is preferably limited to 3 to 5 per one surface portion 3 (3a, 3b), for example. The protruding portion 4 is formed so as to extend along the longitudinal direction of the deck plate 10.
 図4に示すように、突条部4は、デッキプレート10の幅方向に沿った幅Bは20~25mm、高さH2(面部3の下面から最もリブ1,2側のから突出した部分の外面までの長さをいう)は4~8mmとなるように形成することが好ましい。突条部4は、幅方向中央に形成された谷部41が最も深くなるように形成されており、この谷部41から幅方向両側に同じ傾斜の傾斜面42を有している。突条部4は、金属板が湾曲された湾曲部43(面部3との境界部及び谷部)の曲げ半径Rは3~5mmとなるように形成することが好ましい。 As shown in FIG. 4, the protruding portion 4 has a width B of 20 to 25 mm along the width direction of the deck plate 10 and a height H2 (the portion of the portion that protrudes from the bottom surface of the surface portion 3 to the side closest to the ribs 1 and 2). The length to the outer surface is preferably 4 to 8 mm. The protrusion 4 is formed such that a valley 41 formed in the center in the width direction is deepest, and has inclined surfaces 42 having the same inclination on both sides in the width direction from the valley 41. The protrusion 4 is preferably formed so that the bending radius R of the curved portion 43 (boundary portion and trough portion with the surface portion 3) where the metal plate is curved is 3 to 5 mm.
 図3に示すように、デッキプレート10の一端とリブ1との間にある面部3aに形成された突条部4のうち、デッキプレート10の一端から当該デッキプレート10の一端に最も近い突条部4aまでの距離L4は、17.5~35mmとなるように形成することが好ましい。第1の実施の形態において、例えば、突条部4の数を3つとし、突条部4の幅Bを25mmとした場合、距離L4は32.5mmとなるように形成されている。また、突条部4aから当該突条部4aに隣接する突条部4bまでの距離L5、及び、突条部4bから当該突条部4bに隣接する突条部4cまでの距離L6は、10~35mmとなるように形成することが好ましい。第1の実施の形態において、例えば、突条部4の数を3つとし、突条部4の幅Bを25mmとした場合、距離L6は30mmとなるように形成されている。また、突条部4cから当該突条部4cに隣接するリブ1の中心までの距離L7は、17.5~35mmとなるように形成することが好ましい。第1の実施の形態において、例えば、突条部4の数を3つとし、突条部4の幅Bを25mmとした場合、距離L7は32.5mmとなるように形成されている。ここで、リブ1,2とこのリブ1,2に隣接する突条部4との間隔、隣接する突条部4の間隔は、突条部4の数によっても変わるが、できるだけ等間隔にすることが好ましい。 As shown in FIG. 3, among the ridges 4 formed on the surface portion 3 a between one end of the deck plate 10 and the rib 1, the ridge closest to one end of the deck plate 10 from one end of the deck plate 10. The distance L4 to the portion 4a is preferably 17.5 to 35 mm. In the first embodiment, for example, when the number of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the distance L4 is 32.5 mm. Further, the distance L5 from the protrusion 4a to the protrusion 4b adjacent to the protrusion 4a and the distance L6 from the protrusion 4b to the protrusion 4c adjacent to the protrusion 4b are 10 It is preferable to form so as to be ˜35 mm. In the first embodiment, for example, when the number of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the distance L6 is 30 mm. The distance L7 from the protrusion 4c to the center of the rib 1 adjacent to the protrusion 4c is preferably 17.5 to 35 mm. In the first embodiment, for example, when the number of the ridges 4 is three and the width B of the ridges 4 is 25 mm, the distance L7 is 32.5 mm. Here, the interval between the ribs 1 and 2 and the protrusions 4 adjacent to the ribs 1 and 2 and the interval between the adjacent protrusions 4 vary depending on the number of the protrusions 4, but are as equal as possible. It is preferable.
 リブ1とリブ2との間にある面部3bに形成された突条部4のうち、リブ1の中心から当該リブ1に最も近い突条部4dまでの距離L8は、17.5~35mmとなるように形成することが好ましい。第1の実施の形態において、例えば、突条部4の数を3つとし、突条部4の幅Bを25mmとした場合、距離L8は32.5mmとなるように形成されている。また、突条部4dから当該突条部4dに隣接する突条部4eまでの距離L9、及び、突条部4eから当該突条部4eに隣接する突条部4fまでの距離L10は、10~35mmとなるように形成することが好ましい。第1の実施の形態において、例えば、突条部4の数を3つとし、突条部4の幅Bを25mmとした場合、距離L10は30mmとなるように形成されている。また、突条部4fから当該突条部4fに隣接するリブ2の中心までの距離L11は、17.5~35mmとなるように形成することが好ましい。第1の実施の形態において、例えば、突条部4の数を3つとし、突条部4の幅Bを25mmとした場合、距離L11は32.5mmとなるように形成されている。
 よって、第1の実施の形態において、例えば、突条部4の数を3つとし、突条部4の幅Bを25mmとした場合、リブ1とこのリブ1に隣接する突条部4c,4dとの中心間の間隔は、45mmである。また、隣接する突条部4の中心間の間隔は、55mmである。ここで、リブ1とこのリブ1に隣接する突条部4c,4dとの中心間の間隔は、30~45mmの範囲内であることが好ましく、隣接する突条部4の中心間の間隔は、35~55mmの範囲内であることが好ましい。
 また、第1の実施の形態において、例えば、突条部4の数nを3つとし、突条部4の幅Bを25mmとした場合、一つの面部3a,3bの幅方向の長さL1,L2に対する当該幅方向における突条部4以外の長さの割合r(r1,r2)は、下記の式(1)、式(2)によって算出される。
   r1=(L1-B×n)/L1 ・・・(1)
   r2=(L2-B×n)/L2 ・・・(2)
 よって、当該割合r(r1,r2)は、以下の値となる。
   r1=(200-25×3)/200=0.625
   r2=(200-25×3)/200=0.625
 従って、上記のような面部3の幅、突条部4の幅である場合には、割合rを0.5~0.7の範囲内に収めるためには、一つの面部3につき、突条部4の数は3~4つとなる。
Of the ridges 4 formed on the surface 3b between the ribs 1 and 2, the distance L8 from the center of the rib 1 to the ridge 4d closest to the rib 1 is 17.5 to 35 mm. It is preferable to form it as follows. In the first embodiment, for example, when the number of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the distance L8 is 32.5 mm. Further, the distance L9 from the protrusion 4d to the protrusion 4e adjacent to the protrusion 4d and the distance L10 from the protrusion 4e to the protrusion 4f adjacent to the protrusion 4e are 10 It is preferable to form so as to be ˜35 mm. In the first embodiment, for example, when the number of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the distance L10 is 30 mm. The distance L11 from the protrusion 4f to the center of the rib 2 adjacent to the protrusion 4f is preferably 17.5 to 35 mm. In the first embodiment, for example, when the number of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the distance L11 is 32.5 mm.
Therefore, in the first embodiment, for example, when the number of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the ribs 1 and the protrusions 4c adjacent to the ribs 1c, The distance between the centers of 4d is 45 mm. Moreover, the space | interval between the centers of the adjacent protrusion part 4 is 55 mm. Here, the distance between the centers of the ribs 1 and the protrusions 4c and 4d adjacent to the ribs 1 is preferably within a range of 30 to 45 mm, and the distance between the centers of the adjacent protrusions 4 is , Preferably in the range of 35 to 55 mm.
In the first embodiment, for example, when the number n of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the length L1 in the width direction of one of the surface portions 3a and 3b. , L2, the ratio r (r1, r2) of the length other than the protrusion 4 in the width direction is calculated by the following formulas (1) and (2).
r1 = (L1−B × n) / L1 (1)
r2 = (L2−B × n) / L2 (2)
Therefore, the ratio r (r1, r2) has the following value.
r1 = (200−25 × 3) /200=0.625
r2 = (200−25 × 3) /200=0.625
Therefore, in the case where the width of the surface portion 3 and the width of the ridge portion 4 are as described above, in order to keep the ratio r within the range of 0.5 to 0.7, the ridge is per one surface portion 3. The number of parts 4 is 3-4.
(係止部)
 係止部5は、デッキプレート10の一端に形成されている。係止部5は、面部3aからほぼ直角に湾曲された鋼材の端部であり、リブ1,2の高さ方向に沿って延びるように形成されている。係止部5の高さhは、10~25mmである。係止部5は、デッキプレート10を連結する際に、一方のデッキプレート10の係止部5が、他方のデッキプレート10のリブ2に形成された受容部50に挿入される。デッキプレート10を連結する際には、リブ2の湾曲部27に連続して形成され、面部3a及び面部3bに沿って延在する延在部8の上面にデッキプレート10の面部3aの一部を載置するように重ね合わせ、係止部5を受容部50に挿入する。ここで、リブ2の中心から延在部8の端部までの距離L3は、10~25mmである。
 なお、係止部5は、受容部50に係止できる高さであればよく、必ずしも10~25mmの範囲内である必要はない。あるいは、打設したコンクリートが漏れないことを前提に、係止部5を形成することなく、面部同士の重ね合わせ、又は、溶接による接合、ビス等の締結具による連結であってもよい。
 また、受容部50についても、係止部5が受容部50に挿入できればよく、必ずしも10~25mmの範囲内である必要はない。
(Locking part)
The locking portion 5 is formed at one end of the deck plate 10. The locking portion 5 is an end portion of a steel material that is bent at a substantially right angle from the surface portion 3a, and is formed so as to extend along the height direction of the ribs 1 and 2. The height h of the locking portion 5 is 10 to 25 mm. When engaging the deck plate 10 with the locking portion 5, the locking portion 5 of one deck plate 10 is inserted into a receiving portion 50 formed on the rib 2 of the other deck plate 10. When connecting the deck plate 10, a part of the surface portion 3a of the deck plate 10 is formed on the upper surface of the surface portion 3a and the extending portion 8 extending along the surface portion 3b. Are stacked so as to be placed, and the locking portion 5 is inserted into the receiving portion 50. Here, the distance L3 from the center of the rib 2 to the end of the extending portion 8 is 10 to 25 mm.
Note that the locking portion 5 may be of a height that can be locked to the receiving portion 50, and is not necessarily within the range of 10 to 25 mm. Alternatively, on the assumption that the placed concrete does not leak, the surface portions may be overlapped, joined by welding, or connected by a fastener such as a screw without forming the locking portion 5.
Further, the receiving part 50 is not limited to the range of 10 to 25 mm as long as the locking part 5 can be inserted into the receiving part 50.
(エンドクローズ部)
 図2に示すように、エンドクローズ部6は、デッキプレート10の長さ方向(長手方向)の両端部に形成されている。エンドクローズ部6は、リブ1及びリブ2の両端部がデッキプレート10の面に対して直角方向に潰されることによって形成されている。これにより、リブ1及びリブ2は、両端部のエンドクローズ部6が押し潰された断面に形成されており、エンドクローズ部6に挟まれた他の部分は断面視略三角形状に形成されている。その結果、リブ1及びリブ2の両端部は、他の部分よりも高さが低くなるため、梁20のフランジ部上面に載置することができる。エンドクローズ部6は、リブ1及びリブ2の延在方向に沿った長さが梁20のフランジ部上面に載置する長さよりも長くなるように形成されている。
(End closing part)
As shown in FIG. 2, the end close portions 6 are formed at both ends of the deck plate 10 in the length direction (longitudinal direction). The end close portion 6 is formed by crushing both ends of the rib 1 and the rib 2 in a direction perpendicular to the surface of the deck plate 10. As a result, the rib 1 and the rib 2 are formed in a cross section in which the end close portions 6 at both ends are crushed, and other portions sandwiched between the end close portions 6 are formed in a substantially triangular shape in cross section. Yes. As a result, both end portions of the rib 1 and the rib 2 are lower in height than other portions, and thus can be placed on the upper surface of the flange portion of the beam 20. The end close part 6 is formed so that the length along the extending direction of the rib 1 and the rib 2 is longer than the length to be placed on the upper surface of the flange part of the beam 20.
