JPH11322956A - Carbon-fiber-reinforced resin - Google Patents

Carbon-fiber-reinforced resin

Info

Publication number
JPH11322956A
JPH11322956A JP10209281A JP20928198A JPH11322956A JP H11322956 A JPH11322956 A JP H11322956A JP 10209281 A JP10209281 A JP 10209281A JP 20928198 A JP20928198 A JP 20928198A JP H11322956 A JPH11322956 A JP H11322956A
Authority
JP
Japan
Prior art keywords
carbon fiber
thermal expansion
coefficient
carbon
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10209281A
Other languages
Japanese (ja)
Other versions
JP3807106B2 (en
Inventor
Fumitoshi Sakaguchi
文敏 坂口
Tadahiro Nishimoto
忠弘 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP20928198A priority Critical patent/JP3807106B2/en
Publication of JPH11322956A publication Critical patent/JPH11322956A/en
Application granted granted Critical
Publication of JP3807106B2 publication Critical patent/JP3807106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Woven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon-fiber-reinforced resin which is suitable to be laminated to a material having a positive coefficient of thermal expansion by selecting a resin of which the coefficient of thermal expansion has a specified minus value. SOLUTION: A carbon-fiber-reinforced resin having a coefficient of thermal expansion of -1.5×10<-6> / deg.C or lower is selected. By laminating this reinforced resin to a material having a positive coefficient of thermal expansion (e.g. a metal, a resin, glass, or a ceramic), the coefficient of thermal expansion of the resultant composite can be brought close to zero. Carbon fibers having a tensile modulus of 80 ton/mm<2> or higher are suitable for producing the reinforced resin. Pref., the carbon fibers are weaved into a fabric, and the use of a fabric which has a wt. per unit area of 400 g/m<2> and of which the thread count of carbon fiber tow per 25 mm in the fiber direction is 5-10 is pref. The use of a fabric of which the thread count of carbon fiber tow is 90-110 % of the theoretical thread count obtd. by the ratio of fabric width (mm)/width of carbon fiber tow (mm) is still pref.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は軽量かつ高剛性、高熱電
導性を有し、特に負の熱膨張率の大きな炭素繊維強化樹
脂に関するものであり、特に、精密機器、電子機器、宇
宙・航空等の精密且つ高精度を要求される装置分野で好
適に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced resin which is lightweight, has high rigidity and high thermal conductivity, and particularly has a large negative coefficient of thermal expansion. It is preferably used in the field of equipment requiring high precision and high accuracy.

【0002】[0002]

【従来の技術】近年、精密機械、電子機器の高精度化、
高密度化、小型化等が進み、その部品・部材の寸法安定
性の重要性が高くなっている。従来、寸法安定性が良好
な材料として熱膨張率が0に近い金属チタン、セラミッ
ク等が用いられているが、より精度が要求される場所で
の使用の際には、材料の寸法安定性を補助するために、
温度制御のための付帯設備が必要となってきている。
2. Description of the Related Art In recent years, precision machines and electronic equipment have become more accurate.
As the densification and miniaturization have progressed, the importance of dimensional stability of parts and members has been increasing. Conventionally, as materials having good dimensional stability, metallic titanium, ceramics, and the like having a coefficient of thermal expansion close to 0 have been used. However, when used in places where more precision is required, the dimensional stability of the material must be reduced. To assist,
Ancillary equipment for temperature control has become necessary.

【0003】一方、最近では、従来の材料に比べて熱膨
張率が0に近い炭素繊維強化樹脂(以下、「CFRP」
という)が用いられるようになってきている。CFRP
の熱膨張率は、用いる炭素繊維の種類、シート構成、積
層構成をはじめ、一般的に知られているCFRP製造方
法により、用途に応じたコントロールが可能である。C
FRPの熱膨張率は、PAN系炭素繊維を用いる場合で
は−1.0 ×10-6〜−0.1 ×10-6/℃、ピッチ系炭素
繊維を用いる場合では−1.2 ×10-6〜−0.1×10-6
/℃である。最近では、従来の材料に比べて0に近いC
FRP並みの熱膨張率を示す合金材料も開発されている
が、合金材料は重いため、他の部品の強度、剛性などを
向上させなければならず、全体として、装置が大きくな
ったりコストがかかるという問題点がある。
On the other hand, recently, a carbon fiber reinforced resin (hereinafter, referred to as “CFRP”) having a thermal expansion coefficient close to 0 as compared with a conventional material.
Is being used. CFRP
The coefficient of thermal expansion of can be controlled according to the application by a generally known CFRP manufacturing method, including the type of carbon fiber used, the sheet configuration, and the lamination configuration. C
The thermal expansion coefficient of FRP is -1.0 × 10 −6 to −0.1 × 10 −6 / ° C. when using PAN-based carbon fibers, and −1.2 × 10 −6 to −0.1 × 10 when using pitch-based carbon fibers. -6
/ ° C. Recently, C is closer to 0 than conventional materials.
Alloy materials exhibiting the same coefficient of thermal expansion as FRP have also been developed, but since the alloy materials are heavy, the strength and rigidity of other parts must be improved, and as a whole, the equipment becomes larger and costs increase There is a problem.

【0004】[0004]

【発明が解決しようとする課題】特に、精密機器、電子
機器、宇宙・航空等の精密且つ高精度を要求される装置
分野では、更に熱膨張率が0に近い材料が求められてい
た。熱膨張率が負の値をもつCFRPは、金属、樹脂、
セラミック等の熱膨張率が正の値をもつ材料と複合して
複合材として各種部品・部材に使用すると、複合材全体
として熱膨張率をより0に近づけることができ、これに
より、熱による寸法変化、変形を抑えられるので装置の
精度向上に寄与し、また、通常精密機器等に付帯される
温度制御機構を簡略化またはなくすことが可能となる。
このために、より一層負に大きな熱膨張率を有する材料
が求められている。
In particular, in the field of equipment requiring high precision and high precision, such as precision equipment, electronic equipment, space and aeronautics, there has been a demand for a material having a coefficient of thermal expansion closer to zero. CFRP having a negative coefficient of thermal expansion is a metal, resin,
When composites with ceramics or other materials having a positive coefficient of thermal expansion are used for various components and components as composites, the thermal expansion coefficient of the composite as a whole can be made closer to zero, and as a result, the dimensions due to heat can be reduced. Since the change and deformation can be suppressed, it contributes to the improvement of the precision of the apparatus, and the temperature control mechanism usually attached to precision equipment or the like can be simplified or eliminated.
For this reason, a material having an even more negative coefficient of thermal expansion is required.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、炭素繊維の中でも熱膨
張率に優れたピッチ系高弾性炭素繊維を一定条件を満た
す平織り織物としこれを黒鉛化した織物を用いることに
より、黒鉛化時に90度方向の織り目が互いの炭素繊維
の熱膨張率の変化を相乗効果として発揮し、従来には得
られなかった負に大きな熱膨張率を有するCFRPを得
ることを見い出し、本発明に到達した。すなわち本発明
の要旨は、熱膨張率が-1.5×10-6/℃以下であるCFR
Pおよび、熱膨張率が正である材料と積層するための熱
膨張率が−1.5×10-6/℃以下であるCFRPに存
する。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, among the carbon fibers, pitch-based highly elastic carbon fibers having an excellent coefficient of thermal expansion have been formed into plain woven fabrics satisfying certain conditions. By using a graphitized woven fabric, the 90-degree weaves at the time of graphitization exhibit a change in the coefficient of thermal expansion of each carbon fiber as a synergistic effect, and a large negative coefficient of thermal expansion that could not be obtained conventionally. Have been found to obtain CFRP having That is, the gist of the present invention is to provide a CFR having a coefficient of thermal expansion of -1.5 × 10 −6 / ° C. or less.
P and CFRP having a coefficient of thermal expansion of -1.5 × 10 −6 / ° C. or less for lamination with a material having a positive coefficient of thermal expansion.

【0006】[0006]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明のCFRPは、炭素質原料を処理することにより
得られた紡糸ピッチを溶融紡糸し、ピッチ繊維とし、こ
れを黒鉛化させ原料となる炭素繊維を得て、次いで原料
となる炭素繊維を織り、原料となる炭素繊維織物とし、
さらに黒鉛化することにより炭素繊維織物とする。この
炭素繊維織物に樹脂を含浸させることにより、得られ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The CFRP of the present invention is obtained by melt-spinning a spinning pitch obtained by treating a carbonaceous raw material to form a pitch fiber, graphitizing the pitch fiber, obtaining a carbon fiber as a raw material, and then weaving the carbon fiber as a raw material. , And as a raw material carbon fiber fabric,
It is further graphitized into a carbon fiber fabric. It is obtained by impregnating the carbon fiber fabric with a resin.

【0007】炭素質原料としては、特に限定されない
が、石炭系のコールタール、コールタールピッチ、石炭
液化物、石油系の重質油、タール、ピッチ等が挙げられ
る。これらのうち、石炭系のコールタール、コールター
ルピッチが、それらを構成する分子の芳香性が高く、黒
鉛結晶の発達しやすい紡糸ピッチを得られるという点か
ら好適に用いられる。これらの炭素質原料中にはフリー
カーボン、未溶解石炭、灰分、触媒等の不純物が含まれ
ているが、これらの不純物は濾過、遠心分離、あるいは
溶剤を使用する静置沈降分離等の周知の方法で予め除去
しておくことが望ましい。また、炭素質原料を、例えば
加熱処理後に特定溶剤で可溶分を抽出する方法、水素供
与性溶媒、または水素ガスの存在下に水添処理する方法
等により予備処理を行っておいてもよい。
Examples of the carbonaceous raw material include, but are not particularly limited to, coal-based coal tar, coal-tar pitch, coal liquefaction, petroleum heavy oil, tar, pitch, and the like. Among them, coal-based coal tar and coal tar pitch are preferably used because they have a high aromaticity of the molecules constituting them and a spinning pitch in which graphite crystals are easily developed. These carbonaceous materials contain impurities such as free carbon, undissolved coal, ash, and catalysts. These impurities are well-known in the art, such as filtration, centrifugation, or stationary sedimentation using a solvent. It is desirable to remove in advance by a method. Further, the carbonaceous raw material may be preliminarily treated by, for example, a method of extracting a soluble component with a specific solvent after the heat treatment, a method of hydrogenating in the presence of a hydrogen-donating solvent, or hydrogen gas, or the like. .

【0008】このようにして得られた紡糸ピッチは、通
常光学的異方性ピッチであり、その光学的異方性割合
は、通常70%以上、好ましくは90%以上、さらに好
ましくは100%である。光学的異方性割合が70%よ
り低いと、黒鉛化した後の炭素繊維の黒鉛結晶性が低
く、熱膨張率が負に大きいCFRPが得られにくい。ま
た、紡糸ピッチのメトラー法により求めた軟化点は、通
常260〜340℃、好ましくは280〜320℃、更
に好ましくは290〜310℃である。軟化点が260
℃より低いと、紡糸後の不融化の際に繊維同士の融着が
生じやすく、開繊性の悪い炭素繊維束となりやすい。ま
た、340℃より高いと紡糸の際にピッチの熱分解が生
じ、分解ガスによる紡糸ノズル内での気泡発生により紡
糸性が著しく低下するおそれがある。このような光学的
異方性割合、メトラー軟化点の光学的異方性ピッチを得
るためには、前述の炭素質原料、または予備処理を行っ
た炭素質原料に、通常350〜500℃、好ましくは3
80〜450℃で、通常2分〜50時間、好ましくは5
分〜5時間、窒素、アルゴン、水蒸気等の不活性ガス雰
囲気下に加熱処理を行うことが好ましい。
The spinning pitch thus obtained is usually an optically anisotropic pitch, and its optical anisotropy ratio is usually 70% or more, preferably 90% or more, and more preferably 100% or more. is there. If the optical anisotropy ratio is lower than 70%, the graphitized carbon fibers have low graphite crystallinity, and it is difficult to obtain CFRP having a large negative coefficient of thermal expansion. The softening point of the spinning pitch determined by the Mettler method is usually from 260 to 340 ° C, preferably from 280 to 320 ° C, more preferably from 290 to 310 ° C. Softening point is 260
When the temperature is lower than ° C, fusion between fibers is liable to occur at the time of infusibility after spinning, and a carbon fiber bundle having poor spreadability tends to be formed. On the other hand, if the temperature is higher than 340 ° C., thermal decomposition of the pitch occurs during spinning, and there is a possibility that spinnability may be significantly reduced due to the generation of bubbles in the spinning nozzle due to the decomposition gas. In order to obtain such an optical anisotropy ratio and an optically anisotropic pitch of the METTLER softening point, the above-mentioned carbonaceous material, or a carbonaceous material which has been subjected to a pretreatment, is usually 350 to 500 ° C., preferably Is 3
80 to 450 ° C, usually for 2 minutes to 50 hours, preferably 5 minutes
It is preferable to perform the heat treatment in an atmosphere of an inert gas such as nitrogen, argon, or water vapor for a period of minutes to 5 hours.

