WO2019155925A1 - Hot-melt polyurethane adhesive film and layered fibrous structure - Google Patents

Hot-melt polyurethane adhesive film and layered fibrous structure Download PDF

Info

Publication number
WO2019155925A1
WO2019155925A1 PCT/JP2019/002658 JP2019002658W WO2019155925A1 WO 2019155925 A1 WO2019155925 A1 WO 2019155925A1 JP 2019002658 W JP2019002658 W JP 2019002658W WO 2019155925 A1 WO2019155925 A1 WO 2019155925A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot melt
polyurethane layer
melt polyurethane
hot
layer
Prior art date
Application number
PCT/JP2019/002658
Other languages
French (fr)
Japanese (ja)
Inventor
真人 割田
道憲 藤澤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2019155925A1 publication Critical patent/WO2019155925A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated

Definitions

  • the present invention relates to a hot melt polyurethane adhesive film and a laminated fiber structure in which fiber base materials are bonded to each other using the hot melt polyurethane adhesive film.
  • Hot melt polyurethane adhesive film is used to bond fiber substrates together.
  • a stack is formed by interposing a hot melt polyurethane adhesive film between a mesh knitted fabric having a low apparent density and a fiber base material such as artificial leather having a higher apparent density than that of the mesh knitted fabric, and the stacked body is hot pressed.
  • an upper material (upper material) for sports shoes, in which artificial leather is bonded to the surface of a mesh knitted fabric is known.
  • thermoadhesive polyurethane film mainly composed of a thermoplastic polyurethane obtained by reacting an aliphatic diisocyanate, an aromatic diisocyanate, a polymer diol, and a chain extender.
  • Patent Document 2 discloses an automotive interior material laminating film in which an outer layer and an inner layer are made of a polyethylene resin, and an intermediate layer is made of a synthetic resin having a melting point 30 ° C. higher than that of the polyethylene resin.
  • Patent Document 2 discloses nylon or ethylene-vinyl alcohol copolymer resin as an intermediate layer.
  • the film for bonding mainly composed of polyethylene resin has high rigidity, the fiber structure formed by adhering the mesh knitted fabric and artificial leather having an apparent density higher than that of the mesh knitted fabric becomes harder, and also has moisture permeability. Therefore, it cannot be used practically as a material for sports shoes.
  • a hot melt polyurethane adhesive film is interposed in one step
  • hot melt polyurethane adhesive penetrates preferentially into the mesh knitted fabric side, and the hot melt polyurethane adhesive does not easily penetrate into the artificial leather side. It was difficult to bond them so as to maintain a high bond strength.
  • the hot melt polyurethane adhesive is sufficiently infiltrated into the artificial leather by the first-stage heat press treatment, and then the artificial leather infiltrated with the hot melt polyurethane adhesive is overlaid on the surface of the mesh knitted fabric. It was necessary to devise processes in order to maintain the high adhesive strength by controlling the distribution of the hot melt polyurethane adhesive between the two materials by performing the heat press treatment of the eyes.
  • the present invention is a hot melt polyurethane adhesive that can easily adhere while maintaining high adhesive strength when adhering substrates having different apparent densities that are likely to have a difference in penetration of the hot melt polyurethane adhesive. It is an object of the present invention to provide an adhesive film and a laminated fiber structure in which fiber substrates having different apparent densities are bonded to each other as an adherend substrate.
  • One aspect of the present invention is a third polyurethane interposed between a first hot melt polyurethane layer, a second hot melt polyurethane layer, and the first hot melt polyurethane layer and the second hot melt polyurethane layer. And a softening temperature of the third polyurethane layer is higher than the softening temperatures of the first hot melt polyurethane layer and the second hot melt polyurethane layer. According to such a hot-melt polyurethane adhesive film, by disposing the third polyurethane layer having a high softening temperature between the first hot-melt polyurethane layer and the second hot-melt polyurethane layer that contributes to adhesion.
  • the third polyurethane layer becomes a barrier layer that suppresses mixing of the first hot-melt polyurethane layer and the second hot-melt polyurethane layer by the force applied at the time of adhesion when heated, and the first hot-melt polyurethane layer
  • Each of the polyurethane layer or the second hot melt polyurethane layer penetrates only to the adherend substrate facing each other. Thereby, the hot melt polyurethane of each hot melt polyurethane layer can be sufficiently permeated into each adherend substrate, and high adhesive strength can be maintained.
  • the softening temperature of the third polyurethane layer is 20 ° C. or more higher than the softening temperature of the first hot melt polyurethane layer. It is preferable from the point that the melt polyurethane layer can sufficiently penetrate.
  • the first hot melt polyurethane layer has a softening temperature of 20 ° C. higher than the softening temperature of the first hot melt polyurethane layer and the softening temperature of the second hot melt polyurethane layer.
  • the first hot-melt polyurethane layer can sufficiently penetrate into the adherend substrate facing, and the second hot-melt polyurethane layer can sufficiently penetrate into the adherend substrate facing the second hot-melt polyurethane layer. It is preferable from the point.
  • the softening temperature of the first hot melt polyurethane layer is higher by 5 ° C. or more than the softening temperature of the second hot melt polyurethane layer
  • the first hot melt polyurethane layer has a low apparent density.
  • the thickness of the third polyurethane layer is 10 to 110 ⁇ m, it is difficult to break by maintaining sufficient strength in the hot press process, and the laminated fiber structure obtained by bonding the substrates to be bonded together This is preferable from the viewpoint of not curing the texture of the body.
  • the 100% modulus at 25 ° C. of the third polyurethane layer is preferably 2 to 7 MPa from the viewpoint of not curing the texture of the laminated fiber structure obtained by bonding the adherend substrates together.
  • the storage elastic modulus E ′ at 140 ° C. of the third polyurethane layer is 2 to 30 MPa from the viewpoint of exhibiting a sufficient barrier effect that is not easily broken during hot pressing.
  • Another aspect of the present invention includes a first hot melt polyurethane layer and a second hot melt polyurethane layer, and the first hot melt polyurethane layer has a softening temperature of the second hot melt polyurethane layer.
  • Higher hot melt polyurethane adhesive film According to such a hot melt polyurethane adhesive film, the first hot melt polyurethane layer is made to face the adherend substrate having a low apparent density, and the second hot melt polyurethane layer is made to have a high apparent density. By facing each other, each hot melt polyurethane layer can be penetrated into each adherend substrate in a well-balanced manner, which is preferable.
  • another aspect of the present invention is a laminated fiber structure in which two fiber base materials having different apparent densities are bonded to each other with the hot melt polyurethane adhesive film.
  • a laminated fiber structure high adhesive strength between two fiber base materials having different apparent densities can be maintained.
  • fiber substrates that have a large difference in apparent density such that the apparent density of one of the two fiber substrates is 1.5 times or more the apparent density of the other fiber substrate. Even when these are bonded, high adhesive strength can be maintained.
  • a hot melt polyurethane adhesive film that can easily maintain high adhesive strength when bonding adherend substrates having different apparent densities, and two different apparent densities using the hot melt polyurethane adhesive film can be maintained.
  • a laminated fiber structure in which a fiber base material is bonded and a high adhesive strength is maintained is obtained.
  • FIG. 1 is a schematic cross-sectional view of a hot-melt polyurethane adhesive film 10 of the first embodiment.
  • FIG. 2 is a schematic explanatory view for explaining a state when fiber substrates having different apparent densities are bonded using the hot-melt polyurethane adhesive film 10.
  • FIG. 3 is a schematic cross-sectional view of the hot melt adhesive film 30 of the second embodiment.
  • FIG. 1 is a schematic cross-sectional view of a hot-melt polyurethane adhesive film 10 of the first embodiment.
  • the hot melt adhesive film 10 includes a first hot melt polyurethane layer 1, a second hot melt polyurethane layer 2, a first hot melt polyurethane layer 1, and a second hot melt polyurethane. It has a three-layer structure including a third polyurethane layer 3 interposed between the layer 2.
  • the first hot melt polyurethane layer, the second hot melt polyurethane layer, and the third polyurethane layer are all layers made of polyurethane having a softening temperature.
  • the first hot melt polyurethane layer and the second hot melt polyurethane layer are adhesive layers that exhibit hot melt properties when heated.
  • the third polyurethane layer is a polyurethane layer whose softening temperature is higher than the softening temperatures of the first hot melt polyurethane layer and the second hot melt adhesive layer, and preferably not melted by heating during bonding. is there.
  • the third polyurethane layer 3 that is difficult to melt is disposed between the first hot melt polyurethane layer 1 and the second hot melt polyurethane layer 2 that contribute to adhesion.
  • the fiber base material 11 having a low fiber density such as a mesh knitted fabric and a low apparent density has a high fiber density such as artificial leather and an apparent appearance.
  • the third polyurethane layer 3 becomes the first hot melt polyurethane layer 1 and the second hot melt polyurethane.
  • hot melt polyurethane does not penetrate evenly into fiber substrate 11 with a low apparent density such as mesh knitted fabric, and hot melt polyurethane sufficiently penetrates into fiber substrate 12 with a high apparent density such as artificial leather. Can be made.
  • the softening temperature of the third polyurethane layer is higher than the softening temperature of the first hot melt polyurethane layer by 20 ° C. or more in the thermocompression bonding step using a general hot melt adhesive film. This is preferable because the barrier effect is sufficiently exhibited and the first hot-melt polyurethane layer can sufficiently penetrate into the adherend substrate facing it.
  • the softening temperature of the third polyurethane layer is 20 ° C. higher than the softening temperatures of the first hot melt polyurethane layer and the second hot melt polyurethane layer. In the thermocompression bonding process, the first hot melt polyurethane layer can be sufficiently penetrated into the adherend substrate facing it, and the second hot melt polyurethane layer can be sufficiently penetrated into the adherend substrate facing it. It is preferable from the point.
  • the softening temperature of the first hot melt polyurethane layer and the softening temperature of the second hot melt polyurethane layer may be the same temperature or different temperatures, and are to be adhered to each hot melt polyurethane layer.
  • a preferable softening temperature is appropriately selected depending on the type of the substrate. For example, as shown in FIG. 2, the first hot melt polyurethane layer 1 faces the fiber substrate 11 having a low apparent density, and the second hot melt polyurethane layer 2 faces the fiber substrate 12 having the high apparent density. In this case, the softening temperature of the first hot melt polyurethane layer 1 facing the fiber substrate 11 having a low apparent density is increased, and the second hot melt polyurethane layer 2 facing the fiber substrate 12 having a high apparent density is increased.
  • the softening temperature of the first hot melt polyurethane layer 1 is preferably 5 ° C. or more, more preferably 10 ° C. or more higher than the softening temperature of the second hot melt polyurethane layer 2.
  • the softening temperatures of the first hot-melt polyurethane layer and the second hot-melt polyurethane layer that function as an adhesive layer are about 100 to 140 ° C., more preferably about 110 to 135 ° C. It is preferable from the viewpoint that sufficient adhesive strength can be imparted to the laminated structure obtained by quickly melting or softening and bonding the substrates to be bonded to each other depending on the bonding conditions using the adhesive film.
  • the softening temperature of the third polyurethane layer functioning as a barrier layer is 145 to 195 ° C., more preferably 150 to 160 ° C., depending on the bonding conditions using a general hot melt polyurethane adhesive film. It is preferable because it does not melt and softens moderately. When the softening temperature of the third polyurethane layer is too high, it tends to be hard and the texture is lowered.
  • the third polyurethane layer has a thickness of 10 to 110 ⁇ m, more preferably 20 to 70 ⁇ m, and is a laminate obtained by maintaining sufficient strength during hot pressing and bonding substrates to be bonded together. This is preferable because the texture of the structure is not cured.
  • the thicknesses of the first hot-melt polyurethane layer and the second hot-melt polyurethane layer are appropriately selected depending on the type of the adherend substrate to be bonded, and are, for example, 20 to 300 ⁇ m, more preferably 30 to 250 ⁇ m. It is preferable from the point that sufficient adhesive strength can be maintained.
  • the third polyurethane layer has a 100% modulus at 25 ° C. of 2 to 7 MPa, more preferably 2.5 to 5.5 MPa, and particularly 3.0 to 4.5 MPa. It is preferable from the viewpoint that the texture of the laminated structure obtained by curing is not cured. If the 100% modulus at 25 ° C. of the third polyurethane layer is too low, the third polyurethane layer becomes weak and easily peeled off by the third polyurethane layer, resulting in insufficient adhesive strength. When the 100% modulus is too high, the third polyurethane layer becomes hard and the texture of the resulting laminated structure tends to harden.
  • the 100% modulus at 25 ° C. of the first polyurethane layer and the second polyurethane layer is 2 to 7 MPa, more preferably 2.5 to 5.5 MPa, particularly 3.0 to 4.5 MPa. It is preferable from the viewpoint that the texture of the laminated structure obtained by bonding the adherend substrates together is not cured.
  • the storage elastic modulus E ′ at 140 ° C. of the third polyurethane layer is 2 to 30 MPa, more preferably 2 to 5 MPa, and it is difficult to break during hot pressing, and the first hot melt polyurethane layer This is preferable from the viewpoint of exhibiting a sufficient barrier effect so as not to mix with the second hot melt polyurethane layer. Further, it is preferable that the storage elastic modulus E ′ at 140 ° C. of the first polyurethane layer and the second polyurethane layer cannot be measured because it is melted at 140 ° C.
  • the hot melt polyurethane adhesive film of the first embodiment described above has a three-layer structure including a first hot melt polyurethane layer, a second hot melt adhesive layer, and a third polyurethane layer. As long as the effects of the present invention are not impaired, other layers may be further included in the inner layer as necessary.
  • FIG. 3 is a schematic cross-sectional view of the hot melt polyurethane adhesive film 30 of the second embodiment.
  • the hot melt polyurethane adhesive film 30 has a two-layer structure including a first hot melt polyurethane layer 21 and a second hot melt polyurethane layer 22.
  • the hot-melt polyurethane adhesive film 30 of the second embodiment does not include the third polyurethane layer as compared with the hot-melt polyurethane adhesive film 10 of the first embodiment, and the first hot-melt polyurethane layer Is different in that it must be higher than the softening temperature of the second hot-melt polyurethane layer.
  • a fiber base material having a low fiber density such as a mesh knitted fabric, and a low apparent density
  • a fiber base material having a high fiber density such as artificial leather, having a high apparent density are hot.
  • the first hot-melt polyurethane layer which has a high softening temperature and is difficult to melt, is faced to a fiber substrate having a low apparent density, and the softening temperature is high.
  • the second hot-melt polyurethane layer easy to be made to face the fiber substrate having an apparent density, each hot-melt polyurethane layer can penetrate into each fiber substrate in a well-balanced manner.
  • the softening temperature of the first hot melt polyurethane layer may be 5 ° C. or more, more preferably 10 ° C. or more higher than the softening temperature of the second hot melt polyurethane layer.
  • the hot-melt property of each hot-melt polyurethane layer is controlled so that the first hot-melt polyurethane layer sufficiently enters the adherend substrate facing it, and the second hot-melt polyurethane layer faces the adherend group It is preferable from the viewpoint that it can sufficiently penetrate into the material.
  • the softening temperature of the first hot melt polyurethane layer is 115 to 140 ° C., more preferably about 120 to 135 ° C., and the softening temperature of the second hot melt polyurethane layer is 100 to 130 ° C., further 105 to The temperature of about 125 ° C. can be quickly melted or softened according to the bonding conditions using a general hot melt polyurethane adhesive film, and the hot melt property of each hot melt polyurethane layer is controlled, so that the first hot melt The polyurethane layer is preferable because it sufficiently penetrates into the adherend substrate facing it, and the second hot-melt polyurethane layer can penetrate into the adherend substrate facing it.
  • the thicknesses of the first hot melt polyurethane layer and the second hot melt polyurethane layer are appropriately selected depending on the kind of the adherend substrate to be bonded,
  • the thickness is preferably 20 to 300 ⁇ m, more preferably 30 to 250 ⁇ m, from the viewpoint that sufficient adhesive strength can be maintained.
  • the hot melt polyurethane adhesive film of the second embodiment described above has a two-layer structure including a first hot melt polyurethane layer and a second hot melt polyurethane layer, but the effect of the present invention is impaired. Unless necessary, other layers may be included in the inner layer as necessary.
  • the polyurethane having a softening temperature for forming each layer described in the first embodiment and the second embodiment is a thermoplastic polyurethane. According to the thermoplastic polyurethane, the softening temperature and melt viscosity of each of the first hot melt polyurethane layer, the second hot melt polyurethane layer, and the third polyurethane layer can be adjusted.
  • the thermoplastic polyurethane can be obtained by a conventionally known polymerization method of thermoplastic polyurethane by reacting a polymer polyol, polyisocyanate, and a chain extender, such as bulk polymerization, solution polymerization, and aqueous dispersion polymerization.
  • a polymer polyol polymer polyol
  • polyisocyanate polyisocyanate
  • a chain extender such as bulk polymerization, solution polymerization, and aqueous dispersion polymerization.
  • bulk polymerization is preferable from the viewpoint of good volumetric reaction efficiency.
  • the bulk polymerization method is not particularly limited.
  • a urethane prepolymer is produced by reacting a high-molecular polyol and a polyisocyanate under appropriate reaction conditions (for example, reaction at 80 ° C. for 4 hours).
  • Examples thereof include a prepolymer method in which a chain extender is added to a polymer to polymerize polyurethane, and a one-shot method in which a polymer polyol, polyisocyanate, and a chain extender are polymerized simultaneously.
  • the thermoplastic polyurethane is mainly composed of a bifunctional polymer polyol (polymer diol) that does not form a branched structure in order to maintain thermoplasticity, a bifunctional polyisocyanate (diisocyanate), and a chain extender.
  • a bifunctional polymer polyol polymer diol
  • a bifunctional polyisocyanate diisocyanate
  • a chain extender a polyurethane obtained by reacting
  • a trifunctional or higher functional compound may be used as a raw material as necessary as long as sufficient thermoplasticity that does not impair the effects of the present invention can be maintained.
  • polyether polyol polyether diol
  • aliphatic polyether diol such as polyethylene glycol, polypropylene glycol, polybutylene glycol, polytetramethylene glycol, etc. Is mentioned. These may be used alone or in combination of two or more. In these, when it contains 60 mass% or more of polyether polyol in a polyol, it is preferable from the point which is excellent in hydrolysis resistance.
  • the number average molecular weight of the polymer polyol is preferably 500 to 5000, more preferably 600 to 4500, and particularly preferably 700 to 4000. When the number average molecular weight of the polymer polyol is too low, the flexibility tends to decrease, and when it is too high, the mechanical properties tend to decrease.
  • polyisocyanate examples include aromatic diisocyanates such as phenylene diisocyanate, tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate; hexamethylene diisocyanate , Lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, aliphatic diisocyanate such as tetramethylxylylene diisocyanate, or cycloaliphatic diisocyanate; Etc. These may be used alone or in combination of two or more.
  • chain extender a low molecular weight compound having a molecular weight of 400 or less and having two hydrogen atoms capable of reacting with an isocyanate group in the molecule, which has been conventionally used in the production of polyurethane, can be mentioned.
  • Specific examples of the chain extender include, for example, hydrazine, ethylenediamine, propylenediamine, xylylenediamine, isophoronediamine, piperazine and derivatives thereof, phenylenediamine, tolylenediamine, xylenediamine, adipic acid dihydrazide, isophthalic acid dihydrazide, hexamethylene.
  • Diamine compounds such as diamine, 4,4'-diaminophenylmethane, 4,4'-dicyclohexylmethanediamine; ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexane Diol, bis ( ⁇ -hydroxyethyl) terephthalate, 3-methyl-1,5-pentanediol, cyclohexanediol, xylylene glycol, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, neopentyl glycol, etc.
  • Diol compounds amino alcohols such as aminoethyl alcohol and aminopropyl alcohol; These may be used alone or in combination of two or more.
  • monoamino compounds such as ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, t-butylamine, cyclohexylamine are used in combination to control the molecular weight or ⁇ -aminocapron.
  • a carboxyl group may be introduced at the terminal by using an aminocarboxylic acid such as acid (6-aminohexanoic acid), ⁇ -aminobutyric acid (4-aminobutanoic acid), aminocyclohexanecarboxylic acid, and aminobenzoic acid.
  • the reaction ratio between the polymer polyol, the chain extender and the polyisocyanate is an isocyanate index which is an equivalent ratio of the isocyanate group in the polyisocyanate to the hydroxyl group in the polyol containing the polymer polyol and the active hydrogen group of the chain extender.
  • it is preferably about 0.85 to 1.1, more preferably about 0.9 to 1.0.
  • thermoplastic polyurethane may be an additive, if necessary, specifically, for example, a known hindered amine-based, hindered phenol-based antioxidant, benzotriazole-based, benzophenone-based, triazine-based light-proofing agent, pigment, etc. Or a coloring agent such as a dye.
  • thermoplastic polyurethane for forming the first hot-melt polyurethane layer, the second hot-melt polyurethane layer, and the third polyurethane layer as long as those that satisfy the softening temperature relationship as described above are combined, the kind thereof is used.
  • the monomer composition and the like are not particularly limited.
  • the hot melt polyurethane adhesive film described in the first embodiment and the second embodiment is preferably used for adhering adherend substrates having different apparent densities to each other, which are bonded by the anchor effect when the adhesive is infiltrated. It is done.
  • the kind of the adherend substrate is not particularly limited, and examples thereof include knitted fabrics such as nonwoven fabrics, woven fabrics, and mesh knitted fabrics, artificial leather, and porous resin films.
  • artificial leather is a fiber base material formed by impregnating an elastic polymer such as polyurethane to a fiber base material such as a nonwoven fabric. More specifically, two fiber base materials in which the apparent density of one fiber base material is 1.3 times or more, more preferably 1.5 times or more the other fiber base material are bonded together. In this case, it is preferably used.
  • Bonding includes a method in which a stacked body in which a hot melt polyurethane adhesive film is interposed between two substrates to be bonded is formed and bonded while being heated and pressed by a hot press or a hot roll.
  • the surface temperature of the hot press or hot roll mold is appropriately selected depending on the softening temperatures of the first hot melt polyurethane layer, the second hot melt polyurethane layer, and the third polyurethane layer. Generally, the temperature is appropriately set in the range of 100 to 160 ° C.
  • a hot melt polyurethane adhesive film With such a hot melt polyurethane adhesive film, a laminated fiber structure formed by bonding two fiber bases having different apparent densities is bonded with polyurethane, so that cushioning properties are maintained and flexibility is increased. Excellent. Therefore, it is preferably used as an upper material for shoes, particularly as an upper material for sports shoes.
  • thermoplastic polyurethane First, the evaluation method of the properties of thermoplastic polyurethane will be described together below.
  • Examples 1 to 12, Comparative Examples 1 to 4 Films having various thicknesses shown in Table 1 were manufactured by T-die melt extrusion using thermoplastic polyurethanes TPU1 to TPU6 having softening temperatures shown in Table 1 below. Further, as shown in Table 1, as the first hot melt adhesive layer and the second hot melt adhesive layer, low density polyethylene (LDPE) having a density of 0.921 g / cm 3, a third hot melt adhesive layer. As a result, a polyethylene laminated film in which high density polyethylene (HDPE) having a density of 0.954 g / cm 3 was laminated was produced.
  • LDPE low density polyethylene
  • thermoplastic polyurethane films shown in Table 1 as the first hot melt polyurethane layer (L1), the second hot melt polyurethane layer (L2), and the third polyurethane layer (L3) are shown in Table 2 below.
  • a stack of films was formed so as to have a layer structure as shown in FIG.
  • the hot-melt-adhesive film used by each Example and the comparative example was created by carrying out the thermocompression-bonding of the stack of films on the conditions of pressure 5kg / cm ⁇ 2 > and 30 second with a flat plate heat press.
  • the surface temperature of the flat plate heat press was set to 120 ° C.
  • Examples 2 and 7 using TPU 2 were used.
  • L1 and L2 were films having a thickness of 100 ⁇ m except for Comparative Example 2 and Comparative Example 3.
  • a film having a thickness of 200 ⁇ m was used as it was as a hot melt polyurethane adhesive film.
  • the stack was thermocompression-bonded with a flat plate heat press machine under conditions of a pressure of 5 kg / cm 2 and 60 seconds.
  • the surface temperature was set to 120 ° C.
  • Example 2 using TPU 2 was used.
  • the surface temperature was set to 140 ° C.
  • Comparative Example 4 the surface temperature was set to 115 ° C. And it was made to cool at room temperature for 1 day, and the laminated fiber structure was obtained.
  • both ends in the width direction were trimmed to remove the protruding portion of the adhesive during pressing, and a test piece having a width of 25 mm ⁇ a length of 150 mm was prepared. Then, each end portion of the non-bonded portion of the test piece is sandwiched between upper and lower chucks of a tensile tester set at an initial interval of 25 mm, and a tensile test is performed at a tensile speed of 50 mm / min. A graph was obtained. Then, the portion excluding the initial peak from the obtained graph was divided into five sections, the minimum value of the peak in each section was read, and the average value of the obtained five data was defined as the adhesion strength.
  • a test piece was prepared by cutting out the laminated fiber structure into a square of 200 mm length ⁇ 200 mm width. Then, five panelists selected from those skilled in the art of artificial leather touched the test piece and judged flexibility according to the following criteria.
  • B The cushioning property of the mesh knitted fabric and the texture of the artificial leather were generally maintained, and there was a standard flexibility as an upper material for general sports shoes.
  • C Although there was a feeling of resilience like a resin, the texture was acceptable to some extent as an upper material for general sports shoes.
  • D Wrinkles that were rounded when folded were present, and there was a strong resilience like resin, and the flexibility was poor.
  • the first hot-melt polyurethane layer, the second hot-melt polyurethane layer, and the third polyurethane interposed between the first hot-melt polyurethane layer and the second hot-melt polyurethane layer Layered fiber structures of Examples 1 to 11 bonded using a hot-melt polyurethane adhesive film in which the softening temperature of the third polyurethane layer is higher than the softening temperature of the other adhesive layers.
  • the adhesive strength was higher than that of the laminated fiber structures of Comparative Examples 1 to 3, which were bonded using a hot-melt polyurethane adhesive film having only the first hot-melt polyurethane layer.
  • the laminated fiber structure of Example 12 adhered using the adhesive also had higher adhesive strength than the laminated fiber structures of Comparative Examples 1 to 3.
  • Comparative Example 4 when an adhesive film made of a polyethylene layer was used, a laminated fiber structure inferior in adhesive strength and texture was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Use is made of a hot-melt polyurethane adhesive film that comprises a first hot-melt polyurethane layer, a second hot-melt polyurethane layer, and a third polyurethane layer, which is interposed between the first hot-melt polyurethane layer and the second hot-melt polyurethane layer, wherein the third polyurethane layer has a higher softening temperature than the first hot-melt polyurethane layer and the second hot-melt polyurethane layer.