 以上のように、デッキプレート10は、面部3に突条部4が形成されているので、面部3におけるリブ1,2から離れた位置については突条部4によって有効断面領域を増やすことができ、デッキプレート10の断面性能を向上させることができる。これにより、デッキプレート10の許容スパンを増やすことができる。
 また、断面性能を向上させることにより、従来よりもデッキプレート10の板厚を薄くして軽量化を図ることができる。
 また、突条部4は、面部3の幅方向の長さに対する当該幅方向における突条部4以外の長さの割合rが0.5~0.7の範囲内となるように形成されている。より具体的には、突条部4を一つの面部3あたり3~5つ形成することにより、面部3の全てを有効断面とすることができるので、少量の突条部4で十分な断面性能を有するデッキプレート10を製造することができ、デッキプレート10の重量の大幅な増加を抑制することができる。また、デッキプレート10の板厚を薄くしても、コンクリート打設時にリブ1,2間の面部3が撓まない。
As described above, since the protrusion 4 is formed on the surface portion 3 of the deck plate 10, the effective cross-sectional area can be increased by the protrusion 4 at a position away from the ribs 1 and 2 in the surface portion 3. The cross-sectional performance of the deck plate 10 can be improved. Thereby, the allowable span of the deck plate 10 can be increased.
Further, by improving the cross-sectional performance, the deck plate 10 can be made thinner and lighter than before.
Further, the protruding portion 4 is formed such that a ratio r of the length other than the protruding portion 4 in the width direction to the length in the width direction of the surface portion 3 is in a range of 0.5 to 0.7. Yes. More specifically, by forming 3-5 ridges 4 per one surface portion 3, all of the surface portions 3 can have an effective cross section, so that a sufficient amount of cross-sectional performance can be obtained with a small amount of ridge portions 4. Can be manufactured, and a significant increase in the weight of the deck plate 10 can be suppressed. Even if the deck plate 10 is made thin, the surface portion 3 between the ribs 1 and 2 does not bend when the concrete is placed.
 また、上記の割合rを0.5~0.7の範囲内とすることで、突条部4を一つの面部3あたり3~5つに抑えることができるので、突条部4の裏側に形成される窪みに入り込むコンクリートの量が大幅に増えることがなく、床構造物(または天井構造物)の重量の大幅な増加、コンクリート材料の大幅な増加を抑えることができ、デッキプレート10の板厚を厚くする必要もない。
 また、デッキプレート10の一端には係止部5が形成されており、他端近傍のリブ2には、受容部50が形成されているので、一方のデッキプレートを他方のデッキプレートに重ねて係止部5を受容部50に挿入するだけで、二つのデッキプレート10を簡単に連結することができ、作業性を向上させることができる。
 また、突条部4を形成することにより、作業者がデッキプレート10上で作業する際に滑りにくくなり、作業効率を向上させることができる。
In addition, by setting the ratio r in the range of 0.5 to 0.7, the number of the ridges 4 can be suppressed to 3 to 5 per one surface portion 3, so that The amount of concrete that enters the formed depression is not significantly increased, and a significant increase in the weight of the floor structure (or ceiling structure) and a large increase in the concrete material can be suppressed. There is no need to increase the thickness.
Further, since the locking portion 5 is formed at one end of the deck plate 10 and the receiving portion 50 is formed in the rib 2 near the other end, one deck plate is overlapped with the other deck plate. By simply inserting the locking portion 5 into the receiving portion 50, the two deck plates 10 can be easily connected, and workability can be improved.
In addition, by forming the ridges 4, it becomes difficult for an operator to slip when working on the deck plate 10, and work efficiency can be improved.
<突条部の形成によるデッキプレートの断面性能の向上>
 次に、図5から図7を参照して、第1の実施の形態に係るデッキプレート10の突条部の形成によるデッキプレートの断面性能の向上について説明する。
 図5(a)は、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。図5(b)は、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率とデッキプレート10の重量増加率との比をとったグラフである。図5(c)は、図5(a)と図5(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。なお、突条部の幅は25mm、高さは6mm、湾曲部の曲げ半径Rは3mmとした。
<Improvement of cross-sectional performance of deck plate by formation of protrusions>
Next, with reference to FIG. 5 to FIG. 7, an improvement in the cross-sectional performance of the deck plate by forming the protrusions of the deck plate 10 according to the first embodiment will be described.
FIG. 5A is a graph in which the horizontal axis represents the ratio r of the length other than the protrusion 4 to the length in the width direction of the surface portion 3, and the vertical axis represents the increase rate of the effective cross-section secondary moment. . In FIG. 5B, the horizontal axis indicates the ratio r of the length other than the ridge portion 4 to the length of the surface portion 3 in the width direction, and the vertical axis indicates the rate of increase of the effective sectional secondary moment and the weight of the deck plate 10. It is the graph which took ratio with the increase rate. FIG. 5C is a graph in which the graphs of FIG. 5A and FIG. 5B are combined into one and shows a range with excellent cross-sectional performance. In addition, the width | variety of the protrusion part was 25 mm, height was 6 mm, and the bending radius R of the curved part was 3 mm.
 図5(a)に示すように、1つの面部3につき、デッキプレート10の幅方向の各長さL1,L2に対する突条部以外の各長さ(L4+L5+L6+L7),(L8+L9+L10+L11)の割合r(r1,r2は、全て同じ値であるため、以下では、単に、割合rとする)が0.9の場合、有効断面二次モーメントの増加率は、1.3にも満たない。また、割合rが0.7~1.0の範囲では、突条部4の数が増える(割合rが減る)につれて、有効断面二次モーメントの増加率は急激に大きくなっている。割合rが0.3~0.7の場合には、有効断面二次モーメントの増加率は、1.6を超える。しかし、割合rが0.3~0.5の場合、有効断面二次モーメントの増加率は、割合rが0.5~0.7の場合よりもわずかに低下する。
 図5(b)に示すように、有効断面二次モーメントの増加率と、突条部4を増やす(割合rを減らす)ことによるデッキプレート10の重量の増加率との比で比較しても、割合rが0.6近傍の場合に1.6を超えた最も高い数値を示し、それ以上突条部4を増やしても(割合rを減らしても)、有効断面二次モーメントの増加率と重量の増加率との比は徐々に低下する。これは、突条部4の数が少ない場合には、デッキプレート10の重量の増加率が小さくても、そもそも有効断面二次モーメントの増加率が小さいため、大きな増加が見られないこと、突条部4の数が多い場合には、デッキプレート10の重量の増加率が大きいため、割合rが0.6の場合ほどの効果が得られないことによるものである。
As shown in FIG. 5A, the ratio r (r1) of the lengths (L4 + L5 + L6 + L7) and (L8 + L9 + L10 + L11) other than the ridges with respect to the lengths L1, L2 in the width direction of the deck plate 10 per one surface portion 3. , R2 are all the same value, and in the following, when the ratio r) is 0.9), the increase rate of the effective sectional secondary moment is less than 1.3. Further, in the range of the ratio r of 0.7 to 1.0, the increase rate of the effective cross-sectional secondary moment increases rapidly as the number of the protrusions 4 increases (the ratio r decreases). When the ratio r is 0.3 to 0.7, the increase rate of the effective section secondary moment exceeds 1.6. However, when the ratio r is 0.3 to 0.5, the increasing rate of the effective sectional second moment is slightly lower than when the ratio r is 0.5 to 0.7.
As shown in FIG. 5B, even if the ratio of the increase rate of the effective sectional secondary moment and the increase rate of the weight of the deck plate 10 by increasing the protrusion 4 (decreasing the ratio r) is compared. When the ratio r is in the vicinity of 0.6, the highest numerical value exceeding 1.6 is shown. Even if the protrusion 4 is further increased (decreasing the ratio r), the increase rate of the effective section secondary moment is increased. The ratio of the weight increase rate gradually decreases. This is because when the number of protrusions 4 is small, even if the rate of increase in the weight of the deck plate 10 is small, the rate of increase in the effective moment of inertia is small in the first place. This is because when the number of the ridges 4 is large, the rate of increase in the weight of the deck plate 10 is large, so that the effect as high as when the ratio r is 0.6 cannot be obtained.
 よって、図5(c)における区間Sのように、1つの面部3に割合rが0.5~0.7の範囲内となるように突条部4を形成することは、断面性能の向上、デッキプレートの軽量化、及び、経済性の観点から好ましいが、中でも割合rが0.6近傍となるように突条部4を形成することが最適であることがわかる。ここで、割合rが0.5~0.7の範囲内が適しているとしたのは、図5(b)において、有効断面二次モーメントの増加率が1.6を超えてほぼ水平となる、すなわち、有効断面二次モーメントの増加率の値が収束する割合r=0.7以下で有効断面二次モーメントの増加率と重量の増加率との比の最大値から5%程度の低下までを断面効率がよい範囲として認定したことによるものである。
 また、突条部4を形成しない場合、上述したように、たわみ係数Cは1.6として算定が行われるが、面部3に割合rが0.5~0.7の範囲内となるように突条部4を形成した場合には、突条部4を形成しない場合と比較して、断面性能が格段に向上し、有効断面二次モーメントが1.6倍以上となり、面部3の全ての領域を有効断面として考慮することができるので、たわみ係数Cは1.0となる。
 また、1つの面部3に割合rが0.5~0.7の範囲内となるように突条部4を形成することで、デッキプレート10の板厚を0.8mm、鋼材の降伏点を235N/mm、スラブ厚を150mmとした場合、デッキプレート10の許容スパンは、3300mm(突条部がない場合)から3860mm(突条部が3つの場合)まで長くすることができる。
Therefore, as in the section S in FIG. 5C, forming the protrusions 4 so that the ratio r is in the range of 0.5 to 0.7 on one surface part 3 improves the cross-sectional performance. Although it is preferable from the viewpoint of weight reduction of the deck plate and economy, it is understood that it is optimal to form the protrusions 4 so that the ratio r is in the vicinity of 0.6. Here, the ratio r in the range of 0.5 to 0.7 is suitable because, in FIG. 5 (b), the increase rate of the effective sectional secondary moment exceeds 1.6 and is almost horizontal. That is, when the rate of increase of the effective cross-section secondary moment converges at a rate of r = 0.7 or less, the ratio is about 5% lower than the maximum ratio of the effective cross-section secondary moment increase rate and weight increase rate. This is due to the fact that up to is recognized as a range in which the cross-sectional efficiency is good.
Further, when the protrusion 4 is not formed, as described above, the calculation is performed with the deflection coefficient C being 1.6, but the ratio r of the surface 3 is within the range of 0.5 to 0.7. When the protrusion 4 is formed, the cross-sectional performance is remarkably improved, and the effective moment of inertia is 1.6 times or more compared to the case where the protrusion 4 is not formed. Since the region can be considered as an effective cross section, the deflection coefficient C is 1.0.
Further, by forming the ridge portion 4 so that the ratio r is in the range of 0.5 to 0.7 on one surface portion 3, the thickness of the deck plate 10 is 0.8 mm, and the yield point of the steel material is set. When 235 N / mm 2 and the slab thickness are 150 mm, the allowable span of the deck plate 10 can be increased from 3300 mm (when there are no ridges) to 3860 mm (when there are three ridges).
<突条部の変形例1>
 次に、第1の実施の形態における突条部の変形例1について説明する。
 突条部4は、上記の幅と高さに限られるものではない。例えば、突条部4の幅を20mm、高さを7mmとしてもよい。この場合、図6(a)は、変形例1における、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。図6(b)は、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率とデッキプレート10の重量増加率との比をとったグラフである。図6(c)は、図6(a)と図6(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。
<Modification 1 of the ridge portion>
Next, a modification 1 of the protruding portion in the first embodiment will be described.
The protruding portion 4 is not limited to the above width and height. For example, the width of the protrusion 4 may be 20 mm and the height may be 7 mm. In this case, FIG. 6A shows the ratio r of the length other than the ridge portion 4 to the length in the width direction of the surface portion 3 on the horizontal axis, and the vertical axis of the effective cross-section secondary moment in the first modification. It is the graph which took the increase rate. In FIG. 6B, the horizontal axis represents the ratio r of the length other than the ridges 4 to the length in the width direction of the surface portion 3, and the vertical axis represents the rate of increase of the effective sectional secondary moment and the weight of the deck plate 10. It is the graph which took ratio with the increase rate. FIG. 6C is a graph in which the graphs of FIG. 6A and FIG. 6B are combined into one, and shows a range with excellent cross-sectional performance.
 上記の第1の実施の形態と比べて、突条部4の幅が5mm小さくなり、高さが1mm大きくなっているが、この場合には、1つの面部3における突条部4以外の割合rが0.7~1.0の範囲では、突条部4の数が増える(割合rが減る)につれて、有効断面二次モーメントの増加率は大きくなっているが、割合rを0.7近傍から減らしても、有効断面二次モーメントの増加率はわずかに大きくなるだけで、大きな効果は見られない。一方、有効断面二次モーメントの増加率と重量の増加率との比に関しては、突条部4の数を増やす(割合rを減らす)ほどデッキプレート10の重量が大きくなるため、割合rが0.7近傍の場合に1.6近傍と最も高い数値を示し、割合rを減らしても、有効断面二次モーメントの増加率と重量の増加率との比は徐々に低下する。 Compared with said 1st Embodiment, although the width | variety of the protrusion 4 is 5 mm smaller and the height is 1 mm larger, in this case, the ratio other than the protrusion 4 in one surface part 3 When r is in the range of 0.7 to 1.0, the increase rate of the effective section secondary moment increases as the number of the protrusions 4 increases (the ratio r decreases). Even if it is reduced from the vicinity, the increase rate of the effective sectional secondary moment is only slightly increased, and no significant effect is observed. On the other hand, regarding the ratio between the increase rate of the effective sectional secondary moment and the increase rate of the weight, since the weight of the deck plate 10 increases as the number of the protrusions 4 is increased (the ratio r is decreased), the ratio r is 0. In the case of .7, the highest value is shown as 1.6, and even if the ratio r is reduced, the ratio of the increase rate of the effective section secondary moment and the increase rate of the weight gradually decreases.
 よって、この突条部4の場合においても、図6(c)における区間Sのように、1つの面部3に割合rが0.5~0.7の範囲内となるように突条部4を形成することは、断面性能の向上、デッキプレートの軽量化、及び、経済性の観点から好ましいことがわかる。
 また、突条部4を形成しない場合、上述したように、たわみ係数Cは1.6として算定が行われるが、割合rが0.5~0.7の範囲内である場合には、突条部4を形成しない場合と比較して、断面性能が格段に向上し、有効断面二次モーメントが1.6倍以上となり、面部3の全ての領域を有効断面として考慮することができるので、たわみ係数Cは1.0となる。
 また、変形例1において、例えば、突条部4の数nを3つとし、突条部4の幅Bを20mmとした場合、一つの面部3a,3bの幅方向の長さL1,L2に対する当該幅方向における突条部4以外の長さの割合r(r1,r2)は、上記の式(1)、式(2)を用いて算出すると、以下の値となる。
   r1=(200-20×3)/200=0.7
   r2=(200-20×3)/200=0.7
 従って、変形例1のような面部3の幅、突条部4の幅である場合には、割合rを0.5~0.7の範囲内に収めるためには、一つの面部3につき、突条部4の数は3~5つとなる。
Therefore, even in the case of this ridge portion 4, the ridge portion 4 is set so that the ratio r is within the range of 0.5 to 0.7 for one surface portion 3 as in the section S in FIG. It can be seen that forming is preferable from the viewpoint of improving the cross-sectional performance, reducing the weight of the deck plate, and economically.
Further, when the protrusion 4 is not formed, as described above, the calculation is performed with the deflection coefficient C being 1.6, but when the ratio r is in the range of 0.5 to 0.7, the protrusion Compared with the case where the strip 4 is not formed, the cross-sectional performance is remarkably improved, the effective cross-section secondary moment is 1.6 times or more, and the entire area of the surface portion 3 can be considered as an effective cross-section. The deflection coefficient C is 1.0.
Moreover, in the modification 1, for example, when the number n of the protrusions 4 is three and the width B of the protrusions 4 is 20 mm, the lengths L1 and L2 in the width direction of the one surface 3a and 3b When the ratio r (r1, r2) of the length other than the ridges 4 in the width direction is calculated using the above formulas (1) and (2), the following values are obtained.
r1 = (200−20 × 3) /200=0.7
r2 = (200−20 × 3) /200=0.7
Therefore, in the case of the width of the surface portion 3 and the width of the protruding portion 4 as in Modification 1, in order to keep the ratio r within the range of 0.5 to 0.7, The number of ridges 4 is 3-5.
<突条部の変形例2>
 次に、第1の実施の形態における突条部の変形例2について説明する。 突条部4は、例えば、突条部4の幅を20mm、高さを8mmとしてもよい。この場合、図7(a)は、変形例2における、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。図7(b)は、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率とデッキプレートの重量増加率との比をとったグラフである。図7(c)は、図7(a)と図7(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。
<Modification 2 of ridge part>
Next, a modification 2 of the protruding portion in the first embodiment will be described. For example, the protrusion 4 may have a width of 20 mm and a height of 8 mm. In this case, FIG. 7A shows the ratio r of the length other than the protrusion 4 to the length in the width direction of the surface portion 3 on the horizontal axis in the modified example 2, and the effective cross-section second moment of the vertical axis on the vertical axis. It is the graph which took the increase rate. In FIG. 7 (b), the horizontal axis represents the ratio r of the length other than the protrusion 4 to the width in the width direction of the surface portion 3, and the vertical axis represents the rate of increase of the effective sectional secondary moment and the weight increase of the deck plate. It is the graph which took ratio with rate. FIG. 7C is a graph in which the graphs of FIG. 7A and FIG. 7B are combined into one, and shows a range with excellent cross-sectional performance.
 上記の第1の実施の形態と比べて、突条部4の幅が5mm小さくなり、高さが2mm大きくなっているが、この場合には、1つの面部3における突条部4以外の割合rが0.7~1.0の範囲では、突条部4の数が増える(割合rが減る)につれて、有効断面二次モーメントの増加率は大きくなっているが、割合rを0.7近傍から減らしても、有効断面二次モーメントの増加率はわずかに大きくなるだけで、大きな効果は見られない。一方、有効断面二次モーメントの増加率と重量の増加率との比に関しては、突条部4の数を増やす(割合rを減らす)ほどデッキプレート10の重量が大きくなるため、割合rが0.7近傍の場合に1.6近傍の最も高い数値を示し、割合rを減らしても、有効断面二次モーメントの増加率と重量の増加率との比は徐々に低下する。 Compared to the first embodiment, the width of the protrusion 4 is 5 mm smaller and the height is 2 mm larger. In this case, the ratio of the one surface 3 other than the protrusion 4 is as follows. When r is in the range of 0.7 to 1.0, the increase rate of the effective section secondary moment increases as the number of the protrusions 4 increases (the ratio r decreases). Even if it is reduced from the vicinity, the increase rate of the effective sectional secondary moment is only slightly increased, and no significant effect is observed. On the other hand, regarding the ratio between the increase rate of the effective sectional secondary moment and the increase rate of the weight, since the weight of the deck plate 10 increases as the number of the protrusions 4 is increased (the ratio r is decreased), the ratio r is 0. In the case of .7, the highest value is shown in the vicinity of 1.6, and even if the ratio r is decreased, the ratio of the increase rate of the effective sectional secondary moment to the increase rate of the weight gradually decreases.
 よって、この突条部4の場合においても、図7(c)における区間Sのように、1つの面部3に割合rが0.5~0.7の範囲内となるように突条部4を形成することは、断面性能の向上、デッキプレートの軽量化、及び、経済性の観点から好ましいことがわかる。
 また、突条部4を形成しない場合、上述したように、たわみ係数Cは1.6として算定が行われるが、割合rが0.5~0.7の範囲内である場合には、突条部4を形成しない場合と比較して、断面性能が格段に向上し、有効断面二次モーメントが1.6倍以上となり、面部3の全ての領域を有効断面として考慮することができるので、たわみ係数Cは1.0となる。
 また、変形例2において、例えば、突条部4の数nを3つとし、突条部4の幅Bを20mmとした場合、一つの面部3a,3bの幅方向の長さL1,L2に対する当該幅方向における突条部4以外の長さの割合r(r1,r2)は、上記の式(1)、式(2)を用いて算出すると、以下の値となる。
   r1=(200-20×3)/200=0.7
   r2=(200-20×3)/200=0.7
 従って、変形例2のような面部3の幅、突条部4の幅である場合には、割合rを0.5~0.7の範囲内に収めるためには、一つの面部3につき、突条部4の数は3~5つとなる。
Therefore, even in the case of this ridge portion 4, the ridge portion 4 has a ratio r within a range of 0.5 to 0.7 on one surface portion 3 as in the section S in FIG. It can be seen that forming is preferable from the viewpoint of improving the cross-sectional performance, reducing the weight of the deck plate, and economically.
Further, when the protrusion 4 is not formed, as described above, the calculation is performed with the deflection coefficient C being 1.6, but when the ratio r is in the range of 0.5 to 0.7, the protrusion Compared with the case where the strip 4 is not formed, the cross-sectional performance is remarkably improved, the effective cross-section secondary moment is 1.6 times or more, and the entire area of the surface portion 3 can be considered as an effective cross-section. The deflection coefficient C is 1.0.
In the second modification, for example, when the number n of the ridges 4 is three and the width B of the ridges 4 is 20 mm, the lengths L1 and L2 in the width direction of one of the surface portions 3a and 3b are as follows. When the ratio r (r1, r2) of the length other than the ridges 4 in the width direction is calculated using the above formulas (1) and (2), the following values are obtained.
r1 = (200−20 × 3) /200=0.7
r2 = (200−20 × 3) /200=0.7
Therefore, in the case of the width of the surface portion 3 and the width of the ridge portion 4 as in Modification 2, in order to keep the ratio r within the range of 0.5 to 0.7, The number of ridges 4 is 3-5.
