JPH10138380A - Laminated composite material with actuator function - Google Patents

Laminated composite material with actuator function

Info

Publication number
JPH10138380A
JPH10138380A JP8298339A JP29833996A JPH10138380A JP H10138380 A JPH10138380 A JP H10138380A JP 8298339 A JP8298339 A JP 8298339A JP 29833996 A JP29833996 A JP 29833996A JP H10138380 A JPH10138380 A JP H10138380A
Authority
JP
Japan
Prior art keywords
plate
laminated composite
composite material
thermal expansion
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8298339A
Other languages
Japanese (ja)
Other versions
JP4132112B2 (en
Inventor
Hiroshi Asanuma
博 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP29833996A priority Critical patent/JP4132112B2/en
Publication of JPH10138380A publication Critical patent/JPH10138380A/en
Application granted granted Critical
Publication of JP4132112B2 publication Critical patent/JP4132112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a composite material having an active actuator function. SOLUTION: This laminated composite material has a structure that a prepreg sheet 10 of carbon fiber-reinforced resin and a plate material 20 having high thermal expansion coefficient are laminated via an insulating layer 30 and a heating power source is connected to the carbon fiber blended with the resin. As the material 20, a metal plate such as an aluminum plate having large thermal expansion coefficient, aluminum alloy plate, titanium plate, titanium alloy plate, iron plate, iron alloy plate such as stainless steel sheet, copper plate, or copper alloy plate is used. The insulating layer may be formed of Kevler fiber-reinforced epoxy resin. Carbon fiber and Kevler fiber are oriented in a deforming direction of the laminated composite material. Thus, a displacing amount can be accurately controlled according to conducting heating or atmospheric heating. It can be used as various type actuators.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱膨張差を利用してア
クチュエータ機能を付与した積層複合材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated composite material having an actuator function by utilizing a difference in thermal expansion.

【0002】[0002]

【従来の技術】各種の建築物,機械,装置等に使用され
る構造材料としては、高強度等の機械的特性が従来から
要求されてきたが、最近では新しい機能を備えた材料が
要求されるようになってきている。すなわち、構造材料
にセンサ,アクチュエータ機能を持たせたインテリジェ
ント材料やその材料を使用したインテリジェント構造等
である。このインテリジェント材料やインテリジェント
構造では、自己診断,自己修復,環境適応等、これまで
にない新しい機能を付加することが検討されている。こ
のような用途に使用可能なセンサやアクチュエータ材料
として、光ファイバ,形状記憶合金,圧電セラミック
ス,バイメタル等が注目されている。
2. Description of the Related Art Structural materials used for various types of buildings, machines, devices, and the like have been required to have mechanical properties such as high strength, but recently, materials having new functions have been required. It is becoming. That is, an intelligent material having a sensor and an actuator function as a structural material, an intelligent structure using the material, and the like. With this intelligent material and intelligent structure, it is being considered to add new functions such as self-diagnosis, self-healing, and environmental adaptation. Optical fibers, shape memory alloys, piezoelectric ceramics, bimetals, and the like have attracted attention as materials for sensors and actuators that can be used in such applications.

【0003】[0003]

