WO2011090151A1 - Carbon fiber laminated molded product, and method for producing same - Google Patents

Carbon fiber laminated molded product, and method for producing same Download PDF

Info

Publication number
WO2011090151A1
WO2011090151A1 PCT/JP2011/051053 JP2011051053W WO2011090151A1 WO 2011090151 A1 WO2011090151 A1 WO 2011090151A1 JP 2011051053 W JP2011051053 W JP 2011051053W WO 2011090151 A1 WO2011090151 A1 WO 2011090151A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
laminate
carbon
spun yarn
laminated
Prior art date
Application number
PCT/JP2011/051053
Other languages
French (fr)
Japanese (ja)
Inventor
康 岡田
貴 亀山
啓二 長山
嘉裕 有本
勝弘 遊佐
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2011550965A priority Critical patent/JPWO2011090151A1/en
Priority to CN2011800067434A priority patent/CN102712168A/en
Publication of WO2011090151A1 publication Critical patent/WO2011090151A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics

Definitions

  • the present invention relates to a carbon fiber laminated molded body and a method for producing the same.
  • the cost of the carbon fiber laminated molded body that can be used as a high-temperature furnace heat insulating material can be reduced, and the workability can be improved.
  • the manufacturing method of the present invention the manufacturing process can be simplified.
  • the carbon fiber laminated molded article Since the carbon fiber laminated molded article has excellent heat insulation performance and low heat capacity characteristics, it is widely used as a heat insulating material for high temperature furnaces such as a single crystal pulling furnace, a vacuum evaporation furnace, or a ceramic sintering furnace. .
  • a carbon fiber felt As the carbon fiber laminate molded body, for example, a carbon fiber felt is impregnated with a resin having a high carbonization rate, and the laminate is compression molded to form a carbon fiber felt laminate, which is obtained by firing the carbon fiber laminate.
  • a shaped body was known.
  • Such a carbon fiber laminated molded body has high heat resistance under an inert atmosphere and can withstand use up to about 3000 ° C.
  • Patent Document 1 a composite carbonaceous heat insulating material having a carbonaceous protective layer on the surface of a carbon fiber laminate molded body, or a woven fabric obtained by weaving carbon fiber spun yarn on a carbon fiber felt laminate.
  • Patent Document 2 A carbon fiber-containing laminate molded body (Patent Document 2) in which layers are bonded has been proposed.
  • the fabric layer in the latter carbon fiber-containing laminated molded body has a protective function against damage from external impacts and stresses in addition to a protective action from oxidizing gas and vaporized metal.
  • the carbon fiber laminated molded body is required to reduce the manufacturing cost and improve the workability when used as a heat insulating material, and further improvement is expected.
  • the inventors of the present invention tried to bond a fabric layer made of a single fabric only on the surface in contact with the oxidizing gas or vaporized metal in the laminate of carbon fiber felt.
  • the shrinkage of the fabric layer and the adhesive bonding the fabric layer is higher than the shrinkage of the carbon fiber felt laminate. I knew it would warp.
  • the present inventors have solved the warpage of the carbon fiber laminated molded body by bonding the carbon fiber paper to the surface opposite to the surface to which the fabric layer is bonded. I found out.
  • the present inventors have intensively studied on the simplification of the production process in the method for producing a carbon fiber laminated molded body.
  • the compression molding of the carbon fiber felt laminate, the carbon fiber felt laminate, and the fabric layer are performed.
  • the bonding of the carbon fiber paper can be performed simultaneously, thereby reducing the manufacturing process and reducing the manufacturing cost. That is, in the Example of Patent Document 2, compression molding and subsequent firing of a carbon fiber felt laminate (base material) as a base material are performed, and a fabric layer is adhered to both surfaces of the obtained base material with an adhesive. Further, compression molding and firing were performed, and the steps of compression molding and firing were performed twice.
  • the compression molding and firing steps are performed once, the production is simplified, and the production cost is reduced.
  • the present inventors tried to use a fabric layer instead of carbon fiber paper. That is, the fabric layer was adhered to both surfaces of the carbon fiber felt laminate (base material), and an attempt was made to perform the compression molding and firing steps in one time. In this case, since the compression molding of the carbon fiber felt laminate and the subsequent firing are not performed in advance, the upper surface of the carbon fiber felt laminate is in a flexible state.
  • the fabric layer is also relatively flexible, when the fabric layer and the carbon fiber felt laminate are coated with an adhesive and compression molded together, especially in the fabric layer laminated on the top surface of the carbon fiber felt laminate.
  • the present invention relates to a carbon fiber laminate molded body comprising a woven fabric layer composed of at least one carbon fiber fabric woven with carbon fiber spun yarn, a carbon fiber felt laminate, and carbon fiber paper.
  • a fabric layer composed of at least one carbon fiber fabric in which the carbon fiber spun yarn is woven, a carbon fiber felt laminate, and carbon fiber paper are laminated in this order.
  • the carbon fiber spun yarn includes a carbon fiber for a core material having an average fiber diameter of 12 ⁇ m or less and a carbon fiber for a sheath material having an average fiber diameter of more than 12 ⁇ m. It is spun yarn.
  • this invention relates to the heat insulating material for high temperature furnaces which consists of the said carbon fiber laminated molded object. Further, the present invention provides (a) at least one carbon fiber fabric woven with hybrid carbon fiber spun yarn, a laminate of carbon fiber felt impregnated with a thermosetting resin, and carbon fiber paper by applying an adhesive. It is related with the manufacturing method of a carbon fiber laminated molded object including the process of laminating
  • a woven fabric layer comprising at least one carbon fiber woven fabric woven with carbon fiber spun yarn, a carbon fiber felt laminate, and carbon Fiber paper is laminated in this order.
  • the carbon fiber laminate molded body of the present invention carbon fiber paper is used instead of one fabric layer as compared with a conventional carbon fiber laminate molded body having a fabric layer on both sides of a carbon fiber felt laminate.
  • the cost can be reduced.
  • the method for producing a carbon fiber laminate molded body of the present invention can be produced by only one compression molding step and firing step, and is produced in comparison with a conventional method for producing a carbon fiber laminate molded body. The number of processes is reduced, and the manufacturing cost can be reduced.
  • when a woven fabric layer is used instead of carbon fiber paper that is, the woven fabric layer is laminated with the carbon fiber felt without performing the compression molding step and the firing step of the carbon fiber felt laminate.
  • the carbon fiber laminated molded body of the present invention is characterized by comprising a fabric layer composed of at least one carbon fiber fabric woven with hybrid carbon fiber spun yarn, a carbon fiber felt laminate, and carbon fiber paper.
  • a fabric layer composed of at least one carbon fiber fabric woven with hybrid carbon fiber spun yarn, a carbon fiber felt laminate, and carbon fiber paper.
  • the fabric layer, the carbon fiber felt laminate, and the carbon fiber paper are laminated in this order.
  • the carbon fiber fabric constituting the fabric layer in the present invention is not particularly limited as long as the carbon fiber spun yarn is woven.
  • carbon fiber spun yarn spun yarn made of polyacrylonitrile (PAN) carbon fiber, spun yarn made of pitch anisotropic carbon fiber, spun yarn made of rayon carbon fiber, pitch isotropic carbon
  • PAN polyacrylonitrile
  • the hybrid carbon fiber spun yarn which consists of spun yarn which consists of fibers, or those combination can be mentioned, Especially a hybrid carbon fiber spun yarn is preferable.
  • the hybrid carbon fiber spun yarn include a hybrid carbon fiber spun yarn described in International Publication No. 2006/090643 and a carbon fiber spun yarn described in International Publication No. 2008/023777.
  • WO 2008/023777 includes a core carbon fiber having an average fiber diameter of 12 ⁇ m or less, preferably 5 to 12 ⁇ m, and a sheath having an average fiber diameter of more than 12 ⁇ m, preferably more than 12 ⁇ m to 20 ⁇ m.
  • This is a hybrid carbon fiber spun yarn containing carbon fibers for materials. If the average fiber diameter of the carbon fiber for the core material is less than 5 ⁇ m, the production efficiency is lowered. On the other hand, when the average fiber diameter of the carbon fiber for sheath material exceeds 20 ⁇ m, the tensile strength is lowered or yarn breakage is likely to occur when twisted.
  • the hybrid carbon fiber spun yarn that can be used in the present invention is preferably a spun yarn in which the carbon fiber for the core material is an anisotropic carbon fiber and the carbon fiber for the sheath material is an isotropic carbon fiber.
  • High tensile strength and high elastic modulus can be realized by the carbon fiber for the core material, and good adhesion to the heat-treated product by the adhesive can be realized by the carbon fiber for the sheath material.
  • the “anisotropic carbon fiber” means a structure in which the tensile strength of the carbon fiber is 1000 MPa or more or the tensile elastic modulus is 100 GPa or more, and the carbon layer surface is selectively oriented in the fiber axis direction.
  • the fiber which has.
  • Specific examples include polyacrylonitrile-based (PAN-based) carbon fibers, pitch-based anisotropic carbon fibers, and rayon-based carbon fibers, and polyacrylonitrile-based (PAN-based) carbon fibers are particularly preferable.
  • the “isotropic carbon fiber” refers to a fiber having a structure in which the tensile strength of the carbon fiber is less than 1000 MPa or the tensile elastic modulus is less than 100 GPa, and the carbon layer surface is not oriented. Pitch based isotropic carbon fibers are preferred.
  • the carbon fiber for core material usually has a longest fiber length of 20 m or less in the molded body.
  • a raw material fiber constituting the carbon fiber for core material an average fiber length of usually 500 mm or more is preferable, more preferably 1000 mm or more, and still more preferably 3 m or more.
  • the average fiber length of the raw material fibers constituting the carbon fiber for the core material can be appropriately selected from available fiber lengths according to the use.
  • continuous long fibers of 5000 m or less are industrial. Are available.
  • spun yarn as the fiber length used is longer, the joining point between the fibers decreases, so that the strength of the spun yarn can be improved.
  • the average fiber length of the raw material fibers constituting the carbon fiber for sheath material is usually less than 500 mm, preferably 300 mm or less, and more preferably 200 mm or less, which is industrially available.
  • carbon fibers having an average fiber length of 150 mm or more and less than 500 mm are contained in an amount of 3 to 30% by mass, preferably 5 to 20% by mass, and carbon fibers having an average fiber length of less than 150 mm are contained in an amount of 97 to 70% by mass, preferably 95 to 80% by mass. Is particularly preferred.
  • Density of the carbon fiber core material is preferably in the range of 1.65 ⁇ 2.30g / cm 3, more preferably in the range of 1.70 ⁇ 2.00g / cm 3, 1.70 ⁇ 1.90g / cm 3 The range of is particularly preferable. If the density of the carbon fiber for the core material is too small, carbonization is insufficient, and if it is too large, the crystallization proceeds too much, and in any case, the strength decreases and the function as a carbon fiber for the core material increases the strength of the fabric. It will be difficult to achieve.
  • the density of the carbon fiber sheath material is preferably in the range of 1.50 ⁇ 1.80g / cm 3, more preferably in the range of 1.50 ⁇ 1.70g / cm 3, 1.55 ⁇ 1.70g / A range of cm 3 is particularly preferred. If the density of the carbon fiber for the sheath material is too small, carbonization is insufficient and the strength of the carbon fiber is lowered. If the density is too large, the wettability with the resin (adhesive) is deteriorated, and the fabric is adhered to the carbon fiber felt laminate. It becomes difficult to achieve the function as carbon fiber for sheath material.
  • the ratio of the carbon fiber for the core material to the carbon fiber for the sheath material is preferably 5% by mass to 50% by mass, more preferably 10% by mass to 30% by mass, and more preferably 15% by mass to 15% by mass. 25 mass% is still more preferable. If the blending amount of the carbon fiber for the core material is less than 5% by mass, the strength of the spun yarn may be insufficient, and if it exceeds 50% by mass, the adhesiveness between the spun yarn and the carbon fiber felt laminate decreases. In some cases, the (bending) strength of the molded body cannot be secured.
  • the mass (fineness) per 1000 m of the carbon fiber spun yarn composed of the carbon fiber for the core material and the carbon fiber for the sheath material is preferably 30 to 1000 tex, more preferably 30 to 750 tex.
  • the method for producing the carbon fiber spun yarn is not particularly limited, and a normal method for producing hybrid carbon fiber spun paper can be used. For example, the method described in International Publication No. 2006/090643, and the international method can be used. The method described in Japanese Patent Publication No. 2008/023777 can be used.
  • the carbon fiber woven fabric used in the present invention can be woven using the carbon fiber spun yarn.
  • a plain weave, a twill weave, a satin weave, or a basket weave can be used using a shuttle loom or a rapier loom.
  • the basis weight (FAW) in the carbon fiber fabric is preferably 300 to 1200 g / m 2 , more preferably 400 to 1000 g / m 2, and most preferably 600 to 800 g / m 2 .
  • a larger basis weight is preferable from the viewpoint of protecting the laminate of carbon fiber felt, but the carbon fiber fabric becomes thicker and the workability is lowered, so that it is preferably within the above range.
  • the driving density is preferably 15 to 20 / inch, more preferably 16 to 19 / inch in both the warp direction and the weft direction.
  • the driving density in the warp direction and the weft direction may be different, but the same driving density is preferable.
  • the driving density is preferably as high as the basis weight from the viewpoint of protection of the carbon fiber felt laminate, but is preferably within the above range because the carbon fiber fabric becomes thick and the workability decreases.
  • the thickness of the carbon fiber fabric is preferably 0.3 to 2.0 mm, more preferably 0.6 to 1.5 mm, and most preferably 0.8 to 1.3 mm.
  • the thickness of the carbon fiber fabric is determined by the fineness (tex) of the carbon fiber spun yarn, the driving density of the carbon fiber fabric, and the like. Accordingly, the same thickness as the basis weight is preferred from the viewpoint of protection of the carbon fiber felt laminate, but if it is too thick, the workability is lowered, and therefore it is preferably within the above range.
  • the fabric layer is composed of at least one carbon fiber fabric.
  • the carbon fiber laminated molded body can include two or more carbon fiber fabrics, but a fabric layer composed of one carbon fiber fabric is preferable from the viewpoint of cost reduction.
