WO2019155950A1 - Resin composition for semiconductor sealing use, semiconductor device, and method for producing resin composition for semiconductor sealing use - Google Patents

Resin composition for semiconductor sealing use, semiconductor device, and method for producing resin composition for semiconductor sealing use Download PDF

Info

Publication number
WO2019155950A1
WO2019155950A1 PCT/JP2019/003081 JP2019003081W WO2019155950A1 WO 2019155950 A1 WO2019155950 A1 WO 2019155950A1 JP 2019003081 W JP2019003081 W JP 2019003081W WO 2019155950 A1 WO2019155950 A1 WO 2019155950A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
carbon black
semiconductor
sealing
particle size
Prior art date
Application number
PCT/JP2019/003081
Other languages
French (fr)
Japanese (ja)
Inventor
貴浩 小谷
柴田 洋志
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN201980011766.0A priority Critical patent/CN111684588B/en
Priority to MYPI2020003635A priority patent/MY183266A/en
Priority to EP19751913.5A priority patent/EP3751601A4/en
Priority to SG11202007089YA priority patent/SG11202007089YA/en
Priority to JP2019538279A priority patent/JP6590133B1/en
Priority to KR1020207025321A priority patent/KR102171971B1/en
Priority to US16/964,026 priority patent/US11015017B2/en
Publication of WO2019155950A1 publication Critical patent/WO2019155950A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/022Polycondensates containing more than one epoxy group per molecule characterised by the preparation process or apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • C09C1/60Agglomerating, pelleting, or the like by dry methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a resin composition for semiconductor encapsulation, a semiconductor device, and a method for producing a resin composition for semiconductor encapsulation.
  • Patent Document 1 carbon black is blended in the field of semiconductor sealing resin compositions. Thereby, when marking information, such as a product name and a lot number, on the hardened
  • the inventor examined the cause of the occurrence of a short circuit in order to improve the electrical reliability of the semiconductor device. As a result, it has been found that carbon black aggregates, that is, carbon aggregates, are clogged between the bonding wires having a narrow interval, thereby causing a short circuit. Therefore, the present inventor controls the occurrence of clogging of carbon black aggregates between bonding wires by setting the maximum particle size of the carbon black aggregates contained in the semiconductor sealing resin composition to a specific value or less. As a result, it was found that the electrical reliability of the semiconductor device can be improved, and the present invention has been completed.
  • Epoxy resin, A curing agent; Inorganic fillers; A resin composition for semiconductor encapsulation containing carbon black fine particles The semiconductor sealing resin composition is injection molded into a length of 80 mm, a width of 10 mm, and a thickness of 4 mm under conditions of a mold temperature of 175 ° C., an injection pressure of 10 MPa, and a curing time of 120 seconds, and then heated at 175 ° C. for 4 hours.
  • the maximum particle size of the aggregate of the carbon black fine particles is 50 ⁇ m or less. .
  • a semiconductor element mounted on a substrate;
  • a semiconductor device comprising a sealing member for sealing the semiconductor element,
  • the sealing member is composed of a cured product of the semiconductor sealing resin composition.
  • carbon black and an inorganic filler are mixed to obtain a mixture, and the carbon black is pulverized by jet mill pulverizing the mixture to obtain carbon black fine particles.
  • a method for producing a resin composition for semiconductor encapsulation comprising a step of mixing an epoxy resin, a curing agent, an inorganic filler, and the carbon black fine particles to obtain a resin composition for semiconductor encapsulation.
  • the semiconductor composition for semiconductor sealing when it is set as a semiconductor device, electrical reliability can be improved, the semiconductor composition for semiconductor sealing, a semiconductor device provided with the hardened
  • FIG. 1 is an example of a cross-sectional view of a semiconductor device according to an embodiment.
  • the semiconductor sealing resin composition of the present embodiment (hereinafter also referred to as “sealing resin composition” or “resin composition”) includes an epoxy resin, a curing agent, an inorganic filler, and carbon black fine particles.
  • the resin composition for semiconductor encapsulation contains a length of 80 mm, a width of 10 mm, and a thickness of 4 mm under conditions of a mold temperature of 175 ° C., an injection pressure of 10 MPa, and a curing time of 120 seconds.
  • a heat treatment is performed at 175 ° C. for 4 hours to obtain a cured product, and the surface of the cured product is observed with a fluorescence microscope, the maximum particle size of the aggregate of the carbon black fine particles is 50 ⁇ m or less. .
  • the inventor examined the cause of the occurrence of a short circuit in order to improve the electrical reliability of the semiconductor device. As a result, it was found that carbon black aggregates, that is, carbon aggregates, were clogged between the bonding wires having a narrow interval, thereby causing a short circuit. Thus, it has been found that when the maximum particle size of the aggregate of carbon black contained in the sealing resin composition is set to a specific value or less, the electrical reliability of the semiconductor device can be improved. Although the detailed mechanism is not clear, by setting the maximum particle size of the carbon black agglomerates to a specific value or less, the size of the carbon agglomerates can be reduced and the carbon agglomerates can be formed even if the spacing between the bonding wires is narrow. This is presumably because it is possible to suppress the occurrence of a short circuit. From the above, it is presumed that the resin composition for encapsulating a semiconductor according to the present embodiment can improve electrical reliability when it is used as a semiconductor device.
  • the upper limit of the maximum particle diameter of the aggregate of carbon black fine particles when the encapsulating resin composition according to this embodiment is a cured product is 50 ⁇ m or less, for example, preferably 40 ⁇ m or less, preferably 30 ⁇ m or less. Is more preferably 25 ⁇ m or less, and further preferably 20 ⁇ m or less. Thereby, the size of the carbon aggregate can be reduced and the carbon aggregate can be prevented from causing a short circuit. Further, the lower limit value of the maximum particle diameter of the aggregate of carbon black fine particles when the encapsulating resin composition according to this embodiment is a cured product may be, for example, 0.1 ⁇ m or more, or 1 ⁇ m or more.
  • the carbon black fine particles are highly dispersed from the viewpoint of improving electrical reliability.
  • the maximum particle size of the aggregate of carbon black fine particles when the sealing resin composition is a cured product can be measured as follows. First, the sealing resin composition is injection-molded into a length of 80 mm, a width of 10 mm, and a thickness of 4 mm using a low-pressure transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 10 MPa, and a curing time of 120 seconds. Then, heat treatment is performed at 175 ° C. for 4 hours to produce a cured product.
  • the surface of the cured product of the encapsulating resin composition is observed with a fluorescence microscope, and the maximum particle size of the aggregate of carbon black fine particles is evaluated.
  • the maximum particle diameter of the carbon aggregate is the maximum value of the particle diameter of the carbon aggregate in the observed region.
  • the particle diameter of the carbon aggregate is measured by taking the maximum length when two arbitrary points in a certain carbon aggregate are connected as the particle diameter.
  • the aggregate was crushed by pulverizing carbon black with a jet mill.
  • carbon black is excellent in mechanical properties, and coarse agglomerates could not be completely removed only by pulverizing with a jet mill.
  • a method of pulverizing carbon black it is possible to control the maximum particle size of the obtained aggregate of carbon black fine particles within a desired numerical range.
  • the method for producing carbon black fine particles by pulverizing carbon black will be described in detail below. However, a method is used in which a mixture is prepared by mixing carbon black and an inorganic filler, and the mixture is pulverized by jet mill.
  • the inorganic filler crushes the carbon black and crushes the coarse aggregated carbon aggregates. Presumed to be possible. Thereby, it is possible to control the maximum particle diameter of carbon black within a desired numerical range.
  • the inorganic filler properties such as the type, particle size, specific surface area, and Mohs hardness of the inorganic filler; the content of the inorganic filler and the carbon black in the mixture; It is important to control the factors such as the average particle size of the carbon black agglomerates; the supply amount of the mixture in the jet mill pulverization, the gas pressure, and the like to achieve the desired maximum particle size.
  • a method for controlling the maximum particle size of the aggregate of carbon black within a desired numerical range for example, first, jet mill pulverization with carbon black, and then mixing the carbon black and the inorganic filler, It is also effective in controlling the maximum particle size of carbon black to perform two-stage pulverization, that is, pulverization.
  • the sealing resin composition according to this embodiment includes an epoxy resin, a curing agent, an inorganic filler, and carbon black fine particles.
  • an epoxy resin e.g., an epoxy resin
  • a curing agent e.g., an epoxy resin
  • an inorganic filler e.g., an inorganic filler
  • carbon black fine particles e.g., carbon black fine particles
  • the epoxy resin indicates a compound (monomer, oligomer and polymer) having two or more epoxy groups in one molecule and does not limit the molecular weight and molecular structure.
  • Specific examples of the epoxy resin include crystalline epoxy resins such as bisphenol type epoxy resins such as biphenyl type epoxy resins and bisphenol A type epoxy resins, and stilbene type epoxy resins; phenol novolac type epoxy resins, cresol novolac type epoxy resins and the like.
  • Novolac type epoxy resin polyfunctional epoxy resin such as triphenolmethane type epoxy resin and alkyl-modified triphenolmethane type epoxy resin; phenolaralkyl type epoxy such as phenol aralkyl type epoxy resin containing phenylene skeleton and phenol aralkyl type epoxy resin containing biphenylene skeleton Resin; Naphthol type epoxy such as dihydroxynaphthalene type epoxy resin, epoxy resin obtained by diglyceryl etherification of dihydroxynaphthalene dimer Resin; triglycidyl isocyanurate, triazine nucleus-containing epoxy resins such as monoallyl diglycidyl isocyanurate; dicyclopentadiene-modified phenol type bridged cyclic hydrocarbon compound-modified phenol type epoxy resins and epoxy resins.
  • polyfunctional epoxy resin such as triphenolmethane type epoxy resin and alkyl-modified triphenolmethane type epoxy resin
  • phenolaralkyl type epoxy such as phenol
  • an epoxy resin it can use 1 type or in combination of 2 or more types among the said specific examples.
  • the epoxy resin among the above specific examples, for example, a phenol aralkyl type epoxy resin or a bisphenol type epoxy resin is preferably used.
  • carbon black fine particles can be suitably dispersed in the sealing resin composition, and electrical reliability can be improved when a semiconductor device is obtained.
  • the lower limit of the content of the epoxy resin in the sealing resin composition is, for example, preferably 0.1 parts by mass or more with respect to 100 parts by mass of the solid content of the sealing resin composition. It is more preferably 3 parts by mass or more, and further preferably 0.5 parts by mass or more. Moreover, it is preferable that the upper limit of content of the epoxy resin in the resin composition for sealing is 20 mass parts or less with respect to 100 mass parts of solid content of the resin composition for sealing, for example, 15 masses More preferably, it is more preferably 10 parts by mass or less.
  • the carbon black fine particles can be suitably dispersed in the encapsulating resin composition. Can be improved.
  • a known curing agent can be selected according to the type of the epoxy resin.
  • Specific examples of the curing agent include a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent.
  • polyaddition type curing agent examples include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylene diamine (MXDA); diaminodiphenylmethane (DDM), m-phenylene.
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • MXDA metaxylylene diamine
  • DDM diaminodiphenylmethane
  • Aromatic polyamines such as diamine (MPDA) and diaminodiphenylsulfone (DDS); polyamine compounds such as dicyandiamide (DICY) and organic acid dihydrazide; alicyclic rings such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA) Acid anhydrides; acid anhydrides such as aromatic acid anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), and benzophenone tetracarboxylic acid (BTDA); novolac-type phenolic resin, polyvinyl Phenolic resin-based curing agents such as polyols and aralkyl type phenolic resins; polymercaptan compounds such as polysulfides, thioesters and thioethers; isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; organic acids such as carboxylic acid-containing
  • the catalyst-type curing agent examples include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2 -Imidazole compounds such as ethyl-4-methylimidazole (EMI24); Lewis acids such as BF3 complexes.
  • BDMA benzyldimethylamine
  • DMP-30 2,4,6-trisdimethylaminomethylphenol
  • EMI24 2-methylimidazole
  • 2 -Imidazole compounds such as ethyl-4-methylimidazole (EMI24)
  • Lewis acids such as BF3 complexes.
  • curing agent it can use 1 type or in combination of 2 or more types among the said specific examples.
  • condensation type curing agent examples include resol type phenol resins; urea resins such as methylol group-containing urea resins; and melamine resins such as methylol group-containing melamine resins.
  • urea resins such as methylol group-containing urea resins
  • melamine resins such as methylol group-containing melamine resins.
  • curing agent As a hardening
  • the phenol resin-based curing agent monomers, oligomers and polymers in general having two or more phenolic hydroxyl groups in one molecule can be used, and the molecular weight and molecular structure are not limited.
  • Specific examples of the phenolic resin-based curing agent include novolak-type phenol resins such as phenol novolak resin, cresol novolak resin, bisphenol novolak resin, and phenol-biphenyl novolak resin; polyvinylphenol; polyfunctional type such as triphenolmethane type phenol resin.
  • Phenol resins modified phenol resins such as terpene-modified phenol resins and dicyclopentadiene-modified phenol resins; phenol aralkyl type phenol resins such as phenylene skeleton and / or biphenylene skeleton-containing phenol aralkyl resins, phenylene and / or biphenylene skeleton-containing naphthol aralkyl resins; Examples thereof include bisphenol compounds such as bisphenol A and bisphenol F.
  • curing agent it can use 1 type or in combination of 2 or more types among the said specific examples.
  • curing agent it is preferable to contain a phenylene skeleton and / or a biphenylene skeleton containing phenol aralkyl resin among the said specific examples.
  • an epoxy resin can be hardened
  • the lower limit of the content of the curing agent in the sealing resin composition is preferably, for example, 0.5 parts by mass or more with respect to 100 parts by mass of the solid content of the sealing resin composition. More preferably, it is more preferably 1.5 parts by mass or more, and even more preferably 2 parts by mass or more. Moreover, it is preferable that the upper limit of content of the hardening
  • the epoxy resin can be cured well. Therefore, it is possible to suppress the generation of coarse aggregates of carbon black fine particles due to insufficient curing.
  • the sealing resin composition according to this embodiment includes an inorganic filler. Carbon black described later can be pulverized by this inorganic filler.
  • the resin composition for sealing which concerns on this embodiment may contain the inorganic filler which is not used for grinding
  • silica specifically, fused crushed silica, fused spherical silica, crystalline silica, secondary agglomerated silica, finely divided silica, and the like can be used.
  • the inorganic nitride include silicon nitride, aluminum nitride, and boron nitride.
  • Specific examples of inorganic carbides include silicon carbide, zirconium carbide, titanium carbide, boron carbide, and tantalum carbide.
  • Specific examples of the inorganic hydroxide include aluminum hydroxide and magnesium hydroxide.
  • the inorganic filler is preferably an inorganic oxide or an inorganic hydroxide, and more preferably one or more selected from the group consisting of silica, alumina, and aluminum hydroxide.
  • the mixture of the inorganic filler and the carbon black is pulverized by jet mill so that the carbon black and the inorganic filler collide suitably, and the carbon black can be finely pulverized. Therefore, the maximum particle diameter can be set to a desired numerical range.
  • the lower limit of the particle diameter D 50 of the cumulative frequency of volume-based particle size distribution of the inorganic filler according to the present embodiment is 50%, it is possible that for example 0.1 ⁇ m or more preferably, 0.5 [mu] m or more More preferably, it is 1.0 ⁇ m or more.
  • the upper limit value of the particle diameter D 50 of the cumulative frequency of volume-based particle size distribution of the inorganic filler according to the present embodiment is 50%, for example, more that preferably at 100 ⁇ m or less, and 75 ⁇ m or less Preferably, it is 50 ⁇ m or less.
  • the frequency with which an inorganic filler collides with carbon black can be improved in a grinding
  • the lower limit of the specific surface area of the inorganic filler according to this embodiment is, for example, preferably 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 1.0 m 2. / G or more is more preferable. Thereby, the frequency which an inorganic filler and carbon black contact in a grinding
  • an upper limit of the specific surface area of the inorganic filler which concerns on this embodiment it is good also as 10 m ⁇ 2 > / g or less, and good also as 8 m ⁇ 2 > / g or less, for example.
  • the lower limit of the Mohs hardness of the inorganic filler according to the present embodiment is, for example, preferably 2 or more, and more preferably 3 or more. Thereby, when an inorganic filler collides with carbon black at a crushing process, carbon black can be crushed suitably.
  • the Mohs hardness of carbon black is 0.5 or more and 1 or less, for example.
  • an upper limit of the Mohs hardness of the inorganic filler which concerns on this embodiment it is 10 or less, for example, and may be 9 or less.
  • Carbon black fine particles The carbon black used as the carbon black fine particles according to the present embodiment is not limited, and specifically, carbon black such as furnace black, channel black, thermal black, acetylene black, ketjen black, and lamp black may be used. it can.
  • the upper limit of the particle size D 50 (that is, the secondary particle size) at which the cumulative frequency of the volume-based particle size distribution of the carbon black fine particle aggregate used in the resin composition of the present embodiment is 50% is, for example, 25 ⁇ m or less. It is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 10 ⁇ m or less, and even more preferably 7 ⁇ m or less. Thereby, even if the carbon black microparticles
  • the lower limit of the particle diameter D 50 of the cumulative frequency of volume-based particle size distribution of the aggregates of the carbon black particles according to the present embodiment is 50%, for example, may also be 0.01 ⁇ m or more, 0.1 [mu] m It may be the above. In order to improve electrical reliability, it is preferable that the average particle size of the carbon black fine particles is small. However, when the carbon black fine particles are equal to or more than the above lower limit, the handleability of the carbon black fine particles can be improved.
  • the lower limit of the content of the carbon black fine particles in the sealing resin composition is preferably, for example, 0.10 parts by mass or more with respect to 100 parts by mass of the solid content of the sealing resin composition.
  • the amount is more preferably 0.20 parts by mass or more, and further preferably 0.25 parts by mass or more.
  • fine-particles in the resin composition for sealing it is 2.0 mass parts or less with respect to 100 mass parts of solid content of the resin composition for sealing, for example. Preferably, it is 1.5 parts by mass or less, more preferably 1.0 part by mass or less, and further preferably 0.5 part by mass or less.
  • the carbon black fine particles according to the present embodiment are finer than conventional colorants. Therefore, even when the content is less than the above lower limit value, it is preferable in that the coloring ability can be maintained. Moreover, it is preferable also from a viewpoint which can improve the electrical reliability of a semiconductor device by being below the said lower limit.
  • the method for producing carbon black fine particles according to the present embodiment includes a mixing step of preparing a mixture of carbon black and an inorganic filler, a pulverizing step of pulverizing the carbon black by jet mill pulverizing the mixture, including.
  • the method for producing carbon black fine particles according to the present embodiment may further include, for example, a pre-grinding step in which the carbon black is pulverized by jet mill alone before the mixing step. Details of each step will be described below.
  • the mixing step a mixture in which carbon black and the inorganic filler described above are mixed is prepared.
  • the mixing method is not limited as long as the carbon black and the inorganic filler are mixed uniformly.
  • a mixing method specifically, a mixer or the like can be used.
  • the lower limit value of the particle size D 50 at which the cumulative frequency of the volume-based particle size distribution of the carbon black aggregates in the mixture is 50% is, for example, preferably 6 ⁇ m or more, and more preferably 10 ⁇ m or more. According to the manufacturing method of a carbon black fine particles according to the present embodiment, the particle size D 50 of carbon black than the above lower limit, even those that can not be pulverized by the conventional method, preferable in that it micronization.
  • the upper limit of the particle diameter D 50 of the cumulative frequency of volume-based particle size distribution of the aggregates of the carbon black in the mixture is 50 percent, for example, may also be 500 ⁇ m or less, may be 300 ⁇ m or less.
  • the particle diameter D 50 of the cumulative frequency of volume-based particle size distribution of the carbon black in the mixture is 50% is A
  • the particle size D 50 of the cumulative frequency of volume-based particle size distribution of the inorganic filler in the mixture is 50%
  • the lower limit value of A / B is, for example, preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0.3 or more.
  • a / B it is preferable that it is 200 or less, for example, it is more preferable that it is 75 or less, and it is still more preferable that it is 150 or less.
  • the inorganic filler collides with coarse carbon black, so that an appropriate impact can be applied to the carbon black and pulverization can be performed. Therefore, carbon black fine particles having a smaller particle diameter can be obtained.
  • the lower limit of the content of the inorganic filler in the mixture is, for example, preferably 5 parts by mass or more, more preferably 8 parts by mass or more, with respect to 100 parts by mass of carbon black in the mixture. More preferably, it is at least part by mass.
  • the upper limit value of the content of the inorganic filler in the mixture is, for example, preferably 2000 parts by mass or less and more preferably 1300 parts by mass or less with respect to 100 parts by mass of the carbon black in the mixture. More preferably, it is 1000 parts by mass or less.
  • pulverization may be equipped with the apparatus accompanying a jet mill, such as filter apparatuses, such as a fixed_quantity
  • filter apparatuses such as a fixed_quantity
  • a bag filter for example.
  • coarse carbon black can be further finely pulverized by appropriately adjusting the amount of the mixture supplied from the metering feeder to the jet mill and the gas pressure supplied to the jet mill.
  • the method for producing carbon black fine particles according to the present embodiment may further include, for example, a pre-grinding step in which carbon black is pulverized by jet mill alone before the mixing step. Carbon black and inorganic filler in the mixture can be more uniformly dispersed by jet milling the carbon black in the pre-grinding step. Thereby, coarse carbon black can be finely pulverized by jet mill pulverization.
  • a pre-grinding process it does not limit as a method of the jet mill grinding
  • various additives such as a coupling agent, a fluidity-imparting agent, a release agent, an ion scavenger, a curing accelerator, a low stress agent, a colorant, and a flame retardant are included as necessary.
  • 1 type, or 2 or more types can be mix
  • representative components will be described.
  • the coupling agent include vinyl silanes such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Epoxy silanes such as glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; styryl silanes such as p-styryltrimethoxysilane; 3-methacryloxypropyl Methacrylic silanes such as methyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane; Acrylic silane such as methoxysilane; N
  • the fluidity imparting agent can suppress the reaction of a curing accelerator having no latency such as a phosphorus atom-containing curing accelerator during melt kneading of the resin composition. Thereby, productivity of the resin composition for sealing can be improved.
  • Specific examples of the fluidity-imparting agent include two or more constituting an aromatic ring such as catechol, pyrogallol, gallic acid, gallic acid ester, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof. A compound in which a hydroxyl group is bonded to each adjacent carbon atom.
  • mold release agents include natural waxes such as carnauba wax; synthetic waxes such as montanic acid ester wax and oxidized polyethylene wax; higher fatty acids such as zinc stearate and metal salts thereof; paraffin; erucic acid amide, etc. Examples thereof include carboxylic acid amides.
  • 1 type (s) or 2 or more types can be mix
  • ion scavenger examples include hydrotalcites such as hydrotalcite and hydrotalcite-like substances; hydrous oxides of elements selected from magnesium, aluminum, bismuth, titanium, and zirconium.
  • hydrotalcites such as hydrotalcite and hydrotalcite-like substances
  • 1 type (s) or 2 or more types can be mix
  • curing accelerator examples include an onium salt compound, an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, and an adduct of a phosphonium compound and a silane compound.
  • Low stress agent Specific examples of the low stress agent include silicone compounds such as silicone oil and silicone rubber; polybutadiene compounds; acrylonitrile-butadiene copolymer compounds such as acrylonitrile-carboxyl-terminated butadiene copolymer compounds.
  • a low stress agent 1 type (s) or 2 or more types can be mix
  • Colorant examples include carbon black, bengara, and titanium oxide.
  • 1 type (s) or 2 or more types can be mix
  • flame retardant examples include aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, and carbon black.
  • 1 type (s) or 2 or more types can be mix
  • the method for producing a sealing resin composition according to the present embodiment includes, for example, a mixing step (S1) in which the above-described raw material components are mixed to produce a mixture, and then a molding step (S2) in which the mixture is molded. Including.
  • the mixing process is a process for preparing a mixture by mixing raw material components.
  • the method of mixing is not limited, and a known method can be used depending on the components used.
  • the mixing step the raw material components contained in the above-described sealing resin composition are uniformly mixed using a mixer or the like.
  • the mixture is melt-kneaded with a kneader such as a roll, a kneader or an extruder to prepare a mixture.
  • a forming step (S2) for forming the mixture is performed. It does not limit as a method to shape
  • mold A well-known method can be used according to the shape of the resin composition for sealing. It does not limit as a shape of the resin composition for sealing, For example, granule shape, powder shape, tablet shape, sheet shape etc. are mentioned.
  • the shape of the sealing resin composition can be selected according to the molding method.
  • Examples of the molding step for producing the sealing resin composition in the form of granules include a step of pulverizing the cooled mixture after melt-kneading.
  • the size of the granules may be adjusted by sieving the sealing resin composition in the form of granules.
  • the resin composition for sealing in the form of granules may be processed by a method such as a centrifugal milling method or a hot cut method to prepare the degree of dispersion or fluidity.
  • the mixture is pulverized to obtain a granular sealing resin composition, and then the granular sealing resin composition is used.
  • pulverizing is mentioned.
  • the mixture is pulverized to form a granular-shaped sealing resin composition, and then the granular-shaped sealing resin composition is used.
  • the process of tableting molding is mentioned.
  • seat the process of extruding or calendering the mixture after melt-kneading is mentioned, for example.
  • the semiconductor device according to the present embodiment includes, for example, a semiconductor element mounted on a substrate and a sealing member that seals the semiconductor element. Furthermore, the said sealing member is comprised with the hardened
  • the sealing resin composition according to this embodiment is used for a sealing member for sealing a semiconductor element.
  • the method for forming the sealing member is not limited, and examples thereof include transfer molding, compression molding, and injection molding. By these methods, the sealing member can be formed by molding and curing the sealing resin composition.
  • Examples of the semiconductor element include, but are not limited to, an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element. Although it does not limit as a base material, For example, wiring boards, such as an interposer, a lead frame, etc. are mentioned. When electrical connection between the semiconductor element and the base material is necessary, it may be appropriately connected. The method of electrical connection is not limited, and examples thereof include wire bonding and flip chip connection.
  • a semiconductor device is obtained by forming a sealing member that seals a semiconductor element with the sealing resin composition.
  • the semiconductor device is not limited, but a semiconductor device obtained by molding a semiconductor element is preferable.
  • Specific types of semiconductor devices include MAP (Mold Array Package), QFP (Quad Flat Package), SOP (Small Outline Package), CSP (Chip Size Package), and QFN (Quad Flat Package). ), SON (Small Outline Non-leaded Package), BGA (Ball Grid Array), LF-BGA (Lead Frame BGA), FCBGA (Flip Chip BGA), MAP BGA (Molded Array BGA, Molded Array BGA) ), Fan-In type eWLB, Fan-Out type eWLB, etc. I can get lost.
  • FIG. 1 is a cross-sectional view showing a semiconductor device 100 according to the present embodiment.
  • the semiconductor device 100 according to this embodiment includes an electronic element 20, a bonding wire 40 connected to the electronic element 20, and a sealing member 50.
  • the sealing resin layer 50 includes the above-described sealing. It is comprised by the hardened
  • the outer lead 34 is connected via the connector.
  • the bonding wire 40 can be set while taking into consideration the electronic element 20 to be used. For example, a Cu wire can be used.
  • the manufacturing method of the semiconductor device using the resin composition for sealing includes, for example, a manufacturing process for obtaining a sealing resin composition by the above-described manufacturing method of a sealing resin composition, a process of mounting an electronic element on a substrate, Sealing the electronic device using the sealing resin composition.
  • the semiconductor device 100 is formed by the following method, for example. First, an electronic element is mounted on a substrate. Specifically, the electronic element 20 is fixed on the die pad 32 (substrate 30) using the die attach material 10, and the die pad 32 (base material 30) that is a lead frame is connected by the bonding wire 40. Thereby, an object to be sealed is formed.
  • the semiconductor device 100 is manufactured by sealing the object to be sealed using the sealing resin composition and forming the sealing member 50. In the semiconductor device 100 in which the electronic element 20 is sealed, if necessary, the sealing resin composition is cured at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 10 hours. Installed in equipment.
  • Epoxy resin 1 Biphenylene skeleton-containing phenol aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000L)
  • Epoxy resin 2 bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, YL6810)
  • Curing agent 1 Biphenylene skeleton-containing phenol aralkyl resin (Nippon Kayaku Co., Ltd., GPH-65)
  • Carbon black Carbon black 1 Carbon # 5 manufactured by Mitsubishi Chemical Corporation was used as carbon black 1.
  • the primary particle size of carbon black 1 was 80 nm.
  • the particle size D 50 (that is, the secondary particle size) at which the cumulative frequency of the volume-based particle size distribution of the carbon black 1 aggregates was 50% was 200 ⁇ m.
  • Carbon black 2 ESR-2001 manufactured by Tokai Carbon Co., Ltd. was used as carbon black 2.
  • the primary particle size of carbon black 2 was 60 nm.
  • the particle size D 50 (that is, the secondary particle size) at which the cumulative frequency of the volume-based particle size distribution of the carbon black 3 aggregates was 50% was 200 ⁇ m.
  • Inorganic filler 3: fused spherical silica (manufactured by Denka, FB-560, particle size D 50 30 ⁇ m, cumulative frequency of volume-based particle size distribution is 50 ⁇ m, specific surface area 1.3 m 2 / g, Mohs hardness: 7 )
  • Inorganic filler 4 Alumina (Den, alumina
  • Coupling agent 1 3-mercaptopropyltrimethoxysilane (manufactured by Chisso Corporation, S810)
  • Curing accelerator 1 An adduct of a phosphonium compound and a silane compound represented by the following formula (P1) was synthesized and used as the curing accelerator 1. Details of the synthesis method will be described below. First, in a flask containing 1800 g of methanol, 249.5 g of phenyltrimethoxysilane and 384.0 g of 2,3-dihydroxynaphthalene were added and dissolved, and then 231.5 g of 28% sodium methoxide-methanol solution was added dropwise with stirring at room temperature. did.
  • a solution prepared by dissolving 503.0 g of tetraphenylphosphonium bromide in 600 g of methanol was added dropwise to the flask with stirring at room temperature to precipitate crystals.
  • the precipitated crystals were filtered, washed with water, and vacuum-dried to obtain a curing accelerator 1 that was a pink white crystal of an adduct of a phosphonium compound and a silane compound.
  • Example 1 the carbon black according to Example 1 was pulverized.
  • the carbon black was pulverized using the carbon black 1 having the blending amount (parts by mass) shown in Table 1 below and the inorganic filler 1.
  • the first jet mill was pulverized with respect to the carbon black 1 using an airflow jet mill (supply amount: 10 kg / hour, air pressure: 0.45 MPa).
  • the particle diameter D 50 (that is, the secondary particle diameter) at which the cumulative frequency of the volume-based particle size distribution of the aggregate of the carbon black 1 subjected to the first jet mill pulverization was 50% was 10 ⁇ m.
  • the first jet mill pulverized carbon black 1 and the inorganic filler 1 were mixed to prepare a mixture.
  • the mixture was subjected to second jet mill pulverization using an airflow type jet mill (feed amount: 50 kg / hour, air pressure: 0.45 MPa) to obtain carbon black 1 fine particles.
  • the particle diameter D 50 (that is, the secondary particle diameter) at which the cumulative frequency of the volume-based particle size distribution of the carbon black 1 fine particle aggregates of Example 1 was 50% was 3 ⁇ m.
  • the carbon black 1 fine particles, the inorganic filler 1 used for pulverization, and the raw material components other than those used for the production of the carbon black 1 fine particles were mixed in the following Table 1 using a mixer at room temperature. Then, the mixture was biaxially kneaded at a temperature of 70 ° C. or higher and 100 ° C. or lower. Subsequently, after cooling to normal temperature, it grind
  • Example 2 to 4 The encapsulating resin compositions of Examples 2 to 4 were prepared in the same manner as the encapsulating resin composition of Example 1, except that the amount of each component was changed as shown in Table 1 below.
  • Table 1 below shows the particle diameters D 50 (that is, secondary particle diameters) at which the cumulative frequency of the volume-based particle size distribution of the aggregates of the carbon black fine particles of Examples 2 to 4 becomes 50%.
  • the unit is ⁇ m.
  • Example 5 In the sealing resin composition of Example 5, the amount of each component was changed as shown in Table 1 below, and the second jet mill was not performed on the carbon black 1 without performing the first jet mill pulverization. It was prepared in the same manner as the sealing resin composition of Example 1 except that only finely pulverized carbon black 1 particles were prepared.
  • the particle size D 50 (that is, the secondary particle size) at which the cumulative frequency of the volume-based particle size distribution of the aggregate of the carbon black fine particles of Example 5 was 50% was 5 ⁇ m.
  • Example 6 In the sealing resin composition of Example 6, the carbon black was pulverized using the carbon black 2 having the blending amount shown in Table 1 below and the inorganic filler 1, and the blending amounts of the respective components were listed in the following table. 1 was prepared in the same manner as in the sealing resin composition of Example 5 except that it was changed to 1.
  • the particle size D 50 ie, the secondary particle size at which the cumulative frequency of the volume-based particle size distribution of the aggregate of the carbon black fine particles of Example 6 was 50% was 3 ⁇ m.
  • Example 7 In the sealing resin composition of Example 7, the amount of each component was changed as shown in Table 1 below, and the carbon black 1 pulverized according to Example 7 using the carbon black 1 and the inorganic filler 2 was used. It was produced by the same method as the sealing resin composition of Example 1 except that was produced.
  • Example 8 In the sealing resin composition of Example 8, the compounding amount of each component was changed as shown in Table 1 below, and the pulverized carbon black according to Example 8 using the carbon black 1 and the inorganic filler 3 was used. Except that it was produced, it was produced in the same manner as the sealing resin composition of Example 1.
  • Example 9 The encapsulating resin composition of Example 9 was obtained by changing the blending amounts of the respective components as shown in Table 1 below, and using the carbon black 1 and the inorganic filler 4 to pulverize the carbon black according to Example 9 Except that it was produced, it was produced in the same manner as the sealing resin composition of Example 1.
  • Example 10 In the sealing resin composition of Example 10, the compounding amount of each component was changed as shown in Table 1 below, and carbon black pulverized in Example 10 using carbon black 1 and inorganic filler 5 was produced. Except that, the sealing resin composition of Example 1 was prepared in the same manner.
  • Table 1 below shows the particle diameter D 50 (that is, the secondary particle diameter) at which the cumulative frequency of the volume-based particle size distribution of the aggregates of the carbon black fine particles of Examples 7 to 10 is 50%.
  • the unit is ⁇ m.
  • the sealing resin compositions of Examples 1 to 10 and Comparative Example 1 had a diameter of 100 mm and a thickness under conditions of a mold temperature of 175 ° C., an injection pressure of 10 MPa, and a curing time of 120 seconds. Injection molding was performed to 2 mm to obtain a cured product.
  • the surface of the cured product was observed with a fluorescence microscope, and the number of carbon black aggregates larger than 25 ⁇ m was counted.
  • the carbon black aggregate larger than 25 ⁇ m means that the maximum length when any two points in one carbon black aggregate are connected is larger than 25 ⁇ m.
  • the evaluation results are shown in the following Table 1 as “number of carbon black aggregates (particle diameter exceeding 25 ⁇ m)”. The unit is “pieces”. Further, the surface of the cured product was observed with a fluorescence microscope, and the maximum particle size of the carbon black aggregate was measured. The results are shown in Table 1. The unit is ⁇ m.
  • the maximum particle size of the carbon black aggregate is the maximum value of the particle size of the carbon aggregate.
  • the particle size of the carbon black aggregate was measured by taking the maximum length when any two points in a certain carbon aggregate were connected as the particle size.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

A resin composition for semiconductor sealing use according to the present invention which contains an epoxy resin, a curing agent, an inorganic filler and carbon black microparticles. When the resin composition for semiconductor sealing use is transfer-molded into a specimen having a length of 80 mm, a width of 10 mm and a thickness of 4 mm under the conditions including a mold temperature of 175°C, a transfer pressure of 10 MPa and a curing time of 120 seconds, then the specimen is heated at 175°C for 4 hours to produce a cured article, and then the surface of the cured article is observed with a SEM, the maximum diameter of aggregates of the carbon black microparticles is 50 μm or less.

Description

半導体封止用樹脂組成物、半導体装置、及び半導体封止用樹脂組成物の製造方法Semiconductor encapsulating resin composition, semiconductor device, and method for producing semiconductor encapsulating resin composition
 本発明は、半導体封止用樹脂組成物、半導体装置、及び半導体封止用樹脂組成物の製造方法に関する。 The present invention relates to a resin composition for semiconductor encapsulation, a semiconductor device, and a method for producing a resin composition for semiconductor encapsulation.
 例えば、特許文献1に示すように、半導体封止用樹脂組成物の分野では、カーボンブラックが配合される。これにより、半導体封止用樹脂組成物の硬化物に品名、ロット番号など情報をマーキングする際、より鮮明に印字することができる。また、カーボンブラックによって光が吸収され、光の透過を防止し半導体素子の光による誤動作防止にも作用を奏する。 For example, as shown in Patent Document 1, carbon black is blended in the field of semiconductor sealing resin compositions. Thereby, when marking information, such as a product name and a lot number, on the hardened | cured material of the resin composition for semiconductor sealing, it can print more clearly. In addition, light is absorbed by the carbon black, preventing light transmission and preventing malfunction of the semiconductor element due to light.
特開2009-275110号公報JP 2009-275110 A
 例えば、リードフレームを採用した半導体装置の分野において、半導体装置を高性能化するために、電子素子とリードフレームとの接続に用いられるボンディングワイヤの間隔を狭くすることが求められている。
 本発明者は、特許文献1に記載の封止用樹脂組成物によって半導体装置を作製する場合、ショートが発生してしまい、半導体装置の電気的信頼性が低下することがあると知見した。
 本発明は、半導体装置としたときに電気的信頼性を向上できる、半導体封止用樹脂組成物を提供することを課題とする。
For example, in the field of semiconductor devices that employ lead frames, in order to improve the performance of semiconductor devices, it is required to reduce the spacing between bonding wires used for connecting electronic elements and lead frames.
The present inventor has found that when a semiconductor device is manufactured with the encapsulating resin composition described in Patent Document 1, a short circuit occurs and the electrical reliability of the semiconductor device may be reduced.
This invention makes it a subject to provide the resin composition for semiconductor sealing which can improve electrical reliability, when it is set as a semiconductor device.
 本発明者は、半導体装置の電気的信頼性を向上するために、ショートの発生する原因について検討した。その結果、間隔の狭いボンディングワイヤ間にカーボンブラックの凝集物、すなわちカーボン凝集物が詰まってしまい、ショートの原因となることを見出した。
 そこで、本発明者は、半導体封止用樹脂組成物中に含まれるカーボンブラックの凝集物の最大粒子径を特定の数値以下として、ボンディングワイヤ間におけるカーボンブラックの凝集物の詰まりの発生を制御することにより、半導体装置の電気的信頼性を向上できることを見出し、本発明を完成させた。
The inventor examined the cause of the occurrence of a short circuit in order to improve the electrical reliability of the semiconductor device. As a result, it has been found that carbon black aggregates, that is, carbon aggregates, are clogged between the bonding wires having a narrow interval, thereby causing a short circuit.
Therefore, the present inventor controls the occurrence of clogging of carbon black aggregates between bonding wires by setting the maximum particle size of the carbon black aggregates contained in the semiconductor sealing resin composition to a specific value or less. As a result, it was found that the electrical reliability of the semiconductor device can be improved, and the present invention has been completed.
 本発明によれば、
 エポキシ樹脂と、
 硬化剤と、
 無機充填材と、
 カーボンブラック微粒子と、を含む半導体封止用樹脂組成物であり、
 当該半導体封止用樹脂組成物を、金型温度175℃、注入圧力10MPa、硬化時間120秒の条件で長さ80mm、幅10mm、厚さ4mmに注入成形し、次いで、175℃で4時間加熱処理して硬化物を得て、当該硬化物の表面を蛍光顕微鏡で観察した時、前記カーボンブラック微粒子の凝集物の最大粒子径は50μm以下である、半導体封止用樹脂組成物が提供される。
According to the present invention,
Epoxy resin,
A curing agent;
Inorganic fillers;
A resin composition for semiconductor encapsulation containing carbon black fine particles,
The semiconductor sealing resin composition is injection molded into a length of 80 mm, a width of 10 mm, and a thickness of 4 mm under conditions of a mold temperature of 175 ° C., an injection pressure of 10 MPa, and a curing time of 120 seconds, and then heated at 175 ° C. for 4 hours. When a cured product is obtained by treatment and the surface of the cured product is observed with a fluorescence microscope, the maximum particle size of the aggregate of the carbon black fine particles is 50 μm or less. .
 また、本発明によれば、
 基板上に搭載された半導体素子と、
 前記半導体素子を封止する封止部材と、を備える半導体装置であって、
 前記封止部材が、上記半導体封止用樹脂組成物の硬化物で構成される、半導体装置が提供される。
Moreover, according to the present invention,
A semiconductor element mounted on a substrate;
A semiconductor device comprising a sealing member for sealing the semiconductor element,
There is provided a semiconductor device in which the sealing member is composed of a cured product of the semiconductor sealing resin composition.
 さらにまた、本発明によれば、カーボンブラックと、無機充填材とを混合して混合物を得、前記混合物をジェットミル粉砕することで前記カーボンブラックを粉砕してカーボンブラック微粒子を得る工程と、
 エポキシ樹脂と、硬化剤と、無機充填材と、前記カーボンブラック微粒子とを混合して半導体封止用樹脂組成物を得る工程と、を含む、半導体封止用樹脂組成物の製造方法が提供される。
Furthermore, according to the present invention, carbon black and an inorganic filler are mixed to obtain a mixture, and the carbon black is pulverized by jet mill pulverizing the mixture to obtain carbon black fine particles.
There is provided a method for producing a resin composition for semiconductor encapsulation, comprising a step of mixing an epoxy resin, a curing agent, an inorganic filler, and the carbon black fine particles to obtain a resin composition for semiconductor encapsulation. The
 本発明によれば、半導体装置としたときに電気的信頼性を向上できる、半導体封止用樹脂組成物、この樹脂組成物の硬化物を備える半導体装置、およびこの半導体封止用樹脂組成物の製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, when it is set as a semiconductor device, electrical reliability can be improved, the semiconductor composition for semiconductor sealing, a semiconductor device provided with the hardened | cured material of this resin composition, and this resin composition for semiconductor sealing A manufacturing method is provided.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本実施形態に係る半導体装置の断面図の一例である。1 is an example of a cross-sectional view of a semiconductor device according to an embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 本実施形態の半導体封止用樹脂組成物(以下、「封止用樹脂組成物」または「樹脂組成物」とも称する)は、エポキシ樹脂と、硬化剤と、無機充填材と、カーボンブラック微粒子と、を含む半導体封止用樹脂組成物であり、当該封止用樹脂組成物を、金型温度175℃、注入圧力10MPa、硬化時間120秒の条件で長さ80mm、幅10mm、厚さ4mmに注入成形し、次いで、175℃で4時間加熱処理して硬化物を得て、当該硬化物の表面を蛍光顕微鏡で観察した時、上記カーボンブラック微粒子の凝集物の最大粒子径は50μm以下である。 The semiconductor sealing resin composition of the present embodiment (hereinafter also referred to as “sealing resin composition” or “resin composition”) includes an epoxy resin, a curing agent, an inorganic filler, and carbon black fine particles. The resin composition for semiconductor encapsulation contains a length of 80 mm, a width of 10 mm, and a thickness of 4 mm under conditions of a mold temperature of 175 ° C., an injection pressure of 10 MPa, and a curing time of 120 seconds. When injection molding is performed and then a heat treatment is performed at 175 ° C. for 4 hours to obtain a cured product, and the surface of the cured product is observed with a fluorescence microscope, the maximum particle size of the aggregate of the carbon black fine particles is 50 μm or less. .
 本発明者は、半導体装置の電気的信頼性を向上するために、ショートの発生する原因について検討した。その結果、間隔の狭いボンディングワイヤ間にカーボンブラックの凝集物、すなわち、カーボン凝集物が詰まってしまい、ショートの原因となることが判明した。そこで、本発明者が、封止用樹脂組成物中に含まれるカーボンブラックの凝集物の最大粒子径を特定の数値以下としたところ、半導体装置の電気的信頼性を向上できることが判明した。詳細なメカニズムは定かではないが、カーボンブラックの凝集物の最大粒子径を特定の数値以下とすることで、カーボン凝集物のサイズを小さくし、ボンディングワイヤ間の間隔が狭くとも、カーボン凝集物がショートの原因となることを抑制できるためと推測される。
 以上より、本実施形態に係る半導体封止用樹脂組成物は、半導体装置としたときに電気的信頼性を向上できると推測される。
The inventor examined the cause of the occurrence of a short circuit in order to improve the electrical reliability of the semiconductor device. As a result, it was found that carbon black aggregates, that is, carbon aggregates, were clogged between the bonding wires having a narrow interval, thereby causing a short circuit. Thus, it has been found that when the maximum particle size of the aggregate of carbon black contained in the sealing resin composition is set to a specific value or less, the electrical reliability of the semiconductor device can be improved. Although the detailed mechanism is not clear, by setting the maximum particle size of the carbon black agglomerates to a specific value or less, the size of the carbon agglomerates can be reduced and the carbon agglomerates can be formed even if the spacing between the bonding wires is narrow. This is presumably because it is possible to suppress the occurrence of a short circuit.
From the above, it is presumed that the resin composition for encapsulating a semiconductor according to the present embodiment can improve electrical reliability when it is used as a semiconductor device.
(半導体封止用樹脂組成物)
 まず、本実施形態に係る半導体封止用樹脂組成物について説明する。
(Resin composition for semiconductor encapsulation)
First, the semiconductor sealing resin composition according to this embodiment will be described.
 本実施形態に係る封止用樹脂組成物を硬化物としたときのカーボンブラック微粒子の凝集物の最大粒子径の上限値は、50μm以下であり、例えば、40μm以下であることが好ましく、30μm以下であることがより好ましく、25μm以下であることが更に好ましく、20μm以下であることが一層好ましい。これにより、カーボン凝集物のサイズを小さくし、カーボン凝集物がショートの原因となることを抑制できる。
 また、本実施形態に係る封止用樹脂組成物を硬化物としたときのカーボンブラック微粒子の凝集物の最大粒子径の下限値は、例えば、0.1μm以上でもよく、1μm以上でもよい。基本的に、カーボンブラック微粒子は高分散するほうが電気信頼性の向上の観点から好ましい。
 なお、本実施形態において、封止用樹脂組成物を硬化物としたときのカーボンブラック微粒子の凝集物の最大粒子径は以下のように測定することができる。
 まず、封止用樹脂組成物を、例えば、低圧トランスファー成形機を用いて、金型温度175℃、注入圧力10MPa、硬化時間120秒の条件で長さ80mm、幅10mm、厚さ4mmに注入成形し、次いで、175℃で4時間加熱処理して硬化物を作製する。この封止用樹脂組成物の硬化物の表面を蛍光顕微鏡で観察し、カーボンブラック微粒子の凝集物の最大粒子径を評価する。なお、カーボン凝集物の最大粒子径とは、観察する領域における、カーボン凝集物の粒子径の最大値である。カーボン凝集物の粒子径は、あるカーボン凝集物中の任意の2点を結んだ時の最大長さを粒子径とすることで測定される。
The upper limit of the maximum particle diameter of the aggregate of carbon black fine particles when the encapsulating resin composition according to this embodiment is a cured product is 50 μm or less, for example, preferably 40 μm or less, preferably 30 μm or less. Is more preferably 25 μm or less, and further preferably 20 μm or less. Thereby, the size of the carbon aggregate can be reduced and the carbon aggregate can be prevented from causing a short circuit.
Further, the lower limit value of the maximum particle diameter of the aggregate of carbon black fine particles when the encapsulating resin composition according to this embodiment is a cured product may be, for example, 0.1 μm or more, or 1 μm or more. Basically, it is preferable that the carbon black fine particles are highly dispersed from the viewpoint of improving electrical reliability.
In the present embodiment, the maximum particle size of the aggregate of carbon black fine particles when the sealing resin composition is a cured product can be measured as follows.
First, the sealing resin composition is injection-molded into a length of 80 mm, a width of 10 mm, and a thickness of 4 mm using a low-pressure transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 10 MPa, and a curing time of 120 seconds. Then, heat treatment is performed at 175 ° C. for 4 hours to produce a cured product. The surface of the cured product of the encapsulating resin composition is observed with a fluorescence microscope, and the maximum particle size of the aggregate of carbon black fine particles is evaluated. The maximum particle diameter of the carbon aggregate is the maximum value of the particle diameter of the carbon aggregate in the observed region. The particle diameter of the carbon aggregate is measured by taking the maximum length when two arbitrary points in a certain carbon aggregate are connected as the particle diameter.
 従来の封止用樹脂組成物では、カーボンブラックをジェットミル粉砕することによって凝集物を破砕していた。しかしながら、カーボンブラックは機械的特性に優れ、ジェットミル粉砕するのみでは、粗大な凝集物を完全に取り除くことはできなかった。
 本実施形態では、カーボンブラックを粉砕する方法を工夫することにより、得られるカーボンブラック微粒子の凝集物の最大粒子径を所望の数値範囲に制御することが可能である。カーボンブラックを粉砕してカーボンブラック微粒子を製造する方法については、以下で詳述するが、カーボンブラックと無機充填材とを混合して混合物を作製し、混合物をジェットミル粉砕する方法が用いられる。詳細なメカニズムは定かではないがカーボンブラックとカーボンブラックより硬度の高い無機充填材とを混合することにより、無機充填材がカーボンブラックを破砕し、再凝集した粗大なカーボン凝集物を破砕することができると推測される。これにより、カーボンブラックの最大粒子径を所望の数値範囲に制御することが可能である。
 また、上記カーボンブラックを粉砕する方法においては、無機充填材の種類、粒径、比表面積、モース硬度といった無機充填材の性状;混合物中の無機充填材と、カーボンブラックとの含有量;混合物中のカーボンブラックの凝集物の平均粒径;ジェットミル粉砕における混合物の供給量、気体圧力といった要素を制御することが、カーボンブラックを粉砕し、所望の最大粒子径を実現するうえで重要である。
In the conventional sealing resin composition, the aggregate was crushed by pulverizing carbon black with a jet mill. However, carbon black is excellent in mechanical properties, and coarse agglomerates could not be completely removed only by pulverizing with a jet mill.
In the present embodiment, by devising a method of pulverizing carbon black, it is possible to control the maximum particle size of the obtained aggregate of carbon black fine particles within a desired numerical range. The method for producing carbon black fine particles by pulverizing carbon black will be described in detail below. However, a method is used in which a mixture is prepared by mixing carbon black and an inorganic filler, and the mixture is pulverized by jet mill. Although the detailed mechanism is not clear, by mixing carbon black and an inorganic filler that is harder than carbon black, the inorganic filler crushes the carbon black and crushes the coarse aggregated carbon aggregates. Presumed to be possible. Thereby, it is possible to control the maximum particle diameter of carbon black within a desired numerical range.
In the method of pulverizing the carbon black, the inorganic filler properties such as the type, particle size, specific surface area, and Mohs hardness of the inorganic filler; the content of the inorganic filler and the carbon black in the mixture; It is important to control the factors such as the average particle size of the carbon black agglomerates; the supply amount of the mixture in the jet mill pulverization, the gas pressure, and the like to achieve the desired maximum particle size.
 また、カーボンブラックの凝集物の最大粒子径を所望の数値範囲に制御する方法としては、例えば、まず、カーボンブラックによってジェットミル粉砕し、次いで、カーボンブラックと無機充填材とを混合してジェットミル粉砕をするという、2段階の粉砕を行うことも、カーボンブラックの最大粒子径を制御するうえで有効である。 Further, as a method for controlling the maximum particle size of the aggregate of carbon black within a desired numerical range, for example, first, jet mill pulverization with carbon black, and then mixing the carbon black and the inorganic filler, It is also effective in controlling the maximum particle size of carbon black to perform two-stage pulverization, that is, pulverization.
 本実施形態に係る封止用樹脂組成物は、エポキシ樹脂と、硬化剤と、無機充填材と、カーボンブラック微粒子と、を含む。
 以下、本実施形態に係る封止用樹脂組成物の原料成分について説明する。
The sealing resin composition according to this embodiment includes an epoxy resin, a curing agent, an inorganic filler, and carbon black fine particles.
Hereinafter, the raw material component of the sealing resin composition according to the present embodiment will be described.
(エポキシ樹脂)
 エポキシ樹脂は、1分子内に2個以上のエポキシ基を有する化合物(モノマー、オリゴマー及びポリマー)を示し、分子量及び分子構造を限定するものではない。
 エポキシ樹脂としては、具体的には、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂といったビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂等の結晶性エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂などが挙げられる。エポキシ樹脂としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
 エポキシ樹脂としては、上記具体例のうち、例えば、フェノールアラルキル型エポキシ樹脂またはビスフェノール型エポキシ樹脂を用いることが好ましい。これにより、封止用樹脂組成物中にカーボンブラック微粒子を好適に分散でき、半導体装置としたときに電気的信頼性を向上できる。
(Epoxy resin)
The epoxy resin indicates a compound (monomer, oligomer and polymer) having two or more epoxy groups in one molecule and does not limit the molecular weight and molecular structure.
Specific examples of the epoxy resin include crystalline epoxy resins such as bisphenol type epoxy resins such as biphenyl type epoxy resins and bisphenol A type epoxy resins, and stilbene type epoxy resins; phenol novolac type epoxy resins, cresol novolac type epoxy resins and the like. Novolac type epoxy resin; polyfunctional epoxy resin such as triphenolmethane type epoxy resin and alkyl-modified triphenolmethane type epoxy resin; phenolaralkyl type epoxy such as phenol aralkyl type epoxy resin containing phenylene skeleton and phenol aralkyl type epoxy resin containing biphenylene skeleton Resin; Naphthol type epoxy such as dihydroxynaphthalene type epoxy resin, epoxy resin obtained by diglyceryl etherification of dihydroxynaphthalene dimer Resin; triglycidyl isocyanurate, triazine nucleus-containing epoxy resins such as monoallyl diglycidyl isocyanurate; dicyclopentadiene-modified phenol type bridged cyclic hydrocarbon compound-modified phenol type epoxy resins and epoxy resins. As an epoxy resin, it can use 1 type or in combination of 2 or more types among the said specific examples.
As the epoxy resin, among the above specific examples, for example, a phenol aralkyl type epoxy resin or a bisphenol type epoxy resin is preferably used. Thereby, carbon black fine particles can be suitably dispersed in the sealing resin composition, and electrical reliability can be improved when a semiconductor device is obtained.
 封止用樹脂組成物中のエポキシ樹脂の含有量の下限値は、例えば、封止用樹脂組成物の固形分100質量部に対して、0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましく、0.5質量部以上であることがさらに好ましい。
 また、封止用樹脂組成物中のエポキシ樹脂の含有量の上限値は、例えば、封止用樹脂組成物の固形分100質量部に対して、20質量部以下であることが好ましく、15質量部以下であることがより好ましく、10質量部以下であることが更に好ましい。
 封止用樹脂組成物中のエポキシ樹脂の含有量が上記数値範囲内であることにより、封止用樹脂組成物中にカーボンブラック微粒子を好適に分散でき、半導体装置としたときに電気的信頼性を向上できる。
The lower limit of the content of the epoxy resin in the sealing resin composition is, for example, preferably 0.1 parts by mass or more with respect to 100 parts by mass of the solid content of the sealing resin composition. It is more preferably 3 parts by mass or more, and further preferably 0.5 parts by mass or more.
Moreover, it is preferable that the upper limit of content of the epoxy resin in the resin composition for sealing is 20 mass parts or less with respect to 100 mass parts of solid content of the resin composition for sealing, for example, 15 masses More preferably, it is more preferably 10 parts by mass or less.
When the content of the epoxy resin in the encapsulating resin composition is within the above numerical range, the carbon black fine particles can be suitably dispersed in the encapsulating resin composition. Can be improved.
(硬化剤)
 硬化剤は、エポキシ樹脂の種類に応じて公知の硬化剤を選択することができる。硬化剤としては、具体的には、重付加型の硬化剤、触媒型の硬化剤、および縮合型の硬化剤などが挙げられる。
(Curing agent)
As the curing agent, a known curing agent can be selected according to the type of the epoxy resin. Specific examples of the curing agent include a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent.
 上記重付加型の硬化剤としては、具体的には、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン;ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミン;ジシアンジアミド(DICY)、有機酸ジヒドララジドなどのポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物;無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などの酸無水物;ノボラック型フェノール樹脂、ポリビニルフェノール、アラルキル型フェノール樹脂などのフェノール樹脂系硬化剤;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。重付加型の硬化剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。 Specific examples of the polyaddition type curing agent include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylene diamine (MXDA); diaminodiphenylmethane (DDM), m-phenylene. Aromatic polyamines such as diamine (MPDA) and diaminodiphenylsulfone (DDS); polyamine compounds such as dicyandiamide (DICY) and organic acid dihydrazide; alicyclic rings such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA) Acid anhydrides; acid anhydrides such as aromatic acid anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), and benzophenone tetracarboxylic acid (BTDA); novolac-type phenolic resin, polyvinyl Phenolic resin-based curing agents such as polyols and aralkyl type phenolic resins; polymercaptan compounds such as polysulfides, thioesters and thioethers; isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; organic acids such as carboxylic acid-containing polyester resins It is done. As a polyaddition type hardening | curing agent, it can use 1 type or in combination of 2 or more types among the said specific examples.
 上記触媒型の硬化剤としては、具体的には、ベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)などのイミダゾール化合物;BF3錯体などのルイス酸などが挙げられる。触媒型の硬化剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。 Specific examples of the catalyst-type curing agent include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2 -Imidazole compounds such as ethyl-4-methylimidazole (EMI24); Lewis acids such as BF3 complexes. As a catalyst type hardening | curing agent, it can use 1 type or in combination of 2 or more types among the said specific examples.
 上記縮合型の硬化剤としては、具体的には、レゾール型フェノール樹脂;メチロール基含有尿素樹脂などの尿素樹脂;メチロール基含有メラミン樹脂などのメラミン樹脂などが挙げられる。縮合型の硬化剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。 Specific examples of the condensation type curing agent include resol type phenol resins; urea resins such as methylol group-containing urea resins; and melamine resins such as methylol group-containing melamine resins. As the condensation type curing agent, one or more of the above specific examples can be used in combination.
 硬化剤としては、上記具体例のうち、フェノール樹脂系硬化剤を含むことが好ましい。
 フェノール樹脂系硬化剤としては、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量、分子構造は限定されない。
 フェノール樹脂系硬化剤としては、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック、フェノール‐ビフェニルノボラック樹脂等のノボラック型フェノール樹脂;ポリビニルフェノール;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格含有フェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格含有ナフトールアラルキル樹脂等のフェノールアラルキル型フェノール樹脂;ビスフェノールA、ビスフェノールFなどのビスフェノール化合物などが挙げられる。フェノール樹脂系硬化剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
 フェノール樹脂系硬化剤としては、上記具体例のうち、フェニレン骨格及び/又はビフェニレン骨格含有フェノールアラルキル樹脂を含むことが好ましい。これにより封止用樹脂組成物において、エポキシ樹脂を良好に硬化することができる。したがって、硬化が不十分であることに起因して、カーボンブラック微粒子の粗大な凝集物が発生することを抑制できる。
As a hardening | curing agent, it is preferable that a phenol resin type hardening | curing agent is included among the said specific examples.
As the phenol resin-based curing agent, monomers, oligomers and polymers in general having two or more phenolic hydroxyl groups in one molecule can be used, and the molecular weight and molecular structure are not limited.
Specific examples of the phenolic resin-based curing agent include novolak-type phenol resins such as phenol novolak resin, cresol novolak resin, bisphenol novolak resin, and phenol-biphenyl novolak resin; polyvinylphenol; polyfunctional type such as triphenolmethane type phenol resin. Phenol resins; modified phenol resins such as terpene-modified phenol resins and dicyclopentadiene-modified phenol resins; phenol aralkyl type phenol resins such as phenylene skeleton and / or biphenylene skeleton-containing phenol aralkyl resins, phenylene and / or biphenylene skeleton-containing naphthol aralkyl resins; Examples thereof include bisphenol compounds such as bisphenol A and bisphenol F. As a phenol resin type hardening | curing agent, it can use 1 type or in combination of 2 or more types among the said specific examples.
As a phenol resin type hardening | curing agent, it is preferable to contain a phenylene skeleton and / or a biphenylene skeleton containing phenol aralkyl resin among the said specific examples. Thereby, an epoxy resin can be hardened | cured favorably in the resin composition for sealing. Therefore, it is possible to suppress the generation of coarse aggregates of carbon black fine particles due to insufficient curing.
 封止用樹脂組成物中の硬化剤の含有量の下限値は、封止用樹脂組成物の固形分100質量部に対して、例えば、0.5質量部以上であることが好ましく、1質量部以上であることがより好ましく、1.5質量部以上であることがさらに好ましく、2質量部以上であることが一層好ましい。
 また、封止用樹脂組成物中の硬化剤の含有量の上限値は、例えば、封止用樹脂組成物の固形分100質量部に対して、10質量部以下であることが好ましく、8質量部以下であることがより好ましく、6質量部以下であることがさらに好ましく、5質量部以下であることが一層好ましい。
 封止用樹脂組成物中の硬化剤の含有量が上記数値範囲内であることにより、エポキシ樹脂を良好に硬化することができる。したがって、硬化が不十分であることに起因して、カーボンブラック微粒子の粗大な凝集物が発生することを抑制できる。
The lower limit of the content of the curing agent in the sealing resin composition is preferably, for example, 0.5 parts by mass or more with respect to 100 parts by mass of the solid content of the sealing resin composition. More preferably, it is more preferably 1.5 parts by mass or more, and even more preferably 2 parts by mass or more.
Moreover, it is preferable that the upper limit of content of the hardening | curing agent in the resin composition for sealing is 10 mass parts or less with respect to 100 mass parts of solid content of the resin composition for sealing, for example, 8 masses More preferably, it is more preferably 6 parts by mass or less, still more preferably 5 parts by mass or less.
When the content of the curing agent in the sealing resin composition is within the above numerical range, the epoxy resin can be cured well. Therefore, it is possible to suppress the generation of coarse aggregates of carbon black fine particles due to insufficient curing.
(無機充填材)
 本実施形態に係る封止用樹脂組成物は無機充填材を含む。この無機充填材によって後述するカーボンブラックを粉砕することができる。なお、本実施形態に係る封止用樹脂組成物は、例えば、粉砕に用いる無機充填材に加えて、粉砕に用いない無機充填材を含有してもよい。
 無機充填材としては限定されず、具体的には、無機酸化物、無機窒化物、無機炭化物及び無機水酸化物などが挙げられる。
 無機酸化物としては、具体的には、シリカ、アルミナ、酸化チタン、タルク、クレー、マイカ、ガラス繊維(石英ガラス)などが挙げられる。なお、シリカとしては、具体的には、溶融破砕シリカ、溶融球状シリカ、結晶性シリカ、2次凝集シリカ、微粉シリカなどを用いることができる。
 また、無機窒化物としては、具体的には、窒化ケイ素、窒化アルミニウム、窒化ホウ素などが挙げられる。
 また、無機炭化物としては、具体的には、炭化ケイ素、炭化ジルコニウム、炭化チタン、炭化ホウ素、炭化タンタルなどが挙げられる。
 また、無機水酸化物としては、具体的には、水酸化アルミニウム、水酸化マグネシウムなどが挙げられる。
 無機充填材としては上記具体例のうち、例えば、無機酸化物または無機水酸化物を用いることが好ましく、シリカ、アルミナ及び水酸化アルミニウムからなる群より選択される1種以上を用いることがより好ましい。これにより、無機充填材と、カーボンブラックとの混合物がジェットミル粉砕されることによって、カーボンブラックと、無機充填材とが好適に衝突し、カーボンブラックを細かく粉砕することができる。したがって、最大粒子径を所望の数値範囲とすることができる。
(Inorganic filler)
The sealing resin composition according to this embodiment includes an inorganic filler. Carbon black described later can be pulverized by this inorganic filler. In addition, in addition to the inorganic filler used for grinding | pulverization, the resin composition for sealing which concerns on this embodiment may contain the inorganic filler which is not used for grinding | pulverization, for example.
It does not limit as an inorganic filler, Specifically, an inorganic oxide, an inorganic nitride, an inorganic carbide, an inorganic hydroxide, etc. are mentioned.
Specific examples of the inorganic oxide include silica, alumina, titanium oxide, talc, clay, mica, and glass fiber (quartz glass). As silica, specifically, fused crushed silica, fused spherical silica, crystalline silica, secondary agglomerated silica, finely divided silica, and the like can be used.
Specific examples of the inorganic nitride include silicon nitride, aluminum nitride, and boron nitride.
Specific examples of inorganic carbides include silicon carbide, zirconium carbide, titanium carbide, boron carbide, and tantalum carbide.
Specific examples of the inorganic hydroxide include aluminum hydroxide and magnesium hydroxide.
Of the above specific examples, the inorganic filler is preferably an inorganic oxide or an inorganic hydroxide, and more preferably one or more selected from the group consisting of silica, alumina, and aluminum hydroxide. . Thereby, the mixture of the inorganic filler and the carbon black is pulverized by jet mill so that the carbon black and the inorganic filler collide suitably, and the carbon black can be finely pulverized. Therefore, the maximum particle diameter can be set to a desired numerical range.
 本実施形態に係る無機充填材の体積基準粒度分布の累積頻度が50%となる粒径D50の下限値としては、例えば0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、1.0μm以上であることがさらに好ましい。これにより、粉砕工程において、無機充填材が、カーボンブラックに対して衝突することにより、カーボンブラックを粉砕する事ができ、好適な最大粒子径のカーボンブラックを得ることができる。
 また、本実施形態に係る無機充填材の体積基準粒度分布の累積頻度が50%となる粒径D50の上限値としては、例えば、100μm以下であることが好ましく、75μm以下であることがより好ましく、50μm以下であることが更に好ましい。これにより、粉砕工程において、無機充填材が、カーボンブラックに対して衝突する頻度を向上できる。したがって、カーボンブラックを好適に粉砕する事ができる。
The lower limit of the particle diameter D 50 of the cumulative frequency of volume-based particle size distribution of the inorganic filler according to the present embodiment is 50%, it is possible that for example 0.1μm or more preferably, 0.5 [mu] m or more More preferably, it is 1.0 μm or more. Thus, in the pulverization step, the inorganic filler collides against the carbon black, whereby the carbon black can be pulverized and carbon black having a suitable maximum particle size can be obtained.
The upper limit value of the particle diameter D 50 of the cumulative frequency of volume-based particle size distribution of the inorganic filler according to the present embodiment is 50%, for example, more that preferably at 100μm or less, and 75μm or less Preferably, it is 50 μm or less. Thereby, the frequency with which an inorganic filler collides with carbon black can be improved in a grinding | pulverization process. Therefore, carbon black can be pulverized suitably.
 本実施形態に係る無機充填材の比表面積の下限値としては、例えば、0.1m/g以上であることが好ましく、0.5m/g以上であることがより好ましく、1.0m/g以上であることが更に好ましい。これにより、粉砕工程における、無機充填材と、カーボンブラックとの接触する頻度を増やし、カーボンブラックを好適に粉砕することができる。
 また、本実施形態に係る無機充填材の比表面積の上限値としては、例えば、10m/g以下としてもよく、8m/g以下としてもよい。
The lower limit of the specific surface area of the inorganic filler according to this embodiment is, for example, preferably 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 1.0 m 2. / G or more is more preferable. Thereby, the frequency which an inorganic filler and carbon black contact in a grinding | pulverization process can be increased, and carbon black can be grind | pulverized suitably.
Moreover, as an upper limit of the specific surface area of the inorganic filler which concerns on this embodiment, it is good also as 10 m < 2 > / g or less, and good also as 8 m < 2 > / g or less, for example.
 本実施形態に係る無機充填材のモース硬度の下限値としては、例えば、2以上であることが好ましく、3以上であることがより好ましい。これにより、粉砕工程で無機充填材が、カーボンブラックと衝突した際に、好適にカーボンブラックを粉砕できる。なお、カーボンブラックのモース硬度は、例えば、0.5以上1以下である。
 また、本実施形態に係る無機充填材のモース硬度の上限値としては、例えば、10以下であり、9以下であってもよい。
The lower limit of the Mohs hardness of the inorganic filler according to the present embodiment is, for example, preferably 2 or more, and more preferably 3 or more. Thereby, when an inorganic filler collides with carbon black at a crushing process, carbon black can be crushed suitably. In addition, the Mohs hardness of carbon black is 0.5 or more and 1 or less, for example.
Moreover, as an upper limit of the Mohs hardness of the inorganic filler which concerns on this embodiment, it is 10 or less, for example, and may be 9 or less.
(カーボンブラック微粒子)
 本実施形態に係るカーボンブラック微粒子として用いられるカーボンブラックとしては限定されず、具体的には、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、ケッチェンブラック、ランプブラックなどのカーボンブラックを用いることができる。
(Carbon black fine particles)
The carbon black used as the carbon black fine particles according to the present embodiment is not limited, and specifically, carbon black such as furnace black, channel black, thermal black, acetylene black, ketjen black, and lamp black may be used. it can.
 本実施形態樹脂組成物に用いられるカーボンブラック微粒子の凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50(すなわち、二次粒径)の上限値としては、例えば、25μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることが更に好ましく、10μm以下であることが一層好ましく、7μm以下であることが殊更好ましい。これにより、本実施形態に係るカーボンブラック微粒子を封止用樹脂組成物として用いたとしても、半導体装置がショートすることを抑制できる。
 また、本実施形態に係るカーボンブラック微粒子の凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50の下限値は、例えば、0.01μm以上であってもよく、0.1μm以上であってもよい。電気的信頼性を向上ために、カーボンブラック微粒子の平均粒径は小さいほうが好ましいが、上記下限値以上であることにより、カーボンブラック微粒子の取り扱い性を向上できる。
The upper limit of the particle size D 50 (that is, the secondary particle size) at which the cumulative frequency of the volume-based particle size distribution of the carbon black fine particle aggregate used in the resin composition of the present embodiment is 50% is, for example, 25 μm or less. It is preferably 20 μm or less, more preferably 15 μm or less, still more preferably 10 μm or less, and even more preferably 7 μm or less. Thereby, even if the carbon black microparticles | fine-particles which concern on this embodiment are used as a resin composition for sealing, it can suppress that a semiconductor device short-circuits.
The lower limit of the particle diameter D 50 of the cumulative frequency of volume-based particle size distribution of the aggregates of the carbon black particles according to the present embodiment is 50%, for example, may also be 0.01μm or more, 0.1 [mu] m It may be the above. In order to improve electrical reliability, it is preferable that the average particle size of the carbon black fine particles is small. However, when the carbon black fine particles are equal to or more than the above lower limit, the handleability of the carbon black fine particles can be improved.
 封止用樹脂組成物中のカーボンブラック微粒子の含有量の下限値としては、封止用樹脂組成物の固形分100質量部に対して、例えば、0.10質量部以上であることが好ましく、0.20質量部以上であることがより好ましく、0.25質量部以上であることが更に好ましい。これにより、本実施形態に係る半導体装置は、カーボン凝集物を形成することを抑制しつつ、封止用樹脂組成物の硬化物に品名、ロット番号など情報をマーキングする際、より鮮明に印字することができる観点で好ましい。また、光の透過を防止し半導体素子の光による誤動作を抑制できる観点でも好ましい。
 また、封止用樹脂組成物中のカーボンブラック微粒子の含有量の上限値としては、封止用樹脂組成物の固形分100質量部に対して、例えば、2.0質量部以下であることが好ましく、1.5質量部以下であることがより好ましく、1.0質量部以下であることが更に好ましく、0.5質量部以下であることが一層好ましい。本実施形態に係るカーボンブラック微粒子は、従来の着色剤と比べて、微細である。したがって、含有量が上記下限値以下と少ない場合でも、着色能を維持できる点で好適である。また、上記下限値以下であることによって、半導体装置の電気的信頼性を向上できる観点でも好ましい。
The lower limit of the content of the carbon black fine particles in the sealing resin composition is preferably, for example, 0.10 parts by mass or more with respect to 100 parts by mass of the solid content of the sealing resin composition. The amount is more preferably 0.20 parts by mass or more, and further preferably 0.25 parts by mass or more. Thereby, the semiconductor device according to the present embodiment prints more clearly when marking information such as the product name and the lot number on the cured product of the sealing resin composition while suppressing the formation of carbon aggregates. It is preferable from the viewpoint of being able to. Further, it is also preferable from the viewpoint of preventing light transmission and suppressing malfunction of the semiconductor element due to light.
Moreover, as an upper limit of content of the carbon black microparticles | fine-particles in the resin composition for sealing, it is 2.0 mass parts or less with respect to 100 mass parts of solid content of the resin composition for sealing, for example. Preferably, it is 1.5 parts by mass or less, more preferably 1.0 part by mass or less, and further preferably 0.5 part by mass or less. The carbon black fine particles according to the present embodiment are finer than conventional colorants. Therefore, even when the content is less than the above lower limit value, it is preferable in that the coloring ability can be maintained. Moreover, it is preferable also from a viewpoint which can improve the electrical reliability of a semiconductor device by being below the said lower limit.
 上述した通り、本実施形態に係る封止用樹脂組成物中のカーボンブラック微粒子の凝集物の最大粒子径を所望の数値範囲内とするには、カーボンブラックを粉砕する方法を工夫することが重要である。そこで、以下にカーボンブラック微粒子の製造方法について説明する。 As described above, it is important to devise a method for pulverizing carbon black in order to keep the maximum particle diameter of the aggregate of carbon black fine particles in the sealing resin composition according to the present embodiment within a desired numerical range. It is. Therefore, a method for producing carbon black fine particles will be described below.
(カーボンブラック微粒子の製造方法)
 本実施形態に係るカーボンブラック微粒子の製造方法は、カーボンブラックと、無機充填材とを混合した混合物を作製する混合工程と、該混合物をジェットミル粉砕することでカーボンブラックを粉砕する粉砕工程と、を含む。
 また、本実施形態に係るカーボンブラック微粒子の製造方法は、例えば、混合工程の前にカーボンブラックを単独でジェットミル粉砕する前粉砕工程をさらに含んでもよい。
 以下、各工程の詳細について説明する。
(Method for producing carbon black fine particles)
The method for producing carbon black fine particles according to the present embodiment includes a mixing step of preparing a mixture of carbon black and an inorganic filler, a pulverizing step of pulverizing the carbon black by jet mill pulverizing the mixture, including.
In addition, the method for producing carbon black fine particles according to the present embodiment may further include, for example, a pre-grinding step in which the carbon black is pulverized by jet mill alone before the mixing step.
Details of each step will be described below.
(混合工程)
 混合工程では、カーボンブラックと、上述した無機充填材とを混合した混合物を作製する。
 混合する方法としては、カーボンブラックと、無機充填材とが均一に混合されれば限定されない。混合する方法としては、具体的には、ミキサーなどを用いることができる。
(Mixing process)
In the mixing step, a mixture in which carbon black and the inorganic filler described above are mixed is prepared.
The mixing method is not limited as long as the carbon black and the inorganic filler are mixed uniformly. As a mixing method, specifically, a mixer or the like can be used.
 混合物中のカーボンブラックの凝集体の体積基準粒度分布の累積頻度が50%となる粒径D50の下限値は、例えば、6μm以上であることが好ましく、10μm以上であることがより好ましい。本実施形態に係るカーボンブラック微粒子の製造方法によれば、粒径D50が上記下限値以上のカーボンブラックで、従来の手法では粉砕できなかったものであっても、微粉化できる点で好ましい。
 また、混合物中のカーボンブラックの凝集体の体積基準粒度分布の累積頻度が50%となる粒径D50の上限値は、例えば、500μm以下であってもよく、300μm以下であってもよい。これにより、混合物中における、カーボンブラックと、無機充填材との分散を均一にすることができる。したがって、粉砕工程において、均一にカーボンブラックを粉砕し、カーボン凝集体の最大粒子径を所望の数値範囲内とすることができる。
The lower limit value of the particle size D 50 at which the cumulative frequency of the volume-based particle size distribution of the carbon black aggregates in the mixture is 50% is, for example, preferably 6 μm or more, and more preferably 10 μm or more. According to the manufacturing method of a carbon black fine particles according to the present embodiment, the particle size D 50 of carbon black than the above lower limit, even those that can not be pulverized by the conventional method, preferable in that it micronization.
The upper limit of the particle diameter D 50 of the cumulative frequency of volume-based particle size distribution of the aggregates of the carbon black in the mixture is 50 percent, for example, may also be 500μm or less, may be 300μm or less. Thereby, dispersion | distribution of carbon black and an inorganic filler in a mixture can be made uniform. Therefore, in the pulverization step, carbon black can be uniformly pulverized, and the maximum particle diameter of the carbon aggregate can be set within a desired numerical range.
 混合物中のカーボンブラックの体積基準粒度分布の累積頻度が50%となる粒径D50をAとし、混合物中の無機充填材の体積基準粒度分布の累積頻度が50%となる粒径D50をBとしたとき、A/Bの下限値としては、例えば、0.1以上であることが好ましく、0.2以上であることがより好ましく、0.3以上であることが更に好ましい。これにより、粉砕工程において、無機充填材が、粗大なカーボンブラックに対して、好適に衝突することができ、より小粒径の微細カーボンブラックを得ることができる。
 また、A/Bの上限値としては、例えば、200以下であることが好ましく、75以下であることがより好ましく、150以下であることが一層好ましい。これにより、粉砕工程において、無機充填材が、粗大なカーボンブラックに衝突することで、適切な衝撃をカーボンブラックに与え、粉砕することができる。したがって、より小粒径のカーボンブラック微粒子を得ることができる。
The particle diameter D 50 of the cumulative frequency of volume-based particle size distribution of the carbon black in the mixture is 50% is A, the particle size D 50 of the cumulative frequency of volume-based particle size distribution of the inorganic filler in the mixture is 50% When B is set, the lower limit value of A / B is, for example, preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0.3 or more. Thereby, in a grinding | pulverization process, an inorganic filler can collide suitably with coarse carbon black, and can obtain fine carbon black with a smaller particle size.
Moreover, as an upper limit of A / B, it is preferable that it is 200 or less, for example, it is more preferable that it is 75 or less, and it is still more preferable that it is 150 or less. Thus, in the pulverization step, the inorganic filler collides with coarse carbon black, so that an appropriate impact can be applied to the carbon black and pulverization can be performed. Therefore, carbon black fine particles having a smaller particle diameter can be obtained.
 混合物中の無機充填材の含有量の下限値は、混合物中のカーボンブラック100質量部に対して、例えば、5質量部以上であることが好ましく、8質量部以上であることがより好ましく、10質量部以上であることがさらに好ましい。
 また、混合物中の無機充填材の含有量の上限値は、混合物中のカーボンブラック100質量部に対して、例えば、2000質量部以下であることが好ましく、1300質量部以下であることがより好ましく、1000質量部以下であることが更に好ましい。
 無機充填材の含有量が上記数値範囲内であることにより、無機充填材がカーボンブラックに対して適切に衝突し、カーボンブラックを粉砕することができる。
The lower limit of the content of the inorganic filler in the mixture is, for example, preferably 5 parts by mass or more, more preferably 8 parts by mass or more, with respect to 100 parts by mass of carbon black in the mixture. More preferably, it is at least part by mass.
Further, the upper limit value of the content of the inorganic filler in the mixture is, for example, preferably 2000 parts by mass or less and more preferably 1300 parts by mass or less with respect to 100 parts by mass of the carbon black in the mixture. More preferably, it is 1000 parts by mass or less.
When the content of the inorganic filler is within the above numerical range, the inorganic filler can appropriately collide with the carbon black and the carbon black can be pulverized.
(粉砕工程)
 粉砕工程では、混合物をジェットミル粉砕することでカーボンブラックを粉砕する。これにより、カーボンブラック微粒子を得ることができる。
 ジェットミル粉砕の方法としては、従来公知の方法を用いることができる。ジェットミル粉砕の方法としては、具体的には、壁衝突式ジェットミル、粉体衝突式ジェットミルなどの気流式ジェットミルが挙げられる。ジェットミル粉砕の方法としては、上記具体例のうち例えば、気流式ジェットミルを用いることが好ましい。これにより、無機充填材とカーボンブラックとを好適に衝突させることができる。したがって、粗大なカーボンブラックを細かく粉砕することができる。
(Crushing process)
In the pulverization step, carbon black is pulverized by jet mill pulverizing the mixture. Thereby, carbon black fine particles can be obtained.
A conventionally known method can be used as the jet mill pulverization method. Specific examples of the jet mill pulverization method include air flow type jet mills such as a wall collision type jet mill and a powder collision type jet mill. As a jet mill pulverization method, it is preferable to use, for example, an airflow jet mill among the above specific examples. Thereby, an inorganic filler and carbon black can be made to collide suitably. Therefore, coarse carbon black can be finely pulverized.
 なお、ジェットミル粉砕を行う装置は、例えば、ジェットミルに混合物を一定量供給するための定量供給機、バグフィルターなどのフィルター装置といったジェットミルに付随する装置を備えていてもよい。
 例えば、定量供給機からジェットミルへの混合物の供給量と、ジェットミルに供給される気体圧力とを適切に調整することで、粗大なカーボンブラックをさらに細かく粉砕することができる。
In addition, the apparatus which performs a jet mill grinding | pulverization may be equipped with the apparatus accompanying a jet mill, such as filter apparatuses, such as a fixed_quantity | feed_rate supply apparatus for supplying a fixed quantity of a mixture to a jet mill, and a bag filter, for example.
For example, coarse carbon black can be further finely pulverized by appropriately adjusting the amount of the mixture supplied from the metering feeder to the jet mill and the gas pressure supplied to the jet mill.
(前粉砕工程)
 本実施形態に係るカーボンブラック微粒子の製造方法は、例えば、混合工程の前にカーボンブラックを単独でジェットミル粉砕する前粉砕工程をさらに含んでもよい。
 前粉砕工程によってカーボンブラックをジェットミル粉砕しておくことにより、混合物中のカーボンブラック及び無機充填材をさらに均一に分散できる。これにより、ジェットミル粉砕によって、粗大なカーボンブラックを細かく粉砕することができる。
 なお、前粉砕工程におけるジェットミル粉砕の方法としては限定されず、例えば、上述した粉砕工程と同様の方法を用いることができる。
(Pre-grinding process)
The method for producing carbon black fine particles according to the present embodiment may further include, for example, a pre-grinding step in which carbon black is pulverized by jet mill alone before the mixing step.
Carbon black and inorganic filler in the mixture can be more uniformly dispersed by jet milling the carbon black in the pre-grinding step. Thereby, coarse carbon black can be finely pulverized by jet mill pulverization.
In addition, it does not limit as a method of the jet mill grinding | pulverization in a pre-grinding process, For example, the method similar to the grinding | pulverization process mentioned above can be used.
(その他の成分)
 封止用樹脂組成物中には、必要に応じて、カップリング剤、流動性付与剤、離型剤、イオン捕捉剤、硬化促進剤、低応力剤、着色剤及び難燃剤等の各種添加剤のうち1種または2種以上を適宜配合することができる。
 以下、代表成分について説明する。
(Other ingredients)
In the sealing resin composition, various additives such as a coupling agent, a fluidity-imparting agent, a release agent, an ion scavenger, a curing accelerator, a low stress agent, a colorant, and a flame retardant are included as necessary. 1 type, or 2 or more types can be mix | blended suitably.
Hereinafter, representative components will be described.
(カップリング剤)
 カップリング剤としては、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニルシラン;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシシラン;p-スチリルトリメトキシシランなどのスチリルシラン;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリルシラン;3-アクリロキシプロピルトリメトキシシランなどのアクリルシラン;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、フェニルアミノプロピルトリメトキシシランなどのアミノシラン;イソシアヌレートシラン;アルキルシラン;3-ウレイドプロピルトリアルコキシシランなどのウレイドシラン;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどのメルカプトシラン;3-イソシアネートプロピルトリエトキシシランなどのイソシアネートシラン;チタン系化合物;アルミニウムキレート類;アルミニウム/ジルコニウム系化合物などが挙げられる。カップリング剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Coupling agent)
Specific examples of the coupling agent include vinyl silanes such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Epoxy silanes such as glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; styryl silanes such as p-styryltrimethoxysilane; 3-methacryloxypropyl Methacrylic silanes such as methyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane; Acrylic silane such as methoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3 Aminosilanes such as aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, phenylaminopropyltrimethoxysilane; Nulate silane; alkyl silane; ureido silane such as 3-ureidopropyltrialkoxysilane; mercaptosilane such as 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane; Isocyanate silane such as pills triethoxysilane; titanium-based compounds; aluminum chelates; aluminum / zirconium compounds. As a coupling agent, 1 type (s) or 2 or more types can be mix | blended among the said specific examples.
(流動性付与剤)
 流動性付与剤は、リン原子含有硬化促進剤などの潜伏性を有さない硬化促進剤が、樹脂組成物の溶融混練時に反応することを抑制できる。これにより、封止用樹脂組成物の生産性を向上できる。
 流動性付与剤としては、具体的には、カテコール、ピロガロール、没食子酸、没食子酸エステル、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン及びこれらの誘導体などの芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物などが挙げられる。
(Fluidity imparting agent)
The fluidity imparting agent can suppress the reaction of a curing accelerator having no latency such as a phosphorus atom-containing curing accelerator during melt kneading of the resin composition. Thereby, productivity of the resin composition for sealing can be improved.
Specific examples of the fluidity-imparting agent include two or more constituting an aromatic ring such as catechol, pyrogallol, gallic acid, gallic acid ester, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof. A compound in which a hydroxyl group is bonded to each adjacent carbon atom.
(離型剤)
 離型剤としては、具体的には、カルナバワックスなどの天然ワックス;モンタン酸エステルワックス、酸化ポリエチレンワックスなどの合成ワックス;ステアリン酸亜鉛等の高級脂肪酸及びその金属塩;パラフィン;エルカ酸アミドなどのカルボン酸アミドなどが挙げられる。離型剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Release agent)
Specific examples of mold release agents include natural waxes such as carnauba wax; synthetic waxes such as montanic acid ester wax and oxidized polyethylene wax; higher fatty acids such as zinc stearate and metal salts thereof; paraffin; erucic acid amide, etc. Examples thereof include carboxylic acid amides. As a mold release agent, 1 type (s) or 2 or more types can be mix | blended among the said specific examples.
(イオン捕捉剤)
 上記イオン捕捉剤は、具体的には、ハイドロタルサイト、ハイドロタルサイト状物質などのハイドロタルサイト類;マグネシウム、アルミニウム、ビスマス、チタン、ジルコニウムから選ばれる元素の含水酸化物などが挙げられる。イオン捕捉剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Ion scavenger)
Specific examples of the ion scavenger include hydrotalcites such as hydrotalcite and hydrotalcite-like substances; hydrous oxides of elements selected from magnesium, aluminum, bismuth, titanium, and zirconium. As an ion trapping agent, 1 type (s) or 2 or more types can be mix | blended among the said specific examples.
(硬化促進剤)
 硬化促進剤としては、具体的には、オニウム塩化合物、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)、2-フェニル-4-メチルイミダゾール(2P4MZ)、2-フェニルイミダゾール(2PZ)、2-フェニル-4-メチル-5-ヒドロキシイミダゾール(2P4MHZ)、1-ベンジル-2-フェニルイミダゾール(1B2PZ)などのイミダゾール化合物;1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン等が例示されるアミジンや3級アミン;上記アミジンまたは上記3級アミンの4級アンモニウム塩等の窒素原子含有化合物などが挙げられる。硬化促進剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Curing accelerator)
Specific examples of the curing accelerator include an onium salt compound, an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, and an adduct of a phosphonium compound and a silane compound. Containing compounds; 2-methylimidazole, 2-ethyl-4-methylimidazole (EMI24), 2-phenyl-4-methylimidazole (2P4MZ), 2-phenylimidazole (2PZ), 2-phenyl-4-methyl-5- Amidines and tertiary compounds such as imidazole compounds such as hydroxyimidazole (2P4MHZ) and 1-benzyl-2-phenylimidazole (1B2PZ); 1,8-diazabicyclo [5.4.0] undecene-7, benzyldimethylamine and the like Amines; Amidine above or above Such as a nitrogen atom-containing compounds such as quaternary ammonium salts of tertiary amines. As a hardening accelerator, 1 type (s) or 2 or more types can be mix | blended among the said specific examples.
(低応力剤)
 低応力剤としては、具体的には、シリコーンオイル、シリコーンゴムなどのシリコーン化合物;ポリブタジエン化合物;アクリロニトリル-カルボキシル基末端ブタジエン共重合化合物などのアクリロニトリル-ブタジエン共重合化合物などを挙げることができる。低応力剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Low stress agent)
Specific examples of the low stress agent include silicone compounds such as silicone oil and silicone rubber; polybutadiene compounds; acrylonitrile-butadiene copolymer compounds such as acrylonitrile-carboxyl-terminated butadiene copolymer compounds. As a low stress agent, 1 type (s) or 2 or more types can be mix | blended among the said specific examples.
(着色剤)
 着色剤としては、具体的には、カーボンブラック、ベンガラ、酸化チタンなどを挙げることができる。着色剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Coloring agent)
Specific examples of the colorant include carbon black, bengara, and titanium oxide. As a coloring agent, 1 type (s) or 2 or more types can be mix | blended among the said specific examples.
(難燃剤)
 難燃剤としては、具体的には、水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、モリブデン酸亜鉛、ホスファゼン、カーボンブラックなどを挙げることができる。難燃剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Flame retardants)
Specific examples of the flame retardant include aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, and carbon black. As a flame retardant, 1 type (s) or 2 or more types can be mix | blended among the said specific examples.
(封止用樹脂組成物の製造方法)
 次に、本実施形態に係る封止用樹脂組成物の製造方法について説明する。
 本実施形態に係る封止用樹脂組成物の製造方法は、例えば、上述した原料成分を混合して混合物を作製する混合工程(S1)と、次いで、混合物を成形する成形工程(S2)とを含む。
(Method for producing resin composition for sealing)
Next, the manufacturing method of the resin composition for sealing concerning this embodiment is demonstrated.
The method for producing a sealing resin composition according to the present embodiment includes, for example, a mixing step (S1) in which the above-described raw material components are mixed to produce a mixture, and then a molding step (S2) in which the mixture is molded. Including.
(混合工程(S1))
 混合工程は、原料成分を混合し、混合物を作製工程である。混合する方法は限定されず、用いられる成分に応じて、公知の方法を用いることができる。
 混合工程としては、具体的には、上述した封止用樹脂組成物が含む原料成分を、ミキサーなどを用いて均一に混合する。次いで、ロール、ニーダーまたは押出機等の混練機で溶融混練し、混合物を作製する。
(Mixing step (S1))
The mixing process is a process for preparing a mixture by mixing raw material components. The method of mixing is not limited, and a known method can be used depending on the components used.
Specifically, as the mixing step, the raw material components contained in the above-described sealing resin composition are uniformly mixed using a mixer or the like. Next, the mixture is melt-kneaded with a kneader such as a roll, a kneader or an extruder to prepare a mixture.
(成形工程(S2))
 上述した混合工程(S1)に、次いで、混合物を成形する成形工程(S2)を行う。
 成形する方法としては限定されず、封止用樹脂組成物の形状に応じて、公知の方法を用いることができる。封止用樹脂組成物の形状としては限定されず、例えば、顆粒形状、粉末形状、タブレット形状、シート形状などが挙げられる。封止用樹脂組成物の形状は、成形方法に応じて選択できる。
(Molding process (S2))
Next to the mixing step (S1) described above, a forming step (S2) for forming the mixture is performed.
It does not limit as a method to shape | mold, A well-known method can be used according to the shape of the resin composition for sealing. It does not limit as a shape of the resin composition for sealing, For example, granule shape, powder shape, tablet shape, sheet shape etc. are mentioned. The shape of the sealing resin composition can be selected according to the molding method.
 顆粒形状とした封止用樹脂組成物を作製する成形工程としては、例えば、溶融混練後、冷却した混合物を粉砕する工程が挙げられる。なお、例えば、顆粒形状とした封止用樹脂組成物をふるい分けして、顆粒の大きさを調節してもよい。また、例えば、顆粒形状とした封止用樹脂組成物を、遠心製粉法またはホットカット法などの方法で処理し、分散度または流動性などを調製してもよい。
 また、粉末形状とした封止用樹脂組成物を作製する成形工程としては、例えば、混合物を粉砕し顆粒形状の封止用樹脂組成物とした後、該顆粒形状の封止用樹脂組成物をさらに粉砕する工程が挙げられる。
 また、タブレット形状とした封止用樹脂組成物を作製する成形工程としては、例えば、混合物を粉砕し顆粒形状の封止用樹脂組成物とした後、該顆粒形状の封止用樹脂組成物を打錠成型する工程が挙げられる。
 また、シート形状とした封止用樹脂組成物を作製する成形工程としては、例えば、溶融混練後、混合物を押出成形またはカレンダー成形する工程が挙げられる。
Examples of the molding step for producing the sealing resin composition in the form of granules include a step of pulverizing the cooled mixture after melt-kneading. For example, the size of the granules may be adjusted by sieving the sealing resin composition in the form of granules. Further, for example, the resin composition for sealing in the form of granules may be processed by a method such as a centrifugal milling method or a hot cut method to prepare the degree of dispersion or fluidity.
In addition, as a molding process for producing a sealing resin composition in powder form, for example, the mixture is pulverized to obtain a granular sealing resin composition, and then the granular sealing resin composition is used. Furthermore, the process of grind | pulverizing is mentioned.
In addition, as a molding process for producing a tablet-shaped sealing resin composition, for example, the mixture is pulverized to form a granular-shaped sealing resin composition, and then the granular-shaped sealing resin composition is used. The process of tableting molding is mentioned.
Moreover, as a shaping | molding process which produces the resin composition for sealing in the shape of a sheet | seat, the process of extruding or calendering the mixture after melt-kneading is mentioned, for example.
(半導体装置)
 次に、本実施形態にかかる封止用樹脂組成物を用いた半導体装置について説明する。
 本実施形態に係る半導体装置は、例えば、基板上に搭載された半導体素子と、半導体素子を封止する封止部材と、を備える。さらに、上記封止部材は、例えば、上記封止用樹脂組成物の製造方法によって得られる封止用樹脂組成物の硬化物で構成される。
(Semiconductor device)
Next, a semiconductor device using the sealing resin composition according to this embodiment will be described.
The semiconductor device according to the present embodiment includes, for example, a semiconductor element mounted on a substrate and a sealing member that seals the semiconductor element. Furthermore, the said sealing member is comprised with the hardened | cured material of the resin composition for sealing obtained by the manufacturing method of the said resin composition for sealing, for example.
 本実施形態にかかる封止用樹脂組成物は、半導体素子を封止する封止部材に用いられる。封止部材を形成する方法は限定されないが、例えば、トランスファー成形法、圧縮成形法、インジェクション成形などが挙げられる。これらの方法により、封止用樹脂組成物を、成形し、硬化させることにより封止部材を形成することができる。 The sealing resin composition according to this embodiment is used for a sealing member for sealing a semiconductor element. The method for forming the sealing member is not limited, and examples thereof include transfer molding, compression molding, and injection molding. By these methods, the sealing member can be formed by molding and curing the sealing resin composition.
 半導体素子としては、限定されるものではないが、たとえば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子が挙げられる。
 基材としては、限定されるものではないが、例えば、インターポーザ等の配線基板、リードフレーム等が挙げられる。
 半導体素子と、基材との電気的な接続が必要な場合、適宜接続してもよい。電気的に接続する方法は、限定されるものではないが、例えば、ワイヤボンディング、フリップチップ接続などが挙げられる。
Examples of the semiconductor element include, but are not limited to, an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.
Although it does not limit as a base material, For example, wiring boards, such as an interposer, a lead frame, etc. are mentioned.
When electrical connection between the semiconductor element and the base material is necessary, it may be appropriately connected. The method of electrical connection is not limited, and examples thereof include wire bonding and flip chip connection.
 封止用樹脂組成物によって半導体素子を封止する封止部材を形成することで、半導体装置が得られる。半導体装置としては、限定されるものではないが、半導体素子をモールドすることにより得られる半導体装置が好ましい。
 半導体装置の種類としてしては、具体的には、MAP(Mold Array Package)、QFP(Quad Flat Package)、SOP(Small Outline Package)、CSP(Chip Size Package)、QFN(Quad Flat Non-leaded Package)、SON(Small Outline Non-leaded Package)、BGA(Ball Grid Array)、LF-BGA(Lead Flame BGA)、FCBGA(Flip Chip BGA)、MAPBGA(Molded Array Process BGA)、eWLB(Embedded Wafer-Level BGA)、Fan-In型eWLB、Fan-Out型eWLBなどの種類が挙げられる。
A semiconductor device is obtained by forming a sealing member that seals a semiconductor element with the sealing resin composition. The semiconductor device is not limited, but a semiconductor device obtained by molding a semiconductor element is preferable.
Specific types of semiconductor devices include MAP (Mold Array Package), QFP (Quad Flat Package), SOP (Small Outline Package), CSP (Chip Size Package), and QFN (Quad Flat Package). ), SON (Small Outline Non-leaded Package), BGA (Ball Grid Array), LF-BGA (Lead Frame BGA), FCBGA (Flip Chip BGA), MAP BGA (Molded Array BGA, Molded Array BGA) ), Fan-In type eWLB, Fan-Out type eWLB, etc. I can get lost.
 以下に、本実施形態に係る封止用樹脂組成物を用いた半導体装置の一例について説明する。
 図1は本実施形態に係る半導体装置100を示す断面図である。
 本実施形態の半導体装置100は、電子素子20と、電子素子20に接続されるボンディングワイヤ40と、封止部材50と、を備えるものであり、当該封止樹脂層50は、前述の封止用樹脂組成物の硬化物により構成される。
 より具体的には、電子素子20は、基材30上にダイアタッチ材10を介して固定されており、半導体装置100は、電子素子20上に設けられた図示しない電極パッドからボンディングワイヤ40を介して接続されるアウターリード34を有する。ボンディングワイヤ40は用いられる電子素子20等を勘案しながら設定することができるが、たとえばCuワイヤを用いることができる。
Below, an example of the semiconductor device using the resin composition for sealing concerning this embodiment is explained.
FIG. 1 is a cross-sectional view showing a semiconductor device 100 according to the present embodiment.
The semiconductor device 100 according to this embodiment includes an electronic element 20, a bonding wire 40 connected to the electronic element 20, and a sealing member 50. The sealing resin layer 50 includes the above-described sealing. It is comprised by the hardened | cured material of the resin composition.
More specifically, the electronic element 20 is fixed on the base material 30 via the die attach material 10, and the semiconductor device 100 receives the bonding wire 40 from an electrode pad (not shown) provided on the electronic element 20. The outer lead 34 is connected via the connector. The bonding wire 40 can be set while taking into consideration the electronic element 20 to be used. For example, a Cu wire can be used.
 以下に、本実施形態に係る封止用樹脂組成物を用いた半導体装置の製造方法について説明する。
 本実施形態に係る半導体装置の製造方法は、例えば、上述した封止用樹脂組成物の製造方法により、封止用樹脂組成物を得る製造工程と、基板上に電子素子を搭載する工程と、前記封止用樹脂組成物を用いて、前記電子素子を封止する工程と、を備える。
Below, the manufacturing method of the semiconductor device using the resin composition for sealing concerning this embodiment is demonstrated.
The manufacturing method of the semiconductor device according to the present embodiment includes, for example, a manufacturing process for obtaining a sealing resin composition by the above-described manufacturing method of a sealing resin composition, a process of mounting an electronic element on a substrate, Sealing the electronic device using the sealing resin composition.
 半導体装置100は、例えば、以下の方法で形成される。
 まず、基板上に電子素子を搭載する。具体的には、ダイアタッチ材10を用いてダイパッド32(基板30)上に電子素子20を固定し、ボンディングワイヤ40によりリードフレームであるダイパッド32(基材30)を接続する。これにより、被封止物を形成する。
 この被封止物を、封止用樹脂組成物を用いて封止し、封止部材50を形成することにより、半導体装置100が製造される。
 電子素子20が封止された半導体装置100は、必要に応じて、80℃から200℃程度の温度で10分から10時間程度の時間をかけて封止用樹脂組成物を硬化させた後、電子機器等に搭載される。
The semiconductor device 100 is formed by the following method, for example.
First, an electronic element is mounted on a substrate. Specifically, the electronic element 20 is fixed on the die pad 32 (substrate 30) using the die attach material 10, and the die pad 32 (base material 30) that is a lead frame is connected by the bonding wire 40. Thereby, an object to be sealed is formed.
The semiconductor device 100 is manufactured by sealing the object to be sealed using the sealing resin composition and forming the sealing member 50.
In the semiconductor device 100 in which the electronic element 20 is sealed, if necessary, the sealing resin composition is cured at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 10 hours. Installed in equipment.
 以上、実施形態に基づき、本発明を説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を変更しない範囲でその構成を変更することもできる。 As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to the said embodiment, The structure can also be changed in the range which does not change the summary of this invention.
 以下、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例の記載に何ら限定されるものではない。
 まず、各実施例、各比較例の封止用樹脂組成物に用いた原料成分について説明する。
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to description of these Examples at all.
First, the raw material component used for the resin composition for sealing of each Example and each comparative example is demonstrated.
(エポキシ樹脂)
・エポキシ樹脂1:ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(日本化薬社製、NC-3000L)
・エポキシ樹脂2:ビスフェノールA型エポキシ樹脂(三菱化学社製、YL6810)
(Epoxy resin)
Epoxy resin 1: Biphenylene skeleton-containing phenol aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000L)
Epoxy resin 2: bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, YL6810)
(硬化剤)
・硬化剤1:ビフェニレン骨格含有フェノールアラルキル樹脂(日本化薬社製、GPH-65)
(Curing agent)
Curing agent 1: Biphenylene skeleton-containing phenol aralkyl resin (Nippon Kayaku Co., Ltd., GPH-65)
(カーボンブラック)
・カーボンブラック1:カーボンブラック1として、三菱化学社製のカーボン#5を用いた。カーボンブラック1の一次粒径は80nmであった。また、カーボンブラック1の凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50(すなわち、二次粒径)は200μmであった。
・カーボンブラック2:カーボンブラック2として、東海カーボン社製のESR-2001を用いた。カーボンブラック2の一次粒径は60nmであった。また、カーボンブラック3の凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50(すなわち、二次粒径)は200μmであった。
(Carbon black)
Carbon black 1: Carbon # 5 manufactured by Mitsubishi Chemical Corporation was used as carbon black 1. The primary particle size of carbon black 1 was 80 nm. In addition, the particle size D 50 (that is, the secondary particle size) at which the cumulative frequency of the volume-based particle size distribution of the carbon black 1 aggregates was 50% was 200 μm.
Carbon black 2: ESR-2001 manufactured by Tokai Carbon Co., Ltd. was used as carbon black 2. The primary particle size of carbon black 2 was 60 nm. The particle size D 50 (that is, the secondary particle size) at which the cumulative frequency of the volume-based particle size distribution of the carbon black 3 aggregates was 50% was 200 μm.
(無機充填材)
・無機充填材1:球状微粉シリカ(アドマテックス社製、SO-32R、体積基準粒度分布の累積頻度が50%となる粒径D50=1.5μm、比表面積5.5m/g、モース硬度:7)
・無機充填材2:溶融球状シリカ(マイクロン社製、TS-3100、体積基準粒度分布の累積頻度が50%となる粒径D50=2.5μm、比表面積7.5m/g、モース硬度:7)
・無機充填材3:溶融球状シリカ(デンカ社製、FB-560、体積基準粒度分布の累積頻度が50%となる粒径D50=30μm、比表面積1.3m/g、モース硬度:7)
・無機充填材4:アルミナ(デンカ社製、DAB-30FC、体積基準粒度分布の累積頻度が50%となる粒径D50=13μm、比表面積1.4m/g、モース硬度:9)
・無機充填材5:水酸化アルミニウム(住友化学社製、CL-303、体積基準粒度分布の累積頻度が50%となる粒径D50=5μm、比表面積1.0m/g、モース硬度:3)
・無機充填材6:溶融球状シリカ(デンカ社製、FB-950、体積基準粒度分布の累積頻度が50%となる粒径D50=23μm、比表面積1.5m/g)
(Inorganic filler)
Inorganic filler 1: spherical fine silica (manufactured by Admatex, SO-32R, particle size D 50 = 1.5 μm, cumulative frequency of volume-based particle size distribution is 1.5 μm, specific surface area 5.5 m 2 / g, Mohs Hardness: 7)
Inorganic filler 2: fused spherical silica (manufactured by Micron, TS-3100, particle size D 50 = 2.5 μm, cumulative frequency of volume-based particle size distribution is 50 μm, specific surface area 7.5 m 2 / g, Mohs hardness : 7)
Inorganic filler 3: fused spherical silica (manufactured by Denka, FB-560, particle size D 50 = 30 μm, cumulative frequency of volume-based particle size distribution is 50 μm, specific surface area 1.3 m 2 / g, Mohs hardness: 7 )
Inorganic filler 4: Alumina (Denka Co., DAB-30FC, particle size D 50 = 13 μm, cumulative frequency of volume-based particle size distribution is 13 μm, specific surface area 1.4 m 2 / g, Mohs hardness: 9)
Inorganic filler 5: Aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd., CL-303, particle size D 50 = 5 μm, cumulative frequency of volume-based particle size distribution is 50 μm, specific surface area 1.0 m 2 / g, Mohs hardness: 3)
Inorganic filler 6: fused spherical silica (manufactured by Denka, FB-950, particle size D 50 = 23 μm, specific surface area 1.5 m 2 / g at which the cumulative frequency of volume-based particle size distribution is 50%)
(カップリング剤)
・カップリング剤1:3-メルカプトプロピルトリメトキシシラン(チッソ社製、S810)
(Coupling agent)
Coupling agent 1: 3-mercaptopropyltrimethoxysilane (manufactured by Chisso Corporation, S810)
(硬化促進剤)
・硬化促進剤1:下記式(P1)で表わされるホスホニウム化合物とシラン化合物との付加物を合成して、硬化促進剤1として用いた。以下に合成方法について詳細を説明する。
 まず、メタノール1800gを入れたフラスコに、フェニルトリメトキシシラン249.5g、2,3-ジヒドロキシナフタレン384.0gを加えて溶かし、次に室温攪拌下28%ナトリウムメトキシド-メタノール溶液231.5gを滴下した。次いで、フラスコにテトラフェニルホスホニウムブロマイド503.0gをメタノール600gに溶かした溶液を室温攪拌下滴下し、結晶を析出させた。析出させた結晶を濾過、水洗、真空乾燥し、ホスホニウム化合物とシラン化合物との付加物の桃白色結晶である硬化促進剤1を得た。
(Curing accelerator)
Curing accelerator 1: An adduct of a phosphonium compound and a silane compound represented by the following formula (P1) was synthesized and used as the curing accelerator 1. Details of the synthesis method will be described below.
First, in a flask containing 1800 g of methanol, 249.5 g of phenyltrimethoxysilane and 384.0 g of 2,3-dihydroxynaphthalene were added and dissolved, and then 231.5 g of 28% sodium methoxide-methanol solution was added dropwise with stirring at room temperature. did. Next, a solution prepared by dissolving 503.0 g of tetraphenylphosphonium bromide in 600 g of methanol was added dropwise to the flask with stirring at room temperature to precipitate crystals. The precipitated crystals were filtered, washed with water, and vacuum-dried to obtain a curing accelerator 1 that was a pink white crystal of an adduct of a phosphonium compound and a silane compound.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(離型剤)
・離型剤1:モンタン酸エステルワックス(クラリアント・ジャパン社製、リコルブ WE-4)
(Release agent)
-Mold release agent 1: Montanate ester wax (manufactured by Clariant Japan Co., Ltd., Recolbe WE-4)
 上述した原料成分を用いて、実施例1~10、比較例1の封止用樹脂組成物を作製した。以下に詳細を説明する。 The sealing resin compositions of Examples 1 to 10 and Comparative Example 1 were prepared using the raw material components described above. Details will be described below.
(実施例1)
 まず、実施例1に係るカーボンブラックを粉砕した。カーボンブラックの粉砕は、下記表1に示す配合量(質量部)のカーボンブラック1と、無機充填材1とを用いて行った。
 具体的には、まず、気流式ジェットミル(供給量10kg/hour、空気圧0.45MPa)を用いて、カーボンブラック1について第1のジェットミル粉砕をした。なお、第1のジェットミル粉砕したカーボンブラック1の凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50(すなわち、二次粒径)は10μmであった。
 次いで、第1のジェットミル粉砕したカーボンブラック1と、無機充填材1とを混合し、混合物を作製した。
 次いで、該混合物を気流式ジェットミル(供給量50kg/hour、空気圧0.45MPa)を用いて、第2のジェットミル粉砕をし、カーボンブラック1の微粒子を得た。実施例1のカーボンブラック1の微粒子の凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50(すなわち、二次粒径)は3μmであった。
 次いで、カーボンブラック1の微粒子と、粉砕に用いた無機充填材1と、カーボンブラック1の微粒子の作製に用いた以外の原料成分とを、常温でミキサーを用いて、下記表1に記載した配合量で混合し、次に温度70℃以上100℃以下の温度で2軸混練した。次いで、常温まで冷却後、粉砕して実施例1の封止用樹脂組成物を得た。
(Example 1)
First, the carbon black according to Example 1 was pulverized. The carbon black was pulverized using the carbon black 1 having the blending amount (parts by mass) shown in Table 1 below and the inorganic filler 1.
Specifically, first, the first jet mill was pulverized with respect to the carbon black 1 using an airflow jet mill (supply amount: 10 kg / hour, air pressure: 0.45 MPa). The particle diameter D 50 (that is, the secondary particle diameter) at which the cumulative frequency of the volume-based particle size distribution of the aggregate of the carbon black 1 subjected to the first jet mill pulverization was 50% was 10 μm.
Next, the first jet mill pulverized carbon black 1 and the inorganic filler 1 were mixed to prepare a mixture.
Next, the mixture was subjected to second jet mill pulverization using an airflow type jet mill (feed amount: 50 kg / hour, air pressure: 0.45 MPa) to obtain carbon black 1 fine particles. The particle diameter D 50 (that is, the secondary particle diameter) at which the cumulative frequency of the volume-based particle size distribution of the carbon black 1 fine particle aggregates of Example 1 was 50% was 3 μm.
Next, the carbon black 1 fine particles, the inorganic filler 1 used for pulverization, and the raw material components other than those used for the production of the carbon black 1 fine particles were mixed in the following Table 1 using a mixer at room temperature. Then, the mixture was biaxially kneaded at a temperature of 70 ° C. or higher and 100 ° C. or lower. Subsequently, after cooling to normal temperature, it grind | pulverized and the resin composition for sealing of Example 1 was obtained.
(実施例2~4)
 実施例2~4の封止用樹脂組成物は、各成分の配合量を下記表1のように変更した以外は、実施例1の封止用樹脂組成物と同様の方法で作製した。
 実施例2~4のカーボンブラック微粒子の凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50(すなわち、二次粒径)を、それぞれ下記表1に示す。なお、単位はμmである。
(Examples 2 to 4)
The encapsulating resin compositions of Examples 2 to 4 were prepared in the same manner as the encapsulating resin composition of Example 1, except that the amount of each component was changed as shown in Table 1 below.
Table 1 below shows the particle diameters D 50 (that is, secondary particle diameters) at which the cumulative frequency of the volume-based particle size distribution of the aggregates of the carbon black fine particles of Examples 2 to 4 becomes 50%. The unit is μm.
(実施例5)
 実施例5の封止用樹脂組成物は、各成分の配合量を下記表1のように変更し、さらに、カーボンブラック1に対して第1のジェットミル粉砕を行わず、第2のジェットミル粉砕のみを行って粉砕したカーボンブラック1の微粒子を作製する以外は、実施例1の封止用樹脂組成物と同様の方法で作製した。実施例5のカーボンブラック微粒子の凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50(すなわち、二次粒径)は5μmであった。
(Example 5)
In the sealing resin composition of Example 5, the amount of each component was changed as shown in Table 1 below, and the second jet mill was not performed on the carbon black 1 without performing the first jet mill pulverization. It was prepared in the same manner as the sealing resin composition of Example 1 except that only finely pulverized carbon black 1 particles were prepared. The particle size D 50 (that is, the secondary particle size) at which the cumulative frequency of the volume-based particle size distribution of the aggregate of the carbon black fine particles of Example 5 was 50% was 5 μm.
(実施例6)
 実施例6の封止用樹脂組成物は、カーボンブラックの粉砕を下記表1に示す配合量のカーボンブラック2と、無機充填材1とを用いて行い、さらに、各成分の配合量を下記表1のように変更した以外は、実施例5の封止用樹脂組成物と同様の方法で作製した。実施例6のカーボンブラック微粒子の凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50すなわち、二次粒径)は3μmであった。
(Example 6)
In the sealing resin composition of Example 6, the carbon black was pulverized using the carbon black 2 having the blending amount shown in Table 1 below and the inorganic filler 1, and the blending amounts of the respective components were listed in the following table. 1 was prepared in the same manner as in the sealing resin composition of Example 5 except that it was changed to 1. The particle size D 50 ( ie, the secondary particle size) at which the cumulative frequency of the volume-based particle size distribution of the aggregate of the carbon black fine particles of Example 6 was 50% was 3 μm.
(実施例7)
 実施例7の封止用樹脂組成物は、各成分の配合量を下記表1のように変更し、カーボンブラック1と、無機充填材2とを用いて実施例7に係る粉砕したカーボンブラック1を作製した以外は、実施例1の封止用樹脂組成物と同様の方法で作製した。
(Example 7)
In the sealing resin composition of Example 7, the amount of each component was changed as shown in Table 1 below, and the carbon black 1 pulverized according to Example 7 using the carbon black 1 and the inorganic filler 2 was used. It was produced by the same method as the sealing resin composition of Example 1 except that was produced.
(実施例8)
 実施例8の封止用樹脂組成物は、各成分の配合量を下記表1のように変更し、カーボンブラック1と、無機充填材3とを用いて実施例8に係る粉砕したカーボンブラックを作製した以外は、実施例1の封止用樹脂組成物と同様の方法で作製した。
(Example 8)
In the sealing resin composition of Example 8, the compounding amount of each component was changed as shown in Table 1 below, and the pulverized carbon black according to Example 8 using the carbon black 1 and the inorganic filler 3 was used. Except that it was produced, it was produced in the same manner as the sealing resin composition of Example 1.
(実施例9)
 実施例9の封止用樹脂組成物は、各成分の配合量を下記表1のように変更し、カーボンブラック1と、無機充填材4とを用いて実施例9に係る粉砕したカーボンブラックを作製した以外は、実施例1の封止用樹脂組成物と同様の方法で作製した。
Example 9
The encapsulating resin composition of Example 9 was obtained by changing the blending amounts of the respective components as shown in Table 1 below, and using the carbon black 1 and the inorganic filler 4 to pulverize the carbon black according to Example 9 Except that it was produced, it was produced in the same manner as the sealing resin composition of Example 1.
(実施例10)
 実施例10の封止用樹脂組成物は、各成分の配合量を下記表1のように変更し、カーボンブラック1と、無機充填材5とを用いて実施例10に粉砕したカーボンブラックを作製した以外は、実施例1の封止用樹脂組成物と同様の方法で作製した。
(Example 10)
In the sealing resin composition of Example 10, the compounding amount of each component was changed as shown in Table 1 below, and carbon black pulverized in Example 10 using carbon black 1 and inorganic filler 5 was produced. Except that, the sealing resin composition of Example 1 was prepared in the same manner.
 実施例7~10のカーボンブラック微粒子の凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50(すなわち、二次粒径)を、それぞれ、下記表1に示す。なお、単位はμmである。 Table 1 below shows the particle diameter D 50 (that is, the secondary particle diameter) at which the cumulative frequency of the volume-based particle size distribution of the aggregates of the carbon black fine particles of Examples 7 to 10 is 50%. The unit is μm.
(比較例1)
 下記表1に記載した配合量の各成分を、常温でミキサーを用いて混合し、次に温度70℃以上100℃以下の温度で2軸混練した。次いで、常温まで冷却後、粉砕して比較例1の封止用樹脂組成物を得た。
(Comparative Example 1)
Each component of the compounding amount described in Table 1 below was mixed using a mixer at room temperature, and then biaxially kneaded at a temperature of 70 ° C. or higher and 100 ° C. or lower. Subsequently, after cooling to normal temperature, it grind | pulverized and the resin composition for sealing of the comparative example 1 was obtained.
<評価>
 実施例1~10、比較例1の封止用樹脂組成物について、以下の評価を行った。
<Evaluation>
The sealing resin compositions of Examples 1 to 10 and Comparative Example 1 were evaluated as follows.
(カーボン凝集物の最大粒子径)
 実施例1~10、比較例1に係る封止用樹脂組成物の硬化物について、これに含まれる粒径が25μmを超えるカーボンブラック微粒子の凝集物(カーボンブラック凝集物)の個数、およびカーボンブラック凝集物の最大粒子径を評価した。
 まず、低圧トランスファー成形機を用いて、実施例1~10、比較例1の封止用樹脂組成物を、金型温度175℃、注入圧力10MPa、硬化時間120秒の条件で直径100mm、厚さ2mmに注入成形し、硬化物を得た。この硬化物の表面を蛍光顕微鏡で観察し、25μmよりも大きいカーボンブラック凝集物の数を計測した。なお、25μmよりも大きいカーボンブラック凝集物とは、ある1つのカーボンブラック凝集物中の任意の2点を結んだ時の最大長さが25μmよりも大きいことを示す。評価結果を下記表1に、「カーボンブラック凝集物(粒径25μmを超える)の数」として示す。単位は、「個」である。さらに上記硬化物の表面を蛍光顕微鏡で観察して、カーボンブラック凝集物の最大粒子径を測定した。結果を表1に示す。単位はμmである。なお、カーボンブラック凝集物の最大粒子径とは、カーボン凝集物の粒子径の最大値である。カーボンブラック凝集物の粒子径は、あるカーボン凝集物中の任意の2点を結んだ時の最大長さを粒子径とすることで測定した。
(Maximum particle size of carbon aggregates)
Regarding the cured products of the sealing resin compositions according to Examples 1 to 10 and Comparative Example 1, the number of aggregates of carbon black fine particles (carbon black aggregates) having a particle size exceeding 25 μm included therein, and carbon black The maximum particle size of the aggregate was evaluated.
First, using a low-pressure transfer molding machine, the sealing resin compositions of Examples 1 to 10 and Comparative Example 1 had a diameter of 100 mm and a thickness under conditions of a mold temperature of 175 ° C., an injection pressure of 10 MPa, and a curing time of 120 seconds. Injection molding was performed to 2 mm to obtain a cured product. The surface of the cured product was observed with a fluorescence microscope, and the number of carbon black aggregates larger than 25 μm was counted. The carbon black aggregate larger than 25 μm means that the maximum length when any two points in one carbon black aggregate are connected is larger than 25 μm. The evaluation results are shown in the following Table 1 as “number of carbon black aggregates (particle diameter exceeding 25 μm)”. The unit is “pieces”. Further, the surface of the cured product was observed with a fluorescence microscope, and the maximum particle size of the carbon black aggregate was measured. The results are shown in Table 1. The unit is μm. The maximum particle size of the carbon black aggregate is the maximum value of the particle size of the carbon aggregate. The particle size of the carbon black aggregate was measured by taking the maximum length when any two points in a certain carbon aggregate were connected as the particle size.
(高温リーク特性)
 実施例1~10、比較例1の封止用樹脂組成物を用いて半導体装置を作製し、半導体装置の電気的信頼性として高温リーク特性を評価した。詳細を以下に示す。
 まず、低圧トランスファー成形機(TOWA社製、Yシリーズ)を用いて、実施例1~10、比較例1の封止用樹脂組成物を、金型温度175℃、注入圧力6.9MPa、保圧時間90秒の条件で、樹脂組成物を注入成形して352ピンBGAを封止成形し、175℃で4時間後硬化した。次いで、100個の352ピンBGAについて、ADVANTEST社製の微少電流計8240Aを用いて、175℃におけるリーク電流を測定し、高温リーク特性の評価とした。評価基準は、以下の通りとした。
○:100個の352ピンBGAすべてについて、リーク電流が検出されなかった。
×:1個以上の352ピンBGAについて、リーク電流が検出された。
(High temperature leak characteristics)
Semiconductor devices were fabricated using the sealing resin compositions of Examples 1 to 10 and Comparative Example 1, and the high temperature leakage characteristics were evaluated as the electrical reliability of the semiconductor devices. Details are shown below.
First, using a low-pressure transfer molding machine (TOWA, Y series), the sealing resin compositions of Examples 1 to 10 and Comparative Example 1 were molded at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a holding pressure. Under the condition of time 90 seconds, the resin composition was injection-molded to seal-mold 352 pin BGA, and post-cured at 175 ° C. for 4 hours. Next, with respect to 100 352-pin BGAs, the leakage current at 175 ° C. was measured using a microammeter 8240A manufactured by ADVANTEST, and the high-temperature leakage characteristics were evaluated. The evaluation criteria were as follows.
○: No leak current was detected for all 100 352-pin BGAs.
X: Leakage current was detected for one or more 352-pin BGAs.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示す通り、実施例1~10の封止用樹脂組成物は、比較例1の封止用樹脂組成物と比べて、半導体装置としたときの電気的信頼性に優れることが確認された。 As shown in Table 1, it was confirmed that the sealing resin compositions of Examples 1 to 10 were superior to the sealing resin composition of Comparative Example 1 in electrical reliability when used as a semiconductor device. It was.
 この出願は、2018年2月6日に出願された日本出願特願2018-018871号および2018年2月6日に出願された日本出願特願2018-018872号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-018871 filed on Feb. 6, 2018 and Japanese Patent Application No. 2018-018872 filed on Feb. 6, 2018. , The entire disclosure of which is incorporated herein.

Claims (13)

  1.  エポキシ樹脂と、
     硬化剤と、
     無機充填材と、
     カーボンブラック微粒子と、を含む半導体封止用樹脂組成物であり、
     当該封止用樹脂組成物を、金型温度175℃、注入圧力10MPa、硬化時間120秒の条件で長さ80mm、幅10mm、厚さ4mmに注入成形し、次いで、175℃で4時間加熱処理して硬化物を得て、当該硬化物の表面を蛍光顕微鏡で観察した時、前記カーボンブラック微粒子の凝集物の最大粒子径は50μm以下である、半導体封止用樹脂組成物。
    Epoxy resin,
    A curing agent;
    Inorganic fillers;
    A resin composition for semiconductor encapsulation containing carbon black fine particles,
    The sealing resin composition is injection-molded into a length of 80 mm, a width of 10 mm, and a thickness of 4 mm under conditions of a mold temperature of 175 ° C., an injection pressure of 10 MPa, and a curing time of 120 seconds, and then heat-treated at 175 ° C. for 4 hours. When the cured product is obtained and the surface of the cured product is observed with a fluorescence microscope, the maximum particle size of the aggregate of the carbon black fine particles is 50 μm or less.
  2.  請求項1に記載の半導体封止用樹脂組成物であって、
     前記カーボンブラック微粒子の凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50は0.01μm以上25μm以下である、半導体封止用樹脂組成物。
    The resin composition for semiconductor encapsulation according to claim 1,
    The carbon black particle size D 50 of the cumulative frequency of volume-based particle size distribution of the aggregates of the fine particles is 50% is 0.01μm or more 25μm or less, the resin composition for semiconductor encapsulation.
  3.  請求項1または2に記載の半導体封止用樹脂組成物であって、
     当該半導体封止用樹脂組成物中のカーボンブラック微粒子の含有量は、当該半導体封止用樹脂組成物の固形分100質量部に対して、0.10質量部以上2.0質量部以下である、半導体封止用樹脂組成物。
    The resin composition for semiconductor encapsulation according to claim 1 or 2,
    The content of the carbon black fine particles in the semiconductor sealing resin composition is 0.10 parts by mass or more and 2.0 parts by mass or less with respect to 100 parts by mass of the solid content of the semiconductor sealing resin composition. A resin composition for semiconductor encapsulation.
  4.  基板上に搭載された半導体素子と、
     前記半導体素子を封止する封止部材と、を備える半導体装置であって、
     前記封止部材が、請求項1から3のいずれか1項に記載の半導体封止用樹脂組成物の硬化物で構成される、半導体装置。
    A semiconductor element mounted on a substrate;
    A semiconductor device comprising a sealing member for sealing the semiconductor element,
    The semiconductor device with which the said sealing member is comprised with the hardened | cured material of the resin composition for semiconductor sealing of any one of Claim 1 to 3.
  5.  請求項4に記載の半導体装置であって、
     前記半導体素子は、ボンディングワイヤを介して、前記基板と接続されており、
     前記封止部材は、前記ボンディングワイヤを封止する、半導体装置。
    The semiconductor device according to claim 4,
    The semiconductor element is connected to the substrate via a bonding wire,
    The said sealing member is a semiconductor device which seals the said bonding wire.
  6.  カーボンブラックと、無機充填材とを混合して混合物を得、前記混合物をジェットミル粉砕することで前記カーボンブラックを粉砕してカーボンブラック微粒子を得る工程と、
     エポキシ樹脂と、硬化剤と、無機充填材と、前記カーボンブラック微粒子とを混合して半導体封止用樹脂組成物を得る工程と、を含む、
     半導体封止用樹脂組成物の製造方法。
    Carbon black and an inorganic filler are mixed to obtain a mixture, and the mixture is pulverized by jet mill to obtain the carbon black fine particles by pulverizing the carbon black; and
    A step of mixing an epoxy resin, a curing agent, an inorganic filler, and the carbon black fine particles to obtain a resin composition for semiconductor encapsulation,
    The manufacturing method of the resin composition for semiconductor sealing.
  7.  前記混合物中の前記無機充填材の含有量は、前記カーボンブラック100質量部に対して、5質量部以上2000質量部以下である、請求項6に記載の半導体封止用樹脂組成物の製造方法。 The method for producing a resin composition for semiconductor encapsulation according to claim 6, wherein the content of the inorganic filler in the mixture is 5 parts by mass or more and 2000 parts by mass or less with respect to 100 parts by mass of the carbon black. .
  8.  前記混合物中の前記カーボンブラックの凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50は、6μm以上500μm以下である、請求項6または7に記載の半導体封止用樹脂組成物の製造方法。 8. The resin composition for semiconductor encapsulation according to claim 6, wherein a particle diameter D 50 at which a cumulative frequency of the volume-based particle size distribution of the carbon black aggregates in the mixture is 50% is 6 μm or more and 500 μm or less. Manufacturing method.
  9.  前記D50をAとし、前記混合物中の前記無機充填材の体積基準粒度分布の累積頻度が50%となる粒径D50をBとしたとき、A/Bが0.1以上200以下である、請求項8に記載の半導体封止用樹脂組成物の製造方法。 The D 50 is A, when the particle diameter D 50 of the cumulative frequency of volume-based particle size distribution of the inorganic filler in the mixture is 50 percent and B, A / B is 0.1 to 200 The manufacturing method of the resin composition for semiconductor sealing of Claim 8.
  10.  前記混合物中の前記無機充填材は、無機酸化物、無機窒化物、無機炭化物及び無機水酸化物からなる群より選択される1種以上である、請求項6から9のいずれか1項に記載の半導体封止用樹脂組成物の製造方法。 The inorganic filler in the mixture is one or more selected from the group consisting of an inorganic oxide, an inorganic nitride, an inorganic carbide, and an inorganic hydroxide, according to any one of claims 6 to 9. The manufacturing method of the resin composition for semiconductor sealing of this.
  11.  前記混合物中の前記無機充填材のモース硬度が、2以上10以下である、請求項6から10のいずれか1項に記載の半導体封止用樹脂組成物の製造方法。 The method for producing a resin composition for semiconductor encapsulation according to any one of claims 6 to 10, wherein the Mohs hardness of the inorganic filler in the mixture is 2 or more and 10 or less.
  12.  前記混合物中の前記無機充填材は、シリカ、アルミナ及び水酸化アルミニウムからなる群より選択される1種以上である、請求項6から11のいずれか1項に記載の半導体封止用樹脂組成物の製造方法。 The resin composition for semiconductor encapsulation according to any one of claims 6 to 11, wherein the inorganic filler in the mixture is one or more selected from the group consisting of silica, alumina, and aluminum hydroxide. Manufacturing method.
  13.  前記カーボンブラック微粒子の凝集物の体積基準粒度分布の累積頻度が50%となる粒径D50は、0.01μm以上25μm以下である、請求項6から12のいずれか1項に記載の半導体封止用樹脂組成物の製造方法。 13. The semiconductor package according to claim 6, wherein a particle diameter D 50 at which a cumulative frequency of the volume-based particle size distribution of the aggregate of the carbon black fine particles is 50% is 0.01 μm or more and 25 μm or less. A method for producing a resin composition for stopping.
PCT/JP2019/003081 2018-02-06 2019-01-30 Resin composition for semiconductor sealing use, semiconductor device, and method for producing resin composition for semiconductor sealing use WO2019155950A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980011766.0A CN111684588B (en) 2018-02-06 2019-01-30 Resin composition for semiconductor encapsulation, semiconductor device, and method for producing resin composition for semiconductor encapsulation
MYPI2020003635A MY183266A (en) 2018-02-06 2019-01-30 Resin composition for semiconductor sealing use, semiconductor device, and method for producing resin composition for semiconductor sealing use
EP19751913.5A EP3751601A4 (en) 2018-02-06 2019-01-30 Resin composition for semiconductor sealing use, semiconductor device, and method for producing resin composition for semiconductor sealing use
SG11202007089YA SG11202007089YA (en) 2018-02-06 2019-01-30 Resin composition for encapsulating semiconductor, semiconductor device, and method for producing resin composition for encapsulating semiconductor
JP2019538279A JP6590133B1 (en) 2018-02-06 2019-01-30 Manufacturing method of resin composition for semiconductor encapsulation
KR1020207025321A KR102171971B1 (en) 2018-02-06 2019-01-30 Resin composition for semiconductor encapsulation, semiconductor device, and method for producing a resin composition for semiconductor encapsulation
US16/964,026 US11015017B2 (en) 2018-02-06 2019-01-30 Resin composition for encapsulating semiconductor, semiconductor device, and method for producing resin composition for encapsulating semiconductor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-018871 2018-02-06
JP2018018871 2018-02-06
JP2018-018872 2018-02-06
JP2018018872 2018-02-06

Publications (1)

Publication Number Publication Date
WO2019155950A1 true WO2019155950A1 (en) 2019-08-15

Family

ID=67549570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003081 WO2019155950A1 (en) 2018-02-06 2019-01-30 Resin composition for semiconductor sealing use, semiconductor device, and method for producing resin composition for semiconductor sealing use

Country Status (9)

Country Link
US (1) US11015017B2 (en)
EP (1) EP3751601A4 (en)
JP (1) JP6590133B1 (en)
KR (1) KR102171971B1 (en)
CN (1) CN111684588B (en)
MY (1) MY183266A (en)
SG (1) SG11202007089YA (en)
TW (1) TWI793258B (en)
WO (1) WO2019155950A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409757B (en) * 2020-10-21 2023-05-30 江苏中科科化新材料股份有限公司 High-heat-conductivity epoxy plastic packaging material for high-power module packaging and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007894A (en) * 1998-06-24 2000-01-11 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2005119197A (en) * 2003-10-17 2005-05-12 Sumitomo Bakelite Co Ltd Powder mixing device, apparatus and method for producing resin composition for sealing semiconductor
JP2005120277A (en) * 2003-10-17 2005-05-12 Sumitomo Bakelite Co Ltd Method for producing resin composition for semiconductor sealing and method for finely grinding coloring agent therefor
JP2006278959A (en) * 2005-03-30 2006-10-12 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2007067164A (en) * 2005-08-31 2007-03-15 Sumitomo Bakelite Co Ltd Semiconductor sealing epoxy resin composite and its manufacturing method
JP2009275110A (en) 2008-05-14 2009-11-26 Nitto Denko Corp Resin composition for encapsulating semiconductor and semiconductor device using the same
JP2013001861A (en) * 2011-06-20 2013-01-07 Kyocera Chemical Corp Resin composition for semiconductor sealing, production method thereof, and semiconductor apparatus
WO2013136685A1 (en) * 2012-03-16 2013-09-19 住友ベークライト株式会社 Sealing resin composition and electronic device using same
JP2017179129A (en) * 2016-03-30 2017-10-05 Jnc株式会社 Composition, manufacturing method of cured film, member with cured film, electric and electronic component and manufacturing method of member
JP2018018871A (en) 2016-07-26 2018-02-01 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
JP2018018872A (en) 2016-07-26 2018-02-01 信越半導体株式会社 Method of manufacturing semiconductor device, and method of evaluating semiconductor device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521026A (en) * 1994-03-01 1996-05-28 Hydro-Quebec Process for preparing solutions of a positive electrode for polymer electrolyte battery by pre-dispersion of solid powders
JP2000169676A (en) 1998-12-03 2000-06-20 Sumitomo Bakelite Co Ltd Production of epoxy resin molding material and semiconductor apparatus
US20040126665A1 (en) * 2002-12-26 2004-07-01 Luying Sun Gel polymer electrolyte battery and method of producing the same
JP2005002273A (en) * 2003-06-13 2005-01-06 Mitsubishi Chemicals Corp Carbon black for semiconductor encapsulation material
JP2005041967A (en) * 2003-07-28 2005-02-17 Sumitomo Bakelite Co Ltd Manufacturing process of carbon black for blend in composition and thermosetting resin composition
JP2006052279A (en) 2004-08-11 2006-02-23 Tokai Carbon Co Ltd Carbon black colorant for semiconductor sealing material and method for producing the same
CN101213263B (en) 2005-05-16 2012-05-16 卡伯特公司 Blends of carbon blacks and products containing the same
CN102471609B (en) * 2009-07-17 2013-11-06 东海炭素株式会社 Process for producing dispersion of surface-treated carbon black powder and process for producing surface-treated carbon black powder
US9546286B2 (en) * 2011-07-22 2017-01-17 Cabot Corporation High resistivity coating compositions having unique percolation behavior, and electrostatic image developing systems and components thereof incorporating same
CN104497544B (en) * 2014-12-08 2016-04-27 国家电网公司 A kind of power capacitor casing

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007894A (en) * 1998-06-24 2000-01-11 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2005119197A (en) * 2003-10-17 2005-05-12 Sumitomo Bakelite Co Ltd Powder mixing device, apparatus and method for producing resin composition for sealing semiconductor
JP2005120277A (en) * 2003-10-17 2005-05-12 Sumitomo Bakelite Co Ltd Method for producing resin composition for semiconductor sealing and method for finely grinding coloring agent therefor
JP2006278959A (en) * 2005-03-30 2006-10-12 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2007067164A (en) * 2005-08-31 2007-03-15 Sumitomo Bakelite Co Ltd Semiconductor sealing epoxy resin composite and its manufacturing method
JP2009275110A (en) 2008-05-14 2009-11-26 Nitto Denko Corp Resin composition for encapsulating semiconductor and semiconductor device using the same
JP2013001861A (en) * 2011-06-20 2013-01-07 Kyocera Chemical Corp Resin composition for semiconductor sealing, production method thereof, and semiconductor apparatus
WO2013136685A1 (en) * 2012-03-16 2013-09-19 住友ベークライト株式会社 Sealing resin composition and electronic device using same
JP2017179129A (en) * 2016-03-30 2017-10-05 Jnc株式会社 Composition, manufacturing method of cured film, member with cured film, electric and electronic component and manufacturing method of member
JP2018018871A (en) 2016-07-26 2018-02-01 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
JP2018018872A (en) 2016-07-26 2018-02-01 信越半導体株式会社 Method of manufacturing semiconductor device, and method of evaluating semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751601A4

Also Published As

Publication number Publication date
KR20200108089A (en) 2020-09-16
US20210002414A1 (en) 2021-01-07
TW201938388A (en) 2019-10-01
EP3751601A1 (en) 2020-12-16
TWI793258B (en) 2023-02-21
MY183266A (en) 2021-02-18
JPWO2019155950A1 (en) 2020-02-27
US11015017B2 (en) 2021-05-25
EP3751601A4 (en) 2021-12-01
KR102171971B1 (en) 2020-10-30
JP6590133B1 (en) 2019-10-16
SG11202007089YA (en) 2020-08-28
CN111684588A (en) 2020-09-18
CN111684588B (en) 2021-10-29

Similar Documents

Publication Publication Date Title
KR102490214B1 (en) Manufacturing method of thermosetting resin composition for LDS and semiconductor device
JP2020088055A (en) Mold underfill material and electronic device
JPH0820673A (en) Inorganic filler for resin and epoxy resin composition
EP1582546B1 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP6540933B1 (en) Method of manufacturing electronic device
JP4973322B2 (en) Epoxy resin composition and semiconductor device
JP6950299B2 (en) Resin composition for encapsulant and electronic device using it
JP6590133B1 (en) Manufacturing method of resin composition for semiconductor encapsulation
JP2023109966A (en) Resin composition for semiconductor encapsulation and semiconductor device
JP2021113267A (en) Thermosetting resin composition, electronic apparatus, method for producing thermally conductive material, and method for producing thermosetting resin composition
JP7139598B2 (en) Method for producing encapsulating resin composition and method for producing electronic device
JP2023126267A (en) powder
JP2021187868A (en) Thermosetting resin composition and electronic device
JP2021138864A (en) Sealing resin composition and electronic device
JP2017088828A (en) Semiconductor sealing resin composition, semiconductor device and structure
JP2020139070A (en) Sealing resin composition and method for producing the same, and semiconductor device
JP7501117B2 (en) Flame-retardant resin composition and structure
JP2023033936A (en) Sealing resin composition and electronic apparatus
JP2019099726A (en) Epoxy resin and electronic apparatus
JP2024073100A (en) Resin composition for semiconductor sealing and method for producing the same
JP2021113269A (en) Thermosetting resin composition, electronic apparatus, and method for producing thermosetting resin composition
JP2021155731A (en) Semiconductor encapsulating resin composition and semiconductor device
JP2022138253A (en) Flame-retardant resin composition and structure
JP2022019065A (en) Resin composition for semiconductor sealing and semiconductor device
JP2003277580A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019538279

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207025321

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019751913

Country of ref document: EP

Effective date: 20200907