【発明が解決しようとする課題】光ファイバは、センサ
機能をもつのみであり、能動的なアクチュエータとして
使用できない。形状記憶合金は、温度変化によって双方
向的な形状変化を繰り返すことから、アクチュエータと
しての使用が可能である。しかし、応答が鈍く、変形の
再現性に問題があることから、高精度のアクチュエータ
としては使用できない。圧電セラミックスは、応答性に
優れるものの、変位が著しく小さいことが難点である。
バイメタルは、熱膨張率が異なる2種の金属を貼り合わ
せたものであるが、単なる温度センサとして温度計,ノ
ーヒューズブレーカ等としての用途が大半であり、能動
的なアクチュエータとしての機能があるとは言い難い。
このように、インテリジェント材料として必要なアクチ
ュエータ機能を十分に発揮する材料は、これまでのとこ
ろ実用化されていない。本発明は、このような問題を解
消すべく案出されたものであり、熱膨張率の異なる材料
を貼り合わせ、その一方を発熱体として使用することに
より、能動的なアクチュエータ機能をもつ複合材料を得
ることを目的とする。
An optical fiber has only a sensor function and cannot be used as an active actuator. Shape memory alloys can be used as actuators because they repeatedly change shape in both directions due to temperature changes. However, since the response is slow and there is a problem in the reproducibility of deformation, it cannot be used as a high-precision actuator. Piezoelectric ceramics have excellent responsiveness, but have the disadvantage that the displacement is extremely small.
Bimetals are two kinds of metals with different coefficients of thermal expansion bonded to each other. However, most of them are simply used as temperature sensors, thermometers, no-fuse breakers, etc., and have a function as an active actuator. Is hard to say.
As described above, a material that sufficiently exhibits the necessary actuator function as an intelligent material has not been put to practical use so far. The present invention has been devised to solve such a problem, and a composite material having an active actuator function is obtained by bonding materials having different coefficients of thermal expansion and using one of them as a heating element. The purpose is to obtain.

【0004】[0004]

【課題を解決するための手段】本発明の積層複合材料
は、その目的を達成するため、絶縁層を介して炭素繊維
強化樹脂のプリプレグシートと高熱膨張率の板材とを積
層した構造をもち、樹脂に配合されている炭素繊維に加
熱用電源が接続されていることを特徴とする。高熱膨張
率の板材としては、アルミニウム板が好適であるが、炭
素繊維強化樹脂に比較して大きな熱膨張率を呈するもの
である限り、アルミニウム合金板,チタン板,チタン合
金板,鉄板,ステンレス鋼板等の鉄合金板,銅板又は銅
合金板等の金属板を使用することもできる。炭素繊維強
化樹脂としては、120℃硬化型のエポキシ樹脂,18
0℃硬化型のエポキシ樹脂,ナイロン樹脂,ポリイミド
樹脂等が使用される。絶縁層は、ケブラー繊維強化エポ
キシ樹脂等で形成することができる。炭素繊維及びケブ
ラー繊維は、積層板の変形方向に配向させることが好ま
しい。
In order to achieve the object, the laminated composite material of the present invention has a structure in which a prepreg sheet of carbon fiber reinforced resin and a plate material having a high coefficient of thermal expansion are laminated via an insulating layer, A heating power supply is connected to the carbon fibers blended in the resin. As a plate material having a high coefficient of thermal expansion, an aluminum plate is preferable, but an aluminum alloy plate, a titanium plate, a titanium alloy plate, an iron plate, a stainless steel plate, as long as it exhibits a large coefficient of thermal expansion as compared with a carbon fiber reinforced resin. A metal plate such as an iron alloy plate, a copper plate or a copper alloy plate can also be used. As the carbon fiber reinforced resin, epoxy resin cured at 120 ° C., 18
An epoxy resin, a nylon resin, a polyimide resin, or the like that can be cured at 0 ° C. is used. The insulating layer can be formed of Kevlar fiber reinforced epoxy resin or the like. The carbon fibers and Kevlar fibers are preferably oriented in the direction of deformation of the laminate.

【0005】[0005]

