WO2019156120A1 - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
WO2019156120A1
WO2019156120A1 PCT/JP2019/004251 JP2019004251W WO2019156120A1 WO 2019156120 A1 WO2019156120 A1 WO 2019156120A1 JP 2019004251 W JP2019004251 W JP 2019004251W WO 2019156120 A1 WO2019156120 A1 WO 2019156120A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
foil
electrolytic capacitor
anode
cathode
Prior art date
Application number
PCT/JP2019/004251
Other languages
French (fr)
Japanese (ja)
Inventor
剛史 古川
智之 谷
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019570776A priority Critical patent/JP6919732B2/en
Publication of WO2019156120A1 publication Critical patent/WO2019156120A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation

Definitions

  • the present invention relates to an electrolytic capacitor.
  • Patent Document 1 discloses a wound electrolytic capacitor. This electrolytic capacitor uses a solid electrolyte and an electrolyte as an electrolyte. Since the solid electrolyte is used, the ESR can be lowered, and since the electrolyte is used, the leakage current is small.
  • Patent Document 2 discloses a multilayer electrolytic capacitor. This electrolytic capacitor uses a solid electrolyte as an electrolyte. Since a solid electrolyte is used, ESR can be lowered.
  • the electrolytic capacitor described in Patent Document 1 has characteristics such as low ESR because it uses a solid electrolyte and low leakage current because it uses an electrolytic solution. There was a problem that the layer was stressed and easily cracked, resulting in a leakage current caused by the crack.
  • the electrolytic capacitor described in Patent Document 2 is a multilayer type, no stress is applied to the dielectric layer, so that it is difficult to crack.
  • a solid electrolyte is used as the electrolyte, there is a problem that the leakage current increases.
  • the present invention is a multilayer type, and it is possible to use an electrolytic solution as an electrolyte, and to provide a structure of an electrolytic capacitor that can suppress a decrease in capacitance of the electrolytic capacitor and variations in capacitance.
  • the purpose is to provide.
  • the electrolytic capacitor of the present invention comprises an anode foil having a dielectric layer on the surface, a cathode foil facing the anode foil, and an electrolyte solution impregnated or filled with a solid electrolyte between the anode foil and the cathode foil.
  • An electrolytic capacitor comprising a laminate including at least one capacitor element having a separator,
  • the surface located in the stacking direction of the laminate is a main surface, the lead-out surface of the anode foil and the cathode foil is a first side surface, A surface facing the first side surface is a second side surface;
  • a surface perpendicular to the first side surface and the main surface is defined as a third side surface and a fourth side surface,
  • An edge located on the first to fourth side surfaces of the separator is covered with an insulating resin, and at least one of the first to fourth side surfaces of the insulating resin has a notch. It is characterized by that.
  • an electrolytic capacitor that is a multilayer type, can use an electrolytic solution as an electrolyte, and can suppress a decrease in capacitance of the electrolytic capacitor and variations in capacitance.
  • FIG. 1 is a perspective view schematically showing a state before a substrate, a laminate, and a case are combined.
  • FIG. 2 is a perspective view schematically showing an example of a substrate on which the laminate is mounted.
  • FIG. 3 is a perspective view schematically showing a state in which the laminate is mounted on the substrate.
  • FIG. 4 is a perspective view schematically showing a state in which the case is covered after the laminated body is mounted on the substrate.
  • FIG. 5 is a perspective view schematically showing an example of a laminated body in which a plurality of capacitor elements are laminated. 6 is an enlarged perspective view showing a part of the third side surface of the laminate shown in FIG.
  • FIG. 7A is a perspective view showing an example of an anode foil unit, and FIG.
  • FIG. 7B is a cross-sectional view taken along line AA of the anode foil unit shown in FIG. 7A.
  • FIG. 8A is a perspective view showing an example of the cathode foil unit, and FIG. 8B is a cross-sectional view taken along the line BB of the cathode foil unit shown in FIG. 8A.
  • FIG. 9A is a cross-sectional view schematically showing a capacitor element in which an anode unit and a cathode unit are stacked, and FIG. 9B is a side view of a multilayer body including the capacitor element shown in FIG. It is a perspective view which shows typically an example of the laminated body which formed the connection electrode in.
  • FIG. 10 is a perspective view schematically showing an example of an anode foil sheet.
  • FIG. 11 is a perspective view schematically showing an example of the cathode foil sheet.
  • the electrolytic capacitor of the present invention will be described.
  • the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
  • a combination of two or more desirable configurations of the present invention described below is also the present invention.
  • the electrolytic capacitor of the present invention comprises an anode foil having a dielectric layer on the surface, a cathode foil facing the anode foil, and an electrolyte solution impregnated or filled with a solid electrolyte between the anode foil and the cathode foil.
  • An electrolytic capacitor comprising a multilayer body including at least one capacitor element having a separator, wherein a surface located in a stacking direction of the multilayer body is a main surface, and lead-out surfaces of the anode foil and the cathode foil are first side surfaces.
  • the first side surface of the separator is the first side surface of the separator.
  • the second side surface is the surface facing the first side surface, the third side surface and the fourth side surface are orthogonal to the first side surface and the main surface.
  • An edge located on the side surface of the insulating resin is covered with an insulating resin, and at least one of the first to fourth side surfaces of the insulating resin has a notch.
  • the electrolytic capacitor of the present invention is a multilayer electrolytic capacitor in which an anode foil having a dielectric layer on the surface and a cathode foil opposite to the anode foil are stacked, stress is not easily applied to the anode foil and the cathode foil.
  • a separator is disposed between the anode foil and the cathode foil, and the insulating resin covering the edge located on the side surface side of the separator laminate has a notch. Since the electrolytic solution can be injected into the separator from this notch and the amount of the electrolytic solution can be accurately controlled, a decrease in the capacitance of the electrolytic capacitor and a variation in the capacitance can be suppressed.
  • an electrolytic capacitor can be manufactured by a manufacturing method in which a separator in which an electrolytic solution is preliminarily immersed is laminated, and the electrolytic solution is injected into the separator through a notch after the lamination.
  • the electrolytic capacitor of the present invention is a multilayer electrolytic capacitor, and is an electrolytic capacitor capable of injecting an electrolytic solution into a separator from a notch.
  • an electrolytic capacitor capable of injecting an electrolytic solution into a separator from a notch.
  • the electrolytic capacitor of the present invention includes a laminate including a capacitor element, a substrate, and a case.
  • the electrode of the laminate and the electrode of the substrate are joined, and the case and the substrate are joined so as to accommodate the laminate.
  • the overall structure of the electrolytic capacitor will be described with reference to FIGS.
  • FIG. 1 is a perspective view schematically showing a state before a substrate, a laminate, and a case are combined.
  • FIG. 2 is a perspective view schematically showing an example of a substrate on which the laminate is mounted.
  • FIG. 3 is a perspective view schematically showing a state in which the laminate is mounted on the substrate.
  • FIG. 4 is a perspective view schematically showing a state in which the case is covered after the laminated body is mounted on the substrate.
  • FIG. 1 shows a state before the substrate 400, the laminate 100, and the case 500 are combined.
  • the case 500 and the substrate 400 and the overall structure in which the substrate 400, the laminate 100, and the case 500 are combined will be described. A detailed description of the structure of the laminate 100 will be described later.
  • FIG. 1 shows a case 500 for housing the laminate 100 and sealing the laminate 100 together with the substrate 400.
  • the case is box-shaped and made of resin.
  • metal or ceramic can be used as the material of the case.
  • the sealing method uses a sealing material to join the substrate and the case. When using a metal case, it can also be sealed using welding.
  • FIG. 2 shows a substrate 400 on which the stacked body 100 is mounted and connected to an external circuit.
  • the substrate 400 is a substrate in which conductors are formed on both surfaces, and an anode external electrode 410 and a cathode external electrode 420 as surface external electrodes are formed on the surface of the insulating substrate 430 (surface visible in the figure).
  • An anode external electrode and a cathode external electrode as back external electrodes connected to an external circuit are formed on the back surface (surface not shown in the figure) of the insulating substrate 430 facing the surface of the insulating substrate 430.
  • the anode external electrode formed on the front surface of the substrate 400 and the anode external electrode formed on the back surface are electrically connected by a plurality of connection conductors 411.
  • the cathode external electrode formed on the front surface of the substrate 400 and the cathode external electrode formed on the back surface are electrically connected by a plurality of connection conductors 421. Since an external electrode is formed on the back surface of the substrate 400, the back surface external electrode can be used to connect to the circuit board. Further, as a modification, an electrode may be formed on the side surface of the substrate, and conduction between the front surface external electrode and the back surface external electrode may be established through the electrode.
  • FIG. 3 shows a state in which the stacked body 100 is mounted on the substrate 400.
  • the anode external electrode 410 on the surface of the substrate 400 and the anode connection electrode of the laminate 100 are connected by soldering, and the cathode external electrode 420 on the surface of the substrate 400 and the cathode connection electrode of the laminate 100 are connected by soldering.
  • the corresponding surfaces are facing each other.
  • it can also join using a conductive adhesive as another joining method.
  • the anode foil and the cathode foil lead-out portion and the surface external electrode of the substrate may be joined directly with the conductive adhesive.
  • a resin sealing material 440 is formed around the substrate 400.
  • the sealing material is made of a thermoplastic resin.
  • the connection electrode is placed downward, and the connection electrode of the laminated body and the surface external electrode of the substrate face each other.
  • connection electrode of the laminate and the surface external electrode of the substrate are joined by soldering.
  • the connection electrode of the laminate will be described later.
  • the anode connection electrode is an anode foil
  • the cathode connection electrode is an electrode electrically connected to the cathode foil.
  • FIG. 4 shows a state in which the case 500 is covered after the stacked body 100 is mounted on the substrate 400.
  • a case 500 is placed on the laminate 100 mounted on the substrate 400, and a thermoplastic resin sealing material 440 provided around the substrate 400 is sandwiched between the case 500 and the substrate 400 to be heated and cooled. As a result, the case 500 and the substrate 400 are joined to seal the stacked body 100.
  • the overall structure of the electrolytic capacitor is as described above.
  • Such an electrolytic capacitor is an electrolytic capacitor that can be surface mounted using the anode external electrode and the cathode external electrode on the back surface of the substrate. Since the anode external electrode and the cathode external electrode on the back surface of the substrate are flat electrodes, they are suitable for surface mounting.
  • FIG. 5 is a perspective view schematically showing an example of a laminated body in which a plurality of capacitor elements are laminated.
  • the laminated body 100 includes a first main surface M101 and a second main surface M102 that face each other in the stacking direction (T direction), a first side surface S101 that is an electrode extraction surface of the anode foil and the cathode foil, and a first side surface S101.
  • Second side surface S102 facing in the width direction (W direction), and third side surface S103 and the second side surface S103 facing in the length direction (L direction) orthogonal to the first side surface S101 and first main surface M101. It has four side surfaces S104.
  • the “side surface” in this specification means a surface other than the main surface facing in the stacking direction.
  • the laminated body used for the electrolytic capacitor of this invention it has a notch in at least 1 of the insulating resin which covers the edge located in the side surface side of the laminated body of a separator.
  • the anode foil 10 and the cathode foil 20 are drawn on the same side, and in FIG. 5, a cathode lead-out portion is provided on the left side of the drawing and an anode lead-out portion is provided on the right side.
  • portions other than the anode foil 10 and the cathode foil 20 are the insulating resin 14, the insulating resin 24, or the sealing material 54.
  • the sealing material 54 is also an insulating material.
  • the cathode lead portion and the anode lead portion can be provided with a connection electrode that is electrically connected to an external electrode on the substrate. Details of the connection electrode will be described later.
  • FIG. 6 is an enlarged perspective view showing a part of the third side surface of the laminate shown in FIG.
  • the third side surface S103 of the laminate 100 has an insulating resin 14 that covers the edge of the separator and a notch 15 in which a part of the insulating resin 14 is cut out.
  • the third side surface S103 of the laminate 100 includes an insulating resin 24 that covers the edge of the separator and a notch 25 in which a part of the insulating resin 24 is cut out.
  • FIG. 6 schematically shows a state where the separator can be seen from the notch of the insulating resin.
  • the separator 30 on the anode foil 10 is partially covered with the insulating resin 14, and a part of the edge is exposed from the notch 15 of the insulating resin 14 to the third side surface S 103.
  • the separator 40 on the cathode foil 20 is partially covered with the insulating resin 24, and a part of the edge is exposed from the notch 25 of the insulating resin 24 to the third side surface S 103.
  • the anode foil 10 and the cathode foil 20 are laminated via the separators 30 and 40, and the edges of the separators 30 and 40 are exposed through the insulating resin notches 15 and 25 from the third side surface S103.
  • a space is provided between the separators 30 and 40 and the third side surface S103 by the notches 15 and 25 of insulating resin. Therefore, the electrolytic solution can be injected into the separators 30 and 40 from the notches 15 and 25, and the amount of the electrolytic solution can be adjusted after lamination. After injecting the electrolytic solution from the notch, a layered body is obtained by covering portions other than the lead-out portion of the connection electrode with a resin (not shown).
  • the shape, size and arrangement of the notches are not particularly limited, and can be determined in consideration of the injection efficiency of the electrolytic solution and the adhesion reliability of the insulating resin.
  • FIG. 7A is a perspective view showing an example of an anode foil unit
  • FIG. 7B is a cross-sectional view taken along line AA of the anode foil unit shown in FIG. 7A
  • the anode foil unit 1 has a cross-sectional structure as shown in FIG. 7B, and is centered on an anode foil 10 including a valve metal base 11 and a dielectric layer 12 formed on both surfaces of the valve metal base.
  • the solid electrolyte layer 13 is provided on the surface of the dielectric layer 12.
  • FIG. 7A illustration of the valve action metal substrate 11, the dielectric layer 12, and the solid electrolyte layer 13 is omitted, and the anode foil 10 is shown.
  • the separator 30 is arrange
  • the solid electrolyte layer 13 on the anode foil 10 is not essential, and may be omitted as in the embodiments described later.
  • a porous layer (not shown in FIG. 7B) is formed on both surfaces of the valve metal base 11, and a dielectric layer 12 is provided on the surface of the porous layer. It is more preferable.
  • an insulating resin 14 is provided around the separator 30. Edges 30S1 and 30S2 of the separator 30 are covered with insulating resins 14S1 and 14S2, respectively. A part of the edge 30S3 of the separator 30 is covered with an insulating resin 14S3 having a periodic shape. As a periodic shape, the insulating resin 14S3 has notches 15 at regular intervals and has a comb-like structure. As a result, a part of the separator 30 is exposed in a periodic arrangement on the side surface of the laminate. One such anode foil unit may be included in the laminate, or a plurality of anode foil units may be included. Further, the notches may be arranged at indefinite intervals. A part of the edge 30S4 of the separator 30 is similarly covered with a periodic insulating resin 14S4.
  • the anode foil 10 is exposed on the right side of the first side surface side 10S1, so that the anode foil 10 can be pulled out. Further, a sealing material 54 is provided in a columnar shape on a part of the right side of the first side surface 10S1. On the other hand, the anode foil 10 is covered with the sealing material 54 on the left side of the first side surface 10S1.
  • the cross-sectional view shown in FIG. 7B shows a state where the edge 30S3 of the separator 30 is not covered with the insulating resin 14S3 and the edge 30S4 of the separator 30 is covered with the insulating resin 14S4. .
  • a part of the insulating resin 14S1 and 14S2 covering the separator edges 30S1 and 30S2 is provided with a notch 15 so that a part of the separator edge 30S1 or 30S2 is exposed on the side surface of the laminate. Also good. Moreover, what is necessary is just to expose the edge of a separator in any one side surface of a laminated body by providing a notch in a part of insulating resin which covers the edge of a separator.
  • FIG. 8A is a perspective view showing an example of the cathode foil unit
  • FIG. 8B is a cross-sectional view taken along the line BB of the cathode foil unit shown in FIG. 8A.
  • the cathode foil unit 2 has a cross-sectional structure as shown in FIG. 8B, and solid electrolyte layers 23 are provided on both surfaces of the cathode foil 20 with the cathode foil 20 as the center.
  • the separator 40 is arrange
  • the solid electrolyte layer 23 on the cathode foil 20 is not essential, and may be omitted as in the embodiments described later.
  • an insulating resin 24 is provided around the separator 40.
  • the edges 40S1 and 40S2 of the separator 40 are covered with insulating resins 24S1 and 24S2, respectively.
  • a part of the edge 40S3 of the separator 40 is covered with an insulating resin 24S3 having a periodic shape.
  • the insulating resin 24S3 has a notch 25 at regular intervals and has a comb-like structure.
  • a part of the separator 40 is exposed in a periodic arrangement on the side surface of the laminate.
  • One such cathode foil unit may be included in the laminate, or a plurality of cathode foil units may be included. Further, the notches may be arranged at indefinite intervals.
  • a part of the edge 40S4 of the separator 40 is similarly covered with the insulating resin 24S4.
  • the cathode foil 20 is exposed on the left side of the first side surface 20S1 so that the cathode foil 20 can be pulled out. Further, a sealing material 54 is provided in a columnar shape on a part of the left side of the first side surface side 20S1. On the other hand, the cathode foil 20 is covered with a sealing material 54 on the right side of the first side face 20S1.
  • the cross-sectional view shown in FIG. 8B shows a state where the edge 40S3 of the separator 40 is not covered with the insulating resin 24S3 and the edge 40S4 of the separator 40 is covered with the insulating resin 24S4. .
  • a part of the insulating resin 24S1, 24S2 covering the separator edges 40S1, 40S2 is provided with a notch 25 so that a part of the separator edge 40S1, 40S2 is exposed on the side surface of the laminate. Also good. Moreover, what is necessary is just to expose the edge of a separator in any one side surface of a laminated body by providing a notch in a part of insulating resin which covers the edge of a separator.
  • separator what consists of paper, a nonwoven fabric, a porous film etc. can be used, for example.
  • the material constituting the separator include cellulose, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, nylon, aromatic polyamide, polyimide, polyamideimide, polyetherimide, rayon, and glass.
  • the thickness of the separator is preferably 5 ⁇ m or more, and preferably 100 ⁇ m or less. ESR can be reduced by reducing the thickness of the separator. As shown in FIGS. 7A and 8A, when a separator is provided on each of the anode foil and the cathode foil, the separator and the separator provided on the anode foil and the cathode foil have the same material and thickness. Or may be different.
  • the anode foil and the cathode foil are made of a valve metal that exhibits a so-called valve action.
  • the valve action metal include simple metals such as aluminum, tantalum, niobium, titanium, and zirconium, and alloys containing these metals. Among these, aluminum or tantalum is preferable.
  • the valve action metal constituting the cathode foil is preferably the same as the valve action metal constituting the anode foil, but may be different.
  • the anode foil is preferably a single metal of aluminum.
  • the dielectric layer formed on the surface of the anode foil is preferably made of an oxide film of the valve action metal.
  • a dielectric layer made of an oxide film can be formed by anodizing the surface of the aluminum foil in an aqueous solution containing ammonium adipate or the like.
  • the surface of the cathode foil is preferably roughened by etching or the like to be porous.
  • a very thin dielectric layer may be formed on the surface of the cathode foil as compared with the dielectric layer formed on the surface of the anode foil.
  • the material constituting the solid electrolyte layer examples include conductive polymers such as polypyrroles, polythiophenes, and polyanilines. Among these, polythiophenes are preferable, and poly (3,4-ethylenedioxythiophene) called PEDOT is particularly preferable.
  • the conductive polymer may contain a dopant such as polystyrene sulfonic acid (PSS).
  • PSS polystyrene sulfonic acid
  • the solid electrolyte layer preferably includes an inner layer that fills the pores (recesses) of the dielectric layer and an outer layer that covers the dielectric layer.
  • the insulating resin examples include polyphenylsulfone resin, polyethersulfone resin, cyanate ester resin, fluororesin (tetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, etc.), soluble polyimide siloxane and epoxy resin. Insulating resins such as compositions, polyimide resins, polyamideimide resins, and derivatives or precursors thereof.
  • the sealing material a resin is used, and a filler is included as necessary.
  • the resin contained in the sealing material include an epoxy resin and a phenol resin.
  • a filler contained in a sealing material a silica particle, an alumina particle, a metal particle etc. are mentioned, for example.
  • the electrolyte to be injected into the separator is obtained by dissolving an acid or base electrolyte in a solvent.
  • the solvent include glycols such as ethylene glycol (C 2 H 6 O 2 ), lactones such as ⁇ -butyrolactone (C 4 H 6 O 2 ), and sulfones such as sulfolane (C 4 H 8 O 2 S).
  • the acid for the electrolyte include aliphatic carboxylic acids such as adipic acid (C 6 H 10 O 4 ) and aromatic carboxylic acids such as phthalic acid (C 8 H 6 O 2 ).
  • the electrolyte base include amines such as ammonia (NH 3 ) and triethylamine (C 6 H 15 N), and amidines such as tetramethylimidazolinium (C 7 H 15 N 2 ).
  • Examples of the resin covering the laminate include an epoxy resin and a phenol resin.
  • FIG. 9A is a cross-sectional view schematically showing a capacitor element in which the anode unit 1 and the cathode unit 2 are stacked.
  • An anode foil 10 having a dielectric layer 12 on the porous surface of the valve action metal substrate 11, a cathode foil 20 facing the anode foil 10, a separator 30 disposed between the anode foil 10 and the cathode foil 20, 40 constitutes the capacitor element 5.
  • the separator 30 is disposed between the anode foil 10 and the cathode foil 20.
  • the capacitor element in which the anode unit 1 is stacked on the cathode unit 2.
  • the separator 40 is disposed between the cathode foil 20 and the anode foil 10.
  • FIG. 9B is a perspective view schematically showing an example of a laminated body in which connection electrodes are formed on the side surfaces of the laminated body including the capacitor element shown in FIG.
  • FIG. 9B shows a state in which the anode connection electrode 310 and the cathode connection electrode 320 are formed on the first side face S101 of the multilayer body 100 in which the capacitor elements are laminated.
  • the anode connection electrode 310 and the cathode connection electrode 320 will be described.
  • the anode connection electrode 310 is connected to a plurality of anode foil leads drawn out to the side surface of the laminate 100
  • the cathode connection electrode 320 is connected to a plurality of cathode foil leads drawn out to the side surface of the laminate 100.
  • the anode connection electrode 310 and the cathode connection electrode 320 have a first conductive film, a second conductive film, and a third conductive film.
  • the first conductive film is formed of a Zn plating film
  • the second conductive film is formed of a Ni plating film
  • the third conductive film is formed of a Sn plating film.
  • the Pd plating film may be in the first conductive film.
  • the first conductive film is preferably a metal having good connectivity with the anode foil and the cathode foil.
  • the anode foil and the cathode foil are aluminum, it is preferable to use a Zn plating film as the first conductive film.
  • the connection electrode may be a single conductive film or a plurality of conductive films.
  • FIG. 9B illustrates a stacked body in which connection electrodes are formed, but a stacked body in which connection electrodes are not formed may be used.
  • the anode foil and cathode foil lead-out portion and the anode external electrode and cathode external electrode on the surface of the substrate may be joined directly with a conductive adhesive.
  • FIG. 10 is a perspective view schematically showing an example of the anode foil sheet
  • FIG. 11 is a perspective view schematically showing an example of the cathode foil sheet.
  • the anode foil sheet 201 shown in FIG. 10 is provided with a large number of parts to be the anode foil unit 1 shown in FIG. 7A, and a large number of anode foil units are obtained by cutting the anode foil sheet 201 at predetermined positions. be able to.
  • the cathode foil sheet 202 shown in FIG. 11 is provided with many parts to be the cathode foil unit 2 shown in FIG.
  • FIG.10 and FIG.11 the cutting scheduled position of the anode foil sheet 201 and the cathode foil sheet 202 is shown with the dashed-dotted line.
  • the anode foil sheet 201 is provided with a first through hole H1 and a second through hole H2 at a planned cutting position on the side surface from which the anode foil of the anode foil unit 1 is drawn.
  • the cathode foil sheet 202 is provided with a third through hole H3 and a fourth through hole H4 at a planned cutting position on the side surface from which the cathode foil of the cathode foil unit 2 is drawn.
  • the first through hole H1 and the fourth through hole H4 have a long hole shape
  • the second through hole H2 and the third through hole H3 have a substantially round hole shape.
  • Each through hole is formed by, for example, laser processing, etching processing, punching processing, or the like.
  • a laminated sheet is produced.
  • the first through hole H1 and the third through hole H3, and the second through hole H2 and the fourth through hole H4 are communicated with each other in the laminating direction.
  • Lamination is performed by filling the first through hole and the third through hole, and the second through hole and the fourth through hole with the sealing material 54 from at least one main surface side of the obtained laminated sheet.
  • a block body is produced.
  • the manufactured laminated block body is heat-treated.
  • the insulating resin and the sealing material are cured, and the anode foil and the cathode foil are integrated.
  • the heat-treated laminated block body is cut at the scheduled cutting positions of the anode foil sheet 201 and the cathode foil sheet 202 shown in FIGS.
  • the filled sealing material 54 is cut into approximately half so as to be exposed at the first side face S101 of the laminate 100.
  • a laminate 100 as shown in FIG. 5 is obtained.
  • the anode foil 10 is exposed on the right side, and the cathode foil 20 is exposed on the left side.
  • the right side turns into the drawer part of anode foil, and the left side becomes the drawer part of cathode foil.
  • an electrolytic solution is injected into the separators 30 and 40 from the notches 15 and 25.
  • the electrolyte solution can be injected while adjusting the injection amount. For example, the amount of the necessary electrolyte is specified, the total weight of the laminate is obtained, and the electrolyte is injected while measuring the weight of the laminate so that the total weight is obtained. Since the electrolytic solution is injected into the separators 30 and 40 after the heat treatment for curing the insulating resin and the sealing material, the amount of the electrolytic solution in the separator decreases or varies due to the evaporation of the electrolytic solution due to the heat of the heat treatment. None do.
  • connection electrodes are formed on the lead-out portion of the anode foil on the right side toward the first side surface S101 and the lead-out portion on the left side of the cathode foil.
  • connection electrode is obtained by plating a conductive film on the exposed portions of the anode foil and the cathode foil exposed on the side surface of the laminate.
  • it can be performed by the following procedure. First, the oil on the surface of the laminate is removed with an alkali treatment agent. Next, the exposed oxide film of the anode foil and the cathode foil is removed by alkali etching. Next, the smut of the exposed part of anode foil and cathode foil is removed by smut removal treatment. Next, Zn is substituted and deposited by zincate treatment to form a Zn metal film as a first conductive film on the exposed portions of the anode foil and the cathode foil.
  • a Ni metal film is formed as a second conductive film on the first conductive film by Ni plating. Further, an Sn metal film is formed as a third conductive film on the second conductive film by Sn plating.
  • the laminate used for the electrolytic capacitor according to the first embodiment of the present invention is formed by stacking an anode unit and a cathode unit.
  • This laminate has a solid electrolyte layer between the anode foil and the separator and between the cathode foil and the separator. Further, the separator is impregnated with an electrolytic solution and is not filled with a solid electrolyte.
  • electrons are usually exchanged between the anode foil and the cathode foil via the solid electrolyte layer on the anode side, the electrolyte in the separator, and the solid electrolyte layer on the cathode side.
  • the failure mode is an open mode. Therefore, a highly safe electrolytic capacitor can be obtained.
  • a solid electrolyte layer is provided between one of the anode foil and the separator and between the cathode foil and the separator.
  • the form which does not have a solid electrolyte layer is mentioned.
  • the failure mode when the electrolyte solution impregnated in the separator disappears is an open mode, an electrolytic capacitor with high safety is obtained.
  • the electrolytic capacitor of the present embodiment is a multilayer type, the dielectric layer is not easily cracked, and the electrolytic solution can be injected into the separator from the notch, so that the amount of the electrolytic solution in the separator decreases or varies. Therefore, it is possible to suppress a decrease or variation in capacitance.
  • the laminate used for the electrolytic capacitor according to the second embodiment of the present invention is formed by stacking an anode unit and a cathode unit. This laminate does not have a solid electrolyte layer between the anode foil and the separator and between the cathode foil and the separator. Further, the separator is impregnated with an electrolytic solution and is not filled with a solid electrolyte. In the electrolytic capacitor of the second embodiment, electrons are usually exchanged between the anode foil and the cathode foil through only the electrolyte solution in the separator.
  • the failure mode is an open mode. Therefore, a highly safe electrolytic capacitor can be obtained. Since the electrolytic capacitor of the present embodiment is a multilayer type, the dielectric layer is not easily cracked, and the electrolytic solution can be injected into the separator from the notch, so that the amount of the electrolytic solution in the separator decreases or varies. Therefore, it is possible to suppress a decrease or variation in capacitance.
  • the laminate used for the electrolytic capacitor according to the third embodiment of the present invention is formed by stacking an anode unit and a cathode unit. This laminate does not have a solid electrolyte layer between the anode foil and the separator and between the cathode foil and the separator.
  • the separator is filled with a solid electrolyte containing a conductive polymer, but is not impregnated with an electrolytic solution. Filling the separator with the solid electrolyte is performed by immersing the separator in a dispersion in which conductive polymer particles and a solvent are mixed, then drying the separator to evaporate the solvent, and the separator contains the conductive polymer. Can be carried out by filling.
  • the separator is filled with the solid electrolyte before the separator is placed on the anode foil or the cathode foil.
  • the electrolytic capacitor of the third embodiment electrons are usually exchanged between the anode foil and the cathode foil only through the solid electrolyte filled in the separator. Since the electrolytic capacitor of this embodiment is a multilayer type, it is difficult for the dielectric layer to crack.
  • the laminate used for the electrolytic capacitor according to the fourth embodiment of the present invention is formed by stacking an anode unit and a cathode unit. This laminate does not have a solid electrolyte layer between the anode foil and the separator and between the cathode foil and the separator.
  • the separator is filled with a solid electrolyte containing a conductive polymer and impregnated with an electrolytic solution. Filling the separator with the solid electrolyte is performed by the same method as in the third embodiment. In the present embodiment, the separator is filled with a solid electrolyte containing a conductive polymer, and the separator is impregnated with an electrolytic solution.
  • the electrolytic capacitor of the fourth embodiment electrons are usually exchanged between the anode foil and the cathode foil via the solid electrolyte filled in the separator and the electrolyte in the separator. Since the electrolytic capacitor of the present embodiment is a multilayer type, the dielectric layer is not easily cracked, and the electrolytic solution can be injected into the separator from the notch, so that the amount of the electrolytic solution in the separator decreases or varies. Therefore, it is possible to suppress a decrease or variation in capacitance.
  • the laminate used for the electrolytic capacitor according to the fifth embodiment of the present invention is formed by stacking an anode unit and a cathode unit.
  • This laminate has a solid electrolyte layer between the anode foil and the separator and between the cathode foil and the separator.
  • the separator is filled with a solid electrolyte containing a conductive polymer and impregnated with an electrolytic solution. Filling the separator with the solid electrolyte is performed by the same method as in the third embodiment.
  • the electrolytic capacitor of the fifth embodiment normally transfers electrons between the anode foil and the cathode foil via the solid electrolyte layer on the anode side—the electrolyte in the separator and the solid electrolyte in the separator—the solid electrolyte layer on the cathode side. Is done. Since the electrolytic capacitor of the present embodiment is a multilayer type, the dielectric layer is not easily cracked, and the electrolytic solution can be injected into the separator from the notch, so that the amount of the electrolytic solution in the separator decreases or varies. Therefore, it is possible to suppress a decrease or variation in capacitance.
  • the laminate used for the electrolytic capacitor according to the sixth embodiment of the present invention is formed by stacking an anode unit and a cathode unit.
  • This laminate has a solid electrolyte layer between the anode foil and the separator and between the cathode foil and the separator.
  • the separator is filled with a solid electrolyte containing a conductive polymer, but is not impregnated with an electrolytic solution. Filling the separator with the solid electrolyte is performed by the same method as in the third embodiment.
  • electrolytic capacitor of the sixth embodiment electrons are usually exchanged between the anode foil and the cathode foil via the solid electrolyte layer on the anode side-the solid electrolyte in the separator-the solid electrolyte layer on the cathode side. Since the electrolytic capacitor of this embodiment is a multilayer type, it is difficult for the dielectric layer to crack.
  • the electrolytic capacitor of the present invention described so far is a surface mountable electrolytic capacitor. That is, the electrolytic capacitor of the present invention includes an electrolytic capacitor having the following characteristics.
  • the backside external electrode is exposed as a flat electrode on the outer peripheral surface of the electrolytic capacitor, so that the electrolytic capacitor can be mounted by surface mounting using the backside external electrode.
  • an anode foil having a dielectric layer on the surface; A cathode foil facing the anode foil; An electrolytic capacitor comprising a laminate including at least one capacitor element having a separator impregnated with an electrolytic solution or filled with a solid electrolyte between the anode foil and the cathode foil, A substrate having a front surface anode external electrode and a front surface cathode external electrode as a front surface external electrode on one surface, and a back surface anode external electrode and a back surface cathode external electrode as a back surface external electrode on the other surface facing the one surface, respectively.
  • the anode foil and the cathode foil are drawn out to the first side surface of the laminate,
  • the anode foil is connected to an anode external electrode on the surface of the substrate;
  • the cathode foil is connected to a cathode external electrode on the surface of the substrate;
  • the case is characterized in that the case accommodates the laminated body and is bonded to the substrate.
  • the laminate has an anode connection electrode connected to the anode foil and a cathode connection electrode connected to the cathode foil on the first side surface,
  • connection between the anode connection electrode and the anode external electrode on the surface of the substrate and the connection between the cathode connection electrode and the cathode external electrode on the surface of the substrate are performed by soldering.
  • the electrolytic capacitor according to any one of [1] to [7].
  • connection between the anode connection electrode and the anode external electrode on the surface of the substrate and the connection between the cathode connection electrode and the cathode external electrode on the surface of the substrate are performed through a conductive adhesive.
  • the electrolytic capacitor as described in any one of [1] to [7] above.
  • connection between the anode foil and the anode external electrode on the surface of the substrate and the connection between the cathode foil and the cathode external electrode on the surface of the substrate are made through a conductive adhesive.

Abstract

Provided is an electrolytic capacitor characterized by comprising a laminate including at least one capacitor element having: anode foil having a dielectric layer on a surface thereof; cathode foil opposed to the anode foil; and a separator which is provided between the anode foil and the cathode foil and in which an electrolyte is immersed or a solid electrolyte is filled, and characterized in that, when a surface of the laminate located in a laminating direction is a principal surface, an extraction surface of the anode foil and the cathode foil are a first side surface, a surface opposed to the first side surface is a second side surface, and surfaces orthogonal to the first side surface and the principal surface are a third side surface and a fourth side surface, edges of the separator located on the first to fourth side surfaces are covered with insulating resin, and at least one of the first to fourth side surfaces of the insulating resin has a cutout.

Description

電解コンデンサElectrolytic capacitor
本発明は、電解コンデンサに関する。 The present invention relates to an electrolytic capacitor.
特許文献1には、巻回型の電解コンデンサが開示されている。この電解コンデンサは電解質として固体電解質と電解液を使用している。
固体電解質を使用しているのでESRを低くすることができ、電解液を使用するので漏れ電流が少ないという特性を有している。
Patent Document 1 discloses a wound electrolytic capacitor. This electrolytic capacitor uses a solid electrolyte and an electrolyte as an electrolyte.
Since the solid electrolyte is used, the ESR can be lowered, and since the electrolyte is used, the leakage current is small.
特許文献2には、積層型の電解コンデンサが開示されている。この電解コンデンサは電解質として固体電解質を使用している。
固体電解質を使用しているのでESRを低くすることができるという特性を有している。
Patent Document 2 discloses a multilayer electrolytic capacitor. This electrolytic capacitor uses a solid electrolyte as an electrolyte.
Since a solid electrolyte is used, ESR can be lowered.
特開2008-10657号公報JP 2008-10657 A 特開2009-135431号公報JP 2009-135431 A
特許文献1に記載の電解コンデンサは、固体電解質を使っているからESRが低く、電解液を使っているから漏れ電流が少ないという特性を有しているが、巻回型であるために誘電体層にストレスがかかりひびが入りやすく、このひびに起因する漏れ電流が生じるという問題があった。
一方、特許文献2に記載の電解コンデンサは、積層型であるから誘電体層にストレスがかからないためひびは入りにくい。しかし、電解質として固体電解質を使用していることから漏れ電流が大きくなるという問題があった。
The electrolytic capacitor described in Patent Document 1 has characteristics such as low ESR because it uses a solid electrolyte and low leakage current because it uses an electrolytic solution. There was a problem that the layer was stressed and easily cracked, resulting in a leakage current caused by the crack.
On the other hand, since the electrolytic capacitor described in Patent Document 2 is a multilayer type, no stress is applied to the dielectric layer, so that it is difficult to crack. However, since a solid electrolyte is used as the electrolyte, there is a problem that the leakage current increases.
このようなことから、誘電体層にひびが入りにくく、漏れ電流の小さい電解コンデンサを得るためには積層型であり電解液を使った電解コンデンサとすることが考えられる。
そこで積層型の電解コンデンサにおいて電解質として電解液を使うことを試みた。
具体的には、予め電解液に浸したセパレータを作製し、積層型の電解コンデンサの製造時にこのセパレータを積む工程を経ることによる電解コンデンサの製造を試みた。
しかしながら、この方法では、製造過程で電解液が蒸発するため、セパレータ中の電解液の量にばらつきが生じ、その結果、静電容量の低下や静電容量のばらつきが生じることがあった。
For this reason, in order to obtain an electrolytic capacitor that is difficult to crack in the dielectric layer and has a small leakage current, it is conceivable to use a multilayer electrolytic capacitor using an electrolytic solution.
Therefore, an attempt was made to use an electrolytic solution as an electrolyte in a multilayer electrolytic capacitor.
Specifically, an attempt was made to manufacture an electrolytic capacitor by manufacturing a separator previously immersed in an electrolytic solution and passing through the step of stacking the separator during the manufacture of a multilayer electrolytic capacitor.
However, in this method, since the electrolytic solution evaporates during the manufacturing process, the amount of the electrolytic solution in the separator varies, and as a result, the capacitance may decrease and the capacitance may vary.
上記のような課題を踏まえ、本発明は、積層型であり、電解質として電解液を使用可能であって、電解コンデンサの静電容量の低下や静電容量のばらつきが抑えられる電解コンデンサの構造を提供することを目的とする。 In light of the above-described problems, the present invention is a multilayer type, and it is possible to use an electrolytic solution as an electrolyte, and to provide a structure of an electrolytic capacitor that can suppress a decrease in capacitance of the electrolytic capacitor and variations in capacitance. The purpose is to provide.
本発明の電解コンデンサは、表面に誘電体層を有する陽極箔と、前記陽極箔と対向する陰極箔と、前記陽極箔と前記陰極箔との間に電解液が含浸または固体電解質が充填されたセパレータとを有する少なくとも1つのコンデンサ素子を含む積層体を備える電解コンデンサであって、
前記積層体の積層方向に位置する面を主面、前記陽極箔及び前記陰極箔の引出面を第1の側面とし、
前記第1の側面と対向する面を第2の側面、
前記第1の側面及び主面と直交する面を第3の側面及び第4の側面とし、
前記セパレータの前記第1乃至第4の側面側に位置する端縁は絶縁樹脂で覆われており、かつ、前記絶縁樹脂の前記第1乃至第4の側面の少なくとも1つには切り欠きを有することを特徴とする。
The electrolytic capacitor of the present invention comprises an anode foil having a dielectric layer on the surface, a cathode foil facing the anode foil, and an electrolyte solution impregnated or filled with a solid electrolyte between the anode foil and the cathode foil. An electrolytic capacitor comprising a laminate including at least one capacitor element having a separator,
The surface located in the stacking direction of the laminate is a main surface, the lead-out surface of the anode foil and the cathode foil is a first side surface,
A surface facing the first side surface is a second side surface;
A surface perpendicular to the first side surface and the main surface is defined as a third side surface and a fourth side surface,
An edge located on the first to fourth side surfaces of the separator is covered with an insulating resin, and at least one of the first to fourth side surfaces of the insulating resin has a notch. It is characterized by that.
本発明によれば、積層型であり、電解質として電解液を使用可能であって、電解コンデンサの静電容量の低下や静電容量のばらつきが抑えられる電解コンデンサの構造を提供することができる。 According to the present invention, it is possible to provide a structure of an electrolytic capacitor that is a multilayer type, can use an electrolytic solution as an electrolyte, and can suppress a decrease in capacitance of the electrolytic capacitor and variations in capacitance.
図1は、基板、積層体及びケースを組み合わせる前の様子を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a state before a substrate, a laminate, and a case are combined. 図2は、積層体を実装する基板の一例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an example of a substrate on which the laminate is mounted. 図3は、基板に積層体を実装した状態を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing a state in which the laminate is mounted on the substrate. 図4は、基板に積層体を実装したのちにケースを被せた状態を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a state in which the case is covered after the laminated body is mounted on the substrate. 図5は、コンデンサ素子が複数積層された積層体の一例を模式的に示す斜視図である。FIG. 5 is a perspective view schematically showing an example of a laminated body in which a plurality of capacitor elements are laminated. 図6は、図5に示す積層体の第3の側面の一部を拡大して示す斜視図である。6 is an enlarged perspective view showing a part of the third side surface of the laminate shown in FIG. 図7(a)は、陽極箔ユニットの一例を示す斜視図であり、図7(b)は図7(a)に示す陽極箔ユニットのA-A線断面図である。FIG. 7A is a perspective view showing an example of an anode foil unit, and FIG. 7B is a cross-sectional view taken along line AA of the anode foil unit shown in FIG. 7A. 図8(a)は、陰極箔ユニットの一例を示す斜視図であり、図8(b)は図8(a)に示す陰極箔ユニットのB-B線断面図である。FIG. 8A is a perspective view showing an example of the cathode foil unit, and FIG. 8B is a cross-sectional view taken along the line BB of the cathode foil unit shown in FIG. 8A. 図9(a)は、陽極ユニットと陰極ユニットを積み重ねてなるコンデンサ素子を模式的に示す断面図であり、図9(b)は、図9(a)に示すコンデンサ素子を含む積層体の側面に接続電極を形成した積層体の一例を模式的に示す斜視図である。FIG. 9A is a cross-sectional view schematically showing a capacitor element in which an anode unit and a cathode unit are stacked, and FIG. 9B is a side view of a multilayer body including the capacitor element shown in FIG. It is a perspective view which shows typically an example of the laminated body which formed the connection electrode in. 図10は、陽極箔シートの一例を模式的に示す斜視図である。FIG. 10 is a perspective view schematically showing an example of an anode foil sheet. 図11は、陰極箔シートの一例を模式的に示す斜視図である。FIG. 11 is a perspective view schematically showing an example of the cathode foil sheet.
以下、本発明の電解コンデンサについて説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の望ましい構成を2つ以上組み合わせたものもまた本発明である。
Hereinafter, the electrolytic capacitor of the present invention will be described.
However, the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention. A combination of two or more desirable configurations of the present invention described below is also the present invention.
以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。 Each embodiment shown below is an illustration, and it cannot be overemphasized that a partial substitution or combination of composition shown in a different embodiment is possible.
本発明の電解コンデンサは、表面に誘電体層を有する陽極箔と、前記陽極箔と対向する陰極箔と、前記陽極箔と前記陰極箔との間に電解液が含浸または固体電解質が充填されたセパレータとを有する少なくとも1つのコンデンサ素子を含む積層体を備える電解コンデンサであって、前記積層体の積層方向に位置する面を主面、前記陽極箔及び前記陰極箔の引出面を第1の側面とし、前記第1の側面と対向する面を第2の側面、前記第1の側面及び主面と直交する面を第3の側面及び第4の側面とし、前記セパレータの前記第1乃至第4の側面側に位置する端縁は絶縁樹脂で覆われており、かつ、前記絶縁樹脂の前記第1乃至第4の側面の少なくとも1つには切り欠きを有することを特徴とする。 The electrolytic capacitor of the present invention comprises an anode foil having a dielectric layer on the surface, a cathode foil facing the anode foil, and an electrolyte solution impregnated or filled with a solid electrolyte between the anode foil and the cathode foil. An electrolytic capacitor comprising a multilayer body including at least one capacitor element having a separator, wherein a surface located in a stacking direction of the multilayer body is a main surface, and lead-out surfaces of the anode foil and the cathode foil are first side surfaces. The first side surface of the separator is the first side surface of the separator. The second side surface is the surface facing the first side surface, the third side surface and the fourth side surface are orthogonal to the first side surface and the main surface. An edge located on the side surface of the insulating resin is covered with an insulating resin, and at least one of the first to fourth side surfaces of the insulating resin has a notch.
本発明の電解コンデンサは、表面に誘電体層を有する陽極箔と、上記陽極箔と対向する陰極箔とを積み重ねた積層型の電解コンデンサであるため、陽極箔及び陰極箔にストレスがかかりにくい。 Since the electrolytic capacitor of the present invention is a multilayer electrolytic capacitor in which an anode foil having a dielectric layer on the surface and a cathode foil opposite to the anode foil are stacked, stress is not easily applied to the anode foil and the cathode foil.
本発明の電解コンデンサで用いられるコンデンサ素子は、陽極箔と陰極箔との間にセパレータが配置され、セパレータの積層体の側面側に位置する端縁を覆う絶縁樹脂に切り欠きを有する。この切り欠きからセパレータに電解液を注入し、電解液の量を精度よくコントロールすることができるため、電解コンデンサの静電容量の低下や静電容量のばらつきが抑えられる。
また、セパレータとして予め電解液を浸みこませた状態のものを積層し、積層後にさらに切り欠きからセパレータに電解液を注入する製造方法により電解コンデンサの製造を行うこともできる。
In the capacitor element used in the electrolytic capacitor of the present invention, a separator is disposed between the anode foil and the cathode foil, and the insulating resin covering the edge located on the side surface side of the separator laminate has a notch. Since the electrolytic solution can be injected into the separator from this notch and the amount of the electrolytic solution can be accurately controlled, a decrease in the capacitance of the electrolytic capacitor and a variation in the capacitance can be suppressed.
Alternatively, an electrolytic capacitor can be manufactured by a manufacturing method in which a separator in which an electrolytic solution is preliminarily immersed is laminated, and the electrolytic solution is injected into the separator through a notch after the lamination.
このように、本発明の電解コンデンサは、積層型の電解コンデンサであり、切り欠きからセパレータに電解液を注入することができる電解コンデンサであるが、その具体的な例としての実施形態について、以下に説明する。 As described above, the electrolytic capacitor of the present invention is a multilayer electrolytic capacitor, and is an electrolytic capacitor capable of injecting an electrolytic solution into a separator from a notch. Explained.
はじめに、各実施形態の電解コンデンサにおける基本構成を説明する。
本発明の電解コンデンサは、コンデンサ素子を含む積層体と基板とケースとから成る。
この電解コンデンサでは、積層体の電極と基板の電極が接合され、積層体を収容する形でケースと基板が接合されている。
電解コンデンサの全体構造について、図1から図4を参照して説明する。
First, the basic configuration of the electrolytic capacitor of each embodiment will be described.
The electrolytic capacitor of the present invention includes a laminate including a capacitor element, a substrate, and a case.
In this electrolytic capacitor, the electrode of the laminate and the electrode of the substrate are joined, and the case and the substrate are joined so as to accommodate the laminate.
The overall structure of the electrolytic capacitor will be described with reference to FIGS.
図1は、基板、積層体及びケースを組み合わせる前の様子を模式的に示す斜視図である。
図2は、積層体を実装する基板の一例を模式的に示す斜視図である。
図3は、基板に積層体を実装した状態を模式的に示す斜視図である。
図4は、基板に積層体を実装したのちにケースを被せた状態を模式的に示す斜視図である。
FIG. 1 is a perspective view schematically showing a state before a substrate, a laminate, and a case are combined.
FIG. 2 is a perspective view schematically showing an example of a substrate on which the laminate is mounted.
FIG. 3 is a perspective view schematically showing a state in which the laminate is mounted on the substrate.
FIG. 4 is a perspective view schematically showing a state in which the case is covered after the laminated body is mounted on the substrate.
図1には、基板400、積層体100及びケース500を組み合わせる前の様子を示している。まず、ケース500と基板400について、並びに、基板400、積層体100及びケース500を組み合わせた全体構造について説明する。
積層体100の構造の詳細な説明は後述する。
FIG. 1 shows a state before the substrate 400, the laminate 100, and the case 500 are combined. First, the case 500 and the substrate 400 and the overall structure in which the substrate 400, the laminate 100, and the case 500 are combined will be described.
A detailed description of the structure of the laminate 100 will be described later.
図1には、積層体100を収容し、基板400とともに積層体100を封止するためのケース500を示している。ケースは箱型で樹脂からなる。ケースの材質としては、金属製やセラミック製を使用することもできる。封止方法はシール材を用いて、基板とケースを接合する。金属製のケースを使う場合は、溶接を用いて封止することもできる。 FIG. 1 shows a case 500 for housing the laminate 100 and sealing the laminate 100 together with the substrate 400. The case is box-shaped and made of resin. As the material of the case, metal or ceramic can be used. The sealing method uses a sealing material to join the substrate and the case. When using a metal case, it can also be sealed using welding.
図2には、積層体100を実装し、外部回路と接続するための基板400を示している。
基板400は両面に導体が形成された基板であり、絶縁基板430の表面(図で見えている面)に表面外部電極としての陽極外部電極410及び陰極外部電極420が形成されている。
絶縁基板430の表面と対向する絶縁基板430の裏面(図で見えていない面)には外部回路に接続される裏面外部電極としての陽極外部電極および陰極外部電極が形成されている。
FIG. 2 shows a substrate 400 on which the stacked body 100 is mounted and connected to an external circuit.
The substrate 400 is a substrate in which conductors are formed on both surfaces, and an anode external electrode 410 and a cathode external electrode 420 as surface external electrodes are formed on the surface of the insulating substrate 430 (surface visible in the figure).
An anode external electrode and a cathode external electrode as back external electrodes connected to an external circuit are formed on the back surface (surface not shown in the figure) of the insulating substrate 430 facing the surface of the insulating substrate 430.
基板400の表面に形成されている陽極外部電極と裏面に形成されている陽極外部電極は複数の接続導体411によって導通されている。基板400の表面に形成されている陰極外部電極と裏面に形成されている陰極外部電極は複数の接続導体421によって導通されている。基板400の裏面には外部電極が形成されているので、この裏面外部電極を使用して回路基板との接続を行うことができる。
また、変形例として基板側面に電極を形成し、これを介して表面外部電極と裏面外部電極の導通を取ってもよい。
The anode external electrode formed on the front surface of the substrate 400 and the anode external electrode formed on the back surface are electrically connected by a plurality of connection conductors 411. The cathode external electrode formed on the front surface of the substrate 400 and the cathode external electrode formed on the back surface are electrically connected by a plurality of connection conductors 421. Since an external electrode is formed on the back surface of the substrate 400, the back surface external electrode can be used to connect to the circuit board.
Further, as a modification, an electrode may be formed on the side surface of the substrate, and conduction between the front surface external electrode and the back surface external electrode may be established through the electrode.
図3には、基板400の上に積層体100を実装した状態を示している。
基板400の表面の陽極外部電極410と積層体100の陽極接続電極が半田づけで接続され、かつ、基板400の表面の陰極外部電極420と積層体100の陰極接続電極が半田づけで接続され、対応する面を向かい合わせている。
また、ほかの接合方法として導電性接着剤を用いて接合させることもできる。また、接続電極を形成せずに、陽極箔および陰極箔の引出部と基板の表面外部電極との接合を、直接、導電性接着剤により行ってもよい。
FIG. 3 shows a state in which the stacked body 100 is mounted on the substrate 400.
The anode external electrode 410 on the surface of the substrate 400 and the anode connection electrode of the laminate 100 are connected by soldering, and the cathode external electrode 420 on the surface of the substrate 400 and the cathode connection electrode of the laminate 100 are connected by soldering. The corresponding surfaces are facing each other.
Moreover, it can also join using a conductive adhesive as another joining method. Further, without forming the connection electrode, the anode foil and the cathode foil lead-out portion and the surface external electrode of the substrate may be joined directly with the conductive adhesive.
図1および図3に示す基板400には、基板400の周囲に樹脂製のシール材440が形成されている。シール材は熱可塑性樹脂からなる。
積層体100は接続電極が下向きに載置されており、積層体の接続電極と基板の表面外部電極が向かい合う位置になる。
In the substrate 400 shown in FIGS. 1 and 3, a resin sealing material 440 is formed around the substrate 400. The sealing material is made of a thermoplastic resin.
In the laminated body 100, the connection electrode is placed downward, and the connection electrode of the laminated body and the surface external electrode of the substrate face each other.
積層体の接続電極と基板の表面外部電極は半田づけにより接合されている。
積層体の接続電極については後で説明するが、陽極接続電極は陽極箔と、陰極接続電極は陰極箔と電気的に接続されている電極である。
The connection electrode of the laminate and the surface external electrode of the substrate are joined by soldering.
The connection electrode of the laminate will be described later. The anode connection electrode is an anode foil, and the cathode connection electrode is an electrode electrically connected to the cathode foil.
図4には基板400に積層体100を実装したのちにケース500を被せた状態を示している。
基板400に実装された積層体100の上にケース500を被せて、基板400の周囲に設けられた熱可塑性樹脂製のシール材440をケース500と基板400の間に挟んで、加熱・冷却することにより、ケース500と基板400を接合して積層体100を封止する。
電解コンデンサの全体構造は上記の通りである。
FIG. 4 shows a state in which the case 500 is covered after the stacked body 100 is mounted on the substrate 400.
A case 500 is placed on the laminate 100 mounted on the substrate 400, and a thermoplastic resin sealing material 440 provided around the substrate 400 is sandwiched between the case 500 and the substrate 400 to be heated and cooled. As a result, the case 500 and the substrate 400 are joined to seal the stacked body 100.
The overall structure of the electrolytic capacitor is as described above.
このような電解コンデンサは、基板の裏面の陽極外部電極および陰極外部電極を使用して面実装をすることができる電解コンデンサとなる。
基板の裏面の陽極外部電極および陰極外部電極は平坦な電極であるので面実装に適している。
Such an electrolytic capacitor is an electrolytic capacitor that can be surface mounted using the anode external electrode and the cathode external electrode on the back surface of the substrate.
Since the anode external electrode and the cathode external electrode on the back surface of the substrate are flat electrodes, they are suitable for surface mounting.
次に、電解コンデンサに用いられる積層体について説明する。
積層体の具体的な実施形態としては後述するいくつかの実施形態があるが、はじめに各実施形態において共通する事項を説明する。
なお、陽極箔及び陰極箔の表面に設けられる固体電解質層の有無については、実施形態ごとに異なるが、下記には陽極箔及び陰極箔の表面に固体電解質層が設けられた例について説明する。
図5は、コンデンサ素子が複数積層された積層体の一例を模式的に示す斜視図である。
積層体100は、積層方向(T方向)において対向する第1の主面M101及び第2の主面M102、陽極箔および陰極箔の電極引出面である第1の側面S101、第1の側面S101と幅方向(W方向)において対向する第2の側面S102、並びに、第1の側面S101および第1の主面M101と直交する長さ方向(L方向)において対向する第3の側面S103及び第4の側面S104を有する。
なお、本明細書における「側面」は積層方向において対向する主面以外の面を意味する。そして、本発明の電解コンデンサに用いられる積層体ではセパレータの積層体の側面側に位置する端縁を覆う絶縁樹脂の少なくとも1つに切り欠きを有している。
Next, the laminated body used for an electrolytic capacitor is demonstrated.
As specific embodiments of the laminated body, there are several embodiments to be described later. First, matters common to the embodiments will be described.
The presence or absence of the solid electrolyte layer provided on the surfaces of the anode foil and the cathode foil differs depending on the embodiment, but an example in which the solid electrolyte layer is provided on the surfaces of the anode foil and the cathode foil will be described below.
FIG. 5 is a perspective view schematically showing an example of a laminated body in which a plurality of capacitor elements are laminated.
The laminated body 100 includes a first main surface M101 and a second main surface M102 that face each other in the stacking direction (T direction), a first side surface S101 that is an electrode extraction surface of the anode foil and the cathode foil, and a first side surface S101. Second side surface S102 facing in the width direction (W direction), and third side surface S103 and the second side surface S103 facing in the length direction (L direction) orthogonal to the first side surface S101 and first main surface M101. It has four side surfaces S104.
In addition, the “side surface” in this specification means a surface other than the main surface facing in the stacking direction. And in the laminated body used for the electrolytic capacitor of this invention, it has a notch in at least 1 of the insulating resin which covers the edge located in the side surface side of the laminated body of a separator.
第1の側面S101には、陽極箔10及び陰極箔20が同一側面に引き出されており、図5において図面左側には陰極引出部、右側には陽極引出部が設けられている。
第1の側面S101において、陽極箔10及び陰極箔20以外の部分は絶縁樹脂14、絶縁樹脂24又は封止材54となっている。封止材54も絶縁性の材料である。
陰極引出部及び陽極引出部には、基板上の外部電極に電気的に接続される接続電極を設けることができる。接続電極の詳細については後述する。
On the first side S101, the anode foil 10 and the cathode foil 20 are drawn on the same side, and in FIG. 5, a cathode lead-out portion is provided on the left side of the drawing and an anode lead-out portion is provided on the right side.
In the first side surface S101, portions other than the anode foil 10 and the cathode foil 20 are the insulating resin 14, the insulating resin 24, or the sealing material 54. The sealing material 54 is also an insulating material.
The cathode lead portion and the anode lead portion can be provided with a connection electrode that is electrically connected to an external electrode on the substrate. Details of the connection electrode will be described later.
図6は、図5に示す積層体の第3の側面の一部を拡大して示す斜視図である。
積層体100の第3の側面S103には、セパレータの端縁を覆う絶縁樹脂14と絶縁樹脂14の一部が切り欠かれた切り欠き15を有している。また、積層体100の第3の側面S103には、セパレータの端縁を覆う絶縁樹脂24と絶縁樹脂24の一部が切り欠かれた切り欠き25を有している。
図6は、絶縁樹脂の切り欠きからセパレータが見える様子を模式的に示している。
6 is an enlarged perspective view showing a part of the third side surface of the laminate shown in FIG.
The third side surface S103 of the laminate 100 has an insulating resin 14 that covers the edge of the separator and a notch 15 in which a part of the insulating resin 14 is cut out. In addition, the third side surface S103 of the laminate 100 includes an insulating resin 24 that covers the edge of the separator and a notch 25 in which a part of the insulating resin 24 is cut out.
FIG. 6 schematically shows a state where the separator can be seen from the notch of the insulating resin.
陽極箔10の上のセパレータ30は、その端縁の一部が絶縁樹脂14で覆われており、絶縁樹脂14の切り欠き15から、その端縁の一部が第3の側面S103に露出している。
陰極箔20の上のセパレータ40は、その端縁の一部が絶縁樹脂24で覆われており、絶縁樹脂24の切り欠き25から、その端縁の一部が第3の側面S103に露出している。
陽極箔10と陰極箔20とがセパレータ30、40を介して積層され、第3の側面S103から絶縁樹脂の切り欠き15、25を通して、各セパレータ30、40の端縁が露出している。
セパレータ30、40と第3の側面S103との間に絶縁樹脂の切り欠き15、25によって、空間が設けられている。よって、切り欠き15、25からセパレータ30、40に電解液を注入することができ、積層後に電解液の量を調整できる。切り欠きから電解液を注入した後、接続電極の引出部以外の部分を樹脂(図示せず)で覆うようにして積層体とする。
なお、切り欠きの形状、寸法及び配置は特に限定されず、電解液の注入効率と絶縁樹脂の接着信頼性を考慮して定めることができる。
The separator 30 on the anode foil 10 is partially covered with the insulating resin 14, and a part of the edge is exposed from the notch 15 of the insulating resin 14 to the third side surface S 103. ing.
The separator 40 on the cathode foil 20 is partially covered with the insulating resin 24, and a part of the edge is exposed from the notch 25 of the insulating resin 24 to the third side surface S 103. ing.
The anode foil 10 and the cathode foil 20 are laminated via the separators 30 and 40, and the edges of the separators 30 and 40 are exposed through the insulating resin notches 15 and 25 from the third side surface S103.
A space is provided between the separators 30 and 40 and the third side surface S103 by the notches 15 and 25 of insulating resin. Therefore, the electrolytic solution can be injected into the separators 30 and 40 from the notches 15 and 25, and the amount of the electrolytic solution can be adjusted after lamination. After injecting the electrolytic solution from the notch, a layered body is obtained by covering portions other than the lead-out portion of the connection electrode with a resin (not shown).
The shape, size and arrangement of the notches are not particularly limited, and can be determined in consideration of the injection efficiency of the electrolytic solution and the adhesion reliability of the insulating resin.
図7(a)は、陽極箔ユニットの一例を示す斜視図であり、図7(b)は図7(a)に示す陽極箔ユニットのA-A線断面図である。
陽極箔ユニット1は、図7(b)に示すような断面構造を有しており、弁作用金属基体11及び弁作用金属基体の両面に形成された誘電体層12を備える陽極箔10を中心にして、誘電体層12の表面に固体電解質層13が設けられている。図7(a)では、弁作用金属基体11、誘電体層12及び固体電解質層13の図示は省略して陽極箔10として示している。
そして、図7(b)の上側に示す固体電解質層13の上にセパレータ30が配置されている。なお、本発明の電解コンデンサの基本構成としては、陽極箔10上の固体電解質層13は必須ではなく、後述する実施形態のように省略してもよい。
なお、弁作用金属基体11の両面には多孔質層(図7(b)で図示していない)が形成されていることが好ましく、多孔質層の表面に誘電体層12が設けられていることがより好ましい。
FIG. 7A is a perspective view showing an example of an anode foil unit, and FIG. 7B is a cross-sectional view taken along line AA of the anode foil unit shown in FIG. 7A.
The anode foil unit 1 has a cross-sectional structure as shown in FIG. 7B, and is centered on an anode foil 10 including a valve metal base 11 and a dielectric layer 12 formed on both surfaces of the valve metal base. Thus, the solid electrolyte layer 13 is provided on the surface of the dielectric layer 12. In FIG. 7A, illustration of the valve action metal substrate 11, the dielectric layer 12, and the solid electrolyte layer 13 is omitted, and the anode foil 10 is shown.
And the separator 30 is arrange | positioned on the solid electrolyte layer 13 shown to the upper side of FIG.7 (b). As a basic configuration of the electrolytic capacitor of the present invention, the solid electrolyte layer 13 on the anode foil 10 is not essential, and may be omitted as in the embodiments described later.
In addition, it is preferable that a porous layer (not shown in FIG. 7B) is formed on both surfaces of the valve metal base 11, and a dielectric layer 12 is provided on the surface of the porous layer. It is more preferable.
図7(a)に示すように、セパレータ30の周囲には絶縁樹脂14が設けられている。
セパレータ30の端縁30S1、30S2は絶縁樹脂14S1、14S2でそれぞれ覆われている。
セパレータ30の端縁30S3は、その一部が周期的な形状の絶縁樹脂14S3で覆われている。周期的な形状として、絶縁樹脂14S3は一定間隔を置いて切り欠き15を有していて櫛歯型の構造となっている。その結果、セパレータ30の一部が積層体の側面において周期的な配置で露出するようになっている。このような陽極箔ユニットは積層体に一つであってもよく、あるいは複数含んでもよい。また、切り欠きは、不定の間隔で配置されていてもよい。
セパレータ30の端縁30S4についても、その一部が周期的な形状の絶縁樹脂14S4で同様に覆われている。
As shown in FIG. 7A, an insulating resin 14 is provided around the separator 30.
Edges 30S1 and 30S2 of the separator 30 are covered with insulating resins 14S1 and 14S2, respectively.
A part of the edge 30S3 of the separator 30 is covered with an insulating resin 14S3 having a periodic shape. As a periodic shape, the insulating resin 14S3 has notches 15 at regular intervals and has a comb-like structure. As a result, a part of the separator 30 is exposed in a periodic arrangement on the side surface of the laminate. One such anode foil unit may be included in the laminate, or a plurality of anode foil units may be included. Further, the notches may be arranged at indefinite intervals.
A part of the edge 30S4 of the separator 30 is similarly covered with a periodic insulating resin 14S4.
陽極箔10は、第1の側面側10S1の右側において露出しており、陽極箔10を引き出すことができるようになっている。また、第1の側面側10S1の右側の一部には封止材54が柱状に設けられている。一方、陽極箔10は第1の側面側10S1の左側において封止材54で覆われている。
図7(b)に示す断面図は、セパレータ30の端縁30S3が絶縁樹脂14S3で覆われておらず、かつ、セパレータ30の端縁30S4が絶縁樹脂14S4で覆われている様子を示している。
なお、セパレータの端縁30S1、30S2をそれぞれ覆う絶縁樹脂14S1、14S2の一部に切り欠き15を設けることにより、セパレータの端縁30S1又は30S2の一部を積層体の側面において露出させるようにしてもよい。
また、セパレータの端縁を覆う絶縁樹脂の一部に切り欠きを設けることで、積層体のいずれか一つの側面にセパレータの端縁を露出させればよい。
The anode foil 10 is exposed on the right side of the first side surface side 10S1, so that the anode foil 10 can be pulled out. Further, a sealing material 54 is provided in a columnar shape on a part of the right side of the first side surface 10S1. On the other hand, the anode foil 10 is covered with the sealing material 54 on the left side of the first side surface 10S1.
The cross-sectional view shown in FIG. 7B shows a state where the edge 30S3 of the separator 30 is not covered with the insulating resin 14S3 and the edge 30S4 of the separator 30 is covered with the insulating resin 14S4. .
It should be noted that a part of the insulating resin 14S1 and 14S2 covering the separator edges 30S1 and 30S2 is provided with a notch 15 so that a part of the separator edge 30S1 or 30S2 is exposed on the side surface of the laminate. Also good.
Moreover, what is necessary is just to expose the edge of a separator in any one side surface of a laminated body by providing a notch in a part of insulating resin which covers the edge of a separator.
図8(a)は、陰極箔ユニットの一例を示す斜視図であり、図8(b)は図8(a)に示す陰極箔ユニットのB-B線断面図である。
陰極箔ユニット2は、図8(b)に示すような断面構造を有しており、陰極箔20を中心にして、陰極箔20の両面に固体電解質層23が設けられている。
そして、図8(b)の上側に示す固体電解質層23の上にセパレータ40が配置されている。なお、本発明の電解コンデンサの基本構成としては、陰極箔20上の固体電解質層23は必須ではなく、後述する実施形態のように省略してもよい。
FIG. 8A is a perspective view showing an example of the cathode foil unit, and FIG. 8B is a cross-sectional view taken along the line BB of the cathode foil unit shown in FIG. 8A.
The cathode foil unit 2 has a cross-sectional structure as shown in FIG. 8B, and solid electrolyte layers 23 are provided on both surfaces of the cathode foil 20 with the cathode foil 20 as the center.
And the separator 40 is arrange | positioned on the solid electrolyte layer 23 shown to the upper side of FIG.8 (b). As a basic configuration of the electrolytic capacitor of the present invention, the solid electrolyte layer 23 on the cathode foil 20 is not essential, and may be omitted as in the embodiments described later.
図8(a)に示すように、セパレータ40の周囲には絶縁樹脂24が設けられている。
セパレータ40の端縁40S1、40S2は絶縁樹脂24S1、24S2でそれぞれ覆われている。
セパレータ40の端縁40S3は、その一部が周期的な形状の絶縁樹脂24S3で覆われている。周期的な形状として、絶縁樹脂24S3は一定間隔を置いて切り欠き25を有していて櫛歯型の構造となっている。その結果、セパレータ40の一部が積層体の側面において周期的な配置で露出するようになっている。このような陰極箔ユニットは積層体に一つであってもよく、あるいは複数含んでもよい。また、切り欠きは、不定の間隔で配置されていてもよい。
セパレータ40の端縁40S4についても、その一部が絶縁樹脂24S4で同様に覆われている。
As shown in FIG. 8A, an insulating resin 24 is provided around the separator 40.
The edges 40S1 and 40S2 of the separator 40 are covered with insulating resins 24S1 and 24S2, respectively.
A part of the edge 40S3 of the separator 40 is covered with an insulating resin 24S3 having a periodic shape. As a periodic shape, the insulating resin 24S3 has a notch 25 at regular intervals and has a comb-like structure. As a result, a part of the separator 40 is exposed in a periodic arrangement on the side surface of the laminate. One such cathode foil unit may be included in the laminate, or a plurality of cathode foil units may be included. Further, the notches may be arranged at indefinite intervals.
A part of the edge 40S4 of the separator 40 is similarly covered with the insulating resin 24S4.
陰極箔20は、第1の側面側20S1の左側において露出しており、陰極箔20を引き出すことができるようになっている。また、第1の側面側20S1の左側の一部には封止材54が柱状に設けられている。一方、陰極箔20は第1の側面側20S1の右側において封止材54で覆われている。
図8(b)に示す断面図は、セパレータ40の端縁40S3が絶縁樹脂24S3で覆われておらず、かつ、セパレータ40の端縁40S4が絶縁樹脂24S4で覆われている様子を示している。
なお、セパレータの端縁40S1、40S2をそれぞれ覆う絶縁樹脂24S1、24S2の一部に切り欠き25を設けることにより、セパレータの端縁40S1又は40S2の一部を積層体の側面において露出させるようにしてもよい。
また、セパレータの端縁を覆う絶縁樹脂の一部に切り欠きを設けることで、積層体のいずれか一つの側面にセパレータの端縁を露出させればよい。
The cathode foil 20 is exposed on the left side of the first side surface 20S1 so that the cathode foil 20 can be pulled out. Further, a sealing material 54 is provided in a columnar shape on a part of the left side of the first side surface side 20S1. On the other hand, the cathode foil 20 is covered with a sealing material 54 on the right side of the first side face 20S1.
The cross-sectional view shown in FIG. 8B shows a state where the edge 40S3 of the separator 40 is not covered with the insulating resin 24S3 and the edge 40S4 of the separator 40 is covered with the insulating resin 24S4. .
A part of the insulating resin 24S1, 24S2 covering the separator edges 40S1, 40S2 is provided with a notch 25 so that a part of the separator edge 40S1, 40S2 is exposed on the side surface of the laminate. Also good.
Moreover, what is necessary is just to expose the edge of a separator in any one side surface of a laminated body by providing a notch in a part of insulating resin which covers the edge of a separator.
セパレータとしては、例えば、紙、不織布、多孔フィルム等からなるものを使用することができる。セパレータを構成する材料としては、例えば、セルロース、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ナイロン、芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、レーヨン、ガラス等が挙げられる。
セパレータの厚さは、5μm以上であることが好ましく、100μm以下であることが好ましい。
セパレータの厚さを薄くすることによってESRを低減することができる。
図7(a)及び図8(a)に示すように陽極箔上と陰極箔上のそれぞれにセパレータを設ける場合、陽極箔上に設けるセパレータと陰極箔上に設けるセパレータの材質や厚さは同じであってもよく異なっていてもよい。
As a separator, what consists of paper, a nonwoven fabric, a porous film etc. can be used, for example. Examples of the material constituting the separator include cellulose, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, nylon, aromatic polyamide, polyimide, polyamideimide, polyetherimide, rayon, and glass.
The thickness of the separator is preferably 5 μm or more, and preferably 100 μm or less.
ESR can be reduced by reducing the thickness of the separator.
As shown in FIGS. 7A and 8A, when a separator is provided on each of the anode foil and the cathode foil, the separator and the separator provided on the anode foil and the cathode foil have the same material and thickness. Or may be different.
陽極箔及び陰極箔は、いわゆる弁作用を示す弁作用金属からなる。弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム等の金属単体、又は、これらの金属を含む合金等が挙げられる。これらの中では、アルミニウム又はタンタルが好ましい。陰極箔を構成する弁作用金属は、陽極箔を構成する弁作用金属と同じであることが好ましいが、異なっていてもよい。
陽極箔は、アルミニウムの金属単体であることが好ましい。
The anode foil and the cathode foil are made of a valve metal that exhibits a so-called valve action. Examples of the valve action metal include simple metals such as aluminum, tantalum, niobium, titanium, and zirconium, and alloys containing these metals. Among these, aluminum or tantalum is preferable. The valve action metal constituting the cathode foil is preferably the same as the valve action metal constituting the anode foil, but may be different.
The anode foil is preferably a single metal of aluminum.
陽極箔の表面に形成される誘電体層は、上記弁作用金属の酸化皮膜からなることが好ましい。例えば、陽極箔としてアルミニウム箔が用いられる場合、アジピン酸アンモニウム等を含む水溶液中でアルミニウム箔の表面に対して陽極酸化処理を行うことにより、酸化皮膜からなる誘電体層を形成することができる。 The dielectric layer formed on the surface of the anode foil is preferably made of an oxide film of the valve action metal. For example, when an aluminum foil is used as the anode foil, a dielectric layer made of an oxide film can be formed by anodizing the surface of the aluminum foil in an aqueous solution containing ammonium adipate or the like.
陰極箔の表面は、エッチング処理等を施すことによって粗面化されて多孔質となっていることが好ましい。また、陰極箔の表面には、陽極箔の表面に形成されている誘電体層に比べて非常に薄い誘電体層が形成されていてもよい。 The surface of the cathode foil is preferably roughened by etching or the like to be porous. In addition, a very thin dielectric layer may be formed on the surface of the cathode foil as compared with the dielectric layer formed on the surface of the anode foil.
固体電解質層を構成する材料としては、例えば、ポリピロール類、ポリチオフェン類、ポリアニリン類等の導電性高分子等が挙げられる。これらの中では、ポリチオフェン類が好ましく、PEDOTと呼ばれるポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。また、上記導電性高分子は、ポリスチレンスルホン酸(PSS)等のドーパントを含んでいてもよい。なお、固体電解質層は、誘電体層の細孔(凹部)を充填する内層と、誘電体層を被覆する外層とを含むことが好ましい。 Examples of the material constituting the solid electrolyte layer include conductive polymers such as polypyrroles, polythiophenes, and polyanilines. Among these, polythiophenes are preferable, and poly (3,4-ethylenedioxythiophene) called PEDOT is particularly preferable. The conductive polymer may contain a dopant such as polystyrene sulfonic acid (PSS). The solid electrolyte layer preferably includes an inner layer that fills the pores (recesses) of the dielectric layer and an outer layer that covers the dielectric layer.
絶縁樹脂としては、例えば、ポリフェニルスルホン樹脂、ポリエーテルスルホン樹脂、シアン酸エステル樹脂、フッ素樹脂(テトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等)、可溶性ポリイミドシロキサンとエポキシ樹脂からなる組成物、ポリイミド樹脂、ポリアミドイミド樹脂、及び、それらの誘導体又は前駆体等の絶縁性樹脂が挙げられる。 Examples of the insulating resin include polyphenylsulfone resin, polyethersulfone resin, cyanate ester resin, fluororesin (tetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, etc.), soluble polyimide siloxane and epoxy resin. Insulating resins such as compositions, polyimide resins, polyamideimide resins, and derivatives or precursors thereof.
封止材としては、樹脂が用いられ、必要に応じてフィラーを含む。
封止材に含まれる樹脂としては、例えば、エポキシ樹脂、フェノール樹脂等が挙げられる。また、封止材に含まれるフィラーとしては、例えば、シリカ粒子、アルミナ粒子、金属粒子等が挙げられる。
As the sealing material, a resin is used, and a filler is included as necessary.
Examples of the resin contained in the sealing material include an epoxy resin and a phenol resin. Moreover, as a filler contained in a sealing material, a silica particle, an alumina particle, a metal particle etc. are mentioned, for example.
セパレータに注入する電解液は、酸又は塩基の電解質を溶媒に溶解したものである。溶媒としては、エチレングリコール(C)等のグリコール類、γ-ブチロラクトン(C)等のラクトン類、スルホラン(CS)等のスルホン類等が挙げられる。電解質の酸としては、アジピン酸(C10)等の脂肪族カルボン酸、フタル酸(C)等の芳香族カルボン酸等が挙げられる。電解質の塩基としてはアンモニア(NH)、トリエチルアミン(C15N)等のアミン、テトラメチルイミダゾリニウム(C15)等のアミジン等が挙げられる。 The electrolyte to be injected into the separator is obtained by dissolving an acid or base electrolyte in a solvent. Examples of the solvent include glycols such as ethylene glycol (C 2 H 6 O 2 ), lactones such as γ-butyrolactone (C 4 H 6 O 2 ), and sulfones such as sulfolane (C 4 H 8 O 2 S). Is mentioned. Examples of the acid for the electrolyte include aliphatic carboxylic acids such as adipic acid (C 6 H 10 O 4 ) and aromatic carboxylic acids such as phthalic acid (C 8 H 6 O 2 ). Examples of the electrolyte base include amines such as ammonia (NH 3 ) and triethylamine (C 6 H 15 N), and amidines such as tetramethylimidazolinium (C 7 H 15 N 2 ).
積層体を覆う樹脂は例えば、エポキシ樹脂、フェノール樹脂等が挙げられる。 Examples of the resin covering the laminate include an epoxy resin and a phenol resin.
本発明の電解コンデンサを構成する積層体100は、コンデンサ素子を含んでいる。図9(a)は、陽極ユニット1と陰極ユニット2を積み重ねてなるコンデンサ素子を模式的に示す断面図である。弁作用金属基体11の多孔質状の表面に誘電体層12を有する陽極箔10と、陽極箔10と対向する陰極箔20と、陽極箔10と陰極箔20の間に配置されたセパレータ30、40とでコンデンサ素子5を構成する。
なお、陽極ユニット1の上に陰極ユニット2を積み重ねてなるコンデンサ素子では陽極箔10と陰極箔20の間にセパレータ30が配置されるが、陰極ユニット2の上に陽極ユニット1を積み重ねたコンデンサ素子では陰極箔20と陽極箔10の間にセパレータ40が配置される。
The laminated body 100 which comprises the electrolytic capacitor of this invention contains the capacitor | condenser element. FIG. 9A is a cross-sectional view schematically showing a capacitor element in which the anode unit 1 and the cathode unit 2 are stacked. An anode foil 10 having a dielectric layer 12 on the porous surface of the valve action metal substrate 11, a cathode foil 20 facing the anode foil 10, a separator 30 disposed between the anode foil 10 and the cathode foil 20, 40 constitutes the capacitor element 5.
In the capacitor element in which the cathode unit 2 is stacked on the anode unit 1, the separator 30 is disposed between the anode foil 10 and the cathode foil 20. The capacitor element in which the anode unit 1 is stacked on the cathode unit 2. Then, the separator 40 is disposed between the cathode foil 20 and the anode foil 10.
図9(b)は、図9(a)に示すコンデンサ素子を含む積層体の側面に接続電極を形成した積層体の一例を模式的に示す斜視図である。 FIG. 9B is a perspective view schematically showing an example of a laminated body in which connection electrodes are formed on the side surfaces of the laminated body including the capacitor element shown in FIG.
図9(b)には、コンデンサ素子が積層された積層体100の第1の側面S101に陽極接続電極310と陰極接続電極320が形成された状態を示している。
陽極接続電極310及び陰極接続電極320について説明する。
FIG. 9B shows a state in which the anode connection electrode 310 and the cathode connection electrode 320 are formed on the first side face S101 of the multilayer body 100 in which the capacitor elements are laminated.
The anode connection electrode 310 and the cathode connection electrode 320 will be described.
陽極接続電極310は、積層体100の側面に引き出された複数の陽極箔の引出と接続され、陰極接続電極320は、積層体100の側面に引き出された複数の陰極箔の引出と接続されている。陽極接続電極310および陰極接続電極320は、第1導電膜と第2導電膜と第3導電膜を有する。第1導電膜はZnめっき膜、第2導電膜はNiめっき膜、第3導電膜はSnめっき膜によって形成されている。Pdめっき膜が第1導電膜にあってもよい。
また、第1導電膜は、陽極箔および陰極箔との接続性の良い金属が好ましい。陽極箔および陰極箔がアルミニウムの場合は、第1導電膜としてZnめっき膜を用いることが好ましい。
なお、接続電極は、一つの導電膜でも複数の導電膜でもよい。
The anode connection electrode 310 is connected to a plurality of anode foil leads drawn out to the side surface of the laminate 100, and the cathode connection electrode 320 is connected to a plurality of cathode foil leads drawn out to the side surface of the laminate 100. Yes. The anode connection electrode 310 and the cathode connection electrode 320 have a first conductive film, a second conductive film, and a third conductive film. The first conductive film is formed of a Zn plating film, the second conductive film is formed of a Ni plating film, and the third conductive film is formed of a Sn plating film. The Pd plating film may be in the first conductive film.
Further, the first conductive film is preferably a metal having good connectivity with the anode foil and the cathode foil. When the anode foil and the cathode foil are aluminum, it is preferable to use a Zn plating film as the first conductive film.
Note that the connection electrode may be a single conductive film or a plurality of conductive films.
また、図9(b)には接続電極が形成された積層体を示したが、接続電極が形成されていない積層体を使用してもよい。接続電極が形成されてない積層体を使用した場合、陽極箔および陰極箔の引出部と基板の表面の陽極外部電極および陰極外部電極との接合は、直接、導電性接着剤により行えばよい。 FIG. 9B illustrates a stacked body in which connection electrodes are formed, but a stacked body in which connection electrodes are not formed may be used. In the case of using a laminate in which no connection electrode is formed, the anode foil and cathode foil lead-out portion and the anode external electrode and cathode external electrode on the surface of the substrate may be joined directly with a conductive adhesive.
本発明の電解コンデンサを構成する図5に示す積層体は、例えば以下の方法により製造することができる。
図10は、陽極箔シートの一例を模式的に示す斜視図であり、図11は、陰極箔シートの一例を模式的に示す斜視図である。
図10に示す陽極箔シート201には、図7(a)に示す陽極箔ユニット1となる部位が多数設けられており、陽極箔シート201を所定位置で切断することによって陽極箔ユニットを多数得ることができる。
図11に示す陰極箔シート202には、図8(a)に示す陰極箔ユニット2となる部位が多数設けられており、陰極箔シート202を所定位置で切断することによって陰極箔ユニットを多数得ることができる。
図10及び図11では、陽極箔シート201及び陰極箔シート202の切断予定位置を一点鎖線で示している。
The laminated body shown in FIG. 5 constituting the electrolytic capacitor of the present invention can be manufactured, for example, by the following method.
FIG. 10 is a perspective view schematically showing an example of the anode foil sheet, and FIG. 11 is a perspective view schematically showing an example of the cathode foil sheet.
The anode foil sheet 201 shown in FIG. 10 is provided with a large number of parts to be the anode foil unit 1 shown in FIG. 7A, and a large number of anode foil units are obtained by cutting the anode foil sheet 201 at predetermined positions. be able to.
The cathode foil sheet 202 shown in FIG. 11 is provided with many parts to be the cathode foil unit 2 shown in FIG. 8A, and a large number of cathode foil units are obtained by cutting the cathode foil sheet 202 at predetermined positions. be able to.
In FIG.10 and FIG.11, the cutting scheduled position of the anode foil sheet 201 and the cathode foil sheet 202 is shown with the dashed-dotted line.
陽極箔シート201には、陽極箔ユニット1の陽極箔が引き出される側面となる切断予定位置において、第1の貫通穴H1及び第2の貫通穴H2が設けられている。
陰極箔シート202には、陰極箔ユニット2の陰極箔が引き出される側面となる切断予定位置において、第3の貫通穴H3及び第4の貫通穴H4が設けられている。
第1の貫通穴H1及び第4の貫通穴H4は長穴形状であり、第2の貫通穴H2及び第3の貫通穴H3は略丸穴形状である。
各貫通穴は、例えば、レーザ加工、エッチング加工、パンチング加工等によって形成される。
The anode foil sheet 201 is provided with a first through hole H1 and a second through hole H2 at a planned cutting position on the side surface from which the anode foil of the anode foil unit 1 is drawn.
The cathode foil sheet 202 is provided with a third through hole H3 and a fourth through hole H4 at a planned cutting position on the side surface from which the cathode foil of the cathode foil unit 2 is drawn.
The first through hole H1 and the fourth through hole H4 have a long hole shape, and the second through hole H2 and the third through hole H3 have a substantially round hole shape.
Each through hole is formed by, for example, laser processing, etching processing, punching processing, or the like.
このような陽極箔シート201及び陰極箔シート202を交互に積層することにより、積層シートを作製する。
得られる積層シートにおいては、第1の貫通穴H1と第3の貫通穴H3、及び、第2の貫通穴H2と第4の貫通穴H4がそれぞれ積層方向に連通されている。
得られた積層シートの少なくとも一方の主面側から、第1の貫通穴と第3の貫通穴、第2の貫通穴と第4の貫通穴にそれぞれ封止材54を充填することにより、積層ブロック体を作製する。
By laminating such anode foil sheet 201 and cathode foil sheet 202 alternately, a laminated sheet is produced.
In the obtained laminated sheet, the first through hole H1 and the third through hole H3, and the second through hole H2 and the fourth through hole H4 are communicated with each other in the laminating direction.
Lamination is performed by filling the first through hole and the third through hole, and the second through hole and the fourth through hole with the sealing material 54 from at least one main surface side of the obtained laminated sheet. A block body is produced.
作製された積層ブロック体を熱処理する。熱処理することにより絶縁樹脂および封止材が硬化し、陽極箔と陰極箔を一体化させる。 The manufactured laminated block body is heat-treated. By performing the heat treatment, the insulating resin and the sealing material are cured, and the anode foil and the cathode foil are integrated.
熱処理された積層ブロック体を、図10及び図11に示した陽極箔シート201及び陰極箔シート202の切断予定位置で切断する。 The heat-treated laminated block body is cut at the scheduled cutting positions of the anode foil sheet 201 and the cathode foil sheet 202 shown in FIGS.
充填された封止材54は積層体100の第1の側面S101に露出するように略半分に切断される。その結果、図5に示すような積層体100が得られる。
積層体100の第1の側面S101には、向かって右側に陽極箔10が露出しており、向かって左側に陰極箔20が露出している。そして、第1の側面S101において、向かって右側が陽極箔の引出部、左側が陰極箔の引出部となる。
The filled sealing material 54 is cut into approximately half so as to be exposed at the first side face S101 of the laminate 100. As a result, a laminate 100 as shown in FIG. 5 is obtained.
On the first side face S101 of the laminate 100, the anode foil 10 is exposed on the right side, and the cathode foil 20 is exposed on the left side. And in 1st side surface S101, the right side turns into the drawer part of anode foil, and the left side becomes the drawer part of cathode foil.
次に、切り欠き15、25からセパレータ30、40に電解液を注入する。電解液の注入は、その注入量を調整しながら行うことができる。例えば、必要な電解液の量を特定しておいて、積層体の合算重量を求めておいて、その合算重量になるように積層体の重量を測定しながら電解液を注入する。
絶縁樹脂および封止材を硬化させるための熱処理の後にセパレータ30、40に電解液が注入されるから、熱処理による熱によって電解液が蒸発してセパレータ内の電解液の量が低下したりばらついたりすることはない。
次に、セパレータ30、40に電解液を注入した積層体100の引出部以外の部分、とくに切り欠き15、25の部分に樹脂を塗付する。
これによって、次工程において陽極箔の引出部及び陰極箔の引出部にそれぞれ接続電極を形成する際に積層体の内部を保護したり、電解液の蒸発を防ぐことができる。
次に第1の側面S101の向かって右側の陽極箔の引出部及び向かって左側の陰極箔の引出部に接続電極を形成する。
Next, an electrolytic solution is injected into the separators 30 and 40 from the notches 15 and 25. The electrolyte solution can be injected while adjusting the injection amount. For example, the amount of the necessary electrolyte is specified, the total weight of the laminate is obtained, and the electrolyte is injected while measuring the weight of the laminate so that the total weight is obtained.
Since the electrolytic solution is injected into the separators 30 and 40 after the heat treatment for curing the insulating resin and the sealing material, the amount of the electrolytic solution in the separator decreases or varies due to the evaporation of the electrolytic solution due to the heat of the heat treatment. Never do.
Next, a resin is applied to portions other than the lead-out portion of the laminate 100 in which the electrolytic solution is injected into the separators 30 and 40, particularly the portions of the notches 15 and 25.
Thereby, when forming a connection electrode in the extraction part of an anode foil and the extraction part of a cathode foil in a next process, the inside of a laminated body can be protected or evaporation of an electrolyte can be prevented.
Next, connection electrodes are formed on the lead-out portion of the anode foil on the right side toward the first side surface S101 and the lead-out portion on the left side of the cathode foil.
接続電極は、積層体の側面に露出している陽極箔及び陰極箔の露出部に導電膜をめっきすることにより得られる。例えば、以下の手順で行うことができる。
まず、アルカリ処理剤によって積層体表面の油分を除去する。次に、アルカリエッチングすることにより、陽極箔及び陰極箔の露出部の酸化膜を除去する。次に、スマット除去処理により、陽極箔及び陰極箔の露出部のスマットを除去する。次に、ジンケート処理によりZnを置換析出させて陽極箔及び陰極箔の露出部に第1導電膜としてZn金属膜を形成する。次に、Niめっき処理により、第1導電膜上に第2導電膜としてNi金属膜を形成する。さらに、Snめっき処理により、第2導電膜上に第3導電膜としてSn金属膜を形成する。
以下に、積層体の具体的な実施形態ごとにその特徴を説明する。
The connection electrode is obtained by plating a conductive film on the exposed portions of the anode foil and the cathode foil exposed on the side surface of the laminate. For example, it can be performed by the following procedure.
First, the oil on the surface of the laminate is removed with an alkali treatment agent. Next, the exposed oxide film of the anode foil and the cathode foil is removed by alkali etching. Next, the smut of the exposed part of anode foil and cathode foil is removed by smut removal treatment. Next, Zn is substituted and deposited by zincate treatment to form a Zn metal film as a first conductive film on the exposed portions of the anode foil and the cathode foil. Next, a Ni metal film is formed as a second conductive film on the first conductive film by Ni plating. Further, an Sn metal film is formed as a third conductive film on the second conductive film by Sn plating.
Below, the characteristic is demonstrated for every specific embodiment of a laminated body.
(第1実施形態)
本発明の第1実施形態に係る電解コンデンサに用いられる積層体は、陽極ユニットと陰極ユニットとが積み重ねられてなる。この積層体では陽極箔とセパレータの間および陰極箔とセパレータの間に固体電解質層を有する。また、セパレータには電解液が含浸されていて、固体電解質は充填されていない。
第1実施形態の電解コンデンサは、通常時には陽極側の固体電解質層-セパレータ内の電解液-陰極側の固体電解質層を介して陽極箔と陰極箔の間の電子の授受が行われる。一方、セパレータ内に含浸された電解液が無くなった場合、セパレータの厚さ方向の電子の授受は行われなくなるので、故障モードはオープンモードとなる。よって、安全性の高い電解コンデンサとすることができる。
(First embodiment)
The laminate used for the electrolytic capacitor according to the first embodiment of the present invention is formed by stacking an anode unit and a cathode unit. This laminate has a solid electrolyte layer between the anode foil and the separator and between the cathode foil and the separator. Further, the separator is impregnated with an electrolytic solution and is not filled with a solid electrolyte.
In the electrolytic capacitor of the first embodiment, electrons are usually exchanged between the anode foil and the cathode foil via the solid electrolyte layer on the anode side, the electrolyte in the separator, and the solid electrolyte layer on the cathode side. On the other hand, when there is no electrolyte impregnated in the separator, electrons are not transferred in the thickness direction of the separator, so the failure mode is an open mode. Therefore, a highly safe electrolytic capacitor can be obtained.
また、本発明の第1実施形態に係る電解コンデンサに用いられる積層体の変形例として、陽極箔とセパレータの間、陰極箔とセパレータの間のいずれか一方には固体電解質層を有しており、他方には固体電解質層を有していない形態が挙げられる。
この場合も、セパレータ内に含浸された電解液が無くなった場合の故障モードはオープンモードとなるので、安全性の高い電解コンデンサとなる。
本実施形態の電解コンデンサは、積層型であるから誘電体層にひびが入りにくく、切り欠きからセパレータに電解液を注入することができるので、セパレータ内の電解液の量が低下したりばらついたりすることがなく、静電容量の低下やばらつきを抑えることができる。
Further, as a modification of the laminate used in the electrolytic capacitor according to the first embodiment of the present invention, a solid electrolyte layer is provided between one of the anode foil and the separator and between the cathode foil and the separator. On the other hand, the form which does not have a solid electrolyte layer is mentioned.
Also in this case, since the failure mode when the electrolyte solution impregnated in the separator disappears is an open mode, an electrolytic capacitor with high safety is obtained.
Since the electrolytic capacitor of the present embodiment is a multilayer type, the dielectric layer is not easily cracked, and the electrolytic solution can be injected into the separator from the notch, so that the amount of the electrolytic solution in the separator decreases or varies. Therefore, it is possible to suppress a decrease or variation in capacitance.
(第2実施形態)
本発明の第2実施形態に係る電解コンデンサに用いられる積層体は、陽極ユニットと陰極ユニットとが積み重ねられてなる。この積層体では陽極箔とセパレータの間および陰極箔とセパレータの間に固体電解質層を有しない。また、セパレータには電解液が含浸されていて、固体電解質は充填されていない。
第2実施形態の電解コンデンサは、通常時にはセパレータ内の電解液のみを介して陽極箔と陰極箔の間の電子の授受が行われる。一方、セパレータ内に含浸された電解液が無くなった場合、セパレータの厚さ方向における電子の授受は行われなくなるので、故障モードはオープンモードとなる。よって、安全性の高い電解コンデンサとすることができる。
本実施形態の電解コンデンサは、積層型であるから誘電体層にひびが入りにくく、切り欠きからセパレータに電解液を注入することができるので、セパレータ内の電解液の量が低下したりばらついたりすることがなく、静電容量の低下やばらつきを抑えることができる。
(Second Embodiment)
The laminate used for the electrolytic capacitor according to the second embodiment of the present invention is formed by stacking an anode unit and a cathode unit. This laminate does not have a solid electrolyte layer between the anode foil and the separator and between the cathode foil and the separator. Further, the separator is impregnated with an electrolytic solution and is not filled with a solid electrolyte.
In the electrolytic capacitor of the second embodiment, electrons are usually exchanged between the anode foil and the cathode foil through only the electrolyte solution in the separator. On the other hand, when no electrolyte is impregnated in the separator, electrons are not exchanged in the thickness direction of the separator, so the failure mode is an open mode. Therefore, a highly safe electrolytic capacitor can be obtained.
Since the electrolytic capacitor of the present embodiment is a multilayer type, the dielectric layer is not easily cracked, and the electrolytic solution can be injected into the separator from the notch, so that the amount of the electrolytic solution in the separator decreases or varies. Therefore, it is possible to suppress a decrease or variation in capacitance.
(第3実施形態) 
本発明の第3実施形態に係る電解コンデンサに用いられる積層体は、陽極ユニットと陰極ユニットとが積み重ねられてなる。この積層体では陽極箔とセパレータの間および陰極箔とセパレータの間に固体電解質層を有しない。また、セパレータには導電性高分子を含む固体電解質が充填されているが、電解液は含浸されていない。
セパレータへの固体電解質の充填は、導電性高分子の粒子と溶媒を混合した分散体にセパレータを浸漬した後、このセパレータを乾燥して溶媒を蒸発させ、セパレータに導電性高分子を含む固体電解質を充填することにより行うことができる。なお、セパレータへの固体電解質の充填は、セパレータが陽極箔や陰極箔の上に載置される前のセパレータに対して行う。
第3実施形態の電解コンデンサは、通常時にはセパレータ内に充填された固体電解質のみを介して陽極箔と陰極箔の間の電子の授受が行われる。
本実施形態の電解コンデンサは、積層型であるから誘電体層にひびが入りにくい。
(Third embodiment)
The laminate used for the electrolytic capacitor according to the third embodiment of the present invention is formed by stacking an anode unit and a cathode unit. This laminate does not have a solid electrolyte layer between the anode foil and the separator and between the cathode foil and the separator. The separator is filled with a solid electrolyte containing a conductive polymer, but is not impregnated with an electrolytic solution.
Filling the separator with the solid electrolyte is performed by immersing the separator in a dispersion in which conductive polymer particles and a solvent are mixed, then drying the separator to evaporate the solvent, and the separator contains the conductive polymer. Can be carried out by filling. The separator is filled with the solid electrolyte before the separator is placed on the anode foil or the cathode foil.
In the electrolytic capacitor of the third embodiment, electrons are usually exchanged between the anode foil and the cathode foil only through the solid electrolyte filled in the separator.
Since the electrolytic capacitor of this embodiment is a multilayer type, it is difficult for the dielectric layer to crack.
(第4実施形態)
本発明の第4実施形態に係る電解コンデンサに用いられる積層体は、陽極ユニットと陰極ユニットとが積み重ねられてなる。この積層体では陽極箔とセパレータの間および陰極箔とセパレータの間に固体電解質層を有しない。また、セパレータには導電性高分子を含む固体電解質が充填されており、かつ、電解液が含浸されている。セパレータへの固体電解質の充填は、第3実施形態と同じ方法で行われる。
本実施形態では、セパレータに導電性高分子を含む固体電解質が充填され、かつ、セパレータには電解液が含浸されている。
第4実施形態の電解コンデンサは、通常時にはセパレータ内に充填された固体電解質及びセパレータ内の電解液を介して陽極箔と陰極箔の間の電子の授受が行われる。
本実施形態の電解コンデンサは、積層型であるから誘電体層にひびが入りにくく、切り欠きからセパレータに電解液を注入することができるので、セパレータ内の電解液の量が低下したりばらついたりすることがなく、静電容量の低下やばらつきを抑えることができる。
(Fourth embodiment)
The laminate used for the electrolytic capacitor according to the fourth embodiment of the present invention is formed by stacking an anode unit and a cathode unit. This laminate does not have a solid electrolyte layer between the anode foil and the separator and between the cathode foil and the separator. The separator is filled with a solid electrolyte containing a conductive polymer and impregnated with an electrolytic solution. Filling the separator with the solid electrolyte is performed by the same method as in the third embodiment.
In the present embodiment, the separator is filled with a solid electrolyte containing a conductive polymer, and the separator is impregnated with an electrolytic solution.
In the electrolytic capacitor of the fourth embodiment, electrons are usually exchanged between the anode foil and the cathode foil via the solid electrolyte filled in the separator and the electrolyte in the separator.
Since the electrolytic capacitor of the present embodiment is a multilayer type, the dielectric layer is not easily cracked, and the electrolytic solution can be injected into the separator from the notch, so that the amount of the electrolytic solution in the separator decreases or varies. Therefore, it is possible to suppress a decrease or variation in capacitance.
(第5実施形態)
本発明の第5実施形態に係る電解コンデンサに用いられる積層体は、陽極ユニットと陰極ユニットとが積み重ねられてなる。この積層体では陽極箔とセパレータの間および陰極箔とセパレータの間に固体電解質層を有する。また、セパレータには導電性高分子を含む固体電解質が充填されており、かつ、電解液が含浸されている。セパレータへの固体電解質の充填は、第3実施形態と同じ方法で行われる。
第5実施形態の電解コンデンサは、通常時には陽極側の固体電解質層-セパレータ内の電解液およびセパレータ内の固体電解質-陰極側の固体電解質層を介して陽極箔と陰極箔の間の電子の授受が行われる。
本実施形態の電解コンデンサは、積層型であるから誘電体層にひびが入りにくく、切り欠きからセパレータに電解液を注入することができるので、セパレータ内の電解液の量が低下したりばらついたりすることがなく、静電容量の低下やばらつきを抑えることができる。
(Fifth embodiment)
The laminate used for the electrolytic capacitor according to the fifth embodiment of the present invention is formed by stacking an anode unit and a cathode unit. This laminate has a solid electrolyte layer between the anode foil and the separator and between the cathode foil and the separator. The separator is filled with a solid electrolyte containing a conductive polymer and impregnated with an electrolytic solution. Filling the separator with the solid electrolyte is performed by the same method as in the third embodiment.
The electrolytic capacitor of the fifth embodiment normally transfers electrons between the anode foil and the cathode foil via the solid electrolyte layer on the anode side—the electrolyte in the separator and the solid electrolyte in the separator—the solid electrolyte layer on the cathode side. Is done.
Since the electrolytic capacitor of the present embodiment is a multilayer type, the dielectric layer is not easily cracked, and the electrolytic solution can be injected into the separator from the notch, so that the amount of the electrolytic solution in the separator decreases or varies. Therefore, it is possible to suppress a decrease or variation in capacitance.
(第6実施形態)
本発明の第6実施形態に係る電解コンデンサに用いられる積層体は、陽極ユニットと陰極ユニットとが積み重ねられてなる。この積層体では陽極箔とセパレータの間および陰極箔とセパレータの間に固体電解質層を有する。また、セパレータには導電性高分子を含む固体電解質が充填されているが、電解液は含浸されていない。セパレータへの固体電解質の充填は、第3実施形態と同じ方法で行われる。
第6実施形態の電解コンデンサは、通常時には陽極側の固体電解質層-セパレータ内の固体電解質-陰極側の固体電解質層を介して陽極箔と陰極箔の間の電子の授受が行われる。
本実施形態の電解コンデンサは、積層型であるから誘電体層にひびが入りにくい。
(Sixth embodiment)
The laminate used for the electrolytic capacitor according to the sixth embodiment of the present invention is formed by stacking an anode unit and a cathode unit. This laminate has a solid electrolyte layer between the anode foil and the separator and between the cathode foil and the separator. The separator is filled with a solid electrolyte containing a conductive polymer, but is not impregnated with an electrolytic solution. Filling the separator with the solid electrolyte is performed by the same method as in the third embodiment.
In the electrolytic capacitor of the sixth embodiment, electrons are usually exchanged between the anode foil and the cathode foil via the solid electrolyte layer on the anode side-the solid electrolyte in the separator-the solid electrolyte layer on the cathode side.
Since the electrolytic capacitor of this embodiment is a multilayer type, it is difficult for the dielectric layer to crack.
ここまで説明した本発明の電解コンデンサは、面実装可能な電解コンデンサである。
すなわち、本発明の電解コンデンサは以下のような特徴を有する電解コンデンサを包含する。
以下の電解コンデンサでは、裏面外部電極は電解コンデンサの外周面に平坦な電極として露出しているため、裏面外部電極を使用して電解コンデンサを面実装により実装することができる。
The electrolytic capacitor of the present invention described so far is a surface mountable electrolytic capacitor.
That is, the electrolytic capacitor of the present invention includes an electrolytic capacitor having the following characteristics.
In the following electrolytic capacitors, the backside external electrode is exposed as a flat electrode on the outer peripheral surface of the electrolytic capacitor, so that the electrolytic capacitor can be mounted by surface mounting using the backside external electrode.
[1]表面に誘電体層を有する陽極箔と、
前記陽極箔と対向する陰極箔と、
前記陽極箔と前記陰極箔との間に電解液が含浸または固体電解質が充填されたセパレータとを有する少なくとも1つのコンデンサ素子を含む積層体を備える電解コンデンサであって、
一方面に表面外部電極として表面の陽極外部電極および表面の陰極外部電極を有し、前記一方面に対向する他方面に裏面外部電極として裏面の陽極外部電極および裏面の陰極外部電極をそれぞれ有する基板と、
前記積層体を収容するケースとを有し、
前記陽極箔および前記陰極箔は前記積層体の第1の側面に引き出され、
前記陽極箔は前記基板の前記表面の陽極外部電極に接続され、前記陰極箔は前記基板の前記表面の陰極外部電極に接続され、
前記ケースは前記積層体を収容して前記基板に接合されていることを特徴とする電解コンデンサ。
[1] an anode foil having a dielectric layer on the surface;
A cathode foil facing the anode foil;
An electrolytic capacitor comprising a laminate including at least one capacitor element having a separator impregnated with an electrolytic solution or filled with a solid electrolyte between the anode foil and the cathode foil,
A substrate having a front surface anode external electrode and a front surface cathode external electrode as a front surface external electrode on one surface, and a back surface anode external electrode and a back surface cathode external electrode as a back surface external electrode on the other surface facing the one surface, respectively. When,
A case for accommodating the laminate,
The anode foil and the cathode foil are drawn out to the first side surface of the laminate,
The anode foil is connected to an anode external electrode on the surface of the substrate; the cathode foil is connected to a cathode external electrode on the surface of the substrate;
The case is characterized in that the case accommodates the laminated body and is bonded to the substrate.
[2]前記積層体は前記第1の側面に前記陽極箔に接続された陽極接続電極および前記陰極箔に接続された陰極接続電極を有し、
前記陽極接続電極は前記基板の前記表面の陽極外部電極に接続され、前記陰極接続電極は前記基板の前記表面の陰極外部電極に接続されていることを特徴とする上記[1]に記載の電解コンデンサ。
[2] The laminate has an anode connection electrode connected to the anode foil and a cathode connection electrode connected to the cathode foil on the first side surface,
The electrolysis according to [1], wherein the anode connection electrode is connected to an anode external electrode on the surface of the substrate, and the cathode connection electrode is connected to a cathode external electrode on the surface of the substrate. Capacitor.
[3]前記陽極接続電極および前記陰極接続電極はめっき膜を有することを特徴とする上記[2]に記載の電解コンデンサ。 [3] The electrolytic capacitor as described in [2] above, wherein the anode connection electrode and the cathode connection electrode have plating films.
[4]前記めっき膜は複数の膜からなることを特徴とする上記[3]に記載の電解コンデンサ。 [4] The electrolytic capacitor as described in [3] above, wherein the plating film includes a plurality of films.
[5]前記めっき膜はZnからなるZnめっき膜を含むことを特徴とする上記[3]または[4]に記載の電解コンデンサ。 [5] The electrolytic capacitor as described in [3] or [4] above, wherein the plating film includes a Zn plating film made of Zn.
[6]前記めっき膜はNiからなるNiめっき膜を含むことを特徴とする上記[5]に記載の電解コンデンサ。 [6] The electrolytic capacitor as described in [5] above, wherein the plating film includes a Ni plating film made of Ni.
[7]前記めっき膜はSnからなるSnめっき膜を含むことを特徴とする上記[5]または[6]に記載の電解コンデンサ。 [7] The electrolytic capacitor as described in [5] or [6] above, wherein the plating film includes a Sn plating film made of Sn.
[8]前記陽極接続電極と前記基板の前記表面の陽極外部電極との接続および前記陰極接続電極と前記基板の前記表面の陰極外部電極との接続は半田づけによって行われていることを特徴とする上記[1]乃至[7]のいずれかに記載の電解コンデンサ。 [8] The connection between the anode connection electrode and the anode external electrode on the surface of the substrate and the connection between the cathode connection electrode and the cathode external electrode on the surface of the substrate are performed by soldering. The electrolytic capacitor according to any one of [1] to [7].
[9]前記陽極接続電極と前記基板の前記表面の陽極外部電極との接続および前記陰極接続電極と前記基板の前記表面の陰極外部電極との接続は導電性接着剤を介して行われていることを特徴とする上記[1]乃至[7]のいずれかに記載の電解コンデンサ。 [9] The connection between the anode connection electrode and the anode external electrode on the surface of the substrate and the connection between the cathode connection electrode and the cathode external electrode on the surface of the substrate are performed through a conductive adhesive. The electrolytic capacitor as described in any one of [1] to [7] above.
[10]前記陽極箔と前記基板の前記表面の陽極外部電極との接続および前記陰極箔と前記基板の前記表面の陰極外部電極との接続が導電性接着剤を介して行われていることを特徴とする上記[1]に記載の電解コンデンサ。 [10] The connection between the anode foil and the anode external electrode on the surface of the substrate and the connection between the cathode foil and the cathode external electrode on the surface of the substrate are made through a conductive adhesive. The electrolytic capacitor as described in [1] above, which is characterized.
[11]前記基板の前記表面の陽極外部電極と前記基板の裏面の陽極外部電極の導通および前記基板の前記表面の陰極外部電極と前記基板の裏面の陰極外部電極の導通は複数の接続導体によって取られていることを特徴とする上記[1]乃至[10]のいずれかに記載の電解コンデンサ。 [11] The conduction between the anode external electrode on the front surface of the substrate and the anode external electrode on the back surface of the substrate and the conduction between the cathode external electrode on the surface of the substrate and the cathode external electrode on the back surface of the substrate are performed by a plurality of connection conductors. The electrolytic capacitor according to any one of [1] to [10], wherein the electrolytic capacitor is taken.
[12]前記基板と前記ケースは熱可塑性樹脂製のシール材により接合されていることを特徴とする上記[1]乃至[11]のいずれかに記載の電解コンデンサ。 [12] The electrolytic capacitor according to any one of [1] to [11], wherein the substrate and the case are joined together by a sealing material made of a thermoplastic resin.
1 陽極箔ユニット
2 陰極箔ユニット
5 コンデンサ素子
10 陽極箔
11 弁作用金属基体
12 誘電体層
13、23 固体電解質層
14、24 絶縁樹脂
15、25 切り欠き
20 陰極箔
30、40 セパレータ
54 封止材
100 積層体
201 陽極箔シート
202 陰極箔シート
310 陽極接続電極
320 陰極接続電極
400 基板
410 陽極外部電極
411、421 接続導体
420 陰極外部電極
430 絶縁基板
440 シール材
500 ケース
DESCRIPTION OF SYMBOLS 1 Anode foil unit 2 Cathode foil unit 5 Capacitor element 10 Anode foil 11 Valve action metal base body 12 Dielectric layer 13, 23 Solid electrolyte layer 14, 24 Insulation resin 15, 25 Notch 20 Cathode foil 30, 40 Separator 54 Sealing material DESCRIPTION OF SYMBOLS 100 Laminated body 201 Anode foil sheet 202 Cathode foil sheet 310 Anode connection electrode 320 Cathode connection electrode 400 Substrate 410 Anode external electrode 411, 421 Connection conductor 420 Cathode external electrode 430 Insulating substrate 440 Sealing material 500 Case

Claims (11)

  1. 表面に誘電体層を有する陽極箔と、
    前記陽極箔と対向する陰極箔と、
    前記陽極箔と前記陰極箔との間に電解液が含浸または固体電解質が充填されたセパレータとを有する少なくとも1つのコンデンサ素子を含む積層体を備える電解コンデンサであって、
    前記積層体の積層方向に位置する面を主面、前記陽極箔及び前記陰極箔の引出面を第1の側面とし、
    前記第1の側面と対向する面を第2の側面、
    前記第1の側面及び主面と直交する面を第3の側面及び第4の側面とし、
    前記セパレータの前記第1乃至第4の側面側に位置する端縁は絶縁樹脂で覆われており、かつ、前記絶縁樹脂の前記第1乃至第4の側面の少なくとも1つには切り欠きを有する電解コンデンサ。
    An anode foil having a dielectric layer on the surface;
    A cathode foil facing the anode foil;
    An electrolytic capacitor comprising a laminate including at least one capacitor element having a separator impregnated with an electrolytic solution or filled with a solid electrolyte between the anode foil and the cathode foil,
    The surface located in the stacking direction of the laminate is a main surface, the lead-out surface of the anode foil and the cathode foil is a first side surface,
    A surface facing the first side surface is a second side surface;
    A surface perpendicular to the first side surface and the main surface is defined as a third side surface and a fourth side surface,
    An edge located on the first to fourth side surfaces of the separator is covered with an insulating resin, and at least one of the first to fourth side surfaces of the insulating resin has a notch. Electrolytic capacitor.
  2. 前記セパレータには電解液が含浸されている請求項1に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, wherein the separator is impregnated with an electrolytic solution.
  3. 前記セパレータには固体電解質が充填されている請求項1に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, wherein the separator is filled with a solid electrolyte.
  4. 前記セパレータには電解液が含浸され、かつ、固体電解質が充填されている請求項1に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, wherein the separator is impregnated with an electrolytic solution and filled with a solid electrolyte.
  5. 前記セパレータには電解液が含浸されていて、固体電解質が充填されていない請求項1に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, wherein the separator is impregnated with an electrolytic solution and is not filled with a solid electrolyte.
  6. 前記セパレータには固体電解質が充填されていて、電解液が含浸されていない請求項1に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, wherein the separator is filled with a solid electrolyte and is not impregnated with an electrolytic solution.
  7. 前記陽極箔の前記誘電体層と前記セパレータの間に固体電解質層を有する請求項1~6のいずれかに記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, further comprising a solid electrolyte layer between the dielectric layer of the anode foil and the separator.
  8. 前記陰極箔と前記セパレータの間に固体電解質層を有する請求項1~7のいずれかに記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, further comprising a solid electrolyte layer between the cathode foil and the separator.
  9. 前記陽極箔の前記誘電体層と前記セパレータの間、及び、前記陰極箔と前記セパレータの間に固体電解質層をそれぞれ有しており、前記セパレータには電解液が含浸されていて、固体電解質が充填されていない請求項1に記載の電解コンデンサ。 The anode foil has a solid electrolyte layer between the dielectric layer and the separator, and between the cathode foil and the separator, and the separator is impregnated with an electrolyte solution, The electrolytic capacitor according to claim 1, which is not filled.
  10. 前記絶縁樹脂の切り欠きが周期的な配置となっている請求項1~9のいずれかに記載の電解コンデンサ。 10. The electrolytic capacitor according to claim 1, wherein the notches of the insulating resin are arranged periodically.
  11. さらに、前記積層体を実装するとともに前記積層体の前記第1の側面に引き出された前記陽極箔及び前記陰極箔と電気的に接続される基板と、前記積層体を収容する形で前記基板と接合されたケースを有する請求項1~10のいずれかに記載の電解コンデンサ。 Furthermore, the substrate that is mounted on the laminate and electrically connected to the anode foil and the cathode foil that is drawn out to the first side surface of the laminate, and the substrate that accommodates the laminate, 11. The electrolytic capacitor according to claim 1, wherein the electrolytic capacitor has a joined case.
PCT/JP2019/004251 2018-02-08 2019-02-06 Electrolytic capacitor WO2019156120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019570776A JP6919732B2 (en) 2018-02-08 2019-02-06 Electrolytic capacitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018021383 2018-02-08
JP2018021384 2018-02-08
JP2018-021384 2018-02-08
JP2018-021383 2018-09-28