【0009】次に、この紡糸ピッチを溶融紡糸しピッチ
繊維を得る。溶融紡糸においては、後述するように最終
的に得られる炭素繊維の繊度が500g/km以上となるよ
うに、繊維径、本数を決定する必要があり、通常繊維径
は6〜20μm、本数は1500〜40000本であ
る。得られたピッチ繊維に、まず不融化処理を施す。不
融化処理は通常、空気、オゾン、二酸化窒素等の酸化性
雰囲気下で、または硝酸等を用いての酸化性液中、好ま
しくは空気中で、通常300〜400℃で加熱すること
により行い、これにより不融化繊維トウを得る。
Next, the spun pitch is melt spun to obtain pitch fibers. In the melt spinning, the fiber diameter and the number of fibers need to be determined so that the fineness of the finally obtained carbon fiber is 500 g / km or more, as described later. Usually, the fiber diameter is 6 to 20 μm, and the number of fibers is 1500. ~ 40000. First, an infusibilization treatment is applied to the obtained pitch fiber. The infusibilization treatment is usually performed by heating at 300 to 400 ° C. in an oxidizing atmosphere such as air, ozone, or nitrogen dioxide, or in an oxidizing liquid using nitric acid or the like, preferably in air. Thereby, an infusible fiber tow is obtained.

【0010】更にこの不融化繊維トウを窒素、アルゴン
等の不活性ガス雰囲気中で800〜2800℃で加熱す
ることにより炭化、および/または黒鉛化される。この
際に張力を付与しても、しなくてもよい。得られた繊維
にはサイジング剤を添着し、本発明の炭素繊維織物の原
料となる炭素繊維を得る。サイジング剤は繊維に対して
0.2〜10重量%、好ましくは0.5〜7重量%添着
する。サイジング剤添着の前に、炭素繊維自身の表面処
理を行ってもよく、また行わなくてもよい。サイジング
剤が0.2%よりも少ないと、製織の際に”毛羽”が発
生し、また、10%よりも多いと後工程の黒鉛化後に繊
維自身が、サイジング剤の炭化物に覆われてしまい、織
物としてのしなやかさが無くなってしまうために好まし
くない。
Further, the infusibilized fiber tow is carbonized and / or graphitized by heating at 800 to 2800 ° C. in an atmosphere of an inert gas such as nitrogen or argon. At this time, tension may or may not be applied. The obtained fiber is impregnated with a sizing agent to obtain a carbon fiber as a raw material of the carbon fiber fabric of the present invention. The sizing agent is impregnated in the fiber in an amount of 0.2 to 10% by weight, preferably 0.5 to 7% by weight. Before applying the sizing agent, the surface treatment of the carbon fiber itself may or may not be performed. If the sizing agent is less than 0.2%, "fluff" occurs during weaving. If the sizing agent is more than 10%, the fibers themselves are covered with carbides of the sizing agent after graphitization in the post-process. This is not preferred because the flexibility of the fabric is lost.

【0011】サイジング剤としては、通常用いられる任
意なものが使用でき、具体的にはエポキシ化合物、水溶
性ポリアミド化合物、飽和または不飽和ポリエステル、
酢酸ビニル、水またはアルコール、グリコール単独また
は混合物が挙げられる。このようにして得られた原料と
なる炭素繊維の引張弾性率は、80ton/mm2 以下、好ま
しくは40〜80ton/mm2 、更に好ましくは50〜80
ton/mm2 であることが重要である。引張弾性率が80to
n/mm2 を超えると、炭素繊維の織物を製造するための製
織の際に、炭素繊維の折損が多発し織物とすることが出
来ない。また、引張弾性率が低すぎると、炭素繊維織物
にした後の2800℃以上の温度での黒鉛化の際に、炭
素繊維自身が寸法変化を起こし、製品の炭素繊維織物に
ひずみが入ることがあり、好ましくない。
As the sizing agent, any commonly used sizing agent can be used. Specifically, epoxy compounds, water-soluble polyamide compounds, saturated or unsaturated polyesters,
Examples include vinyl acetate, water or alcohol, glycol alone or in mixtures. The carbon fiber used as a raw material thus obtained has a tensile modulus of 80 ton / mm 2 or less, preferably 40 to 80 ton / mm 2 , and more preferably 50 to 80 ton / mm 2 .
It is important that ton / mm 2 . Tensile modulus is 80to
If it exceeds n / mm 2 , breakage of the carbon fiber occurs frequently during weaving for producing a woven fabric of carbon fibers, and the woven fabric cannot be formed. On the other hand, if the tensile modulus is too low, the carbon fiber itself undergoes dimensional change during graphitization at a temperature of 2800 ° C. or more after forming the carbon fiber fabric, and strain may be introduced into the carbon fiber fabric of the product. Yes, not preferred.