【実施の形態】本発明に従った積層複合体は、たとえば
図1に示すように炭素繊維強化エポキシ樹脂のプリプレ
グシート10とアルミニウム板20とを絶縁層30を介
して重ね合わせる。炭素繊維強化エポキシ樹脂のプリプ
レグシート10は、熱膨張率が非常に小さく、アルミニ
ウム板20と比較すると実質的に熱膨張しない材料とい
える。絶縁層30には、絶縁性で且つ炭素繊維強化エポ
キシ樹脂と同様に熱膨張率が小さいケブラー繊維強化エ
ポキシ樹脂の使用が好ましい。プリプレグシート10の
炭素繊維及び絶縁層30のケブラー繊維は、繊維方向の
熱膨張率が著しく小さいため、アルミニウム板20の変
形方向(図では長手方向に一致)に配向させる。また、
プリプレグシート10の炭素繊維と導通状態を確保する
ように、プリプレグシート10の両端部に銅板40を配
置する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a laminated composite according to the present invention, for example, as shown in FIG. 1, a prepreg sheet 10 of carbon fiber reinforced epoxy resin and an aluminum plate 20 are laminated via an insulating layer 30. The prepreg sheet 10 made of carbon fiber reinforced epoxy resin has a very low coefficient of thermal expansion, and can be said to be a material that does not substantially thermally expand as compared with the aluminum plate 20. For the insulating layer 30, it is preferable to use Kevlar fiber reinforced epoxy resin which is insulative and has a small coefficient of thermal expansion similarly to carbon fiber reinforced epoxy resin. The carbon fibers of the prepreg sheet 10 and the Kevlar fibers of the insulating layer 30 are oriented in the deformation direction of the aluminum plate 20 (corresponding to the longitudinal direction in the figure) because the coefficient of thermal expansion in the fiber direction is extremely small. Also,
The copper plates 40 are arranged on both ends of the prepreg sheet 10 so as to ensure conduction with the carbon fibers of the prepreg sheet 10.

【0006】重ね合わされたプリプレグシート10,絶
縁層30及びアルミニウム板20をエポキシ樹脂の硬化
温度(約120℃)でホットプレスすると、図2に示す
ように絶縁層30を介してプリプレグシート10及びア
ルミニウム板20が貼り合わされた積層複合体が得られ
る。ホットプレスに際し平坦なプレス面をもつダイスを
使用した場合、ホットプレス直後の積層複合体は、平坦
なプレス面に対応したフラット形状になる。この積層複
合体を室温まで冷却すると、プリプレグシート10に比
較してアルミニウム板20が大きく熱収縮するため、図
3に示すようにアルミニウム板20を内側にして湾曲す
る。この変形は、逆にホットプレスで湾曲形状の積層複
合体を作っておくと、室温でフラットな形状をもつ積層
複合体が得られることを意味する。
When the prepreg sheet 10, the insulating layer 30, and the aluminum plate 20 are hot-pressed at the curing temperature of the epoxy resin (about 120 ° C.), the prepreg sheet 10 and the aluminum plate 20 are interposed via the insulating layer 30 as shown in FIG. A laminated composite in which the plates 20 are bonded is obtained. When a die having a flat press surface is used for hot pressing, the laminated composite immediately after hot pressing has a flat shape corresponding to the flat press surface. When the laminated composite is cooled to room temperature, the aluminum plate 20 undergoes a large thermal shrinkage as compared with the prepreg sheet 10, so that the aluminum plate 20 is bent with the aluminum plate 20 inside as shown in FIG. This deformation means that a laminated composite having a flat shape at room temperature can be obtained by forming a laminated composite having a curved shape by hot pressing.

【0007】このようにして貼り合わされたプリプレグ
シート10の端部に設けられている銅板40を電極と
し、加熱用電源(図示せず)に接続する。銅板40を介
してプリプレグシート10の炭素繊維に通電すると、プ
リプレグシート10は面状発熱体として機能する。その
結果、温度上昇に応じてアルミニウム板20が熱膨張
し、積層複合体を温度に応じた変位量で変形させる。こ
のときの変位量は従来のバイメタルに比較して大きく、
供給電流によって高精度で制御できる。また、形状の再
現性もよいため、高性能のアクチュエータとして使用さ
れる。しかも、アルミニウム板20等の金属板に炭素繊
維強化樹脂を貼り合わせた構造であるため、積層複合体
自体としても十分な強度が確保される。
The copper plate 40 provided at the end of the prepreg sheet 10 thus bonded is used as an electrode and connected to a heating power supply (not shown). When electricity is supplied to the carbon fibers of the prepreg sheet 10 via the copper plate 40, the prepreg sheet 10 functions as a planar heating element. As a result, the aluminum plate 20 thermally expands according to the temperature rise, and deforms the laminated composite with a displacement amount corresponding to the temperature. The displacement at this time is large compared to the conventional bimetal,
It can be controlled with high accuracy by the supply current. Further, since the shape reproducibility is good, it is used as a high-performance actuator. Moreover, since the structure is such that the carbon fiber reinforced resin is bonded to the metal plate such as the aluminum plate 20, sufficient strength is secured as the laminated composite itself.

【0008】[0008]

【実施例】プリプレグシート10に、炭素繊維が一方向
に配列された厚み0.1mm,長さ80mm,熱膨張係
数−0.5×10-6/K,縦弾性係数127GPaの炭
素繊維強化エポキシ樹脂を使用した。アルミニウム板2
0に、板厚0.2mm,長さ80mm,熱膨張係数2
3.6×10-6/K,縦弾性係数72GPaの純アルミ
ニウム板を使用した。絶縁層30に、厚み0.07m
m,長さ80mm,熱膨張係数−1.5×10-6/K,
縦弾性係数77GPaのケブラー繊維強化エポキシ樹脂
を使用した。プリプレグシート10,アルミニウム板2
0及び絶縁層30を図1のように重ね合わせ、ホットプ
レスを用い温度393K,圧力0.5MPa,昇温時間
も含めた加熱時間1時間の条件下でエポキシ樹脂を硬化
させ、313Kまで冷却することにより積層複合体を得
た。室温まで冷却された積層複合体は、図3(b)に示
すように、アルミニウム板20を内側にした湾曲形状を
もっていた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A carbon fiber reinforced epoxy having a thickness of 0.1 mm, a length of 80 mm, a coefficient of thermal expansion of -0.5 × 10 -6 / K and a coefficient of longitudinal elasticity of 127 GPa, in which prepreg sheet 10 has carbon fibers arranged in one direction. Resin was used. Aluminum plate 2
0, plate thickness 0.2 mm, length 80 mm, coefficient of thermal expansion 2
A pure aluminum plate having 3.6 × 10 −6 / K and a longitudinal modulus of 72 GPa was used. The thickness of the insulating layer 30 is 0.07 m.
m, length 80 mm, coefficient of thermal expansion-1.5 × 10 −6 / K,
Kevlar fiber reinforced epoxy resin having a modulus of longitudinal elasticity of 77 GPa was used. Prepreg sheet 10, aluminum plate 2
1 and the insulating layer 30 are superimposed as shown in FIG. 1, and the epoxy resin is cured using a hot press under the conditions of a temperature of 393 K, a pressure of 0.5 MPa, and a heating time of 1 hour including a heating time, and cooled to 313 K. Thus, a laminated composite was obtained. The laminated composite cooled to room temperature had a curved shape with the aluminum plate 20 inside as shown in FIG.

【0009】得られた積層複合体から40mm×80m
mの試験片を切り出し、図4に示すように一端を固定
し、雰囲気加熱で昇温し、温度に応じた他端の変位量
x,yを測定した。測定結果を示す図5にみられるよう
に、水平方向変位量x,垂直方向変位量y共に、積層複
合体の温度上昇に応じて減少する傾向を示した。そし
て、ホットプレス時の温度393Kに達した時点では、
積層複合体がホットプレス直後のフラットな形状に復元
した。変位量x,yの測定結果から、1/r=2x/
(x2 +y2 )の関係式に従って曲率rを算出した。求
められた曲率rと温度との関係を調査したところ、図6
に示すように曲率rと温度との間に比例関係が成立して
おり、Timoschencoのバイメタルの基礎式を
満足していることが判った。電極41を介した通電加熱
で昇温させた場合も、図6に白丸印で示すように曲率変
化の温度依存性はほぼ同じ傾向を示した。また、90K
の温度変化に対し測定部長さ60mmにつき約13mm
という比較的大きな変位が得られ、しかも曲率変化がジ
ュール熱に比例していることから、電流値によって容易
に制御することができた。
The obtained laminated composite is 40 mm × 80 m
The test piece of m was cut out, one end was fixed as shown in FIG. 4, the temperature was raised by heating in atmosphere, and the displacement x, y of the other end according to the temperature was measured. As shown in FIG. 5 showing the measurement results, both the horizontal displacement x and the vertical displacement y tended to decrease as the temperature of the laminated composite increased. Then, when the temperature during hot pressing reaches 393K,
The laminated composite was restored to the flat shape immediately after hot pressing. From the measurement results of the displacement amounts x and y, 1 / r = 2x /
The curvature r was calculated according to the relational expression of (x 2 + y 2 ). When the relationship between the obtained curvature r and the temperature was investigated, FIG.
As shown in FIG. 7, a proportional relationship is established between the curvature r and the temperature, and it was found that the basic formula of the bimetal of Timoschenco was satisfied. In the case where the temperature was increased by energizing heating via the electrode 41, the temperature dependency of the curvature change showed almost the same tendency as shown by the white circle in FIG. Also, 90K
About 13mm per 60mm length of measuring part
, And the change in curvature was proportional to Joule heat, so that it could be easily controlled by the current value.

【0010】[0010]

【発明の効果】以上に説明したように、本発明の積層複
合体は、絶縁樹脂層を介して炭素繊維強化エポキシ樹脂
と金属板とを貼り合わせた構造をもち、炭素繊維に加熱
用電流が供給されるようになっている。そのため、供給
電流によって変位量を高精度に制御でき、各種アクチュ
エータとして使用される。たとえば、形状記憶合金及び
バイアスバネを用いて作製した従来のマニピュレータ,
板バネ,流量調整弁,圧力調整弁等では、物体を掴む力
や押える力を連続的に調整したり、負荷と除荷を同じ変
位の経路で行うことができず、更に除荷にはバイアス力
(外部から力を加えること)が必要である等の問題が多
いが、本発明の積層複合体を組み込むことにより問題な
く作動させることが可能になる。
As described above, the laminated composite of the present invention has a structure in which a carbon fiber reinforced epoxy resin and a metal plate are bonded via an insulating resin layer. It is being supplied. Therefore, the amount of displacement can be controlled with high accuracy by the supply current, and the actuator is used as various actuators. For example, a conventional manipulator made using a shape memory alloy and a bias spring,
With leaf springs, flow control valves, pressure control valves, etc., it is not possible to continuously adjust the gripping or pressing force of an object, or to perform load and unload on the same displacement path. Although there are many problems such as the necessity of applying a force (applying an external force), the operation can be performed without any problem by incorporating the laminated composite of the present invention.

【0011】また、本発明の積層複合体の特徴を活用し
て光ファイバ等の精密なワイヤを溶融状態で微妙に押し
付けて接続することが必要な融着接続器のアクチュエー
タ等にも適用可能である。更には、複合材料が用いられ
る高比強度構造体等では著しい軽量化を目指し、複雑な
メカニズムを排除する単純化を図っているため、本発明
の積層複合体を使用したアクチュエータは、そのフラッ
プ,ドア等の可動部や開閉部に応用可能である。また、
応力集中により炭素繊維強化樹脂にとって過酷な圧縮応
力が加わったとき、それを発熱させて金属板を膨張させ
ることにより圧縮応力を緩和させる用途等への応用にも
展開される。
Further, the present invention can be applied to an actuator of a fusion splicer which requires a fine wire, such as an optical fiber, to be delicately pressed in a molten state by utilizing the features of the laminated composite of the present invention. is there. Furthermore, in the case of a high-specific-strength structure using a composite material, etc., the aim is to significantly reduce the weight and simplify the elimination of complicated mechanisms. Therefore, the actuator using the laminated composite of the present invention has a flap, It can be applied to movable parts such as doors and opening / closing parts. Also,
When severe compressive stress is applied to the carbon fiber reinforced resin due to stress concentration, it is expanded to applications such as applications in which heat is generated to expand the metal plate to reduce the compressive stress.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 炭素繊維強化エポキシ樹脂のプリプレグシー
トに貼り合わされるアルミニウム板
Fig. 1 Aluminum plate bonded to carbon fiber reinforced epoxy resin prepreg sheet

【図2】 ホットプレスで貼り合わせた積層複合体Fig. 2 Laminated composite bonded by hot pressing

【図3】 高温(a)及び室温(b)における積層複合
体の形状
FIG. 3 shows the shape of the laminated composite at high temperature (a) and room temperature (b).

【図4】 変位量x,yを測定した実験を説明する図FIG. 4 is a diagram illustrating an experiment in which displacement amounts x and y are measured.

【図5】 変位量x,yの測定結果と試験温度との関係
を示すグラフ
FIG. 5 is a graph showing a relationship between a measurement result of displacement amounts x and y and a test temperature.

【図6】 曲率の温度依存性を示すグラフFIG. 6 is a graph showing the temperature dependence of curvature.

【符号の説明】[Explanation of symbols]

10:炭素繊維強化エポキシ樹脂のプリプレグシート
20:アルミニウム板(高熱膨張率の板材) 30:絶縁層 40:銅板(電極) d:繊維配向
方向
10: Carbon fiber reinforced epoxy resin prepreg sheet
20: Aluminum plate (plate material with high thermal expansion coefficient) 30: Insulating layer 40: Copper plate (electrode) d: Fiber orientation direction

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁層を介して炭素繊維強化樹脂のプリ
プレグシートと高熱膨張率の板材とを積層した構造をも
ち、樹脂に配合されている炭素繊維に加熱用電源が接続
されていることを特徴とするアクチュエータ機能をもつ
積層複合材料。
1. A structure in which a prepreg sheet made of carbon fiber reinforced resin and a plate material having a high thermal expansion coefficient are laminated via an insulating layer, and a power supply for heating is connected to carbon fibers mixed in the resin. A laminated composite material with a characteristic actuator function.
【請求項2】 高熱膨張率の板材としてアルミニウム
板,アルミニウム合金板,チタン板,チタン合金板,鉄
板,鉄合金板,銅板又は銅合金板を使用する請求項1記
載の積層複合材料。
2. The laminated composite material according to claim 1, wherein an aluminum plate, an aluminum alloy plate, a titanium plate, a titanium alloy plate, an iron plate, an iron alloy plate, a copper plate or a copper alloy plate is used as the plate material having a high coefficient of thermal expansion.
【請求項3】 プリプレグに配合されている炭素繊維を
積層板の変形方向に配向させている請求項1記載の積層
複合材料。
3. The laminated composite material according to claim 1, wherein the carbon fibers blended in the prepreg are oriented in the deformation direction of the laminate.
【請求項4】 ケブラー繊維強化樹脂を絶縁層として使
用する請求項1記載の積層複合材料。
4. The laminated composite material according to claim 1, wherein a Kevlar fiber reinforced resin is used as an insulating layer.
JP29833996A 1996-11-11 1996-11-11 Laminated composite material with actuator function and its use Expired - Fee Related JP4132112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29833996A JP4132112B2 (en) 1996-11-11 1996-11-11 Laminated composite material with actuator function and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29833996A JP4132112B2 (en) 1996-11-11 1996-11-11 Laminated composite material with actuator function and its use

Publications (2)

Publication Number Publication Date
JPH10138380A true JPH10138380A (en) 1998-05-26
JP4132112B2 JP4132112B2 (en) 2008-08-13

Family

ID=17858396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29833996A Expired - Fee Related JP4132112B2 (en) 1996-11-11 1996-11-11 Laminated composite material with actuator function and its use

Country Status (1)

Country Link
JP (1) JP4132112B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257057A (en) * 2000-03-14 2001-09-21 Japan Science & Technology Corp Heat generating and heater and actuator having the same and manufacturing method of actuator
JPWO2005031037A1 (en) * 2003-09-29 2007-11-15 東レ株式会社 Titanium or titanium alloy, adhesive resin composition, prepreg and composite material
WO2009096059A1 (en) * 2008-01-28 2009-08-06 National University Corporation Chiba University Laminated composite material
JP2009248398A (en) * 2008-04-03 2009-10-29 Nippon Steel Materials Co Ltd Structure containing ceramic and carbon fiber reinforced plastic
JP5103627B2 (en) * 2006-02-16 2012-12-19 国立大学法人 千葉大学 Actuator using laminated composite material
WO2019155909A1 (en) * 2018-02-07 2019-08-15 ウシオ電機株式会社 Structural body, method for manufacturing structural body, and machining device
WO2020036141A1 (en) * 2018-08-13 2020-02-20 ポリプラスチックス株式会社 Laminated body
WO2022149558A1 (en) * 2021-01-05 2022-07-14 三菱マテリアル株式会社 Metal base substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104675288B (en) * 2015-02-26 2016-06-15 柳州林道轻型木结构制造有限公司 Combined door-plate
US20170165904A1 (en) * 2015-12-11 2017-06-15 Ak Steel Properties, Inc. Composite steel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257057A (en) * 2000-03-14 2001-09-21 Japan Science & Technology Corp Heat generating and heater and actuator having the same and manufacturing method of actuator
JPWO2005031037A1 (en) * 2003-09-29 2007-11-15 東レ株式会社 Titanium or titanium alloy, adhesive resin composition, prepreg and composite material
JP4501861B2 (en) * 2003-09-29 2010-07-14 東レ株式会社 Titanium or titanium alloy, adhesive resin composition, prepreg and composite material
JP5103627B2 (en) * 2006-02-16 2012-12-19 国立大学法人 千葉大学 Actuator using laminated composite material
WO2009096059A1 (en) * 2008-01-28 2009-08-06 National University Corporation Chiba University Laminated composite material
JP5574322B2 (en) * 2008-01-28 2014-08-20 国立大学法人 千葉大学 Laminated composite material
JP2009248398A (en) * 2008-04-03 2009-10-29 Nippon Steel Materials Co Ltd Structure containing ceramic and carbon fiber reinforced plastic
WO2019155909A1 (en) * 2018-02-07 2019-08-15 ウシオ電機株式会社 Structural body, method for manufacturing structural body, and machining device
WO2020036141A1 (en) * 2018-08-13 2020-02-20 ポリプラスチックス株式会社 Laminated body
US11607868B2 (en) 2018-08-13 2023-03-21 Polyplastics Co., Ltd. Ratchet stack
WO2022149558A1 (en) * 2021-01-05 2022-07-14 三菱マテリアル株式会社 Metal base substrate

Also Published As

Publication number Publication date
JP4132112B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US6622558B2 (en) Method and sensor for detecting strain using shape memory alloys
US5849125A (en) Method of manufacturing flextensional transducer using pre-curved piezoelectric ceramic layer
Kohl et al. Development of stress-optimised shape memory microvalves
JPH10138380A (en) Laminated composite material with actuator function
Kohl et al. Linear microactuators based on the shape memory effect
Gorbet et al. A novel differential shape memory alloy actuator for position control
US20110109199A1 (en) Electromechanical transducer and method for manufacturing the same
JP2001326399A (en) Actuator device
US6156145A (en) Method of manufacturing multi-layered flextensional piezoelectric transducer
US4829843A (en) Apparatus for rocking a crank
Imai et al. An actuator of two-way behavior by using two kinds of shape memory polymers with different Tgs
US7070674B2 (en) Method of manufacturing a multi-layered piezoelectric actuator
JPS5849672A (en) Jointed body comprising metal layer and ceramic layer and manufacture
US3638153A (en) Transducer having single layered magnetostrictive member
US4422725A (en) Method of optimally operating a graphite fiber reinforced glass matrix composite optical article
US7045933B2 (en) Flat actuator or sensor with internal prestress
Ying et al. Exact solutions of functionally gradient piezothermoelastic cantilevers and parameter identification
CA1070856A (en) Method of making a transducer
Quandt et al. Materials development for thin film actuators
Fricke et al. Strain gauge factor and TCR of sputter deposited Pt thin films up to 850 C
JP5103627B2 (en) Actuator using laminated composite material
JP3428773B2 (en) Bimorph piezoelectric element and method of manufacturing the same
US20040234736A1 (en) Control of stress in metal films by controlling the temperature during film deposition
US11927179B2 (en) Bi-metal actuator
Elspass et al. Design, manufacturing, and verification of piezoceramics embedded in fiber-reinforced thermoplastics

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees