WO2019155909A1 - Structural body, method for manufacturing structural body, and machining device - Google Patents

Structural body, method for manufacturing structural body, and machining device Download PDF

Info

Publication number
WO2019155909A1
WO2019155909A1 PCT/JP2019/002422 JP2019002422W WO2019155909A1 WO 2019155909 A1 WO2019155909 A1 WO 2019155909A1 JP 2019002422 W JP2019002422 W JP 2019002422W WO 2019155909 A1 WO2019155909 A1 WO 2019155909A1
Authority
WO
WIPO (PCT)
Prior art keywords
cfrp
thermal expansion
frame
iron
processing apparatus
Prior art date
Application number
PCT/JP2019/002422
Other languages
French (fr)
Japanese (ja)
Inventor
田中 米太
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2019155909A1 publication Critical patent/WO2019155909A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/01Frames, beds, pillars or like members; Arrangement of ways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties

Definitions

  • the present invention relates to a structure including carbon fibers, a method for manufacturing the structure, and a processing apparatus using the structure.
  • the frame that supports the constituent members is made of a metal such as iron.
  • the frame supports components such as a light irradiation unit, a mask stage, a projection lens, and a work (substrate) stage.
  • the frame supports structural members such as a laser device and a work stage.
  • the metal frame expands and contracts due to thermal expansion.
  • the frame expands and contracts, the position of the above-described component member supported by the frame may change, and the processing accuracy may be reduced. Therefore, it is desirable to use a material having a thermal expansion coefficient as low as possible as the material of the frame of the processing apparatus.
  • the frame of the processing apparatus needs to have high rigidity (Young's modulus).
  • the frame supports the work stage.
  • the work stage frequently repeats successive movements in step-and-repeat for dividing and exposing a region of the substrate or in drilling processing for forming a large number of through holes in the substrate. Therefore, if the work stage is supported by a frame with low rigidity, the frame vibrates greatly due to the successive movement of the work stage, and the time until the vibration of the frame stops, that is, the time until the next exposure or processing is performed becomes long. .
  • the processing time of the workpiece becomes long, and the productivity of the apparatus is lowered.
  • the rigidity of the frame is low, the frame is weak against external vibrations and is likely to sway. For this reason, the processing accuracy may be deteriorated.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2017-610608 discloses that CFRP is used for an automobile frame or the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 2017-61068 discloses that a CFRP reinforcing material is bonded to the surface of a metal member to reinforce an automobile skeleton member while suppressing an increase in weight. Yes.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2017-61068 only discloses the use of CFRP as a reinforcing material for automobile frames, and is suitable as a frame for a processing apparatus.
  • the material is not considered.
  • CFRP alone as a frame of the processing apparatus, in recent years, the processing apparatus is required to have very high processing accuracy, and the structure has better characteristics than the CFRP alone as the material of the frame. Is required to be used.
  • in order to improve the characteristics for example, even if CFRP and another material such as metal are combined, it is not clear how to combine them.
  • an object of the present invention is to provide a structure having better characteristics as a material such as a frame of a processing apparatus, a method for manufacturing the structure, and a processing apparatus using the structure.
  • a first material mainly composed of carbon fibers and a second material mainly composed of carbon fibers are integrated.
  • the thermal expansion coefficient of the first material and the thermal expansion coefficient of the second material are opposite to each other, and the thickness of the second material is the thickness of the first material. Thinner than that.
  • the structure in which the first material mainly composed of carbon fiber and the second material mainly composed of carbon fiber are combined has a small coefficient of thermal expansion (the coefficient of thermal expansion is 0 or 0). Close) and a structure with less dimensional deformation due to temperature change than the CFRP alone. It is also possible to provide a structure having relatively high rigidity, relatively low density, and high specific rigidity. That is, as a material for a frame or the like of a processing apparatus, a structure having better characteristics than that of CFRP alone can be obtained.
  • the first material may be a carbon fiber reinforced plastic member.
  • Pitch-based CFRP has a negative thermal expansion coefficient
  • PAN-based CFRP has a positive thermal expansion coefficient. Therefore, even if a material having any positive or negative thermal expansion coefficient is used as the second material, the structure in which the first material and the second material are combined has a small thermal expansion coefficient (close to 0 or 0). ) It can be a structure. That is, when a material having a positive thermal expansion coefficient is used as the second material, a pitch-based CFRP member is used as the first material, and a material having a negative thermal expansion coefficient is used as the second material. In this case, a PAN-based CFRP member may be used as the first material.
  • the second material may be a metal-based material
  • the first material may be a pitch-based carbon fiber reinforced plastic member.
  • Pitch-based CFRP has a characteristic that the thermal expansion coefficient has a negative value and shrinks in the fiber direction when heated.
  • the metal has a positive coefficient of thermal expansion. Therefore, by combining the first material, which is a pitch-based CFRP member, and the second material, the main component of which is a metal, a structure having a thermal expansion coefficient of, for example, 0 can be obtained relatively easily. It becomes.
  • a structure in which a first material that is a pitch-based CFRP member and a second material containing a metal as a main component is combined with a structure that has higher rigidity, lower density, and higher specific rigidity than metal. can do.
  • the metal may be iron.
  • the metal member which has iron as a main component can be utilized as a 2nd material.
  • said structure can be obtained relatively inexpensively.
  • said structure should just have a thermal expansion coefficient below 1/10 of iron, and Young's modulus is larger than iron.
  • a structure having a thermal expansion coefficient of 1/10 or less of iron that is, a range of ⁇ 1.0 ⁇ 10 ⁇ 6 and a Young's modulus larger than iron is used as a material for a frame of a processing apparatus. It is a structure having better characteristics than CFRP alone.
  • the first material and the second material may be integrated with a room temperature curable resin. In this case, the first material and the second material can be integrated while suppressing the residual stress generated by the heat treatment. Therefore, it is possible to prevent the structure from being deformed due to the residual stress.
  • a step of preparing a first material mainly composed of carbon fibers and a second material mainly composed of carbon fibers Integrating the first material and the second material, and in the preparing step, the first material and the second material are selected so that the coefficients of thermal expansion are opposite to each other.
  • the sum of the value obtained by multiplying the coefficient of thermal expansion, Young's modulus and thickness of the first material and the value obtained by multiplying the coefficient of thermal expansion, Young's modulus and thickness of the second material is zero.
  • the first material and the second material having the set thickness are prepared.
  • the second material may be mainly composed of a metal.
  • the thermal expansion coefficient is 0, the rigidity is higher than the metal, and the density is high. A small structure with high specific rigidity can be manufactured.
  • mode of the processing apparatus which concerns on this invention is a processing apparatus which processes a workpiece
  • frame which supports the structural member of the said processing apparatus contains one of said structures.
  • a processing apparatus using a structure in which a first material mainly composed of carbon fibers and a second material mainly composed of carbon fibers are combined as a frame material is used for temperature changes and external
  • the dimensional deformation due to mechanical factors is small and a relatively lightweight processing device can be obtained.
  • a structure having better characteristics as a material for a frame of a processing apparatus specifically, a characteristic having a coefficient of thermal expansion smaller than that of CFRP alone while suppressing a decrease in rigidity and an increase in density is realized. can do.
  • FIG. 1 is a cross-sectional view of a structure in the present embodiment.
  • FIG. 2 is a view showing a schematic configuration of the exposure apparatus.
  • FIG. 3 is a diagram showing a schematic configuration of the laser processing apparatus.
  • FIG. 4 is a cross-sectional view of the structure of the comparative example.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a structure 10 according to the first embodiment.
  • the structure 10 is a CFRP structure including carbon fiber reinforced plastic (CFRP).
  • the structure 10 has a configuration in which a first material 11 mainly composed of carbon fibers and a second material 12 mainly composed of carbon fibers are integrated.
  • the first material 11 is a carbon fiber reinforced plastic member (CFRP member)
  • the second material 12 is a metal member.
  • the CFRP member 11 is configured by laminating a plurality of prepregs, although not particularly illustrated.
  • the prepreg is a sheet-like member obtained by impregnating a carbon fiber with a resin while maintaining the fiber orientation.
  • the resin constituting the prepreg is, for example, a thermosetting epoxy resin.
  • thermosetting resins such as unsaturated polyester, vinyl ester, phenol, cyanate ester, a polyimide, can also be used, for example.
  • CFRP CFRP
  • a plurality of prepregs are laminated in a mold so that the direction of the fibers is different (for example, 20 layers), heated to about 120 ° C to 130 ° C under reduced pressure, and pressurized (crimped) And then cured.
  • the reason why the prepregs are overlapped so that the directions of the fibers are different is to enhance the strength in the in-plane direction of the prepreg isotropically.
  • a standard CFRP plate for example, 5 mm UD (UNI-DIRECTION) material
  • the UD material is a material in which the direction of the fiber extends only in one direction.
  • the CFRP manufactured in this way is a material having a high strength while having a lower density (that is, lighter) than a metal material such as iron or aluminum.
  • the CFRP member 11 is a member obtained by cutting the completed CFRP into a desired size. CFRP is classified into a PAN system using polyacrylonitrile as a raw material and a pitch system using coal tar pitch or petroleum pitch as a raw material, depending on the starting material.
  • the CFRP constituting the CFRP member 11 in the present embodiment is a pitch-based CFRP.
  • the metal member 12 is formed integrally with the surface (first surface) 11 a of the CFRP member 11. This embodiment demonstrates the case where the metal member 12 is comprised with iron. Further, the thickness D2 of the metal member 12 is set to be thinner than the thickness D1 of the CFRP member 11. Here, the “thickness” is the thickness of the member in the direction orthogonal to the surface 11 a of the CFRP member 11.
  • the metal member 12 may be formed by arranging a plurality of metal wires in parallel on the surface 11a of the CFRP member 11 in a planar shape.
  • the structure 10 can have a configuration in which the CFRP 11 and the metal member 12 are bonded together with an adhesive (not shown).
  • the adhesive can be made of, for example, a room temperature curable resin. However, the kind of adhesive is not limited to the above.
  • the CFRP member 11 is composed of a carbon fiber as a main component and a curing agent (resin) as a subcomponent. Therefore, the structure 10 may be formed by integrating only the carbon fiber that is the main component of the CFRP member 11 and the metal member 12 with a curing agent that is a subcomponent of the CFRP member 11 as a molding material.
  • the CFRP member 11 is prepared by cutting out the completed CFRP to a required size.
  • a metal member 12 having the same size as the surface 11a of the CFRP member 11 is prepared.
  • the thicknesses of the CFRP member 11 and the metal member 12 are set by methods described later.
  • a liquid room temperature curable resin is applied to the surface 11a of the CFRP member 11, and the metal member 12 is disposed thereon and cured at room temperature without heating.
  • a CFRP member 11 and a metal member 12 are disposed in a container so that bubbles do not enter the resin layer, and a liquid resin is formed while evacuating the gap between the CFRP member 11 and the metal member 12. And then released into the atmosphere.
  • the structure 10 can be used for a frame of a processing apparatus, for example.
  • the processing apparatus includes, for example, an exposure apparatus that exposes a pattern such as a circuit on a semiconductor substrate or a printed board, and a laser processing apparatus that performs cutting and drilling by irradiating the substrate with a laser.
  • a stage apparatus used as a part of the configuration of the exposure apparatus or the laser processing apparatus can be included in the processing apparatus.
  • the stage device is a device that holds and moves a workpiece such as the substrate described above.
  • FIG. 2 is a view showing a schematic configuration of the exposure apparatus.
  • An exposure apparatus 200 shown in FIG. 2 is a projection exposure apparatus that exposes a workpiece.
  • the workpiece is a silicon workpiece, a printed substrate, a glass substrate for a liquid crystal panel, or the like, and is a workpiece having a resist film coated on the surface thereof.
  • the exposure apparatus 200 includes a light irradiation unit 21, a mask 22, a projection lens 23, a work stage 24, and a frame 25.
  • the light irradiation unit 21 includes a lamp 21a that is an exposure light source that emits light including ultraviolet rays, and a mirror 21b that reflects light from the lamp 21a.
  • the lamp 21a and the mirror 21b are accommodated in the lamp house 21c.
  • LED, a laser, etc. may be sufficient as a light source.
  • a pattern such as a circuit pattern that is exposed (transferred) to the workpiece is formed on the mask 22.
  • the exposure light from the light irradiation unit 21 is irradiated onto the work held by the work stage 24 via the mask 22 and the projection lens 23, and the pattern formed on the mask 22 is projected onto the work and exposed.
  • the frame 25 supports main members of the exposure apparatus 200 such as the light irradiation unit 21, the mask 22, the projection lens 23, and the work stage 24. These main members are held in a predetermined position by the frame 25 in a horizontal state.
  • FIG. 3 is a diagram showing a schematic configuration of the laser processing apparatus.
  • a laser processing apparatus 300 illustrated in FIG. 3 includes a laser emitting unit 31, a work stage 32, and a frame 33.
  • the laser emitting unit 31 emits a laser in the direction indicated by the arrow in the figure.
  • the laser beam from the laser emitting unit 31 is irradiated onto the workpiece held by the workpiece stage 32, and processing such as cutting and drilling of the workpiece is performed.
  • the frame 33 supports main members of the laser processing apparatus 300 such as the laser emitting unit 31 and the work stage 32. These main members are held in a predetermined position by the frame 33 in a horizontal state.
  • Each frame of the processing apparatus supports main members that are appropriately positioned. Therefore, when the temperature of the place where the processing device is placed changes and the frame expands and contracts due to thermal expansion, the position of the main member supported by the frame changes, and the processing accuracy decreases. Furthermore, it is conceivable that there may be problems that the desired position cannot be exposed and laser processing (drilling or cutting) cannot be performed. As a countermeasure, the environment in the factory where the processing equipment is installed is managed so that the temperature is always constant, and the temperature is controlled by putting each equipment in a constant temperature booth. ing.
  • the processing apparatus Even if the environment is managed as described above, if the processing apparatus operates, it is inevitable that the apparatus itself generates heat. For example, if the work stage moves, heat is generated from the drive unit such as a motor, and if it is a laser processing device, heat is generated in the part of the work that is processed (hole drilling or cutting). To do. In the case of an exposure apparatus, when light passes through the projection lens, the projection lens portion generates heat by the light being absorbed by the lens and the lens barrel that holds the lens. If the frame is made of a material that is likely to thermally expand, the frame expands and contracts due to the heat generated by the apparatus itself as described above, causing a reduction in processing accuracy. Therefore, as a material of the frame of the processing apparatus, a material having a thermal expansion coefficient as small as possible, for example, a material having a thermal expansion coefficient of 1/10 or less (preferably 0) with respect to a metal such as iron is desired.
  • the frame of the processing apparatus needs to have high rigidity (Young's modulus).
  • the frame supports the work stage.
  • the work stage frequently repeats successive movements in step-and-repeat for dividing and exposing a region of the substrate or in drilling processing for forming a large number of through holes in the substrate. Therefore, when the work stage is supported by a frame with low rigidity, the time until the vibration of the frame stops after the stage moves and stops increases, the work processing time becomes longer, and the productivity of the equipment decreases. Resulting in.
  • the frame has low rigidity, it is weak against vibration from the outside and easily sways. This also causes the processing accuracy to deteriorate. Therefore, as the material of the frame of the processing apparatus, a material having as high a rigidity as possible, for example, a material having a higher rigidity than a metal such as iron is desired.
  • the frame of the processing apparatus has a small density so that even a large apparatus is relatively light.
  • the cost associated with the device increases, for example, the floor of the factory where the device is installed must be reinforced. That is, it is desirable that the material (structure) constituting the frame of the processing apparatus has the following three characteristics.
  • the coefficient of thermal expansion (CTE) is close to 0 (there is little dimensional deformation due to temperature change).
  • the rigidity is high, that is, the Young's modulus is large (bending, bending, and distortion hardly occur, that is, there is little dimensional deformation due to external factors).
  • the density is small (even a large apparatus is relatively light).
  • CFRP is a material that satisfies these conditions. Although it is conceivable to use CFRP alone as a frame of the processing apparatus, in recent years, extremely high processing accuracy is required for the processing apparatus, and the structure of the frame has better characteristics than the CFRP alone. It is required to use the body.
  • the present inventor as a structure capable of drawing out better performance as a frame of a processing apparatus, a first material mainly composed of carbon fiber and a second material mainly composed of metal other than carbon fiber, for example.
  • a first material mainly composed of carbon fiber and a second material mainly composed of metal other than carbon fiber for example.
  • this inventor discovered the reference
  • CFRP was used as the first material mainly composed of carbon fiber. CFRP is classified into those composed of pitch-based CFRP and those composed of PAN (Polyacrylonitrile) -based CFRP. Table 1 shows rough values of pitch-based CFRP and PAN-based CFRP, and, as a comparative example, iron thermal expansion coefficient (CTE), Young's modulus, density, and specific rigidity. In Table 1, the unit of specific rigidity is abbreviated as “GPa”.
  • the thermal expansion coefficient of iron is the largest in Table 1, and CFRP is about 1/10 of the pitch PAN system compared to iron. Thus, it can be seen that CFRP has less dimensional deformation due to temperature change than iron. Further, Young's modulus is twice that of pitch-based CFRP than that of iron, but PAN-based CFRP is about 1 ⁇ 2 of iron. That is, pitch-based CFRP has higher rigidity than iron, but PAN-based CFRP has lower rigidity than iron. Furthermore, it can be seen that the density of CFRP is about 1 ⁇ 4 that of iron, and that the density is considerably lighter than iron.
  • the specific rigidity is a value obtained by dividing Young's modulus by density. The larger the value, the greater the rigidity per unit density, in other words, “light and strong”. If there is a limit to the size of the device or the load capacity of the floor, it is advantageous to use a material with a large value.
  • the combinations in which the signs of the thermal expansion coefficients are reversed are the combination of pitch-based CFRP and PAN-based CFRP and the combination of pitch-based CFRP and iron. Accordingly, it is considered that the structure using a combination of pitch-based CFRP and PAN-based CFRP and the structure using a combination of pitch-based CFRP and iron can have a coefficient of thermal expansion of zero.
  • the product (A) of the value of thermal expansion coefficient and Young's modulus of pitch-based CFRP and the product of the value of thermal expansion coefficient and Young's modulus of PAN-based CFRP. (B) can be calculated as follows.
  • A 12 times B.
  • the thickness of the CFRP member using the PAN-based CFRP corresponding to B is 10 times that of the CFRP member using the pitch-based CFRP corresponding to A (pitch-based CFRP member). If bonded together, the thermal expansion coefficient of the structure can be made zero.
  • FIG. 4 is a view showing a structure 10A in which the pitch-based CFRP member 11 and the PAN-based CFRP member 13 are combined. If the thickness D1 of the pitch CFRP member 11 is 100 ⁇ m, the thickness D3 of the PAN CFRP member 13 is 1000 ⁇ m. With the structure as described above, the structure 10A having a small thermal expansion coefficient (zero in calculation) can be formed. Further, the density MA of the structure 10A is 1.78 g / cm 3, which is very light as compared with iron, as determined from the following equation.
  • the specific rigidity HA of the structure 10A is 71 Gpa ⁇ cm 3 / g, which is larger than iron, as can be obtained from the following equation.
  • the product (A) of the value of the thermal expansion coefficient and Young's modulus of the pitch-based CFRP is ⁇ 600 ⁇ 10 ⁇ 6 as shown in the above equation (1)
  • the product of the value of the thermal expansion coefficient of iron and the Young's modulus ( C) is 2000 ⁇ 10 ⁇ 6 as shown in the following formula (6).
  • A is 1/3 of C. Therefore, if the thickness of the member (metal member) using iron corresponding to C is 1/3 of the pitch-based CFRP member corresponding to A and bonded together, the coefficient of thermal expansion of the structure is reduced to zero. be able to.
  • FIG. 1 A structure in which a pitch-based CFRP member and a metal member are combined is shown in FIG.
  • the thickness D1 of the pitch-based CFRP member 11 is 100 ⁇ m
  • the thickness D2 of the metal member 12 is about 33 ⁇ m.
  • the Young's modulus (rigidity: G2) of the structure 10B is calculated, it becomes 350 GPa as shown in the following equation.
  • This value is 1.75 times the Young's modulus (200 GPa) of iron. If the Young's modulus is larger than that of iron, it is desirable as a material for the frame of the processing apparatus.
  • the overall thickness can be reduced to about 1/10 of the structure 10A in which the pitch-based CFRP member 11 and the PAN-based CFRP member 13 shown in FIG. 4 are combined.
  • the density (MB) of the structure 10B is larger than that of a single CFRP because iron is used.
  • the density MB is about 3.16 g / cm 3 as shown in the following formula, which is less than half that of the iron density (7.9 g / cm 3 ). be able to.
  • the thickness of a member (metal member) using a material with a high density out of the two materials to be combined is smaller than the thickness of a member (CFRP member) using a material with a low density, it is obtained.
  • An increase in the density of the structure to be obtained can be suppressed.
  • the specific rigidity HB of the structure 10B is 111 Gpa ⁇ cm 3 / g as determined from the following equation, which is larger than that of iron and the structure 10A described above.
  • the coefficient of thermal expansion is small (the calculated value is 0), rigidity, and specific rigidity. It is possible to produce a lightweight and tough structure that is both higher than metal and suppressed in density increase.
  • the first material and the second material materials having positive and negative thermal expansion coefficients that are opposite to each other are selected. And, the sum of the value obtained by multiplying the thermal expansion coefficient, Young's modulus and thickness of the first material and the value obtained by multiplying the thermal expansion coefficient, Young's modulus and thickness of the second material is zero. The thickness of these two materials is set. If such a structure is used as the material of the frame of the processing apparatus, a lightweight processing apparatus with little dimensional deformation due to temperature change and external factors can be realized.
  • the structure manufactured as described above has a structure in which the first material and the second material, whose positive and negative thermal expansion coefficients are opposite to each other, are integrated, and the thickness of the second material is the first. It is set thinner than the thickness of one material.
  • the first material can be a pitch-based CFRP member.
  • the pitch-based CFRP member has a thermal expansion coefficient of ⁇ 1.2 ⁇ 10 ⁇ 6 to ⁇ 1.5 ⁇ 10 ⁇ 6 and has a negative thermal expansion coefficient.
  • the metal has a positive coefficient of thermal expansion.
  • the first material which is a pitch-based CFRP member
  • the second material the main component of which is a metal
  • the first material can be a CFRP member as described above.
  • a CFRP member combining carbon fiber and resin can be used as the first material. Therefore, the structure can be easily obtained with a simple structure in which the CFRP member and the second material mainly containing metal are bonded together.
  • the metal member can be made of iron.
  • the structure can be provided at a low cost by using a relatively inexpensive metal.
  • the thermal expansion coefficient is much smaller than that of iron (calculated value is 0), and the rigidity is also made of carbon fiber. Utilizing the characteristics, it is possible to obtain a light body with a higher specific rigidity, which is lighter and has a density much lower than that of iron.
  • the first material and the second material can be integrated with a room temperature curable resin. Since the room temperature curable resin does not require heating at the time of curing, the residual stress caused by heating does not occur in the resin layer after formation. For this reason, it is possible to appropriately suppress the deformation of the structure due to the residual stress.
  • the room temperature curable resin may be a room temperature curable epoxy resin.
  • the room temperature curing type epoxy resin is used for bonding and solidifying carbon fibers in CFRP, and has a track record as an adhesive that does not impair the characteristics of carbon fibers. Furthermore, since an epoxy resin is a general resin and relatively inexpensive, the structure can be provided at a low cost.
  • the first material and the second material are selected by a very simple procedure.
  • the distribution (thickness) between the two can be set. Therefore, it is possible to easily and appropriately obtain a structure having a smaller coefficient of thermal expansion than that of a single carbon fiber and a rigidity higher than that of a metal such as iron, a lower density, and a higher specific rigidity.
  • the structure as described above as a frame of the processing apparatus, it is possible to realize a light processing apparatus with little dimensional deformation due to temperature change and external factors.
  • the structure 10 is used as a frame of a processing apparatus.
  • the present invention is not limited to the above.
  • the structure 10 has the characteristics that the coefficient of thermal expansion is 0, the rigidity is high, the weight is relatively light, and the specific rigidity is high. Therefore, by utilizing these characteristics, the structure 10 may be used as a material for a component of a large apparatus that requires strict dimensional stability in an environment where a temperature change or the like may occur.
  • a thermal expansion coefficient is a value close
  • the pitch-based CFRP has a negative thermal expansion coefficient and the PAN-based CFRP has a positive thermal expansion coefficient as described above. Yes. Therefore, even if a material having any positive or negative thermal expansion coefficient is used as the second material, the first material that makes the thermal expansion coefficient zero when combined can be selected.
  • the first material that makes the thermal expansion coefficient zero when combined can be selected.
  • iron was used as a metal which comprises the metal member 12 was demonstrated, it is not limited to iron.
  • the metal has a thermal expansion coefficient of 1/10 or less of iron and a Young's modulus larger than iron (200 GPa) when combined with a first material (for example, CFRP member) mainly composed of carbon fiber.
  • any material that can realize the structure may be used, and for example, titanium may be used.
  • the material of the frame of the processing apparatus preferably has a Young's modulus larger than that of iron, and a practical value is, for example, 200 GPa to 400 GPa.

Abstract

Disclosed are a structural body having better characteristics as a material of a machining device frame or the like, a method for manufacturing the structural body, and a machining device employing the structural body. A structural body (CFRP structural body) (10) has a structure in which a first material having carbon fibers as a main component, and a second material having a main component other than carbon fibers are integrated. The thermal expansion coefficient of the first material and the thermal expansion coefficient of the second material have opposite signs, and the thickness of the second material is less than the thickness of the first material. Such a structural body (10) can be used as a frame for supporting a component member of a machining device.

Description

構造体、構造体の製造方法および加工装置Structure, structure manufacturing method and processing apparatus
 本発明は、炭素繊維を含む構造体、当該構造体の製造方法および当該構造体を使用した加工装置に関する。 The present invention relates to a structure including carbon fibers, a method for manufacturing the structure, and a processing apparatus using the structure.
 従来、露光装置やレーザ加工装置などの加工装置において、構成部材を支持するフレームは、鉄などの金属により構成されていた。露光装置の場合、フレームは、光照射部、マスクステージ、投影レンズ、ワーク(基板)ステージなどの構成部材を支持している。また、レーザ加工機の場合、フレームは、レーザ装置、ワークステージなどの構成部材を支持している。
 このような加工装置において、周辺温度の変化や装置自体の発熱が生じると、金属であるフレームが熱膨張により伸縮する。フレームが伸縮すると、フレームに支持されている上記の構成部材の位置が変化し、加工精度が低下するおそれがある。
 そのため、加工装置のフレームの材料としては、熱膨張率ができるだけ低い材料を用いることが望ましい。
Conventionally, in a processing apparatus such as an exposure apparatus or a laser processing apparatus, the frame that supports the constituent members is made of a metal such as iron. In the case of an exposure apparatus, the frame supports components such as a light irradiation unit, a mask stage, a projection lens, and a work (substrate) stage. In the case of a laser processing machine, the frame supports structural members such as a laser device and a work stage.
In such a processing apparatus, when the ambient temperature changes or the apparatus itself generates heat, the metal frame expands and contracts due to thermal expansion. When the frame expands and contracts, the position of the above-described component member supported by the frame may change, and the processing accuracy may be reduced.
Therefore, it is desirable to use a material having a thermal expansion coefficient as low as possible as the material of the frame of the processing apparatus.
 また、加工装置のフレームには、高い剛性(ヤング率)も必要である。上述したように、加工装置において、フレームはワークステージを支持する。ワークステージは、例えば、基板の領域を分割して露光するステップ・アンド・リピートや、基板内に多数のスルーホールを形成する穴あけ加工において、頻繁に逐次移動を繰り返す。そのため、剛性が低いフレームでワークステージを支持すると、ワークステージの逐次移動によってフレームが大きく振動し、フレームの振動が停止するまでの時間、即ち、次の露光や加工を行うまでの時間が長くなる。その結果、ワークの処理時間が長くなり、装置の生産性が低下してしまう。
 さらに、フレームの剛性が低いと、外部からの振動に対しても弱く、揺れが生じやすい。そのため、加工精度が悪くなる原因にもなり得る。
Further, the frame of the processing apparatus needs to have high rigidity (Young's modulus). As described above, in the processing apparatus, the frame supports the work stage. For example, the work stage frequently repeats successive movements in step-and-repeat for dividing and exposing a region of the substrate or in drilling processing for forming a large number of through holes in the substrate. Therefore, if the work stage is supported by a frame with low rigidity, the frame vibrates greatly due to the successive movement of the work stage, and the time until the vibration of the frame stops, that is, the time until the next exposure or processing is performed becomes long. . As a result, the processing time of the workpiece becomes long, and the productivity of the apparatus is lowered.
Furthermore, if the rigidity of the frame is low, the frame is weak against external vibrations and is likely to sway. For this reason, the processing accuracy may be deteriorated.
 また、フレーム部材の条件として、大型の装置であっても比較的軽量になるように、密度が小さいことも重要である。重量が重くなると、装置を設置する工場の床を補強しなければならなくなるなど、装置に係るコストが大きくなる。
 このように、加工装置のフレームは、剛性(ヤング率)が高く、かつ熱膨張係数および密度が小さいといった特性を有することが望まれる。これらの条件を満たす材料として、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic:CFRP)がある。
 例えば特許文献1(特開2017-61068号公報)には、自動車のフレーム等にCFRPを利用する点が開示されている。この特許文献1(特開2017-61068号公報)には、金属部材の表面にCFRP製の補強材を接着することで、重量の増加を抑えながら自動車の骨格部材を補強する点が開示されている。
In addition, as a condition of the frame member, it is also important that the density is small so that even a large apparatus is relatively light. As the weight increases, the cost associated with the device increases, for example, the floor of the factory where the device is installed must be reinforced.
As described above, it is desirable that the frame of the processing apparatus has characteristics such as high rigidity (Young's modulus) and low thermal expansion coefficient and density. As a material satisfying these conditions, there is carbon fiber reinforced plastic (CFRP).
For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2017-61068) discloses that CFRP is used for an automobile frame or the like. This Patent Document 1 (Japanese Patent Laid-Open No. 2017-61068) discloses that a CFRP reinforcing material is bonded to the surface of a metal member to reinforce an automobile skeleton member while suppressing an increase in weight. Yes.
特開2017-61068号公報JP 2017-61068 A
 上記特許文献1(特開2017-61068号公報)に記載の技術にあっては、自動車のフレームの補強材としてCFRPを利用する点が開示されているだけであり、加工装置のフレームとして適切な材料については考慮されていない。
 加工装置のフレームとしてCFRPを単体で用いることも考えられるが、近年、加工装置には非常に高い加工精度が要求されており、当該フレームの材料として、CFRP単体よりもさらに良い特性を有する構造体を用いることが求められる。ところが、特性を改良するために、例えば、CFRPと金属などの他の材料とを組み合わせるにしても、それらをどのように組み合わせればよいのかが明らかではない。
The technique described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2017-61068) only discloses the use of CFRP as a reinforcing material for automobile frames, and is suitable as a frame for a processing apparatus. The material is not considered.
Although it is conceivable to use CFRP alone as a frame of the processing apparatus, in recent years, the processing apparatus is required to have very high processing accuracy, and the structure has better characteristics than the CFRP alone as the material of the frame. Is required to be used. However, in order to improve the characteristics, for example, even if CFRP and another material such as metal are combined, it is not clear how to combine them.
 そこで、本発明は、加工装置のフレーム等の材料としてより良い特性を有する構造体、当該構造体の製造方法および当該構造体を使用した加工装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a structure having better characteristics as a material such as a frame of a processing apparatus, a method for manufacturing the structure, and a processing apparatus using the structure.
 上記課題を解決するために、本発明に係る構造体の一態様は、炭素繊維を主成分とする第一の材料と、炭素繊維以外を主成分とする第二の材料とが一体化された構造を有し、前記第一の材料の熱膨張係数と前記第二の材料の熱膨張係数とは、その正負が逆であり、前記第二の材料の厚さは前記第一の材料の厚さよりも薄い。
 このように、炭素繊維を主成分とする第一の材料と炭素繊維以外を主成分とする第二の材料とを組み合わせた構造体は、熱膨張係数が小さい(熱膨張係数が0または0に近い)構造体とすることができ、CFRP単体よりも温度変化による寸法変形が少ない構造体とすることができる。また、剛性が比較的高く、密度が比較的小さく比剛性が高くなるような構造体とすることも可能である。つまり、加工装置のフレーム等の材料として、CFRP単体よりもさらに良い特性を有する構造体とすることができる。
In order to solve the above problems, in one embodiment of the structure according to the present invention, a first material mainly composed of carbon fibers and a second material mainly composed of carbon fibers are integrated. The thermal expansion coefficient of the first material and the thermal expansion coefficient of the second material are opposite to each other, and the thickness of the second material is the thickness of the first material. Thinner than that.
Thus, the structure in which the first material mainly composed of carbon fiber and the second material mainly composed of carbon fiber are combined has a small coefficient of thermal expansion (the coefficient of thermal expansion is 0 or 0). Close) and a structure with less dimensional deformation due to temperature change than the CFRP alone. It is also possible to provide a structure having relatively high rigidity, relatively low density, and high specific rigidity. That is, as a material for a frame or the like of a processing apparatus, a structure having better characteristics than that of CFRP alone can be obtained.
 さらに、上記の構造体において、前記第一の材料は、炭素繊維強化プラスチック部材であってもよい。
 ピッチ系CFRPは負の熱膨張係数を有し、PAN系CFRPは正の熱膨張係数を有している。したがって、第二の材料として正負のいかなる熱膨張係数を有する材料を使用したとしても、第一の材料と第二の材料とを組み合わせた構造体は、熱膨張係数が小さい(0または0に近い)構造体とすることができる。つまり、第二の材料として正の熱膨張係数を有する材料を使用した場合には、第一の材料としてピッチ系のCFRP部材を用い、第二の材料として負の熱膨張係数を有する材料を使用した場合には、第一の材料としてPAN系のCFRP部材を用いればよい。
 また、上記の構造体において、前記第二の材料は金属を主成分とするものであってもよく、前記第一の材料は、ピッチ系の炭素繊維強化プラスチック部材であってもよい。
 ピッチ系のCFRPは、熱膨張係数が負の値を有し、加熱すると繊維方向に縮むという特性を有する。一方、金属は、熱膨張係数が正の値を有する。したがって、ピッチ系のCFRP部材である第一の材料と、金属を主成分とする第二の材料とを組み合わせることで、熱膨張係数が例えば0となる構造体を比較的容易に得ることが可能となる。また、ピッチ系のCFRP部材である第一の材料と金属を主成分とする第二の材料とを組み合わせた構造体は、金属に比べて剛性が高く、密度が小さく比剛性の高い構造体とすることができる。
Furthermore, in the above structure, the first material may be a carbon fiber reinforced plastic member.
Pitch-based CFRP has a negative thermal expansion coefficient, and PAN-based CFRP has a positive thermal expansion coefficient. Therefore, even if a material having any positive or negative thermal expansion coefficient is used as the second material, the structure in which the first material and the second material are combined has a small thermal expansion coefficient (close to 0 or 0). ) It can be a structure. That is, when a material having a positive thermal expansion coefficient is used as the second material, a pitch-based CFRP member is used as the first material, and a material having a negative thermal expansion coefficient is used as the second material. In this case, a PAN-based CFRP member may be used as the first material.
In the above structure, the second material may be a metal-based material, and the first material may be a pitch-based carbon fiber reinforced plastic member.
Pitch-based CFRP has a characteristic that the thermal expansion coefficient has a negative value and shrinks in the fiber direction when heated. On the other hand, the metal has a positive coefficient of thermal expansion. Therefore, by combining the first material, which is a pitch-based CFRP member, and the second material, the main component of which is a metal, a structure having a thermal expansion coefficient of, for example, 0 can be obtained relatively easily. It becomes. In addition, a structure in which a first material that is a pitch-based CFRP member and a second material containing a metal as a main component is combined with a structure that has higher rigidity, lower density, and higher specific rigidity than metal. can do.
 さらに、上記の構造体において、前記金属は、鉄であってもよい。このように、鉄を主成分とする金属部材を第二の材料として利用することができる。この場合、比較的安価に構造体を得ることができる。
 また、上記の構造体は、熱膨張係数が鉄の10分の1以下で、かつヤング率が鉄よりも大きければよい。このように、熱膨張係数が鉄の10分の1以下、すなわち±1.0×10-6の範囲で、かつヤング率が鉄よりも大きい構造体は、加工装置のフレーム等の材料として、CFRP単体よりも良い特性を有する構造体である。
 また、上記の構造体において、前記第一の材料と前記第二の材料とは、常温硬化型の樹脂により一体化されていてもよい。この場合、加熱処理により発生する残留応力を抑制しつつ第一の材料と第二の材料とを一体化させることができる。したがって、残留応力に起因して構造体に変形が生じることを抑制することができる。
Furthermore, in the above structure, the metal may be iron. Thus, the metal member which has iron as a main component can be utilized as a 2nd material. In this case, the structure can be obtained relatively inexpensively.
Moreover, said structure should just have a thermal expansion coefficient below 1/10 of iron, and Young's modulus is larger than iron. As described above, a structure having a thermal expansion coefficient of 1/10 or less of iron, that is, a range of ± 1.0 × 10 −6 and a Young's modulus larger than iron is used as a material for a frame of a processing apparatus. It is a structure having better characteristics than CFRP alone.
In the above structure, the first material and the second material may be integrated with a room temperature curable resin. In this case, the first material and the second material can be integrated while suppressing the residual stress generated by the heat treatment. Therefore, it is possible to prevent the structure from being deformed due to the residual stress.
 さらに、本発明に係る構造体の製造方法の一態様は、炭素繊維を主成分とする第一の材料と、炭素繊維以外を主成分とする第二の材料とを準備する工程と、前記第一の材料と前記第二の材料とを一体化する工程と、を含み、前記準備する工程では、熱膨張係数の正負が互いに逆となる前記第一の材料と前記第二の材料を選択し、前記第一の材料の熱膨張係数、ヤング率および厚さを乗算した値と、前記第二の材料の熱膨張係数、ヤング率および厚さを乗算した値との和が0になるように、前記厚さが設定された前記第一の材料と前記第二の材料とを準備する。
 これにより、熱膨張係数が0であり、CFRP単体よりも温度変化による寸法変形が少ない構造体を製造することができる。つまり、加工装置のフレーム等の材料として、CFRP単体よりもさらに良い特性を有する構造体を製造することができる。
 また、上記の構造体の製造方法において、前記第二の材料は金属を主成分とするものであってもよい。
 このように、炭素繊維を主成分とする第一の材料と金属を主成分とする第二の材料とを組み合わせることで、熱膨張係数が0であり、金属に比べて剛性が高く、密度が小さく比剛性の高い構造体を製造することができる。
Further, according to one aspect of the method for producing a structure according to the present invention, a step of preparing a first material mainly composed of carbon fibers and a second material mainly composed of carbon fibers, Integrating the first material and the second material, and in the preparing step, the first material and the second material are selected so that the coefficients of thermal expansion are opposite to each other. The sum of the value obtained by multiplying the coefficient of thermal expansion, Young's modulus and thickness of the first material and the value obtained by multiplying the coefficient of thermal expansion, Young's modulus and thickness of the second material is zero. The first material and the second material having the set thickness are prepared.
As a result, it is possible to manufacture a structure having a thermal expansion coefficient of 0 and less dimensional deformation due to temperature change than the CFRP alone. That is, as a material for a frame of a processing apparatus, it is possible to manufacture a structure having better characteristics than a single CFRP.
In the structure manufacturing method described above, the second material may be mainly composed of a metal.
In this way, by combining the first material mainly composed of carbon fiber and the second material mainly composed of metal, the thermal expansion coefficient is 0, the rigidity is higher than the metal, and the density is high. A small structure with high specific rigidity can be manufactured.
 また、本発明に係る加工装置の一態様は、ワークを加工する加工装置であって、前記加工装置の構成部材を支持するフレームは、上記のいずれかの構造体を含む。
 このように、炭素繊維を主成分とする第一の材料と炭素繊維以外を主成分とする第二の材料とを組み合わせた構造体をフレームの材料とした利用した加工装置は、温度変化や外的要因による寸法変形が少なく、比較的軽量な加工装置とすることができる。
Moreover, the one aspect | mode of the processing apparatus which concerns on this invention is a processing apparatus which processes a workpiece | work, Comprising: The flame | frame which supports the structural member of the said processing apparatus contains one of said structures.
In this way, a processing apparatus using a structure in which a first material mainly composed of carbon fibers and a second material mainly composed of carbon fibers are combined as a frame material is used for temperature changes and external The dimensional deformation due to mechanical factors is small and a relatively lightweight processing device can be obtained.
 本発明によれば、加工装置のフレーム等の材料としてより良い特性、具体的には、剛性の低下や密度の増加を抑えつつ、CFRP単体よりも熱膨張係数が小さい特性を有する構造体を実現することができる。
 上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態(発明の詳細な説明)から理解できるであろう。
According to the present invention, a structure having better characteristics as a material for a frame of a processing apparatus, specifically, a characteristic having a coefficient of thermal expansion smaller than that of CFRP alone while suppressing a decrease in rigidity and an increase in density is realized. can do.
The above-described objects, aspects, and advantages of the present invention, and objects, aspects, and effects of the present invention that have not been described above will be understood by those skilled in the art to implement the following invention by referring to the attached drawings and the claims. This will be understood from the following description (detailed description of the invention).
図1は、本実施形態における構造体の断面図である。FIG. 1 is a cross-sectional view of a structure in the present embodiment. 図2は、露光装置の概略構成を示す図である。FIG. 2 is a view showing a schematic configuration of the exposure apparatus. 図3は、レーザ加工装置の概略構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of the laser processing apparatus. 図4は、比較例の構造体の断面図である。FIG. 4 is a cross-sectional view of the structure of the comparative example.
 以下、本発明の実施の形態を図面に基づいて説明する。
(第一の実施形態)
 図1は、第一の実施形態の構造体10の概略構成を示す断面図である。本実施形態において、構造体10は、炭素繊維強化プラスチック(CFRP)を含むCFRP構造体である。
 構造体10は、炭素繊維を主成分とする第一の材料11と、炭素繊維以外を主成分とする第二の材料12とが一体化された構成を有する。本実施形態では、第一の材料11は、炭素繊維強化プラスチック部材(CFRP部材)であり、第二の材料12は、金属部材である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional view illustrating a schematic configuration of a structure 10 according to the first embodiment. In the present embodiment, the structure 10 is a CFRP structure including carbon fiber reinforced plastic (CFRP).
The structure 10 has a configuration in which a first material 11 mainly composed of carbon fibers and a second material 12 mainly composed of carbon fibers are integrated. In the present embodiment, the first material 11 is a carbon fiber reinforced plastic member (CFRP member), and the second material 12 is a metal member.
 CFRP部材11は、特に図示しないが、複数のプリプレグが積層されて構成されている。プリプレグは、炭素繊維に、繊維の方向性を持たせたまま樹脂を含浸させたシート状の部材である。プリプレグを構成する樹脂は、例えば熱硬化性のエポキシ樹脂である。なお、プリプレグを構成する樹脂としては、例えば、不飽和ポリエステル、ビニルエステル、フェノール、シアネートエステル、ポリイミド等の熱硬化性樹脂を用いることもできる。 The CFRP member 11 is configured by laminating a plurality of prepregs, although not particularly illustrated. The prepreg is a sheet-like member obtained by impregnating a carbon fiber with a resin while maintaining the fiber orientation. The resin constituting the prepreg is, for example, a thermosetting epoxy resin. In addition, as resin which comprises a prepreg, thermosetting resins, such as unsaturated polyester, vinyl ester, phenol, cyanate ester, a polyimide, can also be used, for example.
 CFRPは、型の中に、複数のプリプレグを繊維の方向が異なるように、必要層数(例えば二十層)積層し、減圧下で120℃~130℃程度に加熱し、加圧(圧着)して硬化させることで成形される。ここで、プリプレグを、繊維の方向が異なるように重ね合わせるのは、プリプレグの面内方向の強度を等方的に強化させるためである。
 なお、プリプレグの代用としては、安価にストックできる基準寸法(標準寸法)の標準CFRP板(例えば、5mmのUD(UNI-DIRECTION)材)を使用することができる。なお、UD材とは繊維の方向が一方向にのみ延びている材料のことである。
In CFRP, a plurality of prepregs are laminated in a mold so that the direction of the fibers is different (for example, 20 layers), heated to about 120 ° C to 130 ° C under reduced pressure, and pressurized (crimped) And then cured. Here, the reason why the prepregs are overlapped so that the directions of the fibers are different is to enhance the strength in the in-plane direction of the prepreg isotropically.
As a substitute for the prepreg, a standard CFRP plate (for example, 5 mm UD (UNI-DIRECTION) material) having a standard dimension (standard dimension) that can be stocked at low cost can be used. The UD material is a material in which the direction of the fiber extends only in one direction.
 このようにして製作されたCFRPは、鉄やアルミなどの金属材料よりも低密度(即ち軽い)でありながら、高強度な材料となる。CFRP部材11は、上記の完成されたCFRPを所望の大きさに切り出した部材である。
 また、CFRPは、出発原料の違いにより、ポリアクリロニトリルを原料とするPAN 系と、コールタールピッチや石油ピッチを原料とするピッチ系とに分類される。本実施形態におけるCFRP部材11を構成するCFRPは、ピッチ系CFRPである。
The CFRP manufactured in this way is a material having a high strength while having a lower density (that is, lighter) than a metal material such as iron or aluminum. The CFRP member 11 is a member obtained by cutting the completed CFRP into a desired size.
CFRP is classified into a PAN system using polyacrylonitrile as a raw material and a pitch system using coal tar pitch or petroleum pitch as a raw material, depending on the starting material. The CFRP constituting the CFRP member 11 in the present embodiment is a pitch-based CFRP.
 金属部材12は、CFRP部材11の表面(第一面)11aに一様に一体化して形成されている。本実施形態では、金属部材12が鉄により構成されている場合について説明する。また、金属部材12の厚さD2は、CFRP部材11の厚さD1よりも薄く設定されている。ここで、「厚さ」とは、CFRP部材11の表面11aに直交する方向における部材の厚さである。
 なお、金属部材12は、CFRP部材11の表面11aに複数の金属ワイヤーを平行に平面状に並べるようにして形成してもよい。
 構造体10は、CFRP11と金属部材12とを接着剤(不図示)によって貼り合わせた構成とすることができる。上記接着剤は、例えば、常温硬化型の樹脂により構成することができる。ただし、接着剤の種類は、上記に限定されない。
The metal member 12 is formed integrally with the surface (first surface) 11 a of the CFRP member 11. This embodiment demonstrates the case where the metal member 12 is comprised with iron. Further, the thickness D2 of the metal member 12 is set to be thinner than the thickness D1 of the CFRP member 11. Here, the “thickness” is the thickness of the member in the direction orthogonal to the surface 11 a of the CFRP member 11.
The metal member 12 may be formed by arranging a plurality of metal wires in parallel on the surface 11a of the CFRP member 11 in a planar shape.
The structure 10 can have a configuration in which the CFRP 11 and the metal member 12 are bonded together with an adhesive (not shown). The adhesive can be made of, for example, a room temperature curable resin. However, the kind of adhesive is not limited to the above.
 なお、CFRP部材11は、主成分である炭素繊維と、副成分である硬化剤(樹脂)とにより構成されている。そこで、構造体10は、CFRP部材11の主成分である炭素繊維のみと金属部材12とを、CFRP部材11の副成分である硬化剤をモールド材として一体化して形成してもよい。 The CFRP member 11 is composed of a carbon fiber as a main component and a curing agent (resin) as a subcomponent. Therefore, the structure 10 may be formed by integrating only the carbon fiber that is the main component of the CFRP member 11 and the metal member 12 with a curing agent that is a subcomponent of the CFRP member 11 as a molding material.
 以下、本実施形態における構造体10の製造方法の一例について説明する。
 まず、完成しているCFRPを必要な大きさだけ切り出し、CFRP部材11を準備する。また、CFRP部材11の表面11aと同じ大きさの金属部材12を準備する。このとき、CFRP部材11および金属部材12の厚さは、それぞれ後述する方法により設定する。
 次に、CFRP部材11の表面11aに液状の常温硬化型の樹脂を塗布し、その上に金属部材12を配置して、加熱せずに常温で硬化させる。このとき、樹脂層に気泡が混入しないように、例えば、容器の中にCFRP部材11と金属部材12とを配置し、CFRP部材11と金属部材12との間隙に真空引きをしながら液状の樹脂を充填し、その後、大気解放するようにしてもよい。
Hereinafter, an example of the manufacturing method of the structure 10 in the present embodiment will be described.
First, the CFRP member 11 is prepared by cutting out the completed CFRP to a required size. In addition, a metal member 12 having the same size as the surface 11a of the CFRP member 11 is prepared. At this time, the thicknesses of the CFRP member 11 and the metal member 12 are set by methods described later.
Next, a liquid room temperature curable resin is applied to the surface 11a of the CFRP member 11, and the metal member 12 is disposed thereon and cured at room temperature without heating. At this time, for example, a CFRP member 11 and a metal member 12 are disposed in a container so that bubbles do not enter the resin layer, and a liquid resin is formed while evacuating the gap between the CFRP member 11 and the metal member 12. And then released into the atmosphere.
 このようにして、CFRP部材11と金属部材12とが一体化され、構造体10が製造される。構造体10は、例えば、加工装置のフレームに用いることができる。
 ここで、加工装置は、例えば、半導体基板やプリント基板に回路などのパターンを露光する露光装置や、レーザを基板に照射して切断や穴あけ加工を行うレーザ加工装置などを含む。また、露光装置やレーザ加工装置の構成の一部として使用されるステージ装置なども、加工装置に含むことができる。ステージ装置は、上記の基板などのワークを保持して移動させる装置のことである。
In this way, the CFRP member 11 and the metal member 12 are integrated, and the structure 10 is manufactured. The structure 10 can be used for a frame of a processing apparatus, for example.
Here, the processing apparatus includes, for example, an exposure apparatus that exposes a pattern such as a circuit on a semiconductor substrate or a printed board, and a laser processing apparatus that performs cutting and drilling by irradiating the substrate with a laser. Further, a stage apparatus used as a part of the configuration of the exposure apparatus or the laser processing apparatus can be included in the processing apparatus. The stage device is a device that holds and moves a workpiece such as the substrate described above.
 図2は、露光装置の概略構成を示す図である。
 図2に示す露光装置200は、ワークを露光する投影露光装置である。ここで、ワークは、シリコンワーク、プリント基板または液晶パネル用のガラス基板等であり、表面にレジスト膜が塗布されたワークである。
FIG. 2 is a view showing a schematic configuration of the exposure apparatus.
An exposure apparatus 200 shown in FIG. 2 is a projection exposure apparatus that exposes a workpiece. Here, the workpiece is a silicon workpiece, a printed substrate, a glass substrate for a liquid crystal panel, or the like, and is a workpiece having a resist film coated on the surface thereof.
 露光装置200は、光照射部21と、マスク22と、投影レンズ23と、ワークステージ24と、フレーム25と、を備える。
 光照射部21は、紫外線を含む光を放射する露光用光源であるランプ21aと、ランプ21aからの光を反射するミラー21bとを有する。ランプ21aおよびミラー21bは、ランプハウス21cに収容されている。なお、ここでは光照射部21の光源がランプ21aである場合について説明するが、光源は、LEDやレーザなどであってもよい。
The exposure apparatus 200 includes a light irradiation unit 21, a mask 22, a projection lens 23, a work stage 24, and a frame 25.
The light irradiation unit 21 includes a lamp 21a that is an exposure light source that emits light including ultraviolet rays, and a mirror 21b that reflects light from the lamp 21a. The lamp 21a and the mirror 21b are accommodated in the lamp house 21c. In addition, although the case where the light source of the light irradiation part 21 is the lamp | ramp 21a is demonstrated here, LED, a laser, etc. may be sufficient as a light source.
 マスク22には、ワークに露光(転写)される回路パターンなどのパターンが形成されている。光照射部21からの露光光は、マスク22と投影レンズ23とを介して、ワークステージ24が保持するワークに照射され、マスク22に形成されたパターンが、ワーク上に投影され露光される。
 フレーム25は、光照射部21、マスク22、投影レンズ23およびワークステージ24といった露光装置200の主要部材を支持する。これらの主要部材は、フレーム25によって所定の位置で水平状態を保って保持されている。
A pattern such as a circuit pattern that is exposed (transferred) to the workpiece is formed on the mask 22. The exposure light from the light irradiation unit 21 is irradiated onto the work held by the work stage 24 via the mask 22 and the projection lens 23, and the pattern formed on the mask 22 is projected onto the work and exposed.
The frame 25 supports main members of the exposure apparatus 200 such as the light irradiation unit 21, the mask 22, the projection lens 23, and the work stage 24. These main members are held in a predetermined position by the frame 25 in a horizontal state.
 図3は、レーザ加工装置の概略構成を示す図である。
 図3に示すレーザ加工装置300は、レーザ出射部31と、ワークステージ32と、フレーム33と、を備える。
 レーザ出射部31は、図中矢印に示す方向にレーザを出射する。レーザ出射部31からのレーザ光は、ワークステージ32が保持するワークに照射され、ワークの切断や穴あけ等の加工が行われる。
 フレーム33は、レーザ出射部31およびワークステージ32といったレーザ加工装置300の主要部材を支持する。これらの主要部材は、フレーム33によって所定の位置で水平状態を保って保持されている。
FIG. 3 is a diagram showing a schematic configuration of the laser processing apparatus.
A laser processing apparatus 300 illustrated in FIG. 3 includes a laser emitting unit 31, a work stage 32, and a frame 33.
The laser emitting unit 31 emits a laser in the direction indicated by the arrow in the figure. The laser beam from the laser emitting unit 31 is irradiated onto the workpiece held by the workpiece stage 32, and processing such as cutting and drilling of the workpiece is performed.
The frame 33 supports main members of the laser processing apparatus 300 such as the laser emitting unit 31 and the work stage 32. These main members are held in a predetermined position by the frame 33 in a horizontal state.
 加工装置のフレームは、それぞれ適切に位置決めされた主要部材を支持している。そのため、加工装置の置かれている場所の温度が変化し、フレームが熱膨張により伸縮すると、フレームに支持されている主要部材の位置が変化し、加工精度が低下してしまう。さらには、所望の位置に露光することができない、レーザ加工(穴あけや切断)ができないという不具合が生じることも考えられる。
 このような対策として、加工装置が設置される工場内は、常に一定の温度になるように環境が管理され、さらには、個々の装置を恒温のブースの中に入れて温度の管理が行われている。
Each frame of the processing apparatus supports main members that are appropriately positioned. Therefore, when the temperature of the place where the processing device is placed changes and the frame expands and contracts due to thermal expansion, the position of the main member supported by the frame changes, and the processing accuracy decreases. Furthermore, it is conceivable that there may be problems that the desired position cannot be exposed and laser processing (drilling or cutting) cannot be performed.
As a countermeasure, the environment in the factory where the processing equipment is installed is managed so that the temperature is always constant, and the temperature is controlled by putting each equipment in a constant temperature booth. ing.
 しかしながら、上記のように環境の管理を行っていたとしても、加工装置が動作すれば、装置自体が発熱することは避けられない。例えば、ワークステージが移動すれば、モータ等の駆動部から熱が発生するし、レーザ加工装置であれば、ワークの加工している部分(穴あけや切断を行っている部分)には熱が発生する。また、露光装置の場合、光が投影レンズを通過するとき、レンズやレンズを保持する鏡筒に光が吸収されることにより、投影レンズ部分が熱を生じる。
 フレームが熱膨張しやすい材料により構成されていると、上記のような装置自体の発熱によってもフレームが伸縮し、加工精度を低下させる原因となる。そのため、加工装置のフレームの材料としては、熱膨張係数ができるだけ小さい材料、例えば、熱膨張係数が鉄などの金属に対して1/10以下(好ましくは0)である材料が望まれる。
However, even if the environment is managed as described above, if the processing apparatus operates, it is inevitable that the apparatus itself generates heat. For example, if the work stage moves, heat is generated from the drive unit such as a motor, and if it is a laser processing device, heat is generated in the part of the work that is processed (hole drilling or cutting). To do. In the case of an exposure apparatus, when light passes through the projection lens, the projection lens portion generates heat by the light being absorbed by the lens and the lens barrel that holds the lens.
If the frame is made of a material that is likely to thermally expand, the frame expands and contracts due to the heat generated by the apparatus itself as described above, causing a reduction in processing accuracy. Therefore, as a material of the frame of the processing apparatus, a material having a thermal expansion coefficient as small as possible, for example, a material having a thermal expansion coefficient of 1/10 or less (preferably 0) with respect to a metal such as iron is desired.
 また、加工装置のフレームには、高い剛性(ヤング率)も必要である。上述したように、加工装置において、フレームは、ワークステージを支持する。ワークステージは、例えば、基板の領域を分割して露光するステップ・アンド・リピートや、基板内に多数のスルーホールを形成する穴あけ加工において、頻繁に逐次移動を繰り返す。
 そのため、剛性が低いフレームでワークステージを支持した場合、ステージが移動して停止した後、フレームの振動が停止するまでの時間が長くなり、ワークの処理時間が長くなり、装置の生産性が低下してしまう。また、フレームの剛性が低いと、外部からの振動に対しても弱く、揺れが生じやすいので、このことも加工精度が悪くなる原因となる。
 したがって、加工装置のフレームの材料としては、剛性ができるだけ高い材料、例えば、剛性が鉄などの金属よりも高い材料が望まれる。
Further, the frame of the processing apparatus needs to have high rigidity (Young's modulus). As described above, in the processing apparatus, the frame supports the work stage. For example, the work stage frequently repeats successive movements in step-and-repeat for dividing and exposing a region of the substrate or in drilling processing for forming a large number of through holes in the substrate.
Therefore, when the work stage is supported by a frame with low rigidity, the time until the vibration of the frame stops after the stage moves and stops increases, the work processing time becomes longer, and the productivity of the equipment decreases. Resulting in. In addition, if the frame has low rigidity, it is weak against vibration from the outside and easily sways. This also causes the processing accuracy to deteriorate.
Therefore, as the material of the frame of the processing apparatus, a material having as high a rigidity as possible, for example, a material having a higher rigidity than a metal such as iron is desired.
 さらに、加工装置のフレームは、大型の装置であっても比較的軽量になるように、密度が小さいことも重要である。装置の重量が重くなると、装置を設置する工場の床を補強しなければならなくなるなど、装置に係るコストが大きくなる。
 つまり、加工装置のフレームを構成する材料(構造体)としては、以下の三つの特性を有するものが望ましい。
 (1)熱膨張係数(CTE)が0に近い(温度変化による寸法変形が少ない。)。
 (2)剛性が高い、即ち、ヤング率が大きい(曲り、たわみ、歪みが生じにくい、即ち、外的要因による寸法変形が少ない。)。
 (3)密度が小さい(大型の装置であっても、比較的軽量になる。)。
Furthermore, it is important that the frame of the processing apparatus has a small density so that even a large apparatus is relatively light. When the weight of the device increases, the cost associated with the device increases, for example, the floor of the factory where the device is installed must be reinforced.
That is, it is desirable that the material (structure) constituting the frame of the processing apparatus has the following three characteristics.
(1) The coefficient of thermal expansion (CTE) is close to 0 (there is little dimensional deformation due to temperature change).
(2) The rigidity is high, that is, the Young's modulus is large (bending, bending, and distortion hardly occur, that is, there is little dimensional deformation due to external factors).
(3) The density is small (even a large apparatus is relatively light).
 これらの条件を満たす材料として、CFRPがある。加工装置のフレームとして、CFRPを単体で用いることも考えられるが、近年、加工装置には非常に高い加工精度が要求されており、当該フレームの材料として、CFRP単体よりもさらに良い特性を有する構造体を用いることが求められている。 CFRP is a material that satisfies these conditions. Although it is conceivable to use CFRP alone as a frame of the processing apparatus, in recent years, extremely high processing accuracy is required for the processing apparatus, and the structure of the frame has better characteristics than the CFRP alone. It is required to use the body.
 そこで、本発明者は、加工装置のフレームとしてより優れた性能を引き出せる構造体として、炭素繊維を主成分とする第一の材料と、炭素繊維以外の例えば金属を主成分とする第二の材料とを組み合わせた構造体について研究を行った。そして、本発明者は、上記の構造体を作るための、分かりやすい基準や計算式を見出した。この点について、以下、詳細に説明する。 Therefore, the present inventor, as a structure capable of drawing out better performance as a frame of a processing apparatus, a first material mainly composed of carbon fiber and a second material mainly composed of metal other than carbon fiber, for example. We researched the structure that combined with. And this inventor discovered the reference | standard and calculation formula which are easy to understand for making said structure. This point will be described in detail below.
 炭素繊維を主成分とする第一の材料としては、CFRPを用いた。CFRPは、ピッチ系CFRPにより構成されたものと、PAN(Polyacrylonitrile)系CFRPにより構成されたものとに分類される。
 表1に、ピッチ系CFRPとPAN系CFRP、さらに、比較例として鉄の熱膨張係数(CTE)、ヤング率、密度、比剛性について大まかな値を示す。なお表1においては、比剛性の単位を「GPa」と略して示している。
CFRP was used as the first material mainly composed of carbon fiber. CFRP is classified into those composed of pitch-based CFRP and those composed of PAN (Polyacrylonitrile) -based CFRP.
Table 1 shows rough values of pitch-based CFRP and PAN-based CFRP, and, as a comparative example, iron thermal expansion coefficient (CTE), Young's modulus, density, and specific rigidity. In Table 1, the unit of specific rigidity is abbreviated as “GPa”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 熱膨張係数は、表1の中では鉄が最も大きく、CFRPは、ピッチ系PAN系とも、鉄に比べれば1/10程度である。このように、CFRPは、鉄に比べると、温度変化による寸法変形が少ないことが分かる。
 また、ヤング率は、ピッチ系CFRPが鉄の2倍あるが、PAN系CFRPは鉄の約1/2である。つまり、ピッチ系CFRPは、鉄に比べて剛性が高いが、PAN系CFRPは鉄よりも剛性が低い。さらに、密度は、CFRPは鉄に比べて約1/4であり、同じ大きさであれば鉄と比べてかなり軽くなることが分かる。
 また、比剛性は、ヤング率を密度で除した値である。この値が大きいほど、単位密度あたりの剛性が大きい、言い換えれば「軽くて強い」ということになる。装置の大きさや床の耐荷重に制限がある場合は、この値が大きい材料を使えば有利になる。
The thermal expansion coefficient of iron is the largest in Table 1, and CFRP is about 1/10 of the pitch PAN system compared to iron. Thus, it can be seen that CFRP has less dimensional deformation due to temperature change than iron.
Further, Young's modulus is twice that of pitch-based CFRP than that of iron, but PAN-based CFRP is about ½ of iron. That is, pitch-based CFRP has higher rigidity than iron, but PAN-based CFRP has lower rigidity than iron. Furthermore, it can be seen that the density of CFRP is about ¼ that of iron, and that the density is considerably lighter than iron.
The specific rigidity is a value obtained by dividing Young's modulus by density. The larger the value, the greater the rigidity per unit density, in other words, “light and strong”. If there is a limit to the size of the device or the load capacity of the floor, it is advantageous to use a material with a large value.
 加工装置において、精度の高い加工を行ううえで最も重要な課題は、温度変化による寸法変形を極小に抑えることである。つまり、加工装置のフレームとしては、熱膨張係数は小さければ小さいほど(0に近いほど)良い。ピッチ系CFRPもPAN系CFRPも、鉄に比べれば熱膨張係数は小さいが、0ではない。
 そこで、まず、構造体の熱膨張係数を0に近づける材料の組み合わせを考える。本実施形態では、互いに熱膨張係数の符号が正負逆となる二つの材料を選択することで、二つの材料を組み合わせた構造体の熱膨張係数が0に近づくようにした。
In a processing apparatus, the most important issue in performing highly accurate processing is to minimize dimensional deformation due to temperature changes. In other words, the smaller the thermal expansion coefficient (the closer to 0) the better for the frame of the processing apparatus. Both pitch-based CFRP and PAN-based CFRP have a smaller thermal expansion coefficient than iron but are not zero.
Therefore, first, a combination of materials that brings the thermal expansion coefficient of the structure close to 0 is considered. In the present embodiment, by selecting two materials whose signs of thermal expansion coefficient are opposite to each other, the thermal expansion coefficient of the structure in which the two materials are combined approaches 0.
 表1に示した三つの材料の場合、熱膨張係数の符号が正負逆になる組み合わせは、ピッチ系CFRPとPAN系CFRPとの組み合わせと、ピッチ系CFRPと鉄との組み合わせである。したがって、ピッチ系CFRPとPAN系CFRPとの組み合わせを用いた構造体、およびピッチ系CFRPと鉄との組み合わせを用いた構造体は、その熱膨張係数を0にすることができると考えられる。 In the case of the three materials shown in Table 1, the combinations in which the signs of the thermal expansion coefficients are reversed are the combination of pitch-based CFRP and PAN-based CFRP and the combination of pitch-based CFRP and iron. Accordingly, it is considered that the structure using a combination of pitch-based CFRP and PAN-based CFRP and the structure using a combination of pitch-based CFRP and iron can have a coefficient of thermal expansion of zero.
 次に、選択した二つの材料を組み合わせた構造体の熱膨張係数を0にするための、両者の配分(割合)を考える。
 まず、第一の材料と第二の材料とについて、それぞれ熱膨張係数とヤング率との積を算出し、それらを比較しその割合を求める。そして、その割合に応じて両者の厚さを設定する。
Next, let us consider the distribution (ratio) between the two materials to make the coefficient of thermal expansion of the structure obtained by combining the two selected materials zero.
First, for the first material and the second material, the products of the thermal expansion coefficient and Young's modulus are calculated, and the ratios are obtained by comparing them. And the thickness of both is set according to the ratio.
 例えば、ピッチ系CFRPとPAN系CFRPとの組み合わせの場合、ピッチ系CFRPの熱膨張係数とヤング率との値の積(A)と、PAN系CFRPの熱膨張係数とヤング率との値の積(B)とは、以下のとおり計算することができる。
 A=-1.5×10-6×400=-600×10-6 ………(1)
 B=0.5×10-6×120=60×10-6 ………(2)
 上記(1)式および(2)式により算出された積Aと積Bとの絶対値を比較すると、AはBの12倍である。したがって、Bに対応するPAN系CFRPを用いたCFRP部材(PAN系CFRP部材)の厚さを、Aに対応するピッチ系CFRPを用いたCFRP部材(ピッチ系CFRP部材)の10倍にして両者を貼り合わせれば、構造体の熱膨張係数を0にすることができる。
For example, in the case of a combination of pitch-based CFRP and PAN-based CFRP, the product (A) of the value of thermal expansion coefficient and Young's modulus of pitch-based CFRP and the product of the value of thermal expansion coefficient and Young's modulus of PAN-based CFRP. (B) can be calculated as follows.
A = −1.5 × 10 −6 × 400 = −600 × 10 −6 (1)
B = 0.5 × 10 −6 × 120 = 60 × 10 −6 (2)
When the absolute values of the product A and the product B calculated by the above equations (1) and (2) are compared, A is 12 times B. Therefore, the thickness of the CFRP member using the PAN-based CFRP corresponding to B (PAN-based CFRP member) is 10 times that of the CFRP member using the pitch-based CFRP corresponding to A (pitch-based CFRP member). If bonded together, the thermal expansion coefficient of the structure can be made zero.
 図4は、ピッチ系CFRP部材11とPAN系CFRP部材13とを組み合わせた構造体10Aを示す図である。仮に、ピッチ系CFRP部材11の厚さD1を100μmとすると、PAN系CFRP部材13の厚さD3は1000μmとなる。
 上記のような構造とすることにより、熱膨張係数の小さい(計算上は0の)構造体10Aを作ることができる。
 また、構造体10Aの密度MAは、下式から求められるように、1.78g/cmであり鉄と比べて非常に軽い。
 MA=(1.6g/cm3×100μm+1.8g/cm3×1000μm)/(100μm+1000μm)=1.78g/cm3 ………(3)
 また 構造体10Aの比剛性HAも、下式から求められるように、71Gpa・cm3/gとなり、鉄よりも大きな値となる。
 HA=127GPa/1.78g/cm3=71Gpa・cm3/g ………(4)
FIG. 4 is a view showing a structure 10A in which the pitch-based CFRP member 11 and the PAN-based CFRP member 13 are combined. If the thickness D1 of the pitch CFRP member 11 is 100 μm, the thickness D3 of the PAN CFRP member 13 is 1000 μm.
With the structure as described above, the structure 10A having a small thermal expansion coefficient (zero in calculation) can be formed.
Further, the density MA of the structure 10A is 1.78 g / cm 3, which is very light as compared with iron, as determined from the following equation.
MA = (1.6 g / cm 3 × 100 μm + 1.8 g / cm 3 × 1000 μm) / (100 μm + 1000 μm) = 1.78 g / cm 3 (3)
Also, the specific rigidity HA of the structure 10A is 71 Gpa · cm 3 / g, which is larger than iron, as can be obtained from the following equation.
HA = 127 GPa / 1.78 g / cm 3 = 71 Gpa · cm 3 / g (4)
 ただし、図4に示す構造体10Aは、剛性について問題がある。構造体10Aのヤング率(剛性:G1)は下式から求められるように127GPaである。この値は、鉄のヤング率(200GPa)よりも小さい。
 G1=(400GPa×100μm+100GPa×1000μm)/(100μm+1000μm)=127GPa ………(5)
 即ち、ピッチ系CFRP部材11とPAN系CFRP部材13との組み合わせは、大きなヤング率(400GPa)を有するピッチ系CFRPの利点を損なう組み合わせであるといえる。
However, the structure 10A shown in FIG. 4 has a problem with respect to rigidity. The Young's modulus (rigidity: G1) of the structure 10A is 127 GPa as determined from the following equation. This value is smaller than the Young's modulus (200 GPa) of iron.
G1 = (400 GPa × 100 μm + 100 GPa × 1000 μm) / (100 μm + 1000 μm) = 127 GPa (5)
That is, it can be said that the combination of the pitch-based CFRP member 11 and the PAN-based CFRP member 13 is a combination that impairs the advantage of the pitch-based CFRP having a large Young's modulus (400 GPa).
 次に、ピッチ系CFRPと鉄とを組み合わせた構造体10Bについて、二つの材料の配分(割合)について考える。ピッチ系CFRPの熱膨張係数とヤング率との値の積(A)は、上記(1)式のとおり-600×10-6であり、鉄の熱膨張係数とヤング率との値の積(C)は下記(6)式のとおり2000×10-6である。
 C=10×10-6×200=2000×10-6 ………(6)
 上記(1)式および(6)式により算出された積Aと積Cとの絶対値を比較すると、AはCの1/3である。したがって、Cに対応する鉄を用いた部材(金属部材)の厚さを、Aに対応するピッチ系CFRP部材の1/3にして両者を貼り合わせれば、構造体の熱膨張係数を0にすることができる。
Next, regarding the structure 10B in which pitch-based CFRP and iron are combined, the distribution (ratio) of two materials will be considered. The product (A) of the value of the thermal expansion coefficient and Young's modulus of the pitch-based CFRP is −600 × 10 −6 as shown in the above equation (1), and the product of the value of the thermal expansion coefficient of iron and the Young's modulus ( C) is 2000 × 10 −6 as shown in the following formula (6).
C = 10 × 10 −6 × 200 = 2000 × 10 −6 (6)
When the absolute values of the product A and the product C calculated by the above equations (1) and (6) are compared, A is 1/3 of C. Therefore, if the thickness of the member (metal member) using iron corresponding to C is 1/3 of the pitch-based CFRP member corresponding to A and bonded together, the coefficient of thermal expansion of the structure is reduced to zero. be able to.
 ピッチ系CFRP部材と金属部材とを組み合わせた構造体は、図1に示されている。図1に示す構造体10において、仮に、ピッチ系のCFRP部材11の厚さD1を100μmとすると、金属部材12の厚さD2は約33μmとなる。
 上記のような構造とすることにより、熱膨張係数の小さい(計算上は0の)構造体10を作ることができる。
A structure in which a pitch-based CFRP member and a metal member are combined is shown in FIG. In the structure 10 shown in FIG. 1, if the thickness D1 of the pitch-based CFRP member 11 is 100 μm, the thickness D2 of the metal member 12 is about 33 μm.
By adopting the structure as described above, the structure 10 having a small thermal expansion coefficient (zero in calculation) can be made.
 また、構造体10Bのヤング率(剛性:G2)について計算してみると、次式に示すように350GPaになる。
 G2=(400GPa×100μm+200GPa×33μm)/(100μm+33μm)=350GPa ………(7)
 この値は、鉄のヤング率(200GPa)の1.75倍である。ヤング率が鉄よりも大きければ、加工装置のフレームの材料としては望ましい。
 さらには、図4に示すピッチ系CFRP部材11とPAN系CFRP部材13とを組み合せた構造体10Aよりも、全体の厚さが約1/10と薄くすることができる。
Further, when the Young's modulus (rigidity: G2) of the structure 10B is calculated, it becomes 350 GPa as shown in the following equation.
G2 = (400 GPa × 100 μm + 200 GPa × 33 μm) / (100 μm + 33 μm) = 350 GPa (7)
This value is 1.75 times the Young's modulus (200 GPa) of iron. If the Young's modulus is larger than that of iron, it is desirable as a material for the frame of the processing apparatus.
Furthermore, the overall thickness can be reduced to about 1/10 of the structure 10A in which the pitch-based CFRP member 11 and the PAN-based CFRP member 13 shown in FIG. 4 are combined.
 また、構造体10Bの密度(MB)については、鉄を使用するために、CFRP単体よりも大きくなる。しかしながら、鉄の厚さは上記のように薄くてすむので、下式の通り密度MBは約3.16g/cm3となり、鉄の密度(7.9g/cm3)と比べると半分以下とすることができる。
 MB=(1.6g/cm3×100μm+7.9g/cm3×33μm)/(100μm+33μm)=3.16g/cm3 ………(8)
 このように、組み合せる二つの材料のうち、密度の高い材料を用いた部材(金属部材)の厚さが、密度の低い材料を用いた部材(CFRP部材)の厚さよりも薄ければ、得られる構造体の密度が大きくなることを抑制することができる。
 さらに、構造体10Bの比剛性HBも、下式から求められるように、111Gpa・cm3/gとなり、鉄よりも、また上記で示した構造体10Aよりも大きな値なる。
 HB=350GPa/3.16g/cm3=111Gpa・cm3/g ………(9)
 このように、CFRP部材と金属部材を組合せることにより、使用する金属部材よりも比剛性の高い(軽くて強い)構造体を実現することができる。
Further, the density (MB) of the structure 10B is larger than that of a single CFRP because iron is used. However, since the iron thickness can be reduced as described above, the density MB is about 3.16 g / cm 3 as shown in the following formula, which is less than half that of the iron density (7.9 g / cm 3 ). be able to.
MB = (1.6 g / cm 3 × 100 μm + 7.9 g / cm 3 × 33 μm) / (100 μm + 33 μm) = 3.16 g / cm 3 (8)
Thus, if the thickness of a member (metal member) using a material with a high density out of the two materials to be combined is smaller than the thickness of a member (CFRP member) using a material with a low density, it is obtained. An increase in the density of the structure to be obtained can be suppressed.
Furthermore, the specific rigidity HB of the structure 10B is 111 Gpa · cm 3 / g as determined from the following equation, which is larger than that of iron and the structure 10A described above.
HB = 350 GPa / 3.16 g / cm 3 = 111 Gpa · cm 3 / g (9)
Thus, by combining the CFRP member and the metal member, a structure having a higher specific rigidity (lighter and stronger) than the metal member to be used can be realized.
 以上のように、炭素繊維を主成分とする第一の材料と金属を主成分とする第二の材料とを組み合わせることで、熱膨張係数が小さく(計算値としては0)、剛性、比剛性ともに金属よりも高く、また密度の増加が抑制された軽量で強靭な構造体を製造することができる。ここで、第一の材料および第二の材料としては、熱膨張係数の正負が互いに逆となる材料を選択する。そして、第一の材料の熱膨張係数、ヤング率および厚さを乗算した値と、第二の材料の熱膨張係数、ヤング率および厚さを乗算した値との和が0になるように、これら二つの材料の厚さを設定する。
 このような構造体を加工装置のフレームの材料として利用すれば、温度変化や外的要因による寸法変形が少なく軽量な加工装置を実現することができる。
As described above, by combining the first material mainly composed of carbon fiber and the second material mainly composed of metal, the coefficient of thermal expansion is small (the calculated value is 0), rigidity, and specific rigidity. It is possible to produce a lightweight and tough structure that is both higher than metal and suppressed in density increase. Here, as the first material and the second material, materials having positive and negative thermal expansion coefficients that are opposite to each other are selected. And, the sum of the value obtained by multiplying the thermal expansion coefficient, Young's modulus and thickness of the first material and the value obtained by multiplying the thermal expansion coefficient, Young's modulus and thickness of the second material is zero. The thickness of these two materials is set.
If such a structure is used as the material of the frame of the processing apparatus, a lightweight processing apparatus with little dimensional deformation due to temperature change and external factors can be realized.
 上記のとおり製造された構造体は、熱膨張係数の正負が互いに正負逆である第一の材料と第二の材料とが一体化された構造を有し、第二の材料の厚さは第一の材料の厚さよりも薄く設定される。
 ここで、第一の材料は、ピッチ系のCFRP部材とすることができる。ピッチ系のCFRP部材は、熱膨張係数が-1.2×10-6~-1.5×10-6であり、負の熱膨張係数を有する。一方、金属は、熱膨張係数が正の値を有する。したがって、ピッチ系のCFRP部材である第一の材料と、金属を主成分とする第二の材料とを組み合わせることで、CFRP単体よりも熱膨張係数が0に近い構造体を容易に得ることができる。
The structure manufactured as described above has a structure in which the first material and the second material, whose positive and negative thermal expansion coefficients are opposite to each other, are integrated, and the thickness of the second material is the first. It is set thinner than the thickness of one material.
Here, the first material can be a pitch-based CFRP member. The pitch-based CFRP member has a thermal expansion coefficient of −1.2 × 10 −6 to −1.5 × 10 −6 and has a negative thermal expansion coefficient. On the other hand, the metal has a positive coefficient of thermal expansion. Therefore, by combining the first material, which is a pitch-based CFRP member, and the second material, the main component of which is a metal, it is possible to easily obtain a structure having a thermal expansion coefficient closer to 0 than that of CFRP alone. it can.
 また、第一の材料は、上記のようにCFRP部材とすることができる。このように、炭素繊維と樹脂とを組み合わせたCFRP部材を第一の材料として利用することができる。したがって、CFRP部材と金属を主成分とする第二の材料とを貼り合わせた簡易な構造で、容易に上記構造体を得ることができる。 Also, the first material can be a CFRP member as described above. Thus, a CFRP member combining carbon fiber and resin can be used as the first material. Therefore, the structure can be easily obtained with a simple structure in which the CFRP member and the second material mainly containing metal are bonded together.
 さらに、金属部材は、鉄により構成することができる。このように、比較的安価な金属を用いることで、構造体を低コストで提供することができる。
 また、従来、加工装置のフレームとして一般的に利用されていた鉄と、CFRPとを組み合わせることで、熱膨張係数が鉄に比べてはるかに小さく(計算値としては0)、剛性も炭素繊維の特性を活かして鉄よりも高く、また密度も鉄に比べてはるかに小さい軽量で、比剛性の高い構造体を得ることができる。
Furthermore, the metal member can be made of iron. As described above, the structure can be provided at a low cost by using a relatively inexpensive metal.
In addition, by combining iron, which has been generally used as a frame of a processing apparatus, with CFRP, the thermal expansion coefficient is much smaller than that of iron (calculated value is 0), and the rigidity is also made of carbon fiber. Utilizing the characteristics, it is possible to obtain a light body with a higher specific rigidity, which is lighter and has a density much lower than that of iron.
 さらに、第一の材料と第二の材料とは、常温硬化型の樹脂により一体化することができる。常温硬化型の樹脂は、硬化時に加熱を必要としないので、形成後の樹脂層の内部に、加熱に起因した残留応力が生じない。そのため、残留応力に起因して構造体に変形が生じることを適切に抑制することができる。
 また、常温硬化型の樹脂は、常温硬化型のエポキシ樹脂とすることができる。常温硬化型のエポキシ系の樹脂は、CFRPにおいて炭素繊維同士を接着し固めることに使用されており、炭素繊維の特性を損なわない接着剤として実績があるものである。さらに、エポキシ樹脂は、一般的な樹脂であり、比較的安価であるため、構造体を低コストで提供することができる。
Furthermore, the first material and the second material can be integrated with a room temperature curable resin. Since the room temperature curable resin does not require heating at the time of curing, the residual stress caused by heating does not occur in the resin layer after formation. For this reason, it is possible to appropriately suppress the deformation of the structure due to the residual stress.
The room temperature curable resin may be a room temperature curable epoxy resin. The room temperature curing type epoxy resin is used for bonding and solidifying carbon fibers in CFRP, and has a track record as an adhesive that does not impair the characteristics of carbon fibers. Furthermore, since an epoxy resin is a general resin and relatively inexpensive, the structure can be provided at a low cost.
 以上のように、本実施形態では、第一の材料と第二の材料とを組み合わせた構造体を製造する場合に、非常に簡単な手順で、第一の材料と第二の材料とを選択し、両者の配分(厚さ)を設定することができる。したがって、単体の炭素繊維よりも熱膨張係数が小さく、また、鉄などの金属に比べて剛性が大きく、かつ密度が小さく比剛性の高い構造体を容易かつ適切に得ることができる。 そして、上記のような構造体を加工装置のフレームとして利用することで、温度変化や外的要因による寸法変形が少なく軽量な加工装置を実現することができる。 As described above, in the present embodiment, when manufacturing a structure in which the first material and the second material are combined, the first material and the second material are selected by a very simple procedure. The distribution (thickness) between the two can be set. Therefore, it is possible to easily and appropriately obtain a structure having a smaller coefficient of thermal expansion than that of a single carbon fiber and a rigidity higher than that of a metal such as iron, a lower density, and a higher specific rigidity. And, by using the structure as described above as a frame of the processing apparatus, it is possible to realize a light processing apparatus with little dimensional deformation due to temperature change and external factors.
(変形例)
 なお、上記実施形態においては、構造体10を加工装置のフレームとして利用する場合について説明したが、上記に限定されるものではない。構造体10は、熱膨張係数が0であり、剛性が高く、比較的軽量で比剛性も高いという特性を有する。したがって、これらの特性を活かして、温度変化等が起こり得る環境下で厳しい寸法安定性が要求される大型装置の構成部品の材料として、構造体10を利用してもよい。
(Modification)
In the above-described embodiment, the case where the structure 10 is used as a frame of a processing apparatus has been described. However, the present invention is not limited to the above. The structure 10 has the characteristics that the coefficient of thermal expansion is 0, the rigidity is high, the weight is relatively light, and the specific rigidity is high. Therefore, by utilizing these characteristics, the structure 10 may be used as a material for a component of a large apparatus that requires strict dimensional stability in an environment where a temperature change or the like may occur.
 また、上記実施形態においては、構造体10の熱膨張係数を0にするように、CFRP部材11と金属部材12との厚さを設定する場合について説明したが、熱膨張係数は0に近い値であればよい。具体的には、熱膨張係数は、鉄(10×10-6)10分の1以下、すなわち、±1.0×10-6の範囲であれば、加工装置のフレームの材料として望ましい。
 さらに、上記実施形態においては、第二の材料について金属を主成分とする材料を用いる場合について説明したが、これに限定されるものではない。第二の材料は、第一の材料に対して熱膨張係数の正負が互いに逆となる材料を選択すればよい。また、第一の材料として炭素繊維強化プラスチック部材(CFRP)を用いれば、上記のように、ピッチ系CFRPは負の熱膨張係数を有し、PAN系CFRPは正の熱膨張係数を有している。したがって、第二の材料として正負のいかなる熱膨張係数を有する材料を使用したとしても、組み合わせた時に熱膨張係数を0にする第一の材料を選択することができる。
 また、上記実施形態においては、金属部材12を構成する金属として鉄を用いる場合について説明したが、鉄に限定されるものではない。当該金属は、炭素繊維を主成分とする第一の材料(例えばCFRP部材)と組み合わせた場合に、熱膨張係数が鉄の10分の1以下で、かつヤング率が鉄(200GPa)よりも大きい構造体を実現可能な材料であればよく、例えば、チタンなどであってもよい。なお、加工装置のフレームの材料としては、ヤング率が鉄よりも大きい値であることが望ましく、現実的な値としては、例えば200GPa~400GPaである。
Moreover, in the said embodiment, although the case where the thickness of the CFRP member 11 and the metal member 12 was set so that the thermal expansion coefficient of the structure 10 might be set to 0 was demonstrated, a thermal expansion coefficient is a value close | similar to 0. If it is. Specifically, if the thermal expansion coefficient is 1/10 or less of iron (10 × 10 −6 ), that is, within a range of ± 1.0 × 10 −6 , it is desirable as a material for the frame of the processing apparatus.
Furthermore, in the said embodiment, although the case where the material which has a metal as a main component was demonstrated about the 2nd material, it is not limited to this. As the second material, a material whose thermal expansion coefficient is opposite to that of the first material may be selected. If a carbon fiber reinforced plastic member (CFRP) is used as the first material, the pitch-based CFRP has a negative thermal expansion coefficient and the PAN-based CFRP has a positive thermal expansion coefficient as described above. Yes. Therefore, even if a material having any positive or negative thermal expansion coefficient is used as the second material, the first material that makes the thermal expansion coefficient zero when combined can be selected.
Moreover, in the said embodiment, although the case where iron was used as a metal which comprises the metal member 12 was demonstrated, it is not limited to iron. The metal has a thermal expansion coefficient of 1/10 or less of iron and a Young's modulus larger than iron (200 GPa) when combined with a first material (for example, CFRP member) mainly composed of carbon fiber. Any material that can realize the structure may be used, and for example, titanium may be used. Note that the material of the frame of the processing apparatus preferably has a Young's modulus larger than that of iron, and a practical value is, for example, 200 GPa to 400 GPa.
 なお、上記において特定の実施形態が説明されているが、当該実施形態は単なる例示であり、本発明の範囲を限定する意図はない。本明細書に記載された装置及び方法は上記した以外の形態において具現化することができる。また、本発明の範囲から離れることなく、上記した実施形態に対して適宜、省略、置換及び変更をなすこともできる。かかる省略、置換及び変更をなした形態は、請求の範囲に記載されたもの及びこれらの均等物の範疇に含まれ、本発明の技術的範囲に属する。 Although specific embodiments have been described above, the embodiments are merely examples and are not intended to limit the scope of the present invention. The devices and methods described herein can be embodied in forms other than those described above. In addition, omissions, substitutions, and changes can be made as appropriate to the above-described embodiments without departing from the scope of the present invention. Such omissions, substitutions, and modifications are included in the scope of the claims and their equivalents, and belong to the technical scope of the present invention.
 10…構造体(CFRP構造体)、11…CFRP部材(ピッチ系)、12…金属部材、13…CFRP部材(PAN系)、21…光照射部、22…マスク、23…投影レンズ、24…ワークステージ、25…フレーム、31…レーザ出射部、32…ワークステージ、33…フレーム、200…露光装置(加工装置)、300…レーザ加工装置 DESCRIPTION OF SYMBOLS 10 ... Structure (CFRP structure), 11 ... CFRP member (pitch type), 12 ... Metal member, 13 ... CFRP member (PAN type), 21 ... Light irradiation part, 22 ... Mask, 23 ... Projection lens, 24 ... Work stage, 25 ... frame, 31 ... laser emitting part, 32 ... work stage, 33 ... frame, 200 ... exposure device (processing device), 300 ... laser processing device

Claims (10)

  1.  炭素繊維を主成分とする第一の材料と、炭素繊維以外を主成分とする第二の材料とが一体化された構造を有し、
     前記第一の材料の熱膨張係数と前記第二の材料の熱膨張係数とは、その正負が逆であり、
     前記第二の材料の厚さは前記第一の材料の厚さよりも薄いことを特徴とする構造体。
    Having a structure in which the first material mainly composed of carbon fiber and the second material mainly composed of other than carbon fiber are integrated,
    The coefficient of thermal expansion of the first material and the coefficient of thermal expansion of the second material are opposite in sign.
    The thickness of said 2nd material is thinner than the thickness of said 1st material, The structure characterized by the above-mentioned.
  2.  前記第一の材料は、炭素繊維強化プラスチック部材であることを特徴とする請求項1に記載の構造体。 The structure according to claim 1, wherein the first material is a carbon fiber reinforced plastic member.
  3.  前記第二の材料は、金属を主成分とすることを特徴とする請求項1に記載の構造体。 2. The structure according to claim 1, wherein the second material contains a metal as a main component.
  4.  前記第一の材料は、ピッチ系の炭素繊維強化プラスチック部材であることを特徴とする請求項3に記載の構造体。 The structure according to claim 3, wherein the first material is a pitch-based carbon fiber reinforced plastic member.
  5.  前記金属は、鉄であることを特徴とする請求項3または4に記載の構造体。 The structure according to claim 3 or 4, wherein the metal is iron.
  6.  熱膨張係数が鉄の10分の1以下で、かつヤング率が鉄よりも大きいことを特徴とする請求項1から5のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 5, wherein a thermal expansion coefficient is one tenth or less of iron and Young's modulus is larger than iron.
  7.  前記第一の材料と前記第二の材料とは、常温硬化型の樹脂により一体化されていることを特徴とする請求項1から6のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 6, wherein the first material and the second material are integrated by a room temperature curable resin.
  8.  炭素繊維を主成分とする第一の材料と、炭素繊維以外を主成分とする第二の材料とを準備する工程と、
     前記第一の材料と前記第二の材料とを一体化する工程と、を含み、
     前記準備する工程では、
     熱膨張係数の正負が互いに逆となる前記第一の材料と前記第二の材料を選択し、
     前記第一の材料の熱膨張係数、ヤング率および厚さを乗算した値と、前記第二の材料の熱膨張係数、ヤング率および厚さを乗算した値との和が0になるように、前記厚さが設定された前記第一の材料と前記第二の材料とを準備することを特徴とする構造体の製造方法。
    Preparing a first material mainly composed of carbon fiber and a second material mainly composed of other than carbon fiber;
    Integrating the first material and the second material,
    In the step of preparing,
    Select the first material and the second material that the thermal expansion coefficient is opposite to each other,
    The sum of the value obtained by multiplying the coefficient of thermal expansion, Young's modulus and thickness of the first material and the value obtained by multiplying the coefficient of thermal expansion, Young's modulus and thickness of the second material is zero. The manufacturing method of the structure characterized by preparing said 1st material and said 2nd material with which said thickness was set.
  9.  前記第二の材料は、金属を主成分とすることを特徴とする請求項8に記載の構造体の製造方法。 9. The method of manufacturing a structure according to claim 8, wherein the second material contains a metal as a main component.
  10.  ワークを加工する加工装置であって、
     前記加工装置の構成部材を支持するフレームは、請求項1から7のいずれか1項に記載の構造体を含むことを特徴とする加工装置。
    A processing device for processing a workpiece,
    The processing apparatus according to claim 1, wherein a frame that supports a constituent member of the processing apparatus includes the structure according to claim 1.
PCT/JP2019/002422 2018-02-07 2019-01-25 Structural body, method for manufacturing structural body, and machining device WO2019155909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018020144A JP2019136889A (en) 2018-02-07 2018-02-07 Structure, method for manufacturing the same and processing apparatus
JP2018-020144 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019155909A1 true WO2019155909A1 (en) 2019-08-15