【0012】また、本発明においては原料となる炭素繊
維の繊度(繊維束の単位長さ当たりの重さ)は通常50
0g/km以上、好ましくは700〜5000g/km、更に好
ましくは1000〜3000g/kmであることが重要であ
る。繊度が500g/kmに満たないと、織物の単位断面積
当たりの重さ(以下、「FAW」という)が400g/m2
以上の炭素繊維織物を作ることが出来ないおそれがあ
る。また、繊度が大きすぎると炭素繊維トウの束が太く
なりすぎ、製織機内で引っかかり等が生じ、製織が困難
となるために好ましくない。
In the present invention, the fineness (weight per unit length of the fiber bundle) of the carbon fiber as a raw material is usually 50%.
It is important that the weight is 0 g / km or more, preferably 700 to 5000 g / km, and more preferably 1000 to 3000 g / km. If the fineness is less than 500 g / km, the weight per unit sectional area of the woven fabric (hereinafter referred to as “FAW”) is 400 g / m 2.
There is a possibility that the carbon fiber fabric described above cannot be produced. On the other hand, if the fineness is too large, the bundle of the carbon fiber tow becomes too thick, and it is not preferable because the weaving becomes difficult in the weaving machine and the like.

【0013】この繊度[g/km]は、一般に、炭素繊維の比
重[g/cm3] と繊維の断面積[μm2]と炭素繊維トウを構
成する炭素繊維の本数[本]により求められる。また繊
維の断面積は、繊維径[μm]により求められる。ここ
で、原料となる炭素繊維の比重は通常1.9〜2.3g/
cm3 、好ましくは2.0〜2.2g/cm3 である。比重が
1.9g/cm3 に満たないと、炭素繊維織物にした後の2
800℃以上の温度での黒鉛化の際に、炭素繊維自身が
寸法変化を起こし、製品の炭素繊維織物にひずみが入る
ことがあり、一方、2.3g/cm3 を超えると、必然的に
炭素繊維の弾性率が高くなり、炭素繊維織物を製造する
ための製織の際に、炭素繊維の折損が多発し織物とする
ことが出来なくなるために好ましくない。
The fineness [g / km] is generally determined from the specific gravity [g / cm 3 ] of the carbon fiber, the cross-sectional area [μm 2 ] of the fiber, and the number [carbon fibers] of the carbon fiber tow. . The cross-sectional area of the fiber is determined by the fiber diameter [μm]. Here, the specific gravity of the carbon fiber as a raw material is usually 1.9 to 2.3 g /
cm 3 , preferably 2.0 to 2.2 g / cm 3 . If the specific gravity is less than 1.9 g / cm 3 , 2
At the time of graphitization at a temperature of 800 ° C. or more, the carbon fiber itself undergoes dimensional change, and the carbon fiber fabric of the product may be distorted. On the other hand, if it exceeds 2.3 g / cm 3 , It is not preferable because the elastic modulus of the carbon fiber is increased and the carbon fiber is frequently broken at the time of weaving for producing the carbon fiber woven fabric so that the woven fabric cannot be formed.

【0014】また、原料となる炭素繊維の繊維径は通常
6〜20μm、好ましくは7〜15μm、更に好ましく
は8〜12μmである。繊維径が6μmに充たないと、
必然的に炭素繊維の本数を増やす必要が出てきて、紡糸
設備の巨大化が必要となる。また、20μmを超える
と、工程通過中の屈曲部等で、単糸レベルでの糸折れが
生じる為に好ましくない。 原料となる炭素繊維は複数
本を束ねて、原料となる炭素繊維トウとする。
The fiber diameter of the carbon fiber used as a raw material is usually 6 to 20 μm, preferably 7 to 15 μm, and more preferably 8 to 12 μm. If the fiber diameter is less than 6 μm,
Inevitably, the number of carbon fibers needs to be increased, and the spinning equipment needs to be enlarged. On the other hand, if it exceeds 20 μm, it is not preferable because yarn breakage occurs at a single yarn level at a bent portion or the like during the process. A plurality of carbon fibers as a raw material are bundled to form a carbon fiber tow as a raw material.

【0015】原料となる炭素繊維トウを構成する原料と
なる炭素繊維の本数は、通常1500〜40000本、
好ましくは3000〜30000本、更に好ましくは5
000〜20000本である。本数が1500本に充た
ないと、必然的に炭素繊維の直径を大きくする必要性が
生じ、前述のように工程内で糸折れを起こす。また、4
0000本を超えると、紡糸設備の巨大化、もしくは合
糸設備の設置が必要となる為に好ましくない。
The number of carbon fibers as raw materials constituting the carbon fiber tow as raw materials is usually from 1500 to 40000,
Preferably 3000 to 30000, more preferably 5
2,000 to 20,000. If the number is less than 1500, the diameter of the carbon fiber must be increased, and the yarn breaks in the process as described above. Also, 4
If the number exceeds 0000, it is not preferable because the spinning equipment becomes too large or a twining equipment needs to be installed.

【0016】次に、原料となる炭素繊維トウを用いて例
えばシャトル織機やレピア織機を使用して製織し、あら
かじめ平織り、綾織り、繻子織り等、好ましくは平織り
の織物にして原料となる炭素繊維織物を得る。この原料
となる炭素繊維織物を次に黒鉛化し、炭素繊維織物を得
る。黒鉛化の際に黒鉛性のルツボに入れ黒鉛化処理する
と、外部からの物理的、化学的作用を遮断できるので好
ましい。黒鉛製のルツボは上記の原料となる炭素繊維織
物を、所望の量入れることが出来るものであるならば大
きさ、形状に特に制約はないが、黒鉛化処理中、または
冷却中に黒鉛化炉内の酸化性のガス、または炭素蒸気と
の反応による炭素繊維織物の損傷を防ぐために、フタ付
きの気密性の高いものが好まれる。
Next, the carbon fiber tow is woven using a carbon fiber tow as a raw material, for example, using a shuttle loom or a rapier loom, and is preferably made into a plain weave, a twill weave, a satin weave or the like, preferably a plain weave. Get the fabric. Next, the carbon fiber fabric as the raw material is graphitized to obtain a carbon fiber fabric. It is preferable that the material be placed in a graphitic crucible during the graphitization and then subjected to the graphitization treatment, because external physical and chemical actions can be blocked. The size and shape of the graphite crucible are not particularly limited as long as the desired amount of the carbon fiber fabric as the raw material can be put therein. In order to prevent damage to the carbon fiber fabric due to reaction with the oxidizing gas or carbon vapor in the inside, a highly airtight one with a lid is preferred.