Description

ホットメルトポリウレタン接着剤フィルム及び積層繊維構造体Hot melt polyurethane adhesive film and laminated fiber structure
 本発明は、ホットメルトポリウレタン接着剤フィルム及びそれを用いて繊維基材同士を接着した積層繊維構造体に関する。 The present invention relates to a hot melt polyurethane adhesive film and a laminated fiber structure in which fiber base materials are bonded to each other using the hot melt polyurethane adhesive film.
 ホットメルトポリウレタン接着剤フィルムは、繊維基材同士を接着するために用いられている。例えば、見掛け密度の低いメッシュ編物とメッシュ編物よりも見掛け密度の高い人工皮革のような繊維基材との間にホットメルトポリウレタン接着剤フィルムを介在させて積重体を形成し、積重体を熱プレスしてメッシュ編物の表面に人工皮革を接着した、スポーツ靴の甲材(アッパー材)が知られている。 Hot melt polyurethane adhesive film is used to bond fiber substrates together. For example, a stack is formed by interposing a hot melt polyurethane adhesive film between a mesh knitted fabric having a low apparent density and a fiber base material such as artificial leather having a higher apparent density than that of the mesh knitted fabric, and the stacked body is hot pressed. Then, an upper material (upper material) for sports shoes, in which artificial leather is bonded to the surface of a mesh knitted fabric, is known.
 従来のホットメルトポリウレタン接着剤フィルムは、熱プレス工程で、所定の温度に達すれば速やかに溶融し、所定の温度以下になれば速やかに固化するように設計されていた。例えば、下記特許文献1は、ポリウレタンホットメルトポリウレタン接着剤として、溶融粘度挙動が温度に対して敏感で、かつ低温時に柔軟性を持ち、風合い、耐薬品性、ドライクリーニング性、耐熱性、接着強力が良好な熱可塑性ポリウレタン接着剤として、脂肪族ジイソシアネート、芳香族ジイソシアネート、高分子ジオール、及び鎖延長剤を反応させて得られる熱可塑性ポリウレタンを主成分とする熱接着性ポリウレタンフィルムを開示する。 Conventional hot melt polyurethane adhesive films were designed to melt quickly when a predetermined temperature is reached in a hot pressing process and to solidify rapidly when the temperature falls below a predetermined temperature. For example, Patent Document 1 below is a polyurethane hot melt polyurethane adhesive, whose melt viscosity behavior is sensitive to temperature and flexible at low temperatures, and has a texture, chemical resistance, dry cleaning properties, heat resistance, and adhesive strength. Discloses a thermoadhesive polyurethane film mainly composed of a thermoplastic polyurethane obtained by reacting an aliphatic diisocyanate, an aromatic diisocyanate, a polymer diol, and a chain extender.
 また、下記特許文献2は、外層及び内層がポリエチレン系樹脂からなり、中間層が該ポリエチレン系樹脂より30℃以上高い融点を有する合成樹脂からなる自動車内装材貼り合わせ用フィルムを開示する。また、特許文献2は、中間層として、ナイロンやエチレン-ビニルアルコール共重合成樹脂を開示する。しかしながら、ポリエチレン系樹脂を主体とする貼り合わせ用フィルムは剛性が高いために、メッシュ編物とメッシュ編物よりも見掛け密度の高い人工皮革とを接着してなる繊維構造体は硬くなり、また、透湿性が低いために、スポーツ靴の甲材として実用上用いることができない。 Patent Document 2 below discloses an automotive interior material laminating film in which an outer layer and an inner layer are made of a polyethylene resin, and an intermediate layer is made of a synthetic resin having a melting point 30 ° C. higher than that of the polyethylene resin. Patent Document 2 discloses nylon or ethylene-vinyl alcohol copolymer resin as an intermediate layer. However, since the film for bonding mainly composed of polyethylene resin has high rigidity, the fiber structure formed by adhering the mesh knitted fabric and artificial leather having an apparent density higher than that of the mesh knitted fabric becomes harder, and also has moisture permeability. Therefore, it cannot be used practically as a material for sports shoes.
特開平7-97560号公報Japanese Patent Laid-Open No. 7-97560 特開平7-68721号公報JP-A-7-68721
 例えば、繊維密度が低く空隙の多い、見掛け密度の低いメッシュ編物の表面に、空隙の少ない、見掛け密度の高い人工皮革を貼りあわせるために、それらにホットメルトポリウレタン接着剤フィルムを介在させて一段階の熱プレス工程で接着しようとした場合、メッシュ編物の側に優先的にホットメルトポリウレタン接着剤が侵入し、人工皮革の側にホットメルトポリウレタン接着剤が浸透しにくくなるために、アンカー効果に偏りが出て、それらを高い接着強力を維持するように接着することが困難であった。そのために、はじめに、一段階目の熱プレス処理によりホットメルトポリウレタン接着剤を人工皮革に充分に浸透させた後、ホットメルトポリウレタン接着剤を浸透させた人工皮革をメッシュ編物の表面に重ね、二段階目の熱プレス処理を行うことにより、二つの素材に対するホットメルトポリウレタン接着剤の分配を制御して高い接着強力を維持させるような、工程上の工夫が必要であった。 For example, in order to bond artificial leather with low void density and high apparent density on the surface of a mesh knitted fabric with low fiber density and many voids and low apparent density, a hot melt polyurethane adhesive film is interposed in one step When trying to bond in the hot press process, hot melt polyurethane adhesive penetrates preferentially into the mesh knitted fabric side, and the hot melt polyurethane adhesive does not easily penetrate into the artificial leather side. It was difficult to bond them so as to maintain a high bond strength. For this purpose, first, the hot melt polyurethane adhesive is sufficiently infiltrated into the artificial leather by the first-stage heat press treatment, and then the artificial leather infiltrated with the hot melt polyurethane adhesive is overlaid on the surface of the mesh knitted fabric. It was necessary to devise processes in order to maintain the high adhesive strength by controlling the distribution of the hot melt polyurethane adhesive between the two materials by performing the heat press treatment of the eyes.
 本発明は、ホットメルトポリウレタン接着剤の浸透に差が出やすい見掛け密度の異なる被接着基材同士を接着させる際に、高い接着強力を維持させて容易に接着させることができる、ホットメルトポリウレタン接着剤フィルム及び、それを用いて被接着基材として見掛け密度の異なる繊維基材同士を接着させた積層繊維構造体を提供することを目的とする。 The present invention is a hot melt polyurethane adhesive that can easily adhere while maintaining high adhesive strength when adhering substrates having different apparent densities that are likely to have a difference in penetration of the hot melt polyurethane adhesive. It is an object of the present invention to provide an adhesive film and a laminated fiber structure in which fiber substrates having different apparent densities are bonded to each other as an adherend substrate.
 本発明の一局面は、第1のホットメルトポリウレタン層と、第2のホットメルトポリウレタン層と、第1のホットメルトポリウレタン層と第2のホットメルトポリウレタン層との間に介在する第3のポリウレタン層とを備え、第3のポリウレタン層の軟化温度が、第1のホットメルトポリウレタン層及び第2のホットメルトポリウレタン層の軟化温度よりも高いホットメルトポリウレタン接着剤フィルムである。このようなホットメルトポリウレタン接着剤フィルムによれば、接着に寄与する第1のホットメルトポリウレタン層と第2のホットメルトポリウレタン層との間に軟化温度の高い第3のポリウレタン層を配置することにより、第3のポリウレタン層が加熱時に第1のホットメルトポリウレタン層と第2のホットメルトポリウレタン層とが接着の際に付与される力により混ざり合うことを抑制するバリア層となり、第1のホットメルトポリウレタン層または第2のホットメルトポリウレタン層のそれぞれがそれぞれに対向する被接着基材のみに侵入する。それにより、各被接着基材に各ホットメルトポリウレタン層のホットメルトポリウレタンを充分に浸透させることができ、高い接着強力を維持させることができる。 One aspect of the present invention is a third polyurethane interposed between a first hot melt polyurethane layer, a second hot melt polyurethane layer, and the first hot melt polyurethane layer and the second hot melt polyurethane layer. And a softening temperature of the third polyurethane layer is higher than the softening temperatures of the first hot melt polyurethane layer and the second hot melt polyurethane layer. According to such a hot-melt polyurethane adhesive film, by disposing the third polyurethane layer having a high softening temperature between the first hot-melt polyurethane layer and the second hot-melt polyurethane layer that contributes to adhesion. The third polyurethane layer becomes a barrier layer that suppresses mixing of the first hot-melt polyurethane layer and the second hot-melt polyurethane layer by the force applied at the time of adhesion when heated, and the first hot-melt polyurethane layer Each of the polyurethane layer or the second hot melt polyurethane layer penetrates only to the adherend substrate facing each other. Thereby, the hot melt polyurethane of each hot melt polyurethane layer can be sufficiently permeated into each adherend substrate, and high adhesive strength can be maintained.
 また、第3のポリウレタン層の軟化温度は、第1のホットメルトポリウレタン層の軟化温度よりも20℃以上高いことが、第1のホットメルトポリウレタン層に対面する被接着基材に第1のホットメルトポリウレタン層を充分に侵入させることができる点から好ましい。 Further, the softening temperature of the third polyurethane layer is 20 ° C. or more higher than the softening temperature of the first hot melt polyurethane layer. It is preferable from the point that the melt polyurethane layer can sufficiently penetrate.
 また、第3のポリウレタン層の軟化温度が、第1のホットメルトポリウレタン層の軟化温度及び第2のホットメルトポリウレタン層の軟化温度よりも20℃以上高いことが、第1のホットメルトポリウレタン層に対面する被接着基材に第1のホットメルトポリウレタン層を充分に侵入させ、第2のホットメルトポリウレタン層に対面する被接着基材に第2のホットメルトポリウレタン層を充分に侵入させることができる点から好ましい。 Further, the first hot melt polyurethane layer has a softening temperature of 20 ° C. higher than the softening temperature of the first hot melt polyurethane layer and the softening temperature of the second hot melt polyurethane layer. The first hot-melt polyurethane layer can sufficiently penetrate into the adherend substrate facing, and the second hot-melt polyurethane layer can sufficiently penetrate into the adherend substrate facing the second hot-melt polyurethane layer. It is preferable from the point.
 また、第1のホットメルトポリウレタン層の軟化温度が第2のホットメルトポリウレタン層の軟化温度よりも5℃以上高い場合には、第1のホットメルトポリウレタン層を見掛け密度の低い被接着基材に対面させ、第2のホットメルトポリウレタン層を見掛け密度の高い被接着基材に対面させることにより、各被接着基材に各ホットメルトポリウレタン層をバランスよく侵入させることができる点から好ましい。 In addition, when the softening temperature of the first hot melt polyurethane layer is higher by 5 ° C. or more than the softening temperature of the second hot melt polyurethane layer, the first hot melt polyurethane layer has a low apparent density. By facing the second hot melt polyurethane layer and facing the adherend substrate having a high apparent density, it is preferable from the viewpoint that each hot melt polyurethane layer can enter the adherend substrate in a well-balanced manner.
 また、第3のポリウレタン層の厚さが10~110μmであることが、熱プレス工程において充分な強度を保持することにより破れにくくなるとともに、被接着基材同士を接着させて得られる積層繊維構造体の風合いを硬化させない点から好ましい。 In addition, when the thickness of the third polyurethane layer is 10 to 110 μm, it is difficult to break by maintaining sufficient strength in the hot press process, and the laminated fiber structure obtained by bonding the substrates to be bonded together This is preferable from the viewpoint of not curing the texture of the body.
 また、第3のポリウレタン層の25℃における100%モジュラスが2~7MPaであることが、被接着基材同士を接着させて得られる積層繊維構造体の風合いを硬化させない点から好ましい。 Further, the 100% modulus at 25 ° C. of the third polyurethane layer is preferably 2 to 7 MPa from the viewpoint of not curing the texture of the laminated fiber structure obtained by bonding the adherend substrates together.
 また、第3のポリウレタン層の140℃における貯蔵弾性率E’が2~30MPaであることが、熱プレスの際に破れにくく充分なバリア効果を発揮する点から好ましい。 Further, it is preferable that the storage elastic modulus E ′ at 140 ° C. of the third polyurethane layer is 2 to 30 MPa from the viewpoint of exhibiting a sufficient barrier effect that is not easily broken during hot pressing.
 また、本発明の他の一局面は、第1のホットメルトポリウレタン層と、第2のホットメルトポリウレタン層とを備え、第1のホットメルトポリウレタン層が、第2のホットメルトポリウレタン層の軟化温度よりも高いホットメルトポリウレタン接着剤フィルムである。このようなホットメルトポリウレタン接着剤フィルムによれば、第1のホットメルトポリウレタン層を見掛け密度の低い被接着基材に対面させ、第2のホットメルトポリウレタン層を見掛け密度の高い被接着基材に対面させることにより、各被接着基材に各ホットメルトポリウレタン層をバランスよく侵入させることができる点から好ましい。 Another aspect of the present invention includes a first hot melt polyurethane layer and a second hot melt polyurethane layer, and the first hot melt polyurethane layer has a softening temperature of the second hot melt polyurethane layer. Higher hot melt polyurethane adhesive film. According to such a hot melt polyurethane adhesive film, the first hot melt polyurethane layer is made to face the adherend substrate having a low apparent density, and the second hot melt polyurethane layer is made to have a high apparent density. By facing each other, each hot melt polyurethane layer can be penetrated into each adherend substrate in a well-balanced manner, which is preferable.
 また、本発明の他の一局面は、上記ホットメルトポリウレタン接着剤フィルムで、互いに、見掛け密度の異なる2つの繊維基材を接着してなる積層繊維構造体である。このような積層繊維構造体によれば、見掛け密度の異なる2つの繊維基材の高い接着強力を維持することができる。とくに、2つの繊維基材の一方の繊維基材の見掛け密度が、他方の繊維基材の見掛け密度の1.5倍以上であるような、見掛け密度に大きな差があるような繊維基材同士を接着した場合であっても、高い接着強力を維持することができる。 Further, another aspect of the present invention is a laminated fiber structure in which two fiber base materials having different apparent densities are bonded to each other with the hot melt polyurethane adhesive film. According to such a laminated fiber structure, high adhesive strength between two fiber base materials having different apparent densities can be maintained. In particular, fiber substrates that have a large difference in apparent density such that the apparent density of one of the two fiber substrates is 1.5 times or more the apparent density of the other fiber substrate. Even when these are bonded, high adhesive strength can be maintained.
 本発明によれば、見掛け密度の異なる被接着基材同士を接着する際に容易に高い接着強力を維持させることができる、ホットメルトポリウレタン接着剤フィルム及びそれを用いて互いに見掛け密度の異なる2つの繊維基材を接着した、高い接着強力を維持する積層繊維構造体が得られる。 According to the present invention, a hot melt polyurethane adhesive film that can easily maintain high adhesive strength when bonding adherend substrates having different apparent densities, and two different apparent densities using the hot melt polyurethane adhesive film can be maintained. A laminated fiber structure in which a fiber base material is bonded and a high adhesive strength is maintained is obtained.
図1は、第1実施形態のホットメルトポリウレタン接着剤フィルム10の模式断面図である。FIG. 1 is a schematic cross-sectional view of a hot-melt polyurethane adhesive film 10 of the first embodiment. 図2は、ホットメルトポリウレタン接着剤フィルム10を用いて見掛け密度の異なる繊維基材を接着するときの様子を説明するための模式説明図である。FIG. 2 is a schematic explanatory view for explaining a state when fiber substrates having different apparent densities are bonded using the hot-melt polyurethane adhesive film 10. 図3は、第2実施形態のホットメルト接着剤フィルム30の模式断面図である。FIG. 3 is a schematic cross-sectional view of the hot melt adhesive film 30 of the second embodiment.