  • the thickness of the woven fabric layer is preferably 0.3 to 2.0 mm, more preferably 0.6 to 1.5 mm, and most preferably 0.8 to 1.3 mm.
  • the carbon fiber felt laminate in the carbon fiber laminate molded product of the present invention is a laminate of one or more carbon fiber felts. Specifically, carbon fiber felt impregnated with a resin is laminated and fired after compression molding.
  • the number of layers of the carbon fiber felt is not particularly limited and can be appropriately determined depending on the application. For example, when used as a heat insulating material for a high temperature furnace, it is preferably 1 to 30 layers, and more 2 to 20 layers are preferable, and 4 to 10 layers are more preferable.
  • the thickness of the carbon fiber felt laminate varies depending on the application and is not particularly limited. However, when the molded article of the present invention is used as a heat insulating material for a high temperature furnace, a range of usually 5 to 300 mm is preferable. A range of 10 to 150 mm is more preferable. It is because productivity will fall when the thickness of a carbon fiber felt laminated body is too thick, and heat insulation will fall when too thin.
  • the bulk density of the carbon fiber felt laminate is preferably in the range of 0.05 to 0.40 g / cm 3 , and more preferably in the range of 0.10 to 0.30 g / cm 3 . If it is less than 0.05 g / cm 3, it reduces the heat insulating property, when it exceeds 0.40 g / cm 3, productivity is lowered because the molding pressure is increased.
  • the carbon fiber constituting the carbon fiber felt preferably has an average fiber diameter of 5 to 20 ⁇ m, more preferably 8 to 18 ⁇ m. If it is less than 5 ⁇ m, the production efficiency may decrease, and if it exceeds 20 ⁇ m, the heat insulation may decrease.
  • the fiber length of the carbon fibers constituting the carbon fiber felt is preferably in the range of 30 to 500 mm, more preferably in the range of 50 to 250 mm. If it is less than 30 mm, the bending strength of the carbon fiber felt laminate may be weak, and if it exceeds 500 mm, it is difficult to uniformly disperse the fibers and it may be difficult to make a uniform felt.
  • Examples of the carbon fibers constituting the carbon fiber felt include pitch-based isotropic carbon fibers, polyacrylonitrile-based (PAN-based) carbon fibers, rayon-based carbon fibers, and quinol carbon fibers. Carbon fiber is preferred.
  • Carbon fiber felt can be obtained by needle punching the carbon fiber.
  • the thickness of the carbon fiber felt is preferably 5 to 30 mm, more preferably 10 to 30 mm.
  • the carbon content of the carbon fiber felt is preferably 80% or more, more preferably 90% or more, and most preferably 95% or more.
  • Carbon fiber paper Carbon fiber paper made by adding a binder to short carbon fibers, or carbon fiber paper obtained by impregnating a resin into the obtained carbon fiber paper and firing it, can be used.
  • polyacrylonitrile-based carbon fibers As the carbon short fibers used in the carbon fiber paper, polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, or rayon-based carbon fibers can be used without particular limitation, but pitch-based carbon fibers are preferable.
  • the average fiber length of the short carbon fibers is preferably 1 to 10 mm. If the average fiber length of the short carbon fibers is shorter than 1 mm, the number of fibers that are lost in the paper making process may increase, and the product yield may be reduced. If the average fiber length of the short carbon fibers is longer than 10 mm, the dispersion may be poor in the dispersion step, and a mass portion may be generated, so that the quality may be deteriorated.
  • the average fiber diameter of the short carbon fibers is preferably 5 to 20 ⁇ m. When the average fiber diameter of the short carbon fibers is smaller than 5 ⁇ m, the production cost may be increased. When the average fiber diameter of the short carbon fibers is larger than 20 ⁇ m, the paper strength is lowered and the quality may be lowered.
  • binder examples include polyvinyl alcohol, polyacrylonitrile, cellulose, and polyvinyl acetate, but polyvinyl alcohol (PVA) is preferable because it has excellent binding power in the paper making process and less carbon short fibers are removed. .
  • the binder is preferably used in an amount of 5 to 50 parts by mass with respect to 100 parts by mass of the carbon fiber.
  • Examples of the paper making method for carbon fiber paper include a wet method in which carbon short fibers are dispersed in a liquid medium and paper making, and a dry method in which carbon short fibers are dispersed in air to deposit them. In order to mix uniformly, a wet method is preferable.
  • the resin used for the carbon fiber paper examples include a phenol resin, a furan resin, an epoxy resin, a melamine resin, an imide resin, a urethane resin, an aramid resin, a pitch, and the like, or a mixture thereof.
  • the amount of the resin with respect to the carbon fiber paper is preferably impregnated with 1 to 120 resin with respect to 100 parts by mass of the short carbon fiber and fired.
  • the basis weight of the carbon fiber paper is preferably 20 to 60 g / m 2 , and more preferably 30 to 50 g / m 2 . If it is less than 20 g / m 2 , the strength in the wet paper state (state before drying and binder curing) may be low. If it exceeds 60 g / m 2 , the weight in the wet paper state becomes heavy, This is because it may be damaged.
  • a method for producing a carbon fiber laminated molded body according to the present invention includes: (a) at least one carbon fiber fabric woven with hybrid carbon fiber spun yarn; carbon fiber felt impregnated with thermosetting resin And a step of laminating and compression-molding the carbon fiber paper by application of an adhesive, and (b) firing the obtained compression-molded laminate, preferably a carbon fiber fabric, carbon fiber A felt laminate and carbon fiber paper are laminated in this order.
  • the carbon fiber fabric to be used is a carbon fiber fabric in which the hybrid carbon fiber spun yarn is woven, and one or two or more carbon fiber fabrics are used. it can.
  • the carbon fiber felt is obtained by needle punching carbon fibers.
  • One or more carbon fiber felts are impregnated with a thermosetting resin and laminated to be used as a laminate.
  • the carbon fiber paper may be an organic binder carbon fiber paper made by adding a binder to short carbon fibers as described above, or a carbon binder carbon fiber paper obtained by impregnating and firing a resin. it can.
  • the adhesive used in the production method of the present invention is carbonized by firing, it preferably contains a large amount of carbon, but is not particularly limited by the carbon content. Specifically, 60 to 100 parts by mass of thermosetting prepolymer, 20 to 60 parts by mass of thermosetting resin; 5 to 20 parts by mass of short carbon fiber, carbon black, carbon powder or graphite powder; An adhesive composition in which 5 parts by mass of water and 5 to 20 parts by mass of water are uniformly mixed and dispersed can be used.
  • thermosetting prepolymers urea resin prepolymers; melamine resin prepolymers, urea-modified melamine resin prepolymers; guanamine resin prepolymers; guanamine-modified melamine resin prepolymers; furan resin prepolymers; alkyd resin prepolymers; Polymers such as novolac type phenol resin prepolymers, resol type phenol resin prepolymers, novolac type alkyl phenol resin prepolymers, resol type alkylphenol resin prepolymers and their xylene / formaldehyde condensates, toluene / formaldehyde condensates, or melamine resins, guanamines Modified resin prepolymer with resin or urea resin; epoxy resin prepolymer such as bisphenol A diglycidyl ether, alicyclic Diglycidyl ethers of alcohols, bisphenol A bis (alpha-methyl glycidyl ether),
  • a resin prepolymer having a high carbonization yield is preferable, and a novolak type phenol resin prepolymer, a resol type phenol resin prepolymer, a novolac type alkylphenol resin prepolymer, and a resol type alkylphenol resin prepolymer can be particularly preferably used.
  • Thermosetting resins include urea resins; melamine resins; urea-modified melamine resins; guanamine resins; guanamine-modified melamine resins; alkyd resins; furan resins; unsaturated polyester resins; phenol resins such as novolak-type phenol resins and resol-type phenol resins.
  • Novolac-type alkylphenol resins Novolac-type alkylphenol resins, resol-type alkylphenol resins; epoxy resins such as bisphenol A diglycidyl ether, alicyclic dialcohol diglycidyl ether, bisphenol A bis ( ⁇ -methylglycidyl ether), alicyclic dialcohol bis ( Preferred examples include ⁇ -methyl glycidyl ether).
  • resins having a high carbonization yield are preferable, and novolak-type phenol resins, resol-type phenol resins, novolac-type alkylphenol resins, and resol-type alkylphenol resins can be particularly preferably used.
  • acetone methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, 2-furylmethanol, toluene, xylene, dimethyl sulfoxide, or the like can be preferably used.
  • the adhesive is used to bond a laminate of carbon fiber fabric and carbon fiber felt, and a laminate of carbon fiber felt and carbon fiber paper.
  • the amount of adhesive used between them is preferably 500 to 3000 g / m 2, more preferably 1000 to 2500 g / m 2, and more preferably 1200 to 2200 g / m 2 with respect to the carbon fiber woven fabric or carbon fiber felt laminate. 2 is most preferred. This is because if it is less than 500 g / m 2 , the adhesive strength becomes weak, and if it exceeds 3000 g / m 2 , the adhesive is cured after firing, and the workability of the carbon fiber laminate molded article is deteriorated.
  • a normal method can be used.
  • the adhesive can be applied with a spatula, a brush, or a roller.
  • thermosetting resin impregnated in the carbon fiber felt examples include urea resin, melamine resin, phenol resin, epoxy resin, unsaturated polyester resin, alkyd resin, urethane resin, furan resin, etc., but the carbonization yield is high. Phenol resin is preferred.
  • the carbon fiber felt is impregnated with the resin, and the number of sheets necessary for the intended use is laminated to prepare a carbon fiber felt laminate.
  • the impregnation amount of the resin is preferably 10 to 100 parts by mass, more preferably 15 to 50 parts by mass with respect to 100 parts by mass of the carbon fiber felt.
  • the compression molding step in the production method of the present invention will be described with reference to FIG.
  • the carbon fiber fabric (12) is set on the stainless steel plate (23) on the lower surface of the compression molding apparatus (2), and a predetermined amount of adhesive (25) is applied to the carbon fiber fabric.
  • the second carbon fiber fabric is laminated, and a predetermined amount of adhesive is applied to the upper surface thereof.
  • One or more carbon fiber felts (14) impregnated with a thermosetting resin are laminated on the carbon fiber woven fabric to form a carbon fiber felt laminate (13).
  • a predetermined amount of adhesive (25) is applied to the uppermost surface of the carbon fiber felt laminate, and the carbon fiber paper (10) is laminated.
  • the resulting carbon fiber fabric, carbon fiber felt laminate, and laminate made of carbon fiber paper are compression molded at a pressure and temperature at which the thermosetting resin impregnated in the carbon fiber felt laminate is cured, and thermoset.
  • the resin and the adhesive can be cured to obtain a compression molded body.
  • a laminate comprising a carbon fiber woven fabric, a carbon fiber felt laminate, and a carbon fiber paper into a compression molded article having a target thickness
  • a spacer (22) having a target thickness around the laminate By compression molding, the thickness of the compression molded body can be adjusted.
  • the pressure in the compression molding step is not particularly limited as long as the above-mentioned spacer is used.
  • the pressure can be 0.1 to 1 MPa.
  • the temperature of the hot press plate is not particularly limited as long as the thermosetting resin impregnated in the carbon fiber felt is cured.
  • the compression molding time can be appropriately determined, but can be performed, for example, in 10 minutes to 5 hours.
  • a carbon fiber felt laminated body means what was impregnated and laminated
  • the firing step in the production method of the present invention can be performed at 3000 ° C. or less in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere include a vacuum state, a nitrogen atmosphere, and an argon atmosphere.
  • the temperature is not particularly limited as long as carbonization occurs.
  • the physical properties of the spun yarn fabric were measured by the following methods.
  • Tensile strength of spun yarn fabric When a spun yarn fabric is pulled with a Tensilon universal testing machine ("Orientec Co., Ltd.,” RTC-1310 ") under the conditions of a load cell rating of 10 kN, a sample length of 150 mm, a sample width of 50 mm, and a tensile speed of 200 mm / min.
  • the tensile strength of the spun yarn fabric was defined as a value obtained by converting the breaking strength of 1 to 1 cm of the sample width.
  • Example 1 Manufacture of carbon fiber fabrics
  • a carbon fiber spun yarn composed of 20% by mass of a PAN-based carbon fiber core and 80% by mass of a pitch-based carbon fiber sheath is twilled as warp and weft to create a spun yarn fabric (twill weave, FAW 700 g / m 2).
  • the driving density was 17.0 lines / inch in the warp direction and 17.0 lines / inch in the weft direction, the tensile strength was 0.32 kN, and the thickness was 1.0 mm.
  • the adhesive was applied to the top surface of the carbon fiber felt laminate with a brush at a basis weight of 1200 g / m 2 .
  • Carbon fiber paper manufactured by Kureha Co., Ltd., “Kureka Paper E-204” soaked in 15 parts by mass of a phenol resin-based impregnating solution (Showa High Polymer Co., Ltd., “Shonol BRS-3896”) was laminated.
  • a spacer for adjusting the thickness of the target compression molded product to 40 mm is arranged around the formed carbon fiber fabric, carbon fiber felt laminate, and carbon fiber paper laminate, and then compressed and heated. The resin was cured to obtain a compression molded body.
  • the compression-molded body obtained was graphitized in a vacuum nitrogen atmosphere at 2000 ° C. for 1 hour, and a flat plate shape in which a fabric layer was laminated on one side of a carbon fiber felt laminate and carbon fiber paper was laminated on the other side. A carbon fiber laminate molded body was obtained.
  • Example 2 Except for using spun yarn fabric (Twill weave, FAW785g / m 2 , driving density warp direction 18.0 / inch and weft direction 18.0 / inch, tensile strength 0.34kN, thickness 1.1mm) A carbon fiber-containing laminate molded body was obtained in the same manner as in Example 1.
  • spun yarn fabric Twill weave, FAW785g / m 2 , driving density warp direction 18.0 / inch and weft direction 18.0 / inch, tensile strength 0.34kN, thickness 1.1mm
  • Example 3 Except for using spun yarn fabric (twill weave, FAW 700 g / m 2 , driving density warp direction 16.0 pieces / inch and weft direction 18.0 pieces / inch, tensile strength 0.32 kN, thickness 1.0 mm) A carbon fiber-containing laminate molded body was obtained in the same manner as in Example 1. In any of the carbon fiber-containing laminate moldings of Examples 1 to 3, the spun yarn fabric layer was flat and no wrinkles were observed. Also, there were no problems such as warping.
  • spun yarn fabric twill weave, FAW 700 g / m 2 , driving density warp direction 16.0 pieces / inch and weft direction 18.0 pieces / inch, tensile strength 0.32 kN, thickness 1.0 mm
  • the carbon fiber-containing laminated molded body of the present invention can be used as a heat insulating material for a high temperature furnace such as a crystal pulling furnace, a vacuum evaporation furnace, or a ceramic sintering furnace.
  • a high temperature furnace such as a crystal pulling furnace, a vacuum evaporation furnace, or a ceramic sintering furnace.

Abstract

Provided are a carbon fiber laminated molded product and a method for producing same wherein it is possible to improve processability and to reduce the cost of the carbon fiber laminated molded product which can be used as a heat insulating material for high temperature furnaces. The carbon fiber laminated molded product is characterized by comprising a carbon fiber paper, a carbon fiber felt laminate, and a woven layer formed from at least one carbon fiber woven fabric in which a carbon fiber spun yarn is woven. The method for producing the carbon fiber laminated molded product involves: a step (a) for laminating by coating an adhesive and for compression molding at least one carbon fiber woven fabric in which a hybrid carbon fiber spun yarn is woven, a laminate of a carbon fiber felt which is impregnated with a thermosetting resin, and a carbon fiber paper; and a step (b) for firing the compression molded laminate thus obtained.

Description

炭素繊維積層成形体及びその製造方法Carbon fiber laminated molded body and method for producing the same
 本発明は、炭素繊維積層成形体及びその製造方法に関する。本発明の炭素繊維積層成形体によれば、高温炉用断熱材として用いることのできる炭素繊維積層成形体のコストを低減し、加工性を向上させることができる。また、本発明の製造方法によれば、製造工程を簡略化することができる。 The present invention relates to a carbon fiber laminated molded body and a method for producing the same. According to the carbon fiber laminated molded body of the present invention, the cost of the carbon fiber laminated molded body that can be used as a high-temperature furnace heat insulating material can be reduced, and the workability can be improved. Moreover, according to the manufacturing method of the present invention, the manufacturing process can be simplified.
 炭素繊維積層成形体は、優れた断熱性能及び低熱容量の特性を有しているため、単結晶引上げ炉、真空蒸着炉、又はセラミックス焼結炉等の高温炉用断熱材として広く用いられている。前記炭素繊維積層成形体としては、例えば、炭素繊維フェルトに炭化率の高い樹脂を含浸させ、積層したものを圧縮成形して炭素繊維フェルトの積層体とし、それを焼成して得られる炭素繊維積層成形体が知られていた。このような炭素繊維積層成形体は、不活性雰囲気下では、高い耐熱性を有しており、3000℃程度までの使用に耐えることができる。
 しかしながら、実際の使用環境においては、高温炉内で酸化性のガスや気化した金属が発生しており、炭素繊維積層成形体はそれらと反応して消耗及び劣化を起こすことがある。この問題を解決するため、炭素繊維積層成形体の表面に炭素質保護層を有する複合炭素質断熱材(特許文献1)、又は炭素繊維フェルトの積層体に、炭素繊維紡績糸を織成してなる織物層を接着させた炭素繊維含有積層成形体(特許文献2)が提案されている。特に、後者の炭素繊維含有積層成形体における織物層は、酸化性のガスや気化した金属からの保護作用に加え、外部からの衝撃及び応力に対する破損防止用保護の機能も有しており、炭素繊維フェルトの積層体の両面に接着することによって十分な強度と、耐剥離性とを併せ持つ、炭素繊維含有積層成形体を得ることができる(特許文献2)。
Since the carbon fiber laminated molded article has excellent heat insulation performance and low heat capacity characteristics, it is widely used as a heat insulating material for high temperature furnaces such as a single crystal pulling furnace, a vacuum evaporation furnace, or a ceramic sintering furnace. . As the carbon fiber laminate molded body, for example, a carbon fiber felt is impregnated with a resin having a high carbonization rate, and the laminate is compression molded to form a carbon fiber felt laminate, which is obtained by firing the carbon fiber laminate. A shaped body was known. Such a carbon fiber laminated molded body has high heat resistance under an inert atmosphere and can withstand use up to about 3000 ° C.
However, in an actual use environment, oxidizing gas and vaporized metal are generated in the high-temperature furnace, and the carbon fiber laminated molded body may react with them and cause wear and deterioration. In order to solve this problem, a composite carbonaceous heat insulating material (Patent Document 1) having a carbonaceous protective layer on the surface of a carbon fiber laminate molded body, or a woven fabric obtained by weaving carbon fiber spun yarn on a carbon fiber felt laminate. A carbon fiber-containing laminate molded body (Patent Document 2) in which layers are bonded has been proposed. In particular, the fabric layer in the latter carbon fiber-containing laminated molded body has a protective function against damage from external impacts and stresses in addition to a protective action from oxidizing gas and vaporized metal. By adhering to both surfaces of a laminate of fiber felt, a carbon fiber-containing laminate molded article having both sufficient strength and peel resistance can be obtained (Patent Document 2).
 しかしながら、炭素繊維積層成形体には、製造コストの削減、及び断熱材として用いる場合の加工性の向上などが求められており、更なる改良が期待されている。 However, the carbon fiber laminated molded body is required to reduce the manufacturing cost and improve the workability when used as a heat insulating material, and further improvement is expected.
特開2000-327441号公報JP 2000-327441 A 国際公開第2008/023777号公報International Publication No. 2008/023777
 本発明者らは、製造コストを削減するため、炭素繊維フェルトの積層体において、酸化性のガスや気化した金属に接する面のみに一つの織物からなる織物層を接着することを試みた。しかしながら、焼成時において、織物層及びそれを接着する接着剤の収縮度が、炭素繊維フェルトの積層体の収縮度より高いため、織物層の接着面側がより大きく収縮し、炭素繊維積層成形体が反ることが分かった。
 本発明者らは、この問題を解決するため、鋭意研究した結果、織物層を接着する面の反対側の面に炭素繊維紙を接着することにより、炭素繊維積層成形体の反りが解消されることを見出した。
In order to reduce the manufacturing cost, the inventors of the present invention tried to bond a fabric layer made of a single fabric only on the surface in contact with the oxidizing gas or vaporized metal in the laminate of carbon fiber felt. However, at the time of firing, the shrinkage of the fabric layer and the adhesive bonding the fabric layer is higher than the shrinkage of the carbon fiber felt laminate. I knew it would warp.
As a result of diligent research to solve this problem, the present inventors have solved the warpage of the carbon fiber laminated molded body by bonding the carbon fiber paper to the surface opposite to the surface to which the fabric layer is bonded. I found out.
 更に、本発明者らは、炭素繊維積層成形体の製造方法において、製造工程の簡略化について、鋭意研究した結果、炭素繊維フェルトの積層物の圧縮成形と、炭素繊維フェルトの積層物、織物層、及び炭素繊維紙の接着とを同時に行うことが可能であり、それにより製造工程を減らし、製造コストを削減することができることを見出した。すなわち、特許文献2の実施例では、基材である炭素繊維フェルトの積層物(基材)の圧縮成形及びそれに続く焼成を行い、得られた基材の両面に織物層を接着剤で接着し、更に圧縮成形及び焼成を行っており、圧縮成形及び焼成の工程をそれぞれ2回行っていた。本発明の方法では、圧縮成形及び焼成の工程が1回であり、製造が簡略化され、製造コストが削減された。
 なお、本発明者らは、本発明の製造方法において、炭素繊維紙に代えて、織物層を用いることを試みた。すなわち、炭素繊維フェルトの積層物(基材)の両面に織物層を接着させ、圧縮成形及び焼成の工程を1回で行うことを試みた。この場合、従来のように炭素繊維フェルトの積層物の圧縮成形及びそれに続く焼成が、予め行われていないため、炭素繊維フェルトの積層物の上面が柔軟な状態である。また、織物層も比較的柔軟であるため、織物層と炭素繊維フェルトの積層物とを接着剤を塗布し、一緒に圧縮成形すると、特に炭素繊維フェルトの積層物の上面に積層した織物層において、しわが形成され、商品的な価値が低下することがあり、歩留まりが悪くなることがわかった。本発明においては、炭素繊維フェルトの積層物の上面に比較的硬度の高い炭素繊維紙を用いているため、炭素繊維紙にしわが形成されることがなく、商品的な価値が低下することなく、歩留まりの低下は見られなかった。
 本発明は、こうした知見に基づくものである。
Furthermore, the present inventors have intensively studied on the simplification of the production process in the method for producing a carbon fiber laminated molded body. As a result, the compression molding of the carbon fiber felt laminate, the carbon fiber felt laminate, and the fabric layer are performed. And the bonding of the carbon fiber paper can be performed simultaneously, thereby reducing the manufacturing process and reducing the manufacturing cost. That is, in the Example of Patent Document 2, compression molding and subsequent firing of a carbon fiber felt laminate (base material) as a base material are performed, and a fabric layer is adhered to both surfaces of the obtained base material with an adhesive. Further, compression molding and firing were performed, and the steps of compression molding and firing were performed twice. In the method of the present invention, the compression molding and firing steps are performed once, the production is simplified, and the production cost is reduced.
In addition, in the manufacturing method of the present invention, the present inventors tried to use a fabric layer instead of carbon fiber paper. That is, the fabric layer was adhered to both surfaces of the carbon fiber felt laminate (base material), and an attempt was made to perform the compression molding and firing steps in one time. In this case, since the compression molding of the carbon fiber felt laminate and the subsequent firing are not performed in advance, the upper surface of the carbon fiber felt laminate is in a flexible state. In addition, since the fabric layer is also relatively flexible, when the fabric layer and the carbon fiber felt laminate are coated with an adhesive and compression molded together, especially in the fabric layer laminated on the top surface of the carbon fiber felt laminate. It has been found that wrinkles are formed, the commercial value may be lowered, and the yield is deteriorated. In the present invention, since carbon fiber paper having a relatively high hardness is used on the upper surface of the laminate of carbon fiber felt, wrinkles are not formed on the carbon fiber paper, and the commercial value is not lowered. There was no decrease in yield.
The present invention is based on these findings.
 従って、本発明は、炭素繊維紡績糸を織成した少なくとも1つの炭素繊維織物からなる織物層、炭素繊維フェルト積層体、及び炭素繊維紙からなることを特徴とする炭素繊維積層成形体に関する。
 本発明の炭素繊維積層成形体の好ましい態様においては、前記炭素繊維紡績糸を織成した少なくとも1つの炭素繊維織物からなる織物層、炭素繊維フェルト積層体、及び炭素繊維紙がこの順に積層される。
 本発明の炭素繊維積層成形体の好ましい態様においては、前記炭素繊維紡績糸が、平均繊維径12μm以下の芯材用炭素繊維、及び平均繊維径12μm超過の鞘材用炭素繊維を含むハイブリッド炭素繊維紡績糸である。
 また、本発明は前記炭素繊維積層成形体からなる高温炉用断熱材に関する。
 更に、本発明は、(a)ハイブリッド炭素繊維紡績糸を織成した少なくとも1つの炭素繊維織物、熱硬化性樹脂を含浸させた炭素繊維フェルトの積層物、及び炭素繊維紙を、接着剤の塗布によって積層し、圧縮成形する工程、及び(b)得られた圧縮成形積層体を焼成する工程、を含む炭素繊維積層成形体の製造方法に関する。
 本発明の素繊維積層成形体の製造方法の好ましい態様においては、前記工程(a)において、炭素繊維紡績糸を織成した少なくとも1つの炭素繊維織物からなる織物層、炭素繊維フェルト積層体、及び炭素繊維紙をこの順に積層する。
Accordingly, the present invention relates to a carbon fiber laminate molded body comprising a woven fabric layer composed of at least one carbon fiber fabric woven with carbon fiber spun yarn, a carbon fiber felt laminate, and carbon fiber paper.
In a preferred embodiment of the carbon fiber laminate molded body of the present invention, a fabric layer composed of at least one carbon fiber fabric in which the carbon fiber spun yarn is woven, a carbon fiber felt laminate, and carbon fiber paper are laminated in this order.
In a preferred embodiment of the carbon fiber laminated molded body of the present invention, the carbon fiber spun yarn includes a carbon fiber for a core material having an average fiber diameter of 12 μm or less and a carbon fiber for a sheath material having an average fiber diameter of more than 12 μm. It is spun yarn.
Moreover, this invention relates to the heat insulating material for high temperature furnaces which consists of the said carbon fiber laminated molded object.
Further, the present invention provides (a) at least one carbon fiber fabric woven with hybrid carbon fiber spun yarn, a laminate of carbon fiber felt impregnated with a thermosetting resin, and carbon fiber paper by applying an adhesive. It is related with the manufacturing method of a carbon fiber laminated molded object including the process of laminating | stacking and compression-molding, and the process of baking the obtained compression molded laminated body (b).
In a preferred embodiment of the method for producing a raw fiber laminated molded body of the present invention, in the step (a), a woven fabric layer comprising at least one carbon fiber woven fabric woven with carbon fiber spun yarn, a carbon fiber felt laminate, and carbon Fiber paper is laminated in this order.
 本発明の炭素繊維積層成形体によれば、織物層を炭素繊維フェルトの積層体の両面に有する従来の炭素繊維積層成形体と比較して、片方の織物層に代えて炭素繊維紙を用いることにより、コストを削減することができる。
 また、本発明の炭素繊維積層成形体の製造方法は、圧縮成形工程及び焼成工程が1回のみで製造可能であり、従来の一般的な炭素繊維積層成形体の製造方法と比較して、製造工程が減少され、製造コストを削減することができる。
 更に、本発明の方法において、炭素繊維紙に代えて、織物層を用いた場合、すなわち炭素繊維フェルトの積層体の圧縮成形工程、及び焼成工程を行わずに、織物層を炭素繊維フェルトの積層体の両面に接着し、圧縮成形工程を行った場合、特に上面の織物層において、しわが形成され、歩留まりが悪くなった。本発明の製造方法では、炭素繊維紙を用いているため、しわの発生は見られず、商品的な価値が低下することなく、歩留まりの低下は見られなかった。
According to the carbon fiber laminate molded body of the present invention, carbon fiber paper is used instead of one fabric layer as compared with a conventional carbon fiber laminate molded body having a fabric layer on both sides of a carbon fiber felt laminate. Thus, the cost can be reduced.
In addition, the method for producing a carbon fiber laminate molded body of the present invention can be produced by only one compression molding step and firing step, and is produced in comparison with a conventional method for producing a carbon fiber laminate molded body. The number of processes is reduced, and the manufacturing cost can be reduced.
Furthermore, in the method of the present invention, when a woven fabric layer is used instead of carbon fiber paper, that is, the woven fabric layer is laminated with the carbon fiber felt without performing the compression molding step and the firing step of the carbon fiber felt laminate. When bonded to both sides of the body and subjected to the compression molding process, wrinkles were formed particularly in the upper woven fabric layer, resulting in poor yield. In the production method of the present invention, since carbon fiber paper was used, no generation of wrinkles was observed, the commercial value was not decreased, and the yield was not decreased.
本発明の炭素繊維積層成形体の1つの実施態様を示す断面図である。It is sectional drawing which shows one embodiment of the carbon fiber laminated molded body of this invention. 本発明の炭素繊維積層成形体の製造方法における圧縮成形工程の1つの実施態様を示す断面図(模式図)である。It is sectional drawing (schematic diagram) which shows one embodiment of the compression molding process in the manufacturing method of the carbon fiber laminated molded body of this invention.
1.炭素繊維積層成形体
 本発明の炭素繊維積層成形体は、ハイブリッド炭素繊維紡績糸を織成した少なくとも1つの炭素繊維織物からなる織物層、炭素繊維フェルト積層体、及び炭素繊維紙からなることを特徴とするものであり、好ましくは織物層、炭素繊維フェルト積層体、及び炭素繊維紙がこの順に積層される。
1. Carbon Fiber Laminated Molded Body The carbon fiber laminated molded body of the present invention is characterized by comprising a fabric layer composed of at least one carbon fiber fabric woven with hybrid carbon fiber spun yarn, a carbon fiber felt laminate, and carbon fiber paper. Preferably, the fabric layer, the carbon fiber felt laminate, and the carbon fiber paper are laminated in this order.
[織物層]
 本発明における織物層を構成する炭素繊維織物は、炭素繊維紡績糸を織成したものであれば特に限定されるものではない。例えば、炭素繊維紡績糸としては、ポリアクリロニトリル系(PAN系)炭素繊維からなる紡績糸、ピッチ系異方性炭素繊維からなる紡績糸、レーヨン系炭素繊維からなる紡績糸、ピッチ系等方性炭素繊維からなる紡績糸、又はそれらの組み合わせからなるハイブリッド炭素繊維紡績糸を挙げることができるが、特には、ハイブリッド炭素繊維紡績糸が好ましい。ハイブリッド炭素繊維紡績糸としては、例えば、国際公開第2006/090643号公報に記載のハイブリッド炭素繊維紡績糸、及び国際公開第2008/023777号公報に記載の炭素繊維紡績糸を挙げることができる。
 国際公開第2008/023777号公報に記載の炭素繊維紡績糸は、平均繊維径12μm以下、好ましくは5~12μmの芯材用炭素繊維、及び平均繊維径12μm超過、好ましくは12μm超過~20μmの鞘材用炭素繊維を含むハイブリッド炭素繊維紡績糸である。芯材用炭素繊維の平均繊維径が5μm未満では生産効率が低下する。また、鞘材用炭素繊維の平均繊維径が20μmを超えると、引張強度が低下したり、撚りをかけたときに糸切れが生じやすくなる。
[Textile layer]
The carbon fiber fabric constituting the fabric layer in the present invention is not particularly limited as long as the carbon fiber spun yarn is woven. For example, as carbon fiber spun yarn, spun yarn made of polyacrylonitrile (PAN) carbon fiber, spun yarn made of pitch anisotropic carbon fiber, spun yarn made of rayon carbon fiber, pitch isotropic carbon Although the hybrid carbon fiber spun yarn which consists of spun yarn which consists of fibers, or those combination can be mentioned, Especially a hybrid carbon fiber spun yarn is preferable. Examples of the hybrid carbon fiber spun yarn include a hybrid carbon fiber spun yarn described in International Publication No. 2006/090643 and a carbon fiber spun yarn described in International Publication No. 2008/023777.
The carbon fiber spun yarn described in International Publication No. WO 2008/023777 includes a core carbon fiber having an average fiber diameter of 12 μm or less, preferably 5 to 12 μm, and a sheath having an average fiber diameter of more than 12 μm, preferably more than 12 μm to 20 μm. This is a hybrid carbon fiber spun yarn containing carbon fibers for materials. If the average fiber diameter of the carbon fiber for the core material is less than 5 μm, the production efficiency is lowered. On the other hand, when the average fiber diameter of the carbon fiber for sheath material exceeds 20 μm, the tensile strength is lowered or yarn breakage is likely to occur when twisted.
 本発明において用いることのできるハイブリッド炭素繊維紡績糸は、芯材用炭素繊維が異方性炭素繊維であり、鞘材用炭素繊維が等方性炭素繊維である紡績糸であることが好ましい。芯材用炭素繊維により高い引張強さ及び高い弾性率を実現することができ、鞘材用炭素繊維により接着剤による熱処理物との良好な接着性を実現することができる。 The hybrid carbon fiber spun yarn that can be used in the present invention is preferably a spun yarn in which the carbon fiber for the core material is an anisotropic carbon fiber and the carbon fiber for the sheath material is an isotropic carbon fiber. High tensile strength and high elastic modulus can be realized by the carbon fiber for the core material, and good adhesion to the heat-treated product by the adhesive can be realized by the carbon fiber for the sheath material.
 本明細書において、「異方性炭素繊維」とは、炭素繊維の引張強さが1000MPa以上又は引張弾性率が100GPa以上であり、炭素層面が繊維軸方向に選択的に配向している組織を有する繊維をいう。具体的には、ポリアクリロニトリル系(PAN系)炭素繊維、ピッチ系異方性炭素繊維、又はレーヨン系炭素繊維を挙げることができるが、特にはポリアクリロニトリル系(PAN系)炭素繊維が好ましい。 In this specification, the “anisotropic carbon fiber” means a structure in which the tensile strength of the carbon fiber is 1000 MPa or more or the tensile elastic modulus is 100 GPa or more, and the carbon layer surface is selectively oriented in the fiber axis direction. The fiber which has. Specific examples include polyacrylonitrile-based (PAN-based) carbon fibers, pitch-based anisotropic carbon fibers, and rayon-based carbon fibers, and polyacrylonitrile-based (PAN-based) carbon fibers are particularly preferable.
 本明細書において、「等方性炭素繊維」とは、炭素繊維の引張強さが1000MPa未満又は引張弾性率が100GPa未満であり、炭素層面が配向していない組織を有する繊維をいい、特には、ピッチ系等方性炭素繊維が好ましい。 In this specification, the “isotropic carbon fiber” refers to a fiber having a structure in which the tensile strength of the carbon fiber is less than 1000 MPa or the tensile elastic modulus is less than 100 GPa, and the carbon layer surface is not oriented. Pitch based isotropic carbon fibers are preferred.
 前記芯材用炭素繊維は、成型体中において、通常20m以下の最長繊維長を有する。芯材用炭素繊維を構成する原材料繊維としては、通常500mm以上の平均繊維長が好ましく、1000mm以上であることがより好ましく、3m以上であることが更に好ましい。芯材用炭素繊維を構成する原材料繊維の平均繊維長の上限は特になく、入手可能な繊維長の中から用途に応じて適宜選択することができるが、通常は5000m以下の連続長繊維が工業的に入手可能である。紡績糸においては、使用される繊維長が長いほど繊維同士の繋ぎ合わせ点が減少するので紡績糸の強度を向上させることができる。また、鞘材用炭素繊維を構成する原材料繊維の平均繊維長は、通常工業的に入手可能であるのは500mm未満であり、300mm以下であることが好ましく、200mm以下であることがより好ましい。更に、平均繊維長が150mm以上500mm未満の炭素繊維を3~30質量%、好ましくは5~20質量%含み、150mm未満の炭素繊維を97~70質量%、好ましくは95~80質量%含むことが特に好適である。平均繊維長150mm以上の炭素繊維が少なすぎると炭素繊維紡績糸の引張強度が低下し、多すぎると紡績工程で糸切れを起こしやすく繊度のばらつきが生じてスラブ、フライと呼ばれる塊状部が発生しやすくなり品質が低下する。 The carbon fiber for core material usually has a longest fiber length of 20 m or less in the molded body. As a raw material fiber constituting the carbon fiber for core material, an average fiber length of usually 500 mm or more is preferable, more preferably 1000 mm or more, and still more preferably 3 m or more. There is no particular upper limit on the average fiber length of the raw material fibers constituting the carbon fiber for the core material, and it can be appropriately selected from available fiber lengths according to the use. Usually, continuous long fibers of 5000 m or less are industrial. Are available. In spun yarn, as the fiber length used is longer, the joining point between the fibers decreases, so that the strength of the spun yarn can be improved. Moreover, the average fiber length of the raw material fibers constituting the carbon fiber for sheath material is usually less than 500 mm, preferably 300 mm or less, and more preferably 200 mm or less, which is industrially available. Further, carbon fibers having an average fiber length of 150 mm or more and less than 500 mm are contained in an amount of 3 to 30% by mass, preferably 5 to 20% by mass, and carbon fibers having an average fiber length of less than 150 mm are contained in an amount of 97 to 70% by mass, preferably 95 to 80% by mass. Is particularly preferred. If there is too little carbon fiber with an average fiber length of 150 mm or more, the tensile strength of the carbon fiber spun yarn will decrease, and if it is too much, yarn breakage will easily occur in the spinning process, resulting in variations in fineness, resulting in lumps called slabs and flies. It becomes easier and the quality decreases.
 芯材用炭素繊維の密度は、1.65~2.30g/cmの範囲が好ましく、1.70~2.00g/cmの範囲がより好ましく、1.70~1.90g/cmの範囲が特に好ましい。芯材用炭素繊維の密度が小さすぎると炭化が不充分で、大きすぎると結晶化が進みすぎて、いずれの場合も強度が低下し、織物の強度を強めるという芯材用炭素繊維としての機能を達成することが困難になる。 Density of the carbon fiber core material is preferably in the range of 1.65 ~ 2.30g / cm 3, more preferably in the range of 1.70 ~ 2.00g / cm 3, 1.70 ~ 1.90g / cm 3 The range of is particularly preferable. If the density of the carbon fiber for the core material is too small, carbonization is insufficient, and if it is too large, the crystallization proceeds too much, and in any case, the strength decreases and the function as a carbon fiber for the core material increases the strength of the fabric. It will be difficult to achieve.
 また、鞘材用炭素繊維の密度は、1.50~1.80g/cmの範囲が好ましく、1.50~1.70g/cmの範囲がより好ましく、1.55~1.70g/cmの範囲が特に好ましい。鞘材用炭素繊維の密度が小さすぎると炭化が不充分で炭素繊維の強度が低下し、大きすぎると樹脂(接着剤)との濡れ性が悪くなり、織物を炭素繊維フェルト積層体に接着させるという鞘材用炭素繊維としての機能を達成することが困難になる。 The density of the carbon fiber sheath material is preferably in the range of 1.50 ~ 1.80g / cm 3, more preferably in the range of 1.50 ~ 1.70g / cm 3, 1.55 ~ 1.70g / A range of cm 3 is particularly preferred. If the density of the carbon fiber for the sheath material is too small, carbonization is insufficient and the strength of the carbon fiber is lowered. If the density is too large, the wettability with the resin (adhesive) is deteriorated, and the fabric is adhered to the carbon fiber felt laminate. It becomes difficult to achieve the function as carbon fiber for sheath material.
 芯材用炭素繊維と鞘材用炭素繊維との割合は、芯材用炭素繊維の配合量が5質量%~50質量%が好ましく、10質量%~30質量%がより好ましく、15質量%~25質量%が更に好ましい。芯材用炭素繊維の配合量が5質量%未満であると、紡績糸の強度が不足する場合があり、50質量%を超えると、紡績糸と炭素繊維フェルト積層体との接着性が低下して成型体の(曲げ)強さが確保できなくなる場合がある。 The ratio of the carbon fiber for the core material to the carbon fiber for the sheath material is preferably 5% by mass to 50% by mass, more preferably 10% by mass to 30% by mass, and more preferably 15% by mass to 15% by mass. 25 mass% is still more preferable. If the blending amount of the carbon fiber for the core material is less than 5% by mass, the strength of the spun yarn may be insufficient, and if it exceeds 50% by mass, the adhesiveness between the spun yarn and the carbon fiber felt laminate decreases. In some cases, the (bending) strength of the molded body cannot be secured.
 芯材用炭素繊維及び鞘材用炭素繊維から構成される炭素繊維紡績糸の1000m当りの質量(繊度)は、好ましくは30~1000tex、より好ましくは30~750texである。前記の範囲より少ないと紡績糸の製造コストがかかり、多いと製織が困難になる場合がある。炭素繊維紡績糸の製造方法は、特に限定されるものではなく、ハイブリッド炭素繊維紡績紙を製造する通常の方法を用いることができ、例えば、国際公開第2006/090643号公報に記載方法、及び国際公開第2008/023777号公報に記載の方法を用いることができる。 The mass (fineness) per 1000 m of the carbon fiber spun yarn composed of the carbon fiber for the core material and the carbon fiber for the sheath material is preferably 30 to 1000 tex, more preferably 30 to 750 tex. When the amount is less than the above range, the production cost of spun yarn is required, and when the amount is large, weaving may be difficult. The method for producing the carbon fiber spun yarn is not particularly limited, and a normal method for producing hybrid carbon fiber spun paper can be used. For example, the method described in International Publication No. 2006/090643, and the international method can be used. The method described in Japanese Patent Publication No. 2008/023777 can be used.
 前記炭素繊維紡績糸を用いて、本発明において用いられる炭素繊維織物を織生することができる。例えばシャトル織機やレピア織機を用いて、平織り、綾織り、朱子織、又はバスケット織などの織物とすることができる。 The carbon fiber woven fabric used in the present invention can be woven using the carbon fiber spun yarn. For example, a plain weave, a twill weave, a satin weave, or a basket weave can be used using a shuttle loom or a rapier loom.
 炭素繊維織物における目付け(FAW)は、300~1200g/mとするのが好ましく、400~1000g/mとするのが更に好ましく、600~800g/mとするのが、最も好ましい。目付けは多い方が炭素繊維フェルトの積層体の保護の観点から好ましいが、炭素繊維織物が厚くなり加工性が低下するので前記範囲内とするのが好ましい。 The basis weight (FAW) in the carbon fiber fabric is preferably 300 to 1200 g / m 2 , more preferably 400 to 1000 g / m 2, and most preferably 600 to 800 g / m 2 . A larger basis weight is preferable from the viewpoint of protecting the laminate of carbon fiber felt, but the carbon fiber fabric becomes thicker and the workability is lowered, so that it is preferably within the above range.
 炭素繊維織物において、打ち込み密度は、経方向及び緯方向ともに、15~20本/インチが好ましく、16~19本/インチがより好ましい。経方向及び緯方向の打ち込み密度は、異なっていてもよいが、同じ打ち込み密度である方が好ましい。打ち込み密度も、目付と同様に多い方が炭素繊維フェルトの積層体の保護の点から好ましいが、炭素繊維織物が厚くなり加工性が低下するので前記範囲内とするのが好ましい。 In the carbon fiber fabric, the driving density is preferably 15 to 20 / inch, more preferably 16 to 19 / inch in both the warp direction and the weft direction. The driving density in the warp direction and the weft direction may be different, but the same driving density is preferable. The driving density is preferably as high as the basis weight from the viewpoint of protection of the carbon fiber felt laminate, but is preferably within the above range because the carbon fiber fabric becomes thick and the workability decreases.
 炭素繊維織物の厚さは、0.3~2.0mmが好ましく、0.6~1.5mmがより好ましく、0.8~1.3mmが最も好ましい。炭素繊維織物の厚さは、炭素繊維紡績糸の繊度(tex)、及び炭素繊維織物の打ち込み密度などによって決定される。従って、厚さも目付と同様に厚い方が炭素繊維フェルトの積層体の保護の点から好ましいが、厚くなりすぎると加工性が低下するので前記範囲内とするのが好ましい。 The thickness of the carbon fiber fabric is preferably 0.3 to 2.0 mm, more preferably 0.6 to 1.5 mm, and most preferably 0.8 to 1.3 mm. The thickness of the carbon fiber fabric is determined by the fineness (tex) of the carbon fiber spun yarn, the driving density of the carbon fiber fabric, and the like. Accordingly, the same thickness as the basis weight is preferred from the viewpoint of protection of the carbon fiber felt laminate, but if it is too thick, the workability is lowered, and therefore it is preferably within the above range.
 本発明の炭素繊維積層成形体における、織物層は少なくとも1つの炭素繊維織物からなる。炭素繊維積層成形体は、2つ以上の炭素繊維織物を含むことができるが、1つの炭素繊維織物からなる織物層が、コスト削減の観点から好ましい。織物層の厚さは、0.3~2.0mmが好ましく、0.6~1.5mmがより好ましく、0.8~1.3mmが最も好ましい。 In the carbon fiber laminated molded body of the present invention, the fabric layer is composed of at least one carbon fiber fabric. The carbon fiber laminated molded body can include two or more carbon fiber fabrics, but a fabric layer composed of one carbon fiber fabric is preferable from the viewpoint of cost reduction. The thickness of the woven fabric layer is preferably 0.3 to 2.0 mm, more preferably 0.6 to 1.5 mm, and most preferably 0.8 to 1.3 mm.
[炭素繊維フェルト積層体]
 本発明の炭素繊維積層成形体における、炭素繊維フェルト積層体は、1つ以上の炭素繊維フェルトを積層したものである。具体的には、炭素繊維フェルトに樹脂を含浸したものを積層し、圧縮成形後に焼成されたものである。炭素繊維フェルトの層の数は、特に限定されるものではなく、その用途によって適宜決定することができるが、例えば、高温炉用断熱材として用いる場合は、好ましくは1~30層であり、より好ましくは、2~20層であり、更に好ましくは4~10層である。
[Carbon fiber felt laminate]
The carbon fiber felt laminate in the carbon fiber laminate molded product of the present invention is a laminate of one or more carbon fiber felts. Specifically, carbon fiber felt impregnated with a resin is laminated and fired after compression molding. The number of layers of the carbon fiber felt is not particularly limited and can be appropriately determined depending on the application. For example, when used as a heat insulating material for a high temperature furnace, it is preferably 1 to 30 layers, and more 2 to 20 layers are preferable, and 4 to 10 layers are more preferable.
 また、炭素繊維フェルト積層体の厚さも用途によって異なり、特に限定されるものではないが、本発明の成型体を高温炉用断熱材として使用する場合には、通常5~300mmの範囲が好ましく、10~150mmの範囲が更に好ましい。炭素繊維フェルト積層体の厚さが厚すぎると生産性が低下し、薄すぎると断熱性が低下するからである。 Further, the thickness of the carbon fiber felt laminate varies depending on the application and is not particularly limited. However, when the molded article of the present invention is used as a heat insulating material for a high temperature furnace, a range of usually 5 to 300 mm is preferable. A range of 10 to 150 mm is more preferable. It is because productivity will fall when the thickness of a carbon fiber felt laminated body is too thick, and heat insulation will fall when too thin.
 炭素繊維フェルト積層体のかさ密度は、0.05~0.40g/cmの範囲が好ましく、0.10~0.30g/cmの範囲が更に好ましい。0.05g/cm未満であると、断熱性が低下し、0.40g/cmを超えると、成形圧力が大きくなるため生産性が低下する。 The bulk density of the carbon fiber felt laminate is preferably in the range of 0.05 to 0.40 g / cm 3 , and more preferably in the range of 0.10 to 0.30 g / cm 3 . If it is less than 0.05 g / cm 3, it reduces the heat insulating property, when it exceeds 0.40 g / cm 3, productivity is lowered because the molding pressure is increased.
 炭素繊維フェルトを構成する炭素繊維は、平均繊維径5~20μmを有するものが好ましく、より好ましくは8~18μmを有するものを用いることができる。5μm未満であると生産効率が低下する場合があり、20μmを超えると断熱性が低下する場合がある。また、炭素繊維フェルトを構成する炭素繊維の繊維長は、30~500mmの範囲が好ましく、50~250mmの範囲が更に好ましい。30mm未満であると炭素繊維フェルト積層体の曲げ強度が弱い場合があり、500mmを超えると繊維の均一な分散が難しく、均一なフェルトを作るのが困難な場合がある。炭素繊維フェルトを構成する炭素繊維としては、ピッチ系等方性炭素繊維、ポリアクリロニトリル系(PAN系)炭素繊維、レーヨン系炭素繊維、又はカイノール炭素繊維などを挙げることができるが、ピッチ系等方性炭素繊維が好ましい。 The carbon fiber constituting the carbon fiber felt preferably has an average fiber diameter of 5 to 20 μm, more preferably 8 to 18 μm. If it is less than 5 μm, the production efficiency may decrease, and if it exceeds 20 μm, the heat insulation may decrease. The fiber length of the carbon fibers constituting the carbon fiber felt is preferably in the range of 30 to 500 mm, more preferably in the range of 50 to 250 mm. If it is less than 30 mm, the bending strength of the carbon fiber felt laminate may be weak, and if it exceeds 500 mm, it is difficult to uniformly disperse the fibers and it may be difficult to make a uniform felt. Examples of the carbon fibers constituting the carbon fiber felt include pitch-based isotropic carbon fibers, polyacrylonitrile-based (PAN-based) carbon fibers, rayon-based carbon fibers, and quinol carbon fibers. Carbon fiber is preferred.
 炭素繊維フェルトは、前記炭素繊維をニードルパンチングすることによって得ることができる。炭素繊維フェルトの厚さは、5~30mmが好ましく、10~30mmがより好ましい。炭素繊維フェルトの炭素含有率は、80%以上が好ましく、90%以上がより好ましく、95%以上が最も好ましい。 Carbon fiber felt can be obtained by needle punching the carbon fiber. The thickness of the carbon fiber felt is preferably 5 to 30 mm, more preferably 10 to 30 mm. The carbon content of the carbon fiber felt is preferably 80% or more, more preferably 90% or more, and most preferably 95% or more.
[炭素繊維紙]
 炭素短繊維にバインダーを加えて抄紙した炭素繊維紙、又は得られた炭素繊維紙に、更に樹脂を含浸させて焼成することにより、バインダーが炭素化した炭素繊維紙を用いることができる。
[Carbon fiber paper]
Carbon fiber paper made by adding a binder to short carbon fibers, or carbon fiber paper obtained by impregnating a resin into the obtained carbon fiber paper and firing it, can be used.
 炭素繊維紙に用いる炭素短繊維としては、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、又はレーヨン系炭素繊維を、特に制限なく使用することができるが、ピッチ系炭素繊維が好ましい。 As the carbon short fibers used in the carbon fiber paper, polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, or rayon-based carbon fibers can be used without particular limitation, but pitch-based carbon fibers are preferable.
 炭素短繊維の平均繊維長は、1~10mmであることが好ましい。炭素短繊維の平均繊維長が1mmより短くなると、抄紙工程での目抜けする繊維が多くなり、製品収率が低下することがある。炭素短繊維の平均繊維長が10mmより長くなると、分散工程で分散が不良となり、塊状部が発生するため品質が低下することがある。炭素短繊維の平均繊維径は、5~20μmであることが好ましい。炭素短繊維の平均繊維径が5μmより小さくなると、製造コストが高くなることがある。炭素短繊維の平均繊維径が20μmより大きくなると紙強度が低下するため品質が低下することがある。 The average fiber length of the short carbon fibers is preferably 1 to 10 mm. If the average fiber length of the short carbon fibers is shorter than 1 mm, the number of fibers that are lost in the paper making process may increase, and the product yield may be reduced. If the average fiber length of the short carbon fibers is longer than 10 mm, the dispersion may be poor in the dispersion step, and a mass portion may be generated, so that the quality may be deteriorated. The average fiber diameter of the short carbon fibers is preferably 5 to 20 μm. When the average fiber diameter of the short carbon fibers is smaller than 5 μm, the production cost may be increased. When the average fiber diameter of the short carbon fibers is larger than 20 μm, the paper strength is lowered and the quality may be lowered.
 バインダーとしては、例えばポリビニルアルコール、ポリアクリロニトリル、セルロース、又はポリ酢酸ビニルを挙げることができるが、ポリビニルアルコール(PVA)は、抄紙工程での結着力に優れ、炭素短繊維の脱落が少ないため、好ましい。バインダーは、炭素繊維100質量部に対して、5~50質量部用いることが好ましい。 Examples of the binder include polyvinyl alcohol, polyacrylonitrile, cellulose, and polyvinyl acetate, but polyvinyl alcohol (PVA) is preferable because it has excellent binding power in the paper making process and less carbon short fibers are removed. . The binder is preferably used in an amount of 5 to 50 parts by mass with respect to 100 parts by mass of the carbon fiber.
 炭素繊維紙の抄紙方法は、液体の媒体中に炭素短繊維を分散させて抄造する湿式法や、空気中に炭素短繊維を分散させて降り積もらせる乾式法を挙げることができるが、バインダーを均一に混合するために、湿式法が好ましい。 Examples of the paper making method for carbon fiber paper include a wet method in which carbon short fibers are dispersed in a liquid medium and paper making, and a dry method in which carbon short fibers are dispersed in air to deposit them. In order to mix uniformly, a wet method is preferable.
 炭素繊維紙に用いる樹脂としては、フェノール樹脂、フラン樹脂、エポキシ樹脂、メラミン樹脂、イミド樹脂、ウレタン樹脂、アラミド樹脂、ピッチ等を単独で、又はそれらの混合物を挙げることができる。
 炭素繊維紙に対する樹脂の量は、炭素短繊維100質量部に対して、1~120の樹脂を含浸させ、焼成することが好ましい。
Examples of the resin used for the carbon fiber paper include a phenol resin, a furan resin, an epoxy resin, a melamine resin, an imide resin, a urethane resin, an aramid resin, a pitch, and the like, or a mixture thereof.
The amount of the resin with respect to the carbon fiber paper is preferably impregnated with 1 to 120 resin with respect to 100 parts by mass of the short carbon fiber and fired.
 炭素繊維紙の目付は、20~60g/mであることが好ましく、30~50g/mであることが好ましい。20g/m未満であると、湿紙状態(乾燥・バインダー硬化前の状態)での強度が低くなる場合があり、60g/mを超えると、湿紙状態において重量が重くなり、自重で破損してしまう場合があるからである。 The basis weight of the carbon fiber paper is preferably 20 to 60 g / m 2 , and more preferably 30 to 50 g / m 2 . If it is less than 20 g / m 2 , the strength in the wet paper state (state before drying and binder curing) may be low. If it exceeds 60 g / m 2 , the weight in the wet paper state becomes heavy, This is because it may be damaged.
2.炭素繊維積層成形体の製造方法
 本発明の炭素繊維積層成形体の製造方法は、(a)ハイブリッド炭素繊維紡績糸を織成した少なくとも1つの炭素繊維織物、熱硬化性樹脂を含浸させた炭素繊維フェルトの積層物、及び炭素繊維紙を、接着剤の塗布によって積層し、圧縮成形する工程、及び(b)得られた圧縮成形積層体を焼成する工程、を含み、好ましくは炭素繊維織物、炭素繊維フェルトの積層物、及び炭素繊維紙をこの順に積層する。
 本発明の炭素繊維積層成形体の製造方法において、使用する炭素繊維織物は、前記のハイブリッド炭素繊維紡績糸を織成した炭素繊維織物であり、1つ又は2つ以上の炭素繊維織物を用いることができる。2つ以上の炭素繊維織物を用いる場合は、それぞれの炭素繊維織物を接着剤を用いて接着する。
 炭素繊維フェルトは、炭素繊維をニードルパンチングすることによって得られたものであり、1つ以上の炭素繊維フェルトに、熱硬化性樹脂を含浸させ、積層して積層物として用いる。
 また、炭素繊維紙は、前記のように炭素短繊維にバインダーを加えて抄紙した有機バインダー炭素繊維紙、又は更に樹脂を含浸させ、焼成することによって得られた炭素バインダー炭素繊維紙を用いることができる。
2. Method for Producing Carbon Fiber Laminated Molded Body A method for producing a carbon fiber laminated molded body according to the present invention includes: (a) at least one carbon fiber fabric woven with hybrid carbon fiber spun yarn; carbon fiber felt impregnated with thermosetting resin And a step of laminating and compression-molding the carbon fiber paper by application of an adhesive, and (b) firing the obtained compression-molded laminate, preferably a carbon fiber fabric, carbon fiber A felt laminate and carbon fiber paper are laminated in this order.
In the method for producing a carbon fiber laminated molded body of the present invention, the carbon fiber fabric to be used is a carbon fiber fabric in which the hybrid carbon fiber spun yarn is woven, and one or two or more carbon fiber fabrics are used. it can. When two or more carbon fiber fabrics are used, the respective carbon fiber fabrics are bonded using an adhesive.
The carbon fiber felt is obtained by needle punching carbon fibers. One or more carbon fiber felts are impregnated with a thermosetting resin and laminated to be used as a laminate.
The carbon fiber paper may be an organic binder carbon fiber paper made by adding a binder to short carbon fibers as described above, or a carbon binder carbon fiber paper obtained by impregnating and firing a resin. it can.
 本発明の製造方法に用いる接着剤は、焼成を行い炭素化するため、炭素分を多く含むものが好ましいが、特に炭素含量によって制限されるものではない。
 具体的には、熱硬化性プレポリマー60~100質量部、熱硬化性樹脂20~60質量部;短繊維長炭素繊維、カーボンブラック、炭素粉末又は黒鉛粉末5~20質量部;溶剤5~20質量部;及び水5~20質量部を均一に混合分散させた接着剤組成物を用いることができる。
Since the adhesive used in the production method of the present invention is carbonized by firing, it preferably contains a large amount of carbon, but is not particularly limited by the carbon content.
Specifically, 60 to 100 parts by mass of thermosetting prepolymer, 20 to 60 parts by mass of thermosetting resin; 5 to 20 parts by mass of short carbon fiber, carbon black, carbon powder or graphite powder; An adhesive composition in which 5 parts by mass of water and 5 to 20 parts by mass of water are uniformly mixed and dispersed can be used.
 熱硬化性プレポリマーとしては、尿素樹脂プレポリマー;メラミン樹脂プレポリマー、尿素変性メラミン樹脂プレポリマー;グアナミン樹脂プレポリマー;グアナミン変性メラミン樹脂プレポリマー;フラン樹脂プレポリマー;アルキド樹脂プレポリマー;フェノール樹脂プレポリマー、例えばノボラック型フェノール樹脂プレポリマー、レゾール型フェノール樹脂プレポリマー、ノボラック型アルキルフェノール樹脂プレポリマー、レゾール型アルキルフェノール樹脂プレポリマー及びこれらのキシレン/ホルムアルデヒド縮合物、トルエン/ホルムアルデヒド縮合物、又はメラミン樹脂、グアナミン樹脂もしくは尿素樹脂による変性樹脂プレポリマー;エボキシ樹脂プレポリマー、例えばビスフェノールAジグリシジルエーテル、脂環式ジアルコールのジグリシジルエーテル、ビスフェノールAビス(α-メチルグリシジルエーテル)、脂環式ジアルコールのビス(α-メチルグリシジルエ-テル)等を好ましく挙げることができる。必要に応じて、硬化剤、硬化触媒等を混合してもよい。これらの中でも、炭化歩留まりが高い樹脂プレポリマーが好ましく、ノボラック型フェノール樹脂プレポリマー、レゾール型フェノール樹脂プレポリマー、ノボラック型アルキルフェノール樹脂プレポリマー、レゾール型アルキルフェノール樹脂プレポリマーを特に好ましく用いることができる。
 熱硬化性樹脂としては、尿素樹脂;メラミン樹脂;尿素変性メラミン樹脂;グアナミン樹脂;グアナミン変性メラミン樹脂;アルキド樹脂;フラン樹脂;不飽和ポリエステル樹脂;フェノール樹脂、例えばノボラック型フェノール樹脂、レゾール型フェノール樹脂、ノボラック型アルキルフェノール樹脂、レゾール型アルキルフェノール樹脂;エポキシ樹脂、例えばビスフェノールAジグリシジルエーテル、脂環式ジアルコールのジグリシジルエーテル、ビスフェノールAビス(α-メチルグリシジルエーテル)、脂環式ジアルコールのビス(α-メチルグリシジルエーテル)等を好ましく挙げることができる。これらの中でも、炭化歩留まりが高い樹脂が好ましく、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、ノボラック型アルキルフェノール樹脂、レゾール型アルキルフェノール樹脂を特に好ましく用いることができる。
 溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、2-フリルメタノール、トルエン、キシレン又はジメチルスルホキシド等を好ましく用いることができる。
As thermosetting prepolymers, urea resin prepolymers; melamine resin prepolymers, urea-modified melamine resin prepolymers; guanamine resin prepolymers; guanamine-modified melamine resin prepolymers; furan resin prepolymers; alkyd resin prepolymers; Polymers such as novolac type phenol resin prepolymers, resol type phenol resin prepolymers, novolac type alkyl phenol resin prepolymers, resol type alkylphenol resin prepolymers and their xylene / formaldehyde condensates, toluene / formaldehyde condensates, or melamine resins, guanamines Modified resin prepolymer with resin or urea resin; epoxy resin prepolymer such as bisphenol A diglycidyl ether, alicyclic Diglycidyl ethers of alcohols, bisphenol A bis (alpha-methyl glycidyl ether), alicyclic dialcohol bis (alpha-methylglycidyl d - ether), and the like preferably. You may mix a hardening | curing agent, a hardening catalyst, etc. as needed. Among these, a resin prepolymer having a high carbonization yield is preferable, and a novolak type phenol resin prepolymer, a resol type phenol resin prepolymer, a novolac type alkylphenol resin prepolymer, and a resol type alkylphenol resin prepolymer can be particularly preferably used.
Thermosetting resins include urea resins; melamine resins; urea-modified melamine resins; guanamine resins; guanamine-modified melamine resins; alkyd resins; furan resins; unsaturated polyester resins; phenol resins such as novolak-type phenol resins and resol-type phenol resins. , Novolac-type alkylphenol resins, resol-type alkylphenol resins; epoxy resins such as bisphenol A diglycidyl ether, alicyclic dialcohol diglycidyl ether, bisphenol A bis (α-methylglycidyl ether), alicyclic dialcohol bis ( Preferred examples include α-methyl glycidyl ether). Among these, resins having a high carbonization yield are preferable, and novolak-type phenol resins, resol-type phenol resins, novolac-type alkylphenol resins, and resol-type alkylphenol resins can be particularly preferably used.
As the solvent, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, 2-furylmethanol, toluene, xylene, dimethyl sulfoxide, or the like can be preferably used.
 接着剤は、炭素繊維織物及び炭素繊維フェルトの積層物、並びに炭素繊維フェルトの積層物及び炭素繊維紙を接着させるものである。それぞれの間の接着剤の使用量は、炭素繊維織物、又は炭素繊維フェルトの積層物に対して、500~3000g/mが好ましく、1000~2500g/mが更に好ましく、1200~2200g/mが最も好ましい。500g/m未満であると、接着力が弱くなり、3000g/mを超えると、焼成後に接着剤が硬化して、炭素繊維積層成形体の加工性が悪くなるからである。
 接着剤の塗布の方法は、通常の方法を用いることができ、例えば、ヘラ、刷毛、又はローラなどで塗布することができる。
The adhesive is used to bond a laminate of carbon fiber fabric and carbon fiber felt, and a laminate of carbon fiber felt and carbon fiber paper. The amount of adhesive used between them is preferably 500 to 3000 g / m 2, more preferably 1000 to 2500 g / m 2, and more preferably 1200 to 2200 g / m 2 with respect to the carbon fiber woven fabric or carbon fiber felt laminate. 2 is most preferred. This is because if it is less than 500 g / m 2 , the adhesive strength becomes weak, and if it exceeds 3000 g / m 2 , the adhesive is cured after firing, and the workability of the carbon fiber laminate molded article is deteriorated.
As a method for applying the adhesive, a normal method can be used. For example, the adhesive can be applied with a spatula, a brush, or a roller.
 前記炭素繊維フェルトに含浸させる熱硬化性樹脂としては、尿素樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、フラン樹脂など挙げることができるが、炭化歩留まりの高いフェノール樹脂が好ましい。 Examples of the thermosetting resin impregnated in the carbon fiber felt include urea resin, melamine resin, phenol resin, epoxy resin, unsaturated polyester resin, alkyd resin, urethane resin, furan resin, etc., but the carbonization yield is high. Phenol resin is preferred.
 炭素繊維フェルトに、前記樹脂を含浸し、目的の用途に必要な厚さが得られる枚数を積層し、炭素繊維フェルト積層物を調製する。樹脂の含浸量は、炭素繊維フェルト100質量部に対して、10~100質量部が好ましく、15~50質量部がより好ましい。 The carbon fiber felt is impregnated with the resin, and the number of sheets necessary for the intended use is laminated to prepare a carbon fiber felt laminate. The impregnation amount of the resin is preferably 10 to 100 parts by mass, more preferably 15 to 50 parts by mass with respect to 100 parts by mass of the carbon fiber felt.
[圧縮成形工程]
 本発明の製造方法における圧縮成形工程を、図2に従って説明する。
 圧縮成形工程においては、圧縮成形装置(2)の下面のステンレス板(23)の上に、炭素繊維織物(12)をセットし、炭素繊維織物に所定の量の接着剤(25)を塗布する。2つ以上の炭素繊維織物を用いる場合は、第2の炭素繊維織物を積層し、その上面にも所定の量の接着剤を塗布する。前記炭素繊維織物の上に、熱硬化性樹脂を含浸した1つ以上の炭素繊維フェルト(14)を積層し、炭素繊維フェルト積層物(13)を形成させる。この炭素繊維フェルト積層物の最上面に、所定量の接着剤(25)を塗布し、炭素繊維紙(10)を積層する。得られた炭素繊維織物、炭素繊維フェルト積層物、及び炭素繊維紙からなる積層物を、炭素繊維フェルト積層物に含浸した熱硬化性樹脂が硬化する圧力及び温度で、圧縮成形し、熱硬化性樹脂及び接着剤を硬化させ、圧縮成形体を得ることができる。
 炭素繊維織物、炭素繊維フェルト積層物、及び炭素繊維紙からなる積層物を目的の厚さの圧縮成形体とするため、前記積層物の周囲に目的の厚みのスペーサー(22)を配置した後に、圧縮成形することにより、圧縮成形体の厚さを調整することができる。また、圧縮成形体の厚さの調整により、炭素繊維フェルト積層体のかさ密度を調整することが可能である。
[Compression molding process]
The compression molding step in the production method of the present invention will be described with reference to FIG.
In the compression molding step, the carbon fiber fabric (12) is set on the stainless steel plate (23) on the lower surface of the compression molding apparatus (2), and a predetermined amount of adhesive (25) is applied to the carbon fiber fabric. . When two or more carbon fiber fabrics are used, the second carbon fiber fabric is laminated, and a predetermined amount of adhesive is applied to the upper surface thereof. One or more carbon fiber felts (14) impregnated with a thermosetting resin are laminated on the carbon fiber woven fabric to form a carbon fiber felt laminate (13). A predetermined amount of adhesive (25) is applied to the uppermost surface of the carbon fiber felt laminate, and the carbon fiber paper (10) is laminated. The resulting carbon fiber fabric, carbon fiber felt laminate, and laminate made of carbon fiber paper are compression molded at a pressure and temperature at which the thermosetting resin impregnated in the carbon fiber felt laminate is cured, and thermoset. The resin and the adhesive can be cured to obtain a compression molded body.
In order to make a laminate comprising a carbon fiber woven fabric, a carbon fiber felt laminate, and a carbon fiber paper into a compression molded article having a target thickness, after arranging a spacer (22) having a target thickness around the laminate, By compression molding, the thickness of the compression molded body can be adjusted. Moreover, it is possible to adjust the bulk density of the carbon fiber felt laminate by adjusting the thickness of the compression molded body.
 圧縮成形工程における圧力は、前記のスペーサーを用いれば、特に限定されるものではないが、例えば、0.1~1MPaで行うことができる。また、前記ホットプレス板の温度は、炭素繊維フェルトに含浸された熱硬化性樹脂が、硬化する温度であれば、限定されるものはないが、例えば、150~200℃で行うことができる。更に、圧縮成形の時間も適宜規定することができるが、例えば、10分~5時間で行うことができる。
 なお、本明細書において、炭素繊維フェルト積層物は、樹脂が含浸され積層されたものを意味し、圧縮成形前のもの及び圧縮成形後のものの両方を意味する。
The pressure in the compression molding step is not particularly limited as long as the above-mentioned spacer is used. For example, the pressure can be 0.1 to 1 MPa. The temperature of the hot press plate is not particularly limited as long as the thermosetting resin impregnated in the carbon fiber felt is cured. For example, it can be performed at 150 to 200 ° C. Further, the compression molding time can be appropriately determined, but can be performed, for example, in 10 minutes to 5 hours.
In addition, in this specification, a carbon fiber felt laminated body means what was impregnated and laminated | stacked with resin, and means both the thing before compression molding and the thing after compression molding.
[焼成工程]
 本発明の製造方法における焼成工程は、非酸化雰囲気中にて、3000℃以下で行うことができる。非酸化雰囲気としては、例えば真空状態、窒素雰囲気下、又はアルゴン雰囲気下を挙げることができる。温度は、炭化が起きる温度であれば特に限定されない。
[Baking process]
The firing step in the production method of the present invention can be performed at 3000 ° C. or less in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a vacuum state, a nitrogen atmosphere, and an argon atmosphere. The temperature is not particularly limited as long as carbonization occurs.
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
 実施例において、紡績糸織物の各物性は、以下の方法によって測定した。
[紡績糸織物の引張強さ]
 紡績糸織物をテンシロン万能試験機〔(株)オリエンテック製、「RTC-1310型」〕を用いて、ロードセル定格10kN、試料長150mm、試料幅50mm、引張速度200mm/分の条件で引っ張ったときの破断強度を試料幅1cmあたりに換算した値をその紡績糸織物の引張強さとした。
[紡績糸織物の厚み]
 試料を紡績糸織物の端から30mm以上内側のところで100mm×100mm角に切り出し、その中央部をマイクロメーター〔(株)ミツトヨ製、U字型マイクロメーター「PMU 150-2」〕で測定した値を紡績糸織物の厚みとした。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
In the examples, the physical properties of the spun yarn fabric were measured by the following methods.
[Tensile strength of spun yarn fabric]
When a spun yarn fabric is pulled with a Tensilon universal testing machine ("Orientec Co., Ltd.," RTC-1310 ") under the conditions of a load cell rating of 10 kN, a sample length of 150 mm, a sample width of 50 mm, and a tensile speed of 200 mm / min. The tensile strength of the spun yarn fabric was defined as a value obtained by converting the breaking strength of 1 to 1 cm of the sample width.
[Thickness of spun yarn fabric]
A sample was cut into a 100 mm × 100 mm square at an inner side of 30 mm or more from the end of the spun yarn fabric, and the central portion was measured with a micrometer (manufactured by Mitutoyo Corporation, U-shaped micrometer “PMU 150-2”). The thickness of the spun yarn fabric was used.
《実施例1》
〔炭素繊維織物の製造〕
 PAN系炭素繊維からなる芯部20質量%とピッチ系炭素繊維からなる鞘部80質量%で構成される炭素繊維紡績糸を、経糸及び緯糸として綾織して紡績糸織物(綾織、FAW700g/m、打ち込み密度が、経方向17.0本/inch及び緯方向17.0本/inch、引張強さ0.32kN、厚み1.0mm)を得た。
Example 1
[Manufacture of carbon fiber fabrics]
A carbon fiber spun yarn composed of 20% by mass of a PAN-based carbon fiber core and 80% by mass of a pitch-based carbon fiber sheath is twilled as warp and weft to create a spun yarn fabric (twill weave, FAW 700 g / m 2). The driving density was 17.0 lines / inch in the warp direction and 17.0 lines / inch in the weft direction, the tensile strength was 0.32 kN, and the thickness was 1.0 mm.
〔接着剤の調整〕
 紡績糸織物及び炭素繊維フェルト積層物、並びに炭素繊維フェルト積層物及び炭素繊維紙を接着させる接着剤として、フェノール樹脂系含浸液〔昭和高分子(株)製、「ショウノールBRS-3897」〕15質量部、粉末フェノール樹脂〔カシュウー(株)製、「カシュー樹脂No.05」〕25質量部、炭素短繊維〔(株)クレハ製、クレカチョップM-107T、平均繊維長0.7mm、L/D≒39〕10質量部、2-フリルメタノール〔純正化学(株)製、純正1級〕10質量部、エタノール混合溶液〔日本アルコール販売(株)製、「ソルミックスH-23」〕40質量部を均一に混合分散させて接着剤を調製した。
[Adhesive adjustment]
As an adhesive for bonding a spun yarn fabric and a carbon fiber felt laminate, and a carbon fiber felt laminate and carbon fiber paper, a phenol resin-based impregnating liquid [Showa High Polymer Co., Ltd., “Showonol BRS-3897”] 15 Parts by mass, powdered phenol resin [manufactured by Cashew Co., Ltd., “Cashew Resin No. 05”], carbon short fiber [manufactured by Kureha Co., Ltd., Kureka Chop M-107T, average fiber length 0.7 mm, L / D≈39] 10 parts by mass, 2-furylmethanol [manufactured by Junsei Chemical Co., Ltd., grade 1] 10 parts by mass, ethanol mixed solution [manufactured by Nippon Alcohol Sales Co., Ltd., “Solmix H-23”] 40 parts by mass Parts were mixed and dispersed uniformly to prepare an adhesive.
《圧縮成形工程》
 ピッチ系炭素繊維フェルト〔(株)クレハ製、「クレカフェルトF-110」〕100質量部に、フェノール樹脂系含浸液〔昭和高分子(株)製、「ショウノールBRS-3896」〕44質量部を含浸させ、平板状に6層積層し、炭素繊維フェルト積層物を作製した。
 圧縮成形装置に、前記炭素繊維織物をセットし、前記接着剤を1200g/mの割合の坪量で、刷毛を用いて塗布した。その炭素繊維織物の上に、炭素繊維フェルト積層物を加圧することなく積層した。更に、炭素繊維フェルト積層物の最上面に前記接着剤を1200g/mの割合の坪量で、刷毛を用いて塗布した。フェノール樹脂系含浸液〔昭和高分子(株)製、「ショウノールBRS-3896」〕15質量部に浸した炭素繊維紙〔(株)クレハ製、「クレカペーパーE-204」〕を積層した。
 形成された炭素繊維織物、炭素繊維フェルト積層物、及び炭素繊維紙からなる積層物の周囲に、目的の圧縮成形体の厚みを40mmに調整するためのスペーサーを配置した後、圧縮及び加熱を行い、樹脂を硬化させ、圧縮成形体を得た。
<Compression molding process>
Pitch-based carbon fiber felt (manufactured by Kureha Co., Ltd., “Klecafert F-110”) in 100 parts by mass, phenol resin-based impregnating solution (Showa High Polymer Co., Ltd., “Shonol BRS-3896”) in 44 parts by mass Was impregnated and 6 layers were laminated in a flat plate shape to produce a carbon fiber felt laminate.
The carbon fiber fabric was set in a compression molding apparatus, and the adhesive was applied with a brush at a basis weight of 1200 g / m 2 . A carbon fiber felt laminate was laminated on the carbon fiber fabric without applying pressure. Further, the adhesive was applied to the top surface of the carbon fiber felt laminate with a brush at a basis weight of 1200 g / m 2 . Carbon fiber paper (manufactured by Kureha Co., Ltd., “Kureka Paper E-204”) soaked in 15 parts by mass of a phenol resin-based impregnating solution (Showa High Polymer Co., Ltd., “Shonol BRS-3896”) was laminated.
A spacer for adjusting the thickness of the target compression molded product to 40 mm is arranged around the formed carbon fiber fabric, carbon fiber felt laminate, and carbon fiber paper laminate, and then compressed and heated. The resin was cured to obtain a compression molded body.
《焼成工程》
 得られた圧縮成形体を、真空窒素雰囲気中で、2000℃、1時間黒鉛化処理し、炭素繊維フェルト積層体の一方の面に織物層を、他方の面に炭素繊維紙を積層した平板状の炭素繊維積層成形体を得た。
<< Baking process >>
The compression-molded body obtained was graphitized in a vacuum nitrogen atmosphere at 2000 ° C. for 1 hour, and a flat plate shape in which a fabric layer was laminated on one side of a carbon fiber felt laminate and carbon fiber paper was laminated on the other side. A carbon fiber laminate molded body was obtained.
《実施例2》
 紡績糸織物(綾織、FAW785g/m、打ち込み密度 経方向18.0本/inch及び緯方向18.0本/inch、引張強さ0.34kN、厚み1.1mm)を使用した以外は、実施例1と同様にして炭素繊維含有積層成型体を得た。
Example 2
Except for using spun yarn fabric (Twill weave, FAW785g / m 2 , driving density warp direction 18.0 / inch and weft direction 18.0 / inch, tensile strength 0.34kN, thickness 1.1mm) A carbon fiber-containing laminate molded body was obtained in the same manner as in Example 1.
《実施例3》
 紡績糸織物(綾織、FAW700g/m、打ち込み密度 経方向16.0本/inch及び緯方向18.0本/inch、引張強さ0.32kN、厚み1.0mm)を使用した以外は、実施例1と同様にして炭素繊維含有積層成型体を得た。
 実施例1~3のいずれの炭素繊維含有積層成型体も、紡績糸織物層は平坦であり、しわの発生は見られなかった。また、そり等の不具合も見られなかった。
Example 3
Except for using spun yarn fabric (twill weave, FAW 700 g / m 2 , driving density warp direction 16.0 pieces / inch and weft direction 18.0 pieces / inch, tensile strength 0.32 kN, thickness 1.0 mm) A carbon fiber-containing laminate molded body was obtained in the same manner as in Example 1.
In any of the carbon fiber-containing laminate moldings of Examples 1 to 3, the spun yarn fabric layer was flat and no wrinkles were observed. Also, there were no problems such as warping.
 本発明の炭素繊維含有積層成型体は、結晶引上げ炉、真空蒸着炉、又はセラミックス焼結炉等の高温炉用断熱材として、用いることができる。
 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。
The carbon fiber-containing laminated molded body of the present invention can be used as a heat insulating material for a high temperature furnace such as a crystal pulling furnace, a vacuum evaporation furnace, or a ceramic sintering furnace.
As mentioned above, although this invention was demonstrated along the specific aspect, the deformation | transformation and improvement obvious to those skilled in the art are included in the scope of the present invention.
1・・・炭素繊維積層成形体;
10・・・炭素繊維紙;
11・・・炭素繊維フェルト積層体;
12・・・炭素繊維織物;
13・・・炭素繊維フェルト積層物;
14・・・炭素繊維フェルト;
2・・・圧縮成形装置;
21・・・ホットプレス板(上面);
22・・・スペーサー;
23・・・ステンレス板;
24・・・ホットプレス板(下面);
25・・・接着剤。
1 ... Carbon fiber laminated molded body;
10 ... carbon fiber paper;
11 ... carbon fiber felt laminate;
12 ... carbon fiber fabric;
13 ... carbon fiber felt laminate;
14 ... carbon fiber felt;
2 ... compression molding apparatus;
21 ... Hot press plate (upper surface);
22 ... spacer;
23 ... stainless steel plate;
24 ... hot press plate (lower surface);
25: Adhesive.

Claims (6)

  1.  炭素繊維紡績糸を織成した少なくとも1つの炭素繊維織物からなる織物層、炭素繊維フェルト積層体、及び炭素繊維紙からなることを特徴とする炭素繊維積層成形体。 A carbon fiber laminate molded body comprising a woven fabric layer composed of at least one carbon fiber fabric woven from carbon fiber spun yarn, a carbon fiber felt laminate, and carbon fiber paper.
  2.  前記炭素繊維紡績糸を織成した少なくとも1つの炭素繊維織物からなる織物層、炭素繊維フェルト積層体、及び炭素繊維紙がこの順に積層される請求項1に記載の炭素繊維積層成形体。 The carbon fiber laminate molded product according to claim 1, wherein a fabric layer composed of at least one carbon fiber fabric woven from the carbon fiber spun yarn, a carbon fiber felt laminate, and carbon fiber paper are laminated in this order.
  3.  前記炭素繊維紡績糸が、平均繊維径12μm以下の芯材用炭素繊維、及び平均繊維径12μm超過の鞘材用炭素繊維を含むハイブリッド炭素繊維紡績糸である、請求項1又は2に記載の炭素繊維積層成形体。 The carbon according to claim 1 or 2, wherein the carbon fiber spun yarn is a hybrid carbon fiber spun yarn including carbon fibers for a core material having an average fiber diameter of 12 µm or less and carbon fibers for a sheath material having an average fiber diameter exceeding 12 µm. Fiber laminated molded body.
  4.  請求項1~3のいずれか一項に記載の炭素繊維積層成形体からなる高温炉用断熱材。 A heat insulating material for a high temperature furnace comprising the carbon fiber laminated molded body according to any one of claims 1 to 3.
  5. (a)ハイブリッド炭素繊維紡績糸を織成した少なくとも1つの炭素繊維織物、熱硬化性樹脂を含浸させた炭素繊維フェルトの積層物、及び炭素繊維紙を、接着剤の塗布によって積層し、圧縮成形する工程、及び
    (b)得られた圧縮成形積層体を焼成する工程、
    を含む炭素繊維積層成形体の製造方法。
    (A) At least one carbon fiber fabric woven with hybrid carbon fiber spun yarn, a laminate of carbon fiber felt impregnated with a thermosetting resin, and carbon fiber paper are laminated by applying an adhesive and compression-molded. A step, and (b) a step of firing the obtained compression-molded laminate,
    A method for producing a carbon fiber laminated molded body comprising
  6.  前記工程(a)において、炭素繊維紡績糸を織成した少なくとも1つの炭素繊維織物からなる織物層、炭素繊維フェルト積層体、及び炭素繊維紙をこの順に積層する、請求項5に記載の炭素繊維積層成形体の製造方法。 6. The carbon fiber laminate according to claim 5, wherein in the step (a), a fabric layer made of at least one carbon fiber fabric woven with carbon fiber spun yarn, a carbon fiber felt laminate, and carbon fiber paper are laminated in this order. Manufacturing method of a molded object.
PCT/JP2011/051053 2010-01-22 2011-01-21 Carbon fiber laminated molded product, and method for producing same WO2011090151A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011550965A JPWO2011090151A1 (en) 2010-01-22 2011-01-21 Carbon fiber laminated molded body and method for producing the same
CN2011800067434A CN102712168A (en) 2010-01-22 2011-01-21 Carbon fiber laminated molded product, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-012295 2010-01-22
JP2010012295 2010-01-22

Publications (1)

Publication Number Publication Date
WO2011090151A1 true WO2011090151A1 (en) 2011-07-28

Family

ID=44306951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051053 WO2011090151A1 (en) 2010-01-22 2011-01-21 Carbon fiber laminated molded product, and method for producing same

Country Status (4)

Country Link
JP (1) JPWO2011090151A1 (en)
CN (1) CN102712168A (en)
TW (1) TW201139151A (en)
WO (1) WO2011090151A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570076A (en) * 2012-02-02 2012-07-11 中国科学院电工研究所 Hough-type transition connection device for large-current high-temperature superconducting cable terminal
JP2014058765A (en) * 2012-08-22 2014-04-03 Oji Kinocloth Co Ltd Method for producing carbon fiber nonwoven fabric for precursor of heat insulating material and method for producing heat insulating material
WO2014123801A1 (en) * 2013-02-05 2014-08-14 Sachsisolar, Inc. Crucible liner
CN114773080A (en) * 2022-05-10 2022-07-22 吉林联科特种石墨材料有限公司 Preparation method of three-in-one heat-insulating material with graphene as heat reflecting layer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6602523B2 (en) * 2013-06-04 2019-11-06 ニチアス株式会社 Insulation material and method for producing insulation material
CN104339730A (en) * 2013-08-01 2015-02-11 甘肃郝氏炭纤维有限公司 Sandwich cured carbon felt
CN112424523B (en) * 2018-09-21 2022-12-27 大阪燃气化学株式会社 Carbon fiber forming heat insulation material and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348763A (en) * 1986-08-14 1988-03-01 Kureha Chem Ind Co Ltd Composite electrode substrate bonded with teflon and its manufacture
JP2005133032A (en) * 2003-10-31 2005-05-26 Kureha Chem Ind Co Ltd Adhesive for heat insulating material and carbonized laminated product for use in heat insulating material using the same
WO2008023777A1 (en) * 2006-08-22 2008-02-28 Kureha Corporation Laminated molded article containing carbon fiber and method for production thereof
JP2008165038A (en) * 2006-12-28 2008-07-17 Fujifilm Corp Optical element and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628816B (en) * 2008-07-17 2013-03-13 鞍山塞诺达碳纤维有限公司 Method for manufacturing high-density rigid carbon-fiber heat-insulation material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348763A (en) * 1986-08-14 1988-03-01 Kureha Chem Ind Co Ltd Composite electrode substrate bonded with teflon and its manufacture
JP2005133032A (en) * 2003-10-31 2005-05-26 Kureha Chem Ind Co Ltd Adhesive for heat insulating material and carbonized laminated product for use in heat insulating material using the same
WO2008023777A1 (en) * 2006-08-22 2008-02-28 Kureha Corporation Laminated molded article containing carbon fiber and method for production thereof
JP2008165038A (en) * 2006-12-28 2008-07-17 Fujifilm Corp Optical element and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570076A (en) * 2012-02-02 2012-07-11 中国科学院电工研究所 Hough-type transition connection device for large-current high-temperature superconducting cable terminal
JP2014058765A (en) * 2012-08-22 2014-04-03 Oji Kinocloth Co Ltd Method for producing carbon fiber nonwoven fabric for precursor of heat insulating material and method for producing heat insulating material
WO2014123801A1 (en) * 2013-02-05 2014-08-14 Sachsisolar, Inc. Crucible liner
CN104969019A (en) * 2013-02-05 2015-10-07 萨克斯索勒有限公司 Crucible liner
CN114773080A (en) * 2022-05-10 2022-07-22 吉林联科特种石墨材料有限公司 Preparation method of three-in-one heat-insulating material with graphene as heat reflecting layer

Also Published As

Publication number Publication date
TW201139151A (en) 2011-11-16
CN102712168A (en) 2012-10-03
JPWO2011090151A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
WO2011090151A1 (en) Carbon fiber laminated molded product, and method for producing same
US7794826B2 (en) Carbon-fiber-reinforced SiC composite material and slide member
US7407901B2 (en) Impact resistant, thin ply composite structures and method of manufacturing same
KR101472850B1 (en) High-temperature-resistant composite
JP4829465B2 (en) Carbon-substrate complexes and related compositions and methods
JP4889741B2 (en) Carbon fiber-containing laminated molded body and method for producing the same
JP4226100B2 (en) Carbon fiber reinforced composite material and method for producing the same
US10336655B2 (en) Process for producing shaped bodies of carbon fiber reinforced carbon
JP2015174807A (en) Carbon fiber-based heat insulation material, and manufacturing method of the same
JP2012036018A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
JP2519042B2 (en) Carbon-carbon composite material manufacturing method
WO2015178453A1 (en) Cylindrical heat insulation material and method for producing same
JP2008214120A (en) Method of manufacturing carbon fiber sheet
JP2017008272A (en) High functional carbon/carbon composite having high carbon fiber contribution ratio
CN116419839A (en) Two-dimensional carbon/carbon composite screw member laminated with anisotropic nonwoven fabric
JP2014104717A (en) Intermediate material for carbon/carbon composite
JPH0659726B2 (en) High temperature insulating structural material and method for producing the same
JP2005281871A (en) Carbon fiber woven fabric and method for producing the same
JP2000272975A (en) Production of carbon-fiber reinforced carbon composite material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006743.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734757

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550965

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734757

Country of ref document: EP

Kind code of ref document: A1