【0017】黒鉛化処理の温度は、通常2800℃以
上、好ましくは2800〜3500℃、更に好ましくは
2800〜3300℃である。2800℃より低いと炭
素繊維の熱膨張率が目的とする値に達せず、また、黒鉛
化温度が高すぎると、”炭素”の昇華が始まり、製品及
び炉体に多大なダメージを与えるので好ましくない。黒
鉛化時間は2800℃以上の温度での保持時間が通常1
0分〜100日、好ましくは30分〜30日である。ま
た黒鉛化処理する設備は、2800℃以上の温度で処理
することが出来るものであれば特に制約はないが、生産
効率の面からアチソン抵抗加熱炉を用いることが好まし
い。
The temperature of the graphitization treatment is usually 2800 ° C. or higher, preferably 2800 to 3500 ° C., more preferably 2800 to 3300 ° C. If the temperature is lower than 2800 ° C., the coefficient of thermal expansion of the carbon fiber does not reach the target value, and if the graphitization temperature is too high, the sublimation of “carbon” starts, causing a great deal of damage to the product and the furnace body. Absent. The graphitization time is usually 1 hour at 2800 ° C or more.
It is 0 minute to 100 days, preferably 30 minutes to 30 days. The equipment for graphitization is not particularly limited as long as it can be processed at a temperature of 2800 ° C. or higher, but it is preferable to use an Acheson resistance heating furnace from the viewpoint of production efficiency.

【0018】かくして、本発明で用いる炭素繊維織物を
得ることが出来る。この時の織物の単位断面積当たりの
重さ(以下、「FAW」という)は400g/m2以上、好
ましくは500〜2000g/m2、更に好ましくは500
〜1000g/m2にする必要がある。FAWが150g/m2
に満たないと、CFRPを作る際に、多数枚積層させる
必要性が出てきて、厚み方向の熱膨張率が悪くなる場合
が生じ好ましくない。また、FAWが大きすぎると用途
に応じては、CFRPが必要以上に厚くなりすぎるため
に好ましくない。また、炭素繊維織物の引張弾性率は通
常80Ton/mm2 以上、好ましく90Ton/mm2 である。80Ton/
mm2 以下では、金属、樹脂、セラミック等の熱膨張率が
正の材料との複合材において、CFRPの剛性が不足す
ることにより、熱膨張率を低減する効果が十分に発揮さ
れないおそれが生ずる。
Thus, the carbon fiber fabric used in the present invention can be obtained. Weight per unit sectional area of the fabric when this (hereinafter, referred to as "FAW") is 400 g / m 2 or more, preferably 500 to 2000 g / m 2, more preferably from 500
10001000 g / m 2 . FAW is 150 g / m 2
If it is less than 2, the necessity of laminating a large number of sheets when producing CFRP arises, and the coefficient of thermal expansion in the thickness direction may be deteriorated, which is not preferable. Further, if the FAW is too large, the CFRP becomes unnecessarily thick depending on the application, which is not preferable. The tensile modulus of the carbon fiber fabric is usually 80 Ton / mm 2 or more, preferably 90 Ton / mm 2 . 80Ton /
If it is less than mm 2 , the effect of reducing the coefficient of thermal expansion may not be sufficiently exhibited due to insufficient rigidity of CFRP in a composite material such as a metal, a resin, and a ceramic having a positive coefficient of thermal expansion.

【0019】このようにして得られた炭素繊維織物とし
ては、炭素繊維織物25mm当たりの炭素繊維トウの打ち
込み本数が5〜10本である織物が好ましく用いられ
る。炭素繊維トウの打ち込み本数が炭素繊維織物の繊維
方向25mm当たり5本より少ないと黒鉛化時に織物の織
り目が互いの熱膨張率の変化の相乗効果を十分に発現せ
ず、一方、10本より多いと最終的に得られるCFRP
の靱性が実用上不足する可能性がある。また、炭素繊維
織物は、炭素繊維トウの打ち込み本数が、繊維幅(m
m)/炭素繊維トウの幅(mm)で求められる理論打ち
込み本数の90%〜110%の範囲である織物が好まし
く用いられる。炭素繊維トウの打ち込み本数が理論打ち
込み本数の90%より小さいと黒鉛化時に織物の織り目
が互いの熱膨張率の変化の相乗効果を十分に発現せず、
一方、110%より多いと最終的に得られるCFRPの
靱性が実用上不足する可能性がある。ここで、炭素繊維
トウの幅とは、炭素繊維トウを炭素繊維の繊維方向に垂
直な断面において、最も長い径を表す。
As the carbon fiber woven fabric thus obtained, a woven fabric having 5 to 10 carbon fiber tows per 25 mm of carbon fiber woven fabric is preferably used. If the number of carbon fiber tows is less than 5 per 25 mm in the fiber direction of the carbon fiber woven fabric, the texture of the woven fabric does not sufficiently exhibit a synergistic effect of a change in the coefficient of thermal expansion of each other during graphitization, while the number is more than 10 And finally obtained CFRP
May be insufficient in practical use. In the carbon fiber woven fabric, the number of carbon fiber tows to be driven is determined by the fiber width (m).
m) / A woven fabric having a range of 90% to 110% of the number of theoretical driving lines determined by the width (mm) of the carbon fiber tow is preferably used. If the number of carbon fiber tow is less than 90% of the theoretical number of the carbon fiber tow, the texture of the woven fabric does not sufficiently exhibit the synergistic effect of the change in the coefficient of thermal expansion during the graphitization,
On the other hand, if it is more than 110%, the toughness of the finally obtained CFRP may be practically insufficient. Here, the width of the carbon fiber tow represents the longest diameter of the carbon fiber tow in a cross section perpendicular to the fiber direction of the carbon fiber.