2.第2の実施の形態
 第2の実施の形態に係るデッキプレート100の構成について、図8、図9を参照しながら説明する。なお、第2の実施の形態に係るデッキプレート100は、上述の第1の実施の形態に係るデッキプレート10のリブ1,2の数、及び、リブ1,2の高さを変更したものであり、その他の部分の構成は同様である。そこで、以下では、第1の実施の形態に係るデッキプレート10と同様の構成については、デッキプレート10と同一の符号を付してその説明を省略する。
2. Second Embodiment A configuration of a deck plate 100 according to a second embodiment will be described with reference to FIGS. The deck plate 100 according to the second embodiment is obtained by changing the number of ribs 1 and 2 and the height of the ribs 1 and 2 of the deck plate 10 according to the first embodiment described above. Yes, the configuration of other parts is the same. Therefore, in the following, the same components as those of the deck plate 10 according to the first embodiment are denoted by the same reference numerals as those of the deck plate 10 and description thereof is omitted.
<デッキプレートの構成>
 図8に示すように、デッキプレート100は、三つのリブ101a,101b,101cと、面部3と、突条部4と、係止部5と、エンドクローズ部6(図2参照)と、を備えている。なお、デッキプレート100の板厚は、第1の実施の形態におけるデッキプレート10と同様、0.6~1.6mmであることが好ましい。第2の実施の形態では、デッキプレート10の板厚を0.8mmとしている。
<Configuration of deck plate>
As shown in FIG. 8, the deck plate 100 includes three ribs 101a, 101b, and 101c, a surface portion 3, a ridge portion 4, a locking portion 5, and an end closing portion 6 (see FIG. 2). I have. The thickness of the deck plate 100 is preferably 0.6 to 1.6 mm, like the deck plate 10 in the first embodiment. In the second embodiment, the thickness of the deck plate 10 is 0.8 mm.
 デッキプレート100には、リブ101aと、リブ101bと、リブ101cの三つのリブが形成されている。各リブ101a,101b,101cは、第1の実施の形態のリブ10と同様、それぞれ、湾曲部11、直線部12、折返部13、直線部14、及び湾曲部15を有している。リブ101aとリブ101b、リブ101bとリブ101cは、デッキプレート100の幅方向(短手方向)に沿って、それぞれ180~220mmの間隔(中心間の距離)をあけて形成されている。具体的には、デッキプレート100は、その幅方向の長さLが540~660mmに形成されており、リブ101aは、デッキプレート100の幅方向の一端からリブ101aの中心(直線部12と直線部14とが当接する境界面をリブ101aの中心とする)までの距離Laが180~220mmとなるように形成されている。また、リブ101bは、リブ101aの中心からリブ101bの中心(直線部12と直線部14とが当接する境界面をリブ101bの中心とする)までの距離Lbが180~220mmとなるように形成されている。さらに、リブ101cは、リブ101bの中心からリブ101cの中心(直線部12と直線部14とが当接する境界面をリブ101cの中心とする)までの距離Lcが180~220mmとなるように形成されている。すなわち、リブ101aは、デッキプレート100の幅方向の中央よりも一端側(図8における左側)に形成されており、リブ101b及びリブ101cは、デッキプレート100の幅方向の中央よりも他端側(図8における右側)に形成されている。ここで、距離La,Lb,Lcは等しいことが好ましく、第2の実施の形態においては、La=Lb=Lc=210mm、L=630mmとなるように形成されている。
 また、第2の実施の形態においては、リブ101a,101b,101cは、その下端から面部3の上端(上面)までの高さH3がH3=75mmとなるように形成されている。
The deck plate 100 is formed with three ribs 101a, 101b, and 101c. Each rib 101a, 101b, 101c has the curved part 11, the linear part 12, the folding | returning part 13, the linear part 14, and the curved part 15, respectively, similarly to the rib 10 of 1st Embodiment. The ribs 101a and 101b, and the ribs 101b and 101c are formed at intervals of 180 to 220 mm (distance between centers) along the width direction (short direction) of the deck plate 100, respectively. Specifically, the deck plate 100 is formed such that the length L in the width direction is 540 to 660 mm, and the rib 101a extends from one end in the width direction of the deck plate 100 to the center of the rib 101a (straight with the straight portion 12). The distance La to the boundary surface where the portion 14 abuts the center of the rib 101a is 180 to 220 mm. The rib 101b is formed such that the distance Lb from the center of the rib 101a to the center of the rib 101b (the boundary surface where the straight portion 12 and the straight portion 14 abut on the center of the rib 101b) is 180 to 220 mm. Has been. Further, the rib 101c is formed such that the distance Lc from the center of the rib 101b to the center of the rib 101c (the boundary surface where the straight portion 12 and the straight portion 14 abut on the center of the rib 101c) is 180 to 220 mm. Has been. That is, the rib 101a is formed on one end side (left side in FIG. 8) from the center in the width direction of the deck plate 100, and the rib 101b and the rib 101c are on the other end side from the center in the width direction of the deck plate 100. (The right side in FIG. 8). Here, the distances La, Lb, and Lc are preferably equal, and in the second embodiment, the distances La, Lb = Lc = 210 mm, and L = 630 mm are formed.
In the second embodiment, the ribs 101a, 101b, and 101c are formed such that the height H3 from the lower end to the upper end (upper surface) of the surface portion 3 is H3 = 75 mm.
 図8に示すように、面部3は、デッキプレート100において、主に、リブ101a,101b,101cが形成されていない部分であり、打設されるコンクリートの荷重を主に受ける面である。面部3は、デッキプレート100の幅方向におけるリブ101a,101b,101cの隣に形成されている。すなわち、デッキプレート100において、リブ101a,101b,101cと面部3とは交互に形成されている。デッキプレート100において、各面部3は、同一平面上に形成されている。
 なお、第2の実施の形態においては、三つのリブ101a,101b,101cと三つの面部3とが形成されているが、リブと面部を同じ数だけ形成することが好ましい。
As shown in FIG. 8, the surface portion 3 is a portion where the ribs 101 a, 101 b, and 101 c are mainly not formed on the deck plate 100, and is a surface that mainly receives the load of the concrete to be placed. The surface portion 3 is formed next to the ribs 101a, 101b, 101c in the width direction of the deck plate 100. That is, in the deck plate 100, the ribs 101a, 101b, 101c and the surface portion 3 are alternately formed. In the deck plate 100, the surface portions 3 are formed on the same plane.
In the second embodiment, the three ribs 101a, 101b, 101c and the three surface portions 3 are formed, but it is preferable to form the same number of ribs and surface portions.
 図8、図9に示すように、突条部4は、鋼板が曲げ加工されることによって形成されている。突条部4は、面部3において、リブ101a,101b,101cが形成されている面側に向けて突出するように形成されている。これにより、面部3は、平坦部と谷部(反対側から見ると山部)とが交互に続く面となっている。
 突条部4は、デッキプレート100の幅方向に沿って並んで複数形成されており、例えば、一つの面部3あたり3つ形成されている。ここで、図8に示すように、突条部4は、デッキプレート100の面部3aの幅方向の長さLaに対する当該幅方向における突条部4以外の長さ(L4+L5+L6+L7)の割合raが0.5~0.7の範囲内となるように、突条部4a,4b,4cの数、大きさが決定される。デッキプレート100の面部3bにおいても、面部3bの幅方向の長さLbに対する当該幅方向における突条部4以外の長さ(L8+L9+L10+L11)の割合rbが0.5~0.7の範囲内となるように、突条部4d,4e,4fの数、幅、深さが決定される。デッキプレート100の面部3cにおいても、面部3cの幅方向の長さLcに対する当該幅方向における突条部4以外の長さ(L12+L13+L14+L15)の割合rcが0.5~0.7の範囲内となるように、突条部4g,4h,4iの数、幅、深さが決定される。より具体的には、突条部4の数は、その幅にもよるが、例えば、一つの面部3(3a,3b,3c)あたり3~5つに抑えることが好ましい。
As shown in FIGS. 8 and 9, the protrusion 4 is formed by bending a steel plate. The protrusion 4 is formed so as to protrude toward the surface where the ribs 101a, 101b, and 101c are formed on the surface 3. Thereby, the surface part 3 becomes a surface where a flat part and a trough part (mountain part when it sees from the other side) continue alternately.
A plurality of protrusions 4 are formed side by side along the width direction of the deck plate 100, and for example, three protrusions 4 are formed per one surface portion 3. Here, as shown in FIG. 8, in the protrusion 4, the ratio ra of the length (L4 + L5 + L6 + L7) other than the protrusion 4 in the width direction to the length La in the width direction of the surface portion 3 a of the deck plate 100 is 0. The number and size of the protrusions 4a, 4b, and 4c are determined so as to be within the range of 0.5 to 0.7. Also in the surface portion 3b of the deck plate 100, the ratio rb of the length (L8 + L9 + L10 + L11) other than the protruding portion 4 in the width direction to the length Lb in the width direction of the surface portion 3b is in the range of 0.5 to 0.7. As described above, the number, width, and depth of the protrusions 4d, 4e, and 4f are determined. Also in the surface portion 3c of the deck plate 100, the ratio rc of the length (L12 + L13 + L14 + L15) other than the protruding portion 4 in the width direction to the length Lc in the width direction of the surface portion 3c is in the range of 0.5 to 0.7. As described above, the number, width, and depth of the protrusions 4g, 4h, and 4i are determined. More specifically, the number of protrusions 4 depends on the width thereof, but is preferably limited to, for example, 3 to 5 per one surface 3 (3a, 3b, 3c).
 図9に示すように、突条部4は、デッキプレート100の幅方向に沿った幅Bは25mm、高さH4(面部3の下面から最もリブ101a,101b,101c側から突出した部分の外面までの長さをいう)は6mmとなるように形成することが好ましい。突条部4は、金属板が湾曲された湾曲部43(面部3との境界部及び谷部)の曲げ半径Rは3~5mmとなるように形成することが好ましい。 As shown in FIG. 9, the protruding portion 4 has a width B of 25 mm along the width direction of the deck plate 100 and a height H4 (the outer surface of the portion that protrudes from the lower surface of the surface portion 3 most from the ribs 101a, 101b, 101c side). Is preferably 6 mm. The protrusion 4 is preferably formed so that the bending radius R of the curved portion 43 (boundary portion and trough portion with the surface portion 3) where the metal plate is curved is 3 to 5 mm.
 図8に示すように、デッキプレート100の一端とリブ101aとの間にある面部3aに形成された突条部4のうち、デッキプレート100の一端から当該デッキプレート100の一端に最も近い突条部4aまでの距離L4は、突条部4の数を3つとし、突条部4の幅Bを25mmとした場合、37.5mmとなるように形成されている。また、突条部4aから当該突条部4aに隣接する突条部4bまでの距離L5、及び、突条部4bから当該突条部4bに隣接する突条部4cまでの距離L6は30mmとなるように形成されている。また、突条部4cから当該突条部4cに隣接するリブ101aの中心までの距離L7は37.5mmとなるように形成されている。 As shown in FIG. 8, among the protrusions 4 formed on the surface portion 3 a between one end of the deck plate 100 and the rib 101 a, the protrusion closest to the one end of the deck plate 100 from one end of the deck plate 100. The distance L4 to the portion 4a is formed to be 37.5 mm when the number of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm. The distance L5 from the ridge 4a to the ridge 4b adjacent to the ridge 4a and the distance L6 from the ridge 4b to the ridge 4c adjacent to the ridge 4b are 30 mm. It is formed to become. The distance L7 from the protrusion 4c to the center of the rib 101a adjacent to the protrusion 4c is 37.5 mm.
