WO2022158507A1 - Porous layer structure, and method for producing porous layer structure - Google Patents

Porous layer structure, and method for producing porous layer structure Download PDF

Info

Publication number
WO2022158507A1
WO2022158507A1 PCT/JP2022/001901 JP2022001901W WO2022158507A1 WO 2022158507 A1 WO2022158507 A1 WO 2022158507A1 JP 2022001901 W JP2022001901 W JP 2022001901W WO 2022158507 A1 WO2022158507 A1 WO 2022158507A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
water
base layer
layer structure
porous layer
Prior art date
Application number
PCT/JP2022/001901
Other languages
French (fr)
Japanese (ja)
Inventor
祥汰 綿貫
寛女 奥泉
亮 河村
一弥 佐々木
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Publication of WO2022158507A1 publication Critical patent/WO2022158507A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products

Definitions

  • the present invention relates to a porous layer structure and a method for manufacturing a porous layer structure.
  • Methods for producing synthetic imitation leather made of polyurethane resin are broadly classified into wet methods and dry methods.
  • the synthetic imitation leather made of polyurethane resin using the wet method is characterized by being softer to the touch and finished with a high-class feeling compared to that of the dry method.
  • Polyurethane resins used in the wet process generally use N,N'-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) as organic solvents, and in recent years, they have become harmful to the human body.
  • DMF N,N'-dimethylformamide
  • NMP N-methyl-2-pyrrolidone
  • the use of DMF and the like is being regulated or prohibited due to environmental problems, and environmentally friendly synthetic leather that does not use organic solvents such as DMF is desired as a substitute.
  • a base material and a skin layer are bonded using a reactive hot-melt adhesive (RHM), which is a urethane prepolymer having an isocyanate group at the end.
  • RHM reactive hot-melt adhesive
  • a urethane prepolymer having an isocyanate group at the terminal of the urethane prepolymer reacts with moisture (humidity) in the air and develops a function as a moisture-curable adhesive as a cross-linking reaction proceeds. Therefore, reactive hot-melt adhesives (RHM) made of urethane prepolymers with isocyanate groups at their ends are 100% solids adhesives that do not use organic solvents, and are currently in demand as environmentally friendly adhesives. It has increased.
  • the base material in order to increase the adhesion between the base material and the adhesive layer, the base material is coated or impregnated with a formulation containing an aqueous polyurethane resin (PUD), and after drying the formulation, the base is It has been proposed to provide a layer containing PUD between the material and the adhesive layer (for example, Patent Documents 1 and 2).
  • a formulation containing an aqueous polyurethane resin PUD
  • Patent Documents 1 and 2 by providing a layer containing PUD, the adhesive strength between the base material and the adhesive layer can be increased, but the moisture in the PUD layer does not contribute to foaming at all, and generally It has the same texture (flexibility) as synthetic imitation leather (foam layer density: about 0.05 g/cm 3 to 0.4 g/cm 3 ) made by the wet method using DMF, which is evaluated to be extremely soft. I could't.
  • the adhesive strength with the base material tends to decrease, resulting in a problem of lack of practicality as a leather.
  • the present invention was made in order to solve such problems.
  • the object of the present invention is to provide a porous layer structure capable of exhibiting good adhesion to a foamed layer formed by the method and exhibiting excellent texture (flexibility), and a method for producing the porous layer structure. do.
  • the present inventors have found that by forming an undercoat layer with a compounded liquid containing a water-soluble resin on a base material, the undercoat layer has a good anchoring action with the base material. Since the urethane prepolymer provided on the base layer can be evenly and sufficiently foamed by the water content of the compounded liquid, the foamed shape of the foamed layer can be made uniform and stable, and the problem can be solved. After discovering that it can be done, the present invention was conceived. That is, the present invention is as follows.
  • a substrate an underlayer formed by a liquid mixture containing a water-soluble resin provided on the substrate, and a urethane prepolymer having an isocyanate group at the end provided on the substrate and foamed.
  • a porous layer structure comprising a foamed layer comprising: a base layer having a basis weight of 3 to 60 g/m 2 ⁇ dry; and a film breaking strength of 5 MPa or more after drying of the base layer.
  • porous layer structure according to any one of [1] to [6], which has a skin layer on the surface of the foam layer opposite to the surface on which the base layer is laminated.
  • the present invention even if the density range that can be realized as a foam layer is expanded to a lower region (a region where the foam layer becomes softer), good adhesion between the substrate and the foam layer formed by foaming the urethane prepolymer is achieved. It is possible to provide a porous layer structure and a method for producing a porous layer structure that can exhibit excellent texture (softness).
  • FIG. 1 is a schematic cross-sectional view (part 1) showing a porous layer structure according to the present embodiment
  • FIG. 4 is a cross-sectional photograph taken by a scanning electron microscope (SEM) of the porous layer structure according to the present embodiment
  • FIG. 2 is a schematic cross-sectional view (part 2) showing the porous layer structure according to the present embodiment
  • the porous layer structure As shown in FIG. 1, the porous layer structure according to the present embodiment includes a substrate 10, a base layer 20 formed of a liquid mixture containing a water-soluble resin provided on the substrate 10, and a base layer 20 A foam layer 30 formed by foaming a urethane prepolymer having an isocyanate group at the end provided thereon is provided.
  • Base material As the base material 10, a conventionally known synthetic imitation leather base material can be used. Examples include nylon cloth, polyester cloth, Kevlar cloth, non-woven fabrics (polyester, nylon, various latexes), various films, sheets, and the like.
  • the thickness of the base material 10 is not particularly limited as long as the base layer 20 can be formed from a liquid mixture containing a water-soluble resin. It is preferably 01 to 2.0 mm, more preferably 0.02 to 1.5 mm.
  • the base layer 20 is formed by coating the base material 10 with a liquid mixture containing a water-soluble resin, and providing the base layer 20 with a specific coating amount (basis weight) and a substantially uniform thickness.
  • the base layer 20 may be partially impregnated into the base material 10 as shown in FIGS. 1 and 2 .
  • the base layer 20 is provided substantially uniformly and evenly over the entire surface of the base material 10 with a basis weight described later, so that the contact with the foam layer 30 provided on the base layer 20 is uniform, and the foam layer The amount of water supplied to 30 becomes constant in the planar (interface) direction.
  • the foamed shape of the foamed layer 20 formed of the moisture-curable urethane prepolymer is uniform and stable (that is, excessive foaming can be prevented). It is possible to reliably prevent the occurrence of different parts and the occurrence of variations in foam shape and size), and it is possible to demonstrate excellent texture (flexibility), as well as between the base material and the foam layer Improves adhesion.
  • the basis weight of the underlayer 20 is 3 to 60 g/m 2 ⁇ dry. If the basis weight of the base layer 20 is less than 3 g/m 2 ⁇ dry, the foaming of the foam layer 30 provided on the base layer 20 tends to be insufficient, and the adhesion between the base material 10 and the foam layer 30 is poor. becomes. In addition, if the base layer 20 has a basis weight of more than 60 g/m 2 ⁇ dry, the foaming of the foam layer 30 becomes excessive, making it difficult to make the foam shape and size uniform and stable. Since the physical properties of the film tend to adversely affect the tactile feel of the synthetic imitation leather, excellent texture (flexibility) cannot be exhibited.
  • the basis weight of the base layer 20 should be 5 to 50 g/m 2 ⁇ dry from the viewpoint of uniform and sufficient foaming of the foam layer 30 provided on the base layer 20 and uniform and stable foam shape. is preferable, 6 to 45 g/m 2 ⁇ dry is more preferable, and 7 to 40 g/m 2 ⁇ dry is even more preferable.
  • the film breaking strength of the underlying layer 20 after drying is 5 MPa or more. If the film breaking strength of the underlayer 20 after drying is less than 5 MPa, the peel strength between the substrate 10 and the foam layer 30 will be insufficient, and the adhesion between the substrate 10 and the foam layer 30 will be poor.
  • the film breaking strength of the underlayer 20 after drying is preferably 8 MPa or more, more preferably 10 MPa or more, more preferably 12 MPa or more, from the viewpoint of improving the peel strength between the substrate 10 and the foam layer 30. It is even more preferable to have There is no particular upper limit for the film breaking strength of the underlying layer 20 after drying.
  • the film breaking strength of the underlayer 20 after drying can be measured by a method using an autograph. As a specific measurement of the film breaking strength of the underlying layer 20, it can be measured by the method described in the "film breaking strength test" in the examples.
  • the thickness ratio between the base layer 20 and the substrate 10 is preferably 1:10 to 1:1,000, more preferably 1:30 to 1:30, from the viewpoint of exhibiting excellent texture (flexibility) of the porous layer structure. 1:750 is more preferred, and 1:70 to 1:500 is even more preferred.
  • the thickness ratio between the base layer 20 and the base material 10 is the ratio between the thickness t of the base layer 20 and the thickness T of the base material 10. As shown in FIG. 1, the base material 10 is impregnated with In this case, the thickness t of the base layer 20 includes the thickness of the portion impregnated into the base layer 10, and the thickness T of the base layer 10 is obtained by subtracting the thickness of the portion impregnated with the base layer 20.
  • the thickness t of the underlying layer 20 can be calculated by measuring 10-point average from a cross-sectional image obtained by SEM (see FIG. 2).
  • on release paper (“DNTP-FL” manufactured by Dai Nippon Printing Co., Ltd.) is coated with a compounded liquid containing a water-soluble resin to be measured, and the drying process is performed at 60 ° C for 4 minutes, 100 ° C for 3 minutes, and 120 ° C for 3 minutes.
  • the measured thickness of the underlayer is regarded as the thickness t of the underlayer 20 to be measured.
  • a water-based polyurethane resin (“Rezamin D-6065NP” manufactured by Dainichi Seika Kogyo Co., Ltd.) was used as a water-soluble resin.
  • Table 1 shows the specific relationship between the weight per unit area of the mixed liquid containing the above-mentioned formulations when dried, the viscosity of the mixed liquid, and the thickness of the base layer 20 formed on the release paper. As shown in Table 1, it can be seen that the basis weight of the base layer 20 is not greatly related to changes in viscosity, but correlates with the thickness of the base layer formed on the release paper.
  • the compounded liquid containing the water-soluble resin that forms the base layer 20 of the present invention is a compounded liquid in which the water-soluble resin is dispersed in water.
  • water-soluble resins include water-based polyurethane resins, water-based polyethylene glycol resins, water-based polyvinyl alcohol resins, and water-based acrylic resins. One type is preferred. Among them, water-based polyurethane resin is preferable as the water-soluble resin.
  • An aqueous polyurethane resin is produced by reacting a polyol component with a polyisocyanate compound.
  • the base layer 20 There is no particular limitation as long as it forms the base layer 20, but examples include those in which a hydrophilic group is introduced into the molecule of a polyurethane resin in order to improve dispersibility in water.
  • the hydrophilic group may be an anion, a cation, or a nonion.
  • ( ⁇ ) an anionic group having one or more active hydrogen groups in the molecule and having a carboxyl group, a sulfonic acid group, and a salt thereof and ( ⁇ ) a group having one or more active hydrogen groups in the molecule and consisting of repeating units of ethylene oxide, or a nonion containing a group consisting of repeating units of ethylene oxide and other repeating units of alkylene oxide chemical compounds, and the like.
  • the content of the water-soluble resin (paint solid content) relative to the entire liquid mixture is not particularly limited. It may be up to 60% by mass, preferably 10 to 50% by mass, more preferably 15 to 40% by mass.
  • the polyurethane resin constituting the aqueous polyurethane resin according to the present invention mainly contains a polyol component and an isocyanate component.
  • the polyol that is used as the polyol component in the present invention is not particularly limited, but examples thereof include polycarbonate polyol, polyether polyol, polyester polyol, polylactone polyol, polyolefin polyol, and polymethacrylate diol.
  • the number average molecular weight of the polyol is not particularly limited as long as it is 500 or more, it is preferably about 500 to 4,000, more preferably about 1,000 to 3,000. These polyols can be used alone or in combination of two or more, but from the viewpoint of long-term durability, it is preferable to include a polycarbonate diol.
  • the number average molecular weight is a polystyrene-equivalent number average molecular weight, and can be usually determined by gel permeation chromatography (GPC).
  • the isocyanate used as the isocyanate component in the present invention is not particularly limited, but bifunctional polyisocyanates such as aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates are preferred.
  • polyisocyanate examples include tolylene diisocyanate, 4-methoxy-1,3-phenylene diisocyanate, 4-isopropyl-1,3-phenylene diisocyanate, 4-chloro-1,3-phenylene diisocyanate, 4-butoxy-1 ,3-phenylene diisocyanate, 2,4-diisocyanate-diphenyl ether, mesitylene diisocyanate, 4,4′-diphenylmethane diisocyanate, dulylene diisocyanate, 1,5-naphthalene diisocyanate, benzidine diisocyanate, o-nitrobenzidine diisocyanate, 4,4-diisocyanate dibenzyl, 1,4-tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,4-cyclohexylene diisocyanate,
  • the ratio of the isocyanate group equivalent of the polyisocyanate component to the hydroxyl group equivalent of all components is preferably 0.8 to 1.9, more preferably 0.9 to 1.5.
  • NCO/OH is within the above range, both flexibility and durability are improved.
  • the liquid mixture containing the water-soluble resin of the present invention may contain additives as necessary.
  • Additives include, for example, thickeners, cross-linking agents, antioxidants (hindered phenols, phosphites, thioethers, etc.), light stabilizers (hindered amines, etc.), ultraviolet absorbers (benzophenones, benzotriazole system, etc.), gas discoloration stabilizers (hydrazine system, etc.), metal deactivators, and the like.
  • the cross-linking agent preferably contains, for example, at least one selected from the group consisting of an isocyanate-based cross-linking agent, a carbodiimide-based cross-linking agent, an oxazoline-based cross-linking agent and an epoxy-based cross-linking agent. More preferably, it contains at least one selected from the group consisting of cross-linking agents. If the amount of the cross-linking agent used is too large, problems such as embrittlement of the underlying layer 20 and plasticization due to unreacted cross-linking agent may occur. ) is preferably 10 parts by mass or less, more preferably 0.5 to 8.0 parts by mass, in terms of the solid content of the cross-linking agent per 100 parts by mass.
  • the viscosity at 25° C. of the liquid mixture containing the water-soluble resin can be appropriately adjusted by adding a thickener or the like. Specifically, it is preferably from 500 to 50,000 mPa ⁇ s, more preferably from 550 to 45,000 mPa ⁇ s, even more preferably from 600 to 40,000 mPa ⁇ s. Since the viscosity of the compounded liquid containing the water-soluble resin at 25° C. is equal to or higher than the lower limit, impregnation of the base layer 20 is suppressed when the compounded liquid is applied onto the base material 10. can form a coating film.
  • the viscosity of the compounded liquid containing the water-soluble resin at 25° C. is equal to or less than the above upper limit value, when the compounded liquid is applied onto the base material 10, the coating film of the base layer 20 is prevented from becoming patchy. can be prevented. That is, when the viscosity at 25° C. of the compounded liquid containing the water-soluble resin is within the above range, the coatability is improved, and the coating film of the base layer 20 is uniformly and evenly formed on the base material 10. can be done.
  • the water-based polyethylene glycol resin according to the present invention is a polymer of ethylene glycol that becomes a water-based polyethylene glycol resin having the following number average molecular weight.
  • the number average molecular weight of the water-based polyethylene glycol resin as the water-soluble resin is preferably 500,000 or more, more preferably 600,000 or more, from the viewpoint of forming the base layer 20 well and obtaining the optimum foam density. more preferred. Also, if the number average molecular weight is too high, the ease of formation of the base layer 20 and the foam density may decrease. More preferably: The number average molecular weight is a polystyrene-equivalent number average molecular weight, and can be usually determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • aqueous polyurethane resin As a method for producing a mixed liquid containing an aqueous polyurethane resin as the water-soluble resin in the present invention, for example, (1) A reaction step of reacting a polyol, a compound ( ⁇ ) having an anionic hydrophilic group, a compound ( ⁇ ) serving as a hydrophilic alkylene oxide component, and an isocyanate, and adding a surfactant or the like after the reaction to obtain an ion A method of emulsifying and polymerizing by adding a mixed solution of exchanged water and diamine, etc., and emulsifying it, and adding a surfactant or the like in the emulsifying and polymerizing step.
  • the foam layer 30 is provided on the base layer 20 and is a layer formed by foaming a urethane prepolymer having an isocyanate group at its end. That is, the foam layer 30 is a layer made of a urethane prepolymer foam having an isocyanate group at its end.
  • the density of the foam layer 30 is preferably 0.03 to 0.30 g/cm 3 and preferably 0.05 to 0.3 g/cm 3 from the viewpoint of achieving both excellent texture (flexibility) and peel strength of the porous layer structure. It is more preferably 25 g/cm 3 and even more preferably 0.07 to 0.20 g/cm 3 .
  • the density of the foam layer 30 can be measured by the method described in Examples.
  • the thickness of the foam layer 30 is not particularly limited because it varies depending on the thickness of the polyurethane prepolymer to be coated and the type of leather to be produced.
  • the thickness may be about 0.05 to 1.0 mm, preferably about 0.1 to 1.0 mm.
  • the foam layer 30 is laminated on the base material 10 with the base layer 20 interposed therebetween, the adhesion between the base material 10, the base layer 20 and the foam layer 30 is improved. Demonstrates durability.
  • the porous layer structure has excellent peel strength and durability because the foam layer 30 is foamed at a low density without excessive foaming and variations in foam shape and size. It has a good texture (flexibility) while maintaining the foam
  • the peel force for peeling the foam layer 30 from the substrate 10 is preferably 1.0 kgf/inch or more, more preferably 1.2 kgf/inch or more, and 1.5 kgf/inch or more. is more preferred. Since the peeling force for peeling the foam layer 30 from the base material 10 is at least the above lower limit, for example, the adhesiveness (peel strength) with the base material 10 exceeding a level that has no practical problem as a foamed synthetic imitation leather can be obtained.
  • the upper limit of the peel force for peeling the foam layer 30 from the substrate 10 is not particularly limited.
  • the peel strength for peeling the foam layer 30 from the base material 10 can be measured by the method described in "Peel Strength Test" in Examples.
  • the urethane prepolymer according to the present embodiment does not substantially contain volatile components. That is, since the porous structure is produced without using an organic solvent, there is no problem of toxicity or environmental problems.
  • substantially free of volatile components means that volatile components such as organic solvents are not intentionally contained, more specifically, the absence of organic solvents. .
  • a urethane prepolymer is composed of a polyol component, an isocyanate component, and other components as appropriate. That is, the urethane prepolymer having an isocyanate group at the end of the present embodiment is a urethane prepolymer obtained from a polyol component and a polyisocyanate component.
  • the urethane prepolymer is a moisture-curable urethane prepolymer, and the porous layer structure of the present invention can be obtained by utilizing the fact that the base layer 20 foams when moisture-cured by moisture.
  • the polyol that becomes the polyol component of the urethane prepolymer is not particularly limited, but examples thereof include polycarbonate polyol, polyether polyol, polyester polyol, polylactone polyol, polyolefin polyol, and polymethacrylate diol.
  • a polycarbonate polyol component may be included in order to improve hydrolysis resistance and obtain better durability.
  • the polycarbonate polyol component is contained, it is preferably contained in an amount of 50% by mass or more, more preferably 70 to 90% by mass, based on the total polyol component.
  • the number average molecular weight of the polyol is not particularly limited as long as it is 500 or more, it is preferably about 500 to 4,000, more preferably about 1,000 to 3,000. These polyols can be used alone or in combination of two or more, but from the viewpoint of long-term durability, it is preferable to include a polycarbonate diol.
  • the number average molecular weight is a polystyrene-equivalent number average molecular weight, and can be usually determined by gel permeation chromatography (GPC).
  • isocyanate used as a synthetic component of the urethane prepolymer according to the present embodiment is not particularly limited, bifunctional polyisocyanates such as aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates are preferred.
  • polyisocyanates that serve as isocyanate components include tolylene diisocyanate, 4-methoxy-1,3-phenylene diisocyanate, 4-isopropyl-1,3-phenylene diisocyanate, 4-chloro-1,3-phenylene diisocyanate, 4 -butoxy-1,3-phenylene diisocyanate, 2,4-diisocyanate-diphenyl ether, mesitylene diisocyanate, 4,4'-diphenylmethane diisocyanate, dulylene diisocyanate, 1,5-naphthalene diisocyanate, benzidine diisocyanate, o-nitrobenzidine diisocyanate, 4 ,4-diisocyanate dibenzyl, 1,4-tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,4-cycl
  • the ratio of the polyol to the polyisocyanate when making the urethane prepolymer according to the present embodiment is preferably a ratio of the isocyanate group equivalent of the polyisocyanate component to the hydroxyl group equivalent of all the polyol components of 1.33 to 5.0. More preferably 1.5 to 3.0.
  • the NCO/OH is within the above range, both flexibility and peel strength to the substrate 10 are improved.
  • the method for producing the urethane prepolymer according to this embodiment is not particularly limited.
  • the polyisocyanate can be mixed with the above-described polyol so that the NCO/OH ratio is 1.33 to 5.0, and reacted at 80 to 120° C. for about 60 to 120 minutes.
  • polyfunctional polyisocyanate in the urethane prepolymer, thermoplastic polymer, tackifier resin, etc. may be blended as needed.
  • the porous layer structure according to the present embodiment may have a skin layer 40 on the surface of the foam layer 30 opposite to the surface on which the base layer 20 is laminated.
  • the skin layer 40 is not particularly limited, and examples thereof include those formed of a skin layer-forming paint such as solvent-based polyurethane, water-based polyurethane, and TPU.
  • the porous layer structure according to the present embodiment can be suitably used as synthetic imitation leather and artificial leather, and can be used for shoes, clothing, bags, furniture, vehicle interior materials (for example, instrument panels, doors, consoles, seats), heat insulating materials, sound absorbing materials, shock absorbing materials, etc.
  • the manufacturing method of the porous layer structure of the present embodiment includes a base layer lamination step of applying a liquid mixture containing a water-soluble resin onto the base material 10 to form the base layer 20 on the base material 10; and a foam layer laminating step in which a urethane prepolymer having an isocyanate group at its end is disposed thereon, and the urethane prepolymer is foamed by moisture in the base layer 20 to form the foam layer 30 .
  • a base layer lamination step of applying a liquid mixture containing a water-soluble resin onto the base material 10 to form the base layer 20 on the base material 10
  • a foam layer laminating step in which a urethane prepolymer having an isocyanate group at its end is disposed thereon, and the urethane prepolymer is foamed by moisture in the base layer 20 to form the foam layer 30 .
  • Base layer lamination step First, one surface of the prepared base material 10 is coated with a liquid mixture containing a water-soluble resin contained in a coating machine to form a wet base layer 20 on the base material 10 .
  • the weight per unit area of the base layer 20 by the blended liquid containing the water - soluble resin depends on the coating weight and viscosity of the blended liquid. Apply liquid.
  • a urethane prepolymer having terminal isocyanate groups is disposed on the wet underlayer 20 .
  • a method of disposing the urethane prepolymer for example, there is a method of coating the base layer 20 with the urethane prepolymer housed in a coating machine such as a melter. In order to foam the foam layer 30 with water, it is important to arrange the urethane prepolymer so as to be in contact with the base layer 20 before the base layer 20 dries. As a result, the urethane prepolymer disposed on the base layer 20 is foamed by the moisture in the base layer 20 to form the foam layer 30 .
  • the thickness of the urethane prepolymer coating film depends on the viscosity and composition of the urethane prepolymer, but is preferably 50 to 500 ⁇ m, more preferably 60 to 400 ⁇ m. It is preferably 70 to 300 ⁇ m, more preferably 70 to 300 ⁇ m.
  • the method for manufacturing the porous layer structure of the present embodiment may further include a skin layer lamination step of laminating the skin layer 40 on the surface of the foam layer 30 opposite to the surface on which the base layer 20 is laminated.
  • a skin layer lamination step of laminating the skin layer 40 on the surface of the foam layer 30 opposite to the surface on which the base layer 20 is laminated.
  • the skin layer 40 is placed in contact with the foam layer 30 before the foaming of the foam layer 30 is completed, that is, before the base layer 20 dries. set up.
  • the skin layer laminating step it is preferable to apply a urethane prepolymer having an isocyanate group at the end to one surface of the skin layer 40 to provide a urethane prepolymer coating. Then, the urethane prepolymer coating film provided on the skin layer 40 and the base layer 20 provided on the base material 10 are attached together by lamination or the like, so that a urethane prepolymer having an isocyanate group at the terminal is formed on the base layer 20. can be arranged. At this time, in order to foam the foam layer 30 well, the foam layer 30 should be placed in contact with the base layer 20 before the base layer 20 dries, that is, while the base layer 20 is in a wet state. is important.
  • the manufacturing method of the porous layer structure of the present embodiment may further include an aging step of performing an aging treatment for promoting foaming of the foam layer 30 after the foam layer laminating step.
  • the porous layer structure after the foam layer lamination process is aged at 15 to 80° C. and 40 to 95% RH for 48 to 120 hours. This aging treatment promotes foaming to produce the porous layer structure of the present embodiment.
  • a steam contacting step of contacting steam with the porous layer structure after the foaming layer laminating step can be included between the foaming layer laminating step and the aging step.
  • the atmosphere is 30 to 60 ° C. (preferably 35 to 55 ° C.) and 80% RH or more (preferably 85% RH or more), and the time in the atmosphere depends on the temperature and humidity conditions. is preferably 20 seconds or more (preferably 25 to 60 seconds). Since the moisture content of the porous layer structure can be improved by the steam contact step, a favorable expansion ratio can be easily obtained in the subsequent aging treatment step. That is, the degree of foaming can be well controlled.
  • the base layer 20 is uniformly and evenly provided on the base material 10, and the urethane prepolymer disposed on the base layer 20 is in uniform contact with the base layer 20. Therefore, the amount of water supplied from the base layer 20 becomes constant, and the foam layer 20 having a uniform and stable foam shape can be formed.
  • the foamed layer 20 With a uniform and stable foamed shape, it is possible to obtain a porous layer structure exhibiting excellent texture (flexibility) while maintaining high adhesion.
  • porous layer structure can be used as it is as a synthetic imitation leather, it may be appropriately treated, for example, by coating it with a surface treatment agent or bonding it to another base material.
  • underlayer liquid mixture (B-1).
  • Lezamin D-52 a carbodiimide-based cross-linking agent (solid content: 40%), Dainichisei Kakogyo Co., Ltd.) or Lezamin D-65 (isocyanate-based cross-linking agent (solid content: 70%), Dainichiseika Kogyo Co., Ltd.) was blended in the amounts shown in Table 2 to prepare a base layer formulation solution (B -2).
  • the parts by mass of the carbodiimide-based cross-linking agent in Example 5 are parts by mass with respect to 100 parts by mass of the aqueous dispersion in which the solid content of the aqueous polyurethane resin is 50%.
  • the parts by mass of the isocyanate-based cross-linking agent in Example 6 are parts by mass with respect to 100 parts by mass of the aqueous dispersion in which the solid content of the aqueous polyurethane resin is 43%.
  • Tables 2 and 3 show the solid content concentration (% by mass) of each of the base layer formulation solutions (B-1 and B-2).
  • L-11 number average molecular weight: about 110,000
  • E-45 number average molecular weight: 600,000 to 1,000,000
  • E-75 number average molecular weight: about 2,000,000
  • E-300 number average molecular weight: about 7 million
  • PEG polyethylene glycol
  • Example 18 Regarding the formulations using a cross-linking agent (Examples 18 and 19), Lezamin D-65 (an isocyanate-based cross-linking agent (solid content: 70%), Dainichisei (manufactured by Kakogyo Co., Ltd.) were blended in the respective amounts shown in Table 4 to prepare an underlayer blend solution (B-4).
  • the parts by mass of the isocyanate-based cross-linking agent in Examples 18 and 19 are parts by mass with respect to 100 parts by mass of the aqueous dispersion containing 6% solids of aqueous polyethylene glycol. Table 4 shows the solid content concentration (% by mass) of each of the base layer formulation solutions (B-3, B-4).
  • PVA105 aqueous polyvinyl alcohol (PVA), manufactured by Kuraray Co., Ltd.) was selected as the main ingredient of the liquid composition for applying the underlayer, and water was added as a viscosity modifier little by little until the viscosity shown in Table 5 was reached.
  • the parts by mass of the isocyanate-based cross-linking agent in Examples 23 and 24 are the parts by mass for 100 parts by mass of the aqueous dispersion in which the solid content of the water-based polyvinyl alcohol resin is 20%.
  • Table 5 shows the solid content concentration (% by mass) of each of the underlayer liquid mixtures (B-5 and B-6).
  • Example 6 Preparation of base layer liquid mixture (part 4: water-based polyurethane resin)
  • D-87 aqueous urethane resin, manufactured by Dainichiseika Kogyo Co., Ltd.
  • water is listed in Table 6 as a viscosity modifier. were blended little by little until the viscosity reached , to obtain an underlayer blend solution (B-7).
  • Examples 31 and 32 Lezamin D-65 (an isocyanate-based cross-linking agent (solid content: 70%), Dainichisei (manufactured by Kakogyo Co., Ltd.) were blended in the respective amounts shown in Table 4 to prepare an underlayer blend solution (B-8).
  • the parts by mass of the isocyanate-based cross-linking agent in Examples 31 and 32 are parts by mass based on 100 parts by mass of the aqueous dispersion in which the solid content of the aqueous polyurethane resin is 20%.
  • Table 6 shows the solid content concentration (% by mass) of each underlayer liquid mixture (B-7, B-8).
  • the urethane prepolymer foamed to form a foam layer 30 As an aging process, after aging for 5 days in an environment of a temperature of 35° C. and a relative humidity of 65%, the synthetic imitation leather was obtained by peeling from the release paper.
  • the polymer foamed to form foam layer 30 As an aging process, after aging for 5 days in an environment of a temperature of 35° C. and a relative humidity of 65%, the synthetic imitation leather was obtained by peeling from the release paper.
  • the film breaking strength of the base layer 20 used in each of the obtained synthetic imitation leathers was measured by the following method.
  • Each base layer formulation solution (B-1) to (B-9) was placed on a release paper (“DNTP-FL” manufactured by Dai Nippon Printing Co., Ltd.), and the weight (g /m 2 ⁇ dry), and the film obtained by drying was punched into a width of 1.5 cm and a length of 5.0 cm using a dumbbell to prepare a sample.
  • DNTP-FL manufactured by Dai Nippon Printing Co., Ltd.
  • a cellophane tape (“CT-12S” manufactured by Nichiban Co., Ltd.) was attached to each 1.5 cm part from both ends of the sample, fixed to a gripper of Autograph AGS-J manufactured by Shimadzu Corporation, and at a speed of 200 mm / min.
  • the breaking strength of the film was obtained by dividing the tensile strength at which the sample broke by the cross-sectional area of the sample.
  • ⁇ Production of standard synthetic imitation leather 100 parts by mass of Rezamin UD-8351NT (polyurethane resin adhesive, manufactured by Dainichiseika Kogyo Co., Ltd.), C-50 cross-linking agent ( An adhesive prepared by mixing 10 parts by mass of an isocyanate cross-linking agent (manufactured by Dainichiseika Kogyo Co., Ltd.) was coated so as to form an adhesive layer having a thickness of 100 ⁇ m. After that, pre-drying is performed at 80° C. for 2 minutes, and the obtained adhesive layer is arranged so as to be in contact with a 1.0 mm-thick polyester base fabric (base material 10), which is circular knitted polyester, and laminated rolls. Pressure bonding was performed at a temperature of 40°C. Thereafter, aging was performed under the conditions of 50° C./48 hours to obtain a standard synthetic imitation leather (common dry leather using MEK) for texture (flexibility) evaluation.
  • base material 10 base material 10
  • the coating film thickness of the underlayer composition liquid is coated with a certain distance from the die slot for those other than the bar coater. Since this is due to die coating, the distance between the die slot and the base material was used as a reference value for the coating film thickness in the wet state immediately after coating.
  • the bar coater indicated as the coating film thickness of the base layer formulation liquid indicates that the coating was performed using the bar coater of the indicated count.
  • the standard film thickness in the wet state quoted from the manufacturer's data (Daiichi Rika Co., Ltd.) is also written in parentheses as a reference value for the coating film thickness in the wet state.
  • the (dry) thickness of the base layer in Tables 2 and 3 was calculated by measuring 10-point averages from cross-sectional images obtained by SEM for Examples 3, 8, 10 and Comparative Example 3.
  • release paper (“DNTP-FL” manufactured by Dai Nippon Printing Co., Ltd.)
  • a blended liquid containing the water-based polyurethane resin to be measured is applied so as to be equivalent to the basis weight of the underlying layer 20 when dry, and the drying process is 60° C. for 4 minutes and 100° C. for 3 minutes. , and 3 minutes at 120° C., the thickness of the base layer formed on the release paper was used as the thickness of the base layer 20 to be measured.
  • this example reduces the foaming density to less than 0.3 g/cm 3 and has an excellent texture comparable to that of conventional leather, for example, synthetic imitation leather made by a wet method using DMF ( It was found that good adhesion was exhibited even when flexibility) was expressed. Moreover, in this example, a higher peel strength was obtained than in the case where the base material was impregnated with water as in Comparative Example 1. This is because in Comparative Example 1, the distribution of the amount of water per unit area tends to vary due to dehydration due to the use of mangles, and the moisture-curable adhesive that can be a foam layer locally foams excessively, and excessively It is presumed that it was impregnated.

Abstract

Provided are: a porous layer structure in which satisfactory adhesion between a base material and a foamed layer produced by foaming a urethane prepolymer can be exhibited even when the range of density at which the formation of a foamed layer can be achieved is expanded to a lower range (i.e., a range in which a foamed layer can become softer), and can exhibit an excellent texture (softness); and a method for producing a porous layer structure. The porous layer structure comprises a base material 10, an under layer 20 provided on the base material 10 and formed from a blend solution containing a water-soluble resin, and a foamed layer 30 provided on the under layer 20 and produced by foaming a urethane prepolymer having an isocyanate group at an terminal thereof, in which the basis weight of the under layer 20 is 3 to 60 g/m2·dry, and the film rupture strength of the under layer 20 after being dried is 5 MPa or more.

Description

多孔層構成体及び多孔層構成体の製造方法Porous layer structure and method for producing porous layer structure
 本発明は、多孔層構成体及び多孔層構成体の製造方法に関する。 The present invention relates to a porous layer structure and a method for manufacturing a porous layer structure.
 ポリウレタン系樹脂製の合成擬革の製造方法は、湿式法及び乾式法に大別される。中でも、湿式法を用いたポリウレタン系樹脂製の合成擬革は、乾式法のものと比べて触感が柔らかく高級感のあるものに仕上がることを特徴とする。
 湿式法で用いるポリウレタン系樹脂は、一般的に有機溶剤としてN,N’-ジメチルホルムアミド(DMF)やN-メチル-2-ピロリドン(NMP)を使用することが多く、近年においては人体に対する有害性や環境問題からDMF等の使用が規制又は禁止されつつあり、代替品としてDMF等の有機溶剤を使用しない環境対応型合成擬革が要望されている。
Methods for producing synthetic imitation leather made of polyurethane resin are broadly classified into wet methods and dry methods. Among them, the synthetic imitation leather made of polyurethane resin using the wet method is characterized by being softer to the touch and finished with a high-class feeling compared to that of the dry method.
Polyurethane resins used in the wet process generally use N,N'-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) as organic solvents, and in recent years, they have become harmful to the human body. The use of DMF and the like is being regulated or prohibited due to environmental problems, and environmentally friendly synthetic leather that does not use organic solvents such as DMF is desired as a substitute.
 有機溶剤を使用しない環境対応型合成擬革としては、末端にイソシアネート基を有するウレタンプレポリマーである反応型ホットメルト系接着剤(RHM)を使用して、基材と表皮層とを接着したものがある。
 ウレタンプレポリマー末端にイソシアネート基を有するウレタンプレポリマーは、空気中の水分(湿気)と反応し、架橋反応が進むことで湿気硬化型接着剤としての機能を発現する。したがって、末端にイソシアネート基を有するウレタンプレポリマーからなる反応型ホットメルト系接着剤(RHM)は、有機溶剤を使用しない、固形分100%の接着剤であり、環境対応型接着剤として現在需要が増加している。
As an environmentally friendly synthetic leather that does not use organic solvents, a base material and a skin layer are bonded using a reactive hot-melt adhesive (RHM), which is a urethane prepolymer having an isocyanate group at the end. There is
A urethane prepolymer having an isocyanate group at the terminal of the urethane prepolymer reacts with moisture (humidity) in the air and develops a function as a moisture-curable adhesive as a cross-linking reaction proceeds. Therefore, reactive hot-melt adhesives (RHM) made of urethane prepolymers with isocyanate groups at their ends are 100% solids adhesives that do not use organic solvents, and are currently in demand as environmentally friendly adhesives. It has increased.
 また、合成擬革において、基材と接着層との接着性を高めるために、基材に水性ポリウレタン樹脂(PUD)を含む配合液を塗工又は含浸させ、配合液を乾燥させた後に、基材と接着層との間にPUDを含む層を設けることが提案されている(例えば、特許文献1,2)。
 特許文献1,2では、PUDを含む層を設けることで、基材と接着層間の接着強度を高めることはできるが、該PUD層の水分が発泡に寄与することは一切ないばかりか、一般的に柔らかいと評価されているDMF使用の湿式法で作製された合成擬革(発泡層密度:0.05g/cm~0.4g/cm程度)と同程度の風合い(柔軟性)を兼ね備えることはできなかった。
 加えて、一般に、発泡層の発泡密度を下げることで、柔らかさを向上させようとすると、基材との接着強度が低下しやすく、結果、レザーとしての実用性に欠けるという問題もあった。
In addition, in synthetic imitation leather, in order to increase the adhesion between the base material and the adhesive layer, the base material is coated or impregnated with a formulation containing an aqueous polyurethane resin (PUD), and after drying the formulation, the base is It has been proposed to provide a layer containing PUD between the material and the adhesive layer (for example, Patent Documents 1 and 2).
In Patent Documents 1 and 2, by providing a layer containing PUD, the adhesive strength between the base material and the adhesive layer can be increased, but the moisture in the PUD layer does not contribute to foaming at all, and generally It has the same texture (flexibility) as synthetic imitation leather (foam layer density: about 0.05 g/cm 3 to 0.4 g/cm 3 ) made by the wet method using DMF, which is evaluated to be extremely soft. I couldn't.
In addition, in general, when trying to improve the softness by lowering the foam density of the foam layer, the adhesive strength with the base material tends to decrease, resulting in a problem of lack of practicality as a leather.
特許第4123418号公報Japanese Patent No. 4123418 特開2005-206970号公報JP-A-2005-206970
 本発明は、かかる問題点を解決するためになされたもので、発泡層として実現できる密度範囲をより低い領域(発泡層としてより柔らかくなる領域)まで拡げても、基材とウレタンプレポリマーを発泡してなる発泡層との良好な密着性を発揮し、かつ、優れた風合い(柔軟性)を発揮することが可能な多孔層構成体及び多孔層構成体の製造方法を提供することを目的とする。 The present invention was made in order to solve such problems. The object of the present invention is to provide a porous layer structure capable of exhibiting good adhesion to a foamed layer formed by the method and exhibiting excellent texture (flexibility), and a method for producing the porous layer structure. do.
 上記課題を解決すべく鋭意検討した結果、本発明者らは、基材上に水溶性樹脂を含む配合液による下地層を形成することで、この下地層が基材とのアンカー作用を良好に発現しつつ、しかも下地層上に設けられるウレタンプレポリマーを配合液の水分によって万遍なく十分に発泡させられ得るので、発泡層の発泡形状を均一かつ安定にすることができ、当該課題を解決できることを見出し、本発明に想到した。すなわち、本発明は下記のとおりである。 As a result of intensive studies to solve the above problems, the present inventors have found that by forming an undercoat layer with a compounded liquid containing a water-soluble resin on a base material, the undercoat layer has a good anchoring action with the base material. Since the urethane prepolymer provided on the base layer can be evenly and sufficiently foamed by the water content of the compounded liquid, the foamed shape of the foamed layer can be made uniform and stable, and the problem can be solved. After discovering that it can be done, the present invention was conceived. That is, the present invention is as follows.
[1]基材と、前記基材上に設けられた水溶性樹脂を含む配合液により形成される下地層と、前記下地層上に設けられた末端にイソシアネート基を有するウレタンプレポリマーを発泡してなる発泡層とを備え、前記下地層の目付量が3~60g/m・dryであり、前記下地層の乾燥後の皮膜破断強度が5MPa以上である、多孔層構成体。
[2]前記水溶性樹脂を含む配合液の粘度が25℃において500~50,000mPa・sである、[1]に記載の多孔層構成体。
[3]前記水溶性樹脂が水性ポリウレタン樹脂、水性ポリエチレングリコール樹脂及び水性ポリビニルアルコール樹脂からなる群から選ばれる少なくとも1種である、[1]又は[2]に記載の多孔層構成体。
[4]前記水溶性樹脂が水性ポリウレタン樹脂である、[3]に記載の多孔層構成体。
[5]前記水溶性樹脂が水性ポリエチレングリコール樹脂であり、前記水性ポリエチレングリコール樹脂の数平均分子量が50万以上である、[3]に記載の多孔層構成体。
[6]前記下地層と前記基材との厚み比が、1:10~1:1,000である、[1]~[5]のいずれかに記載の多孔層構成体。
[7]前記発泡層の前記下地層が積層された面の反対面に表皮層を有する、[1]~[6]のいずれかに記載の多孔層構成体。
[8]基材上に水溶性樹脂を含む配合液を塗工し、前記基材上に湿潤状態の下地層を形成する下地層積層工程と、前記湿潤状態の下地層上に末端にイソシアネート基を有するウレタンプレポリマーを配設し、前記ウレタンプレポリマーが前記下地層の水分によって発泡して発泡層を形成する発泡層積層工程とを含み、前記下地層の目付量が3~60g/m・dryであり、前記下地層の乾燥後の皮膜破断強度が5MPa以上である、多孔層構成体の製造方法。
[9]前記発泡層の前記下地層が積層された面の反対面に表皮層を積層する表皮層積層工程をさらに含む、[8]に記載の多孔層構成体の製造方法。
[10]前記発泡層積層工程の後に、前記発泡層の発泡を促すエージング処理を施すエージング工程をさらに含む、[8]又は[9]に記載の多孔層構成体の製造方法。
[1] A substrate, an underlayer formed by a liquid mixture containing a water-soluble resin provided on the substrate, and a urethane prepolymer having an isocyanate group at the end provided on the substrate and foamed. A porous layer structure comprising a foamed layer comprising: a base layer having a basis weight of 3 to 60 g/m 2 ·dry; and a film breaking strength of 5 MPa or more after drying of the base layer.
[2] The porous layer structure according to [1], wherein the viscosity of the blended liquid containing the water-soluble resin is 500 to 50,000 mPa·s at 25°C.
[3] The porous layer structure according to [1] or [2], wherein the water-soluble resin is at least one selected from the group consisting of water-based polyurethane resin, water-based polyethylene glycol resin and water-based polyvinyl alcohol resin.
[4] The porous layer structure according to [3], wherein the water-soluble resin is an aqueous polyurethane resin.
[5] The porous layer structure according to [3], wherein the water-soluble resin is a water-based polyethylene glycol resin, and the number-average molecular weight of the water-based polyethylene glycol resin is 500,000 or more.
[6] The porous layer structure according to any one of [1] to [5], wherein the base layer and the substrate have a thickness ratio of 1:10 to 1:1,000.
[7] The porous layer structure according to any one of [1] to [6], which has a skin layer on the surface of the foam layer opposite to the surface on which the base layer is laminated.
[8] A base layer lamination step of applying a liquid mixture containing a water-soluble resin onto a base material to form a wet base layer on the base material, and an isocyanate group at the end of the wet base layer. and a foam layer laminating step of forming a foam layer by foaming the urethane prepolymer with the moisture of the base layer, wherein the basis weight of the base layer is 3 to 60 g / m 2 - A method for producing a porous layer structure, wherein the underlayer is dry and the film breaking strength of the underlayer after drying is 5 MPa or more.
[9] The method for producing the porous layer structure according to [8], further comprising a skin layer laminating step of laminating a skin layer on the surface of the foam layer opposite to the surface on which the base layer is laminated.
[10] The method for producing a porous layer structure according to [8] or [9], further comprising an aging step of performing an aging treatment to promote foaming of the foam layer after the foam layer laminating step.
 本発明によれば、発泡層として実現できる密度範囲をより低い領域(発泡層としてより柔らかくなる領域)まで拡げても、基材とウレタンプレポリマーを発泡してなる発泡層との良好な密着性を発揮し、かつ、優れた風合い(柔軟性)を発揮することが可能な多孔層構成体及び多孔層構成体の製造方法を提供することができる。 According to the present invention, even if the density range that can be realized as a foam layer is expanded to a lower region (a region where the foam layer becomes softer), good adhesion between the substrate and the foam layer formed by foaming the urethane prepolymer is achieved. It is possible to provide a porous layer structure and a method for producing a porous layer structure that can exhibit excellent texture (softness).
本実施形態に係る多孔層構成体を示す模式的な断面図(その1)である。1 is a schematic cross-sectional view (part 1) showing a porous layer structure according to the present embodiment; FIG. 本実施形態に係る多孔層構成体の走査電子顕微鏡(SEM)による断面写真である。4 is a cross-sectional photograph taken by a scanning electron microscope (SEM) of the porous layer structure according to the present embodiment. 本実施形態に係る多孔層構成体を示す模式的な断面図(その2)である。FIG. 2 is a schematic cross-sectional view (part 2) showing the porous layer structure according to the present embodiment;
 以下、本発明の実施形態(本実施形態)を詳細に説明するが、本発明は当該実施形態に限定されるものではない。 Although the embodiment (this embodiment) of the present invention will be described in detail below, the present invention is not limited to this embodiment.
[多孔層構成体]
 本実施形態に係る多孔層構成体は、図1に示すように、基材10と、基材10上に設けられた水溶性樹脂を含む配合液により形成される下地層20と、下地層20上に設けられた末端にイソシアネート基を有するウレタンプレポリマーを発泡してなる発泡層30とを備える。
[Porous layer structure]
As shown in FIG. 1, the porous layer structure according to the present embodiment includes a substrate 10, a base layer 20 formed of a liquid mixture containing a water-soluble resin provided on the substrate 10, and a base layer 20 A foam layer 30 formed by foaming a urethane prepolymer having an isocyanate group at the end provided thereon is provided.
(基材)
 基材10としては、従来公知の合成擬革の基材が使用でき、例えば、綾織り、平織り等からなる織物、当該織物の綿生地を機械的に起毛して得られる起毛布、レーヨン布、ナイロン布、ポリエステル布、ケブラー布、不織布(ポリエステル、ナイロン、各種ラテックス)、各種フィルム、シート等が挙げられる。
(Base material)
As the base material 10, a conventionally known synthetic imitation leather base material can be used. Examples include nylon cloth, polyester cloth, Kevlar cloth, non-woven fabrics (polyester, nylon, various latexes), various films, sheets, and the like.
 基材10は、水溶性樹脂を含む配合液により下地層20を形成し得るものであればよく、厚みについては特に限定されないが、多孔層構成体の機械的強度を保持する観点から、0.01~2.0mmであることが好ましく、0.02~1.5mmであることがより好ましい。 The thickness of the base material 10 is not particularly limited as long as the base layer 20 can be formed from a liquid mixture containing a water-soluble resin. It is preferably 01 to 2.0 mm, more preferably 0.02 to 1.5 mm.
(下地層)
 下地層20は、水溶性樹脂を含む配合液を基材10上に塗工し、基材10上に特定の塗工量(目付量)にて略均一の厚みで設けられる。下地層20は、図1及び図2に示すように、一部が基材10に含浸した状態であってもよい。
 下地層20は、基材10上全体に亘り、後述の目付量にて略均一かつ万遍なく設けられることで、下地層20上に設けられる発泡層30との接触が一様となり、発泡層30へ供給される水分量が平面(界面)方向に一定となる。
 下地層20から供給される単位面積当たりの水分量の分布が一定であることで、湿気硬化型ウレタンプレポリマーにより形成される発泡層20の発泡形状が均一かつ安定する(すなわち、発泡が過剰となる部位が発生したり、発泡形状・サイズのバラツキが発生したりすることを確実に防止できる)ことになり、優れた風合い(柔軟性)を発揮することができるとともに、基材と発泡層間の接着性が向上する。
(Underlayer)
The base layer 20 is formed by coating the base material 10 with a liquid mixture containing a water-soluble resin, and providing the base layer 20 with a specific coating amount (basis weight) and a substantially uniform thickness. The base layer 20 may be partially impregnated into the base material 10 as shown in FIGS. 1 and 2 .
The base layer 20 is provided substantially uniformly and evenly over the entire surface of the base material 10 with a basis weight described later, so that the contact with the foam layer 30 provided on the base layer 20 is uniform, and the foam layer The amount of water supplied to 30 becomes constant in the planar (interface) direction.
Since the distribution of the amount of moisture per unit area supplied from the base layer 20 is constant, the foamed shape of the foamed layer 20 formed of the moisture-curable urethane prepolymer is uniform and stable (that is, excessive foaming can be prevented). It is possible to reliably prevent the occurrence of different parts and the occurrence of variations in foam shape and size), and it is possible to demonstrate excellent texture (flexibility), as well as between the base material and the foam layer Improves adhesion.
 下地層20の目付量は、3~60g/m・dryである。
 下地層20の目付量が3g/m・dry未満であると、下地層20上に設けられる発泡層30の発泡が不十分となりやすいうえ、基材10と発泡層30との密着性が不良となる。また、下地層20の目付量が60g/m・dry超であると、発泡層30の発泡が過剰となり、発泡形状やサイズを均一かつ安定にすることが困難となること、下地層20の皮膜物性が合成擬革の触感に悪影響を与えやすくなること等から、優れた風合い(柔軟性)を発揮することができない。
 下地層20の目付量は、下地層20上に設けられる発泡層30の発泡を均一かつ十分に生じさせ、発泡形状を均一かつ安定にする観点から、5~50g/m・dryであることが好ましく、6~45g/m・dryであることがより好ましく、7~40g/m・dryであることがさらに好ましい。
The basis weight of the underlayer 20 is 3 to 60 g/m 2 ·dry.