Publications (1)

Publication Number Publication Date
WO2019156120A1 true WO2019156120A1 (en) 2019-08-15

Family

ID=67549643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004251 WO2019156120A1 (en) 2018-02-08 2019-02-06 Electrolytic capacitor

Country Status (2)

Country Link
JP (1) JP6919732B2 (en)
WO (1) WO2019156120A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038900A1 (en) * 2019-08-26 2021-03-04 株式会社村田製作所 Electrolytic capacitor
WO2021038901A1 (en) * 2019-08-26 2021-03-04 株式会社村田製作所 Electrolytic capacitor and manufacturing method of electrolytic capacitor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177934U (en) * 1982-05-21 1983-11-28 日立コンデンサ株式会社 Electrolytic capacitor
JPS59123220A (en) * 1982-12-28 1984-07-17 エルナ−株式会社 Laminated solid electrolytic condenser and method of producing same
JPS61121423A (en) * 1984-11-19 1986-06-09 松下電器産業株式会社 Manufacture of aluminum electrolytic capacitor
JPH01127231U (en) * 1988-02-23 1989-08-31
JP2011216710A (en) * 2010-03-31 2011-10-27 Nippon Chemicon Corp Method of manufacturing laminated capacitor
WO2013002138A1 (en) * 2011-06-28 2013-01-03 株式会社村田製作所 Electricity storage device and method for producing same
JP2014232765A (en) * 2013-05-28 2014-12-11 株式会社村田製作所 Power storage device
JP2016091635A (en) * 2014-10-30 2016-05-23 三菱マテリアル株式会社 Method for manufacturing power storage device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6724881B2 (en) * 2017-10-20 2020-07-15 株式会社村田製作所 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177934U (en) * 1982-05-21 1983-11-28 日立コンデンサ株式会社 Electrolytic capacitor
JPS59123220A (en) * 1982-12-28 1984-07-17 エルナ−株式会社 Laminated solid electrolytic condenser and method of producing same
JPS61121423A (en) * 1984-11-19 1986-06-09 松下電器産業株式会社 Manufacture of aluminum electrolytic capacitor
JPH01127231U (en) * 1988-02-23 1989-08-31
JP2011216710A (en) * 2010-03-31 2011-10-27 Nippon Chemicon Corp Method of manufacturing laminated capacitor
WO2013002138A1 (en) * 2011-06-28 2013-01-03 株式会社村田製作所 Electricity storage device and method for producing same
JP2014232765A (en) * 2013-05-28 2014-12-11 株式会社村田製作所 Power storage device
JP2016091635A (en) * 2014-10-30 2016-05-23 三菱マテリアル株式会社 Method for manufacturing power storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038900A1 (en) * 2019-08-26 2021-03-04 株式会社村田製作所 Electrolytic capacitor
WO2021038901A1 (en) * 2019-08-26 2021-03-04 株式会社村田製作所 Electrolytic capacitor and manufacturing method of electrolytic capacitor

Also Published As

Publication number Publication date
JP6919732B2 (en) 2021-08-18
JPWO2019156120A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
CN109791844B (en) Solid electrolytic capacitor
WO2018074407A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
KR101119053B1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
US10032567B2 (en) Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor
EP3226270B1 (en) Solid electrolytic capacitor
JP2007116064A (en) Laminated solid electrolytic capacitor
JP4688675B2 (en) Multilayer solid electrolytic capacitor
WO2013088954A1 (en) Solid electrolytic capacitor and method for manufacturing same
WO2018066254A1 (en) Solid electrolytic capacitor
US8014127B2 (en) Solid electrolytic capacitor
WO2018066253A1 (en) Solid electrolytic capacitor
WO2019156120A1 (en) Electrolytic capacitor
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
JP4985571B2 (en) Electronic component and manufacturing method thereof
JP5429392B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6948555B2 (en) Electrolytic capacitors and their manufacturing methods
WO2012066853A1 (en) Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor
WO2021038901A1 (en) Electrolytic capacitor and manufacturing method of electrolytic capacitor
WO2023090141A1 (en) Electrolytic capacitor element
JP2018067572A (en) Solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor
WO2021038900A1 (en) Electrolytic capacitor
JP5371865B2 (en) 3-terminal capacitor
JP2009231337A (en) Solid-state electrolytic capacitor
JP2009224679A (en) Capacitor component
JP2010021317A (en) Electronic component and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751310

Country of ref document: EP

Kind code of ref document: A1