Family

ID=67549611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002422 WO2019155909A1 (en) 2018-02-07 2019-01-25 Structural body, method for manufacturing structural body, and machining device

Country Status (2)

Country Link
JP (1) JP2019136889A (en)
WO (1) WO2019155909A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023077512A (en) * 2021-11-25 2023-06-06 ウシオ電機株式会社 Structure, method for manufacturing structure, and processing device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238930A (en) * 1988-10-11 1990-09-21 Mitsubishi Rayon Co Ltd Hollow cylindrical molded item
US5593752A (en) * 1995-11-28 1997-01-14 Eastman Kodak Company Low CTE/CME boron/carbon fiber laminates and method of making them
JPH10138380A (en) * 1996-11-11 1998-05-26 Kagaku Gijutsu Shinko Jigyodan Laminated composite material with actuator function
JPH11322956A (en) * 1998-03-17 1999-11-26 Mitsubishi Chemical Corp Carbon-fiber-reinforced resin
JP2000246566A (en) * 1999-02-24 2000-09-12 Amada Eng Center Co Ltd Moving table device for supporting work
US20100086729A1 (en) * 2008-10-07 2010-04-08 Alliant Techsystems Inc. Multifunctional radiation-hardened laminate
US20100223778A1 (en) * 2007-10-18 2010-09-09 Renishaw Plc Metrological scale and method of manufacture
US20120313307A1 (en) * 2011-06-13 2012-12-13 Goodrich Corporation Polymer composites possessing improved vibration damping
US20150197068A1 (en) * 2012-07-10 2015-07-16 Wayne State University Method of making composite materials

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238930A (en) * 1988-10-11 1990-09-21 Mitsubishi Rayon Co Ltd Hollow cylindrical molded item
US5593752A (en) * 1995-11-28 1997-01-14 Eastman Kodak Company Low CTE/CME boron/carbon fiber laminates and method of making them
JPH10138380A (en) * 1996-11-11 1998-05-26 Kagaku Gijutsu Shinko Jigyodan Laminated composite material with actuator function
JPH11322956A (en) * 1998-03-17 1999-11-26 Mitsubishi Chemical Corp Carbon-fiber-reinforced resin
JP2000246566A (en) * 1999-02-24 2000-09-12 Amada Eng Center Co Ltd Moving table device for supporting work
US20100223778A1 (en) * 2007-10-18 2010-09-09 Renishaw Plc Metrological scale and method of manufacture
US20100086729A1 (en) * 2008-10-07 2010-04-08 Alliant Techsystems Inc. Multifunctional radiation-hardened laminate
US20120313307A1 (en) * 2011-06-13 2012-12-13 Goodrich Corporation Polymer composites possessing improved vibration damping
US20150197068A1 (en) * 2012-07-10 2015-07-16 Wayne State University Method of making composite materials

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"About mine-based curing agents for epoxy", JOURNAL OF THE JAPAN SOCIETY COLOUR MATERIAL, vol. 88, no. 1, 31 January 2015 (2015-01-31), pages 17 - 22, XP055629475, Retrieved from the Internet <URL:http://www.shikizai.org/Journal/backnumber/vol88/01/17.pdf> *
"Curing accelerations for epoxy resins, 2013 early summer", SANYO KASEI NEWS, SANYO CHEMICAL IND LTD, no. 478, 30 August 2014 (2014-08-30), pages 1, Retrieved from the Internet <URL:https://www.sanyo-chemical.co.jp/pr/pdf/pk103.pdf> *
"Curing agents for epoxy", TECHNICAL NEWS , THREEBOND HOLDINGS CO., LTD, 20 December 1990 (1990-12-20), pages 1 - 10, XP055629474, Retrieved from the Internet <URL:https://www.threebond.co.jp/ja/technical/technicalnews/pdf/tech32.pdf> *

Also Published As

Publication number Publication date
JP2019136889A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
US20230234343A1 (en) Carbon fiber reinforced plastic structure and processing apparatus
WO2019155909A1 (en) Structural body, method for manufacturing structural body, and machining device
WO2018181513A1 (en) Method for manufacturing frp precursor and method for manufacturing frp
WO2021084813A1 (en) Carbon fiber reinforced plastic structure body, production method therefor, and measurement apparatus
JP4496828B2 (en) Manufacturing method of transparent composite substrate
JP2024059694A (en) Thin resin films and their use in layup.
JP2009019150A (en) Heat transfer prepreg and method for producing the same and heat transfer printed circuit board using the same
JP5966969B2 (en) Manufacturing method of prepreg
JP2009173726A (en) Prepreg, method for producing it, and printed wiring board using the same
WO2023095356A1 (en) Structure, method for manufacturing structure, and processing device
JP2002292592A (en) Production method for robot hand element
JP2002018768A (en) Transfer robot supporting member
JP2008273325A (en) Advanced grid structure and its manufacturing method
JP3025391B2 (en) Surface plate for optical equipment
KR102306718B1 (en) Prepreg
KR101671151B1 (en) a manufacturing method of pellicle frame
JPH0443931B2 (en)
JP2006324467A (en) Flexible substrate and manufacturing method thereof
JP6943646B2 (en) Method for manufacturing restrictive damping material and restrictive damping material
JP2013110320A (en) Temporary substrate for manufacturing metal foil clad substrate and manufacturing method for metal foil clad substrate
JP2009019152A (en) Heat transfer prepreg and method for producing the same and heat transfer printed circuit board using the same
JP2016104560A (en) Prepreg and production method thereof
JP2008201041A (en) Manufacturing method of fiber-reinforced composite material
JP5941130B2 (en) Prepreg and manufacturing method thereof
US20020160187A1 (en) Tailorable fiber-reinforced support structure for use in precision manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750751

Country of ref document: EP

Kind code of ref document: A1