 リブ101aとリブ101bとの間にある面部3bに形成された突条部4のうち、リブ101aの中心から当該リブ101aに最も近い突条部4dまでの距離L8は、突条部4の数を3つとし、突条部4の幅Bを25mmとした場合、37.5mmとなるように形成されている。また、突条部4dから当該突条部4dに隣接する突条部4eまでの距離L9、及び、突条部4eから当該突条部4eに隣接する突条部4fまでの距離L10は30mmとなるように形成されている。また、突条部4fから当該突条部4fに隣接するリブ101bの中心までの距離L11は、37.5mmとなるように形成されている。 Of the protrusions 4 formed on the surface 3b between the ribs 101a and 101b, the distance L8 from the center of the rib 101a to the protrusion 4d closest to the rib 101a is the number of protrusions 4 When the width B of the protrusion 4 is 25 mm, it is formed to be 37.5 mm. Further, the distance L9 from the protrusion 4d to the protrusion 4e adjacent to the protrusion 4d, and the distance L10 from the protrusion 4e to the protrusion 4f adjacent to the protrusion 4e are 30 mm. It is formed to become. Further, the distance L11 from the protrusion 4f to the center of the rib 101b adjacent to the protrusion 4f is 37.5 mm.
 リブ101bとリブ101cとの間にある面部3cに形成された突条部4のうち、リブ101cの中心から当該リブ101cに最も近い突条部4gまでの距離L12は、突条部4の数を3つとし、突条部4の幅Bを25mmとした場合、37.5mmとなるように形成されている。また、突条部4gから当該突条部4gに隣接する突条部4hまでの距離L13、及び、突条部4hから当該突条部4hに隣接する突条部4iまでの距離L14は30mmとなるように形成されている。また、突条部4iから当該突条部4iに隣接するリブ101cの中心までの距離L15は、37.5mmとなるように形成されている。 Of the protrusions 4 formed on the surface portion 3c between the ribs 101b and 101c, the distance L12 from the center of the rib 101c to the protrusion 4g closest to the rib 101c is the number of the protrusions 4 When the width B of the protrusion 4 is 25 mm, it is formed to be 37.5 mm. Further, the distance L13 from the ridge 4g to the ridge 4h adjacent to the ridge 4g and the distance L14 from the ridge 4h to the ridge 4i adjacent to the ridge 4h are 30 mm. It is formed to become. Further, the distance L15 from the protrusion 4i to the center of the rib 101c adjacent to the protrusion 4i is formed to be 37.5 mm.
 よって、第2の実施の形態において、例えば、突条部4の数を3つとし、突条部4の幅Bを25mmとした場合、リブ101aとこのリブ101aに隣接する突条部4c,4dとの中心間の間隔、リブ101bとこのリブ101bに隣接する突条部4f,4gとの中心間の間隔、リブ101cとこのリブ101cに隣接する突条部4iとの中心間の間隔は、50mmである。また、隣接する突条部4の中心間の間隔は、55mmである。 Therefore, in the second embodiment, for example, when the number of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the ribs 101a and the protrusions 4c adjacent to the ribs 101a, The distance between the centers of the rib 101b and the ribs 4f and 4g adjacent to the rib 101b, and the distance between the centers of the rib 101c and the ribs 4i adjacent to the rib 101c are as follows. , 50 mm. Moreover, the space | interval between the centers of the adjacent protrusion part 4 is 55 mm.
 また、第2の形態において、例えば、突条部4の数nを3つとし、突条部4の幅Bを25mmとした場合、一つの面部3a,3b,3cの幅方向の長さLa,Lb,Lcに対する当該幅方向における突条部4以外の長さの割合r(ra,rb,rc)は、下記の式(3)、式(4)、式(5)によって算出される。
   ra=(La-B×n)/La ・・・(3)
   rb=(Lb-B×n)/Lb ・・・(4)
   rc=(Lc-B×n)/Lc ・・・(5)
 よって、当該割合r(ra,rb,rc)は、以下の値となる。
   ra=(210-25×3)/210=0.6428・・・
   rb=(210-25×3)/210=0.6428・・・
   rc=(210-25×3)/210=0.6428・・・
 従って、上記のような面部3の幅、突条部4の幅である場合には、割合rを0.5~0.7の範囲内に収めるためには、一つの面部3につき、突条部4の数は3~4つとなる。
In the second embodiment, for example, when the number n of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the length La in the width direction of one of the surface portions 3a, 3b, 3c , Lb, Lc, the ratio r (ra, rb, rc) of the length other than the protruding portion 4 in the width direction is calculated by the following equations (3), (4), and (5).
ra = (La−B × n) / La (3)
rb = (Lb−B × n) / Lb (4)
rc = (Lc−B × n) / Lc (5)
Therefore, the ratio r (ra, rb, rc) has the following value.
ra = (210-25 × 3) /210=0.6428 ...
rb = (210-25 × 3) /210=0.6428 ...
rc = (210−25 × 3) /210=0.6428 ...
Therefore, in the case where the width of the surface portion 3 and the width of the ridge portion 4 are as described above, in order to keep the ratio r within the range of 0.5 to 0.7, the ridge is per one surface portion 3. The number of parts 4 is 3-4.
<突条部の形成によるデッキプレートの断面性能の向上>
 次に、図10から図12を参照して、第2の実施の形態に係るデッキプレート100の突条部の形成によるデッキプレートの断面性能の向上について説明する。すなわち、三つのリブ101a,101b,101cが形成され、リブ101a,101b,101cの高さH3が75mmとなるように形成されたデッキプレート100の突条部4の形成によるデッキプレート100の断面性能の向上について説明する。
<Improvement of cross-sectional performance of deck plate by formation of protrusions>
Next, with reference to FIG. 10 to FIG. 12, an improvement in the cross-sectional performance of the deck plate due to the formation of the protrusions of the deck plate 100 according to the second embodiment will be described. That is, the cross-sectional performance of the deck plate 100 due to the formation of the ridges 4 of the deck plate 100 formed with three ribs 101a, 101b, and 101c and the height H3 of the ribs 101a, 101b, and 101c being 75 mm. The improvement will be described.
 図10(a)は、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。図10(b)は、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率とデッキプレート100の重量増加率との比をとったグラフである。図10(c)は、図10(a)と図10(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。 FIG. 10A is a graph in which the horizontal axis represents the ratio r of the length other than the protrusions 4 to the length in the width direction of the surface portion 3, and the vertical axis represents the increase rate of the effective cross-sectional secondary moment. . In FIG. 10B, the horizontal axis represents the ratio r of the length other than the ridges 4 to the width of the surface 3 in the width direction, and the vertical axis represents the rate of increase of the effective sectional secondary moment and the weight of the deck plate 100. It is the graph which took ratio with the increase rate. FIG. 10C summarizes the graphs of FIG. 10A and FIG. 10B into one, and is a graph showing a range with excellent cross-sectional performance.
 図10(a)に示すように、1つの面部3につき、デッキプレート100の幅方向の各長さLa,Lb,Lcに対する突条部以外の各長さ(L4+L5+L6+L7),(L8+L9+L10+L11),(L12+L13+L14+L15)の割合r(ra,rb,rcは、全て同じ値であるため、以下では、単に、割合rとする)が0.9の場合、有効断面二次モーメントの増加率は、1.3にも満たない。また、割合rが0.7~1.0の範囲では、突条部4の数が増える(割合rが減る)につれて、有効断面二次モーメントの増加率は急激に大きくなっている。割合rが0.3~0.7の場合には、有効断面二次モーメントの増加率は、1.6を超える。しかし、割合rが0.3~0.5の場合、有効断面二次モーメントの増加率は、割合rが0.5~0.7の場合よりもわずかに低下する。
 図10(b)に示すように、有効断面二次モーメントの増加率と、突条部4を増やす(割合rを減らす)ことによるデッキプレート10の重量の増加率との比で比較しても、割合rが0.6近傍の場合に1.6を超えた最も高い数値を示し、それ以上突条部4を増やしても(割合rを減らしても)、有効断面二次モーメントの増加率と重量の増加率との比は徐々に低下する。これは、突条部4の数が少ない場合には、デッキプレート10の重量の増加率が小さくても、そもそも有効断面二次モーメントの増加率が小さいため、大きな増加が見られないこと、突条部4の数が多い場合には、デッキプレート100の重量の増加率が大きいため、割合rが0.6の場合ほどの効果が得られないことによるものである。
As shown in FIG. 10A, for each surface portion 3, the lengths (L4 + L5 + L6 + L7), (L8 + L9 + L10 + L11), (L12 + L13 + L14 + L15) other than the protrusions with respect to the lengths La, Lb, Lc in the width direction of the deck plate 100 ) Ratio r (ra, rb, rc are all the same value, and hereinafter, simply referred to as ratio r) is 0.9, the rate of increase in effective moment of inertia is 1.3. Is also less. Further, in the range of the ratio r of 0.7 to 1.0, the increase rate of the effective cross-sectional secondary moment increases rapidly as the number of the protrusions 4 increases (the ratio r decreases). When the ratio r is 0.3 to 0.7, the increase rate of the effective section secondary moment exceeds 1.6. However, when the ratio r is 0.3 to 0.5, the increasing rate of the effective sectional second moment is slightly lower than when the ratio r is 0.5 to 0.7.
As shown in FIG. 10B, even if the ratio of the increase rate of the effective sectional secondary moment is compared with the increase rate of the weight of the deck plate 10 by increasing the protrusion 4 (decreasing the ratio r), When the ratio r is in the vicinity of 0.6, the highest numerical value exceeding 1.6 is shown. Even if the protrusion 4 is further increased (decreasing the ratio r), the increase rate of the effective section secondary moment is increased. The ratio of the weight increase rate gradually decreases. This is because when the number of protrusions 4 is small, even if the rate of increase in the weight of the deck plate 10 is small, the rate of increase in the effective moment of inertia is small in the first place. This is because when the number of the ridges 4 is large, the rate of increase in the weight of the deck plate 100 is large, so that the effect as high as when the ratio r is 0.6 cannot be obtained.
 よって、図10(c)における区間Sのように、1つの面部3に割合rが0.5~0.7の範囲内となるように突条部4を形成することは、断面性能の向上、デッキプレートの軽量化、及び、経済性の観点から好ましいが、中でも割合rが0.6近傍となるように突条部4を形成することが最適であることがわかる。ここで、割合rが0.5~0.7の範囲内が適しているとしたのは、図10(b)において、有効断面二次モーメントの増加率が1.6を超えてほぼ水平となる、すなわち、有効断面二次モーメントの増加率の値が収束する割合r=0.7以下で有効断面二次モーメントの増加率と重量の増加率との比の最大値から5%程度の低下までを断面効率がよい範囲として認定したことによるものである。
 また、突条部4を形成しない場合、上述したように、たわみ係数Cは1.6として算定が行われるが、面部3に割合rが0.5~0.7の範囲内となるように突条部4を形成した場合には、突条部4を形成しない場合と比較して、断面性能が格段に向上し、有効断面二次モーメントが1.6倍以上となり、面部3の全ての領域を有効断面として考慮することができるので、たわみ係数Cは1.0となる。 また、1つの面部3に割合rが0.5~0.7の範囲内となるように突条部4を形成することで、デッキプレート10の板厚を0.8mm、鋼材の降伏点を235N/mm、スラブ厚を150mmとした場合、デッキプレート10の許容スパンは、2530mm(突条部がない場合)から2780mm(突条部が3つの場合)まで長くすることができる。
Therefore, as shown in the section S in FIG. 10C, forming the protrusions 4 so that the ratio r is in the range of 0.5 to 0.7 on one surface 3 improves the cross-sectional performance. Although it is preferable from the viewpoint of weight reduction of the deck plate and economy, it is understood that it is optimal to form the protrusions 4 so that the ratio r is in the vicinity of 0.6. Here, the ratio r in the range of 0.5 to 0.7 is suitable because, in FIG. 10B, the rate of increase of the effective section secondary moment exceeds 1.6 and is almost horizontal. That is, when the rate of increase of the effective cross-section secondary moment converges at a rate of r = 0.7 or less, the ratio is about 5% lower than the maximum ratio of the effective cross-section secondary moment increase rate and weight increase rate. This is due to the fact that up to is recognized as a range in which the cross-sectional efficiency is good.
Further, when the protrusion 4 is not formed, as described above, the calculation is performed with the deflection coefficient C being 1.6, but the ratio r of the surface 3 is within the range of 0.5 to 0.7. When the protrusion 4 is formed, the cross-sectional performance is remarkably improved, and the effective moment of inertia is 1.6 times or more compared to the case where the protrusion 4 is not formed. Since the region can be considered as an effective cross section, the deflection coefficient C is 1.0. Further, by forming the ridge portion 4 so that the ratio r is in the range of 0.5 to 0.7 on one surface portion 3, the thickness of the deck plate 10 is 0.8 mm, and the yield point of the steel material is set. When 235 N / mm 2 and the slab thickness are 150 mm, the allowable span of the deck plate 10 can be increased from 2530 mm (when there are no ridges) to 2780 mm (when there are three ridges).
<突条部の変形例1>
 次に、第2の実施の形態における突条部の変形例1について説明する。
 三つのリブ101a,101b,101cが形成され、リブ101a,101b,101cの高さH3が75mmとなるように形成されたデッキプレート100の突条部4は、上記の幅と高さに限られるものではない。例えば、突条部4の幅を20mm、高さを7mmとしてもよい。この場合、図11(a)は、変形例1における、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。図11(b)は、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率とデッキプレート100の重量増加率との比をとったグラフである。図11(c)は、図11(a)と図11(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。
<Modification 1 of the ridge portion>
Next, a modification 1 of the protruding portion in the second embodiment will be described.
Three ribs 101a, 101b, 101c are formed, and the protrusion 4 of the deck plate 100 formed so that the height H3 of the ribs 101a, 101b, 101c is 75 mm is limited to the above width and height. It is not a thing. For example, the width of the protrusion 4 may be 20 mm and the height may be 7 mm. In this case, FIG. 11A shows the ratio r of the length other than the ridge portion 4 to the length in the width direction of the surface portion 3 on the horizontal axis, and the vertical axis of the effective cross-section secondary moment in the first modification. It is the graph which took the increase rate. In FIG. 11 (b), the horizontal axis represents the ratio r of the length other than the ridges 4 to the length of the surface portion 3 in the width direction, and the vertical axis represents the increase rate of the effective moment of inertia and the weight of the deck plate 100. It is the graph which took ratio with the increase rate. FIG. 11C summarizes the graphs of FIG. 11A and FIG. 11B into one, and is a graph showing a range with excellent cross-sectional performance.
 上記の第2の実施の形態と比べて、突条部4の幅が5mm小さくなり、高さH4が1mm大きくなっているが、この場合には、1つの面部3における突条部4以外の割合rが0.7~1.0の範囲では、突条部4の数が増える(割合rが減る)につれて、有効断面二次モーメントの増加率は大きくなっている。しかし、割合rを0.7から減らしても、有効断面二次モーメントの増加率は徐々に低下し、大きな効果は見られない。一方、有効断面二次モーメントの増加率と重量の増加率との比に関しては、突条部4の数を増やす(割合rを減らす)ほどデッキプレート10の重量が大きくなるため、割合rが0.7近傍の場合に1.6近傍と最も高い数値を示し、割合rを減らしても、有効断面二次モーメントの増加率と重量の増加率との比は徐々に低下する。 Compared with said 2nd Embodiment, although the width | variety of the protrusion part 4 becomes 5 mm smaller and the height H4 becomes 1 mm larger, in this case, other than the protrusion part 4 in one surface part 3 When the ratio r is in the range of 0.7 to 1.0, the increase rate of the effective cross-section secondary moment increases as the number of the protrusions 4 increases (the ratio r decreases). However, even if the ratio r is reduced from 0.7, the rate of increase of the effective sectional secondary moment gradually decreases and no significant effect is observed. On the other hand, regarding the ratio between the increase rate of the effective sectional secondary moment and the increase rate of the weight, since the weight of the deck plate 10 increases as the number of the protrusions 4 is increased (the ratio r is decreased), the ratio r is 0. In the case of .7, the highest value is shown as 1.6, and even if the ratio r is reduced, the ratio of the increase rate of the effective section secondary moment and the increase rate of the weight gradually decreases.
 よって、この突条部4の場合においても、図11(c)における区間Sのように、1つの面部3に割合rが0.5~0.7の範囲内となるように突条部4を形成することは、断面性能の向上、デッキプレートの軽量化、及び、経済性の観点から好ましいことがわかる。
 また、変形例1において、例えば、突条部4の数nを3つとし、突条部4の幅Bを20mmとした場合、一つの面部3a,3b,3cの幅方向の長さLa,Lb,Lcに対する当該幅方向における突条部4以外の長さの割合r(ra,rb,rc)は、上記の式(3)、式(4)、式(5)を用いて算出すると、以下の値となる。
   ra=(210-20×3)/210=0.7142・・・
   rb=(210-20×3)/210=0.7142・・・
   rc=(210-20×3)/210=0.7142・・・
 従って、変形例1のような面部3の幅、突条部4の幅である場合には、割合rを0.5~0.7の範囲内に収めるためには、一つの面部3につき、突条部4の数は4~5つとなる。
Therefore, even in the case of this ridge portion 4, the ridge portion 4 has a ratio r within a range of 0.5 to 0.7 on one surface portion 3 as in the section S in FIG. It can be seen that forming is preferable from the viewpoint of improving the cross-sectional performance, reducing the weight of the deck plate, and economically.
In the first modification, for example, when the number n of the protrusions 4 is three and the width B of the protrusions 4 is 20 mm, the length La in the width direction of one of the surface portions 3a, 3b, 3c, When the ratio r (ra, rb, rc) of the length other than the protrusions 4 in the width direction with respect to Lb, Lc is calculated using the above formulas (3), (4), and (5), It becomes the following values.
ra = (210-20 × 3) /210=0.7142
rb = (210−20 × 3) /210=0.7142
rc = (210−20 × 3) /210=0.7142
Therefore, in the case of the width of the surface portion 3 and the width of the protruding portion 4 as in Modification 1, in order to keep the ratio r within the range of 0.5 to 0.7, The number of ridges 4 is 4-5.
<突条部の変形例2>
 次に、第2の実施の形態における突条部の変形例2について説明する。
 三つのリブ101a,101b,101cが形成され、リブ101a,101b,101cの高さH3が75mmとなるように形成されたデッキプレート100の突条部4は、例えば、突条部4の幅を20mm、高さを8mmとしてもよい。この場合、図12(a)は、変形例2における、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。図12(b)は、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率とデッキプレート100の重量増加率との比をとったグラフである。図12(c)は、図12(a)と図12(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。
<Modification 2 of ridge part>
Next, a modification 2 of the protrusions in the second embodiment will be described.
Three ribs 101a, 101b, and 101c are formed, and the rib portion 4 of the deck plate 100 formed so that the height H3 of the ribs 101a, 101b, and 101c is 75 mm is, for example, the width of the rib portion 4. It may be 20 mm and the height may be 8 mm. In this case, FIG. 12A shows the ratio r of the length other than the ridge portion 4 to the length in the width direction of the surface portion 3 on the horizontal axis, and the vertical axis of the effective cross-section secondary moment in the second modification. It is the graph which took the increase rate. In FIG. 12 (b), the horizontal axis represents the ratio r of the length other than the ridge portion 4 to the length in the width direction of the surface portion 3, and the vertical axis represents the rate of increase of the effective sectional secondary moment and the weight of the deck plate 100. It is the graph which took ratio with the increase rate. FIG. 12C summarizes the graphs of FIG. 12A and FIG. 12B into one, and is a graph showing a range with excellent cross-sectional performance.
 上記の本発明の第2の実施の形態と比べて、突条部4の幅が5mm小さくなり、高さH4が2mm大きくなっているが、この場合には、1つの面部3における突条部4以外の割合rが0.7~1.0の範囲では、突条部4の数が増える(割合rが減る)につれて、有効断面二次モーメントの増加率は大きくなっている。しかし、割合rを0.7近傍から減らしても、有効断面二次モーメントの増加率は徐々に低下し、大きな効果は見られない。一方、有効断面二次モーメントの増加率と重量の増加率との比に関しては、突条部4の数を増やす(割合rを減らす)ほどデッキプレート10の重量が大きくなるため、割合rが0.7近傍の場合に1.6近傍の最も高い数値を示し、割合rを減らしても、有効断面二次モーメントの増加率と重量の増加率との比は徐々に低下する。 Compared with the second embodiment of the present invention described above, the width of the protrusion 4 is 5 mm smaller and the height H4 is 2 mm larger. When the ratio r other than 4 is in the range of 0.7 to 1.0, the rate of increase of the effective section secondary moment increases as the number of the protrusions 4 increases (the ratio r decreases). However, even if the ratio r is reduced from the vicinity of 0.7, the increase rate of the effective section secondary moment gradually decreases, and no significant effect is observed. On the other hand, regarding the ratio between the increase rate of the effective sectional secondary moment and the increase rate of the weight, since the weight of the deck plate 10 increases as the number of the protrusions 4 is increased (the ratio r is decreased), the ratio r is 0. In the case of .7, the highest value is shown in the vicinity of 1.6, and even if the ratio r is decreased, the ratio of the increase rate of the effective sectional secondary moment to the increase rate of the weight gradually decreases.
 よって、この突条部4の場合においても、図12(c)における区間Sのように、1つの面部3に割合rが0.5~0.7の範囲内となるように突条部4を形成することは、断面性能の向上、デッキプレートの軽量化、及び、経済性の観点から好ましいことがわかる。
 また、変形例2において、例えば、突条部4の数nを3つとし、突条部4の幅Bを20mmとした場合、一つの面部3a,3b,3cの幅方向の長さLa,Lb,Lcに対する当該幅方向における突条部4以外の長さの割合r(ra,rb,rc)は、上記の式(3)、式(4)、式(5)を用いて算出すると、以下の値となる。
   ra=(210-20×3)/210=0.7142・・・
   rb=(210-20×3)/210=0.7142・・・
   rc=(210-20×3)/210=0.7142・・・
 従って、変形例2のような面部3の幅、突条部4の幅である場合には、割合rを0.5~0.7の範囲内に収めるためには、一つの面部3につき、突条部4の数は4~5つとなる。
Therefore, even in the case of this ridge 4, as in the section S in FIG. 12 (c), the ridge 4, so that the ratio r is within the range of 0.5 to 0.7 on one surface portion 3. It can be seen that forming is preferable from the viewpoint of improving the cross-sectional performance, reducing the weight of the deck plate, and economically.
In the second modification, for example, when the number n of the protrusions 4 is three and the width B of the protrusions 4 is 20 mm, the length La in the width direction of one of the surface portions 3a, 3b, 3c, When the ratio r (ra, rb, rc) of the length other than the protrusions 4 in the width direction with respect to Lb, Lc is calculated using the above formulas (3), (4), and (5), It becomes the following values.
ra = (210-20 × 3) /210=0.7142
rb = (210−20 × 3) /210=0.7142
rc = (210−20 × 3) /210=0.7142
Therefore, in the case of the width of the surface portion 3 and the width of the ridge portion 4 as in Modification 2, in order to keep the ratio r within the range of 0.5 to 0.7, The number of ridges 4 is 4-5.
<突条部の変形例3>
 次に、第2の実施の形態における突条部の変形例3について説明する。
 三つのリブ101a,101b,101cが形成され、リブ101a,101b,101cの高さH3が75mmとなるように形成されたデッキプレート100は、上記の板厚に限られるものではない。例えば、デッキプレート100の板厚を0.6mmとしてもよい。この場合、図13(a)は、変形例3における、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。図13(b)は、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率とデッキプレート100の重量増加率との比をとったグラフである。図13(c)は、図13(a)と図13(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。
<Modification 3 of ridge part>
Next, a modification 3 of the protrusions in the second embodiment will be described.
The deck plate 100 in which the three ribs 101a, 101b, and 101c are formed and the height H3 of the ribs 101a, 101b, and 101c is 75 mm is not limited to the above plate thickness. For example, the thickness of the deck plate 100 may be 0.6 mm. In this case, FIG. 13A shows the ratio r of the length other than the ridge portion 4 to the length in the width direction of the surface portion 3 on the horizontal axis, and the vertical axis of the effective cross-section secondary moment in the modified example 3. It is the graph which took the increase rate. In FIG. 13B, the horizontal axis represents the ratio r of the length other than the ridge portion 4 to the length of the surface portion 3 in the width direction, and the vertical axis represents the rate of increase of the effective sectional secondary moment and the weight of the deck plate 100. It is the graph which took ratio with the increase rate. FIG. 13C is a graph in which the graphs of FIG. 13A and FIG. 13B are combined into one and shows a range with excellent cross-sectional performance.
 上記の第2の実施の形態と比べて、板厚が0.2mm薄くなっているが、この場合には、1つの面部3における突条部4以外の割合rが0.7~1.0の範囲では、突条部4の数が増える(割合rが減る)につれて、有効断面二次モーメントの増加率は大きくなっている。しかし、割合rを0.7から減らしても、割合rが0.6~0.7の範囲では、有効断面二次モーメントの増加率は若干増加するにとどまり、割合rを0.6から減らしても徐々に低下し、大きな効果は見られない。一方、有効断面二次モーメントの増加率と重量の増加率との比に関しては、突条部4の数を増やす(割合rを減らす)ほどデッキプレート10の重量が大きくなるため、割合rが0.6近傍の場合に1.75近傍と最も高い数値を示し、割合rを減らしても、有効断面二次モーメントの増加率と重量の増加率との比は徐々に低下する。 Compared to the second embodiment, the plate thickness is 0.2 mm thinner. In this case, the ratio r of the one surface portion 3 other than the protrusion 4 is 0.7 to 1.0. In the range, the increasing rate of the effective cross-section secondary moment increases as the number of the protrusions 4 increases (the ratio r decreases). However, even if the ratio r is reduced from 0.7, the rate of increase of the effective sectional secondary moment is only slightly increased in the range of the ratio r from 0.6 to 0.7, and the ratio r is decreased from 0.6. However, it gradually decreases and no significant effect is seen. On the other hand, regarding the ratio between the increase rate of the effective sectional secondary moment and the increase rate of the weight, since the weight of the deck plate 10 increases as the number of the protrusions 4 is increased (the ratio r is decreased), the ratio r is 0. In the case of the vicinity of .6, the highest value is shown as 1.75, and even if the ratio r is reduced, the ratio between the increase rate of the effective sectional secondary moment and the increase rate of the weight gradually decreases.
 よって、この突条部4の場合においても、図13(c)における区間Sのように、1つの面部3に割合rが0.5~0.7の範囲内となるように突条部4を形成することは、断面性能の向上、デッキプレートの軽量化、及び、経済性の観点から好ましいことがわかる。
 また、変形例3において、例えば、突条部4の数nを3つとし、突条部4の幅Bを25mmとした場合、一つの面部3a,3b,3cの幅方向の長さLa,Lb,Lcに対する当該幅方向における突条部4以外の長さの割合r(ra,rb,rc)は、上記の式(3)、式(4)、式(5)を用いて算出すると、以下の値となる。
   ra=(210-25×3)/210=0.6428・・・
   rb=(210-25×3)/210=0.6428・・・
   rc=(210-25×3)/210=0.6428・・・
 従って、変形例1のような面部3の幅、突条部4の幅である場合には、割合rを0.5~0.7の範囲内に収めるためには、一つの面部3につき、突条部4の数は3~4つとなる。
Therefore, even in the case of this ridge 4, the ridge 4, so that the ratio r is within the range of 0.5 to 0.7 on one surface portion 3, as in the section S in FIG. It can be seen that forming is preferable from the viewpoint of improving the cross-sectional performance, reducing the weight of the deck plate, and economically.
Further, in the third modification, for example, when the number n of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the length La in the width direction of one surface 3a, 3b, 3c, When the ratio r (ra, rb, rc) of the length other than the protrusions 4 in the width direction with respect to Lb, Lc is calculated using the above formulas (3), (4), and (5), It becomes the following values.
ra = (210-25 × 3) /210=0.6428 ...
rb = (210-25 × 3) /210=0.6428 ...
rc = (210−25 × 3) /210=0.6428 ...
Therefore, in the case of the width of the surface portion 3 and the width of the protruding portion 4 as in Modification 1, in order to keep the ratio r within the range of 0.5 to 0.7, The number of ridges 4 is 3-4.
<突条部の変形例4>
 次に、第2の実施の形態における突条部の変形例4について説明する。
 三つのリブ101a,101b,101cが形成され、リブ101a,101b,101cの高さH3が75mmとなるように形成されたデッキプレート100は、上記の板厚に限られるものではない。例えば、デッキプレート100の板厚を1.2mmとしてもよい。この場合、図14(a)は、変形例4における、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率をとったグラフである。図14(b)は、横軸に面部3の幅方向の長さに対する突条部4以外の長さの割合rをとり、縦軸に有効断面二次モーメントの増加率とデッキプレート100の重量増加率との比をとったグラフである。図14(c)は、図14(a)と図14(b)のグラフを一つにまとめたものであり、断面性能に優れた範囲を示したグラフである。
<Modification 4 of ridge part>
Next, a modification 4 of the protrusions in the second embodiment will be described.
The deck plate 100 in which the three ribs 101a, 101b, and 101c are formed and the height H3 of the ribs 101a, 101b, and 101c is 75 mm is not limited to the above plate thickness. For example, the thickness of the deck plate 100 may be 1.2 mm. In this case, FIG. 14A shows the ratio r of the length other than the protrusion 4 to the length in the width direction of the surface portion 3 on the horizontal axis in the modified example 4, and the effective section secondary moment of the vertical axis on the vertical axis. It is the graph which took the increase rate. In FIG. 14 (b), the horizontal axis represents the ratio r of the length other than the protrusion 4 to the length in the width direction of the surface portion 3, and the vertical axis represents the rate of increase in the effective sectional secondary moment and the weight of the deck plate 100. It is the graph which took ratio with the increase rate. FIG. 14C is a graph in which the graphs of FIG. 14A and FIG. 14B are combined into one and shows a range with excellent cross-sectional performance.
 上記の第2の実施の形態と比べて、板厚が0.4mm厚くなっているが、この場合には、1つの面部3における突条部4以外の割合rが0.7~1.0の範囲では、突条部4の数が増える(割合rが減る)につれて、有効断面二次モーメントの増加率は大きくなっている。しかし、割合rを0.7から減らしても、有効断面二次モーメントの増加率は徐々に低下し、大きな効果は見られない。一方、有効断面二次モーメントの増加率と重量の増加率との比に関しては、突条部4の数を増やす(割合rを減らす)ほどデッキプレート10の重量が大きくなるため、割合rが0.7近傍の場合に1.45近傍と最も高い数値を示し、割合rを減らしても、有効断面二次モーメントの増加率と重量の増加率との比は徐々に低下する。 Compared to the second embodiment, the plate thickness is 0.4 mm thick. In this case, the ratio r of the one surface portion 3 other than the protrusion 4 is 0.7 to 1.0. In the range, the increasing rate of the effective cross-section secondary moment increases as the number of the protrusions 4 increases (the ratio r decreases). However, even if the ratio r is reduced from 0.7, the rate of increase of the effective sectional secondary moment gradually decreases and no significant effect is observed. On the other hand, regarding the ratio between the increase rate of the effective sectional secondary moment and the increase rate of the weight, since the weight of the deck plate 10 increases as the number of the protrusions 4 is increased (the ratio r is decreased), the ratio r is 0. In the case of .7, the highest value is shown as 1.45 and the ratio of the increase rate of the effective cross-section second moment and the increase rate of the weight gradually decreases even if the ratio r is reduced.
 よって、この突条部4の場合においても、図14(c)における区間Sのように、1つの面部3に割合rが0.5~0.7の範囲内となるように突条部4を形成することは、断面性能の向上、デッキプレートの軽量化、及び、経済性の観点から好ましいことがわかる。
 また、変形例4において、例えば、突条部4の数nを3つとし、突条部4の幅Bを25mmとした場合、一つの面部3a,3b,3cの幅方向の長さLa,Lb,Lcに対する当該幅方向における突条部4以外の長さの割合r(ra,rb,rc)は、上記の式(3)、式(4)、式(5)を用いて算出すると、以下の値となる。
   ra=(210-25×3)/210=0.6428・・・
   rb=(210-25×3)/210=0.6428・・・
   rc=(210-25×3)/210=0.6428・・・
 従って、変形例1のような面部3の幅、突条部4の幅である場合には、割合rを0.5~0.7の範囲内に収めるためには、一つの面部3につき、突条部4の数は3~4つとなる。
Therefore, even in the case of this ridge 4, the ridge 4, so that the ratio r is within the range of 0.5 to 0.7 on one surface portion 3, as in the section S in FIG. It can be seen that forming is preferable from the viewpoint of improving the cross-sectional performance, reducing the weight of the deck plate, and economically.
Further, in the modified example 4, for example, when the number n of the protrusions 4 is three and the width B of the protrusions 4 is 25 mm, the length La in the width direction of one surface 3a, 3b, 3c, When the ratio r (ra, rb, rc) of the length other than the protrusions 4 in the width direction with respect to Lb, Lc is calculated using the above formulas (3), (4), and (5), It becomes the following values.
ra = (210-25 × 3) /210=0.6428 ...
rb = (210-25 × 3) /210=0.6428 ...
rc = (210−25 × 3) /210=0.6428 ...
Therefore, in the case of the width of the surface portion 3 and the width of the protruding portion 4 as in Modification 1, in order to keep the ratio r within the range of 0.5 to 0.7, The number of ridges 4 is 3-4.
 このように、本発明の第2の実施の形態に係るデッキプレート100においても、上述の本発明の第1の実施の形態に係るデッキプレート10と同様に、突条部4は、面部3の幅方向の長さに対する当該幅方向における突条部4以外の長さの割合rが0.5~0.7の範囲内となるように形成されているため、断面性能を向上させつつも、重量の大幅な増加を抑制することができる。 As described above, also in the deck plate 100 according to the second embodiment of the present invention, the ridge portion 4 is formed on the surface portion 3 in the same manner as the deck plate 10 according to the first embodiment of the present invention described above. Since the ratio r of the length other than the protrusions 4 in the width direction to the length in the width direction is in the range of 0.5 to 0.7, while improving the cross-sectional performance, A significant increase in weight can be suppressed.
<その他>
 なお、本発明は、上記実施の形態に限られるものではない。例えば、折返部13,23は、略三角形状に限らず、直線部12と直線部14とが当接し、直線部22と直線部24とが当接するように折り返されていれば、その折り曲げ形状は自由に変更可能である。
 また、突条部4は、面部3におけるいずれの方向に突出するように形成してもよい。
 また、デッキプレート10,100は、鋼板に限らず、所定の断面性能を満たす金属板であればその材質は問わない。
 また、デッキプレート10,100をコンクリート打設時の型枠としてだけではなく、床構造物(または天井構造物)の一部として用いることで、コンクリートの固化後は、コンクリートと一体となって床構造物(または天井構造物)の剛性を高めることもできる。
 また、デッキプレート10,100は、鉄骨造の建築物を構築する場合に限らず、鉄筋コンクリート造の建築物を構築する場合の型枠や、プレキャストコンクリートを製造する際の型枠として用いてもよい。
<Others>
The present invention is not limited to the above embodiment. For example, the folded portions 13 and 23 are not limited to a substantially triangular shape, and may be folded when the straight portion 12 and the straight portion 14 are in contact with each other and the straight portion 22 and the straight portion 24 are in contact with each other. Can be changed freely.
Moreover, you may form the protrusion part 4 so that it may protrude in any direction in the surface part 3. FIG.
The deck plates 10 and 100 are not limited to steel plates, and any material may be used as long as the deck plates 10 and 100 are metal plates that satisfy a predetermined cross-sectional performance.
Further, by using the deck plates 10 and 100 not only as a formwork for placing concrete, but also as a part of the floor structure (or ceiling structure), the floor is integrated with the concrete after the concrete is solidified. The rigidity of the structure (or ceiling structure) can also be increased.
Further, the deck plates 10 and 100 are not limited to the case of constructing a steel structure building, but may be used as a formwork for constructing a reinforced concrete structure or a formwork for producing precast concrete. .
 また、図15に示すように、梁20間にデッキプレート10(又はデッキプレート100)を架け渡す際に、デッキプレート10(100)のリブ1,2(又はリブ101a,101b,101c)が形成されている面を上側(コンクリート側)に向けて載置し、デッキプレート10(100)上に打設されるコンクリートにリブ1,2(101a,101b,101c)を係合させるようにしてもよい。この場合、コンクリートの固化後は、リブ1,2(101a,101b,101c)をコンクリートに深く食い込ませることができ、コンクリートとデッキプレート10(100)が一体化し、鋼コンクリートの合成構造となることにより、床構造物(または天井構造物)の剛性を高めることもできる。
 さらに、デッキプレート10(100)上に打設されるコンクリート内に鉄筋を配置してもよい。この場合、床構造物(または天井構造物)の剛性をより高めることができる。
 さらに、デッキプレート10(100)のリブ1,2(101a,101b,101c)が形成されている面を上側(コンクリート側)に向けて載置することで、梁20間に載置されたデッキプレート10(100)の下方にリブ1,2(101a,101b,101c)が突出しないので、図16に示すように、1つのデッキプレート10(100)の全長を長くして、3つ以上の梁20間(複数のスパン)にわたって、1つのデッキプレート10(100)を載置することもできるようになる。
 また、梁20間に複数のデッキプレート10(100)を架け渡す場合、デッキプレートの幅方向の距離に応じて、係止部5を含む面部3の一部を切り落とし、このデッキプレート10(100)を端部幅の調整板(役物)として用いてもよい。
Further, as shown in FIG. 15, when the deck plate 10 (or the deck plate 100) is bridged between the beams 20, the ribs 1 and 2 (or the ribs 101a, 101b, and 101c) of the deck plate 10 (100) are formed. It is also possible to mount the ribs 1 and 2 (101a, 101b, 101c) on the concrete placed on the deck plate 10 (100) with the surface being placed facing upward (concrete side). Good. In this case, after the concrete is solidified, the ribs 1 and 2 (101a, 101b, and 101c) can be deeply cut into the concrete, and the concrete and the deck plate 10 (100) are integrated to form a composite structure of steel concrete. Thus, the rigidity of the floor structure (or ceiling structure) can be increased.
Furthermore, you may arrange | position a reinforcing bar in the concrete cast on the deck plate 10 (100). In this case, the rigidity of the floor structure (or ceiling structure) can be further increased.
Furthermore, the deck placed between the beams 20 by placing the surface of the deck plate 10 (100) on which the ribs 1 and 2 (101a, 101b, 101c) are formed upward (concrete side). Since the ribs 1 and 2 (101a, 101b, and 101c) do not protrude below the plate 10 (100), the total length of one deck plate 10 (100) is increased as shown in FIG. One deck plate 10 (100) can be placed between the beams 20 (a plurality of spans).
When a plurality of deck plates 10 (100) are bridged between the beams 20, a part of the surface portion 3 including the locking portion 5 is cut off according to the distance in the width direction of the deck plate, and the deck plate 10 (100 ) May be used as an end width adjusting plate (an accessory).
1 リブ
2 リブ
3 面部
4 突条部
5 係止部
6 エンドクローズ部
10 デッキプレート
43 湾曲部
50 受容部
100 デッキプレート
101a リブ
101b リブ
101c リブ
DESCRIPTION OF SYMBOLS 1 Rib 2 Rib 3 Surface part 4 Projection part 5 Locking part 6 End close part 10 Deck plate 43 Curved part 50 Receiving part 100 Deck plate 101a Rib 101b Rib 101c Rib

Claims (11)

  1.  金属板から形成され、面部とリブとが交互に連続して形成されたデッキプレートであって、
     前記面部には、一方の面側に向けて突出する突条部が形成されており、
     前記面部の幅方向の長さに対する当該幅方向における前記突条部以外の長さの割合は、0.5~0.7の範囲内であることを特徴とするデッキプレート。
    A deck plate formed from a metal plate and having face portions and ribs formed alternately and continuously,
    The surface portion is formed with a ridge portion protruding toward one surface side,
    The deck plate according to claim 1, wherein a ratio of a length other than the protruding portion in the width direction to a length in the width direction of the surface portion is in a range of 0.5 to 0.7.
  2.  前記面部と前記リブを同数形成することを特徴とする請求項1に記載のデッキプレート。 The deck plate according to claim 1, wherein the same number of the surface portions and the ribs are formed.
  3.  前記突条部は、幅方向に所定間隔をあけて並んで形成されていることを特徴とする請求項1又は2に記載のデッキプレート。 The deck plate according to claim 1 or 2, wherein the protrusions are formed side by side at a predetermined interval in the width direction.
  4.  幅方向における一端側の面部には、係止部が形成されており、
     幅方向における他端側のリブには、前記係止部を受容する受容部が形成されていることを特徴とする請求項1から3までのいずれか一項に記載のデッキプレート。
    A locking portion is formed on the surface portion on one end side in the width direction,
    The deck plate according to any one of claims 1 to 3, wherein a receiving portion that receives the locking portion is formed on a rib on the other end side in the width direction.
  5.  前記面部の幅方向の長さは、180~220mmであることを特徴とする請求項1から4までのいずれか一項に記載のデッキプレート。 The deck plate according to any one of claims 1 to 4, wherein a length of the surface portion in the width direction is 180 to 220 mm.
  6.  前記突条部の幅は、20~25mmであることを特徴とする請求項1から5までのいずれか一項に記載のデッキプレート。 The deck plate according to any one of claims 1 to 5, wherein a width of the protruding portion is 20 to 25 mm.
  7.  前記突条部の高さは、4~8mmであることを特徴とする請求項1から6までのいずれか一項に記載のデッキプレート。 The deck plate according to any one of claims 1 to 6, wherein the height of the protrusion is 4 to 8 mm.
  8.  前記リブとこのリブに隣接する突条部との中心間の間隔は、20~50mmであることを特徴とする請求項1から7までのいずれか一項に記載のデッキプレート。 The deck plate according to any one of claims 1 to 7, wherein a distance between the centers of the ribs and the protrusions adjacent to the ribs is 20 to 50 mm.
  9.  隣接する前記突条部の中心間の間隔は、30~60mmであることを特徴とする請求項1から8までのいずれか一項に記載のデッキプレート。 The deck plate according to any one of claims 1 to 8, wherein an interval between the centers of the adjacent protrusions is 30 to 60 mm.
  10.  前記突条部における金属板の湾曲部の曲げ半径は、3~5mmであることを特徴とする請求項1から9までのいずれか一項に記載のデッキプレート。 The deck plate according to any one of claims 1 to 9, wherein a bending radius of the curved portion of the metal plate in the protruding portion is 3 to 5 mm.
  11.  前記突条部は、一つの面部あたり3~5つ形成されていることを特徴とする請求項1から10までのいずれか一項に記載のデッキプレート。 The deck plate according to any one of claims 1 to 10, wherein 3 to 5 protrusions are formed per one surface portion.
PCT/JP2019/004371 2018-02-08 2019-02-07 Deck plate WO2019156148A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11202007369QA SG11202007369QA (en) 2018-02-08 2019-02-07 Deck plate
PH12020551183A PH12020551183A1 (en) 2018-02-08 2020-08-05 Deck plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-021361 2018-02-08
JP2018021361 2018-02-08
JP2019-018175 2019-02-04
JP2019018175A JP2019138138A (en) 2018-02-08 2019-02-04 Deck plate

Publications (1)

Publication Number Publication Date
WO2019156148A1 true WO2019156148A1 (en) 2019-08-15

Family

ID=67548303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004371 WO2019156148A1 (en) 2018-02-08 2019-02-07 Deck plate

Country Status (2)

Country Link
JP (1) JP2023072080A (en)
WO (1) WO2019156148A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310022Y2 (en) * 1983-07-11 1988-03-24
JP2017150131A (en) * 2016-02-22 2017-08-31 日鐵住金建材株式会社 Deck plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310022Y2 (en) * 1983-07-11 1988-03-24
JP2017150131A (en) * 2016-02-22 2017-08-31 日鐵住金建材株式会社 Deck plate

Also Published As

Publication number Publication date
JP2023072080A (en) 2023-05-23

Similar Documents

Publication Publication Date Title
EP1420117B1 (en) Metal sheet pile
JP5590437B2 (en) T-shaped lattice member and method for constructing T-shaped lattice member
KR101261069B1 (en) Building panel and building structure
JPH0321750A (en) Building unit for molding metallic sheet and manufacture thereof
JP4772925B2 (en) Steel sheet pile
JP5383166B2 (en) Corrugated steel earthquake resistant wall, corrugated steel earthquake resistant wall design method, and building
JP2008127771A (en) Hat type steel sheet pile
JP2019138138A (en) Deck plate
US5809721A (en) Collaborating formwork with connected edges
WO2019156148A1 (en) Deck plate
AU2004203734B2 (en) Profiled steel decking
KR101222320B1 (en) Composite beam using built-up beam of C-shaped member and inverse T-shaped member
JP7207054B2 (en) Rolled H-section steel and composite beams
KR101154121B1 (en) Steel built up beam and steel concrete composite beam using the same
JP7457552B2 (en) deck plate
JP5300644B2 (en) RC slab construction method for building structures using end-clad flat deck plates
JP2005105552A (en) Steel sheet pile with constant piling-up interval
JP7227900B2 (en) deck plate
JP2002206234A (en) Steel sheet pile increased in buckling strength
WO2011003198A1 (en) Composite panel and stud and dual slab panel and method
JP2012127100A (en) Deck plate
JP7379519B2 (en) deck plate
JP6892010B1 (en) Synthetic beam
JPH0311341B2 (en)
JP3210488U (en) Horizontal material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750977

Country of ref document: EP

Kind code of ref document: A1