[第1実施形態]
 第1実施形態のホットメルトポリウレタン接着剤フィルムについて、図面を参照して説明する。図1は、第1実施形態のホットメルトポリウレタン接着剤フィルム10の模式断面図である。図1に示すように、ホットメルト接着剤フィルム10は、第1のホットメルトポリウレタン層1と、第2のホットメルトポリウレタン層2と、第1のホットメルトポリウレタン層1と第2のホットメルトポリウレタン層2との間に介在する第3のポリウレタン層3とを備える3層構造を有する。
[First Embodiment]
The hot melt polyurethane adhesive film of 1st Embodiment is demonstrated with reference to drawings. FIG. 1 is a schematic cross-sectional view of a hot-melt polyurethane adhesive film 10 of the first embodiment. As shown in FIG. 1, the hot melt adhesive film 10 includes a first hot melt polyurethane layer 1, a second hot melt polyurethane layer 2, a first hot melt polyurethane layer 1, and a second hot melt polyurethane. It has a three-layer structure including a third polyurethane layer 3 interposed between the layer 2.
 第1のホットメルトポリウレタン層、第2のホットメルトポリウレタン層、及び第3のポリウレタン層は、何れも軟化温度を有するポリウレタンからなる層である。そして、第1のホットメルトポリウレタン層、第2のホットメルトポリウレタン層は加熱によりホットメルト性を示す接着剤層である。また、第3のポリウレタン層は、その軟化温度が、第1のホットメルトポリウレタン層及び第2のホットメルト接着剤層の軟化温度よりも高く、好ましくは接着の際の加熱により溶融しないポリウレタン層である。 The first hot melt polyurethane layer, the second hot melt polyurethane layer, and the third polyurethane layer are all layers made of polyurethane having a softening temperature. The first hot melt polyurethane layer and the second hot melt polyurethane layer are adhesive layers that exhibit hot melt properties when heated. The third polyurethane layer is a polyurethane layer whose softening temperature is higher than the softening temperatures of the first hot melt polyurethane layer and the second hot melt adhesive layer, and preferably not melted by heating during bonding. is there.
 ホットメルト接着剤フィルム10においては、接着に寄与する第1のホットメルトポリウレタン層1と第2のホットメルトポリウレタン層2との間に溶融しにくい第3のポリウレタン層3が配置されている。このような層構成を採用することにより、図2を参照すれば、例えばメッシュ編物のような繊維密度が低く、見掛け密度が低い繊維基材11に、人工皮革のような繊維密度が高く、見掛け密度が高い繊維基材12をホットメルトポリウレタン接着剤フィルム10で熱プレスによる熱圧着工程を経て接着する場合、第3のポリウレタン層3が第1のホットメルトポリウレタン層1と第2のホットメルトポリウレタン層2とが混じり合うことを抑制するバリア層となって、第1のホットメルトポリウレタン層1を繊維基材11に浸透させ、第2のホットメルトポリウレタン層2を繊維基材12に浸透させることができる。それにより、メッシュ編物のような見掛け密度の低い繊維基材11にホットメルトポリウレタンが偏って浸透することなく、人工皮革のような見掛け密度の高い繊維基材12にもホットメルトポリウレタンを充分に浸透させることができる。 In the hot melt adhesive film 10, the third polyurethane layer 3 that is difficult to melt is disposed between the first hot melt polyurethane layer 1 and the second hot melt polyurethane layer 2 that contribute to adhesion. By adopting such a layer structure, referring to FIG. 2, for example, the fiber base material 11 having a low fiber density such as a mesh knitted fabric and a low apparent density has a high fiber density such as artificial leather and an apparent appearance. When the fiber substrate 12 having a high density is bonded with the hot melt polyurethane adhesive film 10 through a thermocompression bonding process by hot pressing, the third polyurethane layer 3 becomes the first hot melt polyurethane layer 1 and the second hot melt polyurethane. It becomes a barrier layer that suppresses mixing with the layer 2, and the first hot melt polyurethane layer 1 is infiltrated into the fiber base material 11, and the second hot melt polyurethane layer 2 is infiltrated into the fiber base material 12. Can do. As a result, hot melt polyurethane does not penetrate evenly into fiber substrate 11 with a low apparent density such as mesh knitted fabric, and hot melt polyurethane sufficiently penetrates into fiber substrate 12 with a high apparent density such as artificial leather. Can be made.
 第3のポリウレタン層の軟化温度は、第1のホットメルトポリウレタン層の軟化温度よりも20℃以上高いことが、一般的なホットメルト接着剤フィルムを用いた熱圧着工程において、第3のポリウレタン層のバリア効果が充分に発揮されて、第1のホットメルトポリウレタン層をそれに対面する被接着基材に充分に侵入させることができる点から好ましい。また、第3のポリウレタン層の軟化温度は、第1のホットメルトポリウレタン層及び第2のホットメルトポリウレタン層の軟化温度よりも20℃以上高いことが、一般的なホットメルトポリウレタン接着剤フィルムを用いた熱圧着工程において、第1のホットメルトポリウレタン層をそれに対面する被接着基材に充分に侵入させ、第2のホットメルトポリウレタン層をそれに対面する被接着基材に充分に侵入させることができる点から好ましい。 The softening temperature of the third polyurethane layer is higher than the softening temperature of the first hot melt polyurethane layer by 20 ° C. or more in the thermocompression bonding step using a general hot melt adhesive film. This is preferable because the barrier effect is sufficiently exhibited and the first hot-melt polyurethane layer can sufficiently penetrate into the adherend substrate facing it. The softening temperature of the third polyurethane layer is 20 ° C. higher than the softening temperatures of the first hot melt polyurethane layer and the second hot melt polyurethane layer. In the thermocompression bonding process, the first hot melt polyurethane layer can be sufficiently penetrated into the adherend substrate facing it, and the second hot melt polyurethane layer can be sufficiently penetrated into the adherend substrate facing it. It is preferable from the point.
 また、第1のホットメルトポリウレタン層の軟化温度と第2のホットメルトポリウレタン層の軟化温度とは、同じ温度であっても異なる温度であってもよく、各ホットメルトポリウレタン層に対向する被接着基材の種類によって適宜好ましい軟化温度が選択される。例えば、図2に示したように、見掛け密度の低い繊維基材11に第1のホットメルトポリウレタン層1を対面させ、見掛け密度の高い繊維基材12に第2のホットメルトポリウレタン層2を対面させた場合、見掛け密度の低い繊維基材11に対面する第1のホットメルトポリウレタン層1の軟化温度を高くし、見掛け密度の高い繊維基材12に対面する第2のホットメルトポリウレタン層2の軟化温度を低くすることが、各ホットメルトポリウレタン層を各繊維基材にバランスよく浸透させることができる点から好ましい。このような場合、第1のホットメルトポリウレタン層1の軟化温度は、第2のホットメルトポリウレタン層2の軟化温度よりも5℃以上、さらには10℃以上高いことが好ましい。 Further, the softening temperature of the first hot melt polyurethane layer and the softening temperature of the second hot melt polyurethane layer may be the same temperature or different temperatures, and are to be adhered to each hot melt polyurethane layer. A preferable softening temperature is appropriately selected depending on the type of the substrate. For example, as shown in FIG. 2, the first hot melt polyurethane layer 1 faces the fiber substrate 11 having a low apparent density, and the second hot melt polyurethane layer 2 faces the fiber substrate 12 having the high apparent density. In this case, the softening temperature of the first hot melt polyurethane layer 1 facing the fiber substrate 11 having a low apparent density is increased, and the second hot melt polyurethane layer 2 facing the fiber substrate 12 having a high apparent density is increased. Lowering the softening temperature is preferable because each hot-melt polyurethane layer can penetrate into each fiber substrate in a well-balanced manner. In such a case, the softening temperature of the first hot melt polyurethane layer 1 is preferably 5 ° C. or more, more preferably 10 ° C. or more higher than the softening temperature of the second hot melt polyurethane layer 2.
 接着剤層として機能する第1のホットメルトポリウレタン層及び第2のホットメルトポリウレタン層の軟化温度としては、100~140℃、さらには110~135℃程度であることが、一般的なホットメルトポリウレタン接着剤フィルムを用いた接着条件により、速やかに溶融または軟化して被接着基材同士を接着させて得られる積層構造体に充分な接着強力を付与できる点から好ましい。 The softening temperatures of the first hot-melt polyurethane layer and the second hot-melt polyurethane layer that function as an adhesive layer are about 100 to 140 ° C., more preferably about 110 to 135 ° C. It is preferable from the viewpoint that sufficient adhesive strength can be imparted to the laminated structure obtained by quickly melting or softening and bonding the substrates to be bonded to each other depending on the bonding conditions using the adhesive film.
 また、バリア層として機能する第3のポリウレタン層の軟化温度としては、145~195℃、さらには150~160℃であることが、一般的なホットメルトポリウレタン接着剤フィルムを用いた接着条件により、溶融せず、適度に軟化する点から好ましい。第3のポリウレタン層の軟化温度が高すぎる場合には、硬くなって風合いが低下する傾向がある。 The softening temperature of the third polyurethane layer functioning as a barrier layer is 145 to 195 ° C., more preferably 150 to 160 ° C., depending on the bonding conditions using a general hot melt polyurethane adhesive film. It is preferable because it does not melt and softens moderately. When the softening temperature of the third polyurethane layer is too high, it tends to be hard and the texture is lowered.
 第3のポリウレタン層は、その厚さが10~110μm、さらには20~70μmであることが、熱プレスの際に充分な強度を保持するとともに、被接着基材同士を接着させて得られる積層構造体の風合いを硬化させない点から好ましい。 The third polyurethane layer has a thickness of 10 to 110 μm, more preferably 20 to 70 μm, and is a laminate obtained by maintaining sufficient strength during hot pressing and bonding substrates to be bonded together. This is preferable because the texture of the structure is not cured.
 また、第1のホットメルトポリウレタン層及び第2のホットメルトポリウレタン層の厚さは、接着される被接着基材の種類により適宜選択されるが、例えば、20~300μm、さらには30~250μmであることが充分な接着強力を維持できる点から好ましい。 The thicknesses of the first hot-melt polyurethane layer and the second hot-melt polyurethane layer are appropriately selected depending on the type of the adherend substrate to be bonded, and are, for example, 20 to 300 μm, more preferably 30 to 250 μm. It is preferable from the point that sufficient adhesive strength can be maintained.
 第3のポリウレタン層の25℃における100%モジュラスは、2~7MPa、さらには2.5~5.5MPa、とくには、3.0~4.5MPaであることが、被接着基材同士を接着させて得られる積層構造体の風合いを硬化させない点から好ましい。第3のポリウレタン層の25℃における100%モジュラスが低すぎる場合には、第3のポリウレタン層が弱くなって第3のポリウレタン層で剥離しやすくなり、接着強力が不充分になる。また、100%モジュラスが高すぎる場合には、第3のポリウレタン層が硬くなり、得られる積層構造体の風合いが硬化する傾向がある。 The third polyurethane layer has a 100% modulus at 25 ° C. of 2 to 7 MPa, more preferably 2.5 to 5.5 MPa, and particularly 3.0 to 4.5 MPa. It is preferable from the viewpoint that the texture of the laminated structure obtained by curing is not cured. If the 100% modulus at 25 ° C. of the third polyurethane layer is too low, the third polyurethane layer becomes weak and easily peeled off by the third polyurethane layer, resulting in insufficient adhesive strength. When the 100% modulus is too high, the third polyurethane layer becomes hard and the texture of the resulting laminated structure tends to harden.
 また、第1のポリウレタン層及び第2のポリウレタン層の25℃における100%モジュラスは、2~7MPa、さらには2.5~5.5MPa、とくには、3.0~4.5MPaであることが、被接着基材同士を接着させて得られる積層構造体の風合いを硬化させない点から好ましい。 The 100% modulus at 25 ° C. of the first polyurethane layer and the second polyurethane layer is 2 to 7 MPa, more preferably 2.5 to 5.5 MPa, particularly 3.0 to 4.5 MPa. It is preferable from the viewpoint that the texture of the laminated structure obtained by bonding the adherend substrates together is not cured.
 また、第3のポリウレタン層の140℃における貯蔵弾性率E’は、2~30MPa、さらには2~5MPaであることが、熱プレスの際に破れにくく、且つ、第1のホットメルトポリウレタン層と第2のホットメルトポリウレタン層とが混ざり合わないような充分なバリア効果を発揮する点から好ましい。また、第1のポリウレタン層及び第2のポリウレタン層の140℃における貯蔵弾性率E’は、140℃で溶融しているために測定できないことが好ましい。 Further, the storage elastic modulus E ′ at 140 ° C. of the third polyurethane layer is 2 to 30 MPa, more preferably 2 to 5 MPa, and it is difficult to break during hot pressing, and the first hot melt polyurethane layer This is preferable from the viewpoint of exhibiting a sufficient barrier effect so as not to mix with the second hot melt polyurethane layer. Further, it is preferable that the storage elastic modulus E ′ at 140 ° C. of the first polyurethane layer and the second polyurethane layer cannot be measured because it is melted at 140 ° C.
 以上説明した第1実施形態のホットメルトポリウレタン接着剤フィルムは、第1のホットメルトポリウレタン層と第2のホットメルト接着剤層と第3のポリウレタン層とを備える3層構造を有するものであるが、本発明の効果を損なわない限り、必要に応じて内層にさらに他の層を含んでもよい。 The hot melt polyurethane adhesive film of the first embodiment described above has a three-layer structure including a first hot melt polyurethane layer, a second hot melt adhesive layer, and a third polyurethane layer. As long as the effects of the present invention are not impaired, other layers may be further included in the inner layer as necessary.
[第2実施形態]
 第2実施形態のホットメルトポリウレタン接着剤フィルムについて、図面を参照して説明する。図3は、第2実施形態のホットメルトポリウレタン接着剤フィルム30の模式断面図である。図3に示すように、ホットメルトポリウレタン接着剤フィルム30は、第1のホットメルトポリウレタン層21と、第2のホットメルトポリウレタン層22とを備える2層構造を有する。
[Second Embodiment]
The hot melt polyurethane adhesive film of 2nd Embodiment is demonstrated with reference to drawings. FIG. 3 is a schematic cross-sectional view of the hot melt polyurethane adhesive film 30 of the second embodiment. As shown in FIG. 3, the hot melt polyurethane adhesive film 30 has a two-layer structure including a first hot melt polyurethane layer 21 and a second hot melt polyurethane layer 22.
 第2実施形態のホットメルトポリウレタン接着剤フィルム30は、第1実施形態のホットメルトポリウレタン接着剤フィルム10と比較して、第3のポリウレタン層を備えない点、及び、第1のホットメルトポリウレタン層の軟化温度が第2のホットメルトポリウレタン層の軟化温度よりも高いことを必須とする点で異なる。このような層構成を採用することにより、例えばメッシュ編物のような繊維密度が低く、見掛け密度が低い繊維基材に、人工皮革のような繊維密度が高く、見掛け密度が高い繊維基材をホットメルト接着剤フィルム30で熱プレスによる熱接着工程を経て接着する場合において、軟化温度が高く溶融しにくい第1のホットメルトポリウレタン層を見掛け密度の低い繊維基材に対面させ、軟化温度が高く溶融しやすい第2のホットメルトポリウレタン層を見掛け密度の高い繊維基材に対面させることにより、各繊維基材に各ホットメルトポリウレタン層をバランスよく侵入させることができる。 The hot-melt polyurethane adhesive film 30 of the second embodiment does not include the third polyurethane layer as compared with the hot-melt polyurethane adhesive film 10 of the first embodiment, and the first hot-melt polyurethane layer Is different in that it must be higher than the softening temperature of the second hot-melt polyurethane layer. By adopting such a layer structure, for example, a fiber base material having a low fiber density, such as a mesh knitted fabric, and a low apparent density, and a fiber base material having a high fiber density, such as artificial leather, having a high apparent density are hot. When the melt adhesive film 30 is bonded through a heat bonding process by hot pressing, the first hot-melt polyurethane layer, which has a high softening temperature and is difficult to melt, is faced to a fiber substrate having a low apparent density, and the softening temperature is high. By making the second hot-melt polyurethane layer easy to be made to face the fiber substrate having an apparent density, each hot-melt polyurethane layer can penetrate into each fiber substrate in a well-balanced manner.
 第2実施形態のホットメルトポリウレタン接着剤フィルムにおいては、第1のホットメルトポリウレタン層の軟化温度は、第2のホットメルトポリウレタン層の軟化温度よりも5℃以上、さらには10℃以上高いことが、各ホットメルトポリウレタン層のホットメルト性を制御して、第1のホットメルトポリウレタン層をそれに対面する被接着基材に充分に侵入させ、第2のホットメルトポリウレタン層をそれに対面する被接着基材に充分に侵入させることができる点から好ましい。 In the hot melt polyurethane adhesive film of the second embodiment, the softening temperature of the first hot melt polyurethane layer may be 5 ° C. or more, more preferably 10 ° C. or more higher than the softening temperature of the second hot melt polyurethane layer. The hot-melt property of each hot-melt polyurethane layer is controlled so that the first hot-melt polyurethane layer sufficiently enters the adherend substrate facing it, and the second hot-melt polyurethane layer faces the adherend group It is preferable from the viewpoint that it can sufficiently penetrate into the material.
 第1のホットメルトポリウレタン層の軟化温度としては、115~140℃、さらには120~135℃程度であり、第2のホットメルトポリウレタン層の軟化温度としては、100~130℃、さらには105~125℃程度であることが、一般的なホットメルトポリウレタン接着剤フィルムを用いた接着条件により、速やかに溶融または軟化し、各ホットメルトポリウレタン層のホットメルト性を制御して、第1のホットメルトポリウレタン層をそれに対面する被接着基材に充分に侵入させ、第2のホットメルトポリウレタン層をそれに対面する被接着基材に充分に侵入させることができる点から好ましい。 The softening temperature of the first hot melt polyurethane layer is 115 to 140 ° C., more preferably about 120 to 135 ° C., and the softening temperature of the second hot melt polyurethane layer is 100 to 130 ° C., further 105 to The temperature of about 125 ° C. can be quickly melted or softened according to the bonding conditions using a general hot melt polyurethane adhesive film, and the hot melt property of each hot melt polyurethane layer is controlled, so that the first hot melt The polyurethane layer is preferable because it sufficiently penetrates into the adherend substrate facing it, and the second hot-melt polyurethane layer can penetrate into the adherend substrate facing it.
 第2実施形態のホットメルトポリウレタン接着剤フィルムにおいても、第1のホットメルトポリウレタン層及び第2のホットメルトポリウレタン層の厚さは、接着される被接着基材の種類により適宜選択されるが、例えば、20~300μm、さらには30~250μmであることが充分な接着強力を維持できる点から好ましい。 Also in the hot melt polyurethane adhesive film of the second embodiment, the thicknesses of the first hot melt polyurethane layer and the second hot melt polyurethane layer are appropriately selected depending on the kind of the adherend substrate to be bonded, For example, the thickness is preferably 20 to 300 μm, more preferably 30 to 250 μm, from the viewpoint that sufficient adhesive strength can be maintained.
 以上説明した第2実施形態のホットメルトポリウレタン接着剤フィルムは、第1のホットメルトポリウレタン層と第2のホットメルトポリウレタン層とを備える2層構造を有するものであるが、本発明の効果を損なわない限り、必要に応じて内層にさらに他の層を含んでもよい。 The hot melt polyurethane adhesive film of the second embodiment described above has a two-layer structure including a first hot melt polyurethane layer and a second hot melt polyurethane layer, but the effect of the present invention is impaired. Unless necessary, other layers may be included in the inner layer as necessary.
[第1のホットメルトポリウレタン層、第2のホットメルトポリウレタン層、及び第3のポリウレタン層の具体例]
 第1実施形態及び第2実施形態で説明した各層を形成するための軟化温度を有するポリウレタンは、熱可塑性ポリウレタンである。熱可塑性ポリウレタンによれば、第1のホットメルトポリウレタン層、第2のホットメルトポリウレタン層、及び第3のポリウレタン層の各層の軟化温度や溶融粘度を調整できる。
[Specific Examples of First Hot Melt Polyurethane Layer, Second Hot Melt Polyurethane Layer, and Third Polyurethane Layer]
The polyurethane having a softening temperature for forming each layer described in the first embodiment and the second embodiment is a thermoplastic polyurethane. According to the thermoplastic polyurethane, the softening temperature and melt viscosity of each of the first hot melt polyurethane layer, the second hot melt polyurethane layer, and the third polyurethane layer can be adjusted.
 熱可塑性ポリウレタンは、高分子ポリオールとポリイソシアネートと鎖伸長剤とを反応させる、従来から知られた、塊状重合,溶液重合,水性ディスパージョン重合などによる、熱可塑性ポリウレタンの重合方法により得られる。これらの中では、容積反応効率が良い点からは、塊状重合が好ましい。塊状重合の方法はとくに限定されないが、例えば、高分子ポリオールとポリイソシアネートとを適切な反応条件(例えば80℃で4時間反応)で反応させることによりウレタンプレポリマーを製造し、得られたウレタンプレポリマーに鎖伸長剤を加えてポリウレタンを重合するプレポリマー法、高分子ポリオールとポリイソシアネートと鎖伸長剤を同時に重合させるワンショット法などが挙げられる。 The thermoplastic polyurethane can be obtained by a conventionally known polymerization method of thermoplastic polyurethane by reacting a polymer polyol, polyisocyanate, and a chain extender, such as bulk polymerization, solution polymerization, and aqueous dispersion polymerization. Among these, bulk polymerization is preferable from the viewpoint of good volumetric reaction efficiency. The bulk polymerization method is not particularly limited. For example, a urethane prepolymer is produced by reacting a high-molecular polyol and a polyisocyanate under appropriate reaction conditions (for example, reaction at 80 ° C. for 4 hours). Examples thereof include a prepolymer method in which a chain extender is added to a polymer to polymerize polyurethane, and a one-shot method in which a polymer polyol, polyisocyanate, and a chain extender are polymerized simultaneously.
 なお、熱可塑性ポリウレタンは、熱可塑性を維持するために分岐構造を形成させない2官能性の高分子ポリオール(高分子ジオール)と2官能性のポリイソシアネート(ジイソシアネート)と鎖伸長剤とを主成分として反応させて得られるポリウレタンであるが、本発明の効果を損なわない充分な熱可塑性を維持できる範囲であれば、必要に応じて、3官能以上の化合物を原料として用いてもよい。 The thermoplastic polyurethane is mainly composed of a bifunctional polymer polyol (polymer diol) that does not form a branched structure in order to maintain thermoplasticity, a bifunctional polyisocyanate (diisocyanate), and a chain extender. Although it is a polyurethane obtained by reacting, a trifunctional or higher functional compound may be used as a raw material as necessary as long as sufficient thermoplasticity that does not impair the effects of the present invention can be maintained.
 熱可塑性ポリウレタンの製造に用いられる高分子ポリオールの具体例としては、例えば、ポリエーテルポリオール(ポリエーテルジオール)、ポリエチレングリコール,ポリプロピレングリコール,ポリブチレングリコール,ポリテトラメチレングリコール等の脂肪族ポリエーテルジオール等が挙げられる。これらは単独で用いても2種以上を組み合わせて用いてもよい。これらの中では、ポリオール中のポリエーテルポリオールを60質量%以上含有する場合には、耐加水分解性に優れる点から好ましい。 Specific examples of the polymer polyol used for the production of the thermoplastic polyurethane include, for example, polyether polyol (polyether diol), aliphatic polyether diol such as polyethylene glycol, polypropylene glycol, polybutylene glycol, polytetramethylene glycol, etc. Is mentioned. These may be used alone or in combination of two or more. In these, when it contains 60 mass% or more of polyether polyol in a polyol, it is preferable from the point which is excellent in hydrolysis resistance.
 高分子ポリオールの数平均分子量としては、500~5000、さらには600~4500、とくには700~4000であることが好ましい。高分子ポリオールの数平均分子量が低すぎる場合には柔軟性が低下する傾向があり、高すぎる場合には機械的特性が低下する傾向がある。 The number average molecular weight of the polymer polyol is preferably 500 to 5000, more preferably 600 to 4500, and particularly preferably 700 to 4000. When the number average molecular weight of the polymer polyol is too low, the flexibility tends to decrease, and when it is too high, the mechanical properties tend to decrease.
 また、ポリイソシアネートの具体例としては、例えば、フェニレンジイソシアネート,トリレンジイソシアネート,4,4’-ジフェニルメタンジイソシアネート,2,4’-ジフェニルメタンジイソシアネート,ナフタレンジイソシアネート,キシリレンジイソシアネート等の芳香族ジイソシアネート;ヘキサメチレンジイソシアネート,リジンジイソシアネート,シクロヘキサンジイソシアネート,イソホロンジイソシアネート,ジシクロヘキシルメタンジイソシアネート,テトラメチルキシリレンジイソシアネート等の脂肪族ジイソシアネートまたは脂環族ジイソシアネート;4,4’-ジフェニルメタンジイソシアネートの2量体および3量体等のポリメリックジフェニルメタンジイソシアネート等が挙げられる。
これらは単独で用いても2種以上を組み合わせて用いてもよい。
Specific examples of the polyisocyanate include aromatic diisocyanates such as phenylene diisocyanate, tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate; hexamethylene diisocyanate , Lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, aliphatic diisocyanate such as tetramethylxylylene diisocyanate, or cycloaliphatic diisocyanate; Etc.
These may be used alone or in combination of two or more.
 また、鎖伸長剤としては、従来からポリウレタンの製造に用いられている、イソシアネート基と反応し得る水素原子を分子中に2つ有する、分子量400以下の低分子化合物が挙げられる。鎖伸長剤の具体例としては、例えば、ヒドラジン,エチレンジアミン,プロピレンジアミン,キシリレンジアミン,イソホロンジアミン,ピペラジンおよびその誘導体,フェニレンジアミン,トリレンジアミン,キシレンジアミン,アジピン酸ジヒドラジド,イソフタル酸ジヒドラジド,ヘキサメチレンジアミン,4,4’-ジアミノフェニルメタン,4,4’-ジシクロヘキシルメタンジアミンなどのジアミン系化合物;エチレングリコール,プロピレングリコール,1,4-ブタンジオール,1,6-ヘキサンジオール,1,4-シクロヘキサンジオール,ビス(β-ヒドロキシエチル)テレフタレート,3-メチル-1,5-ペンタンジオール,シクロヘキサンジオール,キシリレングリコール,1,4-ビス(β-ヒドロキシエトキシ)ベンゼン,ネオペンチルグリコールなどのジオール系化合物;アミノエチルアルコール,アミノプロピルアルコールなどのアミノアルコール等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。 As the chain extender, a low molecular weight compound having a molecular weight of 400 or less and having two hydrogen atoms capable of reacting with an isocyanate group in the molecule, which has been conventionally used in the production of polyurethane, can be mentioned. Specific examples of the chain extender include, for example, hydrazine, ethylenediamine, propylenediamine, xylylenediamine, isophoronediamine, piperazine and derivatives thereof, phenylenediamine, tolylenediamine, xylenediamine, adipic acid dihydrazide, isophthalic acid dihydrazide, hexamethylene. Diamine compounds such as diamine, 4,4'-diaminophenylmethane, 4,4'-dicyclohexylmethanediamine; ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexane Diol, bis (β-hydroxyethyl) terephthalate, 3-methyl-1,5-pentanediol, cyclohexanediol, xylylene glycol, 1,4-bis (β-hydroxyethoxy) benzene, neopentyl glycol, etc. Diol compounds; amino alcohols such as aminoethyl alcohol and aminopropyl alcohol; These may be used alone or in combination of two or more.
 また、上記鎖伸長剤に加えて、エチルアミン,n-プロピルアミン,イソプロピルアミン,n-ブチルアミン,イソブチルアミン,t-ブチルアミン,シクロヘキシルアミン等のモノアミノ化合物を併用して分子量を制御したり、ε-アミノカプロン酸(6-アミノヘキサン酸),γ-アミノ酪酸(4-アミノブタン酸),アミノシクロヘキサンカルボン酸,アミノ安息香酸などのアミノカルボン酸を併用して末端にカルボキシル基を導入したりしてもよい。 In addition to the above chain extenders, monoamino compounds such as ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, t-butylamine, cyclohexylamine are used in combination to control the molecular weight or ε-aminocapron. A carboxyl group may be introduced at the terminal by using an aminocarboxylic acid such as acid (6-aminohexanoic acid), γ-aminobutyric acid (4-aminobutanoic acid), aminocyclohexanecarboxylic acid, and aminobenzoic acid.
 高分子ポリオールと鎖伸長剤とポリイソシアネートとの反応割合としては、ポリイソシアネート中のイソシアネート基と、高分子ポリオールを含むポリオール中の水酸基ならびに鎖伸長剤の活性水素基との当量比であるイソシアネート指数が、0.85~1.1、さらには、0.9~1.0程度であることが好ましい。イソシアネート指数が高い場合には熱可塑性ポリウレタンの軟化温度が高くなる傾向があり、イソシアネート指数が低い場合には軟化温度が低くなり、また、機械的特性が低下して接着強力が低下する傾向がある。 The reaction ratio between the polymer polyol, the chain extender and the polyisocyanate is an isocyanate index which is an equivalent ratio of the isocyanate group in the polyisocyanate to the hydroxyl group in the polyol containing the polymer polyol and the active hydrogen group of the chain extender. However, it is preferably about 0.85 to 1.1, more preferably about 0.9 to 1.0. When the isocyanate index is high, the softening temperature of the thermoplastic polyurethane tends to be high, and when the isocyanate index is low, the softening temperature is low, and the mechanical properties tend to decrease and the adhesive strength tends to decrease. .
 熱可塑性ポリウレタンは、必要に応じて、添加剤、具体的には、例えば、公知のヒンダードアミン系、ヒンダードフェノール系などの酸化防止剤、ベンゾトリアゾール系、ベンゾフェノン系、トリアジン系などの耐光剤、顔料や染料などの着色剤等を配合したものであってもよい。 The thermoplastic polyurethane may be an additive, if necessary, specifically, for example, a known hindered amine-based, hindered phenol-based antioxidant, benzotriazole-based, benzophenone-based, triazine-based light-proofing agent, pigment, etc. Or a coloring agent such as a dye.
 第1のホットメルトポリウレタン層、第2のホットメルトポリウレタン層、及び第3のポリウレタン層を形成するための熱可塑性ポリウレタンとしては、上述したような軟化温度の関係を満たすものを組み合わせる限り、その種類やモノマー組成等は特に限定されない。 As the thermoplastic polyurethane for forming the first hot-melt polyurethane layer, the second hot-melt polyurethane layer, and the third polyurethane layer, as long as those that satisfy the softening temperature relationship as described above are combined, the kind thereof is used. The monomer composition and the like are not particularly limited.
[接着方法]
 第1実施形態及び第2実施形態で説明したホットメルトポリウレタン接着剤フィルムは、接着剤が浸透されてアンカー効果により接着される、互いに見掛け密度の異なる被接着基材同士を接着するために好ましく用いられる。被接着基材の種類は特に限定されないが、不織布,織物,メッシュ編物等の編物,人工皮革,多孔性の樹脂フィルム等が挙げられる。
[Adhesion method]
The hot melt polyurethane adhesive film described in the first embodiment and the second embodiment is preferably used for adhering adherend substrates having different apparent densities to each other, which are bonded by the anchor effect when the adhesive is infiltrated. It is done. The kind of the adherend substrate is not particularly limited, and examples thereof include knitted fabrics such as nonwoven fabrics, woven fabrics, and mesh knitted fabrics, artificial leather, and porous resin films.
 とくに、不織布と織物、不織布と編物、人工皮革と織物、人工皮革と編物等の見掛け密度の異なる繊維基材を被接着基材とし、このような繊維基材同士を接着させる場合にとくに顕著な効果が奏される。なお、人工皮革とは、不織布等の繊維基材にポリウレタン等の弾性高分子を含浸付与してなる繊維基材である。さらに具体的には、一方の繊維基材の見掛け密度が、他方の繊維基材の見掛け密度の1.3倍以上、さらには1.5倍以上であるような2つの繊維基材同士を接着する場合に好ましく用いられる。 In particular, it is particularly noticeable when non-woven fabrics and woven fabrics, non-woven fabrics and knitted fabrics, artificial leather and woven fabrics, artificial leather and knitted fabrics with different apparent densities are used as adherends, and such fiber substrates are bonded together. An effect is produced. In addition, artificial leather is a fiber base material formed by impregnating an elastic polymer such as polyurethane to a fiber base material such as a nonwoven fabric. More specifically, two fiber base materials in which the apparent density of one fiber base material is 1.3 times or more, more preferably 1.5 times or more the other fiber base material are bonded together. In this case, it is preferably used.
 接着は2つの被接着基材同士の間にホットメルトポリウレタン接着剤フィルムを介在させた積重体を形成し、熱プレスや熱ロールにより加熱及び加圧しながら接着させる方法が挙げられる。熱プレスや熱ロールの金型の表面温度は、第1のホットメルトポリウレタン層、第2のホットメルトポリウレタン層、及び第3のポリウレタン層の軟化温度により適宜選択される。一般的には、100~160℃の範囲で適宜設定される。 Bonding includes a method in which a stacked body in which a hot melt polyurethane adhesive film is interposed between two substrates to be bonded is formed and bonded while being heated and pressed by a hot press or a hot roll. The surface temperature of the hot press or hot roll mold is appropriately selected depending on the softening temperatures of the first hot melt polyurethane layer, the second hot melt polyurethane layer, and the third polyurethane layer. Generally, the temperature is appropriately set in the range of 100 to 160 ° C.
 このようなホットメルトポリウレタン接着剤フィルムで、互いに見掛け密度の異なる2つの繊維基材を接着してなる積層繊維構造体は、ポリウレタンで接着されているために、クッション性が保たれ、柔軟性に優れる。従って、靴のアッパー材、とくには、スポーツ靴のアッパー材として好ましく用いられる。 With such a hot melt polyurethane adhesive film, a laminated fiber structure formed by bonding two fiber bases having different apparent densities is bonded with polyurethane, so that cushioning properties are maintained and flexibility is increased. Excellent. Therefore, it is preferably used as an upper material for shoes, particularly as an upper material for sports shoes.
 本発明を実施例により具体的に説明する。なお、本発明の範囲はこれらの実施例によって何ら限定して解釈されるものではない。 The present invention will be specifically described with reference to examples. It should be noted that the scope of the present invention is not construed as being limited in any way by these examples.
 はじめに、熱可塑性ポリウレタンの特性の評価方法を以下にまとめて説明する。 First, the evaluation method of the properties of thermoplastic polyurethane will be described together below.
〈軟化温度、及び、140℃における貯蔵弾性率の評価〉
 動的粘弾性測定装置(レオロジ社製FTレオスペクトラDVE-V4)を用いて、幅5mm、長さ30mm、厚さ250μmの熱可塑性ポリウレタンの試験片を間隔20mmのチャック間に固定して、測定領域30~300℃、昇温速度3℃/min、歪み5μm/20mm、測定周波数10Hzの条件で動的粘弾性挙動を測定した。そして、得られた貯蔵弾性率(E’)のスペクトルにおいて、熱可塑性ポリウレタンの溶融に伴うE’の低下する領域における溶融前後の傾きの接線の交点における温度を軟化温度とした。また、140℃における貯蔵弾性率E’を読み取った。
<Evaluation of softening temperature and storage modulus at 140 ° C.>
Using a dynamic viscoelasticity measuring device (FT Leospectra DVE-V4 manufactured by Rheology), a test piece of thermoplastic polyurethane having a width of 5 mm, a length of 30 mm, and a thickness of 250 μm is fixed between chucks with an interval of 20 mm. The dynamic viscoelastic behavior was measured under the conditions of a region of 30 to 300 ° C., a heating rate of 3 ° C./min, a strain of 5 μm / 20 mm, and a measurement frequency of 10 Hz. And in the spectrum of the obtained storage elastic modulus (E '), the temperature at the intersection of the tangent lines of the slope before and after melting in the region where E' decreases due to melting of the thermoplastic polyurethane was defined as the softening temperature. Further, the storage elastic modulus E ′ at 140 ° C. was read.
〈100%モジュラスの評価〉
 熱可塑性ポリウレタンを用いて得られた、幅25mm×長さ150mm×厚さ100μmのフィルムを用い、JIS K7311に準拠して、100%モジュラスを、ヘッドスピード:100mm/分の条件で引張試験機(テンシロン オリエンテック(株)製)を用いて測定した。
<Evaluation of 100% modulus>
Using a film having a width of 25 mm, a length of 150 mm, and a thickness of 100 μm obtained using thermoplastic polyurethane, a tensile tester (100% modulus and head speed: 100 mm / min) in accordance with JIS K7311 Tensilon Orientec Co., Ltd.) was used.
(実施例1~12、比較例1~4)
 下記表1に示す軟化温度を有する熱可塑性ポリウレタンTPU1~TPU6を用い、Tダイ溶融押出成形することにより、表1に示す各厚さのフィルムを製造した。また、表1に示すような、第1のホットメルト接着剤層及び第2のホットメルト接着剤層として密度0.921g/cmの低密度ポリエチレン(LDPE)、第3のホットメルト接着剤層として密度0.954g/cmの高密度ポリエチレン(HDPE)を積層したポリエチレン積層フィルムを製造した。
(Examples 1 to 12, Comparative Examples 1 to 4)
Films having various thicknesses shown in Table 1 were manufactured by T-die melt extrusion using thermoplastic polyurethanes TPU1 to TPU6 having softening temperatures shown in Table 1 below. Further, as shown in Table 1, as the first hot melt adhesive layer and the second hot melt adhesive layer, low density polyethylene (LDPE) having a density of 0.921 g / cm 3, a third hot melt adhesive layer. As a result, a polyethylene laminated film in which high density polyethylene (HDPE) having a density of 0.954 g / cm 3 was laminated was produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 そして、第1のホットメルトポリウレタン層(L1)、第2のホットメルトポリウレタン層(L2)、及び第3のポリウレタン層(L3)として表1に示した各熱可塑性ポリウレタンのフィルムを、下記表2に示したような層構成になるように重ねてフィルムの積重体を形成した。そして、フィルムの積重体を平板熱プレス機で圧力5kg/cm、30秒間の条件で熱圧着させることにより、各実施例及び比較例で用いたホットメルト接着剤フィルムを作成した。なお、TPU1を用いた実施例1,3~6,8~10,及び比較例1,2においては、平板熱プレス機の表面温度を120℃に設定し、TPU2を用いた実施例2,7,11,12及び比較例3においては、表面温度を140℃に設定した。また、L1,L2は比較例2及び比較例3を除いて厚さ100μmのフィルムを用いた。また、比較例2及び比較例3においては、厚さ200μmのフィルムをそのままホットメルトポリウレタン接着剤フィルムとして用いた。 The thermoplastic polyurethane films shown in Table 1 as the first hot melt polyurethane layer (L1), the second hot melt polyurethane layer (L2), and the third polyurethane layer (L3) are shown in Table 2 below. A stack of films was formed so as to have a layer structure as shown in FIG. And the hot-melt-adhesive film used by each Example and the comparative example was created by carrying out the thermocompression-bonding of the stack of films on the conditions of pressure 5kg / cm < 2 > and 30 second with a flat plate heat press. In Examples 1, 3 to 6, 8 to 10 using TPU 1 and Comparative Examples 1 and 2, the surface temperature of the flat plate heat press was set to 120 ° C., and Examples 2 and 7 using TPU 2 were used. , 11, 12 and Comparative Example 3, the surface temperature was set to 140 ° C. L1 and L2 were films having a thickness of 100 μm except for Comparative Example 2 and Comparative Example 3. In Comparative Example 2 and Comparative Example 3, a film having a thickness of 200 μm was used as it was as a hot melt polyurethane adhesive film.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 そして、厚さ1.0mm、見掛け密度0.6g/cm3の両面が起毛処理された立毛調人工皮革片と、厚さ3.0mm、見掛け密度0.3g/cm3のダブルラッセルタイプのメッシュ編物との間に、各ポリウレタンホットメルト接着剤のフィルムを介在させて重ねた積重体を形成した。なお、実施例11及び実施例12においては、TPU2のL1をメッシュ編物に対面させ、TPU1のL1を立毛調人工皮革片に対面させた。 Then, thickness of 1.0 mm, and the napped artificial leather pieces duplex is napped apparent density 0.6 g / cm 3, thickness of 3.0 mm, a double raschel type of apparent density 0.3 g / cm 3 Mesh A stacked body was formed between the knitted fabrics with each polyurethane hot melt adhesive film interposed therebetween. In Example 11 and Example 12, L1 of TPU2 was faced to the mesh knitted fabric, and L1 of TPU1 was faced to the napped artificial leather piece.
 そして、積重体を平板熱プレス機で圧力5kg/cm、60秒間の条件で熱圧着させた。なお、平板熱プレス機は、TPU1を用いた実施例1,3~6,8~10,及び比較例1,2においては、表面温度を120℃に設定し、TPU2を用いた実施例2,7,11,12及び比較例3においては、表面温度を140℃に設定した。また、比較例4においては、表面温度を115℃に設定した。そして、室温で1日間冷却させて積層繊維構造体を得た。 Then, the stack was thermocompression-bonded with a flat plate heat press machine under conditions of a pressure of 5 kg / cm 2 and 60 seconds. In the flat plate heat press, in Examples 1, 3 to 6, 8 to 10 using TPU 1 and Comparative Examples 1 and 2, the surface temperature was set to 120 ° C., and Example 2 using TPU 2 was used. In 7, 11, 12 and Comparative Example 3, the surface temperature was set to 140 ° C. In Comparative Example 4, the surface temperature was set to 115 ° C. And it was made to cool at room temperature for 1 day, and the laminated fiber structure was obtained.
 そして、得られた各積層繊維構造体の接着強力、及び風合いを次の評価方法に従って評価した。結果を表2に示す。 The adhesive strength and texture of each laminated fiber structure obtained were evaluated according to the following evaluation method. The results are shown in Table 2.
〈接着強力〉
 引張試験機(テンシロン オリエンテック(株))を用いて積層繊維構造体の接着強力を測定した。具体的には、積層繊維構造体の作成と同様に接着強力測定用サンプルを作成する際、サンプルサイズを幅30mm×長さ150mmとし、熱圧着する時に長さ方向の端30mm程度に立毛調人工皮革片とダブルラッセルタイプのメッシュ編物との間に紙を挟み込み非接着部を設けた。その後、幅方向の両端をトリミングしてプレス時の接着剤のはみ出し部を除去し、幅25mm×長さ150mm幅の試験片を作成した。そして、試験片の非接着部のそれぞれの端部を、初期間隔25mmに設定した引張試験機の上下それぞれのチャックに挟んで、引張速度50mm/分で引張試験を行って伸度-剥離強力のグラフを得た。そして、得られたグラフから初期ピークを除いた部分を5つのセクションに区切り、各セクションでのピークの最小値を読み取り、得られた5つのデータの平均値を接着強力とした。
<Adhesive strength>
The adhesion strength of the laminated fiber structure was measured using a tensile tester (Tensilon Orientec Co., Ltd.). Specifically, when creating a sample for measuring adhesive strength in the same manner as in the production of a laminated fiber structure, the sample size is 30 mm wide × 150 mm long, and when the thermocompression bonding is performed, the nap-like artificial prosthesis is about 30 mm in the length direction. Paper was sandwiched between the leather piece and the double raschel type mesh knitted fabric to provide a non-adhesive portion. Thereafter, both ends in the width direction were trimmed to remove the protruding portion of the adhesive during pressing, and a test piece having a width of 25 mm × a length of 150 mm was prepared. Then, each end portion of the non-bonded portion of the test piece is sandwiched between upper and lower chucks of a tensile tester set at an initial interval of 25 mm, and a tensile test is performed at a tensile speed of 50 mm / min. A graph was obtained. Then, the portion excluding the initial peak from the obtained graph was divided into five sections, the minimum value of the peak in each section was read, and the average value of the obtained five data was defined as the adhesion strength.
〈風合い評価〉
 縦200mm×横200mmの正方形に積層繊維構造体を切り出した試験片を作成した。そして、人工皮革分野の当業者から選出された5人のパネリストが試験片を触って、以下の基準で柔軟性を判定した。
A:メッシュ編物のクッション性や人工皮革の風合いが充分に保たれ、非常に柔軟性が高かった。
B:メッシュ編物のクッション性や人工皮革の風合いが概ね保たれ、一般的なスポーツ靴のアッパー材として標準的な柔軟性があった。
C:樹脂様の反発感はあるものの、一般的なスポーツ靴のアッパー材としてなんとか許容できる程度の風合いであった。
D:折り曲げた際に角ばったシワが入り、樹脂様の強い反発感があり柔軟性に乏しかった。
<Texture evaluation>
A test piece was prepared by cutting out the laminated fiber structure into a square of 200 mm length × 200 mm width. Then, five panelists selected from those skilled in the art of artificial leather touched the test piece and judged flexibility according to the following criteria.
A: The cushioning property of the mesh knitted fabric and the texture of the artificial leather were sufficiently maintained, and the flexibility was very high.
B: The cushioning property of the mesh knitted fabric and the texture of the artificial leather were generally maintained, and there was a standard flexibility as an upper material for general sports shoes.
C: Although there was a feeling of resilience like a resin, the texture was acceptable to some extent as an upper material for general sports shoes.
D: Wrinkles that were rounded when folded were present, and there was a strong resilience like resin, and the flexibility was poor.
 表1に示すように、第1のホットメルトポリウレタン層と、第2のホットメルトポリウレタン層と、第1のホットメルトポリウレタン層と第2のホットメルトポリウレタン層との間に介在する第3のポリウレタン層とを備え、第3のポリウレタン層の軟化温度が、他の接着剤層の軟化温度よりも高いホットメルトポリウレタン接着剤フィルムを用いて接着された実施例1~11の積層繊維構造体は、第1のホットメルトポリウレタン層のみのホットメルトポリウレタン接着剤フィルムを用いて接着された比較例1~3の積層繊維構造体よりも接着強力が高かった。また、第1のホットメルトポリウレタン層と第2のホットメルトポリウレタン層とを備え、第1のホットメルトポリウレタン層が、第2のホットメルトポリウレタン層の軟化温度よりも高いホットメルトポリウレタン接着剤フィルムを用いて接着された実施例12の積層繊維構造体も、比較例1~3の積層繊維構造体よりも接着強力が高かった。また比較例4に示すように、ポリエチレン層からなる接着剤フィルムを用いた場合、接着強力や風合いに劣る積層繊維構造体が得られた。 As shown in Table 1, the first hot-melt polyurethane layer, the second hot-melt polyurethane layer, and the third polyurethane interposed between the first hot-melt polyurethane layer and the second hot-melt polyurethane layer Layered fiber structures of Examples 1 to 11 bonded using a hot-melt polyurethane adhesive film in which the softening temperature of the third polyurethane layer is higher than the softening temperature of the other adhesive layers. The adhesive strength was higher than that of the laminated fiber structures of Comparative Examples 1 to 3, which were bonded using a hot-melt polyurethane adhesive film having only the first hot-melt polyurethane layer. A first hot-melt polyurethane layer and a second hot-melt polyurethane layer, wherein the first hot-melt polyurethane layer is a hot-melt polyurethane adhesive film having a higher softening temperature than the second hot-melt polyurethane layer; The laminated fiber structure of Example 12 adhered using the adhesive also had higher adhesive strength than the laminated fiber structures of Comparative Examples 1 to 3. Moreover, as shown in Comparative Example 4, when an adhesive film made of a polyethylene layer was used, a laminated fiber structure inferior in adhesive strength and texture was obtained.
1,21  第1のホットトメルトポリウレタン層
2,22  第2のホットトメルトポリウレタン層
3     第3のポリウレタン層
10,30 ホットトメルトポリウレタン接着剤フィルム
11    見掛け密度の低い繊維基材
12    見掛け密度の高い繊維基材
1,21 1st hot tomelt polyurethane layer 2,22 2nd hot tomelt polyurethane layer 3 3rd polyurethane layer 10,30 hot to melt polyurethane adhesive film 11 low apparent density fiber substrate 12 apparent density High fiber substrate

Claims (12)

  1.  第1のホットメルトポリウレタン層と、第2のホットメルトポリウレタン層と、前記第1のホットメルトポリウレタン層と前記第2のホットメルトポリウレタン層との間に介在する第3のポリウレタン層とを備え、
     前記第3のポリウレタン層の軟化温度が、前記第1のホットメルトポリウレタン層及び前記第2のホットメルトポリウレタン層の軟化温度よりも高いホットメルトポリウレタン接着剤フィルム。
    A first hot melt polyurethane layer, a second hot melt polyurethane layer, and a third polyurethane layer interposed between the first hot melt polyurethane layer and the second hot melt polyurethane layer,
    A hot melt polyurethane adhesive film in which a softening temperature of the third polyurethane layer is higher than softening temperatures of the first hot melt polyurethane layer and the second hot melt polyurethane layer.
  2.  前記第3のポリウレタン層の軟化温度が、前記第1のホットメルトポリウレタン層の軟化温度よりも20℃以上高い請求項1に記載のホットメルトポリウレタン接着剤フィルム。 The hot melt polyurethane adhesive film according to claim 1, wherein the softening temperature of the third polyurethane layer is 20 ° C or higher than the softening temperature of the first hot melt polyurethane layer.
  3.  前記第3のポリウレタン層の軟化温度が、前記第1のホットメルトポリウレタン層の軟化温度及び前記第2のホットメルトポリウレタン層の軟化温度よりも20℃以上高い請求項2に記載のホットメルトポリウレタン接着剤フィルム。 The hot melt polyurethane adhesive according to claim 2, wherein the softening temperature of the third polyurethane layer is 20 ° C or higher than the softening temperature of the first hot melt polyurethane layer and the softening temperature of the second hot melt polyurethane layer. Agent film.
  4.  前記第1のホットメルトポリウレタン層の軟化温度が前記第2のホットメルトポリウレタン層の軟化温度よりも5℃以上高い請求項1~3の何れか1項に記載のホットメルトポリウレタン接着剤フィルム。 The hot melt polyurethane adhesive film according to any one of claims 1 to 3, wherein the softening temperature of the first hot melt polyurethane layer is 5 ° C or higher than the softening temperature of the second hot melt polyurethane layer.
  5.  前記第3のポリウレタン層の軟化温度が145~195℃であり、前記第1のホットメルトポリウレタン層及び前記第2のホットメルトポリウレタン層の軟化温度が100~140℃である請求項1~4の何れか1項に記載のホットメルトポリウレタン接着剤フィルム。 The softening temperature of the third polyurethane layer is 145 to 195 ° C, and the softening temperatures of the first hot melt polyurethane layer and the second hot melt polyurethane layer are 100 to 140 ° C. The hot melt polyurethane adhesive film according to any one of the above.
  6.  前記第3のポリウレタン層の厚さが10~110μmである請求項1~5の何れか1項に記載のホットメルトポリウレタン接着剤フィルム。 6. The hot melt polyurethane adhesive film according to claim 1, wherein the thickness of the third polyurethane layer is 10 to 110 μm.
  7.  前記第3のポリウレタン層の25℃における100%モジュラスが2~7MPaである請求項1~6の何れか1項に記載のホットメルトポリウレタン接着剤フィルム。 The hot melt polyurethane adhesive film according to any one of claims 1 to 6, wherein a 100% modulus at 25 ° C of the third polyurethane layer is 2 to 7 MPa.
  8.  前記第3のポリウレタン層の140℃における貯蔵弾性率E’が2~30MPaである請求項1~7の何れか1項に記載のホットメルトポリウレタン接着剤フィルム。 The hot melt polyurethane adhesive film according to any one of claims 1 to 7, wherein the storage elastic modulus E 'at 140 ° C of the third polyurethane layer is 2 to 30 MPa.
  9.  第1のホットメルトポリウレタン層と、第2のホットメルトポリウレタン層とを備え、
     前記第1のホットメルトポリウレタン層が、前記第2のホットメルトポリウレタン層の軟化温度よりも高いホットメルトポリウレタン接着剤フィルム。
    A first hot melt polyurethane layer and a second hot melt polyurethane layer;
    A hot melt polyurethane adhesive film in which the first hot melt polyurethane layer is higher than a softening temperature of the second hot melt polyurethane layer.
  10.  請求項1~9の何れか1項に記載のホットメルトポリウレタン接着剤フィルムで、互いに見掛け密度の異なる2つの繊維基材を接着してなる積層繊維構造体。 A laminated fiber structure obtained by bonding two fiber base materials having different apparent densities to each other with the hot melt polyurethane adhesive film according to any one of claims 1 to 9.
  11.  前記2つの繊維基材の一方の繊維基材の見掛け密度が、他方の繊維基材の見掛け密度の1.5倍以上である請求項10に記載の積層繊維構造体。 The laminated fiber structure according to claim 10, wherein an apparent density of one of the two fiber substrates is 1.5 times or more of an apparent density of the other fiber substrate.
  12.  前記2つの繊維基材の一方が編物であり、他の一方が人工皮革である靴のアッパー材である請求項10または11に記載の積層繊維構造体。
     