【0020】炭素繊維織物に、定法に従ってマトリック
ス樹脂を含浸した後に、成形、硬化させることにより、
CFRPが得られる。含浸するマトリックス樹脂とし
て、例えばエポキシ樹脂、ビニルエステル樹脂、不飽和
ポリエステル樹脂等の熱硬化性樹脂好ましくはエポキシ
樹脂、ビニルエステル樹脂が挙げられる。成形、硬化
は、ハンド・レイ・アップやスプレー・アップによるオ
ープン・モールド法、プレス法、オートクレーブ法、フ
ィラメント・ワインディング法、プルトージョン法、エ
クストルージョン法、RTM法等が用いられる。
After impregnating a carbon fiber woven fabric with a matrix resin according to a standard method, the resin is molded and cured to obtain
CFRP is obtained. Examples of the matrix resin to be impregnated include thermosetting resins such as epoxy resins, vinyl ester resins and unsaturated polyester resins, preferably epoxy resins and vinyl ester resins. For molding and curing, an open mold method by hand lay-up or spray-up, a press method, an autoclave method, a filament winding method, a pultrusion method, an extrusion method, an RTM method, and the like are used.

【0021】このようにして得られたCFRPは、炭素
繊維が、通常30〜75体積%、樹脂が25〜70体積
%である。また、CFRPの熱膨張率は、−1.5×1
-6/℃以下、好ましくは−2×10-6〜−3×10-6
/℃である。熱膨張率が−1.5×10-6/℃より大き
いと、複合材料として用いる場合その熱膨張率のコント
ロール範囲が狭くなり、また、−3×10-6/℃より小
さい場合は靱性が損なわれるおそれがある。なお、本発
明において熱膨張率は、昇温速度2℃/分で30℃から
150℃まで昇温し、50℃から100℃の温度範囲の
熱膨張率をTMA法により測定したときの値をいう。
The CFRP thus obtained usually contains 30 to 75% by volume of carbon fiber and 25 to 70% by volume of resin. The coefficient of thermal expansion of CFRP is -1.5 × 1
0 −6 / ° C. or less, preferably −2 × 10 −6 to −3 × 10 −6
/ ° C. When the coefficient of thermal expansion is larger than -1.5 × 10 −6 / ° C., the control range of the coefficient of thermal expansion becomes narrower when used as a composite material, and when it is smaller than −3 × 10 −6 / ° C., the toughness is reduced. It may be damaged. In the present invention, the coefficient of thermal expansion is a value obtained by increasing the temperature from 30 ° C. to 150 ° C. at a rate of 2 ° C./min and measuring the coefficient of thermal expansion in the temperature range of 50 ° C. to 100 ° C. by the TMA method. Say.

【0022】本発明のCFRPは、通常シート状で、用
途により適当な大きさに切断され使用される。またCF
RPの厚さは、通常0.2〜50mmである。CFRP
において、織布は、通常シート平面と略平行になるよう
配設される。CFRPに用いられる織布は一枚であって
も二枚以上を積層するようにして用いてもよい。
The CFRP of the present invention is usually in the form of a sheet, and is cut into an appropriate size depending on the intended use. Also CF
The thickness of the RP is usually 0.2 to 50 mm. CFRP
In the above, the woven fabric is usually disposed so as to be substantially parallel to the sheet plane. The woven fabric used for CFRP may be one sheet or two or more sheets may be laminated.

【0023】本発明のCFRPは、熱膨張率が正の材料
と積層することにより、複合材料全体としての熱膨張率
を0に近づけることができる。熱膨張率が正の材料とし
ては、通常金属、樹脂、ガラス、セラミックなどが挙げ
られるが、好ましくは熱膨張率が0〜1×10-4/℃の
材料、さらに好ましくは、金属、最も好ましくはアルミ
ニウム、鋼などが用いられる。これらの熱膨張率が正の
材料は好ましくは板状体である。本発明のCFRPと熱
膨張率が正の材料との積層は、接着剤を用いて接着する
ことにより行われる。接着剤としては、熱可塑性樹脂、
熱硬化性樹脂のいずれでもよいが、好ましくは、エポキ
シ樹脂、ビニルエステル樹脂、特に好ましくはポリアミ
ンを硬化剤として用いたエポキシ樹脂、ビスフェノール
A型ビニルエステル樹脂が用いられる。本発明のCFR
Pと熱膨張率が正の材料とは、接着剤を介して積層さ
れ、プレス等の装置を用いて、接着剤特性に応じた温
度、圧力、時間で押さえつけることにより、複合化され
た材料を得ることができる。
The CFRP of the present invention can make the coefficient of thermal expansion of the composite material as a whole close to zero by laminating it with a material having a positive coefficient of thermal expansion. Materials having a positive coefficient of thermal expansion generally include metals, resins, glasses, ceramics, and the like, preferably materials having a coefficient of thermal expansion of 0 to 1 × 10 −4 / ° C., more preferably metals, and most preferably metals. Is made of aluminum, steel or the like. These materials having a positive coefficient of thermal expansion are preferably plate-like bodies. The lamination of the CFRP of the present invention and a material having a positive coefficient of thermal expansion is performed by bonding using an adhesive. As the adhesive, a thermoplastic resin,
Although any of thermosetting resins may be used, an epoxy resin and a vinyl ester resin, particularly preferably an epoxy resin using a polyamine as a curing agent, and a bisphenol A type vinyl ester resin are preferably used. CFR of the present invention
P and a material having a positive coefficient of thermal expansion are laminated via an adhesive, and pressed using a device such as a press at a temperature, a pressure, and a time according to the characteristics of the adhesive to form a composite material. Obtainable.

【0024】[0024]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を超えない限り、以下の実施
例に限定されるものではない。熱膨張率は、ULVAC
真空理工(株)製TA−1500型により、昇温速度2℃
/分で30℃から150℃まで昇温し、50℃から10
0℃の温度範囲の熱膨張率をTMA法により測定した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. The coefficient of thermal expansion is ULVAC
Temperature rise rate 2 ° C by TA-1500 type manufactured by Vacuum Riko Co., Ltd.
/ Minute from 30 ° C to 150 ° C and 50 ° C to 10 ° C.
The coefficient of thermal expansion in the temperature range of 0 ° C. was measured by the TMA method.

【0025】<実施例1>コールタールピッチより、偏
光顕微鏡下で観察した光学的異方性割合が100%で、
メトラー法により求めた軟化点が302℃のメソフェー
ズピッチを調製した。このメソフェーズピッチを、合計
10000個のノズル数を有する紡糸口金に導入し、連
続紡糸を行った。得られたピッチ繊維の繊維径は約12
μm、トウを構成する繊維の本数は約10000本であ
った。得られたピッチ繊維を、空気中、段階的に380
℃まで昇温し不融化処理を行った後、最終的にアルゴン
ガス中2500℃まで、連続的に黒鉛化を行い、エポキ
シ系のサイジング剤を2%添着した。得られた原料とな
る炭素繊維は、繊維径約10μmであり、1420g/km
の繊度、64ton/mm2 の引張弾性率、300kg/mm2の引
張強度を有していた。次に、この原料となる炭素繊維ト
ウを用いて、レピア織機により平織りし、縦糸、横糸共
に、25mm当たり7本の炭素繊維トウをクロスに折り込
み、FAW=790g/m2の原料となる炭素繊維織物を得
た。
<Example 1> From the coal tar pitch, the optical anisotropy ratio observed under a polarizing microscope was 100%.
A mesophase pitch having a softening point of 302 ° C. determined by the Mettler method was prepared. The mesophase pitch was introduced into a spinneret having a total of 10,000 nozzles, and continuous spinning was performed. The fiber diameter of the obtained pitch fiber is about 12
The number of fibers constituting the μm tow was about 10,000. The obtained pitch fibers are 380 stepwise in air.
After the temperature was raised to ℃ to perform the infusibilization treatment, the graphite was continuously graphitized to a final temperature of 2,500 ℃ in argon gas, and 2% of an epoxy sizing agent was added. The obtained carbon fiber as a raw material has a fiber diameter of about 10 μm and is 1420 g / km.
And a tensile modulus of 64 ton / mm 2 and a tensile strength of 300 kg / mm 2 . Next, using the carbon fiber tow as a raw material, plain weave by a rapier weaving machine, fold 7 carbon fiber tows per 25 mm for both warp and weft into a cloth, and obtain carbon fiber as a raw material of FAW = 790 g / m 2. A woven fabric was obtained.

【0026】次に得られた原料となる炭素繊維織物を黒
鉛ルツボに入れ、アチソン抵抗加熱炉で3000℃で黒
鉛化した。3000℃での滞留時間は5時間であった。
得られた炭素繊維織物のFAWは、794g/m2であっ
た。また、引張強度は360kg/mm2、引張弾性率は92
ton/mm2 であった。この織物の繊維方向25mm当たり
の炭素繊維トウの打ち込み本数は7本、また、炭素繊維
トウの幅は3.5mmであり、理論打ち込み本数は7本
であり、実際の打ち込み本数は理論打ち込み本数の10
0%であった。この炭素繊維織物に対し、ビスフェノー
ルA型エポキシ樹脂(大日本色材工業(株):L−26
26(LV))を30重量%の割合で含浸しプリプレグ
を作成した。このプリプレグを2枚重ね、温度100
℃、圧力6kg/cm2 で1時間オートクレーブ成形を行い
CFRP板を得た。炭素繊維含有率は55体積%であっ
た。熱膨張率を測定した結果、−2.5×10-6/℃で
あった。得られたCFRP板は、金属と接着剤が積層す
ることにより、複合材とすることができる。
Next, the obtained carbon fiber fabric as a raw material was placed in a graphite crucible and graphitized at 3000 ° C. in an Acheson resistance heating furnace. The residence time at 3000 ° C. was 5 hours.
The FAW of the obtained carbon fiber fabric was 794 g / m 2 . The tensile strength is 360 kg / mm 2 and the tensile modulus is 92
ton / mm 2 . The number of carbon fiber tows driven per 25 mm in the fiber direction of this woven fabric is 7, the width of the carbon fiber tow is 3.5 mm, the theoretical number of driven is 7 and the actual number of driven is the theoretical number of driven. 10
It was 0%. A bisphenol A type epoxy resin (Dainippon Color Material Co., Ltd .: L-26) is used for this carbon fiber fabric.
26 (LV)) at a ratio of 30% by weight to prepare a prepreg. Two prepregs are stacked at a temperature of 100
Autoclave molding was performed at a temperature of 6 ° C. and a pressure of 6 kg / cm 2 for 1 hour to obtain a CFRP plate. The carbon fiber content was 55% by volume. As a result of measuring the coefficient of thermal expansion, it was -2.5 × 10 −6 / ° C. The obtained CFRP plate can be made into a composite material by laminating a metal and an adhesive.

【0027】[0027]

【発明の効果】本発明により、寸法安定性に優れた部品
・部材を提供する材料および複合材料を提供することが
できる。
According to the present invention, it is possible to provide a material and a composite material which provide parts and members having excellent dimensional stability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 7/06 C08K 7/06 C08L 101/00 C08L 101/00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 7/06 C08K 7/06 C08L 101/00 C08L 101/00

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 熱膨張率が-1.5×10-6/℃以下である炭
素繊維強化樹脂。
1. A carbon fiber reinforced resin having a coefficient of thermal expansion of -1.5 × 10 −6 / ° C. or less.
【請求項2】 熱膨張率が-1.5×10-6/℃以下であるこ
とを特徴とする熱膨張率が正である材料と積層するため
の炭素繊維強化樹脂。
2. A carbon fiber reinforced resin for laminating with a material having a positive coefficient of thermal expansion, having a coefficient of thermal expansion of -1.5 × 10 −6 / ° C. or less.
【請求項3】 引張弾性率が80Ton/mm2 以上の炭素繊維
を用いることを特徴とする請求項1または2に記載の炭
素繊維強化樹脂。
3. The carbon fiber reinforced resin according to claim 1, wherein a carbon fiber having a tensile modulus of 80 Ton / mm 2 or more is used.
【請求項4】 炭素繊維が織物であることを特徴とする
請求項1または3いずれか一項に記載の炭素繊維強化樹
脂。
4. The carbon fiber reinforced resin according to claim 1, wherein the carbon fiber is a woven fabric.
【請求項5】 炭素繊維の織物の単位断面積当たりの重
さが400g/m2以上で、且つ、織物の繊維方向25mm当
たりの炭素繊維トウの打ち込み本数が5〜10本である
織物を用いることを特徴とする請求項1ないし4いずれ
か一項に記載の炭素繊維強化樹脂。
5. A woven fabric in which the weight per unit sectional area of the woven fabric of carbon fibers is 400 g / m 2 or more, and the number of carbon fiber tows applied per 25 mm in the fiber direction of the woven fabric is 5 to 10. The carbon fiber reinforced resin according to any one of claims 1 to 4, wherein:
【請求項6】 炭素繊維トウの打ち込み本数が、織物幅
(mm)/炭素繊維トウの幅(mm)で求められる理論
打ち込み本数の90〜110%の範囲である織物を用い
ることを特徴とする請求項4に記載の炭素繊維強化樹
脂。
6. A woven fabric in which the number of carbon fiber tows to be driven is in the range of 90 to 110% of the theoretical number of fibers to be driven obtained by the ratio of the width of the woven fabric (mm) / the width of the carbon fiber tow (mm). The carbon fiber reinforced resin according to claim 4.
【請求項7】 樹脂が熱硬化性樹脂である請求項1ない
し6いずれか一項に記載の炭素繊維強化樹脂。
7. The carbon fiber reinforced resin according to claim 1, wherein the resin is a thermosetting resin.
【請求項8】 樹脂が25〜70体積%、炭素繊維が3
0〜75体積%である請求項1ないし7いずれか一項に
記載の炭素繊維強化樹脂。
8. A resin comprising 25 to 70% by volume and carbon fibers containing 3% by volume.
The carbon fiber reinforced resin according to any one of claims 1 to 7, which is 0 to 75% by volume.
【請求項9】 請求項1ないし8いずれか一項に記載の
炭素繊維強化樹脂と金属板との積層体。
9. A laminate of the carbon fiber reinforced resin according to any one of claims 1 to 8 and a metal plate.
JP20928198A 1998-03-17 1998-07-24 Carbon fiber reinforced resin Expired - Lifetime JP3807106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20928198A JP3807106B2 (en) 1998-03-17 1998-07-24 Carbon fiber reinforced resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-66687 1998-03-17
JP6668798 1998-03-17
JP20928198A JP3807106B2 (en) 1998-03-17 1998-07-24 Carbon fiber reinforced resin

Publications (2)

Publication Number Publication Date
JPH11322956A true JPH11322956A (en) 1999-11-26
JP3807106B2 JP3807106B2 (en) 2006-08-09

Family

ID=26407874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20928198A Expired - Lifetime JP3807106B2 (en) 1998-03-17 1998-07-24 Carbon fiber reinforced resin

Country Status (1)

Country Link
JP (1) JP3807106B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009453A (en) * 2002-06-05 2004-01-15 Mitsubishi Electric Corp Grid structure and its manufacturing method
JP2013075282A (en) * 2011-09-30 2013-04-25 Ishii Shoji Kk Water purification material
JP2014163016A (en) * 2013-02-26 2014-09-08 Mitsubishi Rayon Co Ltd Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
WO2019155909A1 (en) * 2018-02-07 2019-08-15 ウシオ電機株式会社 Structural body, method for manufacturing structural body, and machining device
JP2021098374A (en) * 2019-04-16 2021-07-01 日本製鉄株式会社 Metal-fiber reinforced resin composite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009453A (en) * 2002-06-05 2004-01-15 Mitsubishi Electric Corp Grid structure and its manufacturing method
JP2013075282A (en) * 2011-09-30 2013-04-25 Ishii Shoji Kk Water purification material
JP2014163016A (en) * 2013-02-26 2014-09-08 Mitsubishi Rayon Co Ltd Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
WO2019155909A1 (en) * 2018-02-07 2019-08-15 ウシオ電機株式会社 Structural body, method for manufacturing structural body, and machining device
JP2021098374A (en) * 2019-04-16 2021-07-01 日本製鉄株式会社 Metal-fiber reinforced resin composite

Also Published As

Publication number Publication date
JP3807106B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
Buckley et al. Carbon-carbon materials and composites
Chawla Composite materials: science and engineering
US4849200A (en) Process for fabricating carbon/carbon composite
JP6211881B2 (en) Carbon fiber and method for producing the same
US6110847A (en) Carbon fiber woven fabric
US5721308A (en) Pitch based carbon fiber and process for producing the same
JP3031197B2 (en) Pitch-based carbon fiber
WO2011090151A1 (en) Carbon fiber laminated molded product, and method for producing same
JP3807106B2 (en) Carbon fiber reinforced resin
JP2519042B2 (en) Carbon-carbon composite material manufacturing method
JPH11117143A (en) Woven fabric of carbon fiber
JP4547754B2 (en) Pitch-based carbon fiber fabric
KR100918686B1 (en) The method for manufacturing the spun-type carbon fiber fabrics from spun-type stabilized polyacrylonitirle fibers
JP3288408B2 (en) Manufacturing method of general-purpose carbon fiber reinforced carbon material
JPH09290474A (en) Preparation of carbonaceous molded article
JPH07187833A (en) Carbon fiber reinforced carbon composite material
JP2635634B2 (en) Method for producing carbon fiber reinforced carbon material
JPH08209492A (en) Triaxial woven fabric and its production
US5840265A (en) Carbon fibers and process for their production
JP4343312B2 (en) Pitch-based carbon fiber
JPH05139832A (en) Production of carbon material
US5246639A (en) Method for producing carbon-carbon composite materials
JPH07189073A (en) Woven fabric of carbon fiber
JP4387056B2 (en) Carbon fiber bundle
JP3000752B2 (en) Method for producing pitch-based carbon fiber bundle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term