If the basis weight of the base layer 20 is less than 3 g/m 2 ·dry, the foaming of the foam layer 30 provided on the base layer 20 tends to be insufficient, and the adhesion between the base material 10 and the foam layer 30 is poor. becomes. In addition, if the base layer 20 has a basis weight of more than 60 g/m 2 ·dry, the foaming of the foam layer 30 becomes excessive, making it difficult to make the foam shape and size uniform and stable. Since the physical properties of the film tend to adversely affect the tactile feel of the synthetic imitation leather, excellent texture (flexibility) cannot be exhibited.
The basis weight of the base layer 20 should be 5 to 50 g/m 2 ·dry from the viewpoint of uniform and sufficient foaming of the foam layer 30 provided on the base layer 20 and uniform and stable foam shape. is preferable, 6 to 45 g/m 2 ·dry is more preferable, and 7 to 40 g/m 2 ·dry is even more preferable.
 下地層20の皮膜破断強度は乾燥後のものであって、5MPa以上である。
 下地層20の乾燥後の皮膜破断強度が5MPa未満であると、基材10及び発泡層30との剥離強度が不十分となり、基材10と発泡層30との密着性が不良となる。
 下地層20の乾燥後の皮膜破断強度は、基材10及び発泡層30との剥離強度を良好にする観点から、8MPa以上であることが好ましく、10MPa以上であることがより好ましく、12MPa以上であることがさらに好ましい。下地層20の乾燥後の皮膜破断強度の上限は特に限定はない。
 なお、下地層20の乾燥後の皮膜破断強度は、オートグラフを用いた手法により測定することができる。具体的な下地層20の皮膜破断強度の測定としては、実施例の「皮膜破断強度試験」に記載の方法で測定することができる。
The film breaking strength of the underlying layer 20 after drying is 5 MPa or more.
If the film breaking strength of the underlayer 20 after drying is less than 5 MPa, the peel strength between the substrate 10 and the foam layer 30 will be insufficient, and the adhesion between the substrate 10 and the foam layer 30 will be poor.
The film breaking strength of the underlayer 20 after drying is preferably 8 MPa or more, more preferably 10 MPa or more, more preferably 12 MPa or more, from the viewpoint of improving the peel strength between the substrate 10 and the foam layer 30. It is even more preferable to have There is no particular upper limit for the film breaking strength of the underlying layer 20 after drying.
The film breaking strength of the underlayer 20 after drying can be measured by a method using an autograph. As a specific measurement of the film breaking strength of the underlying layer 20, it can be measured by the method described in the "film breaking strength test" in the examples.
 下地層20と基材10との厚み比は、多孔層構成体の優れた風合い(柔軟性)を発揮する観点から、1:10~1:1,000であることが好ましく、1:30~1:750であることがより好ましく、1:70~1:500であることがさらに好ましい。
 なお、下地層20と基材10との厚み比は、下地層20の厚みtと基材10の厚みTとの比率であるが、図1に示すように、基材10へ含浸している場合、下地層20の厚みtは基材10へ含浸している部位の厚みも含み、基材10の厚みTは下地層20が含浸している部位の厚みを除したものとする。
The thickness ratio between the base layer 20 and the substrate 10 is preferably 1:10 to 1:1,000, more preferably 1:30 to 1:30, from the viewpoint of exhibiting excellent texture (flexibility) of the porous layer structure. 1:750 is more preferred, and 1:70 to 1:500 is even more preferred.
The thickness ratio between the base layer 20 and the base material 10 is the ratio between the thickness t of the base layer 20 and the thickness T of the base material 10. As shown in FIG. 1, the base material 10 is impregnated with In this case, the thickness t of the base layer 20 includes the thickness of the portion impregnated into the base layer 10, and the thickness T of the base layer 10 is obtained by subtracting the thickness of the portion impregnated with the base layer 20.
 上記下地層20の厚みtは、SEMによる断面画像(図2参照)から10点平均で計測し算出することができる。
 一方、下地層20がSEMによる断面画像で確認できない場合には、離型紙(大日本印刷株式会社製の「DNTP-FL」)上に、下地層20の乾燥時の目付量と同等となるように、計測対象の水溶性樹脂を含む配合液を塗工し、乾燥工程として、60℃で4分、100℃で3分、120℃で3分の各工程を順に経た後に、離型紙に形成された下地層の厚みを、計測対象の下地層20の厚みtとみなす。
 離型紙に形成された下地層の厚みを、計測対象の下地層20の厚みtとする根拠として、水溶性樹脂として水性ポリウレタン樹脂(大日精化工業株式会社製の「レザミン D-6065NP」)を含む配合液の乾燥時の目付量、配合液粘度及び上記離型紙上に形成された下地層20の厚みの具体的な関係を表1に示す。表1に示すように、下地層20の目付量は、粘度の変化には大きく関係せず、離型紙上に形成された下地層の厚みと相関することが分かる。
The thickness t of the underlying layer 20 can be calculated by measuring 10-point average from a cross-sectional image obtained by SEM (see FIG. 2).
On the other hand, when the base layer 20 cannot be confirmed in the cross-sectional image by SEM, on release paper (“DNTP-FL” manufactured by Dai Nippon Printing Co., Ltd.) is coated with a compounded liquid containing a water-soluble resin to be measured, and the drying process is performed at 60 ° C for 4 minutes, 100 ° C for 3 minutes, and 120 ° C for 3 minutes. The measured thickness of the underlayer is regarded as the thickness t of the underlayer 20 to be measured.
As a basis for setting the thickness of the base layer formed on the release paper to the thickness t of the base layer 20 to be measured, a water-based polyurethane resin ("Rezamin D-6065NP" manufactured by Dainichi Seika Kogyo Co., Ltd.) was used as a water-soluble resin. Table 1 shows the specific relationship between the weight per unit area of the mixed liquid containing the above-mentioned formulations when dried, the viscosity of the mixed liquid, and the thickness of the base layer 20 formed on the release paper. As shown in Table 1, it can be seen that the basis weight of the base layer 20 is not greatly related to changes in viscosity, but correlates with the thickness of the base layer formed on the release paper.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<水溶性樹脂を含む配合液>
 本発明の下地層20を形成する水溶性樹脂を含む配合液は、水中に水溶性樹脂が分散してなる配合液である。水溶性樹脂としては、例えば、水性ポリウレタン樹脂、水性ポリエチレングリコール樹脂、水性ポリビニルアルコール樹脂及び水性アクリル樹脂等が挙げられ、水性ポリウレタン樹脂、水性ポリエチレングリコール樹脂及び水性ポリビニルアルコール樹脂からなる群から選ばれる少なくとも1種であることが好ましい。中でも、水溶性樹脂としては、水性ポリウレタン樹脂が好ましい。水性ポリウレタン樹脂は、ポリオール成分にポリイソシアネート化合物を反応させることにより製造される。下地層20を形成するものであれば特に限定はないが、水への分散性を向上させるために、ポリウレタン樹脂の分子内に親水性基を導入したもの等が挙げられる。この親水性基としては、アニオン、カチオン及びノニオンのいずれでもよく、例えば、(α)分子内に1個以上の活性水素基を有し、かつカルボキシル基、スルホン酸基及びその塩を有するアニオン性の化合物や、(β)分子内に1個以上の活性水素基を有し、かつエチレンオキシドの繰り返し単位からなる基、又はエチレンオキシドの繰り返し単位とその他のアルキレンオキシドの繰り返し単位からなる基を含有するノニオン性の化合物などが挙げられる。
 なお、配合液全体に対する水溶性樹脂の含有量(塗料固形分)は、特に限定されるものではないが、少なすぎると増粘剤を入れた場合に効果が発現しにくいので、一般には、5~60質量%とすればよく、10~50質量%であることが好ましく、15~40質量%であることがより好ましい。
<Combination liquid containing water-soluble resin>
The compounded liquid containing the water-soluble resin that forms the base layer 20 of the present invention is a compounded liquid in which the water-soluble resin is dispersed in water. Examples of water-soluble resins include water-based polyurethane resins, water-based polyethylene glycol resins, water-based polyvinyl alcohol resins, and water-based acrylic resins. One type is preferred. Among them, water-based polyurethane resin is preferable as the water-soluble resin. An aqueous polyurethane resin is produced by reacting a polyol component with a polyisocyanate compound. There is no particular limitation as long as it forms the base layer 20, but examples include those in which a hydrophilic group is introduced into the molecule of a polyurethane resin in order to improve dispersibility in water. The hydrophilic group may be an anion, a cation, or a nonion. For example, (α) an anionic group having one or more active hydrogen groups in the molecule and having a carboxyl group, a sulfonic acid group, and a salt thereof and (β) a group having one or more active hydrogen groups in the molecule and consisting of repeating units of ethylene oxide, or a nonion containing a group consisting of repeating units of ethylene oxide and other repeating units of alkylene oxide chemical compounds, and the like.
The content of the water-soluble resin (paint solid content) relative to the entire liquid mixture is not particularly limited. It may be up to 60% by mass, preferably 10 to 50% by mass, more preferably 15 to 40% by mass.
《水性ポリウレタン樹脂》
 本発明に係る水性ポリウレタン樹脂を構成するポリウレタン樹脂は主に、ポリオール成分、イソシアネート成分を含むものである。
《Aqueous Polyurethane Resin》
The polyurethane resin constituting the aqueous polyurethane resin according to the present invention mainly contains a polyol component and an isocyanate component.
〈ポリオール成分〉
 本発明におけるポリオール成分となるポリオールとしては、特に限定されないが、ポリカーボネートポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリラクトンポリオール、ポリオレフィンポリオール、ポリメタクリレートジオール等が挙げられる。
<Polyol component>
The polyol that is used as the polyol component in the present invention is not particularly limited, but examples thereof include polycarbonate polyol, polyether polyol, polyester polyol, polylactone polyol, polyolefin polyol, and polymethacrylate diol.
 ポリオールの数平均分子量は500以上であれば特に制限はないが、500~4,000程度が好ましく、さらに好ましくは1,000~3,000程度である。これらのポリオールは単独或いは2種類以上を組み合わせて使用することができるが、長期耐久性の観点からポリカーボネートジオールを含むことが好ましい。
 なお、数平均分子量は、ポリスチレン換算の数平均分子量であり、通常ゲルパーミエーションクロマトグラフィー(GPC)の測定により求めることができる。
Although the number average molecular weight of the polyol is not particularly limited as long as it is 500 or more, it is preferably about 500 to 4,000, more preferably about 1,000 to 3,000. These polyols can be used alone or in combination of two or more, but from the viewpoint of long-term durability, it is preferable to include a polycarbonate diol.
The number average molecular weight is a polystyrene-equivalent number average molecular weight, and can be usually determined by gel permeation chromatography (GPC).
〈イソシアネート成分〉
 本発明におけるイソシアネート成分となるイソシアネートとしては、特に限定されないが、脂肪族ジイソシアネート、脂環族ジイソシアネート、芳香族ジイソシアネート等の2官能のポリイソシアネートが好ましい。
 ポリイソシアネートの具体例としては、トリレンジイソシアネート、4-メトキシ-1,3-フェニレンジイソシアネート、4-イソプロピル-1,3-フェニレンジイソシアネート、4-クロル-1,3-フェニレンジイソシアネート、4-ブトキシ-1,3-フェニレンジイソシアネート、2,4-ジイソシアネート-ジフェニルエーテル、メシチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ジュリレンジイソシアネート、1,5-ナフタレンジイソシアネート、ベンジジンジイソシアネート、o-ニトロベンジジンジイソシアネート、4,4-ジイソシアネートジベンジル、1,4-テトラメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,10-デカメチレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、キシレンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、1,5-テトラヒドロナフタレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン4,4’-ジイソシアネート等である。
 なお、多孔層構造体が柔軟性、機械物性及び耐変色性が必要とされる用途に採用される場合は、脂肪族ジイソシアネートや脂環族ジイソシアネートを主として使用することが好ましい。
<Isocyanate component>
The isocyanate used as the isocyanate component in the present invention is not particularly limited, but bifunctional polyisocyanates such as aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates are preferred.
Specific examples of polyisocyanate include tolylene diisocyanate, 4-methoxy-1,3-phenylene diisocyanate, 4-isopropyl-1,3-phenylene diisocyanate, 4-chloro-1,3-phenylene diisocyanate, 4-butoxy-1 ,3-phenylene diisocyanate, 2,4-diisocyanate-diphenyl ether, mesitylene diisocyanate, 4,4′-diphenylmethane diisocyanate, dulylene diisocyanate, 1,5-naphthalene diisocyanate, benzidine diisocyanate, o-nitrobenzidine diisocyanate, 4,4-diisocyanate dibenzyl, 1,4-tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,4-cyclohexylene diisocyanate, xylene diisocyanate, 4,4' -methylenebis(cyclohexyl isocyanate), 1,5-tetrahydronaphthalene diisocyanate, isophorone diisocyanate, dicyclohexylmethane 4,4'-diisocyanate and the like.
When the porous layer structure is used for applications requiring flexibility, mechanical properties, and resistance to discoloration, it is preferable to mainly use an aliphatic diisocyanate or an alicyclic diisocyanate.
 全成分の水酸基当量に対するポリイソシアネート成分のイソシアネート基当量の比が0.8~1.9であることが好ましく、0.9~1.5あることがより好ましい。NCO/OHが上記範囲内であると、柔軟性及び耐久性がともにより良好となる。 The ratio of the isocyanate group equivalent of the polyisocyanate component to the hydroxyl group equivalent of all components is preferably 0.8 to 1.9, more preferably 0.9 to 1.5. When the NCO/OH is within the above range, both flexibility and durability are improved.
〈添加剤〉
 本発明の水溶性樹脂を含む配合液は、必要に応じて添加剤を含有してもよい。添加剤としては、例えば、増粘剤、架橋剤、酸化防止剤(ヒンダードフェノール系、ホスファイト系、チオエーテル系等)、光安定剤(ヒンダードアミン系等)、紫外線吸収剤(ベンゾフェノン系、ベンゾトリアゾール系等)、ガス変色安定剤(ヒドラジン系等)、金属不活性剤等が挙げられる。
<Additive>
The liquid mixture containing the water-soluble resin of the present invention may contain additives as necessary. Additives include, for example, thickeners, cross-linking agents, antioxidants (hindered phenols, phosphites, thioethers, etc.), light stabilizers (hindered amines, etc.), ultraviolet absorbers (benzophenones, benzotriazole system, etc.), gas discoloration stabilizers (hydrazine system, etc.), metal deactivators, and the like.
〈架橋剤〉
 架橋剤としては、例えば、イソシアネート系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤及びエポキシ系架橋剤からなる群から選択される少なくとも1種を含むことが好ましく、イソシアネート系、カルボジイミド系及びオキサゾリン系架橋剤からなる群から選択される少なくとも一種を含むことがより好ましい。
 架橋剤の使用量が多すぎると、下地層20の脆化や、未反応の架橋剤による可塑化等の不具合を引き起こす場合があるため、架橋剤の使用量は、水溶性樹脂(水分散体)100質量部に対して、架橋剤固形分換算値として10質量部以下とすることが好ましく、0.5~8.0質量部とすることがさらに好ましい。
<Crosslinking agent>
The cross-linking agent preferably contains, for example, at least one selected from the group consisting of an isocyanate-based cross-linking agent, a carbodiimide-based cross-linking agent, an oxazoline-based cross-linking agent and an epoxy-based cross-linking agent. More preferably, it contains at least one selected from the group consisting of cross-linking agents.
If the amount of the cross-linking agent used is too large, problems such as embrittlement of the underlying layer 20 and plasticization due to unreacted cross-linking agent may occur. ) is preferably 10 parts by mass or less, more preferably 0.5 to 8.0 parts by mass, in terms of the solid content of the cross-linking agent per 100 parts by mass.
《水溶性樹脂を含む配合液の粘度》
 水溶性樹脂を含む配合液の25℃における粘度は、増粘剤などを添加すること等で適宜調整することができる。具体的には、500~50,000mPa・sであることが好ましく、550~45,000mPa・sであることがより好ましく、600~40,000mPa・sであることがさらに好ましい。
 水溶性樹脂を含む配合液の25℃における粘度が上記下限値以上であることで、基材10上に配合液を塗工した際に、基材10への含浸を抑制しつつ、下地層20の塗膜を形成することができる。また、水溶性樹脂を含む配合液の25℃における粘度が上記上限値以下であることで、基材10上に配合液を塗工した際に、下地層20の塗膜が斑状になることを防ぐことができる。つまり、水溶性樹脂を含む配合液の25℃における粘度が上記範囲内であることで、塗工性が良好となり、基材10上に均一かつ万遍なく下地層20の塗膜を形成することができる。
<<Viscosity of liquid containing water-soluble resin>>
The viscosity at 25° C. of the liquid mixture containing the water-soluble resin can be appropriately adjusted by adding a thickener or the like. Specifically, it is preferably from 500 to 50,000 mPa·s, more preferably from 550 to 45,000 mPa·s, even more preferably from 600 to 40,000 mPa·s.
Since the viscosity of the compounded liquid containing the water-soluble resin at 25° C. is equal to or higher than the lower limit, impregnation of the base layer 20 is suppressed when the compounded liquid is applied onto the base material 10. can form a coating film. In addition, since the viscosity of the compounded liquid containing the water-soluble resin at 25° C. is equal to or less than the above upper limit value, when the compounded liquid is applied onto the base material 10, the coating film of the base layer 20 is prevented from becoming patchy. can be prevented. That is, when the viscosity at 25° C. of the compounded liquid containing the water-soluble resin is within the above range, the coatability is improved, and the coating film of the base layer 20 is uniformly and evenly formed on the base material 10. can be done.
《水性ポリエチレングリコール樹脂》
 本発明に係る水性ポリエチレングリコール樹脂は、下記の数平均分子量の水性ポリエチレングリコール樹脂となるエチレングリコールの重合体である。
《Aqueous polyethylene glycol resin》
The water-based polyethylene glycol resin according to the present invention is a polymer of ethylene glycol that becomes a water-based polyethylene glycol resin having the following number average molecular weight.
〈水溶性樹脂としての水性ポリエチレングリコール樹脂の数平均分子量〉
 水溶性樹脂としての水性ポリエチレングリコール樹脂の数平均分子量は、下地層20を良好に形成する観点、最適な発泡密度を得る観点から、50万以上であることが好ましく、60万以上であることがより好ましい。また、数平均分子量が高すぎても、下地層20の形成容易性や発泡密度が低下することがあるので、700万以下であることが好ましく、600万以下であることがより好ましく、200万以下であることがさらに好ましい。
 なお、数平均分子量は、ポリスチレン換算の数平均分子量であり、通常ゲルパーミエーションクロマトグラフィー(GPC)の測定により求めることができる。
<Number average molecular weight of water-based polyethylene glycol resin as water-soluble resin>
The number average molecular weight of the water-based polyethylene glycol resin as the water-soluble resin is preferably 500,000 or more, more preferably 600,000 or more, from the viewpoint of forming the base layer 20 well and obtaining the optimum foam density. more preferred. Also, if the number average molecular weight is too high, the ease of formation of the base layer 20 and the foam density may decrease. More preferably:
The number average molecular weight is a polystyrene-equivalent number average molecular weight, and can be usually determined by gel permeation chromatography (GPC).
《水溶性樹脂(水性ポリウレタン樹脂)を含む配合液の製造方法》
 本発明における水溶性樹脂として水性ポリウレタン樹脂を含む配合液の製造方法としては、例えば、
(1)ポリオール、アニオン性の親水性基を有する化合物(α)や親水性アルキレンオキサイド成分となる化合物(β)、イソシアネートとを反応させる反応工程と、反応後に界面活性剤等を添加し、イオン交換水とジアミン等の混合液を添加して乳化しつつ、高分子化する乳化及び高分子量化工程を経る方法で、乳化及び高分子量化工程における界面活性剤等を添加した際の撹拌を100~300rpm程度の緩やか撹拌とし、イオン交換水とジアミン等の混合液を添加した際の撹拌を4,000~6,000rpm程度の強撹拌とする方法、及び
(2)槽内循環用の撹拌翼と、剪断力付与用の撹拌翼とを有する撹拌槽中で、少なくともポリオールとイソシアネートと親水性アルキレンオキサイド成分となる化合物とを反応及び乳化させる方法などが挙げられる。
 当該製造方法により、既述の高い不揮発性成分濃度で、既述の体積平均粒子径を有する水性ポリウレタン樹脂を効率よく製造することができる。また、所望の粘度とすることができる。
<<Method for producing compound liquid containing water-soluble resin (aqueous polyurethane resin)>>
As a method for producing a mixed liquid containing an aqueous polyurethane resin as the water-soluble resin in the present invention, for example,
(1) A reaction step of reacting a polyol, a compound (α) having an anionic hydrophilic group, a compound (β) serving as a hydrophilic alkylene oxide component, and an isocyanate, and adding a surfactant or the like after the reaction to obtain an ion A method of emulsifying and polymerizing by adding a mixed solution of exchanged water and diamine, etc., and emulsifying it, and adding a surfactant or the like in the emulsifying and polymerizing step. A method of gently stirring at about 300 rpm and strongly stirring at about 4,000 to 6,000 rpm when adding a mixed solution of ion-exchanged water and diamine, and (2) a stirring blade for circulation in the tank. and a stirring vessel having a stirring blade for imparting a shearing force, at least a polyol, an isocyanate, and a compound serving as a hydrophilic alkylene oxide component are reacted and emulsified.
By this production method, it is possible to efficiently produce the water-based polyurethane resin having the above-described volume average particle size at the above-described high non-volatile component concentration. Moreover, it can be set as a desired viscosity.
《水溶性樹脂(水性ポリエチレングリコール樹脂、水性ポリエチレングリコール樹脂、水性ポリビニルアルコール樹脂)を含む配合液の製造方法》
 本発明における水溶性樹脂として水性ポリエチレングリコール樹脂、水性ポリエチレングリコール樹脂及び水性ポリビニルアルコール樹脂を含む配合液の製造方法としては、例えば、配合液の主剤として、水性ポリエチレングリコール樹脂、水性ポリエチレングリコール樹脂及び水性ポリビニルアルコール樹脂を適宜選択し、増粘液、水などを適量配合して撹拌することで所望の粘度の配合液を得ることができる。
<<Method for Producing Mixed Liquid Containing Water-soluble Resin (Aqueous Polyethylene Glycol Resin, Aqueous Polyethylene Glycol Resin, Aqueous Polyvinyl Alcohol Resin)>>
As a method for producing a mixed solution containing an aqueous polyethylene glycol resin, an aqueous polyethylene glycol resin and an aqueous polyvinyl alcohol resin as the water-soluble resin in the present invention, for example, as the main ingredients of the mixed solution, an aqueous polyethylene glycol resin, an aqueous polyethylene glycol resin and an aqueous A mixed liquid having a desired viscosity can be obtained by appropriately selecting a polyvinyl alcohol resin, mixing an appropriate amount of a thickening liquid, water, and the like, and stirring the mixture.
(発泡層)
 発泡層30は、下地層20上に設けられ、末端にイソシアネート基を有するウレタンプレポリマーを発泡してなる層である。すなわち、発泡層30は、末端にイソシアネート基を有するウレタンプレポリマーの発泡物からなる層となっている。
(Foam layer)
The foam layer 30 is provided on the base layer 20 and is a layer formed by foaming a urethane prepolymer having an isocyanate group at its end. That is, the foam layer 30 is a layer made of a urethane prepolymer foam having an isocyanate group at its end.
 発泡層30の密度は、多孔層構成体の優れた風合い(柔軟性)及び剥離強度を両立させる観点から、0.03~0.30g/cmであることが好ましく、0.05~0.25g/cmであることがより好ましく、0.07~0.20g/cmであることがさらに好ましい。なお、発泡層30の密度は、実施例に記載の方法により測定することができる。 The density of the foam layer 30 is preferably 0.03 to 0.30 g/cm 3 and preferably 0.05 to 0.3 g/cm 3 from the viewpoint of achieving both excellent texture (flexibility) and peel strength of the porous layer structure. It is more preferably 25 g/cm 3 and even more preferably 0.07 to 0.20 g/cm 3 . The density of the foam layer 30 can be measured by the method described in Examples.
 発泡層30の厚みは、塗工するポリウレタンプレポリマーの厚みや作成するレザー種により変化させるものなので、特に限定されない。例えば、多孔層構成体の優れた風合い(柔軟性)及び剥離強度を両立させる観点から、0.05~1.0mm程度とすればよく、好ましくは0.1~1.0mm程度である。 The thickness of the foam layer 30 is not particularly limited because it varies depending on the thickness of the polyurethane prepolymer to be coated and the type of leather to be produced. For example, from the viewpoint of achieving both excellent texture (flexibility) and peel strength of the porous layer structure, the thickness may be about 0.05 to 1.0 mm, preferably about 0.1 to 1.0 mm.
 発泡層30は、基材10上に下地層20を介して積層されていることで、基材10、下地層20及び発泡層30の密着性が向上し、これらが剥離することなく、優れた耐久性が発揮される。また、多孔層構造体は、発泡層30が、発泡が過剰となる部分や、発泡の形状及びサイズのバラツキなどが生ずることなく、低い密度で発泡しているため、優れた剥離強度及び耐久性を維持しながらも良好な風合い(柔軟性)を有することになる。 Since the foam layer 30 is laminated on the base material 10 with the base layer 20 interposed therebetween, the adhesion between the base material 10, the base layer 20 and the foam layer 30 is improved. Demonstrates durability. In addition, the porous layer structure has excellent peel strength and durability because the foam layer 30 is foamed at a low density without excessive foaming and variations in foam shape and size. It has a good texture (flexibility) while maintaining the
 基材10から発泡層30を剥離するための剥離力は、1.0kgf/inch以上であることが好ましく、1.2kgf/inch以上であることがより好ましく、1.5kgf/inch以上であることがさらに好ましい。基材10から発泡層30を剥離するための剥離力が上記下限値以上であることで、例えば、発泡合成擬革として実用上問題のない水準を超える基材10との密着性(剥離強度)を得ることができる。基材10から発泡層30を剥離するための剥離力の上限は特に限定はない。
 なお、基材10から発泡層30を剥離するための剥離力の測定は、実施例の「剥離強度試験」に記載の方法で測定することができる。
The peel force for peeling the foam layer 30 from the substrate 10 is preferably 1.0 kgf/inch or more, more preferably 1.2 kgf/inch or more, and 1.5 kgf/inch or more. is more preferred. Since the peeling force for peeling the foam layer 30 from the base material 10 is at least the above lower limit, for example, the adhesiveness (peel strength) with the base material 10 exceeding a level that has no practical problem as a foamed synthetic imitation leather can be obtained. The upper limit of the peel force for peeling the foam layer 30 from the substrate 10 is not particularly limited.
The peel strength for peeling the foam layer 30 from the base material 10 can be measured by the method described in "Peel Strength Test" in Examples.
 また、本実施形態に係るウレタンプレポリマーは実質的に揮発成分を含まない。すなわち、有機溶剤を使用することなく多孔質構成体が製造されるため、有害性の問題や環境問題が生じることはない。
 ここで、本発明において、「実質的に揮発成分を含まない」とは、意図的に有機溶剤等の揮発成分が含有されないことを意味し、より具体的には有機溶剤が存在しないことをいう。
Moreover, the urethane prepolymer according to the present embodiment does not substantially contain volatile components. That is, since the porous structure is produced without using an organic solvent, there is no problem of toxicity or environmental problems.
Here, in the present invention, "substantially free of volatile components" means that volatile components such as organic solvents are not intentionally contained, more specifically, the absence of organic solvents. .
<ウレタンプレポリマー>
 ウレタンプレポリマーは、ポリオール成分と、イソシアネート成分と、適宜その他の成分とから構成される。すなわち、本実施形態の末端にイソシアネート基を有するウレタンプレポリマーは、ポリオール成分とポリイソシアネート成分から得られるウレタンプレポリマーである。特に、当該ウレタンプレポリマーは、湿気硬化型ウレタンプレポリマーであり、下地層20の水分による湿気硬化の際に発泡すること利用して、本発明の多孔層構成体が得られる。
<Urethane prepolymer>
A urethane prepolymer is composed of a polyol component, an isocyanate component, and other components as appropriate. That is, the urethane prepolymer having an isocyanate group at the end of the present embodiment is a urethane prepolymer obtained from a polyol component and a polyisocyanate component. In particular, the urethane prepolymer is a moisture-curable urethane prepolymer, and the porous layer structure of the present invention can be obtained by utilizing the fact that the base layer 20 foams when moisture-cured by moisture.
〈ポリオール成分〉
 ウレタンプレポリマーのポリオール成分となるポリオールとしては、特に限定されないが、ポリカーボネートポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリラクトンポリオール、ポリオレフィンポリオール、ポリメタクリレートジオール等が挙げられる。
<Polyol component>
The polyol that becomes the polyol component of the urethane prepolymer is not particularly limited, but examples thereof include polycarbonate polyol, polyether polyol, polyester polyol, polylactone polyol, polyolefin polyol, and polymethacrylate diol.
 ポリオール成分としては、耐加水分解性を向上させてより良好な耐久性を得るために、ポリカーボネートポリオール成分を含有させてもよい。ポリカーボネートポリオール成分を含有させる場合、全ポリオール成分中、50質量%以上含むことが好ましく、70~90質量%含むことがより好ましい。 As the polyol component, a polycarbonate polyol component may be included in order to improve hydrolysis resistance and obtain better durability. When the polycarbonate polyol component is contained, it is preferably contained in an amount of 50% by mass or more, more preferably 70 to 90% by mass, based on the total polyol component.
 ポリオールの数平均分子量は500以上であれば特に制限はないが、500~4,000程度が好ましく、さらに好ましくは1,000~3,000程度である。これらのポリオールは単独或いは2種類以上を組み合わせて使用することができるが、長期耐久性の観点からポリカーボネートジオールを含むことが好ましい。
 なお、数平均分子量は、ポリスチレン換算の数平均分子量であり、通常ゲルパーミエーションクロマトグラフィー(GPC)の測定により求めることができる。
Although the number average molecular weight of the polyol is not particularly limited as long as it is 500 or more, it is preferably about 500 to 4,000, more preferably about 1,000 to 3,000. These polyols can be used alone or in combination of two or more, but from the viewpoint of long-term durability, it is preferable to include a polycarbonate diol.
The number average molecular weight is a polystyrene-equivalent number average molecular weight, and can be usually determined by gel permeation chromatography (GPC).
〈イソシアネート成分〉
 本実施形態に係るウレタンプレポリマーの合成成分として使用するイソシアネートは特に限定されないが、脂肪族ジイソシアネート、脂環族ジイソシアネート、芳香族ジイソシアネート等の2官能のポリイソシアネートが好ましい。
 イソシアネート成分となるポリイソシアネートの具体例としては、トリレンジイソシアネート、4-メトキシ-1,3-フェニレンジイソシアネート、4-イソプロピル-1,3-フェニレンジイソシアネート、4-クロル-1,3-フェニレンジイソシアネート、4-ブトキシ-1,3-フェニレンジイソシアネート、2,4-ジイソシアネート-ジフェニルエーテル、メシチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ジュリレンジイソシアネート、1,5-ナフタレンジイソシアネート、ベンジジンジイソシアネート、o-ニトロベンジジンジイソシアネート、4,4-ジイソシアネートジベンジル、1,4-テトラメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,10-デカメチレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、キシレンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、1,5-テトラヒドロナフタレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン4,4’-ジイソシアネート等である。なかでも、4,4’-ジフェニルメタンジイソシアネート(MDI)を少なくとも含むことが好ましい。
<Isocyanate component>
Although the isocyanate used as a synthetic component of the urethane prepolymer according to the present embodiment is not particularly limited, bifunctional polyisocyanates such as aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates are preferred.
Specific examples of polyisocyanates that serve as isocyanate components include tolylene diisocyanate, 4-methoxy-1,3-phenylene diisocyanate, 4-isopropyl-1,3-phenylene diisocyanate, 4-chloro-1,3-phenylene diisocyanate, 4 -butoxy-1,3-phenylene diisocyanate, 2,4-diisocyanate-diphenyl ether, mesitylene diisocyanate, 4,4'-diphenylmethane diisocyanate, dulylene diisocyanate, 1,5-naphthalene diisocyanate, benzidine diisocyanate, o-nitrobenzidine diisocyanate, 4 ,4-diisocyanate dibenzyl, 1,4-tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,4-cyclohexylene diisocyanate, xylene diisocyanate, 4,4'-methylenebis(cyclohexyl isocyanate), 1,5-tetrahydronaphthalene diisocyanate, isophorone diisocyanate, dicyclohexylmethane 4,4'-diisocyanate and the like. Among them, it is preferable to contain at least 4,4'-diphenylmethane diisocyanate (MDI).
 車両用途や淡色系用途等のように耐光性が必要される場合は、4,4’-ジフェニルメタンジイソシアネートとともに、脂肪族ジイソシアネートや脂環族ジイソシアネートを併用することが好ましい。 When light resistance is required, such as for vehicle applications and light-colored applications, it is preferable to use an aliphatic diisocyanate or an alicyclic diisocyanate together with 4,4'-diphenylmethane diisocyanate.
 本実施形態に係るウレタンプレポリマーとする際のポリオールとポリイソシアネートの比率は、全ポリオール成分の水酸基当量に対するポリイソシアネート成分のイソシアネート基当量の比が1.33~5.0であることが好ましく、1.5~3.0あることがより好ましい。NCO/OHが上記範囲内であると、柔軟性及び基材10との剥離強度がともにより良好となる。 The ratio of the polyol to the polyisocyanate when making the urethane prepolymer according to the present embodiment is preferably a ratio of the isocyanate group equivalent of the polyisocyanate component to the hydroxyl group equivalent of all the polyol components of 1.33 to 5.0. More preferably 1.5 to 3.0. When the NCO/OH is within the above range, both flexibility and peel strength to the substrate 10 are improved.
 本実施形態に係るウレタンプレポリマーの製造方法は、特に限定されない。例えば、既述のポリオールにポリイソシアネートを、NCO/OHが1.33~5.0となるように混合し、80~120℃で60~120分間程度反応させて製造することができる。 The method for producing the urethane prepolymer according to this embodiment is not particularly limited. For example, the polyisocyanate can be mixed with the above-described polyol so that the NCO/OH ratio is 1.33 to 5.0, and reacted at 80 to 120° C. for about 60 to 120 minutes.
 なお、ウレタンプレポリマーにおいては、必要に応じて、多官能基ポリイソシアネート、熱可塑性ポリマー、粘着付与樹脂等を適量配合してもよい。 In addition, in the urethane prepolymer, an appropriate amount of polyfunctional polyisocyanate, thermoplastic polymer, tackifier resin, etc. may be blended as needed.
(表皮層)
 本実施形態に係る多孔層構成体は、図3に示すように、発泡層30の下地層20が積層された面の反対面に表皮層40を有してもよい。
 表皮層40は、特に限定されず、例えば、溶剤系ポリウレタン、水系ポリウレタン、TPU等の表皮層形成用塗料で形成されたものが挙げられる。
(skin layer)
As shown in FIG. 3, the porous layer structure according to the present embodiment may have a skin layer 40 on the surface of the foam layer 30 opposite to the surface on which the base layer 20 is laminated.
The skin layer 40 is not particularly limited, and examples thereof include those formed of a skin layer-forming paint such as solvent-based polyurethane, water-based polyurethane, and TPU.
 以上のように、本実施形態に係る多孔層構成体は、合成擬革及び人工皮革として好適に用いることができ、靴、衣料、鞄、家具、車両内装材(例えば、インパネ、ドア、コンソール、座席シート)、断熱材、吸音材、衝撃吸収材等に好適である。 As described above, the porous layer structure according to the present embodiment can be suitably used as synthetic imitation leather and artificial leather, and can be used for shoes, clothing, bags, furniture, vehicle interior materials (for example, instrument panels, doors, consoles, seats), heat insulating materials, sound absorbing materials, shock absorbing materials, etc.
[多孔層構成体の製造方法]
 本実施形態の多孔層構成体の製造方法は、基材10上に水溶性樹脂を含む配合液を塗工し、基材10上に下地層20を形成する下地層積層工程と、下地層20上に末端にイソシアネート基を有するウレタンプレポリマーを配設し、ウレタンプレポリマーが下地層20の水分によって発泡して発泡層30を形成する発泡層積層工程とを含む。
 以下、各工程について説明する。
[Manufacturing method of porous layer structure]
The manufacturing method of the porous layer structure of the present embodiment includes a base layer lamination step of applying a liquid mixture containing a water-soluble resin onto the base material 10 to form the base layer 20 on the base material 10; and a foam layer laminating step in which a urethane prepolymer having an isocyanate group at its end is disposed thereon, and the urethane prepolymer is foamed by moisture in the base layer 20 to form the foam layer 30 .
Each step will be described below.
(下地層積層工程)
 まず、用意した基材10の一面に、塗工機に収容した水溶性樹脂を含む配合液を塗工し、基材10上に湿潤状態の下地層20を形成する。なお、水溶性樹脂を含む配合液による下地層20の目付量は、配合液の塗工量及び粘度に依存し、下地層20の目付量が3~60g/m・dryとなるように配合液を塗工する。
(Base layer lamination step)
First, one surface of the prepared base material 10 is coated with a liquid mixture containing a water-soluble resin contained in a coating machine to form a wet base layer 20 on the base material 10 . The weight per unit area of the base layer 20 by the blended liquid containing the water - soluble resin depends on the coating weight and viscosity of the blended liquid. Apply liquid.
(発泡層積層工程)
 次に、湿潤状態の下地層20上に、末端にイソシアネート基を有するウレタンプレポリマーを配設する。ウレタンプレポリマーを配設する方法としては、例えば、下地層20上に、メルター等の塗工機に収容したウレタンプレポリマーを塗工する方法が挙げられる。
 なお、発泡層30を水発泡させるために、下地層20が乾燥する前にウレタンプレポリマーを下地層20と接触するように配設することが重要である。これにより、下地層20上に配設されたウレタンプレポリマーは、下地層20の水分によって発泡して発泡層30を形成する。
(Foam layer lamination process)
Next, a urethane prepolymer having terminal isocyanate groups is disposed on the wet underlayer 20 . As a method of disposing the urethane prepolymer, for example, there is a method of coating the base layer 20 with the urethane prepolymer housed in a coating machine such as a melter.
In order to foam the foam layer 30 with water, it is important to arrange the urethane prepolymer so as to be in contact with the base layer 20 before the base layer 20 dries. As a result, the urethane prepolymer disposed on the base layer 20 is foamed by the moisture in the base layer 20 to form the foam layer 30 .
 ウレタンプレポリマー塗膜の厚さ(塗工直後、すなわち発泡前の厚み)は、ウレタンプレポリマーの粘度や組成にもよるが、50~500μmとすることが好ましく、60~400μmとすることがより好ましく、70~300μmとすることがより好ましい。 The thickness of the urethane prepolymer coating film (immediately after coating, ie, before foaming) depends on the viscosity and composition of the urethane prepolymer, but is preferably 50 to 500 μm, more preferably 60 to 400 μm. It is preferably 70 to 300 μm, more preferably 70 to 300 μm.
(表皮層積層工程)
 本実施形態の多孔層構成体の製造方法は、発泡層30の下地層20が積層された面の反対面に表皮層40を積層する表皮層積層工程をさらに含んでもよい。なお、表皮層40を発泡層30に密着させて積層するために、発泡層30の発泡が完了する前、つまり下地層20が乾燥する前に表皮層40を発泡層30と接触するように配設する。
(Skin layer lamination process)
The method for manufacturing the porous layer structure of the present embodiment may further include a skin layer lamination step of laminating the skin layer 40 on the surface of the foam layer 30 opposite to the surface on which the base layer 20 is laminated. In order to laminate the skin layer 40 in close contact with the foam layer 30, the skin layer 40 is placed in contact with the foam layer 30 before the foaming of the foam layer 30 is completed, that is, before the base layer 20 dries. set up.
 表皮層積層工程を含む場合、末端にイソシアネート基を有するウレタンプレポリマーを表皮層40の一面に塗工し、ウレタンプレポリマー塗膜を配設することが好ましい。そして、表皮層40に設けたウレタンプレポリマー塗膜と、基材10に設けた下地層20とを、ラミネート等により張り合わせることで、下地層20上に末端にイソシアネート基を有するウレタンプレポリマーを配設することができる。このとき、発泡層30を良好に発泡させるために、下地層20が乾燥する前、即ち、下地層20が湿潤状態のうちに、発泡層30を下地層20と接触するように配設することが重要である。 When the skin layer laminating step is included, it is preferable to apply a urethane prepolymer having an isocyanate group at the end to one surface of the skin layer 40 to provide a urethane prepolymer coating. Then, the urethane prepolymer coating film provided on the skin layer 40 and the base layer 20 provided on the base material 10 are attached together by lamination or the like, so that a urethane prepolymer having an isocyanate group at the terminal is formed on the base layer 20. can be arranged. At this time, in order to foam the foam layer 30 well, the foam layer 30 should be placed in contact with the base layer 20 before the base layer 20 dries, that is, while the base layer 20 is in a wet state. is important.
(エージング工程)
 本実施形態の多孔層構成体の製造方法は、発泡層積層工程の後に、発泡層30の発泡を促すエージング処理を施すエージング工程をさらに含んでもよい。エージング工程では、発泡層積層工程の後の多孔層構成体が15~80℃で40~95%RHの状態で、48~120時間保持されて、エージング処理がなされる。このエージング処理により、発泡が促されて起こり、本実施形態の多孔層構成体が作製される。
(Aging process)
The manufacturing method of the porous layer structure of the present embodiment may further include an aging step of performing an aging treatment for promoting foaming of the foam layer 30 after the foam layer laminating step. In the aging process, the porous layer structure after the foam layer lamination process is aged at 15 to 80° C. and 40 to 95% RH for 48 to 120 hours. This aging treatment promotes foaming to produce the porous layer structure of the present embodiment.
(水蒸気接触工程)
 また、本製造方法においては、発泡層積層工程とエージング工程との間に、発泡層積層工程の後の多孔層構成体へ水蒸気を接触させる水蒸気接触工程を含むこともできる。水蒸気接触工程では、雰囲気を30~60℃(好ましくは35~55℃)で、80%RH以上(好ましくは85%RH以上)とし、当該雰囲気での時間を、温度条件や湿度条件にもよるが、20秒以上(好ましくは25~60秒)とすることが好ましい。
 水蒸気接触工程により、多孔層構成体の含水率を向上させることができるため、その後のエージング処理工程で良好な発泡倍率が得られやすくなる。すなわち、発泡度合いを良好に制御することができる。
(Water vapor contact step)
In addition, in the present production method, a steam contacting step of contacting steam with the porous layer structure after the foaming layer laminating step can be included between the foaming layer laminating step and the aging step. In the steam contact step, the atmosphere is 30 to 60 ° C. (preferably 35 to 55 ° C.) and 80% RH or more (preferably 85% RH or more), and the time in the atmosphere depends on the temperature and humidity conditions. is preferably 20 seconds or more (preferably 25 to 60 seconds).
Since the moisture content of the porous layer structure can be improved by the steam contact step, a favorable expansion ratio can be easily obtained in the subsequent aging treatment step. That is, the degree of foaming can be well controlled.
 以上のような工程によって、下地層20が基材10上に均一かつ万遍なく設けられ、下地層20上に配設されたウレタンプレポリマーは、下地層20との接触が一様となることで、下地層20から供給する水分量が一定となり、発泡形状が均一かつ安定の発泡層20を形成することができる。発泡形状が均一かつ安定の発泡層20が形成されることによって、高い密着性を維持しながら、優れた風合い(柔軟性)を発揮する多孔層構成体を得ることができる。 Through the steps described above, the base layer 20 is uniformly and evenly provided on the base material 10, and the urethane prepolymer disposed on the base layer 20 is in uniform contact with the base layer 20. Therefore, the amount of water supplied from the base layer 20 becomes constant, and the foam layer 20 having a uniform and stable foam shape can be formed. By forming the foamed layer 20 with a uniform and stable foamed shape, it is possible to obtain a porous layer structure exhibiting excellent texture (flexibility) while maintaining high adhesion.
 なお、多孔層構成体はそのままの状態で合成擬革として利用することができるが、例えば、表面処理剤の塗工や他基材との貼り合わせ等の処理を適宜行ってもよい。 Although the porous layer structure can be used as it is as a synthetic imitation leather, it may be appropriately treated, for example, by coating it with a surface treatment agent or bonding it to another base material.
 次に、本発明を実施例及び比較例にさらに詳細に説明する。もっとも、本発明は実施例等によって限定されるものではない。 Next, the present invention will be described in further detail with examples and comparative examples. However, the present invention is not limited by the examples and the like.
(下地層用配合液の調製(その1:水性ポリウレタン樹脂))
 下地層を施す配合液の主剤として、レザミンD-6065NP、レザミンDN-0445、レザミンD-1063(水性ポリウレタン樹脂、大日精化工業株式会社製)を選択し、キサンタンガム(DSP五協フード&ケミカル株式会社製)2%水溶液(増粘液A)又はD-87(大日精化工業株式会社製、増粘液B)を、実施例/比較例それぞれ表2,3に記載の粘度になるまで少量ずつ配合し増粘させ、下地層用配合液(B-1)を得た。
 架橋剤を使用した配合液(実施例5,6)に関しては、得られた下地層用配合液(B-1)へさらにレザミンD-52(カルボジイミド系架橋剤(固形分40%)、大日精化工業株式会社製)又はレザミンD-65(イソシアネート系架橋剤(固形分70%)、大日精化工業株式会社製)をそれぞれ表2に記載の量ずつ配合して下地層用配合液(B-2)とした。なお、実施例5におけるカルボジイミド系架橋剤の質量部は、水性ポリウレタン樹脂の固形分が50%である水分散体100質量部に対する質量部である。また、実施例6におけるイソシアネート系架橋剤の質量部は、水性ポリウレタン樹脂の固形分が43%である水分散体100質量部に対する質量部である。
 各下地層用配合液(B-1,B-2)の固形分濃度(質量%)については、表2,3に示すとおりである。
(Preparation of base layer liquid mixture (part 1: water-based polyurethane resin))
Lezamin D-6065NP, Lezamin DN-0445, and Lezamin D-1063 (aqueous polyurethane resin, manufactured by Dainichi Seika Kogyo Co., Ltd.) were selected as the main ingredients of the formulation liquid for applying the underlayer, and xanthan gum (DSP Gokyo Food & Chemical Co., Ltd.) was selected. Company) 2% aqueous solution (thickened liquid A) or D-87 (manufactured by Dainichiseika Kogyo Co., Ltd., thickened liquid B) is blended little by little until the viscosity shown in Tables 2 and 3 for Examples and Comparative Examples. and thickened to obtain an underlayer liquid mixture (B-1).
With respect to the liquid mixtures using a cross-linking agent (Examples 5 and 6), Lezamin D-52 (a carbodiimide-based cross-linking agent (solid content: 40%), Dainichisei Kakogyo Co., Ltd.) or Lezamin D-65 (isocyanate-based cross-linking agent (solid content: 70%), Dainichiseika Kogyo Co., Ltd.) was blended in the amounts shown in Table 2 to prepare a base layer formulation solution (B -2). The parts by mass of the carbodiimide-based cross-linking agent in Example 5 are parts by mass with respect to 100 parts by mass of the aqueous dispersion in which the solid content of the aqueous polyurethane resin is 50%. Also, the parts by mass of the isocyanate-based cross-linking agent in Example 6 are parts by mass with respect to 100 parts by mass of the aqueous dispersion in which the solid content of the aqueous polyurethane resin is 43%.
Tables 2 and 3 show the solid content concentration (% by mass) of each of the base layer formulation solutions (B-1 and B-2).
(下地層用配合液の調製(その2:水性ポリエチレングリコール樹脂))
 下地層を施す配合液の主剤として、L-11(数平均分子量:約11万)、E-45(数平均分子量:60万~100万)、E-75(数平均分子量:約200万)、E-300(数平均分子量:約700万)(水性ポリエチレングリコール(PEG)、明成化学工業株式会社製)を選択し、粘度調整剤として水を表4に記載の粘度になるまで少量ずつ配合し、下地層用配合液(B-3)を得た。
 架橋剤を使用した配合液(実施例18,19)に関しては、得られた下地層用配合液(B-3)へさらにレザミンD-65(イソシアネート系架橋剤(固形分70%)、大日精化工業株式会社製)をそれぞれ表4に記載の量ずつ配合して下地層用配合液(B-4)とした。なお、実施例18、19におけるイソシアネート系架橋剤の質量部は、水性ポリエチレングリコールの固形分が6%である水分散体100質量部に対する質量部である。
 各下地層用配合液(B-3,B-4)の固形分濃度(質量%)については、表4に示すとおりである。
(Preparation of base layer formulation (part 2: water-based polyethylene glycol resin))
L-11 (number average molecular weight: about 110,000), E-45 (number average molecular weight: 600,000 to 1,000,000), E-75 (number average molecular weight: about 2,000,000) are used as the main ingredients of the compound liquid for applying the underlayer. , E-300 (number average molecular weight: about 7 million) (aqueous polyethylene glycol (PEG), manufactured by Meisei Chemical Industry Co., Ltd.) is selected, and water is added as a viscosity modifier in Table 4 until it reaches the viscosity shown in Table 4. Then, an underlayer liquid mixture (B-3) was obtained.
Regarding the formulations using a cross-linking agent (Examples 18 and 19), Lezamin D-65 (an isocyanate-based cross-linking agent (solid content: 70%), Dainichisei (manufactured by Kakogyo Co., Ltd.) were blended in the respective amounts shown in Table 4 to prepare an underlayer blend solution (B-4). The parts by mass of the isocyanate-based cross-linking agent in Examples 18 and 19 are parts by mass with respect to 100 parts by mass of the aqueous dispersion containing 6% solids of aqueous polyethylene glycol.
Table 4 shows the solid content concentration (% by mass) of each of the base layer formulation solutions (B-3, B-4).
(下地層用配合液の調製(その3:水性ポリビニルアルコール樹脂))
 下地層を施す配合液の主剤として、PVA105(水性ポリビニルアルコール(PVA)、株式会社クラレ製)を選択し、粘度調整剤として水を表5に記載の粘度になるまで少量ずつ配合し、下地層用配合液(B-5)を得た。
 架橋剤を使用した配合液(実施例23,24)に関しては、得られた下地層用配合液(B-5)へさらにレザミンD-65(イソシアネート系架橋剤(固形分70%)、大日精化工業株式会社製)をそれぞれ表5に記載の量ずつ配合して下地層用配合液(B-6)とした。なお、実施例23、24におけるイソシアネート系架橋剤の質量部は、水性ポリビニルアルコール樹脂の固形分が20%である水分散体100質量部に対する質量部である。
 各下地層用配合液(B-5,B-6)の固形分濃度(質量%)については、表5に示すとおりである。
(Preparation of base layer liquid mixture (Part 3: water-based polyvinyl alcohol resin))
PVA105 (aqueous polyvinyl alcohol (PVA), manufactured by Kuraray Co., Ltd.) was selected as the main ingredient of the liquid composition for applying the underlayer, and water was added as a viscosity modifier little by little until the viscosity shown in Table 5 was reached. A formulation solution (B-5) for
Regarding the formulations using a cross-linking agent (Examples 23 and 24), Lezamin D-65 (an isocyanate-based cross-linking agent (solid content: 70%), Dainichisei (manufactured by Kakogyo Co., Ltd.) were blended in the respective amounts shown in Table 5 to prepare an underlayer blend solution (B-6). The parts by mass of the isocyanate-based cross-linking agent in Examples 23 and 24 are the parts by mass for 100 parts by mass of the aqueous dispersion in which the solid content of the water-based polyvinyl alcohol resin is 20%.
Table 5 shows the solid content concentration (% by mass) of each of the underlayer liquid mixtures (B-5 and B-6).
(下地層用配合液の調製(その4:水性ポリウレタン樹脂))
 実施例6の増粘剤として用いたD-87(水性ウレタン樹脂、大日精化工業株式会社製)を、下地層を施す配合液の主剤として選択し、粘度調整剤として水を表6に記載の粘度になるまで少量ずつ配合し、下地層用配合液(B-7)を得た。
 架橋剤を使用した配合液(実施例31,32)に関しては、得られた下地層用配合液(B-7)へさらにレザミンD-65(イソシアネート系架橋剤(固形分70%)、大日精化工業株式会社製)をそれぞれ表4に記載の量ずつ配合して下地層用配合液(B-8)とした。なお、実施例31、32におけるイソシアネート系架橋剤の質量部は、水性ポリウレタン樹脂の固形分が20%である水分散体100質量部に対する質量部である。
 各下地層用配合液(B-7,B-8)の固形分濃度(質量%)については、表6に示すとおりである。
(Preparation of base layer liquid mixture (part 4: water-based polyurethane resin))
D-87 (aqueous urethane resin, manufactured by Dainichiseika Kogyo Co., Ltd.) used as a thickener in Example 6 is selected as the main ingredient of the liquid composition for applying the underlayer, and water is listed in Table 6 as a viscosity modifier. were blended little by little until the viscosity reached , to obtain an underlayer blend solution (B-7).
Regarding the formulations using a cross-linking agent (Examples 31 and 32), Lezamin D-65 (an isocyanate-based cross-linking agent (solid content: 70%), Dainichisei (manufactured by Kakogyo Co., Ltd.) were blended in the respective amounts shown in Table 4 to prepare an underlayer blend solution (B-8). The parts by mass of the isocyanate-based cross-linking agent in Examples 31 and 32 are parts by mass based on 100 parts by mass of the aqueous dispersion in which the solid content of the aqueous polyurethane resin is 20%.
Table 6 shows the solid content concentration (% by mass) of each underlayer liquid mixture (B-7, B-8).
(下地層用配合液の調製(その5:水性アクリル樹脂))
 下地層を施す配合液の主剤として、XK-12、XK-36(水性アクリル樹脂、コベストロジャパン株式会社製)を選択し、A-7100(アクリル増粘剤、東亞合成株式会社製、増粘液C)を、表7に記載の粘度になるまで少量ずつ配合し増粘させ、下地層用配合液(B-9)を得た。
 各下地層用配合液(B-9)の固形分濃度(質量%)については、表7に示すとおりである。
(Preparation of base layer liquid mixture (Part 5: water-based acrylic resin))
XK-12 and XK-36 (water-based acrylic resin, manufactured by Covestro Japan Co., Ltd.) were selected as the main ingredients of the compounded liquid for applying the base layer, and A-7100 (acrylic thickener, manufactured by Toagosei Co., Ltd., thickened liquid C) was blended little by little until the viscosity shown in Table 7 was reached, and the viscosity was increased to obtain a liquid mixture for underlayer (B-9).
Table 7 shows the solid content concentration (% by mass) of each underlayer liquid mixture (B-9).
(表皮の作製)
 合成擬革用として溶剤型ウレタン樹脂であるレザミンNE-8875-30M(大日精化工業株式会社)と、合成擬革用着色剤であるセイカセブンBS-780(大日精化工業株式会社)と、希釈溶剤としてメチルエチルケトン及びジメチルホルムアミドとを混合しバーコーターで250μm/wetの塗布量を離型紙上に均一に塗工した後、120℃で5分乾燥させ膜厚40~50μmの表皮層40を備える表皮付きフィルムを得た。
(Preparation of epidermis)
Rezamin NE-8875-30M (Dainichiseika Kogyo Co., Ltd.), which is a solvent-type urethane resin for synthetic imitation leather, and Seika Seven BS-780 (Dainichiseika Kogyo Co., Ltd.), which is a coloring agent for synthetic imitation leather, Methyl ethyl ketone and dimethylformamide are mixed as a diluent solvent, and a coating amount of 250 μm/wet is uniformly applied on release paper with a bar coater, and then dried at 120° C. for 5 minutes to provide a skin layer 40 with a thickness of 40 to 50 μm. A skinned film was obtained.
(合成擬革の作製)
[実施例1~34、比較例2~4]
 上記表皮付きフィルムの表皮層40に、100℃に熱したレザミンF-916(ウレタンプレポリマー、湿気硬化型接着剤、大日精化工業株式会社製)を塗布膜厚150μmのウレタンプレポリマー塗膜を形成するように塗工した。
 また、ポリエステルの丸編みである厚さ1.0mmのポリエステル基布(基材10)に、湿潤状態の下地層用配合液(B-1)~(B-9)からなる層(下地層20)を、実施例/比較例それぞれに記載の重量(g/m・dry)にて形成されるように塗工した。
 そして、表皮層40に形成されたウレタンプレポリマーの塗膜を、基材10に形成された下地層20と接するように配設し、ラミネートロール温度40℃にて直ちに加圧圧着することで、ウレタンプレポリマーが発泡し、発泡層30を形成した。
 エージング工程として、温度35℃、相対湿度65%の環境下で5日間エージングした後、離型紙から剥離し合成擬革を得た。
(Production of synthetic imitation leather)
[Examples 1 to 34, Comparative Examples 2 to 4]
On the skin layer 40 of the film with the skin, Lezamin F-916 (urethane prepolymer, moisture-curing adhesive, manufactured by Dainichiseika Kogyo Co., Ltd.) heated to 100° C. is applied. coated to form.
In addition, a layer (underlayer 20 ) was applied so as to be formed at the weight (g/m 2 ·dry) described in each of Examples and Comparative Examples.
Then, the urethane prepolymer coating film formed on the skin layer 40 is arranged so as to be in contact with the base layer 20 formed on the base material 10, and immediately pressure-bonded at a laminate roll temperature of 40 ° C. The urethane prepolymer foamed to form a foam layer 30 .
As an aging process, after aging for 5 days in an environment of a temperature of 35° C. and a relative humidity of 65%, the synthetic imitation leather was obtained by peeling from the release paper.
[比較例1]
 上記表皮付きフィルムの表皮層40に、100℃に熱したレザミンF-916(ウレタンプレポリマー、湿気硬化型接着剤、大日精化工業株式会社製)を塗布膜厚150μmのウレタンプレポリマー塗膜を形成するように塗工した。
 また、ポリエステルの丸編みである厚さ1.0mmのポリエステル基布(基材10)に、ポリエステル基布の重量に対して50%量の水を含浸させた。
 そして、表皮層40に形成されたウレタンプレポリマーの塗膜を、水を含浸させた基材10と接するように配設し、ラミネートロール温度40℃にて直ちに加圧圧着することで、ウレタンプレポリマーが発泡し、発泡層30を形成した。
 エージング工程として、温度35℃、相対湿度65%の環境下で5日間エージングした後、離型紙から剥離し合成擬革を得た。
[Comparative Example 1]
On the skin layer 40 of the film with the skin, Lezamin F-916 (urethane prepolymer, moisture-curing adhesive, manufactured by Dainichiseika Kogyo Co., Ltd.) heated to 100° C. is applied. coated to form.
Also, a polyester base fabric (substrate 10) having a thickness of 1.0 mm, which is circular knitted polyester, was impregnated with water in an amount of 50% with respect to the weight of the polyester base fabric.
Then, the coating film of the urethane prepolymer formed on the skin layer 40 is disposed so as to be in contact with the base material 10 impregnated with water, and immediately press-bonded at a laminate roll temperature of 40° C. to obtain a urethane prepolymer. The polymer foamed to form foam layer 30 .
As an aging process, after aging for 5 days in an environment of a temperature of 35° C. and a relative humidity of 65%, the synthetic imitation leather was obtained by peeling from the release paper.
(下地層用配合液の塗工性)
 ポリエステルの丸編みである厚さ1.0mmのポリエステル基布(基材10)に、湿潤状態の下地層用配合液(B-1)~(B-9)からなる層(下地層20)を、実施例/比較例それぞれに記載の重量(g/m・dry)にて形成されるように塗工した際の塗工性を評価した。基材10上に均一かつ万遍なく下地層20の塗膜を形成することができたものを「Good」とし、均一かつ万遍なく下地層20の塗膜を形成することができなかったものを「Bad」として判定した。
(Applicability of liquid mixture for base layer)
A layer (base layer 20) composed of the base layer formulation solutions (B-1) to (B-9) in a wet state is formed on a polyester base fabric (base material 10) having a thickness of 1.0 mm, which is a polyester circular knit. , and evaluated the coatability when coated so as to be formed at the weight (g/m 2 ·dry) described in each of Examples and Comparative Examples. "Good" indicates that the coating film of the base layer 20 could be formed uniformly and evenly on the base material 10, and that the coating film of the base layer 20 could not be formed uniformly and evenly. was determined as "Bad".
(皮膜破断強度試験)
 得られた各合成擬革に使用している下地層20については、以下の手法で皮膜破断強度を測定した。
 各下地層用配合液(B-1)~(B-9)を、離型紙(大日本印刷株式会社製の「DNTP-FL」)上に、実施例/比較例それぞれに記載の重量(g/m・dry)にて形成されるように塗工し、乾燥して得られたフィルムを、ダンベルを用いて幅1.5cm,長さ5.0cmに打ち抜き、試料を作製した。
 そして、試料の両端からそれぞれ1.5cmの部分にセロテープ(ニチバン社製の「CT-12S」)を貼り付け、島津製作所製オートグラフAGS-Jの掴み具に固定し、200mm/minの速度で引っ張り、試料が破断した引っ張り強度を試料の断面積で除した値を、皮膜破断強度とした。
(Film breaking strength test)
The film breaking strength of the base layer 20 used in each of the obtained synthetic imitation leathers was measured by the following method.
Each base layer formulation solution (B-1) to (B-9) was placed on a release paper (“DNTP-FL” manufactured by Dai Nippon Printing Co., Ltd.), and the weight (g /m 2 ·dry), and the film obtained by drying was punched into a width of 1.5 cm and a length of 5.0 cm using a dumbbell to prepare a sample.
Then, a cellophane tape ("CT-12S" manufactured by Nichiban Co., Ltd.) was attached to each 1.5 cm part from both ends of the sample, fixed to a gripper of Autograph AGS-J manufactured by Shimadzu Corporation, and at a speed of 200 mm / min. The breaking strength of the film was obtained by dividing the tensile strength at which the sample broke by the cross-sectional area of the sample.
(剥離強度試験)
 得られた各合成擬革に幅17mmのウレタン系HMテープを熱圧着した後25mm巾の短冊状の測定試料を作製し、AGS-J(島津製作所)にて200mm/minの速度で引張り接着強度を測定した。
 一般に、1.5kgf/inch以上であることで、発泡合成擬革として実用上問題のない水準を超える基材10との密着性(剥離強度)を得ていると判断される。
(Peel strength test)
A urethane-based HM tape with a width of 17 mm was thermocompression bonded to each of the obtained synthetic imitation leathers, and then a strip-shaped measurement sample with a width of 25 mm was prepared. was measured.
In general, it is judged that adhesion (peel strength) to the base material 10 exceeding a practically acceptable level for foamed synthetic imitation leather is obtained when it is 1.5 kgf/inch or more.
(発泡度合い評価:発泡層の密度)
 得られた各合成擬革を10cm×10cm角に切り取って重量を測定した。別途、10cm×10cmの下地層用配合液(B-1)~(B-6)からなる下地層20を形成した基材10、表皮付きフィルムから離型紙を剥離した表皮層40の重量を測定し、下記式にて発泡層30の密度を算出した。
(1)合成擬革の重量測定・計算:
 合成擬革全体の重さ:イ、基材10の重さ:ロ、表皮層40の重さ:ハ、下地層20の重さ:ニから、下記式により発泡層30の重さを求めた。
 発泡層30の重さ:ホ=イ-ロ-ハ-ニ
(2)合成擬革の厚み測定・計算:
 合成擬革全体の厚み:ヘ、基材10の厚み:ト、表皮層40の厚み:リ、下地層20の厚み:ヌから、下記式により発泡層30の厚みを求めた。
 発泡層30の厚み:ル=ヘ-ト-リ-ヌ
(3)発泡層30の密度計算:下記式により発泡層30の密度を求めた。
 発泡層30の密度=ホ÷(ル×10×10)(g/cm
 なお、発泡層30の密度が0.03g/cm~0.30g/cmであることで良好な柔軟性と大きな剥離強度を両立させることができると判断できる。
(Evaluation of degree of foaming: Density of foam layer)
Each obtained synthetic imitation leather was cut into 10 cm×10 cm squares and weighed. Separately, the weights of the substrate 10 on which the base layer 20 composed of the base layer formulation solutions (B-1) to (B-6) of 10 cm×10 cm was formed, and the skin layer 40 obtained by peeling the release paper from the film with skin were measured. Then, the density of the foam layer 30 was calculated by the following formula.
(1) Weight measurement and calculation of synthetic imitation leather:
The weight of the entire synthetic imitation leather: a, the weight of the base material 10: b, the weight of the skin layer 40: c, the weight of the base layer 20: d. The weight of the foam layer 30 was obtained by the following formula. .
Weight of foam layer 30: Ho-I-Ro-Hani (2) Thickness measurement and calculation of synthetic imitation leather:
The thickness of the foam layer 30 was obtained from the following formula: thickness of the entire synthetic imitation leather: f; thickness of the base material: g;
Thickness of foam layer 30: Le = Haet-line (3) Calculation of density of foam layer 30: Density of foam layer 30 was obtained by the following formula.
Density of foam layer 30 = ho / (ru x 10 x 10) (g/cm 3 )
It can be determined that good flexibility and high peel strength can be achieved at the same time when the foam layer 30 has a density of 0.03 g/cm 3 to 0.30 g/cm 3 .
(風合い(柔軟性)評価)
 得られた各合成擬革の柔軟性について、標準合成擬革を基準とし、手で触った感触で比較し、評価指標は下記のとおりとした。なお、評価がA~Cであれば合格である。
  A:標準合成擬革よりも柔らかい
  B:標準合成擬革と同程度に柔らかい
  C:標準合成擬革よりも少し硬い
  D:標準合成擬革よりも大幅に硬い
(Texture (flexibility) evaluation)
The softness of each synthetic imitation leather thus obtained was compared with the standard synthetic imitation leather based on the feeling of touch with the hand, and the evaluation indexes were as follows. If the evaluation is A to C, it is acceptable.
A: Softer than standard synthetic imitation leather B: Equivalently soft as standard synthetic imitation leather C: A little harder than standard synthetic imitation leather D: Significantly harder than standard synthetic imitation leather
《標準合成擬革の作製》
 上記離型紙上に形成された膜厚45μmの表皮層40を備える表皮付きフィルムに、レザミンUD-8351NT(ポリウレタン樹脂接着剤、大日精化工業株式会社製)100質量部、C-50架橋剤(イソシアネート系架橋剤、大日精化工業株式会社製)10質量部の配合で調整した接着剤を厚み100μmの接着剤層を形成するように塗工した。
 その後、80℃/2分の予備乾燥を行い、得られた接着剤層をポリエステルの丸編みである厚さ1.0mmのポリエステル基布(基材10)に接するように配設し、ラミネートロール温度40℃にて加圧圧着した。その後、50℃/48時間での条件でエージングを行い風合い(柔軟性)評価のための標準合成擬革(MEKを使用した一般的な乾式レザー)を得た。
《Production of standard synthetic imitation leather》
100 parts by mass of Rezamin UD-8351NT (polyurethane resin adhesive, manufactured by Dainichiseika Kogyo Co., Ltd.), C-50 cross-linking agent ( An adhesive prepared by mixing 10 parts by mass of an isocyanate cross-linking agent (manufactured by Dainichiseika Kogyo Co., Ltd.) was coated so as to form an adhesive layer having a thickness of 100 μm.
After that, pre-drying is performed at 80° C. for 2 minutes, and the obtained adhesive layer is arranged so as to be in contact with a 1.0 mm-thick polyester base fabric (base material 10), which is circular knitted polyester, and laminated rolls. Pressure bonding was performed at a temperature of 40°C. Thereafter, aging was performed under the conditions of 50° C./48 hours to obtain a standard synthetic imitation leather (common dry leather using MEK) for texture (flexibility) evaluation.
[合否判定について]
 各表中には、剥離強度が1.5kgf/inch以上であり、かつ風合い(柔軟性)評価がA~Cであるものを「Pass」とし、この基準に合致しないものを「Fail」として判定した。
[Regarding pass/fail judgment]
In each table, a peel strength of 1.5 kgf / inch or more and a texture (flexibility) evaluation of A to C are judged as "Pass", and those that do not meet this standard are judged as "Fail". did.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、表2,3中の下地層用配合液の塗工膜厚は、バーコーターと表記している以外のものについては、ダイスロットから一定の間隔を開けて下地層用配合液を塗工するダイコーティングによるものであるので、ダイスロットと基材との間隔を塗工した直後のウェット状態の塗工膜厚の参考値とした。
 そして、表2,3中の下地層用配合液の塗工膜厚として、バーコーターと表記しているものについては、記載されている番手のバーコーターで塗工したことを示し、該バーコーターのメーカー資料(第一理化株式会社)より引用したウェット状態の目安膜厚を、ウェット状態の塗工膜厚の参考値として括弧内に併記した。
In Tables 2 and 3, the coating film thickness of the underlayer composition liquid is coated with a certain distance from the die slot for those other than the bar coater. Since this is due to die coating, the distance between the die slot and the base material was used as a reference value for the coating film thickness in the wet state immediately after coating.
In Tables 2 and 3, the bar coater indicated as the coating film thickness of the base layer formulation liquid indicates that the coating was performed using the bar coater of the indicated count. The standard film thickness in the wet state quoted from the manufacturer's data (Daiichi Rika Co., Ltd.) is also written in parentheses as a reference value for the coating film thickness in the wet state.
 表2,3中の下地層(乾燥)厚みは、実施例3、8、10、比較例3についてはSEMによる断面画像から10点平均で計測し算出した。
 一方、実施例1、2、4~7、9、比較例2、4については下地層20がSEMによる断面画像で確認できなかったため、離型紙(大日本印刷株式会社製の「DNTP-FL」)上に、下地層20の乾燥時の目付量と同等となるように、計測対象の水性ポリウレタン樹脂を含む配合液を塗工し、乾燥工程として、60℃で4分、100℃で3分、120℃で3分の各工程を順に経た後に、離型紙に形成された下地層の厚みを、計測対象の下地層20の厚みとした。
The (dry) thickness of the base layer in Tables 2 and 3 was calculated by measuring 10-point averages from cross-sectional images obtained by SEM for Examples 3, 8, 10 and Comparative Example 3.
On the other hand, in Examples 1, 2, 4 to 7, 9 and Comparative Examples 2 and 4, since the base layer 20 could not be confirmed in the cross-sectional image by SEM, release paper (“DNTP-FL” manufactured by Dai Nippon Printing Co., Ltd.) ), a blended liquid containing the water-based polyurethane resin to be measured is applied so as to be equivalent to the basis weight of the underlying layer 20 when dry, and the drying process is 60° C. for 4 minutes and 100° C. for 3 minutes. , and 3 minutes at 120° C., the thickness of the base layer formed on the release paper was used as the thickness of the base layer 20 to be measured.
 表2,3より、本実施例は、発泡密度を0.3g/cm未満に下げ、従来のレザー、例えば、DMF使用の湿式法で作製された合成擬革と同程度の優れた風合い(柔軟性)を発現させても、良好な密着性を発揮することがわかった。
 また、本実施例は、比較例1のように基材に水を含浸させた場合に比べて高い剥離強度が得られた。これは、比較例1では、マングル使用による脱水などで単位面積当たりの水分量の分布にバラツキが生じやすく、発泡層となりうる湿気硬化型接着剤が局所的に過剰発泡したり、過剰に基布含浸したりしたためと推察される。
From Tables 2 and 3, this example reduces the foaming density to less than 0.3 g/cm 3 and has an excellent texture comparable to that of conventional leather, for example, synthetic imitation leather made by a wet method using DMF ( It was found that good adhesion was exhibited even when flexibility) was expressed.
Moreover, in this example, a higher peel strength was obtained than in the case where the base material was impregnated with water as in Comparative Example 1. This is because in Comparative Example 1, the distribution of the amount of water per unit area tends to vary due to dehydration due to the use of mangles, and the moisture-curable adhesive that can be a foam layer locally foams excessively, and excessively It is presumed that it was impregnated.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 10 基材
 20 下地層
 30 発泡層
 40 表皮層
REFERENCE SIGNS LIST 10 base material 20 base layer 30 foam layer 40 skin layer

Claims (10)

  1.  基材と、
     前記基材上に設けられた水溶性樹脂を含む配合液により形成される下地層と、
     前記下地層上に設けられた末端にイソシアネート基を有するウレタンプレポリマーを発泡してなる発泡層とを備え、
     前記下地層の目付量が3~60g/m・dryであり、
     前記下地層の乾燥後の皮膜破断強度が5MPa以上である、多孔層構成体。
    a substrate;
    A base layer formed of a liquid mixture containing a water-soluble resin provided on the base material;
    A foam layer formed by foaming a urethane prepolymer having an isocyanate group at the end provided on the base layer,
    The base layer has a basis weight of 3 to 60 g/m 2 ·dry,
    The porous layer structure, wherein the film breaking strength of the underlayer after drying is 5 MPa or more.
  2.  前記水溶性樹脂を含む配合液の粘度が25℃において500~50,000mPa・sである、請求項1に記載の多孔層構成体。 The porous layer structure according to claim 1, wherein the viscosity of the blended liquid containing the water-soluble resin is 500 to 50,000 mPa·s at 25°C.
  3.  前記水溶性樹脂が水性ポリウレタン樹脂、水性ポリエチレングリコール樹脂及び水性ポリビニルアルコール樹脂からなる群から選ばれる少なくとも1種である、請求項1又は2に記載の多孔層構成体。 The porous layer structure according to claim 1 or 2, wherein the water-soluble resin is at least one selected from the group consisting of water-based polyurethane resin, water-based polyethylene glycol resin and water-based polyvinyl alcohol resin.
  4.  前記水溶性樹脂が水性ポリウレタン樹脂である、請求項3に記載の多孔層構成体。 The porous layer structure according to claim 3, wherein the water-soluble resin is an aqueous polyurethane resin.
  5.  前記水溶性樹脂が水性ポリエチレングリコール樹脂であり、前記水性ポリエチレングリコール樹脂の数平均分子量が50万以上である、請求項3に記載の多孔層構成体。 The porous layer structure according to claim 3, wherein the water-soluble resin is a water-based polyethylene glycol resin, and the number-average molecular weight of the water-based polyethylene glycol resin is 500,000 or more.
  6.  前記下地層と前記基材との厚み比が、1:10~1:1,000である、請求項1~5のいずれか1項に記載の多孔層構成体。 The porous layer structure according to any one of claims 1 to 5, wherein the thickness ratio between the underlayer and the substrate is 1:10 to 1:1,000.
  7.  前記発泡層の前記下地層が積層された面の反対面に表皮層を有する、請求項1~6のいずれか1項に記載の多孔層構成体。 The porous layer structure according to any one of claims 1 to 6, which has a skin layer on the surface of the foam layer opposite to the surface on which the base layer is laminated.
  8.  基材上に水溶性樹脂を含む配合液を塗工し、前記基材上に湿潤状態の下地層を形成する下地層積層工程と、
     前記湿潤状態の下地層上に末端にイソシアネート基を有するウレタンプレポリマーを配設し、前記ウレタンプレポリマーが前記下地層の水分によって発泡して発泡層を形成する発泡層積層工程とを含み、
     前記下地層の目付量が3~60g/m・dryであり、
     前記下地層の乾燥後の皮膜破断強度が5MPa以上である、多孔層構成体の製造方法。
    A base layer lamination step of applying a liquid mixture containing a water-soluble resin onto a base material to form a wet base layer on the base material;
    a foam layer lamination step of disposing a urethane prepolymer having an isocyanate group at the terminal on the wet base layer, and foaming the urethane prepolymer with the moisture of the base layer to form a foam layer;
    The base layer has a basis weight of 3 to 60 g/m 2 ·dry,
    A method for producing a porous layer structure, wherein the film breaking strength of the underlayer after drying is 5 MPa or more.
  9.  前記発泡層の前記下地層が積層された面の反対面に表皮層を積層する表皮層積層工程をさらに含む、請求項8に記載の多孔層構成体の製造方法。 The method for producing a porous layer structure according to claim 8, further comprising a skin layer lamination step of laminating a skin layer on the surface of the foam layer opposite to the surface on which the base layer is laminated.
  10.  前記発泡層積層工程の後に、前記発泡層の発泡を促すエージング処理を施すエージング工程をさらに含む、請求項8又は9に記載の多孔層構成体の製造方法。 The method for manufacturing the porous layer structure according to claim 8 or 9, further comprising an aging process for promoting foaming of the foam layer after the foam layer lamination process.
PCT/JP2022/001901 2021-01-22 2022-01-20 Porous layer structure, and method for producing porous layer structure WO2022158507A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021008615A JP6911215B1 (en) 2021-01-22 2021-01-22 Porous layer structure and method for manufacturing the porous layer structure
JP2021-008615 2021-01-22

Publications (1)

Publication Number Publication Date
WO2022158507A1 true WO2022158507A1 (en) 2022-07-28

Family

ID=76967985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001901 WO2022158507A1 (en) 2021-01-22 2022-01-20 Porous layer structure, and method for producing porous layer structure

Country Status (2)

Country Link
JP (1) JP6911215B1 (en)
WO (1) WO2022158507A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102498036B1 (en) * 2021-06-10 2023-02-13 주식회사 하코 Eco-friendly artificial leather impregnated with water based polyurethanes and method for preparing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201676A (en) * 2001-12-28 2003-07-18 Dainichiseika Color & Chem Mfg Co Ltd Fibrous sheet and method of producing the same
JP2006523756A (en) * 2003-04-16 2006-10-19 ジェントロール Aqueous polyurethane composition and synthetic leather having novel structure
JP2011089245A (en) * 2009-09-28 2011-05-06 Toyobo Co Ltd Synthetic leather for interior automotive trim
JP2020002474A (en) * 2018-06-25 2020-01-09 帝人コードレ株式会社 Sheet-like material and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197642A (en) * 1987-10-09 1989-04-17 Kanto Leather Kk Manufacture of moisture-permeable and ventilating wallpaper with sprinkle pattern
JP4875179B2 (en) * 2009-03-31 2012-02-15 本田技研工業株式会社 Synthetic leather for vehicle interior materials and method for producing the same
JP5583743B2 (en) * 2012-12-13 2014-09-03 高圧クロス株式会社 Synthetic leather and its manufacturing method
JP6542436B2 (en) * 2018-06-18 2019-07-10 株式会社イノアックコーポレーション Skin material and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201676A (en) * 2001-12-28 2003-07-18 Dainichiseika Color & Chem Mfg Co Ltd Fibrous sheet and method of producing the same
JP2006523756A (en) * 2003-04-16 2006-10-19 ジェントロール Aqueous polyurethane composition and synthetic leather having novel structure
JP2011089245A (en) * 2009-09-28 2011-05-06 Toyobo Co Ltd Synthetic leather for interior automotive trim
JP2020002474A (en) * 2018-06-25 2020-01-09 帝人コードレ株式会社 Sheet-like material and method for producing the same

Also Published As

Publication number Publication date
TW202243869A (en) 2022-11-16
JP2022112712A (en) 2022-08-03
JP6911215B1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP4106996B2 (en) Aqueous polyurethane resin dispersion and aqueous adhesive
JP5013233B2 (en) Urethane resin composition, coating agent, urethane resin composition for skin layer formation of leather-like sheet, laminate and leather-like sheet
EP3757143B1 (en) Polyurethane prepolymer, adhesive and synthetic imitation leather
JPS6257467A (en) Coating agent composition
JP4042016B2 (en) Method for producing fiber sheet composite and artificial leather
JP7261143B2 (en) Foam-forming composition, foam, method for producing foam, and leather material
WO2000046301A1 (en) Aqueous urethane resin composition for forming microporous material, method for preparing fiber sheet composite and synthetic leather
WO2022158507A1 (en) Porous layer structure, and method for producing porous layer structure
WO2014030452A1 (en) Urethane resin composition, leather-like sheet, and laminate
JP2003336028A (en) Aqueous dry laminate adhesive composition for synthetic leather and method for manufacturing synthetic leather using the same
JP2002088662A (en) Water-based dry laminating adhesive composition for synthetic leather and method for producing synthetic leather using the same
TWI835056B (en) Porous layer structure and manufacturing method of porous layer structure
JP4788020B2 (en) Coating agent composition
JP2005206970A (en) Method for producing fiber laminate, fiber laminate and synthetic leather
JP7441742B2 (en) Composition for forming foam, foam, method for producing foam, and leather material
EP3819341B1 (en) Urethane resin composition and layered product
JP6978930B2 (en) Foam forming composition, foam, foam manufacturing method and leather material
TWI801668B (en) Porous layer structure and its manufacturing method
JP7285355B1 (en) Urethane prepolymer composition, moisture-curing adhesive, laminate, and synthetic leather
JP7456864B2 (en) Foam-forming composition, foam, method for producing foam, and leather material
JP2013011040A (en) Grained leather-like sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742629

Country of ref document: EP

Kind code of ref document: A1