    The laminated fiber structure according to claim 10 or 11, which is a shoe upper material in which one of the two fiber substrates is a knitted fabric and the other is an artificial leather.
PCT/JP2019/002658 2018-02-08 2019-01-28 Hot-melt polyurethane adhesive film and layered fibrous structure WO2019155925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-020760 2018-02-08
JP2018020760 2018-02-08

Publications (1)

Publication Number Publication Date
WO2019155925A1 true WO2019155925A1 (en) 2019-08-15

Family

ID=67549429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002658 WO2019155925A1 (en) 2018-02-08 2019-01-28 Hot-melt polyurethane adhesive film and layered fibrous structure

Country Status (2)

Country Link
TW (1) TW201936837A (en)
WO (1) WO2019155925A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021000806A (en) * 2019-06-24 2021-01-07 昭和電工マテリアルズ株式会社 Textile product and production method thereof as well as adhesive agent set
KR102229750B1 (en) * 2019-11-14 2021-03-18 엄기천 Method of preparing nontoxic synthesis leather

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820096A (en) * 1994-07-08 1996-01-23 Okura Ind Co Ltd Urethane hot-melt film
JPH09235519A (en) * 1996-03-01 1997-09-09 Daicel Chem Ind Ltd Hot melt-type adhesive film and processed product
JPH10192004A (en) * 1996-12-27 1998-07-28 Mizuno Corp Adhesive sheet for shoes and production of shoes by using the same
JPH11172209A (en) * 1997-12-09 1999-06-29 Unitika Ltd Sealing tape
JP2002370333A (en) * 2001-06-15 2002-12-24 Chiyoushirou Sakoguchi Transfer material to be transferred as double-layered cornification preventive membrane to desired spots of object to which the material is to be transferred such as socks or supporter
JP2016056243A (en) * 2014-09-05 2016-04-21 株式会社アイセロ Thermal adhesive film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820096A (en) * 1994-07-08 1996-01-23 Okura Ind Co Ltd Urethane hot-melt film
JPH09235519A (en) * 1996-03-01 1997-09-09 Daicel Chem Ind Ltd Hot melt-type adhesive film and processed product
JPH10192004A (en) * 1996-12-27 1998-07-28 Mizuno Corp Adhesive sheet for shoes and production of shoes by using the same
JPH11172209A (en) * 1997-12-09 1999-06-29 Unitika Ltd Sealing tape
JP2002370333A (en) * 2001-06-15 2002-12-24 Chiyoushirou Sakoguchi Transfer material to be transferred as double-layered cornification preventive membrane to desired spots of object to which the material is to be transferred such as socks or supporter
JP2016056243A (en) * 2014-09-05 2016-04-21 株式会社アイセロ Thermal adhesive film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021000806A (en) * 2019-06-24 2021-01-07 昭和電工マテリアルズ株式会社 Textile product and production method thereof as well as adhesive agent set
JP7259588B2 (en) 2019-06-24 2023-04-18 株式会社レゾナック Textile product, its manufacturing method, and adhesive set
KR102229750B1 (en) * 2019-11-14 2021-03-18 엄기천 Method of preparing nontoxic synthesis leather

Also Published As

Publication number Publication date
TW201936837A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
JP4875179B2 (en) Synthetic leather for vehicle interior materials and method for producing the same
JP4782119B2 (en) Silver-tone leather-like sheet with excellent scratch resistance and scratch resistance
TW201540518A (en) Double-sided adhesive tape, method of making, method of use, and articles thereby assembled
JP6357367B2 (en) Skin material and its manufacturing method
WO2019155925A1 (en) Hot-melt polyurethane adhesive film and layered fibrous structure
JP5398451B2 (en) Synthetic leather manufacturing method
WO2014132488A1 (en) Medical adhesive sheet and method for producing medical adhesive sheet
JP7300384B2 (en) POLYURETHANE HOT MELT ADHESIVE, LAMINATE USING THE SAME AND LAMINATE MANUFACTURING METHOD
JP2014129622A (en) Synthetic leather
TWI794284B (en) Manufacturing method of synthetic leather
WO2019176941A1 (en) Moisture curing hot melt adhesive and adhesive body
JP5779424B2 (en) Silvered leather-like sheet
WO2022158507A1 (en) Porous layer structure, and method for producing porous layer structure
JP2013208814A (en) Polyurethane laminated body, and method for producing the same
JP2004211262A (en) Leather-like sheet having high wear resistance
JP3400281B2 (en) Leather-like sheet and method for producing the same
JP2018184000A (en) Skin material and method for producing the same
JP4582944B2 (en) Synthetic leather and method for producing the same
JP2020002474A (en) Sheet-like material and method for producing the same
JPWO2019058804A1 (en) Synthetic leather manufacturing method
TWI835056B (en) Porous layer structure and manufacturing method of porous layer structure
JPH01111077A (en) Production of leather-like sheet
JPS61225364A (en) Material for extensible clothing
JP2006233392A (en) Grained leather type artificial leather and method for producing the same
JPH11207879A (en) Moisture permeable and waterproofing stock and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP