WO2021038901A1 - Electrolytic capacitor and manufacturing method of electrolytic capacitor - Google Patents

Electrolytic capacitor and manufacturing method of electrolytic capacitor Download PDF

Info

Publication number
WO2021038901A1
WO2021038901A1 PCT/JP2020/000373 JP2020000373W WO2021038901A1 WO 2021038901 A1 WO2021038901 A1 WO 2021038901A1 JP 2020000373 W JP2020000373 W JP 2020000373W WO 2021038901 A1 WO2021038901 A1 WO 2021038901A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposed
anode
electrolytic capacitor
cathode
outer layer
Prior art date
Application number
PCT/JP2020/000373
Other languages
French (fr)
Japanese (ja)
Inventor
康浩 玉谷
剛史 古川
和哉 楠田
清水 敬
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021038901A1 publication Critical patent/WO2021038901A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation

Definitions

  • the present invention relates to an electrolytic capacitor and a method for manufacturing the electrolytic capacitor.
  • An electrolytic capacitor such as a solid electrolytic capacitor is manufactured by, for example, forming a dielectric layer on the surface of an anode made of a valve acting metal such as aluminum, and then forming a cathode on the surface of the dielectric layer.
  • Patent Document 1 a rectangular anode made of a valve acting metal is provided with an insulating portion and separated into an anode portion and a cathode portion in the short side direction, and a dielectric oxide film layer and a solid electrolyte layer are provided on the surface of the cathode portion.
  • a solid electrolytic capacitor consisting of electrodes is disclosed.
  • Patent Document 1 it is possible to provide a solid electrolytic capacitor having low ESR and ESL. However, it can be said that there is room for further improvement in terms of lowering the ESR.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an electrolytic capacitor having a large contact area with an external electrode and capable of reducing ESR. It is also an object of the present invention to provide a method for manufacturing the above electrolytic capacitor.
  • the electrolytic capacitor of the present invention includes a plurality of laminated capacitor elements, and the capacitor element includes an electrode having a dielectric layer on its surface and a cathode facing the anode via the dielectric layer.
  • the method for manufacturing an electrolytic capacitor of the present invention includes a plurality of laminated capacitor elements, wherein the capacitor element has an electrode having a dielectric layer on its surface and a cathode facing the anode via the dielectric layer.
  • a step of forming a first external electrode electrically connected to the above-mentioned anode and a step of forming a second external electrode electrically connected to the above-mentioned cathode exposed from the second opening are provided.
  • an electrolytic capacitor having a large contact area with an external electrode and capable of reducing ESR.
  • FIG. 1 (a) is a perspective view schematically showing an example of an electrolytic capacitor according to the first embodiment of the present invention
  • FIG. 1 (b) shows an electrolytic capacitor shown in FIG. 1 (a) mounted on a mounting substrate.
  • FIG. 2A is a perspective view schematically showing an example of a laminated body obtained by removing the outer layer insulator from the electrolytic capacitor shown in FIG. 1A
  • FIG. 2B is shown in FIG. 2A.
  • FIG. 3A is a perspective view of the electrolytic capacitor shown in FIG. 1A as viewed from the bottom surface
  • FIG. 3B shows the first external electrode and the second external electrode and the second from the electrolytic capacitor shown in FIG. 3A. It is a perspective view which shows typically the state which removed the external electrode.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 3 (b).
  • FIG. 5 is a sectional view taken along line VV of FIG. 3 (b).
  • FIG. 6 is a perspective view schematically showing an example of a capacitor element sheet.
  • FIG. 7 is a perspective view schematically showing an example of a laminated body block.
  • FIG. 8 is a perspective view schematically showing an example of a laminated block with a resin film.
  • 9 (a) and 9 (b) are perspective views schematically showing an example of a step of individualizing a laminated block with a resin film.
  • FIG. 10 (a) and 10 (b) are perspective views schematically showing an example of a step of forming an outer layer insulator.
  • 11 (a) and 11 (b) are perspective views schematically showing an example of a process of forming the first external electrode and the second external electrode.
  • FIG. 12 is a cross-sectional view schematically showing an example of an electrolytic capacitor according to a second embodiment of the present invention.
  • 13 (a) is a perspective view of the electrolytic capacitor shown in FIG. 12 as viewed from the first end surface
  • FIG. 13 (b) is a perspective view of the electrolytic capacitor shown in FIG. 12 as viewed from the second end surface.
  • FIG. 14 is a cross-sectional view schematically showing an example of a state in which the exposed surface of the anode is at the same position as the bottom surface of the first opening.
  • FIG. 15 is a cross-sectional view schematically showing another example of a state in which the exposed surface of the anode is at the same position as the bottom surface of the first opening.
  • the electrolytic capacitor of the present invention and a method for manufacturing the electrolytic capacitor will be described.
  • the present invention is not limited to the following configurations, and can be appropriately modified and applied without changing the gist of the present invention. It should be noted that a combination of two or more desirable configurations of each of the embodiments described below is also the present invention.
  • the electrolytic capacitor according to each embodiment shown below is a solid electrolytic capacitor having a solid electrolyte layer, but the electrolytic capacitor of the present invention may be an electrolytic capacitor using an electrolytic solution instead of the solid electrolyte. It may be an electrolytic capacitor using an electrolytic solution together with a solid electrolyte.
  • FIG. 1 (a) is a perspective view schematically showing an example of an electrolytic capacitor according to the first embodiment of the present invention
  • FIG. 1 (b) shows an electrolytic capacitor shown in FIG. 1 (a) mounted on a mounting substrate.
  • FIG. 2A is a perspective view schematically showing an example of a laminated body obtained by removing the outer layer insulator from the electrolytic capacitor shown in FIG. 1A
  • FIG. 2B is shown in FIG. 2A.
  • the electrolytic capacitor 1 shown in FIG. 1 (a) includes the rectangular parallelepiped laminated body 5 shown in FIGS. 2 (a) and 2 (b), and outer layer insulators 7a, 7b, 7c provided around the laminated body 5. It includes 7d, 7e and 7f. As shown in FIGS. 2A and 2B, the laminated body 5 includes a plurality of laminated capacitor elements 3. The electrolytic capacitor 1 is mounted on the mounting board 9 as shown in FIG. 1 (b).
  • the capacitor element 3 includes an anode 11 having a dielectric layer 19 on its surface and a cathode 15 facing the anode 11 via the dielectric layer 19.
  • the laminate 5 faces the bottom surface 5f facing the mounting surface 9c (see FIG. 1B) of the mounting board 9 on which the electrolytic capacitor 1 should be mounted, and the bottom surface 5f.
  • the outer layer insulators 7a, 7b, 7c, 7d, 7e and 7f are the first outer layer insulator 7a provided on the first end surface 5a of the laminated body 5 and the first outer layer insulator 7a of the laminated body 5.
  • the fifth outer layer insulator 7e provided on the second side surface 5e of the laminated body 5 and the sixth outer layer insulator 7f provided on the bottom surface 5f of the laminated body 5 are included.
  • the direction connecting the first end surface 5a and the second end surface 5b of the laminated body 5 is the length direction (the direction indicated by L in FIGS. 1B and 2A), and the first side surface 5c and the first side surface 5c of the laminated body 5.
  • the direction connecting the two side surfaces 5e is the width direction (the direction indicated by W in FIGS. 1B and 2A), and the direction connecting the bottom surface 5f and the top surface 5d of the laminated body 5 is the thickness direction (FIG. 1 (b). )
  • the plurality of capacitor elements 3 are stacked along the length direction (L direction) as shown in FIG. 2A. Therefore, the stacking direction of the capacitor elements 3 is substantially parallel to the mounting surface 9c of the mounting substrate 9 (see FIG. 1B).
  • the plurality of capacitor elements 3 are laminated so as to be close to and equidistant from the mounting surface 9c of the mounting substrate 9. Therefore, the distance to the positive mounting electrode 9a 1 or the negative mounting electrode 9a 2 provided on the mounting surface 9c of each capacitor element 3 can be shortened. As a result, the electrolytic capacitor 1 can be reduced in ESR and ESL.
  • the electrolytic capacitor 1 has a dimension of 3.5 mm in the L direction, a dimension of 2.8 mm in the W direction, and a dimension of 1.9 mm in the T direction.
  • the dimension L in the length direction of the laminate 5, the dimension W in the width direction of the laminate 5, and the dimension T in the thickness direction of the laminate 5 satisfy L> W> T. .. Alternatively, it is also preferable to satisfy W> L> T.
  • the electrolytic capacitor 1 in which a plurality of capacitor elements 3 are stacked along the length direction (L direction) when L> W> T or W> L> T is satisfied, the plurality of capacitor elements 3 have a thickness. Compared with the electrolytic capacitors stacked along the direction (T direction), the number of stacked capacitor elements 3 is increased, and multiple parallelization is possible. As a result, the ESR of the electrolytic capacitor 1 can be reduced.
  • the outer shape of the capacitance portion of the plurality of capacitor elements 3 constitutes the outer shape of the laminated body 5.
  • the capacity can be increased.
  • FIG. 3A is a perspective view of the electrolytic capacitor shown in FIG. 1A as viewed from the bottom surface
  • FIG. 3B shows the first external electrode and the second external electrode and the second from the electrolytic capacitor shown in FIG. 3A. It is a perspective view which shows typically the state which removed the external electrode.
  • the electrolytic capacitor 1 includes a first external electrode 13 electrically connected to an anode 11 exposed from the laminate 5, and a cathode exposed from the laminate 5.
  • a second external electrode 17 that is electrically connected to the 15 is provided.
  • the first external electrode 13 is provided on the bottom surface 5f of the laminate 5 so as to be electrically connected to the anode 11 exposed from the bottom surface 5f of the laminate 5, and the second external electrode 17 is the bottom surface of the laminate 5. It is provided on the bottom surface 5f of the laminate 5 so as to be electrically connected to the cathode 15 exposed from 5f.
  • the distance to the positive mounting electrode 9a 1 or the negative mounting electrode 9a 2 provided on the mounting surface 9c of each capacitor element 3 can be shortened.
  • the electrolytic capacitor 1 can be reduced in ESR and ESL.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 3 (b).
  • the anode 11 is exposed from the first opening 7f 1 formed in the sixth outer layer insulator 7 f formed on the bottom surface 5 f of the laminated body 5.
  • the bottom surface of the first opening 7f 1 reaches up to the laminated body 5. Therefore, the exposed surface of the anode 11 protrudes from the first bottom surface of the opening portion 7f 1.
  • the exposed area of the anode 11 increases, and the contact area with the first external electrode 13 (see FIG. 3A) increases, so that the ESR can be reduced.
  • insulation between the anode 11 and the cathode 15 is secured.
  • FIG. 5 is a sectional view taken along line VV of FIG. 3 (b).
  • the cathode 15 is exposed from the second opening 7f 2 formed in the sixth outer layer insulator 7f formed on the bottom surface 5f of the laminated body 5.
  • the bottom surface of the second opening 7f 2 reaches up to the laminated body 5. Therefore, the exposed surface of the cathode 15 projects from the bottom surface of the second opening 7f 2.
  • the exposed area of the cathode 15 is increased, and the contact area with the second external electrode 17 (see FIG. 3A) is increased, so that the ESR can be reduced.
  • the anode 11 is linearly exposed in a direction substantially orthogonal to the stacking direction of the plurality of capacitor elements 3 and substantially parallel to each other.
  • the cathode 15 is linearly exposed in a direction substantially orthogonal to the stacking direction of the plurality of capacitor elements 3 and substantially parallel to each other.
  • the first opening 7f 1 and the second opening 7f 2 are formed by removing the sixth outer layer insulator 7f by thermal processing or ablation processing with a laser.
  • an ultraviolet (UV) laser (wavelength 355 nm), a green laser (wavelength 532 nm), an infrared (IR) laser (wavelength 1064 nm), a carbon dioxide gas (CO 2 ) laser (wavelength 10.6 ⁇ m) and the like are used.
  • a UV laser or a green laser that can be finely processed by ablation processing is preferable.
  • the wavelength is preferably 248 nm or more and 532 nm or less.
  • the first opening 7f 1 and the second opening 7f 2 can be formed in the sixth outer layer insulator 7f by performing laser processing at a desired position of the sixth outer layer insulator 7f. it can. Therefore, the anode 11 and the cathode 15 can be selectively exposed on the bottom surface 5f of the laminated body 5.
  • the anode 11 constituting the capacitor element 3 has a valve acting metal leaf at the center, and has a porous layer (not shown) such as an etching layer on the surface.
  • a dielectric layer 19 is provided on the surface of the porous layer.
  • valve acting metal examples include simple metals such as aluminum, tantalum, niobium, titanium, zirconium, magnesium and silicon, or alloys containing these metals. Among these, aluminum or an aluminum alloy is preferable.
  • the shape of the valve acting metal is not particularly limited, but it is preferably flat, more preferably foil.
  • the porous layer is preferably an etching layer that has been etched with hydrochloric acid or the like.
  • the thickness of the valve acting metal foil before the etching treatment is preferably 60 ⁇ m or more, and preferably 180 ⁇ m or less. Further, the thickness of the valve acting metal foil (core portion) that has not been etched after the etching treatment is preferably 10 ⁇ m or more, and preferably 70 ⁇ m or less.
  • the thickness of the porous layer is designed according to the withstand voltage and capacitance required for the electrolytic capacitor, but the total thickness of the porous layers on both sides of the valve acting metal foil is preferably 10 ⁇ m or more, and 120 ⁇ m or less. Is preferable.
  • the anode 11 is drawn out to the bottom surface 5f of the laminated body 5 and is electrically connected to the first external electrode 13.
  • the dielectric layer 19 is preferably made of an oxide film of the valve acting metal.
  • an aluminum foil is used as a valve acting metal foil, it is oxidized to form a dielectric layer by anodization in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or a sodium salt or ammonium salt thereof.
  • a film can be formed.
  • the dielectric layer 19 has pores (recesses) formed by being formed along the surface of the porous layer.
  • the thickness of the dielectric layer 19 is designed according to the withstand voltage and capacitance required for the electrolytic capacitor, but is preferably 10 nm or more, and preferably 100 nm or less.
  • the cathode 15 constituting the capacitor element 3 includes a solid electrolyte layer 15a formed on the dielectric layer 19, a conductive layer 15b formed on the solid electrolyte layer 15a, and a cathode extraction layer formed on the conductive layer 15b. 15c and 15c are laminated. Therefore, the electrolytic capacitor 1 is a solid electrolytic capacitor provided with a solid electrolyte layer 15a as a part of the cathode 15.
  • Examples of the material constituting the solid electrolyte layer 15a include conductive polymers having pyrroles, thiophenes, anilines and the like as skeletons.
  • Examples of the conductive polymer having thiophenes as a skeleton include PEDOT [poly (3,4-ethylenedioxythiophene)], and PEDOT: PSS complexed with polystyrene sulfonic acid (PSS) as a dopant. It may be.
  • a polymer film such as poly (3,4-ethylenedioxythiophene) is formed on the surface of the dielectric layer using a treatment liquid containing a monomer such as 3,4-ethylenedioxythiophene. It is formed by a method of applying a dispersion of a polymer such as poly (3,4-ethylenedioxythiophene) to the surface of the dielectric layer and drying it. It is preferable to form the solid electrolyte layer for the inner layer that fills the pores (recesses), and then form the solid electrolyte layer for the outer layer that covers the entire dielectric layer.
  • the solid electrolyte layer 15a is formed by forming the above-mentioned treatment liquid or dispersion liquid on the dielectric layer by sponge transfer, screen printing, spray coating, dispenser coating, inkjet printing, dipping, or the like to form a predetermined region or a partitioned region. It can be formed over the entire size of the capacitor element sheet 23.
  • the thickness of the solid electrolyte layer 15a is preferably 2 ⁇ m or more, and preferably 20 ⁇ m or less.
  • the conductive layer 15b is provided to electrically and mechanically connect the solid electrolyte layer 15a and the cathode extraction layer 15c.
  • it is preferably a carbon layer, a graphene layer or a silver layer formed by applying a conductive paste such as a carbon paste, a graphene paste or a silver paste.
  • a conductive paste such as a carbon paste, a graphene paste or a silver paste.
  • it may be a composite layer in which a silver layer is provided on the carbon layer or the graphene layer, or a mixed layer in which the carbon paste or the graphene paste and the silver paste are mixed.
  • the conductive layer 15b is formed by forming a conductive paste such as carbon paste on the solid electrolyte layer by sponge transfer, screen printing, spray coating, dispenser coating, inkjet printing, dipping, etc., thereby forming a predetermined region or a capacitor element. It can be formed over the entire size of the sheet 23.
  • the thickness of the conductive layer 15b is preferably 2 ⁇ m or more, and preferably 20 ⁇ m or less.
  • the cathode extraction layer 15c can be formed of a metal foil or an electrode paste layer.
  • a metal foil it is preferably composed of at least one metal selected from the group consisting of Al, Cu, Ag and alloys containing these metals as main components.
  • the metal foil is made of the above metal, the resistance value of the metal foil can be reduced and the ESR can be reduced.
  • metal foil a metal foil having a surface coated with carbon or titanium by a film forming method such as sputtering or vapor deposition may be used. It is more preferable to use carbon coated aluminum foil.
  • the thickness of the metal foil is not particularly limited, but from the viewpoint of handling in the manufacturing process, miniaturization, and reduction of ESR, it is preferably 20 ⁇ m or more, and preferably 50 ⁇ m or less.
  • the cathode extraction layer 15c can be formed in a predetermined region by forming the electrode paste on the conductive layer by sponge transfer, screen printing, spray coating, dispenser coating, inkjet printing, dipping or the like. it can.
  • the electrode paste an electrode paste containing Ag, Cu, or Ni as a main component is preferable.
  • the thickness of the electrode paste layer can be made thinner than when a metal foil is used, and in the case of screen printing, the thickness may be 2 ⁇ m or more and 20 ⁇ m or less. It is possible.
  • the cathode extraction layer 15c is drawn out to the bottom surface 5f of the laminated body 5 and is electrically connected to the second external electrode 17.
  • the first outer layer insulator 7a and the second outer layer insulator 7b are provided on both main surfaces in the length direction (L direction), which is the stacking direction, and the third outer layer insulator 7c and the fifth outer layer insulator 7e are width.
  • the fourth outer layer insulator 7d and the sixth outer layer insulator 7f are provided on both main surfaces in the direction (W direction), and are provided on both main surfaces in the thickness direction (T direction).
  • the first outer layer insulator 7a and the second outer layer insulator 7b contain at least a resin.
  • the resin for example, polypropylene resin, polyethylene resin (including PET resin), nylon resin, polyimide resin, silicone resin, epoxy resin, glass epoxy resin, liquid crystal polymer and the like are preferably used.
  • first outer layer insulator 7a and the second outer layer insulator 7b preferably have a film shape.
  • the first outer layer insulator 7a and the second outer layer insulator 7b may include a metal layer or an oxide layer between the resin films.
  • the metal layer it is preferable to use aluminum, copper, nickel, silver or the like.
  • the metal layer is preferably a metal foil, but may be a metal vapor deposition film or the like. It is preferable to use silica, alumina or the like as the oxide layer. Oxides such as silica and alumina may be contained as a filler in the resin film.
  • the first outer layer insulator 7a and the second outer layer insulator 7b may be a so-called aluminum laminated film in which a resin film, an aluminum foil, and a resin film have a sandwich structure.
  • the method for forming the first outer layer insulator 7a and the second outer layer insulator 7b will be described later.
  • the third outer layer insulator 7c, the fourth outer layer insulator 7d, the fifth outer layer insulator 7e, and the sixth outer layer insulator 7f include an insulator made of resin or an insulator made of oxide.
  • the resin insulator for example, an epoxy resin, a phenol resin, a polyimide resin, a silicone resin, a polyamide resin, a liquid crystal polymer or the like is preferably used.
  • the form of the resin is preferably a liquid resin.
  • the filler for example, silica particles, alumina particles, metal particles and the like are preferably used.
  • the insulator made of oxide for example, it is preferable to use an oxide film formed when the laminate is individualized by laser processing, electric discharge machining, or the like as the insulator.
  • the method for forming the third outer layer insulator 7c, the fourth outer layer insulator 7d, the fifth outer layer insulator 7e, and the sixth outer layer insulator 7f will be described later.
  • the first outer layer insulator 7a and the second outer layer insulator 7b are composed of a resin film
  • the third outer layer insulator 7c, the fourth outer layer insulator 7d, the fifth outer layer insulator 7e, and the sixth outer layer insulator 7f is preferably composed of an insulating paste layer.
  • the capacitance portion of the capacitor element 3 can be expanded and the capacity can be increased.
  • the first external electrode 13 and the second external electrode 17 are provided for each capacitor element 3. Therefore, in the mounting structure shown in FIG. 1B, the first external electrode 13 and the second external electrode 17 are directly connected to the positive mounting electrode 9a 1 and the negative mounting electrode 9a 2 of the mounting substrate 9 via the solder 9b, respectively. Has been done.
  • an external electrode connecting the capacitor elements 3 to each other becomes unnecessary, and the number of layers of the external electrode can be reduced. Cost reduction is possible.
  • the first external electrode 13 is formed on the first plating layer 13a formed on the anode 11 (see FIG. 3B) exposed from the bottom surface 5f of the laminated body 5.
  • the second plating layer 13b to be formed is included.
  • the second external electrode 17 is a first plating layer 17a formed on the cathode 15 (see FIG. 3B) exposed from the bottom surface 5f of the laminated body 5, and a second plating layer 17b formed on the first plating layer 17a. And include.
  • the first plating layer 13a is preferably formed by a zincate treatment. That is, the surface of the aluminum foil of the anode 11 exposed from the bottom surface 5f of the laminate 5 is alkaline-etched to remove the oxide film of the anode 11, and then Zn plating is performed. Next, a Ni plating layer is formed as the first plating layer 13a by performing replacement plating with electroless Ni plating. Although the cathode 15 may be other than aluminum, a Ni plating layer is similarly formed as the first plating layer 17a during the zincate treatment.
  • the second plating layers 13b and 17b are preferably formed by performing electrolytic Sn plating.
  • the Ni plating layers which are the first plating layers 13a and 17a, are formed mainly for improving the moisture resistance
  • the Sn plating layers, which are the second plating layers 13b and 17b, are mainly formed for improving the solderability. ing.
  • the first external electrode 13 and the second external electrode 17 preferably include a plating layer.
  • a plating layer By not using an expensive resin electrode having a relatively high resistance for the external electrode, it is possible to reduce the ESR and the cost.
  • FIG. 6 is a perspective view schematically showing an example of the capacitor element sheet.
  • a valve acting metal foil such as an aluminum foil constituting the anode 11 is prepared.
  • the valve action metal foil has a porous layer such as an etching layer on the surface.
  • the surface of the porous layer is anodized to form the dielectric layer 19.
  • a solid electrolyte layer 15a is formed on the dielectric layer 19 by screen printing, spray coating, dispenser coating, inkjet printing, or dipping, followed by screen printing, spray coating, dispenser coating, inkjet printing, or dipping on the solid electrolyte layer 15a.
  • a conductive layer 15b such as a carbon layer is formed by dipping, and a cathode drawing layer 15c is further formed on the conductive layer 15b by sheet lamination or screen printing, spray coating, dispenser coating, inkjet printing, or dipping.
  • FIG. 7 is a perspective view schematically showing an example of a laminated body block.
  • the laminated body block 25 is obtained by laminating a plurality of capacitor element sheets 23. It is preferable that the plurality of capacitor element sheets 23 are laminated in a viscous state before the cathode extraction layer 15c is dried.
  • FIG. 8 is a perspective view schematically showing an example of a laminated block with a resin film.
  • resin films 27a and 27b are placed above and below the laminate block 25, and thermocompression-bonded with a vacuum thermocompression bonding device or an atmospheric press device to form a molded body, whereby the laminate block with a resin film is formed. 27 is obtained.
  • the thickness of the laminated block 27 with a resin film (the length indicated by t in FIG. 8) is the dimension in the length direction (L direction) of the electrolytic capacitor 1 to be manufactured.
  • the thickness of the laminated block 27 with the resin film may be the dimension in the width direction (W direction) of the electrolytic capacitor 1 to be manufactured.
  • FIGS. 9 (a) and 9 (b) are perspective views schematically showing an example of a step of individualizing a laminated block with a resin film.
  • the laminate block 27 with a resin film shown in FIG. 9 (b) is obtained by cutting the laminate block 27 with a resin film by dicing, a laser, or the like to separate the blocks 27 into individual pieces.
  • the capacitor element sheet 23 is divided into the capacitor element 3.
  • the resin film 27a placed on the upper surface of the laminated body block 27 with the resin film becomes the first outer layer insulator 7a, and the resin film 27b placed on the lower surface becomes the second outer layer insulator 7b.
  • the length (length indicated by l in FIG. 9B) and width (length indicated by w in FIG. 9B) of the laminate 29 with the resin film are the laminations constituting the electrolytic capacitor 1 to be produced. It is preferable that the body 5 has a thickness direction (T direction) and a width direction (W direction).
  • FIGS. 10 (a) and 10 (b) are perspective views schematically showing an example of a step of forming the outer layer insulator.
  • the laminate 29 with the resin film is tilted and aligned in the direction in which the shortest dimension is the thickness direction.
  • the third outer layer is insulated by screen-printing, spray-coating, or dipping the insulating paste on the first side surface, the upper surface, the second side surface, and the bottom surface of the laminate 29 with the resin film.
  • the body 7c, the fourth outer layer insulator 7d, the fifth outer layer insulator 7e, and the sixth outer layer insulator 7f are formed, respectively.
  • FIGS. 11 (a) and 11 (b) are perspective views schematically showing an example of a process of forming the first external electrode and the second external electrode.
  • a part of the sixth outer layer insulator 7f is removed by laser processing to form the first opening 7f 1 and the second opening 7f 2 .
  • the laser oscillator 21 irradiates the laser beam 21a at a desired position of the sixth outer layer insulator 7f to form the first opening 7f 1 and the second opening 7f 2 .
  • the anode 11 is exposed from the first opening 7f 1 and the cathode 15 is exposed from the second opening 7f 2.
  • the sixth outer layer insulator 7f By irradiating the laser beam 21a to eliminate the sixth outer layer insulator 7f, the solid electrolyte layer 15a, the porous layer, etc., the bottom surface of the first opening 7f 1 and the bottom surface of the second opening 7f 2 are both formed. It is preferable to reach the laminated body 5. However, the sixth outer layer insulator 7f may be reattached to the portion where the sixth outer layer insulator 7f has disappeared. Further, the sixth outer layer insulator 7f, the solid electrolyte layer 15a, the porous layer, and the like in the portion irradiated with the laser beam 21a may be oxidized without disappearing.
  • a Ni plating layer is formed as the first plating layer 13a on the exposed anode 11 by the zincate treatment, and the first plating layer 17a is formed on the exposed cathode 15.
  • a Ni plating layer is formed as.
  • the Ni plating layers which are the first plating layers 13a and 17a Sn plating layers are formed as the second plating layers 13b and 17b by Sn plating, respectively.
  • the first external electrode 13 that is electrically connected to the anode 11 exposed from the first opening 7f 1 is formed, and is electrically connected to the cathode 15 exposed from the second opening 7f 2.
  • the second external electrode 17 is formed.
  • the electrolytic capacitor 1 is obtained. As shown in FIG. 1B, the electrolytic capacitor 1 thus obtained is mounted on the mounting substrate 9 via the solder 9b.
  • FIG. 12 is a cross-sectional view schematically showing an example of an electrolytic capacitor according to a second embodiment of the present invention.
  • 13 (a) is a perspective view of the electrolytic capacitor shown in FIG. 12 as viewed from the first end surface
  • FIG. 13 (b) is a perspective view of the electrolytic capacitor shown in FIG. 12 as viewed from the second end surface.
  • the electrolytic capacitors 2 shown in FIGS. 12, 13 (a) and 13 (b) are a rectangular parallelepiped laminated body 5 including a plurality of laminated capacitor elements 3 and an outer layer insulation provided around the laminated body 5. It comprises bodies 7a, 7b, 7c, 7d, 7e and 7f.
  • the electrolytic capacitor 2 further includes a first external electrode 13 and a second external electrode 17.
  • the plurality of capacitor elements 3 are laminated along the thickness direction (T direction).
  • the anode 11 is, as shown in FIG. 12 and FIG. 13 (a), the exposed from the first opening portion 7f 1 formed in the first external insulator 7a.
  • the cathode 15 is exposed from the second opening 7f 2 formed in the second outer layer insulator 7b.
  • the anode 11 is linearly exposed in a direction substantially orthogonal to the stacking direction of the plurality of capacitor elements 3 and substantially parallel to each other.
  • the cathode 15 is linearly exposed in a direction substantially orthogonal to the stacking direction of the plurality of capacitor elements 3 and substantially parallel to each other.
  • the first opening 7f 1 and the second opening 7f 2 are formed by removing the first outer layer insulator 7a and the second outer layer insulator 7b by thermal processing or ablation processing with a laser, respectively.
  • the first outer layer insulator 7a has a first columnar portion 7f 3 penetrating the anode 11 in the stacking direction
  • the second outer layer insulator 7b is Although it has a second columnar portion 7f 4 penetrating the cathode 15 in the stacking direction, the first outer layer insulator 7a does not have to have the first columnar portion 7f 3 , and the second outer layer insulator 7b it may not have a second columnar portion 7f 4.
  • the electrolytic capacitor of the present invention is not limited to the above embodiment, and various applications and modifications can be added within the scope of the present invention regarding the configuration, manufacturing conditions, and the like of the electrolytic capacitor.
  • the plating layer is provided across a plurality of capacitor elements by plating growth, surface modification, or the like. Therefore, a plurality of capacitor elements may be electrically connected to each other via the plating layer. In this case, since the contact area with the mounting electrode becomes large, it is possible to further reduce the ESR.
  • the first external electrode and the second external electrode include a plating layer
  • a conductive paste layer is further included on the plating layer, and the conductive paste layer is It may be provided across a plurality of capacitor elements, and the plurality of capacitor elements may be electrically connected to each other via the conductive paste layer. In this case, since the contact area with the mounting electrode becomes large, it is possible to further reduce the ESR.
  • the conductive paste layer not only solder paste but also Ni paste, Cu paste, Ag paste and the like can be used. If necessary, a plating layer may be formed on the conductive paste layer.
  • the first external electrode is attached to the first side surface and the bottom surface of the laminate so as to be electrically connected to the anode exposed from the first side surface and the bottom surface of the laminate.
  • the second external electrode is integrally provided by simultaneous formation, and the second external electrode is simultaneously formed on the second side surface and bottom surface of the laminate so as to be electrically connected to the cathode exposed from the second side surface and bottom surface of the laminate. It may be provided integrally.
  • the capacitor element and the external electrode are connected by multipath (parallel) between the side surface and the bottom surface of the laminated body. As a result, low ESR can be achieved.
  • the dimension L in the length direction of the laminate, the dimension W in the width direction of the laminate, and the dimension T in the thickness direction of the laminate are L> T> W. May be satisfied.
  • the outer shape of the capacitance portion of the plurality of capacitor elements does not have to constitute the outer shape of the laminated body.
  • the first external electrode and the second external electrode do not have to include a plating layer.
  • the capacitor elements may be manufactured one by one to prepare a laminated body.
  • the exposed surface of the anode may be at the same position as the bottom surface of the first opening, or the exposed surface of the cathode may be at the same position as the bottom surface of the second opening. Good.
  • FIG. 14 is a cross-sectional view schematically showing an example of a state in which the exposed surface of the anode is at the same position as the bottom surface of the first opening.
  • FIG. 11 (a) if the cutting width according to the laser processing is narrower than the width of the anode 11, as shown in FIG. 14, the exposed surface is the same position as the first bottom surface of the opening portion 7f 1 of the anode 11 May become.
  • FIG. 15 is a cross-sectional view schematically showing another example of a state in which the exposed surface of the anode is at the same position as the bottom surface of the first opening.
  • the solid electrolyte layer 15a in the portion irradiated with the laser beam does not disappear by the laser processing shown in FIG. 11A, and becomes the oxide layer 15d of the solid electrolyte.
  • the exposed surface of the anode 11 is the same position as the first bottom surface of the opening portion 7f 1.
  • the sixth outer layer insulator 7f in the portion irradiated with the laser beam does not disappear, and becomes the oxide layer 7f 5 of the insulator.
  • the electrolytic capacitor of the present invention also includes an electrolytic capacitor having the following configuration.
  • a rectangular laminate comprising a plurality of laminated capacitor elements, wherein the capacitor element includes an anode having a dielectric layer on its surface and a cathode facing the anode via the dielectric layer.
  • An outer layer insulator provided around the laminate and A first external electrode electrically connected to the anode exposed from the laminate,
  • An electrolytic capacitor comprising a second external electrode electrically connected to the cathode exposed from the laminate.
  • the outer shape of the capacitance portion of the plurality of capacitor elements constitutes the outer shape of the laminated body.
  • the anode is exposed from a first opening formed in a part of the outer layer insulator.
  • the exposed surface of the anode is at the same position as the bottom surface of the first opening, or protrudes from the bottom surface of the first opening.
  • the cathode is exposed from a second opening formed in a part of the outer layer insulator.
  • An electrolytic capacitor in which the exposed surface of the cathode is at the same position as the bottom surface of the second opening or protrudes from the bottom surface of the second opening.
  • Electrolytic capacitor 3 Capacitor element 5 Laminated body 5a First end surface of the laminated body 5b Second end surface of the laminated body 5c First side surface of the laminated body 5d Top surface of the laminated body 5e Second side surface of the laminated body 5f Bottom surface of the laminated body 7a 1st outer layer insulator 7b 2nd outer layer insulator 7c 3rd outer layer insulator 7d 4th outer layer insulator 7e 5th outer layer insulator 7f 6th outer layer insulator 7f 1 1st opening 7f 2 2nd opening 7f 3rd 1 Columnar part 7f 4 Second columnar part 7f 5 Insulator oxide layer 9 Mounting substrate 9a 1 Positive mounting electrode 9a 2 Negative mounting electrode 9b Solder 9c Mounting surface 11 Anode 13 1st external electrode 13a 1st plating layer 13b 2nd plating Layer 15 Cathode 15a Solid electrolyte layer 15b Conductive layer 15c Catabol extraction layer 15d Solid electrolyte oxide layer 17 Second external electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

An electrolytic capacitor according to the present invention comprises a plurality of capacitor elements that are laminated, the capacitor elements comprising: a cuboid laminate having an anode that has a dielectric layer on a surface thereof and a cathode facing the anode across the dielectric layer; an outer-layer insulator provided on the perimeter of the laminate; a first external electrode electrically connected to the anode exposed from the laminate; and a second external electrode electrically connected to the cathode exposed from the laminate, wherein the anode is exposed from a first opening portion formed at part of the outer-layer insulator with the exposed face of the anode protruding from a bottom face of the first opening portion, and the cathode is exposed from a second opening portion formed at part of the outer-layer insulator with the exposed face of the cathode protruding from a bottom face of the second opening portion.

Description

電解コンデンサ、及び、電解コンデンサの製造方法Electrolytic capacitors and methods for manufacturing electrolytic capacitors
本発明は、電解コンデンサ、及び、電解コンデンサの製造方法に関する。 The present invention relates to an electrolytic capacitor and a method for manufacturing the electrolytic capacitor.
固体電解コンデンサ等の電解コンデンサは、例えば、アルミニウム等の弁作用金属からなる陽極の表面に誘電体層を形成した後、誘電体層の表面に陰極を形成する等の方法により作製される。 An electrolytic capacitor such as a solid electrolytic capacitor is manufactured by, for example, forming a dielectric layer on the surface of an anode made of a valve acting metal such as aluminum, and then forming a cathode on the surface of the dielectric layer.
近年、電解コンデンサには小型化及び大容量化が望まれている。さらに、高周波に対応して低ESR(等価直列抵抗)化のみならず、過渡応答性に優れた低ESL(等価直列インダクタンス)化が要求されている。 In recent years, it has been desired to reduce the size and capacity of electrolytic capacitors. Further, not only low ESR (equivalent series resistance) corresponding to high frequency, but also low ESL (equivalent series inductance) excellent in transient response is required.
特許文献1には、弁作用金属からなる矩形状の陽極体を絶縁部を設けて短辺方向で陽極部と陰極部に分離し、この陰極部の表面に誘電体酸化皮膜層、固体電解質層、陰極層が順次積層形成されたコンデンサ素子と、このコンデンサ素子を単独または2枚以上積層した状態で陰極部に接続されたコム端子と、このコム端子ならびに陽極部の一部が夫々外表面に露呈する状態で上記コンデンサ素子を被覆した絶縁性の外装樹脂と、この外装樹脂の長辺側の側面に対向して設けられ、上記コム端子とコンデンサ素子の陽極部が夫々接続された一対の外部電極からなる固体電解コンデンサが開示されている。 In Patent Document 1, a rectangular anode made of a valve acting metal is provided with an insulating portion and separated into an anode portion and a cathode portion in the short side direction, and a dielectric oxide film layer and a solid electrolyte layer are provided on the surface of the cathode portion. , A capacitor element in which the cathode layers are sequentially laminated, a comb terminal connected to the cathode portion in a state where one or two or more of these capacitor elements are laminated, and a part of the comb terminal and the anode portion are on the outer surface, respectively. A pair of external resins that are provided facing the long side side surface of the insulating exterior resin that coats the capacitor element in an exposed state, and the comb terminal and the anode portion of the capacitor element are connected to each other. A solid electrolytic capacitor consisting of electrodes is disclosed.
特開2004-259929号公報Japanese Unexamined Patent Publication No. 2004-259929
特許文献1によれば、ESR及びESLの低い固体電解コンデンサを提供することができるとされている。しかしながら、ESRを低くする点においては、更なる改善の余地があると言える。 According to Patent Document 1, it is possible to provide a solid electrolytic capacitor having low ESR and ESL. However, it can be said that there is room for further improvement in terms of lowering the ESR.
本発明は上記の問題を解決するためになされたものであり、外部電極との接触面積が大きく、低ESR化が可能な電解コンデンサを提供することを目的とする。本発明はまた、上記電解コンデンサの製造方法を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an electrolytic capacitor having a large contact area with an external electrode and capable of reducing ESR. It is also an object of the present invention to provide a method for manufacturing the above electrolytic capacitor.
本発明の電解コンデンサは、積層されている複数のコンデンサ素子を含み、上記コンデンサ素子が、表面に誘電体層を有する陽極と、上記誘電体層を介して上記陽極に対向する陰極とを含む、直方体状の積層体と、上記積層体の周囲に設けられる外層絶縁体と、上記積層体から露出する上記陽極と電気的に接続される第1外部電極と、上記積層体から露出する上記陰極と電気的に接続される第2外部電極と、を備える電解コンデンサであって、上記陽極は、上記外層絶縁体の一部に形成された第1開口部から露出し、かつ、上記陽極の露出面は、上記第1開口部の底面から突出し、上記陰極は、上記外層絶縁体の一部に形成された第2開口部から露出し、かつ、上記陰極の露出面は、上記第2開口部の底面から突出している。 The electrolytic capacitor of the present invention includes a plurality of laminated capacitor elements, and the capacitor element includes an electrode having a dielectric layer on its surface and a cathode facing the anode via the dielectric layer. A rectangular laminate, an outer layer insulator provided around the laminate, a first external electrode electrically connected to the anode exposed from the laminate, and a cathode exposed from the laminate. An electrolytic capacitor including a second external electrode electrically connected, wherein the anode is exposed from a first opening formed in a part of the outer layer insulator, and is an exposed surface of the anode. Is projected from the bottom surface of the first opening, the cathode is exposed from the second opening formed in a part of the outer layer insulator, and the exposed surface of the cathode is of the second opening. It protrudes from the bottom.
本発明の電解コンデンサの製造方法は、積層されている複数のコンデンサ素子を含み、上記コンデンサ素子が、表面に誘電体層を有する陽極と、上記誘電体層を介して上記陽極に対向する陰極とを含む、直方体状の積層体を作製する工程と、上記積層体の周囲に外層絶縁体を形成する工程と、上記陽極が露出するように、レーザー加工により上記外層絶縁体の一部を除去して第1開口部を形成する工程と、上記陰極が露出するように、レーザー加工により上記外層絶縁体の一部を除去して第2開口部を形成する工程と、上記第1開口部から露出する上記陽極と電気的に接続される第1外部電極を形成する工程と、上記第2開口部から露出する上記陰極と電気的に接続される第2外部電極を形成する工程と、を備える。 The method for manufacturing an electrolytic capacitor of the present invention includes a plurality of laminated capacitor elements, wherein the capacitor element has an electrode having a dielectric layer on its surface and a cathode facing the anode via the dielectric layer. A step of producing a rectangular laminate including the above, a step of forming an outer layer insulator around the laminate, and a part of the outer layer insulator being removed by laser processing so that the anode is exposed. The step of forming the first opening, the step of removing a part of the outer layer insulator by laser processing to form the second opening so that the cathode is exposed, and the step of exposing from the first opening. A step of forming a first external electrode electrically connected to the above-mentioned anode and a step of forming a second external electrode electrically connected to the above-mentioned cathode exposed from the second opening are provided.
本発明によれば、外部電極との接触面積が大きく、低ESR化が可能な電解コンデンサを提供することができる。 According to the present invention, it is possible to provide an electrolytic capacitor having a large contact area with an external electrode and capable of reducing ESR.
図1(a)は、本発明の第1実施形態に係る電解コンデンサの一例を模式的に示す斜視図であり、図1(b)は、図1(a)に示す電解コンデンサが実装基板に実装された実装構造の一例を模式的に示す斜視図である。FIG. 1 (a) is a perspective view schematically showing an example of an electrolytic capacitor according to the first embodiment of the present invention, and FIG. 1 (b) shows an electrolytic capacitor shown in FIG. 1 (a) mounted on a mounting substrate. It is a perspective view which shows an example of the mounted mounting structure schematically. 図2(a)は、図1(a)に示す電解コンデンサから外層絶縁体を除いた積層体の一例を模式的に示す斜視図であり、図2(b)は、図2(a)に示す積層体に含まれるコンデンサ素子の構成の一例を模式的に示す斜視図である。FIG. 2A is a perspective view schematically showing an example of a laminated body obtained by removing the outer layer insulator from the electrolytic capacitor shown in FIG. 1A, and FIG. 2B is shown in FIG. 2A. It is a perspective view which shows typically an example of the structure of the capacitor element included in the laminated body shown. 図3(a)は、図1(a)に示す電解コンデンサを底面から見た斜視図であり、図3(b)は、図3(a)に示す電解コンデンサから第1外部電極及び第2外部電極を除いた状態を模式的に示す斜視図である。FIG. 3A is a perspective view of the electrolytic capacitor shown in FIG. 1A as viewed from the bottom surface, and FIG. 3B shows the first external electrode and the second external electrode and the second from the electrolytic capacitor shown in FIG. 3A. It is a perspective view which shows typically the state which removed the external electrode. 図4は、図3(b)のIV-IV線断面図である。FIG. 4 is a sectional view taken along line IV-IV of FIG. 3 (b). 図5は、図3(b)のV-V線断面図である。FIG. 5 is a sectional view taken along line VV of FIG. 3 (b). 図6は、コンデンサ素子シートの一例を模式的に示す斜視図である。FIG. 6 is a perspective view schematically showing an example of a capacitor element sheet. 図7は、積層体ブロックの一例を模式的に示す斜視図である。FIG. 7 is a perspective view schematically showing an example of a laminated body block. 図8は、樹脂フィルム付き積層体ブロックの一例を模式的に示す斜視図である。FIG. 8 is a perspective view schematically showing an example of a laminated block with a resin film. 図9(a)及び図9(b)は、樹脂フィルム付き積層体ブロックを個片化する工程の一例を模式的に示す斜視図である。9 (a) and 9 (b) are perspective views schematically showing an example of a step of individualizing a laminated block with a resin film. 図10(a)及び図10(b)は、外層絶縁体を形成する工程の一例を模式的に示す斜視図である。10 (a) and 10 (b) are perspective views schematically showing an example of a step of forming an outer layer insulator. 図11(a)及び図11(b)は、第1外部電極及び第2外部電極を形成する工程の一例を模式的に示す斜視図である。11 (a) and 11 (b) are perspective views schematically showing an example of a process of forming the first external electrode and the second external electrode. 図12は、本発明の第2実施形態に係る電解コンデンサの一例を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing an example of an electrolytic capacitor according to a second embodiment of the present invention. 図13(a)は、図12に示す電解コンデンサを第1端面から見た斜視図であり、図13(b)は、図12に示す電解コンデンサを第2端面から見た斜視図である。13 (a) is a perspective view of the electrolytic capacitor shown in FIG. 12 as viewed from the first end surface, and FIG. 13 (b) is a perspective view of the electrolytic capacitor shown in FIG. 12 as viewed from the second end surface. 図14は、陽極の露出面が第1開口部の底面と同じ位置にある状態の一例を模式的に示す断面図である。FIG. 14 is a cross-sectional view schematically showing an example of a state in which the exposed surface of the anode is at the same position as the bottom surface of the first opening. 図15は、陽極の露出面が第1開口部の底面と同じ位置にある状態の別の一例を模式的に示す断面図である。FIG. 15 is a cross-sectional view schematically showing another example of a state in which the exposed surface of the anode is at the same position as the bottom surface of the first opening.
以下、本発明の電解コンデンサ、及び、電解コンデンサの製造方法について説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する各実施形態の望ましい構成を2つ以上組み合わせたものもまた本発明である。
Hereinafter, the electrolytic capacitor of the present invention and a method for manufacturing the electrolytic capacitor will be described.
However, the present invention is not limited to the following configurations, and can be appropriately modified and applied without changing the gist of the present invention. It should be noted that a combination of two or more desirable configurations of each of the embodiments described below is also the present invention.
以下に示す各実施形態に係る電解コンデンサは、固体電解質層を有する固体電解コンデンサであるが、本発明の電解コンデンサは、固体電解質に代えて電解液を使用した電解コンデンサであってもよいし、固体電解質とともに電解液を使用した電解コンデンサであってもよい。 The electrolytic capacitor according to each embodiment shown below is a solid electrolytic capacitor having a solid electrolyte layer, but the electrolytic capacitor of the present invention may be an electrolytic capacitor using an electrolytic solution instead of the solid electrolyte. It may be an electrolytic capacitor using an electrolytic solution together with a solid electrolyte.
[第1実施形態]
(電解コンデンサ)
図1(a)は、本発明の第1実施形態に係る電解コンデンサの一例を模式的に示す斜視図であり、図1(b)は、図1(a)に示す電解コンデンサが実装基板に実装された実装構造の一例を模式的に示す斜視図である。図2(a)は、図1(a)に示す電解コンデンサから外層絶縁体を除いた積層体の一例を模式的に示す斜視図であり、図2(b)は、図2(a)に示す積層体に含まれるコンデンサ素子の構成の一例を模式的に示す斜視図である。
[First Embodiment]
(Electrolytic capacitor)
FIG. 1 (a) is a perspective view schematically showing an example of an electrolytic capacitor according to the first embodiment of the present invention, and FIG. 1 (b) shows an electrolytic capacitor shown in FIG. 1 (a) mounted on a mounting substrate. It is a perspective view which shows an example of the mounted mounting structure schematically. FIG. 2A is a perspective view schematically showing an example of a laminated body obtained by removing the outer layer insulator from the electrolytic capacitor shown in FIG. 1A, and FIG. 2B is shown in FIG. 2A. It is a perspective view which shows typically an example of the structure of the capacitor element included in the laminated body shown.
図1(a)に示す電解コンデンサ1は、図2(a)及び図2(b)に示す直方体状の積層体5と、積層体5の周囲に設けられる外層絶縁体7a、7b、7c、7d、7e及び7fとを備える。図2(a)及び図2(b)に示すように、積層体5は、積層されている複数のコンデンサ素子3を含む。電解コンデンサ1は、図1(b)に示すように、実装基板9に実装される。 The electrolytic capacitor 1 shown in FIG. 1 (a) includes the rectangular parallelepiped laminated body 5 shown in FIGS. 2 (a) and 2 (b), and outer layer insulators 7a, 7b, 7c provided around the laminated body 5. It includes 7d, 7e and 7f. As shown in FIGS. 2A and 2B, the laminated body 5 includes a plurality of laminated capacitor elements 3. The electrolytic capacitor 1 is mounted on the mounting board 9 as shown in FIG. 1 (b).
コンデンサ素子3は、図2(b)に示すように、表面に誘電体層19を有する陽極11と、誘電体層19を介して陽極11に対向する陰極15とを含む。 As shown in FIG. 2B, the capacitor element 3 includes an anode 11 having a dielectric layer 19 on its surface and a cathode 15 facing the anode 11 via the dielectric layer 19.
積層体5は、図2(a)に示すように、電解コンデンサ1が実装されるべき実装基板9の実装面9c(図1(b)参照)に対向する底面5fと、底面5fに対向する上面5dと、底面5f及び上面5dに直交する第1端面5aと、第1端面5aに対向する第2端面5bと、底面5f、上面5d、第1端面5a及び第2端面5bに直交する第1側面5cと、第1側面5cに対向する第2側面5eとを有する。 As shown in FIG. 2A, the laminate 5 faces the bottom surface 5f facing the mounting surface 9c (see FIG. 1B) of the mounting board 9 on which the electrolytic capacitor 1 should be mounted, and the bottom surface 5f. The top surface 5d, the first end surface 5a orthogonal to the bottom surface 5f and the top surface 5d, the second end surface 5b facing the first end surface 5a, the bottom surface 5f, the top surface 5d, the first end surface 5a and the second end surface 5b orthogonal to the second end surface 5b. It has one side surface 5c and a second side surface 5e facing the first side surface 5c.
外層絶縁体7a、7b、7c、7d、7e及び7fは、図1(a)に示すように、積層体5の第1端面5aに設けられる第1外層絶縁体7aと、積層体5の第2端面5bに設けられる第2外層絶縁体7bと、積層体5の第1側面5cに設けられる第3外層絶縁体7cと、積層体5の上面5dに設けられる第4外層絶縁体7dと、積層体5の第2側面5eに設けられる第5外層絶縁体7eと、積層体5の底面5fに設けられる第6外層絶縁体7fとを含む。 As shown in FIG. 1A, the outer layer insulators 7a, 7b, 7c, 7d, 7e and 7f are the first outer layer insulator 7a provided on the first end surface 5a of the laminated body 5 and the first outer layer insulator 7a of the laminated body 5. A second outer layer insulator 7b provided on the two end faces 5b, a third outer layer insulator 7c provided on the first side surface 5c of the laminate 5, and a fourth outer layer insulator 7d provided on the upper surface 5d of the laminate 5. The fifth outer layer insulator 7e provided on the second side surface 5e of the laminated body 5 and the sixth outer layer insulator 7f provided on the bottom surface 5f of the laminated body 5 are included.
積層体5の第1端面5a及び第2端面5bを結ぶ方向を長さ方向(図1(b)及び図2(a)中、Lで示す方向)、積層体5の第1側面5c及び第2側面5eを結ぶ方向を幅方向(図1(b)及び図2(a)中、Wで示す方向)、積層体5の底面5f及び上面5dを結ぶ方向を厚さ方向(図1(b)及び図2(a)中、Tで示す方向)としたとき、複数のコンデンサ素子3は、図2(a)に示すように、長さ方向(L方向)に沿って積層されている。したがって、コンデンサ素子3の積層方向は、実装基板9の実装面9cに対して略平行となる(図1(b)参照)。 The direction connecting the first end surface 5a and the second end surface 5b of the laminated body 5 is the length direction (the direction indicated by L in FIGS. 1B and 2A), and the first side surface 5c and the first side surface 5c of the laminated body 5. The direction connecting the two side surfaces 5e is the width direction (the direction indicated by W in FIGS. 1B and 2A), and the direction connecting the bottom surface 5f and the top surface 5d of the laminated body 5 is the thickness direction (FIG. 1 (b). ) And the direction indicated by T in FIG. 2A), the plurality of capacitor elements 3 are stacked along the length direction (L direction) as shown in FIG. 2A. Therefore, the stacking direction of the capacitor elements 3 is substantially parallel to the mounting surface 9c of the mounting substrate 9 (see FIG. 1B).
複数のコンデンサ素子3を長さ方向(L方向)に沿って積層することにより、複数のコンデンサ素子3が実装基板9の実装面9cに対して近距離かつ等距離になるように積層される。そのため、各コンデンサ素子3の実装面9cに設けられているプラス実装電極9a又はマイナス実装電極9aまでの距離を短くすることができる。その結果、電解コンデンサ1の低ESR化及び低ESL化が可能となる。 By stacking the plurality of capacitor elements 3 along the length direction (L direction), the plurality of capacitor elements 3 are laminated so as to be close to and equidistant from the mounting surface 9c of the mounting substrate 9. Therefore, the distance to the positive mounting electrode 9a 1 or the negative mounting electrode 9a 2 provided on the mounting surface 9c of each capacitor element 3 can be shortened. As a result, the electrolytic capacitor 1 can be reduced in ESR and ESL.
一例として、電解コンデンサ1は、L方向の寸法が3.5mm、W方向の寸法が2.8mm、T方向の寸法が1.9mmである。 As an example, the electrolytic capacitor 1 has a dimension of 3.5 mm in the L direction, a dimension of 2.8 mm in the W direction, and a dimension of 1.9 mm in the T direction.
電解コンデンサ1では、積層体5の長さ方向の寸法L、積層体5の幅方向の寸法W、及び、積層体5の厚さ方向の寸法Tは、L>W>Tを満たすことが好ましい。あるいは、W>L>Tを満たすことも好ましい。複数のコンデンサ素子3が長さ方向(L方向)に沿って積層されている電解コンデンサ1では、L>W>T、又は、W>L>Tを満たす場合、複数のコンデンサ素子3が厚さ方向(T方向)に沿って積層されている電解コンデンサと比べて、コンデンサ素子3の積層数が増大し、多並列化することができる。その結果、電解コンデンサ1の低ESR化が可能となる。 In the electrolytic capacitor 1, it is preferable that the dimension L in the length direction of the laminate 5, the dimension W in the width direction of the laminate 5, and the dimension T in the thickness direction of the laminate 5 satisfy L> W> T. .. Alternatively, it is also preferable to satisfy W> L> T. In the electrolytic capacitor 1 in which a plurality of capacitor elements 3 are stacked along the length direction (L direction), when L> W> T or W> L> T is satisfied, the plurality of capacitor elements 3 have a thickness. Compared with the electrolytic capacitors stacked along the direction (T direction), the number of stacked capacitor elements 3 is increased, and multiple parallelization is possible. As a result, the ESR of the electrolytic capacitor 1 can be reduced.
電解コンデンサ1では、図2(b)に示すように、複数のコンデンサ素子3の容量部の外形が、積層体5の外形を構成していることが好ましい。この場合、容量部を除いて、陽極11と陰極15を絶縁するような構成や、陽極引き出し部および陰極引き出し部といった構成が積層体5の内部に存在しないため、大容量化が可能となる。 In the electrolytic capacitor 1, as shown in FIG. 2B, it is preferable that the outer shape of the capacitance portion of the plurality of capacitor elements 3 constitutes the outer shape of the laminated body 5. In this case, since there is no configuration such as insulating the anode 11 and the cathode 15 or a configuration such as an anode lead-out portion and a cathode lead-out portion inside the laminate 5 except for the capacitance portion, the capacity can be increased.
図3(a)は、図1(a)に示す電解コンデンサを底面から見た斜視図であり、図3(b)は、図3(a)に示す電解コンデンサから第1外部電極及び第2外部電極を除いた状態を模式的に示す斜視図である。
図3(a)及び図3(b)に示すように、電解コンデンサ1は、積層体5から露出する陽極11と電気的に接続される第1外部電極13と、積層体5から露出する陰極15と電気的に接続される第2外部電極17とを備える。
FIG. 3A is a perspective view of the electrolytic capacitor shown in FIG. 1A as viewed from the bottom surface, and FIG. 3B shows the first external electrode and the second external electrode and the second from the electrolytic capacitor shown in FIG. 3A. It is a perspective view which shows typically the state which removed the external electrode.
As shown in FIGS. 3A and 3B, the electrolytic capacitor 1 includes a first external electrode 13 electrically connected to an anode 11 exposed from the laminate 5, and a cathode exposed from the laminate 5. A second external electrode 17 that is electrically connected to the 15 is provided.
第1外部電極13は、積層体5の底面5fから露出する陽極11と電気的に接続されるように、積層体5の底面5fに設けられ、第2外部電極17は、積層体5の底面5fから露出する陰極15と電気的に接続されるように、積層体5の底面5fに設けられている。この場合、各コンデンサ素子3の実装面9cに設けられているプラス実装電極9a又はマイナス実装電極9aまでの距離を短くすることができる。その結果、電解コンデンサ1の低ESR化及び低ESL化が可能となる。 The first external electrode 13 is provided on the bottom surface 5f of the laminate 5 so as to be electrically connected to the anode 11 exposed from the bottom surface 5f of the laminate 5, and the second external electrode 17 is the bottom surface of the laminate 5. It is provided on the bottom surface 5f of the laminate 5 so as to be electrically connected to the cathode 15 exposed from 5f. In this case, the distance to the positive mounting electrode 9a 1 or the negative mounting electrode 9a 2 provided on the mounting surface 9c of each capacitor element 3 can be shortened. As a result, the electrolytic capacitor 1 can be reduced in ESR and ESL.
図4は、図3(b)のIV-IV線断面図である。
図4に示すように、陽極11は、積層体5の底面5f上に形成された第6外層絶縁体7fに形成された第1開口部7fから露出している。第1開口部7fの底面は、積層体5まで達している。そのため、陽極11の露出面は、第1開口部7fの底面から突出している。これにより、陽極11の露出面積が増大し、第1外部電極13(図3(a)参照)との接触面積が増大するため、低ESR化が可能となる。なお、第1開口部7fにおいて、陽極11と陰極15との絶縁性は確保されている。
FIG. 4 is a sectional view taken along line IV-IV of FIG. 3 (b).
As shown in FIG. 4, the anode 11 is exposed from the first opening 7f 1 formed in the sixth outer layer insulator 7 f formed on the bottom surface 5 f of the laminated body 5. The bottom surface of the first opening 7f 1 reaches up to the laminated body 5. Therefore, the exposed surface of the anode 11 protrudes from the first bottom surface of the opening portion 7f 1. As a result, the exposed area of the anode 11 increases, and the contact area with the first external electrode 13 (see FIG. 3A) increases, so that the ESR can be reduced. In the first opening portion 7f 1, insulation between the anode 11 and the cathode 15 is secured.
図5は、図3(b)のV-V線断面図である。
図5に示すように、陰極15は、積層体5の底面5f上に形成された第6外層絶縁体7fに形成された第2開口部7fから露出している。第2開口部7fの底面は、積層体5まで達している。そのため、陰極15の露出面は、第2開口部7fの底面から突出している。これにより、陰極15の露出面積が増大し、第2外部電極17(図3(a)参照)との接触面積が増大するため、低ESR化が可能となる。
FIG. 5 is a sectional view taken along line VV of FIG. 3 (b).
As shown in FIG. 5, the cathode 15 is exposed from the second opening 7f 2 formed in the sixth outer layer insulator 7f formed on the bottom surface 5f of the laminated body 5. The bottom surface of the second opening 7f 2 reaches up to the laminated body 5. Therefore, the exposed surface of the cathode 15 projects from the bottom surface of the second opening 7f 2. As a result, the exposed area of the cathode 15 is increased, and the contact area with the second external electrode 17 (see FIG. 3A) is increased, so that the ESR can be reduced.
図3(b)に示すように、陽極11は、複数のコンデンサ素子3の積層方向と略直交する方向に直線状に、かつ、互いに略平行に露出していることが好ましい。同様に、陰極15は、複数のコンデンサ素子3の積層方向と略直交する方向に直線状に、かつ、互いに略平行に露出していることが好ましい。 As shown in FIG. 3B, it is preferable that the anode 11 is linearly exposed in a direction substantially orthogonal to the stacking direction of the plurality of capacitor elements 3 and substantially parallel to each other. Similarly, it is preferable that the cathode 15 is linearly exposed in a direction substantially orthogonal to the stacking direction of the plurality of capacitor elements 3 and substantially parallel to each other.
第1開口部7f及び第2開口部7fは、第6外層絶縁体7fをレーザーによる熱加工またはアブレーション加工で除去することにより形成される。 The first opening 7f 1 and the second opening 7f 2 are formed by removing the sixth outer layer insulator 7f by thermal processing or ablation processing with a laser.
レーザーとしては、紫外線(UV)レーザー(波長355nm)、グリーンレーザー(波長532nm)、赤外線(IR)レーザー(波長1064nm)、炭酸ガス(CO)レーザー(波長10.6μm)などが用いられる。特に、アブレーション加工で微細加工が可能なUVレーザー又はグリーンレーザーが好ましい。波長としては248nm以上532nm以下が好ましい。 As the laser, an ultraviolet (UV) laser (wavelength 355 nm), a green laser (wavelength 532 nm), an infrared (IR) laser (wavelength 1064 nm), a carbon dioxide gas (CO 2 ) laser (wavelength 10.6 μm) and the like are used. In particular, a UV laser or a green laser that can be finely processed by ablation processing is preferable. The wavelength is preferably 248 nm or more and 532 nm or less.
上記のレーザーを用いれば、第6外層絶縁体7fの所望の位置にレーザー加工を行うことにより、第6外層絶縁体7fに第1開口部7f及び第2開口部7fを形成することができる。そのため、積層体5の底面5fに陽極11及び陰極15を選択的に露出させることができる。 By using the above laser, the first opening 7f 1 and the second opening 7f 2 can be formed in the sixth outer layer insulator 7f by performing laser processing at a desired position of the sixth outer layer insulator 7f. it can. Therefore, the anode 11 and the cathode 15 can be selectively exposed on the bottom surface 5f of the laminated body 5.
(コンデンサ素子)
コンデンサ素子3を構成する陽極11は、弁作用金属箔を中心に有し、エッチング層等の多孔質層(図示しない)を表面に有している。多孔質層の表面には誘電体層19が設けられている。
(Capacitor element)
The anode 11 constituting the capacitor element 3 has a valve acting metal leaf at the center, and has a porous layer (not shown) such as an etching layer on the surface. A dielectric layer 19 is provided on the surface of the porous layer.
弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、ケイ素等の金属単体、又は、これらの金属を含む合金等が挙げられる。これらの中では、アルミニウム又はアルミニウム合金が好ましい。 Examples of the valve acting metal include simple metals such as aluminum, tantalum, niobium, titanium, zirconium, magnesium and silicon, or alloys containing these metals. Among these, aluminum or an aluminum alloy is preferable.
弁作用金属の形状は特に限定されないが、平板状であることが好ましく、箔状であることがより好ましい。また、多孔質層は塩酸等によりエッチング処理されたエッチング層であることが好ましい。 The shape of the valve acting metal is not particularly limited, but it is preferably flat, more preferably foil. Further, the porous layer is preferably an etching layer that has been etched with hydrochloric acid or the like.
エッチング処理前の弁作用金属箔の厚さが60μm以上であることが好ましく、180μm以下であることが好ましい。また、エッチング処理後にエッチングされていない弁作用金属箔(芯部)の厚さが10μm以上であることが好ましく、70μm以下であることが好ましい。多孔質層の厚さは電解コンデンサに要求される耐電圧、静電容量に合わせて設計されるが、弁作用金属箔の両側の多孔質層を合わせて10μm以上であることが好ましく、120μm以下であることが好ましい。 The thickness of the valve acting metal foil before the etching treatment is preferably 60 μm or more, and preferably 180 μm or less. Further, the thickness of the valve acting metal foil (core portion) that has not been etched after the etching treatment is preferably 10 μm or more, and preferably 70 μm or less. The thickness of the porous layer is designed according to the withstand voltage and capacitance required for the electrolytic capacitor, but the total thickness of the porous layers on both sides of the valve acting metal foil is preferably 10 μm or more, and 120 μm or less. Is preferable.
陽極11は、積層体5の底面5fに引き出されて第1外部電極13に電気的に接続される。 The anode 11 is drawn out to the bottom surface 5f of the laminated body 5 and is electrically connected to the first external electrode 13.
誘電体層19は、上記弁作用金属の酸化皮膜からなることが好ましい。例えば、弁作用金属箔としてアルミニウム箔が用いられる場合、ホウ酸、リン酸、アジピン酸、又は、それらのナトリウム塩、アンモニウム塩等を含む水溶液中で陽極酸化することにより、誘電体層となる酸化皮膜を形成することができる。 The dielectric layer 19 is preferably made of an oxide film of the valve acting metal. For example, when an aluminum foil is used as a valve acting metal foil, it is oxidized to form a dielectric layer by anodization in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or a sodium salt or ammonium salt thereof. A film can be formed.
誘電体層19は、多孔質層の表面に沿って形成されることにより細孔(凹部)が形成されている。誘電体層19の厚さは電解コンデンサに要求される耐電圧、静電容量に合わせて設計されるが、10nm以上であることが好ましく、100nm以下であることが好ましい。 The dielectric layer 19 has pores (recesses) formed by being formed along the surface of the porous layer. The thickness of the dielectric layer 19 is designed according to the withstand voltage and capacitance required for the electrolytic capacitor, but is preferably 10 nm or more, and preferably 100 nm or less.
コンデンサ素子3を構成する陰極15は、誘電体層19上に形成される固体電解質層15aと、固体電解質層15a上に形成される導電層15bと、導電層15b上に形成される陰極引き出し層15cとが積層されてなる。したがって、電解コンデンサ1は、陰極15の一部として固体電解質層15aが設けられている固体電解コンデンサである。 The cathode 15 constituting the capacitor element 3 includes a solid electrolyte layer 15a formed on the dielectric layer 19, a conductive layer 15b formed on the solid electrolyte layer 15a, and a cathode extraction layer formed on the conductive layer 15b. 15c and 15c are laminated. Therefore, the electrolytic capacitor 1 is a solid electrolytic capacitor provided with a solid electrolyte layer 15a as a part of the cathode 15.
固体電解質層15aを構成する材料としては、例えば、ピロール類、チオフェン類、アニリン類等を骨格とした導電性高分子等が挙げられる。チオフェン類を骨格とする導電性高分子としては、例えば、PEDOT[ポリ(3,4-エチレンジオキシチオフェン)]が挙げられ、ドーパントとなるポリスチレンスルホン酸(PSS)と複合化させたPEDOT:PSSであってもよい。 Examples of the material constituting the solid electrolyte layer 15a include conductive polymers having pyrroles, thiophenes, anilines and the like as skeletons. Examples of the conductive polymer having thiophenes as a skeleton include PEDOT [poly (3,4-ethylenedioxythiophene)], and PEDOT: PSS complexed with polystyrene sulfonic acid (PSS) as a dopant. It may be.
固体電解質層15aは、例えば、3,4-エチレンジオキシチオフェン等のモノマーを含む処理液を用いて、誘電体層の表面にポリ(3,4-エチレンジオキシチオフェン)等の重合膜を形成する方法や、ポリ(3,4-エチレンジオキシチオフェン)等のポリマーの分散液を誘電体層の表面に塗布して乾燥させる方法等によって形成される。なお、細孔(凹部)を充填する内層用の固体電解質層を形成した後、誘電体層全体を被覆する外層用の固体電解質層を形成することが好ましい。 For the solid electrolyte layer 15a, for example, a polymer film such as poly (3,4-ethylenedioxythiophene) is formed on the surface of the dielectric layer using a treatment liquid containing a monomer such as 3,4-ethylenedioxythiophene. It is formed by a method of applying a dispersion of a polymer such as poly (3,4-ethylenedioxythiophene) to the surface of the dielectric layer and drying it. It is preferable to form the solid electrolyte layer for the inner layer that fills the pores (recesses), and then form the solid electrolyte layer for the outer layer that covers the entire dielectric layer.
固体電解質層15aは、上記の処理液または分散液を、スポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ塗布、インクジェット印刷、ディップ等によって誘電体層上に形成することにより、区画された所定の領域あるいはコンデンサ素子シート23のサイズ全域に形成することができる。 The solid electrolyte layer 15a is formed by forming the above-mentioned treatment liquid or dispersion liquid on the dielectric layer by sponge transfer, screen printing, spray coating, dispenser coating, inkjet printing, dipping, or the like to form a predetermined region or a partitioned region. It can be formed over the entire size of the capacitor element sheet 23.
固体電解質層15aの厚さは2μm以上であることが好ましく、20μm以下であることが好ましい。 The thickness of the solid electrolyte layer 15a is preferably 2 μm or more, and preferably 20 μm or less.
導電層15bは、固体電解質層15aと陰極引き出し層15cとを電気的におよび機械的に接続させるために設けられている。例えば、カーボンペースト、グラフェンペースト、銀ペーストのような導電性ペーストを付与することによって形成されてなるカーボン層、グラフェン層又は銀層であることが好ましい。また、カーボン層やグラフェン層の上に銀層が設けられた複合層や、カーボンペーストやグラフェンペーストと銀ペーストを混合する混合層であってもよい。 The conductive layer 15b is provided to electrically and mechanically connect the solid electrolyte layer 15a and the cathode extraction layer 15c. For example, it is preferably a carbon layer, a graphene layer or a silver layer formed by applying a conductive paste such as a carbon paste, a graphene paste or a silver paste. Further, it may be a composite layer in which a silver layer is provided on the carbon layer or the graphene layer, or a mixed layer in which the carbon paste or the graphene paste and the silver paste are mixed.
導電層15bは、カーボンペースト等の導電性ペーストをスポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ塗布、インクジェット印刷、ディップ等によって固体電解質層上に形成することにより、区画された所定の領域あるいはコンデンサ素子シート23のサイズ全域に形成することができる。 The conductive layer 15b is formed by forming a conductive paste such as carbon paste on the solid electrolyte layer by sponge transfer, screen printing, spray coating, dispenser coating, inkjet printing, dipping, etc., thereby forming a predetermined region or a capacitor element. It can be formed over the entire size of the sheet 23.
導電層15bの厚さは2μm以上であることが好ましく、20μm以下であることが好ましい。 The thickness of the conductive layer 15b is preferably 2 μm or more, and preferably 20 μm or less.
陰極引き出し層15cは、金属箔または電極ペースト層により形成することができる。 The cathode extraction layer 15c can be formed of a metal foil or an electrode paste layer.
金属箔の場合は、Al、Cu、Ag及びこれらの金属を主成分とする合金からなる群より選択される少なくとも一種の金属からなることが好ましい。金属箔が上記の金属からなると、金属箔の抵抗値を低減させることができ、ESRを低減させることができる。 In the case of a metal foil, it is preferably composed of at least one metal selected from the group consisting of Al, Cu, Ag and alloys containing these metals as main components. When the metal foil is made of the above metal, the resistance value of the metal foil can be reduced and the ESR can be reduced.
また、金属箔として、表面にスパッタや蒸着等の成膜方法によりカーボンコートやチタンコートがされた金属箔を用いてもよい。カーボンコートされたアルミニウム箔を用いることがより好ましい。 Further, as the metal foil, a metal foil having a surface coated with carbon or titanium by a film forming method such as sputtering or vapor deposition may be used. It is more preferable to use carbon coated aluminum foil.
金属箔の厚さは特に限定されないが、製造工程でのハンドリング、小型化、およびESRを低減させる観点からは、20μm以上であることが好ましく、50μm以下であることが好ましい。 The thickness of the metal foil is not particularly limited, but from the viewpoint of handling in the manufacturing process, miniaturization, and reduction of ESR, it is preferably 20 μm or more, and preferably 50 μm or less.
電極ペースト層の場合は、電極ペーストをスポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ塗布、インクジェット印刷、ディップ等によって導電層上に形成することにより、所定の領域に陰極引き出し層15cを形成することができる。電極ペーストとしては、Ag、Cu、またはNiを主成分とする電極ペーストが好ましい。 In the case of the electrode paste layer, the cathode extraction layer 15c can be formed in a predetermined region by forming the electrode paste on the conductive layer by sponge transfer, screen printing, spray coating, dispenser coating, inkjet printing, dipping or the like. it can. As the electrode paste, an electrode paste containing Ag, Cu, or Ni as a main component is preferable.
陰極引き出し層15cを電極ペースト層とする場合、電極ペースト層の厚さを金属箔を用いる場合よりも薄くすることが可能であり、スクリーン印刷の場合、2μm以上、20μm以下の厚さとすることも可能である。 When the cathode extraction layer 15c is used as the electrode paste layer, the thickness of the electrode paste layer can be made thinner than when a metal foil is used, and in the case of screen printing, the thickness may be 2 μm or more and 20 μm or less. It is possible.
陰極引き出し層15cは、積層体5の底面5fに引き出されて第2外部電極17に電気的に接続される。 The cathode extraction layer 15c is drawn out to the bottom surface 5f of the laminated body 5 and is electrically connected to the second external electrode 17.
(外層絶縁体)
第1外層絶縁体7a及び第2外層絶縁体7bは、積層方向である長さ方向(L方向)の両主面に設けられ、第3外層絶縁体7c及び第5外層絶縁体7eは、幅方向(W方向)の両主面に設けられ、第4外層絶縁体7d及び第6外層絶縁体7fは、厚さ方向(T方向)の両主面に設けられている。
(Outer layer insulator)
The first outer layer insulator 7a and the second outer layer insulator 7b are provided on both main surfaces in the length direction (L direction), which is the stacking direction, and the third outer layer insulator 7c and the fifth outer layer insulator 7e are width. The fourth outer layer insulator 7d and the sixth outer layer insulator 7f are provided on both main surfaces in the direction (W direction), and are provided on both main surfaces in the thickness direction (T direction).
第1外層絶縁体7a及び第2外層絶縁体7bは、少なくとも樹脂を含む。樹脂としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂(PET樹脂を含む)、ナイロン樹脂、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂、ガラスエポキシ樹脂、液晶ポリマー等を用いることが好ましい。 The first outer layer insulator 7a and the second outer layer insulator 7b contain at least a resin. As the resin, for example, polypropylene resin, polyethylene resin (including PET resin), nylon resin, polyimide resin, silicone resin, epoxy resin, glass epoxy resin, liquid crystal polymer and the like are preferably used.
また、第1外層絶縁体7a及び第2外層絶縁体7bは、フィルム状を有することが好ましい。 Further, the first outer layer insulator 7a and the second outer layer insulator 7b preferably have a film shape.
第1外層絶縁体7a及び第2外層絶縁体7bは、樹脂フィルムの間に金属層または酸化物層を含んでもよい。金属層としては、アルミニウム、銅、ニッケル、銀等を用いることが好ましい。金属層は、金属箔であることが好ましいが、金属蒸着膜等でもよい。酸化物層としては、シリカ、アルミナ等を用いることが好ましい。シリカ、アルミナ等の酸化物は、樹脂フィルムの中にフィラーとして含まれていてもよい。 The first outer layer insulator 7a and the second outer layer insulator 7b may include a metal layer or an oxide layer between the resin films. As the metal layer, it is preferable to use aluminum, copper, nickel, silver or the like. The metal layer is preferably a metal foil, but may be a metal vapor deposition film or the like. It is preferable to use silica, alumina or the like as the oxide layer. Oxides such as silica and alumina may be contained as a filler in the resin film.
第1外層絶縁体7a及び第2外層絶縁体7bは、樹脂フィルムとアルミニウム箔と樹脂フィルムとがサンドイッチ構造になった、いわゆるアルミラミネートフィルムでもよい。 The first outer layer insulator 7a and the second outer layer insulator 7b may be a so-called aluminum laminated film in which a resin film, an aluminum foil, and a resin film have a sandwich structure.
第1外層絶縁体7a及び第2外層絶縁体7bの形成方法については後述する。 The method for forming the first outer layer insulator 7a and the second outer layer insulator 7b will be described later.
第3外層絶縁体7c、第4外層絶縁体7d、第5外層絶縁体7e及び第6外層絶縁体7fは、樹脂による絶縁体、または酸化物による絶縁体を含む。樹脂による絶縁体としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、シリコーン樹脂、ポリアミド樹脂、液晶ポリマー等を用いることが好ましい。樹脂の形態は、液状樹脂が好ましい。また、フィラーとしては、例えば、シリカ粒子、アルミナ粒子、金属粒子等を用いることが好ましい。酸化物による絶縁体としては、例えば、レーザー加工や放電加工等により、積層体を個片化するときに生じる酸化膜を絶縁体として用いることが好ましい。 The third outer layer insulator 7c, the fourth outer layer insulator 7d, the fifth outer layer insulator 7e, and the sixth outer layer insulator 7f include an insulator made of resin or an insulator made of oxide. As the resin insulator, for example, an epoxy resin, a phenol resin, a polyimide resin, a silicone resin, a polyamide resin, a liquid crystal polymer or the like is preferably used. The form of the resin is preferably a liquid resin. Further, as the filler, for example, silica particles, alumina particles, metal particles and the like are preferably used. As the insulator made of oxide, for example, it is preferable to use an oxide film formed when the laminate is individualized by laser processing, electric discharge machining, or the like as the insulator.
第3外層絶縁体7c、第4外層絶縁体7d、第5外層絶縁体7e及び第6外層絶縁体7fの形成方法については後述する。 The method for forming the third outer layer insulator 7c, the fourth outer layer insulator 7d, the fifth outer layer insulator 7e, and the sixth outer layer insulator 7f will be described later.
中でも、第1外層絶縁体7a及び第2外層絶縁体7bは、樹脂フィルムから構成され、第3外層絶縁体7c、第4外層絶縁体7d、第5外層絶縁体7e及び第6外層絶縁体7fは、絶縁ペースト層から構成されることが好ましい。この場合、絶縁構造を積層体5の内部ではなく積層体5の表面で補償することができるため、コンデンサ素子3の容量部が拡大し、大容量化が可能となる。 Among them, the first outer layer insulator 7a and the second outer layer insulator 7b are composed of a resin film, and the third outer layer insulator 7c, the fourth outer layer insulator 7d, the fifth outer layer insulator 7e, and the sixth outer layer insulator 7f. Is preferably composed of an insulating paste layer. In this case, since the insulating structure can be compensated not on the inside of the laminated body 5 but on the surface of the laminated body 5, the capacitance portion of the capacitor element 3 can be expanded and the capacity can be increased.
(外部電極)
図3(a)では、第1外部電極13及び第2外部電極17は、コンデンサ素子3毎に設けられている。したがって、図1(b)に示す実装構造において、第1外部電極13及び第2外部電極17は、半田9bを介して実装基板9のプラス実装電極9a及びマイナス実装電極9aにそれぞれ直接接続されている。
(External electrode)
In FIG. 3A, the first external electrode 13 and the second external electrode 17 are provided for each capacitor element 3. Therefore, in the mounting structure shown in FIG. 1B, the first external electrode 13 and the second external electrode 17 are directly connected to the positive mounting electrode 9a 1 and the negative mounting electrode 9a 2 of the mounting substrate 9 via the solder 9b, respectively. Has been done.
実装基板9のプラス実装電極9a又はマイナス実装電極9aに直接接続することにより、コンデンサ素子3同士をつなぐ外部電極が不要となり、外部電極の層数を減らすことができるため、低ESR化及び低コスト化が可能となる。 By directly connecting to the positive mounting electrode 9a 1 or the negative mounting electrode 9a 2 of the mounting substrate 9, an external electrode connecting the capacitor elements 3 to each other becomes unnecessary, and the number of layers of the external electrode can be reduced. Cost reduction is possible.
図3(a)では、第1外部電極13は、積層体5の底面5fから露出する陽極11(図3(b)参照)の上に形成される第1めっき層13aと、その上に形成される第2めっき層13bとを含む。第2外部電極17は、積層体5の底面5fから露出する陰極15(図3(b)参照)の上に形成される第1めっき層17aと、その上に形成される第2めっき層17bとを含む。 In FIG. 3A, the first external electrode 13 is formed on the first plating layer 13a formed on the anode 11 (see FIG. 3B) exposed from the bottom surface 5f of the laminated body 5. The second plating layer 13b to be formed is included. The second external electrode 17 is a first plating layer 17a formed on the cathode 15 (see FIG. 3B) exposed from the bottom surface 5f of the laminated body 5, and a second plating layer 17b formed on the first plating layer 17a. And include.
第1めっき層13aは、ジンケート処理により形成されることが好ましい。すなわち、積層体5の底面5fから露出する陽極11のアルミニウム箔の表面をアルカリエッチングし、陽極11の酸化膜を除去した後、Znめっきを行う。次に、無電解Niめっきによる置換めっきを行うことにより、第1めっき層13aとしてNiめっき層が形成される。陰極15においてはアルミニウム以外の場合もあるが、ジンケート処理の際に同様に第1めっき層17aとしてNiめっき層が形成される。 The first plating layer 13a is preferably formed by a zincate treatment. That is, the surface of the aluminum foil of the anode 11 exposed from the bottom surface 5f of the laminate 5 is alkaline-etched to remove the oxide film of the anode 11, and then Zn plating is performed. Next, a Ni plating layer is formed as the first plating layer 13a by performing replacement plating with electroless Ni plating. Although the cathode 15 may be other than aluminum, a Ni plating layer is similarly formed as the first plating layer 17a during the zincate treatment.
第2めっき層13b及び17bは、電解Snめっきを行うことにより形成されることが好ましい。 The second plating layers 13b and 17b are preferably formed by performing electrolytic Sn plating.
第1めっき層13a及び17aであるNiめっき層は、主として耐湿性向上のために形成されており、第2めっき層13b及び17bであるSnめっき層は、主として半田付け性向上のために形成されている。 The Ni plating layers, which are the first plating layers 13a and 17a, are formed mainly for improving the moisture resistance, and the Sn plating layers, which are the second plating layers 13b and 17b, are mainly formed for improving the solderability. ing.
このように、第1外部電極13及び第2外部電極17は、めっき層を含むことが好ましい。外部電極に比較的高抵抗で高価な樹脂電極などを使用しないことにより、低ESR化及び低コスト化が可能となる。 As described above, the first external electrode 13 and the second external electrode 17 preferably include a plating layer. By not using an expensive resin electrode having a relatively high resistance for the external electrode, it is possible to reduce the ESR and the cost.
(電解コンデンサの製造方法)
以下、本発明の電解コンデンサの製造方法の一例として、図1(a)に示す電解コンデンサ1の製造方法について説明する。
(Manufacturing method of electrolytic capacitor)
Hereinafter, the method for manufacturing the electrolytic capacitor 1 shown in FIG. 1A will be described as an example of the method for manufacturing the electrolytic capacitor of the present invention.
[1]コンデンサ素子シートの作製
図6は、コンデンサ素子シートの一例を模式的に示す斜視図である。
まず、陽極11を構成するアルミニウム箔等の弁作用金属箔を準備する。弁作用金属箔は、エッチング層等の多孔質層を表面に有する。多孔質層の表面に陽極酸化を行って誘電体層19を形成する。誘電体層19上にスクリーン印刷、スプレー塗布、ディスペンサ塗布、インクジェット印刷、またはディップにより固体電解質層15aを形成し、続けて固体電解質層15a上にスクリーン印刷、スプレー塗布、ディスペンサ塗布、インクジェット印刷、またはディップによりカーボン層等の導電層15bを形成し、さらに導電層15b上に陰極引き出し層15cをシート積層又はスクリーン印刷、スプレー塗布、ディスペンサ塗布、インクジェット印刷、またはディップにより形成する。上記工程により、図6に示すコンデンサ素子シート23が得られる。
[1] Fabrication of Capacitor Element Sheet FIG. 6 is a perspective view schematically showing an example of the capacitor element sheet.
First, a valve acting metal foil such as an aluminum foil constituting the anode 11 is prepared. The valve action metal foil has a porous layer such as an etching layer on the surface. The surface of the porous layer is anodized to form the dielectric layer 19. A solid electrolyte layer 15a is formed on the dielectric layer 19 by screen printing, spray coating, dispenser coating, inkjet printing, or dipping, followed by screen printing, spray coating, dispenser coating, inkjet printing, or dipping on the solid electrolyte layer 15a. A conductive layer 15b such as a carbon layer is formed by dipping, and a cathode drawing layer 15c is further formed on the conductive layer 15b by sheet lamination or screen printing, spray coating, dispenser coating, inkjet printing, or dipping. By the above steps, the capacitor element sheet 23 shown in FIG. 6 is obtained.
[2]コンデンサ素子シートの積層及び熱圧着
図7は、積層体ブロックの一例を模式的に示す斜視図である。
図7に示すように、複数のコンデンサ素子シート23を積層することにより、積層体ブロック25が得られる。なお、陰極引き出し層15cが乾燥前の粘性のある状態で複数のコンデンサ素子シート23を積層することが好ましい。
[2] Lamination and thermocompression bonding of capacitor element sheets FIG. 7 is a perspective view schematically showing an example of a laminated body block.
As shown in FIG. 7, the laminated body block 25 is obtained by laminating a plurality of capacitor element sheets 23. It is preferable that the plurality of capacitor element sheets 23 are laminated in a viscous state before the cathode extraction layer 15c is dried.
図8は、樹脂フィルム付き積層体ブロックの一例を模式的に示す斜視図である。
図8に示すように、積層体ブロック25の上下に樹脂フィルム27a及び27bを載置し、真空熱圧着装置または大気プレス装置により熱圧着して成形体とすることにより、樹脂フィルム付き積層体ブロック27が得られる。
FIG. 8 is a perspective view schematically showing an example of a laminated block with a resin film.
As shown in FIG. 8, resin films 27a and 27b are placed above and below the laminate block 25, and thermocompression-bonded with a vacuum thermocompression bonding device or an atmospheric press device to form a molded body, whereby the laminate block with a resin film is formed. 27 is obtained.
樹脂フィルム付き積層体ブロック27の厚さ(図8中、tで示す長さ)は、作製する電解コンデンサ1の長さ方向(L方向)の寸法となるようにすることが好ましい。なお、樹脂フィルム付き積層体ブロック27の厚さは、作製する電解コンデンサ1の幅方向(W方向)の寸法となるようにしてもよい。 It is preferable that the thickness of the laminated block 27 with a resin film (the length indicated by t in FIG. 8) is the dimension in the length direction (L direction) of the electrolytic capacitor 1 to be manufactured. The thickness of the laminated block 27 with the resin film may be the dimension in the width direction (W direction) of the electrolytic capacitor 1 to be manufactured.
[3]樹脂フィルム付き積層体ブロックの個片化
図9(a)及び図9(b)は、樹脂フィルム付き積層体ブロックを個片化する工程の一例を模式的に示す斜視図である。
図9(a)に示すように、樹脂フィルム付き積層体ブロック27をダイシングやレーザー等でカットして個片化することにより、図9(b)に示す樹脂フィルム付き積層体29が得られる。コンデンサ素子シート23は分割されてコンデンサ素子3となる。樹脂フィルム付き積層体ブロック27の上面に載置されていた樹脂フィルム27aは第1外層絶縁体7aとなり、下面に載置されていた樹脂フィルム27bは第2外層絶縁体7bとなる。
[3] Individualization of a Laminated Block with Resin Film FIGS. 9 (a) and 9 (b) are perspective views schematically showing an example of a step of individualizing a laminated block with a resin film.
As shown in FIG. 9 (a), the laminate block 27 with a resin film shown in FIG. 9 (b) is obtained by cutting the laminate block 27 with a resin film by dicing, a laser, or the like to separate the blocks 27 into individual pieces. The capacitor element sheet 23 is divided into the capacitor element 3. The resin film 27a placed on the upper surface of the laminated body block 27 with the resin film becomes the first outer layer insulator 7a, and the resin film 27b placed on the lower surface becomes the second outer layer insulator 7b.
樹脂フィルム付き積層体29の長さ(図9(b)中、lで示す長さ)及び幅(図9(b)中、wで示す長さ)は、作製する電解コンデンサ1を構成する積層体5の厚さ方向(T方向)の寸法及び幅方向(W方向)の寸法となるようにすることが好ましい。 The length (length indicated by l in FIG. 9B) and width (length indicated by w in FIG. 9B) of the laminate 29 with the resin film are the laminations constituting the electrolytic capacitor 1 to be produced. It is preferable that the body 5 has a thickness direction (T direction) and a width direction (W direction).
[4]外層絶縁体の形成
図10(a)及び図10(b)は、外層絶縁体を形成する工程の一例を模式的に示す斜視図である。
図10(a)に示すように、樹脂フィルム付き積層体29を倒して、最も短い寸法が厚さ方向となるような方向に整列させる。その後、樹脂フィルム付き積層体29の第1側面、上面、第2側面及び底面に絶縁ペーストをスクリーン印刷、スプレー塗布、またはディップすることにより、図10(b)に示すように、第3外層絶縁体7c、第4外層絶縁体7d、第5外層絶縁体7e及び第6外層絶縁体7fをそれぞれ形成する。上記工程により、外層絶縁体付き積層体31が得られる。
[4] Formation of Outer Layer Insulator FIGS. 10 (a) and 10 (b) are perspective views schematically showing an example of a step of forming the outer layer insulator.
As shown in FIG. 10A, the laminate 29 with the resin film is tilted and aligned in the direction in which the shortest dimension is the thickness direction. Then, as shown in FIG. 10B, the third outer layer is insulated by screen-printing, spray-coating, or dipping the insulating paste on the first side surface, the upper surface, the second side surface, and the bottom surface of the laminate 29 with the resin film. The body 7c, the fourth outer layer insulator 7d, the fifth outer layer insulator 7e, and the sixth outer layer insulator 7f are formed, respectively. By the above steps, a laminated body 31 with an outer layer insulator is obtained.
[5]外部電極の形成
図11(a)及び図11(b)は、第1外部電極及び第2外部電極を形成する工程の一例を模式的に示す斜視図である。
図11(a)に示すように、レーザー加工により第6外層絶縁体7fの一部を除去して第1開口部7f及び第2開口部7fを形成する。具体的には、第6外層絶縁体7fの所望の位置に、レーザー発振器21からレーザー光21aを照射して第1開口部7f及び第2開口部7fを形成する。これにより、第1開口部7fから陽極11を露出させ、第2開口部7fから陰極15を露出させる。
[5] Formation of External Electrodes FIGS. 11 (a) and 11 (b) are perspective views schematically showing an example of a process of forming the first external electrode and the second external electrode.
As shown in FIG. 11A, a part of the sixth outer layer insulator 7f is removed by laser processing to form the first opening 7f 1 and the second opening 7f 2 . Specifically, the laser oscillator 21 irradiates the laser beam 21a at a desired position of the sixth outer layer insulator 7f to form the first opening 7f 1 and the second opening 7f 2 . As a result, the anode 11 is exposed from the first opening 7f 1 and the cathode 15 is exposed from the second opening 7f 2.
レーザー光21aを照射して第6外層絶縁体7f、固体電解質層15a、多孔質層などを消失させることにより、第1開口部7fの底面及び第2開口部7fの底面が、いずれも積層体5まで達することが好ましい。ただし、第6外層絶縁体7fが消失した部分に、第6外層絶縁体7fが再付着してもよい。また、レーザー光21aが照射された部分の第6外層絶縁体7f、固体電解質層15a、多孔質層などは、消失せずに酸化されてもよい。 By irradiating the laser beam 21a to eliminate the sixth outer layer insulator 7f, the solid electrolyte layer 15a, the porous layer, etc., the bottom surface of the first opening 7f 1 and the bottom surface of the second opening 7f 2 are both formed. It is preferable to reach the laminated body 5. However, the sixth outer layer insulator 7f may be reattached to the portion where the sixth outer layer insulator 7f has disappeared. Further, the sixth outer layer insulator 7f, the solid electrolyte layer 15a, the porous layer, and the like in the portion irradiated with the laser beam 21a may be oxidized without disappearing.
次に、図11(b)に示すように、ジンケート処理により、露出した陽極11の上に第1めっき層13aとしてNiめっき層を形成するとともに、露出した陰極15の上に第1めっき層17aとしてNiめっき層を形成する。 Next, as shown in FIG. 11B, a Ni plating layer is formed as the first plating layer 13a on the exposed anode 11 by the zincate treatment, and the first plating layer 17a is formed on the exposed cathode 15. A Ni plating layer is formed as.
さらに、第1めっき層13a及び17aであるNiめっき層の上に、Snめっきにより、第2めっき層13b及び17bとしてSnめっき層をそれぞれ形成する。上記工程により、第1開口部7fから露出する陽極11と電気的に接続される第1外部電極13が形成されるとともに、第2開口部7fから露出する陰極15と電気的に接続される第2外部電極17が形成される。 Further, on the Ni plating layers which are the first plating layers 13a and 17a, Sn plating layers are formed as the second plating layers 13b and 17b by Sn plating, respectively. By the above step, the first external electrode 13 that is electrically connected to the anode 11 exposed from the first opening 7f 1 is formed, and is electrically connected to the cathode 15 exposed from the second opening 7f 2. The second external electrode 17 is formed.
以上により、電解コンデンサ1が得られる。このようにして得られた電解コンデンサ1は、図1(b)に示すように、半田9bを介して実装基板9に実装される。 From the above, the electrolytic capacitor 1 is obtained. As shown in FIG. 1B, the electrolytic capacitor 1 thus obtained is mounted on the mounting substrate 9 via the solder 9b.
[第2実施形態]
本発明の第2実施形態に係る電解コンデンサでは、複数のコンデンサ素子が、厚さ方向(T方向)に沿って積層されている。
[Second Embodiment]
In the electrolytic capacitor according to the second embodiment of the present invention, a plurality of capacitor elements are laminated along the thickness direction (T direction).
図12は、本発明の第2実施形態に係る電解コンデンサの一例を模式的に示す断面図である。図13(a)は、図12に示す電解コンデンサを第1端面から見た斜視図であり、図13(b)は、図12に示す電解コンデンサを第2端面から見た斜視図である。 FIG. 12 is a cross-sectional view schematically showing an example of an electrolytic capacitor according to a second embodiment of the present invention. 13 (a) is a perspective view of the electrolytic capacitor shown in FIG. 12 as viewed from the first end surface, and FIG. 13 (b) is a perspective view of the electrolytic capacitor shown in FIG. 12 as viewed from the second end surface.
図12、図13(a)及び図13(b)に示す電解コンデンサ2は、積層されている複数のコンデンサ素子3を含む直方体状の積層体5と、積層体5の周囲に設けられる外層絶縁体7a、7b、7c、7d、7e及び7fと、を備える。電解コンデンサ2は、さらに第1外部電極13と第2外部電極17とを備える。電解コンデンサ2では、複数のコンデンサ素子3は、厚さ方向(T方向)に沿って積層されている。 The electrolytic capacitors 2 shown in FIGS. 12, 13 (a) and 13 (b) are a rectangular parallelepiped laminated body 5 including a plurality of laminated capacitor elements 3 and an outer layer insulation provided around the laminated body 5. It comprises bodies 7a, 7b, 7c, 7d, 7e and 7f. The electrolytic capacitor 2 further includes a first external electrode 13 and a second external electrode 17. In the electrolytic capacitor 2, the plurality of capacitor elements 3 are laminated along the thickness direction (T direction).
陽極11は、図12及び図13(a)に示すように、第1外層絶縁体7aに形成された第1開口部7fから露出している。一方、陰極15は、図12及び図13(b)に示すように、第2外層絶縁体7bに形成された第2開口部7fから露出している。 The anode 11 is, as shown in FIG. 12 and FIG. 13 (a), the exposed from the first opening portion 7f 1 formed in the first external insulator 7a. On the other hand, as shown in FIGS. 12 and 13 (b), the cathode 15 is exposed from the second opening 7f 2 formed in the second outer layer insulator 7b.
図13(a)に示すように、陽極11は、複数のコンデンサ素子3の積層方向と略直交する方向に直線状に、かつ、互いに略平行に露出していることが好ましい。図13(b)に示すように、陰極15は、複数のコンデンサ素子3の積層方向と略直交する方向に直線状に、かつ、互いに略平行に露出していることが好ましい。 As shown in FIG. 13A, it is preferable that the anode 11 is linearly exposed in a direction substantially orthogonal to the stacking direction of the plurality of capacitor elements 3 and substantially parallel to each other. As shown in FIG. 13B, it is preferable that the cathode 15 is linearly exposed in a direction substantially orthogonal to the stacking direction of the plurality of capacitor elements 3 and substantially parallel to each other.
第1開口部7f及び第2開口部7fは、それぞれ第1外層絶縁体7a及び第2外層絶縁体7bをレーザーによる熱加工またはアブレーション加工で除去することにより形成される。 The first opening 7f 1 and the second opening 7f 2 are formed by removing the first outer layer insulator 7a and the second outer layer insulator 7b by thermal processing or ablation processing with a laser, respectively.
なお、図13(a)では、第1外層絶縁体7aが、陽極11を積層方向に貫通する第1柱状部7fを有し、図13(b)では、第2外層絶縁体7bが、陰極15を積層方向に貫通する第2柱状部7fを有しているが、第1外層絶縁体7aは第1柱状部7fを有していなくてもよいし、第2外層絶縁体7bは第2柱状部7fを有していなくてもよい。 In addition, in FIG. 13A, the first outer layer insulator 7a has a first columnar portion 7f 3 penetrating the anode 11 in the stacking direction, and in FIG. 13B, the second outer layer insulator 7b is Although it has a second columnar portion 7f 4 penetrating the cathode 15 in the stacking direction, the first outer layer insulator 7a does not have to have the first columnar portion 7f 3 , and the second outer layer insulator 7b it may not have a second columnar portion 7f 4.
[その他の実施形態]
本発明の電解コンデンサは、上記実施形態に限定されるものではなく、電解コンデンサの構成、製造条件等に関し、本発明の範囲内において、種々の応用、変形を加えることが可能である。
[Other Embodiments]
The electrolytic capacitor of the present invention is not limited to the above embodiment, and various applications and modifications can be added within the scope of the present invention regarding the configuration, manufacturing conditions, and the like of the electrolytic capacitor.
本発明の第1実施形態に係る電解コンデンサにおいて、第1外部電極及び第2外部電極がめっき層を含む場合、上記めっき層は、めっき成長または表面改質等により複数のコンデンサ素子を跨いで設けられ、複数のコンデンサ素子同士が上記めっき層を介して電気的に接続されていてもよい。この場合、実装電極との接触面積が大きくなるため、更なる低ESR化が可能となる。 In the electrolytic capacitor according to the first embodiment of the present invention, when the first external electrode and the second external electrode include a plating layer, the plating layer is provided across a plurality of capacitor elements by plating growth, surface modification, or the like. Therefore, a plurality of capacitor elements may be electrically connected to each other via the plating layer. In this case, since the contact area with the mounting electrode becomes large, it is possible to further reduce the ESR.
本発明の第1実施形態に係る電解コンデンサにおいて、第1外部電極及び第2外部電極がめっき層を含む場合、上記めっき層の上に導電性ペースト層をさらに含み、上記導電性ペースト層は、複数のコンデンサ素子を跨いで設けられ、複数のコンデンサ素子同士が上記導電性ペースト層を介して電気的に接続されていてもよい。この場合、実装電極との接触面積が大きくなるため、更なる低ESR化が可能となる。 In the electrolytic capacitor according to the first embodiment of the present invention, when the first external electrode and the second external electrode include a plating layer, a conductive paste layer is further included on the plating layer, and the conductive paste layer is It may be provided across a plurality of capacitor elements, and the plurality of capacitor elements may be electrically connected to each other via the conductive paste layer. In this case, since the contact area with the mounting electrode becomes large, it is possible to further reduce the ESR.
導電性ペースト層としては、半田ペーストに限らず、Niペースト、Cuペースト、Agペーストなどを使用することが可能である。必要に応じて、導電性ペースト層の上にめっき層を形成してもよい。 As the conductive paste layer, not only solder paste but also Ni paste, Cu paste, Ag paste and the like can be used. If necessary, a plating layer may be formed on the conductive paste layer.
本発明の第1実施形態に係る電解コンデンサにおいて、第1外部電極は、積層体の第1側面及び底面から露出する陽極と電気的に接続されるように、積層体の第1側面及び底面に同時形成により一体化されて設けられ、第2外部電極は、積層体の第2側面及び底面から露出する陰極と電気的に接続されるように、積層体の第2側面及び底面に同時形成により一体化されて設けられていてもよい。この場合、コンデンサ素子と外部電極とが、積層体の側面と底面とのマルチパス(並列)で接続される。その結果、低ESR化が可能となる。 In the electrolytic capacitor according to the first embodiment of the present invention, the first external electrode is attached to the first side surface and the bottom surface of the laminate so as to be electrically connected to the anode exposed from the first side surface and the bottom surface of the laminate. The second external electrode is integrally provided by simultaneous formation, and the second external electrode is simultaneously formed on the second side surface and bottom surface of the laminate so as to be electrically connected to the cathode exposed from the second side surface and bottom surface of the laminate. It may be provided integrally. In this case, the capacitor element and the external electrode are connected by multipath (parallel) between the side surface and the bottom surface of the laminated body. As a result, low ESR can be achieved.
本発明の第1実施形態に係る電解コンデンサにおいて、積層体の長さ方向の寸法L、積層体の幅方向の寸法W、及び、積層体の厚さ方向の寸法Tは、L>T>Wを満たしてもよい。 In the electrolytic capacitor according to the first embodiment of the present invention, the dimension L in the length direction of the laminate, the dimension W in the width direction of the laminate, and the dimension T in the thickness direction of the laminate are L> T> W. May be satisfied.
本発明の電解コンデンサにおいては、複数のコンデンサ素子の容量部の外形が、積層体の外形を構成していなくてもよい。 In the electrolytic capacitor of the present invention, the outer shape of the capacitance portion of the plurality of capacitor elements does not have to constitute the outer shape of the laminated body.
本発明の電解コンデンサにおいて、第1外部電極及び第2外部電極は、めっき層を含まなくてもよい。 In the electrolytic capacitor of the present invention, the first external electrode and the second external electrode do not have to include a plating layer.
本発明の電解コンデンサを製造する際には、コンデンサ素子シートを積層して積層体ブロックを作製する代わりに、コンデンサ素子を1個ずつ作製して積層体を作製してもよい。 When manufacturing the electrolytic capacitor of the present invention, instead of laminating the capacitor element sheets to form a laminated body block, the capacitor elements may be manufactured one by one to prepare a laminated body.
本発明の電解コンデンサの製造方法においては、陽極の露出面が第1開口部の底面と同じ位置にあってもよいし、陰極の露出面が第2開口部の底面と同じ位置にあってもよい。 In the method for manufacturing an electrolytic capacitor of the present invention, the exposed surface of the anode may be at the same position as the bottom surface of the first opening, or the exposed surface of the cathode may be at the same position as the bottom surface of the second opening. Good.
図14は、陽極の露出面が第1開口部の底面と同じ位置にある状態の一例を模式的に示す断面図である。
例えば、図11(a)において、レーザー加工によるカット幅が陽極11の幅よりも狭い場合には、図14に示すように、陽極11の露出面が第1開口部7fの底面と同じ位置になることがある。
FIG. 14 is a cross-sectional view schematically showing an example of a state in which the exposed surface of the anode is at the same position as the bottom surface of the first opening.
For example, in FIG. 11 (a), if the cutting width according to the laser processing is narrower than the width of the anode 11, as shown in FIG. 14, the exposed surface is the same position as the first bottom surface of the opening portion 7f 1 of the anode 11 May become.
図15は、陽極の露出面が第1開口部の底面と同じ位置にある状態の別の一例を模式的に示す断面図である。
図15では、図11(a)に示すレーザー加工により、レーザー光が照射された部分の固体電解質層15aが消失せず、固体電解質の酸化層15dとなっている。このように、固体電解質層15aや多孔質層が消失しない場合には、陽極11の露出面が第1開口部7fの底面と同じ位置になることがある。なお、図15では、レーザー光が照射された部分の第6外層絶縁体7fも消失せず、絶縁体の酸化層7fとなっている。
FIG. 15 is a cross-sectional view schematically showing another example of a state in which the exposed surface of the anode is at the same position as the bottom surface of the first opening.
In FIG. 15, the solid electrolyte layer 15a in the portion irradiated with the laser beam does not disappear by the laser processing shown in FIG. 11A, and becomes the oxide layer 15d of the solid electrolyte. Thus, if the solid electrolyte layer 15a and the porous layer does not disappear, it is the exposed surface of the anode 11 is the same position as the first bottom surface of the opening portion 7f 1. In FIG. 15, the sixth outer layer insulator 7f in the portion irradiated with the laser beam does not disappear, and becomes the oxide layer 7f 5 of the insulator.
したがって、本発明の電解コンデンサには、以下の構成を有する電解コンデンサも含まれる。
 積層されている複数のコンデンサ素子を含み、前記コンデンサ素子が、表面に誘電体層を有する陽極と、前記誘電体層を介して前記陽極に対向する陰極とを含む、直方体状の積層体と、
 前記積層体の周囲に設けられる外層絶縁体と、
 前記積層体から露出する前記陽極と電気的に接続される第1外部電極と、
 前記積層体から露出する前記陰極と電気的に接続される第2外部電極と、を備える電解コンデンサであって、
 前記複数のコンデンサ素子の容量部の外形が、前記積層体の外形を構成し、
 前記陽極は、前記外層絶縁体の一部に形成された第1開口部から露出し、
 前記陽極の露出面は、前記第1開口部の底面と同じ位置にあるか、又は、前記第1開口部の底面から突出し、
 前記陰極は、前記外層絶縁体の一部に形成された第2開口部から露出し、
 前記陰極の露出面は、前記第2開口部の底面と同じ位置にあるか、又は、前記第2開口部の底面から突出している、電解コンデンサ。
Therefore, the electrolytic capacitor of the present invention also includes an electrolytic capacitor having the following configuration.
A rectangular laminate comprising a plurality of laminated capacitor elements, wherein the capacitor element includes an anode having a dielectric layer on its surface and a cathode facing the anode via the dielectric layer.
An outer layer insulator provided around the laminate and
A first external electrode electrically connected to the anode exposed from the laminate,
An electrolytic capacitor comprising a second external electrode electrically connected to the cathode exposed from the laminate.
The outer shape of the capacitance portion of the plurality of capacitor elements constitutes the outer shape of the laminated body.
The anode is exposed from a first opening formed in a part of the outer layer insulator.
The exposed surface of the anode is at the same position as the bottom surface of the first opening, or protrudes from the bottom surface of the first opening.
The cathode is exposed from a second opening formed in a part of the outer layer insulator.
An electrolytic capacitor in which the exposed surface of the cathode is at the same position as the bottom surface of the second opening or protrudes from the bottom surface of the second opening.
1、2 電解コンデンサ
3 コンデンサ素子
5 積層体
5a 積層体の第1端面
5b 積層体の第2端面
5c 積層体の第1側面
5d 積層体の上面
5e 積層体の第2側面
5f 積層体の底面
7a 第1外層絶縁体
7b 第2外層絶縁体
7c 第3外層絶縁体
7d 第4外層絶縁体
7e 第5外層絶縁体
7f 第6外層絶縁体
7f 第1開口部
7f 第2開口部
7f 第1柱状部
7f 第2柱状部
7f 絶縁体の酸化層
9 実装基板
9a プラス実装電極
9a マイナス実装電極
9b 半田
9c 実装面
11 陽極
13 第1外部電極
13a 第1めっき層
13b 第2めっき層
15 陰極
15a 固体電解質層
15b 導電層
15c 陰極引き出し層
15d 固体電解質の酸化層
17 第2外部電極
17a 第1めっき層
17b 第2めっき層
19 誘電体層
21 レーザー発振器
21a レーザー光
23 コンデンサ素子シート
25 積層体ブロック
27 樹脂フィルム付き積層体ブロック
27a、27b 樹脂フィルム
29 樹脂フィルム付き積層体
31 外層絶縁体付き積層体
1, 2 Electrolytic capacitor 3 Capacitor element 5 Laminated body 5a First end surface of the laminated body 5b Second end surface of the laminated body 5c First side surface of the laminated body 5d Top surface of the laminated body 5e Second side surface of the laminated body 5f Bottom surface of the laminated body 7a 1st outer layer insulator 7b 2nd outer layer insulator 7c 3rd outer layer insulator 7d 4th outer layer insulator 7e 5th outer layer insulator 7f 6th outer layer insulator 7f 1 1st opening 7f 2 2nd opening 7f 3rd 1 Columnar part 7f 4 Second columnar part 7f 5 Insulator oxide layer 9 Mounting substrate 9a 1 Positive mounting electrode 9a 2 Negative mounting electrode 9b Solder 9c Mounting surface 11 Anode 13 1st external electrode 13a 1st plating layer 13b 2nd plating Layer 15 Cathode 15a Solid electrolyte layer 15b Conductive layer 15c Catabol extraction layer 15d Solid electrolyte oxide layer 17 Second external electrode 17a First plating layer 17b Second plating layer 19 Insulator layer 21 Laser oscillator 21a Laser light 23 Capacitor element sheet 25 Laminated block 27 Laminated block with resin film 27a, 27b Resin film 29 Laminated body with resin film 31 Laminated body with outer layer insulator

Claims (7)

  1.  積層されている複数のコンデンサ素子を含み、前記コンデンサ素子が、表面に誘電体層を有する陽極と、前記誘電体層を介して前記陽極に対向する陰極とを含む、直方体状の積層体と、
     前記積層体の周囲に設けられる外層絶縁体と、
     前記積層体から露出する前記陽極と電気的に接続される第1外部電極と、
     前記積層体から露出する前記陰極と電気的に接続される第2外部電極と、を備える電解コンデンサであって、
     前記陽極は、前記外層絶縁体の一部に形成された第1開口部から露出し、かつ、前記陽極の露出面は、前記第1開口部の底面から突出し、
     前記陰極は、前記外層絶縁体の一部に形成された第2開口部から露出し、かつ、前記陰極の露出面は、前記第2開口部の底面から突出している、電解コンデンサ。
    A rectangular laminate comprising a plurality of laminated capacitor elements, wherein the capacitor element includes an anode having a dielectric layer on its surface and a cathode facing the anode via the dielectric layer.
    An outer layer insulator provided around the laminate and
    A first external electrode electrically connected to the anode exposed from the laminate,
    An electrolytic capacitor comprising a second external electrode electrically connected to the cathode exposed from the laminate.
    The anode is exposed from the first opening formed in a part of the outer layer insulator, and the exposed surface of the anode protrudes from the bottom surface of the first opening.
    An electrolytic capacitor in which the cathode is exposed from a second opening formed in a part of the outer layer insulator, and the exposed surface of the cathode projects from the bottom surface of the second opening.
  2.  前記陽極は、前記複数のコンデンサ素子の積層方向と略直交する方向に直線状に、かつ、互いに略平行に露出し、
     前記陰極は、前記複数のコンデンサ素子の積層方向と略直交する方向に直線状に、かつ、互いに略平行に露出している、請求項1に記載の電解コンデンサ。
    The anode is exposed linearly in a direction substantially orthogonal to the stacking direction of the plurality of capacitor elements and substantially parallel to each other.
    The electrolytic capacitor according to claim 1, wherein the cathode is linearly exposed in a direction substantially orthogonal to the stacking direction of the plurality of capacitor elements and substantially parallel to each other.
  3.  前記複数のコンデンサ素子の容量部の外形が、前記積層体の外形を構成している、請求項1又は2に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1 or 2, wherein the outer shape of the capacitance portion of the plurality of capacitor elements constitutes the outer shape of the laminated body.
  4.  前記第1開口部の底面及び前記第2開口部の底面は、いずれも前記積層体まで達している、請求項3に記載の電解コンデンサ。 The electrolytic capacitor according to claim 3, wherein both the bottom surface of the first opening and the bottom surface of the second opening reach the laminated body.
  5.  積層されている複数のコンデンサ素子を含み、前記コンデンサ素子が、表面に誘電体層を有する陽極と、前記誘電体層を介して前記陽極に対向する陰極とを含む、直方体状の積層体を作製する工程と、
     前記積層体の周囲に外層絶縁体を形成する工程と、
     前記陽極が露出するように、レーザー加工により前記外層絶縁体の一部を除去して第1開口部を形成する工程と、
     前記陰極が露出するように、レーザー加工により前記外層絶縁体の一部を除去して第2開口部を形成する工程と、
     前記第1開口部から露出する前記陽極と電気的に接続される第1外部電極を形成する工程と、
     前記第2開口部から露出する前記陰極と電気的に接続される第2外部電極を形成する工程と、を備える、電解コンデンサの製造方法。
    A rectangular laminate is produced, which includes a plurality of laminated capacitor elements, wherein the capacitor element includes an anode having a dielectric layer on its surface and a cathode facing the anode via the dielectric layer. And the process of
    The step of forming an outer layer insulator around the laminated body and
    A step of removing a part of the outer layer insulator by laser processing to form a first opening so that the anode is exposed.
    A step of removing a part of the outer layer insulator by laser processing to form a second opening so that the cathode is exposed.
    A step of forming a first external electrode electrically connected to the anode exposed from the first opening, and
    A method for manufacturing an electrolytic capacitor, comprising a step of forming a second external electrode electrically connected to the cathode exposed from the second opening.
  6.  前記レーザー加工は、248nm以上532nm以下の波長を有するレーザーを用いて行われる、請求項5に記載の電解コンデンサの製造方法。 The method for manufacturing an electrolytic capacitor according to claim 5, wherein the laser processing is performed using a laser having a wavelength of 248 nm or more and 532 nm or less.
  7.  前記レーザー加工は、紫外線レーザー又はグリーンレーザーを用いて行われる、請求項5又は6に記載の電解コンデンサの製造方法。 The method for manufacturing an electrolytic capacitor according to claim 5 or 6, wherein the laser processing is performed using an ultraviolet laser or a green laser.
PCT/JP2020/000373 2019-08-26 2020-01-09 Electrolytic capacitor and manufacturing method of electrolytic capacitor WO2021038901A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019153919 2019-08-26
JP2019-153919 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021038901A1 true WO2021038901A1 (en) 2021-03-04

Family

ID=74684398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000373 WO2021038901A1 (en) 2019-08-26 2020-01-09 Electrolytic capacitor and manufacturing method of electrolytic capacitor

Country Status (1)

Country Link
WO (1) WO2021038901A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246814A (en) * 1988-03-28 1989-10-02 Matsushita Electric Ind Co Ltd Chip-like solid electrolyte capacitor and manufacture thereof
JPH02288321A (en) * 1989-04-28 1990-11-28 Matsushita Electric Ind Co Ltd Chip-shaped solid electrolytic capacitor
JP2003178933A (en) * 2001-10-05 2003-06-27 Matsushita Electric Ind Co Ltd Capacitor
WO2013088954A1 (en) * 2011-12-14 2013-06-20 株式会社村田製作所 Solid electrolytic capacitor and method for manufacturing same
WO2019087692A1 (en) * 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 Electrolytic capacitor and method for manufacturing same
JP2019079866A (en) * 2017-10-20 2019-05-23 株式会社村田製作所 Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
WO2019156120A1 (en) * 2018-02-08 2019-08-15 株式会社村田製作所 Electrolytic capacitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246814A (en) * 1988-03-28 1989-10-02 Matsushita Electric Ind Co Ltd Chip-like solid electrolyte capacitor and manufacture thereof
JPH02288321A (en) * 1989-04-28 1990-11-28 Matsushita Electric Ind Co Ltd Chip-shaped solid electrolytic capacitor
JP2003178933A (en) * 2001-10-05 2003-06-27 Matsushita Electric Ind Co Ltd Capacitor
WO2013088954A1 (en) * 2011-12-14 2013-06-20 株式会社村田製作所 Solid electrolytic capacitor and method for manufacturing same
JP2019079866A (en) * 2017-10-20 2019-05-23 株式会社村田製作所 Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
WO2019087692A1 (en) * 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 Electrolytic capacitor and method for manufacturing same
WO2019156120A1 (en) * 2018-02-08 2019-08-15 株式会社村田製作所 Electrolytic capacitor

Similar Documents

Publication Publication Date Title
CN111383844B (en) Electrolytic capacitor
US11170941B2 (en) Solid electrolytic capacitor
WO2018074407A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
WO2020174847A1 (en) Electronic component and method for manufacturing electronic component
JP2003133183A (en) Solid electrolytic capacitor and method of manufacturing the same
US11232912B2 (en) Solid electrolytic capacitor
WO2021049056A1 (en) Electrolytic capacitor
WO2012144316A1 (en) Solid-state electrolyte capacitor manufacturing method and solid-state electrolyte capacitor
JP7259407B2 (en) Electrolytic capacitors and mounting structure of electrolytic capacitors
JP2009158692A (en) Multilayer solid electrolytic capacitor
US20120281338A1 (en) Aluminum electrolytic capacitor and method of manfacturing the same
WO2021210367A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP7259994B2 (en) solid electrolytic capacitor
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
WO2021038901A1 (en) Electrolytic capacitor and manufacturing method of electrolytic capacitor
WO2019156120A1 (en) Electrolytic capacitor
WO2021038900A1 (en) Electrolytic capacitor
WO2021200197A1 (en) Electrolytic capacitor
WO2021066091A1 (en) Electrolytic capacitor, and method for manufacturing electrolytic capacitor
JP7200912B2 (en) Electrolytic capacitor
JP4599653B2 (en) Sheet capacitor
CN114556506A (en) Electrolytic capacitor
JP5429392B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP7501541B2 (en) Solid Electrolytic Capacitors
CN115398576B (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP