WO2019155799A1 - Rubber composition and pneumatic tire - Google Patents

Rubber composition and pneumatic tire Download PDF

Info

Publication number
WO2019155799A1
WO2019155799A1 PCT/JP2019/000119 JP2019000119W WO2019155799A1 WO 2019155799 A1 WO2019155799 A1 WO 2019155799A1 JP 2019000119 W JP2019000119 W JP 2019000119W WO 2019155799 A1 WO2019155799 A1 WO 2019155799A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rubber
parts
less
rubber composition
Prior art date
Application number
PCT/JP2019/000119
Other languages
French (fr)
Japanese (ja)
Inventor
森 健次
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to JP2019526630A priority Critical patent/JP7259744B2/en
Publication of WO2019155799A1 publication Critical patent/WO2019155799A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • Rubber compositions used for tire treads and the like are required to have grip performance (wet grip performance, dry grip performance, etc.) from the viewpoint of safety and the like, and various devices have been conventionally made.
  • Patent Document 1 a rubber composition having improved silica dispersibility by adding a silica compound for improving wet grip performance or the like and further adding a silane coupling agent such as bis (3-triethoxysilylpropyl) tetrasulfide has been proposed ( Patent Document 1).
  • An object of the present invention is to solve the above problems and provide a rubber composition excellent in grip performance (wet grip performance, dry grip performance, etc.) and a pneumatic tire.
  • the present invention relates to a rubber composition having a maximum temperature during friction of 30 ° C. or less under the following friction conditions.
  • Frition conditions (1) Size and shape of rubber composition: 2 mm thick sheet (width 16 mm) (2) Measuring plate: A flat plate made of Al 2 O 3
  • the present invention also relates to a pneumatic tire using the rubber composition in a tread.
  • the rubber composition of the present invention has a maximum temperature during friction under a predetermined friction condition of 30 ° C. or less.
  • Japanese Patent Application Laid-Open No. 2016-70880 describes that the temperature of a rubber composition at a portion where a frictional force is actually applied can be measured by a method of measuring the maximum temperature at the time of friction.
  • the maximum temperature instantaneous calorific value, flash temperature
  • the grip performance is improved. This finding has been completed.
  • the reason why the grip performance is improved is not necessarily clear, but if the calorific value is low, the grip performance will decrease during driving because the influence of thermal sag is less and the viscoelastic region used does not shift to the high temperature side. Therefore, it is presumed that the grip performance is improved as a whole during traveling. Both wet grip performance and dry grip performance show the same tendency.
  • the maximum temperature is 30 ° C. or less, a tire excellent in wet grip performance and dry grip performance can be provided.
  • the rubber composition is a rubber composition having a maximum temperature of 30 ° C. or less during friction under the following friction conditions, preferably 27 ° C. or less, more preferably 25 ° C. or less, and even more preferably 23 ° C. or less. Grip performance improves that it is 30 degrees C or less. Moreover, the minimum of the said maximum temperature is although it does not specifically limit, Preferably it is 20 degreeC or more.
  • Friction conditions (1) Size and shape of rubber composition: 2 mm thick sheet (width 16 mm) (2) Measuring plate: A flat plate made of Al 2 O 3
  • the maximum temperature can be measured by the method described in Japanese Patent Application Laid-Open No. 2016-70880. Specifically, the maximum temperature can be measured by the method described in the examples described later (measurement of the maximum temperature).
  • the maximum temperature is the temperature of the hottest part of the surface temperature of the rubber composition (sample) during the friction test. Specifically, the temperature distribution of the surface of each part of the sample (rubber composition) is measured using the method described in JP-A-2016-70880, and from 7 km / hour to 0 km / hour after the start of the test. (The highest surface temperature of the part (location) where the highest surface temperature is detected) is adopted.
  • a rubber composition having a maximum temperature at the time of friction of 30 ° C. or less under the friction conditions can be produced by appropriately selecting the blending and manufacturing method. Specifically, carbon fiber, a resin crosslinking agent, addition of a compound represented by the formula (I), adjustment of the blending amount thereof, and the like can be given.
  • the rubber components usable in the rubber composition include isoprene-based rubber, butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), styrene- Examples include diene rubbers such as isoprene-butadiene copolymer rubber (SIBR), ethylene propylene diene rubber (EPDM), butyl rubber (IIR), and halogenated butyl rubber (X-IIR). These diene rubbers may be used alone or in combination of two or more. Among these, SBR, isoprene-based rubber, and BR are preferable from the viewpoint that the effects of the present invention can be obtained better, and SBR is more preferable from the viewpoint of grip performance.
  • the SBR is not particularly limited, and for example, emulsion polymerization styrene butadiene rubber (E-SBR), solution polymerization styrene butadiene rubber (S-SBR), and the like can be used. These may be used alone or in combination of two or more.
  • E-SBR emulsion polymerization styrene butadiene rubber
  • S-SBR solution polymerization styrene butadiene rubber
  • the SBR may be non-modified SBR or modified SBR.
  • the modified SBR may be any SBR having a functional group that interacts with a filler such as silica.
  • a filler such as silica.
  • at least one terminal of SBR is modified with a compound having a functional group (modifier).
  • SBR terminal-modified SBR having the above-mentioned functional group at the terminal
  • main-chain-modified SBR having the above-mentioned functional group at the main chain and main-chain end-modified SBR having the above-mentioned functional group at the main chain and the terminal (for example, in the main chain)
  • terminal-modified SBR into which an epoxy group has been introduced may be used alone or in combination of two or more.
  • Examples of the functional groups include amino groups, amide groups, silyl groups, alkoxysilyl groups, isocyanate groups, imino groups, imidazole groups, urea groups, ether groups, carbonyl groups, oxycarbonyl groups, mercapto groups, sulfide groups, disulfides.
  • These functional groups may have a substituent.
  • SBR SBR manufactured and sold by Sumitomo Chemical Co., Ltd., JSR Co., Ltd., Asahi Kasei Co., Ltd., Nippon Zeon Co., Ltd., etc. can be used, for example.
  • the vinyl content of SBR is preferably 10% by mass or more, more preferably 15% by mass or more.
  • the vinyl content is preferably 50% by mass or less, more preferably 45% by mass or less, and still more preferably 35% by mass or less.
  • the vinyl content can be measured by infrared absorption spectrum analysis.
  • the styrene content of SBR is preferably 20% by mass, more preferably 25% by mass or more. Moreover, this styrene content becomes like this. Preferably it is 60 mass% or less, More preferably, it is 50 mass% or less, More preferably, it is 45 mass% or less. There exists a tendency for favorable grip performance to be acquired by making it more than a minimum. By setting it to the upper limit or less, good durability can be obtained, and there is a tendency that the temperature dependency is reduced and the performance change with respect to the temperature change can be suppressed. In the present specification, the styrene content of SBR can be calculated by H 1 -NMR measurement.
  • the content of SBR is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, particularly preferably 90% by mass, and 100% by mass in 100% by mass of the rubber component. May be. When it is 50% by mass or more, better grip performance can be obtained.
  • isoprene-based rubber examples include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, and modified IR.
  • NR natural rubber
  • IR isoprene rubber
  • modified NR for example, those commonly used in the tire industry such as SIR20, RSS # 3, TSR20 and the like can be used.
  • IR it is not specifically limited, For example, IR2200 etc. can use what is common in tire industry.
  • modified NR deproteinized natural rubber (DPNR), high-purity natural rubber (UPNR), etc.
  • modified NR modified NR, epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc.
  • modified IR examples include epoxidized isoprene rubber, hydrogenated isoprene rubber, and grafted isoprene rubber. These may be used alone or in combination of two or more.
  • the BR is not particularly limited.
  • BR containing tactic polybutadiene crystals can be used. These may be used alone or in combination of two or more. Among them, the BR cis content is preferably 95% by mass or more because the wear resistance performance is improved.
  • BR may be non-modified BR or modified BR. These may be used alone or in combination of two or more.
  • the modified BR include a modified BR in which the same functional group as that of the above-described modified SBR is introduced.
  • BR for example, products such as Ube Industries, JSR, Asahi Kasei, Nippon Zeon, and the like can be used.
  • the rubber composition preferably contains carbon black. Although it does not specifically limit as carbon black, N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, N762 etc. are mentioned. These may be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 5 m 2 / g or more, more preferably 50 m 2 / g or more, and still more preferably 100 m 2 / g or more. There exists a tendency for favorable grip performance to be acquired by making it more than a minimum. Further, the N 2 SA is preferably 200 meters 2 / g or less, more preferably 150 meters 2 / g, more preferably not more than 130m 2 / g. By making it below the upper limit, good dispersion of carbon black tends to be obtained. Incidentally, the nitrogen adsorption specific surface area of carbon black can be determined according to JIS K6217-2: 2001.
  • the content of carbon black is preferably 1 part by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the content is preferably 10 parts by mass or less, more preferably 8 parts by mass or less.
  • the carbon black content is preferably 50 parts by mass or more, more preferably 60 parts by mass or more, and still more preferably 70 parts by mass or more with respect to 100 parts by mass of the rubber component. is there.
  • the content is preferably 150 parts by mass or less, more preferably 120 parts by mass or less, and still more preferably 100 parts by mass or less.
  • the rubber composition preferably contains pitch-based carbon fibers.
  • pitch-based carbon fiber a coal pitch-based carbon fiber is preferable because the effects of the present invention can be obtained more favorably.
  • the thermal conductivity (in the fiber axis direction) of the pitch-based carbon fiber is preferably 100 W / m ⁇ K or more, more preferably 120 W / m ⁇ K or more, still more preferably 130 W / m ⁇ K or more, and particularly preferably 135 W / m. -K or more.
  • the upper limit of the thermal conductivity is not particularly limited, but is preferably 1500 W / m ⁇ K or less, more preferably 1000 W / m ⁇ K or less, and still more preferably 500 W / m ⁇ K or less. Within the above range, the effects of the present invention can be obtained better.
  • the pitch-based carbon fiber preferably has an average fiber diameter of 1 to 80 ⁇ m from the viewpoint of dispersion in rubber and improvement of thermal conductivity.
  • the lower limit of the average fiber diameter is more preferably 3 ⁇ m or more, and further preferably 5 ⁇ m or more.
  • the upper limit of the average fiber diameter is more preferably 30 ⁇ m or less, and still more preferably 20 ⁇ m or less.
  • the pitch-based carbon fiber preferably has an average fiber length of 0.1 to 30 mm from the viewpoint of dispersion in rubber and improvement of thermal conductivity.
  • the lower limit of the average fiber length is more preferably 1 mm or more, and further preferably 4 mm or more.
  • the upper limit of average fiber length becomes like this. More preferably, it is 15 mm or less, More preferably, it is 10 mm or less.
  • the said average fiber diameter and average fiber length can be measured by electron microscope observation, for example.
  • the pitch-based carbon fiber in the present invention is not particularly limited.
  • a coal pitch-based carbon fiber obtained by a production method described in JP-A-7-331536 is preferably used.
  • the pitch fiber is infusible according to a conventional method, and carbonized and / or graphitized at a desired temperature to obtain “carbon fiber as a raw material”.
  • a coal pitch-based carbon fiber can be produced by placing it in a graphite crucible together with the graphitized packing coke and performing a graphitization treatment.
  • pitch fiber spin pitch
  • carbonaceous raw materials 40% or more, preferably 70% or more, more preferably 90%
  • coal-based coal tar, coal tar pitch, and coal liquefaction and those obtained by spinning using an optically anisotropic structure of at least%).
  • a sizing agent such as an epoxy compound or a water-soluble polyamide compound may be attached to the “carbon fiber as a raw material”.
  • the thermal conductivity in the fiber axis direction is 100-1500 W / m ⁇ K
  • the tensile elastic modulus is 85 ton / mm 2 or more
  • the compressive strength is 35 kg / mm 2 or more
  • the graphite crystal lamination thickness Lc is 30-50 nm
  • Coal pitch-based carbon fibers having a ratio (La / Lc) with a spread La in the layer surface direction of the graphite crystal of 1.5 times or more and a domain size in a cross section in the fiber axis direction of 500 nm or less can be produced.
  • the tensile elastic modulus, compressive strength, Lc, La, domain size, and optical anisotropic structure ratio can be measured by the method described in the above publication.
  • the coal pitch-based carbon fiber produced by the above production method uses a liquid crystal (mesophase) whose molecular orientation is regulated in one direction as a raw material, and therefore has a very high degree of crystallinity, a high elastic modulus and a high thermal conductivity.
  • the coal pitch-based carbon fiber in the present invention preferably has a structure in which polycyclic aromatic molecular skeletons are stacked in layers.
  • As a commercial product of coal pitch-based carbon fiber “K6331T” manufactured by Mitsubishi Plastics, Inc., and the like can be given.
  • the content of the pitch-based carbon fiber is preferably 3 parts by mass or more, more preferably 8 parts by mass or more, and further preferably 15 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the effect of this invention is acquired more favorably as it is 3 mass parts or more.
  • the content is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less. Better durability performance is obtained as it is 50 parts by mass or less.
  • the rubber composition preferably contains a resin crosslinking agent.
  • the resin crosslinking agent is not particularly limited, and examples thereof include phenol resins, melamine / formaldehyde resins, triazine / formaldehyde condensates, hexamethoxymethyl / melamine resins, and alkylphenol / sulfur chloride condensates. Of these, alkylphenol / sulfur chloride condensates are preferred from the viewpoint of the effects of the present invention.
  • Examples of the alkyl group for R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.
  • Examples of the alkenyl group for R 1 and R 2 include a vinyl group, an allyl group, a 1-propenyl group, and a 1-methylethenyl group.
  • Examples of the alkynyl group for R 1 and R 2 include an ethynyl group and a propargyl group.
  • R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or a methyl group, and still more preferably a hydrogen atom. That is, the compound represented by the above formula (I) is preferably a compound represented by the following formula (I-1), (I-2) or (I-3). It is more preferable that it is a compound represented by.
  • examples of the metal ions include sodium ions, potassium ions, and lithium ions, and sodium ions are preferable.
  • the content of the compound represented by the formula (I) is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and particularly preferably 8 parts by mass or more with respect to 100 parts by mass of carbon black. There exists a tendency for favorable grip performance to be acquired as it is 1 mass part or more. Moreover, this content becomes like this. Preferably it is 20 mass parts or less, More preferably, it is 15 mass parts or less. When the amount is 20 parts by mass or less, the steering stability performance, the thermal sag performance, and the fracture characteristics tend to be improved in a balanced manner.
  • the rubber composition preferably contains silica.
  • silica examples include dry process silica (anhydrous silica), wet process silica (hydrous silica), and wet process silica is preferred because it has many silanol groups.
  • silica examples include products such as Degussa, Rhodia, Tosoh Silica, Solvay Japan, and Tokuyama.
  • the content of silica is preferably 5 parts by mass or more, more preferably 20 parts by mass or more, still more preferably 40 parts by mass or more, particularly 100 parts by mass of the rubber component. Preferably it is 60 mass parts or more. There exists a tendency for favorable grip performance to be acquired by making it more than a minimum.
  • the content is preferably 150 parts by mass or less, more preferably 100 parts by mass or less, and still more preferably 80 parts by mass or less. By setting it to the upper limit or less, good silica dispersibility tends to be obtained.
  • the total content of silica and carbon black is preferably 50 parts by mass or more, more preferably 60 parts by mass or more, and still more preferably 70 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the total content is preferably 150 parts by mass or less, more preferably 120 parts by mass or less, and still more preferably 100 parts by mass or less. There exists a tendency for favorable grip performance to be acquired by making it in the said range.
  • silane coupling agent is not particularly limited.
  • the silane coupling agent is not particularly limited.
  • a silane coupling agent containing a binding unit A represented by the following formula (1) and a binding unit B represented by the following formula (2) can be preferably used. (Wherein x is an integer of 0 or more, y is an integer of 1 or more.
  • R 1 is hydrogen, halogen, branched or unbranched alkyl group having 1 to 30 carbon atoms, branched or unbranched carbon atoms of 2 to 30 alkenyl groups, branched or unbranched alkynyl groups having 2 to 30 carbon atoms, or a group in which the hydrogen at the terminal of the alkyl group is substituted with a hydroxyl group or a carboxyl group
  • R 2 is a branched or unbranched carbon number 1 represents an alkylene group having 1 to 30 carbon atoms, a branched or unbranched alkenylene group having 2 to 30 carbon atoms, or a branched or unbranched alkynylene group having 2 to 30 carbon atoms, wherein R 1 and R 2 form a ring structure. May be.
  • the content of the binding unit A is preferably 30 mol% or more, more preferably 50 mol% or more, preferably 99 mol% or less, more preferably 90 mol% or less.
  • the content of the binding unit B is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 10 mol% or more, preferably 70 mol% or less, more preferably 65 mol% or less, More preferably, it is 55 mol% or less.
  • the total content of the binding units A and B is preferably 95 mol% or more, more preferably 98 mol% or more, and particularly preferably 100 mol%.
  • the content of the bond units A and B is an amount including the case where the bond units A and B are located at the terminal of the silane coupling agent.
  • the form in which the bonding units A and B are located at the end of the silane coupling agent is not particularly limited, as long as the units corresponding to the formulas (1) and (2) indicating the bonding units A and B are formed. .
  • Examples of the branched or unbranched alkylene group having 1 to 30 carbon atoms for R 2 include an ethylene group and a propylene group.
  • Examples of the branched or unbranched alkenylene group having 2 to 30 carbon atoms include vinylene group and 1-propenylene group.
  • Examples of the branched or unbranched alkynylene group having 2 to 30 carbon atoms include an ethynylene group and a propynylene group.
  • the number of repeating units (x) of the bonding unit A and the number of repeating units (y) of the bonding unit B is preferably in the range of 3 to 300.
  • silane coupling agent examples include Degussa, Momentive, Shin-Etsu Silicone Co., Ltd., Tokyo Chemical Industry Co., Ltd., Amax Co., Ltd., and Toray Dow Corning Co., Ltd.
  • the content of the silane coupling agent is preferably 3 parts by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the inorganic filler (preferably the total content of silica and aluminum hydroxide is 100 parts by mass). If it is at least the lower limit, the effect of blending the silane coupling agent tends to be sufficiently obtained.
  • the content is preferably 20 parts by mass or less, and more preferably 15 parts by mass or less. When it is 20 parts by mass or less, an effect commensurate with the blending amount is sufficiently obtained, and good workability during kneading tends to be obtained.
  • the solid resin examples include aromatic vinyl polymers such as ⁇ -methylstyrene and / or ⁇ -methylstyrene resins obtained by polymerizing styrene.
  • the solid resin preferably has a softening point of 60 to 120 ° C.
  • the softening point of the solid resin is the temperature at which the sphere descends when the softening point specified in JIS K 6220-1: 2001 is measured with a ring and ball softening point measuring device.
  • ⁇ -methylstyrene-based resin ⁇ -methylstyrene or a homopolymer of styrene or a copolymer of ⁇ -methylstyrene and styrene is preferable because of excellent wet grip performance and the like.
  • a copolymer with styrene is more preferred.
  • the content of the solid resin is preferably 3 to 30 parts by mass, more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • solid resin examples include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yashara Chemical Co., Ltd., Tosoh Co., Ltd., Rutgers Chemicals Co., Ltd., BASF Co., Arizona Chemical Co., Ltd., Nikko Chemical Co., Ltd. ) Products such as Nippon Shokubai, JX Energy Co., Ltd., Arakawa Chemical Co., Ltd., Taoka Chemical Co., Ltd. can be used.
  • the oil examples include process oil, vegetable oil and fat, or a mixture thereof.
  • a paraffin process oil, an aroma process oil, a naphthenic process oil, or the like can be used.
  • vegetable oils and fats castor oil, cottonseed oil, sesame oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut hot water, rosin, pine oil, pineapple, tall oil, corn oil, rice bran oil, beet flower oil, sesame oil, Examples include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, and tung oil. These may be used alone or in combination of two or more.
  • Examples of the oil include Idemitsu Kosan Co., Ltd., Sankyo Oil Chemical Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Toyokuni Oil Co., Ltd., Showa Shell Sekiyu Co., Ltd., Fuji Kosan Co., Ltd. Etc. can be used.
  • the oil content is preferably 1 part by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 50 parts by mass or less, more preferably 30 parts by mass or less. If it is within the above numerical range, the effect of the present invention tends to be obtained better.
  • the oil content includes the amount of oil contained in rubber (oil-extended rubber).
  • the wax is not particularly limited, and examples thereof include petroleum waxes such as paraffin wax and microcrystalline wax; natural waxes such as plant waxes and animal waxes; synthetic waxes such as polymers such as ethylene and propylene. These may be used alone or in combination of two or more. Of these, petroleum wax is preferable, and paraffin wax is more preferable.
  • the content of the wax is preferably 1.0 part by mass or more, more preferably 1.5 parts by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 7 parts by mass or less. Within the above numerical range, the effects of the present invention tend to be obtained satisfactorily.
  • wax for example, products such as Ouchi Shinsei Chemical Co., Ltd., Nippon Seiwa Co., Ltd., Seiko Chemical Co., Ltd. can be used.
  • the rubber composition preferably contains an anti-aging agent.
  • the antiaging agent include naphthylamine type antiaging agents such as phenyl- ⁇ -naphthylamine; diphenylamine type antiaging agents such as octylated diphenylamine and 4,4′-bis ( ⁇ , ⁇ ′-dimethylbenzyl) diphenylamine; N -Isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc.
  • P-phenylenediamine-based anti-aging agent P-phenylenediamine-based anti-aging agent
  • quinoline-based anti-aging agent such as a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline; 2,6-di-t-butyl-4-methylphenol
  • Monophenolic anti-aging agents such as styrenated phenol; tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydride Kishifeniru) propionate] bis methane, tris, and the like polyphenolic antioxidants. These may be used alone or in combination of two or more.
  • the content of the anti-aging agent is preferably 1 part by mass or more, more preferably 2 parts by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 7 parts by mass or less. Within the above numerical range, the effects of the present invention tend to be obtained satisfactorily.
  • anti-aging agent for example, products such as Seiko Chemical Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinsei Chemical Co., Ltd., and Flexis Co. can be used.
  • the rubber composition preferably contains stearic acid.
  • a conventionally well-known thing can be used as a stearic acid,
  • products such as NOF Corporation, NOF company, Kao Corporation, FUJIFILM Wako Pure Chemicals Co., Ltd., and Chiba fatty acid company, can be used.
  • the content of stearic acid is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 5 parts by mass or less. Within the above numerical range, the effects of the present invention tend to be obtained satisfactorily.
  • the content of zinc oxide is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 5 parts by mass or less. If it is within the above numerical range, the effect of the present invention tends to be obtained better.
  • the rubber composition preferably contains sulfur.
  • sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur that are generally used in the rubber industry. These may be used alone or in combination of two or more.
  • the sulfur content is preferably 0.5 parts by mass or more, more preferably 0.8 parts by mass or more, with respect to 100 parts by mass of the rubber component.
  • the content is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and still more preferably 3 parts by mass or less.
  • sulfur for example, products such as Tsurumi Chemical Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Kasei Kogyo Co., Ltd., Flexis Co., Nihon Kiboshi Kogyo Co., Ltd., Hosoi Chemical Co., Ltd. can be used.
  • the rubber composition preferably contains a vulcanization accelerator.
  • vulcanization accelerators include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, N-cyclohexyl-2-benzothiazylsulfenamide; tetramethylthiuram disulfide (TMTD ), Tetrabenzylthiuram disulfide (TBzTD), tetrakis (2-ethylhexyl) thiuram disulfide (TOT-N), and other thiuram vulcanization accelerators; N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl- 2-benzothiazolylsulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N, N′-diisopropyl-2-benzothiazolesulfenamide
  • the sulfenami And guanidine vulcanization accelerators such as diphenyl guanidine, diortolyl guanidine, and orthotolyl biguanidine. These may be used alone or in combination of two or more. Of these, sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferred because the effects of the present invention can be obtained more suitably.
  • additives generally used in the tire industry can be added to the rubber composition, and examples include organic peroxides; processing aids such as plasticizers and lubricants, and the like. .
  • the above components can be produced by kneading each component using a rubber kneading device such as an open roll or a Banbury mixer, and then vulcanizing. .
  • the kneading temperature is usually 100 to 180 ° C., preferably 120 to 170 ° C.
  • the kneading temperature is usually 120 ° C. or lower, preferably 85 to 110 ° C.
  • a composition obtained by kneading a vulcanizing agent and a vulcanization accelerator is usually subjected to vulcanization treatment such as press vulcanization.
  • the vulcanization temperature is usually 140 to 190 ° C, preferably 150 to 185 ° C.
  • the rubber composition can be suitably used as a tire rubber composition. Although the said rubber composition can be used for each member of a tire, it can be used conveniently for a tread especially.
  • the pneumatic tire of the present invention can be produced by a usual method using the rubber composition. That is, the rubber composition blended with the above components is extruded in accordance with the shape of the tire member such as tread, sidewall, clinch, wing, etc. in the unvulcanized stage, and put on the tire molding machine together with other tire members.
  • an unvulcanized tire can be formed by molding by a usual method.
  • a tire is obtained by heating and pressurizing the unvulcanized tire in a vulcanizer.
  • the pneumatic tire of the present invention is a tire for passenger cars, a tire for large passenger cars, a tire for large SUVs, a tire for trucks and buses, a tire for competition, a studless tire (winter tire), a tire for motorcycles, a run flat tire, an aircraft. It can be suitably used for tyres, mining tires and the like.
  • the measurement plate 4 is plate-shaped.
  • the measurement plate 4 is placed on the measurement table 8.
  • the measurement plate 4 includes a recess 14 on the lower surface side.
  • the thickness between the bottom of the recess 14 and the upper surface 16 of the measurement plate 4 is thinner than the thickness between the upper surface 16 and the lower surface 18 of the measurement plate 4 at a portion where the recess 14 is not present.
  • the portion where the thickness is reduced is referred to as a measurement window 20 of the measurement plate 4.
  • the shape of the measurement window 20 is circular in plan view. The shape of the measurement window 20 may not be circular.
  • the measurement table 8 is a table on which the measurement plate 4 is placed. A measurement plate 4 is placed on the upper surface of the measurement table 8. The measurement table 8 fixes the measurement plate 4. The center of the upper surface of the measuring plate 4 is open. When the measurement plate 4 is placed on the measurement table 8, the measurement window 20 can be seen from the lower side of the measurement table 8.
  • the temperature measuring device 6 measures the temperature of the substance by measuring the intensity of the electromagnetic wave radiated from the substance by thermal radiation.
  • the temperature measuring device 6 is located under the measuring plate 4 placed on the measuring table 8.
  • the temperature measuring device 6 is located under the measuring window 20 of the measuring plate 4.
  • the temperature measuring device 6 measures the intensity of the electromagnetic wave 22 radiated from the rubber 12 and transmitted through the measurement window 20 of the measurement plate 4. Thereby, the temperature measuring device 6 measures the temperature of the rubber 12.
  • the friction characteristic measuring instrument 10 includes a rotating plate 24 and a main body 26.
  • the rotating plate 24 is circular.
  • the main body 26 rotates the rotating plate 24.
  • the main body 26 can rotate the rotating plate 24 at a desired speed.
  • the main body 26 can apply a load to the rubber 12 from above the rotating plate 24.
  • the rubber plate 12 is brought into contact with the measurement plate 4, and the rotating plate 24 is rotated in a state where a load is applied to the rubber 12. As a result, the rubber 12 slides with respect to the measurement plate 4.
  • the main body 26 measures the slip resistance between the rubber 12 and the measuring plate 4.
  • the friction characteristic measuring instrument 10 is a dynamic friction tester.
  • the measurement plate 4 is fixed to the measurement table 8. Under the measurement window 20 of the measurement plate 4, the temperature measuring device 6 is arranged.
  • the rubber 12 to be tested is set on the rotating plate 24 of the friction characteristic measuring instrument 10.
  • This friction characteristic measuring instrument 10 is arranged on the upper surface 16 side of the measuring plate 4.
  • This rubber 12 is brought into contact with the upper surface 16 of the measuring plate 4.
  • the rubber 12 is brought into contact with the measurement window 20 of the measurement plate 4.
  • the rubber 12 is pressed against the measuring plate 4 by the main body 26.
  • a load is applied to the rubber 12 in the direction of the measurement plate 4.
  • the rotating plate 24 is rotated by the main body 26.
  • the rubber 12 rotates. Thereby, the rubber 12 slides with respect to the measurement plate 4.
  • the main body 26 measures the slip resistance at this time.
  • the temperature measuring device 6 measures the electromagnetic wave 22 transmitted from the measurement window 20.
  • the temperature measuring device 6 measures the temperature of the rubber 12 in the part in contact with the measuring plate 4.
  • the temperature measuring device 6 measures the temperature of the rubber 12 in the portion where the frictional force is working.
  • the material of the measurement plate 4 is Al 2 O 3 (sapphire).
  • the measuring plate 4 made of Al 2 O 3 has high strength. Furthermore, the measuring plate 4 having sufficient strength against thermal changes and physical impacts can be formed.
  • a double arrow T is the thickness of the measurement window 20.
  • the thickness T is preferably 4.0 mm or less.
  • the measurement plate 4 has good transmittance.
  • the measurement plate 4 including the 70% transmission wavelength band including the wavelength band (2 ⁇ m-4 ⁇ m) can be formed by setting the thickness T to 4.0 mm or less. .
  • the upper surface 16 of the measurement plate 4 is preferably roughened.
  • An enlarged view of the upper surface 16 of the measuring plate 4 is shown in FIG. This enlarged view shows a state in which the upper surface 16 has been roughened.
  • the friction coefficient can be increased. The coefficient of friction depends on the rough surface roughness of the measuring plate 4.
  • Shot blasting and sand blasting are suitable for roughing the measurement plate 4.
  • the measuring plate 4 By performing shot blasting or sand blasting on the upper surface 16 of the measuring plate 4, the measuring plate 4 having a desired rough surface roughness can be easily formed.
  • the material of the measurement plate 4 is Al 2 O 3
  • silicon carbide grains are preferable as the blast material to be sprayed onto the upper surface 16 of the measurement plate 4 by shot blasting.
  • the silicon carbide grains can form a rough surface even on the measuring plate 4 made of Al 2 O 3 .
  • the particle size of silicon carbide the roughness of the rough surface can be changed.
  • Most of the electromagnetic waves 22 emitted from the rubber 12 by thermal radiation have a wavelength of 0.1 ⁇ m or more and 1.0 mm or less.
  • the wavelength band of the electromagnetic wave 22 whose intensity can be measured by the temperature measuring device 6 is preferably included in the wavelength band (0.2 ⁇ m-1.0 mm).
  • the temperature measuring device 6 is preferably a thermography equipped with a camera.
  • the temperature distribution on the surface of the rubber 12 can be measured within the range photographed by this camera.
  • the camera preferably has a magnifying lens. By using this lens, the temperature distribution on the surface of the rubber 12 can be measured in smaller area units. By changing the magnification of the camera, the temperature distribution can be measured with a desired fineness of area.
  • the temperature measuring device 6 preferably has a function capable of continuous photographing. By continuously photographing the surface of the rubber 12, when the rubber 12 is slid on the measuring plate 4, a change in the surface temperature of the rubber 12 with time can be measured. By changing the frame rate (the number of images taken per second), it is possible to measure the change in surface temperature according to the speed at which the rubber 12 slides.
  • the slip resistance can be measured according to the desired load and the desired slip speed.
  • the slip resistance can be measured under different friction coefficients.
  • dampening the measurement plate 4 it is possible to measure the slip resistance when the measurement plate 4 is wet.
  • the dynamic friction tester it is possible to measure the temperature of the rubber 12 in the portion where the frictional force is working while measuring these friction characteristics.
  • SBR Toughden 3830 manufactured by Asahi Kasei Corporation (vinyl content: 35% by mass, styrene content: 33% by mass)
  • Modified SBR Solution polymerization modified SBR synthesized in Production Example 1 below (styrene content 35% by mass, vinyl content 50% by mass, Mw 700,000)
  • BR BR360L manufactured by Ube Industries, Ltd.
  • Stearic acid Stearic acid “ ⁇ ” manufactured by NOF Corporation
  • Zinc oxide Zinc flower type 2 anti-aging agent manufactured by Mitsui Mining & Smelting Co., Ltd.
  • 6C Nocrack 6C (N- (1,3-dimethylbutyl) -N'-phenyl-p manufactured by Ouchi Shinsei Chemical Co., Ltd.) -Phenylenediamine)
  • Anti-aging agent RD NOCRACK 224 (2,2,4-trimethyl-1,2-dihydroquinoline polymer) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • Oil Diana Process NH-70S manufactured by Idemitsu Kosan Co., Ltd.
  • Silane coupling agent 1 NXT-Z45 manufactured by Degussa (copolymer of bonding unit A and bonding unit B (bonding unit A: 55 mol%, bonding unit B: 45 mol%))
  • Silane coupling agent 2 Si266 (bis (3-triethoxysilylpropyl disulfide)) manufactured by Degussa Sulfur: HK-200-5 manufactured by Hosoi Chemical Co., Ltd. (vulcanizing agent, oil content 5% by mass)
  • Vulcanization accelerator CZ N-cyclohexyl-2-benzothiazylsulfenamide
  • DPG Diphenylguanidine
  • Examples and Comparative Examples> In accordance with the formulation shown in Table 1, various chemicals except sulfur and a vulcanization accelerator were kneaded at 150 ° C. for 5 minutes using a Banbury mixer. Sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded at 80 ° C. for 5 minutes using an open roll to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press vulcanized at 170 ° C. for 20 minutes to obtain a vulcanized rubber sheet.
  • the temperature of the sample was measured using the temperature measuring device shown in FIGS.
  • a measurement plate made of Al 2 O 3 was prepared.
  • the thickness T of the measurement window of this measurement plate is 2 mm.
  • the thickness of the measurement plate at a portion other than the measurement window is 10 mm.
  • the upper surface of the measurement plate is roughened.
  • the rough surface was formed by shot blasting.
  • Silicon carbide (trade name “Shinano Random GC F16” manufactured by Shinano Denki Co., Ltd.) was used as a blast material.
  • a dynamic friction tester “DF Tester S type” manufactured by Nihon Sangyo Co., Ltd. was used as a friction characteristic measuring instrument. A sample was set in this tester.
  • the measurement plate was moistened with 20 ° C. water.
  • the sample was slid at a speed of 7 km / h.
  • the temperature of the sample at this time was measured from the measurement window with a temperature measuring device.
  • the environmental temperature at the time of measurement is 20 ° C.
  • a thermography “InfReC H8000” manufactured by Nippon Avionics Co., Ltd. was used as a temperature measuring device.
  • a 15 ⁇ m microscope lens was attached. This temperature measuring instrument measures the intensity of electromagnetic waves having a wavelength of 2 ⁇ m or more and 5 ⁇ m or less. The temperature distribution on the rubber surface was confirmed from the result of the thermography.
  • Table 1 shows the temperature (maximum temperature) at the place where the temperature is the highest among the rubber surfaces.
  • Equipment used Dynamic friction tester “DF Tester S type” manufactured by Nihon Sangyo Co., Ltd.
  • Width 16mm
  • Ground contact length Depends on rubber rigidity (uses DF tester S type fixture)
  • Sample 2 pieces (DF tester S type)
  • Measuring plate sliding the sample with respect to the measuring plate): A flat plate made of Al 2 O 3 (a flat plate moistened with water at 20 ° C.)
  • Measurement window thickness T 2 mm
  • Speed at which the rubber composition (sample) slides against the measuring plate Fluctuation 15 km / hour to 0 km / hour deceleration test After the start of the test, the
  • the continuous (repetitive) friction test it is shown that the grip performance is not lowered during traveling and the grip performance is improved as a whole during traveling as the decrease in ⁇ value is suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

The present invention provides a rubber composition and a pneumatic tire which ensure excellent grip performance (wet grip performance, dry grip performance, etc.). The present invention relates to a rubber composition having a maximum temperature of 30°C or lower when subjected to friction under predetermined frictional conditions.

Description

ゴム組成物及び空気入りタイヤRubber composition and pneumatic tire
本発明は、ゴム組成物及び空気入りタイヤに関する。 The present invention relates to a rubber composition and a pneumatic tire.
タイヤトレッド等に用いられるゴム組成物には、安全性等の観点から、グリップ性能(ウェットグリップ性能、ドライグリップ性能等)等が要求され、従来から様々な工夫がなされている。 Rubber compositions used for tire treads and the like are required to have grip performance (wet grip performance, dry grip performance, etc.) from the viewpoint of safety and the like, and various devices have been conventionally made.
例えば、ウェットグリップ性能等を改良するシリカ配合や、更にビス(3-トリエトキシシリルプロピル)テトラスルフィド等のシランカップリング剤を添加してシリカ分散性を向上したゴム組成物が提案されている(特許文献1参照)。 For example, a rubber composition having improved silica dispersibility by adding a silica compound for improving wet grip performance or the like and further adding a silane coupling agent such as bis (3-triethoxysilylpropyl) tetrasulfide has been proposed ( Patent Document 1).
しかしながら、ウェットグリップ性能等のグリップ性能の改善要求は厳しく、更なる改善が求められている。 However, demands for improving grip performance such as wet grip performance are severe, and further improvements are required.
特開2011-57797号公報JP 2011-57797 A
本発明は、前記課題を解決し、グリップ性能(ウェットグリップ性能、ドライグリップ性能等)に優れたゴム組成物、及び空気入りタイヤを提供することを目的とする。 An object of the present invention is to solve the above problems and provide a rubber composition excellent in grip performance (wet grip performance, dry grip performance, etc.) and a pneumatic tire.
本発明は、下記摩擦条件下における摩擦時の最高温度が30℃以下であるゴム組成物に関する。
〔摩擦条件〕
(1)ゴム組成物のサイズ及び形状:2mm厚シート(幅16mm)
(2)測定板:Alからなる平板
The present invention relates to a rubber composition having a maximum temperature during friction of 30 ° C. or less under the following friction conditions.
[Friction conditions]
(1) Size and shape of rubber composition: 2 mm thick sheet (width 16 mm)
(2) Measuring plate: A flat plate made of Al 2 O 3
前記最高温度が25℃以下であることが好ましい。
前記最高温度が23℃以下であることが好ましい。
The maximum temperature is preferably 25 ° C. or lower.
The maximum temperature is preferably 23 ° C. or lower.
本発明はまた、前記ゴム組成物をトレッドに用いた空気入りタイヤに関する。 The present invention also relates to a pneumatic tire using the rubber composition in a tread.
本発明は、所定の摩擦条件下における摩擦時の最高温度が30℃以下であるゴム組成物であるので、グリップ性能(ウェットグリップ性能、ドライグリップ性能等)に優れた空気入りタイヤを提供できる。 Since the present invention is a rubber composition in which the maximum temperature during friction under a predetermined friction condition is 30 ° C. or less, a pneumatic tire excellent in grip performance (wet grip performance, dry grip performance, etc.) can be provided.
図1は、所定の摩擦条件下における摩擦時の試料表面の温度を測定する状況が示された断面図である。FIG. 1 is a cross-sectional view showing a situation in which the temperature of a sample surface during friction under a predetermined friction condition is measured. 図2は、図1の温度測定で使用している一部の装置が示された斜視図である。FIG. 2 is a perspective view showing some devices used in the temperature measurement of FIG. 表1の摩擦試験回数と動摩擦係数μの関係図である。FIG. 2 is a relationship diagram between the number of friction tests and the dynamic friction coefficient μ in Table 1. 表1の摩擦試験回数と動摩擦係数μの関係図である。FIG. 2 is a relationship diagram between the number of friction tests and the dynamic friction coefficient μ in Table 1.
本発明のゴム組成物は、所定の摩擦条件下における摩擦時の最高温度が30℃以下のものである。 The rubber composition of the present invention has a maximum temperature during friction under a predetermined friction condition of 30 ° C. or less.
特開2016-70880号公報には、ゴム組成物について、摩擦時の最高温度を測定する方法により、実際に摩擦力が働いている部分におけるゴム組成物の温度を測定できることが記載されている。
本発明では、上記最高温度(瞬間の発熱量、フラッシュテンプラチャー)がゴム配合によって異なるという知見を見出し、更に、上記最高温度が30℃以下であるゴム組成物であると、グリップ性能が向上するという知見を見出し、完成したものである。
グリップ性能が向上する理由は必ずしも明らかではないが、発熱量が低いと、熱ダレの影響が少ない点や使用される粘弾性領域が高温側にシフトしない点から、走行中にグリップ性能が低下せず、走行時全体としてグリップ性能が改善されるものと推察される。
なお、ウェットグリップ性能、ドライグリップ性能、共に同様の傾向を示し、上記最高温度が30℃以下であると、ウェットグリップ性能、ドライグリップ性能に優れたタイヤを提供できる。
Japanese Patent Application Laid-Open No. 2016-70880 describes that the temperature of a rubber composition at a portion where a frictional force is actually applied can be measured by a method of measuring the maximum temperature at the time of friction.
In the present invention, it has been found that the maximum temperature (instantaneous calorific value, flash temperature) varies depending on the rubber composition, and further, when the rubber composition has the maximum temperature of 30 ° C. or less, the grip performance is improved. This finding has been completed.
The reason why the grip performance is improved is not necessarily clear, but if the calorific value is low, the grip performance will decrease during driving because the influence of thermal sag is less and the viscoelastic region used does not shift to the high temperature side. Therefore, it is presumed that the grip performance is improved as a whole during traveling.
Both wet grip performance and dry grip performance show the same tendency. When the maximum temperature is 30 ° C. or less, a tire excellent in wet grip performance and dry grip performance can be provided.
前記ゴム組成物は、下記摩擦条件下における摩擦時の最高温度が30℃以下であるゴム組成物であり、好ましくは27℃以下、より好ましくは25℃以下、更に好ましくは23℃以下である。30℃以下であると、グリップ性能が向上する。また、上記最高温度の下限は特に限定されないが、好ましくは20℃以上である。
〔摩擦条件〕
(1)ゴム組成物のサイズ及び形状:2mm厚シート(幅16mm)
(2)測定板:Alからなる平板
The rubber composition is a rubber composition having a maximum temperature of 30 ° C. or less during friction under the following friction conditions, preferably 27 ° C. or less, more preferably 25 ° C. or less, and even more preferably 23 ° C. or less. Grip performance improves that it is 30 degrees C or less. Moreover, the minimum of the said maximum temperature is although it does not specifically limit, Preferably it is 20 degreeC or more.
[Friction conditions]
(1) Size and shape of rubber composition: 2 mm thick sheet (width 16 mm)
(2) Measuring plate: A flat plate made of Al 2 O 3
なお、上記最高温度は、特開2016-70880号公報に記載の方法で測定でき、具体的には、後述の実施例に記載の方法(最高温度の測定)で測定できる。 The maximum temperature can be measured by the method described in Japanese Patent Application Laid-Open No. 2016-70880. Specifically, the maximum temperature can be measured by the method described in the examples described later (measurement of the maximum temperature).
前記最高温度は、摩擦試験中において、ゴム組成物(試料)の表面温度の中で最も高温の部位の温度である。具体的には、特開2016-70880号公報に記載の方法を用いて、試料(ゴム組成物)の各部位の表面の温度分布を測定し、試験開始後、7km/時間~0km/時間までの間での最高温度(最も高い表面温度が検出された部位(箇所)の最高表面温度)を採用する。 The maximum temperature is the temperature of the hottest part of the surface temperature of the rubber composition (sample) during the friction test. Specifically, the temperature distribution of the surface of each part of the sample (rubber composition) is measured using the method described in JP-A-2016-70880, and from 7 km / hour to 0 km / hour after the start of the test. (The highest surface temperature of the part (location) where the highest surface temperature is detected) is adopted.
前記摩擦条件下における摩擦時の最高温度が30℃以下であるゴム組成物は、配合や製法を適宜選択することで作製可能である。
具体的には、炭素繊維や樹脂架橋剤、式(I)で表される化合物の添加、これらの配合量の調整等が挙げられる。
A rubber composition having a maximum temperature at the time of friction of 30 ° C. or less under the friction conditions can be produced by appropriately selecting the blending and manufacturing method.
Specifically, carbon fiber, a resin crosslinking agent, addition of a compound represented by the formula (I), adjustment of the blending amount thereof, and the like can be given.
上記ゴム組成物に使用可能なゴム成分としては、イソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、スチレン-イソプレン-ブタジエン共重合ゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X-IIR)等のジエン系ゴムが挙げられる。これらジエン系ゴムは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、本発明の効果がより良好に得られるという点からは、SBR、イソプレン系ゴム、BRが好ましく、グリップ性能の観点から、SBRがより好ましい。 The rubber components usable in the rubber composition include isoprene-based rubber, butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), styrene- Examples include diene rubbers such as isoprene-butadiene copolymer rubber (SIBR), ethylene propylene diene rubber (EPDM), butyl rubber (IIR), and halogenated butyl rubber (X-IIR). These diene rubbers may be used alone or in combination of two or more. Among these, SBR, isoprene-based rubber, and BR are preferable from the viewpoint that the effects of the present invention can be obtained better, and SBR is more preferable from the viewpoint of grip performance.
SBRとしては特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。 The SBR is not particularly limited, and for example, emulsion polymerization styrene butadiene rubber (E-SBR), solution polymerization styrene butadiene rubber (S-SBR), and the like can be used. These may be used alone or in combination of two or more.
SBRは、非変性SBRでもよいし、変性SBRでもよい。
変性SBRとしては、シリカ等の充填剤と相互作用する官能基を有するSBRであればよく、例えば、SBRの少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性SBR(末端に上記官能基を有する末端変性SBR)や、主鎖に上記官能基を有する主鎖変性SBRや、主鎖及び末端に上記官能基を有する主鎖末端変性SBR(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性SBR)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性SBR等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The SBR may be non-modified SBR or modified SBR.
The modified SBR may be any SBR having a functional group that interacts with a filler such as silica. For example, at least one terminal of SBR is modified with a compound having a functional group (modifier). SBR (terminal-modified SBR having the above-mentioned functional group at the terminal), main-chain-modified SBR having the above-mentioned functional group at the main chain, and main-chain end-modified SBR having the above-mentioned functional group at the main chain and the terminal (for example, in the main chain) A hydroxyl group modified (coupled) with a polyfunctional compound having the above functional group and having at least one terminal modified with the above modifier with a main chain terminal modified SBR) or a polyfunctional compound having two or more epoxy groups in the molecule. And terminal-modified SBR into which an epoxy group has been introduced. These may be used alone or in combination of two or more.
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。 Examples of the functional groups include amino groups, amide groups, silyl groups, alkoxysilyl groups, isocyanate groups, imino groups, imidazole groups, urea groups, ether groups, carbonyl groups, oxycarbonyl groups, mercapto groups, sulfide groups, disulfides. Group, sulfonyl group, sulfinyl group, thiocarbonyl group, ammonium group, imide group, hydrazo group, azo group, diazo group, carboxyl group, nitrile group, pyridyl group, alkoxy group, hydroxyl group, oxy group, epoxy group, etc. . These functional groups may have a substituent.
SBRとしては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等により製造・販売されているSBRを使用できる。 As SBR, SBR manufactured and sold by Sumitomo Chemical Co., Ltd., JSR Co., Ltd., Asahi Kasei Co., Ltd., Nippon Zeon Co., Ltd., etc. can be used, for example.
SBRのビニル含有量は、好ましくは10質量%以上、より好ましくは15質量%以上である。また、該ビニル含有量は、好ましくは50質量%以下、より好ましくは45質量%以下、更に好ましくは35質量%以下である。下限以上にすることで、良好なグリップ性能が得られる傾向がある。上限以下にすることで、良好な耐久性が得られる傾向がある。
なお、本明細書において、ビニル含有量は、赤外吸収スペクトル分析法によって測定できる。
The vinyl content of SBR is preferably 10% by mass or more, more preferably 15% by mass or more. The vinyl content is preferably 50% by mass or less, more preferably 45% by mass or less, and still more preferably 35% by mass or less. There exists a tendency for favorable grip performance to be acquired by making it more than a minimum. By setting it to the upper limit or less, good durability tends to be obtained.
In the present specification, the vinyl content can be measured by infrared absorption spectrum analysis.
SBRのスチレン含有量は、好ましくは20質量%、より好ましくは25質量%以上である。また、該スチレン含有量は、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは45質量%以下である。下限以上にすることで、良好なグリップ性能が得られる傾向がある。上限以下にすることで、良好な耐久性が得られる他、温度依存性が減少して温度変化に対する性能変化を抑制できる傾向がある。
なお、本明細書において、SBRのスチレン含有量は、H-NMR測定により算出できる。
The styrene content of SBR is preferably 20% by mass, more preferably 25% by mass or more. Moreover, this styrene content becomes like this. Preferably it is 60 mass% or less, More preferably, it is 50 mass% or less, More preferably, it is 45 mass% or less. There exists a tendency for favorable grip performance to be acquired by making it more than a minimum. By setting it to the upper limit or less, good durability can be obtained, and there is a tendency that the temperature dependency is reduced and the performance change with respect to the temperature change can be suppressed.
In the present specification, the styrene content of SBR can be calculated by H 1 -NMR measurement.
SBRの含有量は、ゴム成分100質量%中、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、特に好ましくは90質量%であり、100質量%であってもよい。50質量%以上であると、より良好なグリップ性能が得られる。 The content of SBR is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, particularly preferably 90% by mass, and 100% by mass in 100% by mass of the rubber component. May be. When it is 50% by mass or more, better grip performance can be obtained.
イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質NRとしては、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。 Examples of the isoprene-based rubber include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, and modified IR. As the NR, for example, those commonly used in the tire industry such as SIR20, RSS # 3, TSR20 and the like can be used. As IR, it is not specifically limited, For example, IR2200 etc. can use what is common in tire industry. As modified NR, deproteinized natural rubber (DPNR), high-purity natural rubber (UPNR), etc., modified NR, epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc. Examples of the modified IR include epoxidized isoprene rubber, hydrogenated isoprene rubber, and grafted isoprene rubber. These may be used alone or in combination of two or more.
BRとしては特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150B等の高シス含量のBR、宇部興産(株)製のVCR412、VCR617等のシンジオタクチックポリブタジエン結晶を含有するBR等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、耐摩耗性能が向上するという理由から、BRのシス含量は95質量%以上が好ましい。 The BR is not particularly limited. For example, BR1220 manufactured by Nippon Zeon Co., Ltd., BR130B manufactured by Ube Industries, Ltd., BR150B, BR150B and other high cis content BR, Ube Industries, Ltd. VCR412, VCR617, etc. BR containing tactic polybutadiene crystals can be used. These may be used alone or in combination of two or more. Among them, the BR cis content is preferably 95% by mass or more because the wear resistance performance is improved.
BRは、非変性BRでもよいし、変性BRでもよい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
変性BRとしては、上述の変性SBRと同様の官能基が導入された変性BRが挙げられる。
BR may be non-modified BR or modified BR. These may be used alone or in combination of two or more.
Examples of the modified BR include a modified BR in which the same functional group as that of the above-described modified SBR is introduced.
BRとしては、例えば、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。 As BR, for example, products such as Ube Industries, JSR, Asahi Kasei, Nippon Zeon, and the like can be used.
上記ゴム組成物は、カーボンブラックを含有することが好ましい。カーボンブラックとしては、特に限定されないが、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。 The rubber composition preferably contains carbon black. Although it does not specifically limit as carbon black, N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, N762 etc. are mentioned. These may be used alone or in combination of two or more.
カーボンブラックの窒素吸着比表面積(NSA)は、5m/g以上が好ましく、50m/g以上がより好ましく、100m/g以上が更に好ましい。下限以上にすることで、良好なグリップ性能が得られる傾向がある。また、上記NSAは、200m/g以下が好ましく、150m/g以下がより好ましく、130m/g以下が更に好ましい。上限以下にすることで、カーボンブラックの良好な分散が得られる傾向がある。
なお、カーボンブラックの窒素吸着比表面積は、JIS K6217-2:2001によって求められる。
The nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 5 m 2 / g or more, more preferably 50 m 2 / g or more, and still more preferably 100 m 2 / g or more. There exists a tendency for favorable grip performance to be acquired by making it more than a minimum. Further, the N 2 SA is preferably 200 meters 2 / g or less, more preferably 150 meters 2 / g, more preferably not more than 130m 2 / g. By making it below the upper limit, good dispersion of carbon black tends to be obtained.
Incidentally, the nitrogen adsorption specific surface area of carbon black can be determined according to JIS K6217-2: 2001.
カーボンブラックとしては、例えば、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱ケミカル(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。 Examples of carbon black include products such as Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Co., Ltd., Lion Co., Ltd., Shin-Nikka Carbon Co., Ltd., Columbia Carbon Co., etc. Can be used.
前記ゴム組成物がシリカを含有する場合、カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。上記含有量は、好ましくは10質量部以下、より好ましくは8質量部以下である。上記範囲内にすることで、良好なグリップ性能が得られる傾向がある。 When the rubber composition contains silica, the content of carbon black is preferably 1 part by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component. The content is preferably 10 parts by mass or less, more preferably 8 parts by mass or less. There exists a tendency for favorable grip performance to be acquired by making it in the said range.
前記ゴム組成物がシリカを含有しない場合、カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは50質量部以上、より好ましくは60質量部以上、更に好ましくは70質量部以上である。上記含有量は、好ましくは150質量部以下、より好ましくは120質量部以下、更に好ましくは100質量部以下である。上記範囲内にすることで、良好なグリップ性能が得られる傾向がある。 When the rubber composition does not contain silica, the carbon black content is preferably 50 parts by mass or more, more preferably 60 parts by mass or more, and still more preferably 70 parts by mass or more with respect to 100 parts by mass of the rubber component. is there. The content is preferably 150 parts by mass or less, more preferably 120 parts by mass or less, and still more preferably 100 parts by mass or less. There exists a tendency for favorable grip performance to be acquired by making it in the said range.
上記ゴム組成物は、ピッチ系炭素繊維を含有することが好ましい。 The rubber composition preferably contains pitch-based carbon fibers.
ピッチ系炭素繊維としては、本発明の効果がより良好に得られる点から、石炭ピッチ系炭素繊維が好ましい。 As the pitch-based carbon fiber, a coal pitch-based carbon fiber is preferable because the effects of the present invention can be obtained more favorably.
ピッチ系炭素繊維の熱伝導率(繊維軸方向)は、好ましくは100W/m・K以上、より好ましくは120W/m・K以上、更に好ましくは130W/m・K以上、特に好ましくは135W/m・K以上である。また、上記熱伝導率の上限は特に限定されないが、好ましくは1500W/m・K以下、より好ましくは1000W/m・K以下、更に好ましくは500W/m・K以下である。上記範囲内であると、本発明の効果がより良好に得られる。
なお、本明細書において、ピッチ系炭素繊維の熱伝導率は、炭素繊維の熱伝導率と電気比抵抗の間の非常によい相関関係を利用して、電気比抵抗の値から、次式によって算出した。
K=1272.4/ER-49.4
(Kは炭素繊維の熱伝導率(W/m・K)、ERは炭素繊維の電気比抵抗(μΩm)を表す。)
The thermal conductivity (in the fiber axis direction) of the pitch-based carbon fiber is preferably 100 W / m · K or more, more preferably 120 W / m · K or more, still more preferably 130 W / m · K or more, and particularly preferably 135 W / m. -K or more. The upper limit of the thermal conductivity is not particularly limited, but is preferably 1500 W / m · K or less, more preferably 1000 W / m · K or less, and still more preferably 500 W / m · K or less. Within the above range, the effects of the present invention can be obtained better.
In the present specification, the thermal conductivity of the pitch-based carbon fiber is obtained from the value of the electrical resistivity by the following formula using a very good correlation between the thermal conductivity of the carbon fiber and the electrical resistivity. Calculated.
K = 1272.4 / ER-49.4
(K represents the thermal conductivity (W / m · K) of the carbon fiber, and ER represents the electrical resistivity (μΩm) of the carbon fiber.)
ピッチ系炭素繊維は、ゴム中への分散、熱伝導率の向上の観点から、平均繊維径が1~80μmであることが好ましい。平均繊維径の下限は、より好ましくは3μm以上、更に好ましくは5μm以上である。また、平均繊維径の上限は、より好ましくは30μm以下、更に好ましくは20μm以下である。 The pitch-based carbon fiber preferably has an average fiber diameter of 1 to 80 μm from the viewpoint of dispersion in rubber and improvement of thermal conductivity. The lower limit of the average fiber diameter is more preferably 3 μm or more, and further preferably 5 μm or more. Further, the upper limit of the average fiber diameter is more preferably 30 μm or less, and still more preferably 20 μm or less.
また、ピッチ系炭素繊維は、ゴム中への分散、熱伝導率の向上の観点から、平均繊維長が0.1~30mmであることが好ましい。平均繊維長の下限は、より好ましくは1mm以上、更に好ましくは4mm以上である。また、平均繊維長の上限は、より好ましくは15mm以下、更に好ましくは10mm以下である。
なお、上記平均繊維径、平均繊維長は、例えば、電子顕微鏡観察により測定できる。
The pitch-based carbon fiber preferably has an average fiber length of 0.1 to 30 mm from the viewpoint of dispersion in rubber and improvement of thermal conductivity. The lower limit of the average fiber length is more preferably 1 mm or more, and further preferably 4 mm or more. Moreover, the upper limit of average fiber length becomes like this. More preferably, it is 15 mm or less, More preferably, it is 10 mm or less.
In addition, the said average fiber diameter and average fiber length can be measured by electron microscope observation, for example.
本発明におけるピッチ系炭素繊維としては特に限定されないが、例えば、特開平7-331536号公報に記載の製法により得られる石炭ピッチ系炭素繊維が好適に用いられる。具体的には、ピッチ繊維を常法にしたがって不融化し、所望の温度で炭化及び/又は黒鉛化を行うことにより「原料となる炭素繊維」を得、次にその原料となる炭素繊維を予め黒鉛化処理されたパッキングコークスとともに黒鉛製のルツボの中に入れ黒鉛化処理することにより、石炭ピッチ系炭素繊維を製造できる。 The pitch-based carbon fiber in the present invention is not particularly limited. For example, a coal pitch-based carbon fiber obtained by a production method described in JP-A-7-331536 is preferably used. Specifically, the pitch fiber is infusible according to a conventional method, and carbonized and / or graphitized at a desired temperature to obtain “carbon fiber as a raw material”. A coal pitch-based carbon fiber can be produced by placing it in a graphite crucible together with the graphitized packing coke and performing a graphitization treatment.
なお、前記製法で使用されるピッチ繊維(紡糸ピッチ)としては、石炭系のコールタール、コールタールピッチ、石炭液化物等の炭素質原料(40%以上、好ましくは70%以上、更に好ましくは90%以上の光学的異方性組織を含むものが好適である)を用いて紡糸して得られるものが挙げられる。また、「原料となる炭素繊維」には、サイジング剤(エポキシ化合物、水溶性ポリアミド化合物等)を添着してもよい。 In addition, as pitch fiber (spinning pitch) used by the said manufacturing method, carbonaceous raw materials (40% or more, preferably 70% or more, more preferably 90%) such as coal-based coal tar, coal tar pitch, and coal liquefaction. And those obtained by spinning using an optically anisotropic structure of at least%). Moreover, a sizing agent (such as an epoxy compound or a water-soluble polyamide compound) may be attached to the “carbon fiber as a raw material”.
前記製法により、繊維軸方向の熱伝導率が100~1500W/m・K、引張弾性率85ton/mm以上、圧縮強度35kg/mm以上であり、黒鉛結晶の積層厚みLcが30~50nm、黒鉛結晶の層面方向の広がりLaとの比(La/Lc)が1.5倍以上であり、かつ繊維軸方向の断面のドメインサイズが500nm以下である石炭ピッチ系炭素繊維を製造でき、本発明で好適に使用できる。なお、引張弾性率、圧縮強度、Lc、La、ドメインサイズ、光学的異方性組織割合は、前記公報に記載の方法により測定できる。 By the manufacturing method, the thermal conductivity in the fiber axis direction is 100-1500 W / m · K, the tensile elastic modulus is 85 ton / mm 2 or more, the compressive strength is 35 kg / mm 2 or more, the graphite crystal lamination thickness Lc is 30-50 nm, Coal pitch-based carbon fibers having a ratio (La / Lc) with a spread La in the layer surface direction of the graphite crystal of 1.5 times or more and a domain size in a cross section in the fiber axis direction of 500 nm or less can be produced. Can be suitably used. The tensile elastic modulus, compressive strength, Lc, La, domain size, and optical anisotropic structure ratio can be measured by the method described in the above publication.
前記製法による石炭ピッチ系炭素繊維は、分子の配向が一方向に規制された液晶(メソフェーズ)などを原料としているため、結晶化度が極めて高く、弾性率、熱伝導度が高い。
本発明における石炭ピッチ系炭素繊維は、多環芳香族分子骨格が層状に積み重なった構造を有するものが好ましい。石炭ピッチ系炭素繊維の市販品としては、三菱樹脂(株)製の「K6371T」等が挙げられる。
The coal pitch-based carbon fiber produced by the above production method uses a liquid crystal (mesophase) whose molecular orientation is regulated in one direction as a raw material, and therefore has a very high degree of crystallinity, a high elastic modulus and a high thermal conductivity.
The coal pitch-based carbon fiber in the present invention preferably has a structure in which polycyclic aromatic molecular skeletons are stacked in layers. As a commercial product of coal pitch-based carbon fiber, “K6331T” manufactured by Mitsubishi Plastics, Inc., and the like can be given.
ピッチ系炭素繊維の含有量は、ゴム成分100質量部に対して、好ましくは3質量部以上、より好ましくは8質量部以上、更に好ましくは15質量部以上である。3質量部以上であると、本発明の効果がより良好に得られる。また、上記含有量は、好ましくは50質量部以下、より好ましくは40質量部以下、更に好ましくは30質量部以下である。50質量部以下であると、より良好な耐久性能が得られる。 The content of the pitch-based carbon fiber is preferably 3 parts by mass or more, more preferably 8 parts by mass or more, and further preferably 15 parts by mass or more with respect to 100 parts by mass of the rubber component. The effect of this invention is acquired more favorably as it is 3 mass parts or more. The content is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less. Better durability performance is obtained as it is 50 parts by mass or less.
上記ゴム組成物は、樹脂架橋剤を含有することが好ましい。
樹脂架橋剤としては特に限定されず、フェノール系樹脂、メラミン・ホルムアルデヒド樹脂、トリアジン・ホルムアルデヒド縮合物、ヘキサメトキシメチル・メラミン樹脂、アルキルフェノール・塩化硫黄縮合物等が挙げられる。なかでも、本発明の効果の点から、アルキルフェノール・塩化硫黄縮合物が好適である。
The rubber composition preferably contains a resin crosslinking agent.
The resin crosslinking agent is not particularly limited, and examples thereof include phenol resins, melamine / formaldehyde resins, triazine / formaldehyde condensates, hexamethoxymethyl / melamine resins, and alkylphenol / sulfur chloride condensates. Of these, alkylphenol / sulfur chloride condensates are preferred from the viewpoint of the effects of the present invention.
アルキルフェノール・塩化硫黄縮合物としては特に限定されないが、低発熱性、硬度などが良好に得られ、リバージョンを抑制できるという点から、下記式(II)で表される化合物が好ましい。 The alkylphenol / sulfur chloride condensate is not particularly limited, but a compound represented by the following formula (II) is preferable from the viewpoint that low exothermic property, hardness and the like can be obtained well and reversion can be suppressed.
Figure JPOXMLDOC01-appb-C000001
(式中、R101、R102及びR103は、同一若しくは異なって、炭素数5~12のアルキル基を表す。x及びyは、同一若しくは異なって、1~3の整数を表す。kは0~250の整数を表す。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, R 101 , R 102 and R 103 are the same or different and each represents an alkyl group having 5 to 12 carbon atoms. X and y are the same or different and each represents an integer of 1 to 3. k is Represents an integer of 0 to 250.)
kは、アルキルフェノール・塩化硫黄縮合物のゴム成分中への分散性が良い点から、0~250の整数が好ましく、0~100の整数がより好ましい。x及びyは、高硬度が効率良く発現できる点から、共に2が好ましい。R101~R103は、アルキルフェノール・塩化硫黄縮合物のゴム成分中への分散性が良い点から、炭素数6~9のアルキル基が好ましい。 k is preferably an integer of 0 to 250, more preferably an integer of 0 to 100, from the viewpoint of good dispersibility of the alkylphenol / sulfur chloride condensate in the rubber component. x and y are both preferably 2 because high hardness can be efficiently expressed. R 101 to R 103 are preferably alkyl groups having 6 to 9 carbon atoms from the viewpoint of good dispersibility of the alkylphenol / sulfur chloride condensate in the rubber component.
上記アルキルフェノール・塩化硫黄縮合物は、公知の方法で調製でき、例えば、アルキルフェノールと塩化硫黄とを、モル比1:0.9~1.25などで反応させる方法などが挙げられる。アルキルフェノール・塩化硫黄縮合物の具体例として、田岡化学工業(株)製のタッキロールV200(下記式(II-1))などが挙げられる。
Figure JPOXMLDOC01-appb-C000002
(式中、kは0~100の整数を表す。)
The alkylphenol / sulfur chloride condensate can be prepared by a known method, and examples thereof include a method in which alkylphenol and sulfur chloride are reacted at a molar ratio of 1: 0.9 to 1.25. Specific examples of the alkylphenol-sulfur chloride condensate include Takkol V200 (formula (II-1) below) manufactured by Taoka Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-C000002
(In the formula, k represents an integer of 0 to 100.)
樹脂架橋剤の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.3質量部以上である。下限以上にすることで、グリップ性能の改善効果が充分に得られる傾向がある。該含有量は、好ましくは30質量部以下、より好ましくは20質量部以下である。上限以下にすることで、加硫速度が適正レベルになる傾向がある。 The content of the resin crosslinking agent is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, with respect to 100 parts by mass of the rubber component. By setting the lower limit or more, there is a tendency that the effect of improving the grip performance can be sufficiently obtained. The content is preferably 30 parts by mass or less, more preferably 20 parts by mass or less. By making it below the upper limit, the vulcanization speed tends to be at an appropriate level.
上記ゴム組成物は、下記式(I)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、R、Rは、同一又は異なって、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルケニル基又は炭素数1~20のアルキニル基である。Mr+は金属イオンを示し、rはその価数を表す。)
The rubber composition preferably contains a compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, or an alkynyl group having 1 to 20 carbon atoms. M r + Represents a metal ion, and r represents its valence.)
、Rのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などを挙げることができる。
、Rのアルケニル基としては、ビニル基、アリル基、1-プロペニル基、1-メチルエテニル基などを挙げることができる。
、Rのアルキニル基としては、エチニル基、プロパルギル基などを挙げることができる。
Examples of the alkyl group for R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.
Examples of the alkenyl group for R 1 and R 2 include a vinyl group, an allyl group, a 1-propenyl group, and a 1-methylethenyl group.
Examples of the alkynyl group for R 1 and R 2 include an ethynyl group and a propargyl group.
、Rとしては、好ましくは、水素原子、アルキル基であり、より好ましくは、水素原子、メチル基であり、更に好ましくは、水素原子である。すなわち、上記式(I)で表される化合物は、下記式(I-1)、(I-2)又は(I-3)で表される化合物であることが好ましく、下記式(I-1)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or a methyl group, and still more preferably a hydrogen atom. That is, the compound represented by the above formula (I) is preferably a compound represented by the following formula (I-1), (I-2) or (I-3). It is more preferable that it is a compound represented by.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
上記式(I)、(I-1)、(I-2)、(I-3)において、金属イオンとしては、ナトリウムイオン、カリウムイオン、リチウムイオンが挙げられ、ナトリウムイオンであることが好ましい。 In the above formulas (I), (I-1), (I-2), and (I-3), examples of the metal ions include sodium ions, potassium ions, and lithium ions, and sodium ions are preferable.
式(I)で表される化合物の含有量は、カーボンブラック100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、特に好ましくは8質量部以上である。1質量部以上であると、良好なグリップ性能が得られる傾向がある。また、該含有量は、好ましくは20質量部以下、より好ましくは15質量部以下である。20質量部以下であると、操縦安定性能、熱ダレ性能、破壊特性をバランスよく改善できる傾向がある。 The content of the compound represented by the formula (I) is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and particularly preferably 8 parts by mass or more with respect to 100 parts by mass of carbon black. There exists a tendency for favorable grip performance to be acquired as it is 1 mass part or more. Moreover, this content becomes like this. Preferably it is 20 mass parts or less, More preferably, it is 15 mass parts or less. When the amount is 20 parts by mass or less, the steering stability performance, the thermal sag performance, and the fracture characteristics tend to be improved in a balanced manner.
上記ゴム組成物は、シリカを含有することが好ましい。シリカとしては、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。 The rubber composition preferably contains silica. Examples of the silica include dry process silica (anhydrous silica), wet process silica (hydrous silica), and wet process silica is preferred because it has many silanol groups.
シリカの窒素吸着比表面積(NSA)は、好ましくは100m/g以上、より好ましくは150m/g以上、更に好ましくは200m/g以上である。上記NSAは、好ましくは500m/g以下、より好ましくは300m/g以下である。上記範囲内にすることで、良好なグリップ性能が得られる傾向がある。
なお、シリカの窒素吸着比表面積は、ASTM D3037-81に準じてBET法で測定される値である。
The nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 100 m 2 / g or more, more preferably 150 m 2 / g or more, and further preferably 200 m 2 / g or more. The N 2 SA is preferably 500 m 2 / g or less, more preferably 300 m 2 / g or less. There exists a tendency for favorable grip performance to be acquired by making it in the said range.
Note that the nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.
シリカとしては、例えば、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。 Examples of silica that can be used include products such as Degussa, Rhodia, Tosoh Silica, Solvay Japan, and Tokuyama.
前記ゴム組成物がシリカを含有する場合、シリカの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは20質量部以上、更に好ましくは40質量部以上、特に好ましくは60質量部以上である。下限以上にすることで、良好なグリップ性能が得られる傾向がある。また、上記含有量は、好ましくは150質量部以下、より好ましくは100質量部以下、更に好ましくは80質量部以下である。上限以下にすることで、良好なシリカ分散性が得られる傾向がある。 When the rubber composition contains silica, the content of silica is preferably 5 parts by mass or more, more preferably 20 parts by mass or more, still more preferably 40 parts by mass or more, particularly 100 parts by mass of the rubber component. Preferably it is 60 mass parts or more. There exists a tendency for favorable grip performance to be acquired by making it more than a minimum. The content is preferably 150 parts by mass or less, more preferably 100 parts by mass or less, and still more preferably 80 parts by mass or less. By setting it to the upper limit or less, good silica dispersibility tends to be obtained.
前記ゴム組成物において、シリカ及びカーボンブラックの合計含有量は、ゴム成分100質量部に対して、好ましくは50質量部以上、より好ましくは60質量部以上、更に好ましくは70質量部以上である。また、上記合計含有量は、好ましくは150質量部以下、より好ましくは120質量部以下、更に好ましくは100質量部以下である。上記範囲内にすることで、良好なグリップ性能が得られる傾向がある。 In the rubber composition, the total content of silica and carbon black is preferably 50 parts by mass or more, more preferably 60 parts by mass or more, and still more preferably 70 parts by mass or more with respect to 100 parts by mass of the rubber component. The total content is preferably 150 parts by mass or less, more preferably 120 parts by mass or less, and still more preferably 100 parts by mass or less. There exists a tendency for favorable grip performance to be acquired by making it in the said range.
シリカを含む場合、共にシランカップリング剤を含むことが好ましい。これにより、本発明の効果がより好適に得られる。
シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Zなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、などのグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系などが挙げられる。なかでも、スルフィド系、メルカプト系が好ましく、メルカプト系がより好ましい。
When silica is contained, it is preferable that both contain a silane coupling agent. Thereby, the effect of this invention is acquired more suitably.
The silane coupling agent is not particularly limited. For example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4-triethoxysilylbutyl) tetrasulfide, Bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (2-triethoxysilylethyl) trisulfide, bis (4-trimethoxysilylbutyl) trisulfide, bis ( 3-triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (4-triethoxysilylbutyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (2-trimethoxysilyl ester) 3) disulfide, bis (4-trimethoxysilylbutyl) disulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3 -Sulphides such as triethoxysilylpropyl methacrylate monosulfide, 3-mercaptopropyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, NXT and NXT-Z manufactured by Momentive, vinyltriethoxysilane, vinyl Vinyl type such as trimethoxysilane, amino type such as 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycid Glycidoxy such as cyclopropyltrimethoxysilane, nitro such as 3-nitropropyltrimethoxysilane and 3-nitropropyltriethoxysilane, chloro such as 3-chloropropyltrimethoxysilane and 3-chloropropyltriethoxysilane Etc. Of these, sulfide and mercapto are preferable, and mercapto is more preferable.
メルカプト系シランカップリング剤としては、下記式(1)で示される結合単位Aと下記式(2)で示される結合単位Bとを含むシランカップリング剤を好適に使用できる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(式中、xは0以上の整数、yは1以上の整数である。Rは水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを示す。Rは分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を示す。RとRとで環構造を形成してもよい。)
As the mercapto-based silane coupling agent, a silane coupling agent containing a binding unit A represented by the following formula (1) and a binding unit B represented by the following formula (2) can be preferably used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(Wherein x is an integer of 0 or more, y is an integer of 1 or more. R 1 is hydrogen, halogen, branched or unbranched alkyl group having 1 to 30 carbon atoms, branched or unbranched carbon atoms of 2 to 30 alkenyl groups, branched or unbranched alkynyl groups having 2 to 30 carbon atoms, or a group in which the hydrogen at the terminal of the alkyl group is substituted with a hydroxyl group or a carboxyl group, R 2 is a branched or unbranched carbon number 1 represents an alkylene group having 1 to 30 carbon atoms, a branched or unbranched alkenylene group having 2 to 30 carbon atoms, or a branched or unbranched alkynylene group having 2 to 30 carbon atoms, wherein R 1 and R 2 form a ring structure. May be.)
結合単位Aの含有量は、好ましくは30モル%以上、より好ましくは50モル%以上であり、好ましくは99モル%以下、より好ましくは90モル%以下である。また、結合単位Bの含有量は、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは10モル%以上であり、好ましくは70モル%以下、より好ましくは65モル%以下、更に好ましくは55モル%以下である。また、結合単位A及びBの合計含有量は、好ましくは95モル%以上、より好ましくは98モル%以上、特に好ましくは100モル%である。
なお、結合単位A、Bの含有量は、結合単位A、Bがシランカップリング剤の末端に位置する場合も含む量である。結合単位A、Bがシランカップリング剤の末端に位置する場合の形態は特に限定されず、結合単位A、Bを示す式(1)、(2)と対応するユニットを形成していればよい。
The content of the binding unit A is preferably 30 mol% or more, more preferably 50 mol% or more, preferably 99 mol% or less, more preferably 90 mol% or less. Further, the content of the binding unit B is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 10 mol% or more, preferably 70 mol% or less, more preferably 65 mol% or less, More preferably, it is 55 mol% or less. Further, the total content of the binding units A and B is preferably 95 mol% or more, more preferably 98 mol% or more, and particularly preferably 100 mol%.
The content of the bond units A and B is an amount including the case where the bond units A and B are located at the terminal of the silane coupling agent. The form in which the bonding units A and B are located at the end of the silane coupling agent is not particularly limited, as long as the units corresponding to the formulas (1) and (2) indicating the bonding units A and B are formed. .
について、ハロゲンとしては、塩素、臭素、フッ素などがあげられる。分岐若しくは非分岐の炭素数1~30のアルキル基としては、メチル基、エチル基などがあげられる。分岐若しくは非分岐の炭素数2~30のアルケニル基としては、ビニル基、1-プロペニル基などがあげられる。分岐若しくは非分岐の炭素数2~30のアルキニル基としては、エチニル基、プロピニル基などがあげられる。 Regarding R 1 , examples of the halogen include chlorine, bromine, and fluorine. Examples of the branched or unbranched alkyl group having 1 to 30 carbon atoms include a methyl group and an ethyl group. Examples of the branched or unbranched alkenyl group having 2 to 30 carbon atoms include vinyl group and 1-propenyl group. Examples of the branched or unbranched alkynyl group having 2 to 30 carbon atoms include ethynyl group and propynyl group.
について、分岐若しくは非分岐の炭素数1~30のアルキレン基としては、エチレン基、プロピレン基などがあげられる。分岐若しくは非分岐の炭素数2~30のアルケニレン基としては、ビニレン基、1-プロペニレン基などがあげられる。分岐若しくは非分岐の炭素数2~30のアルキニレン基としては、エチニレン基、プロピニレン基などがあげられる。 Examples of the branched or unbranched alkylene group having 1 to 30 carbon atoms for R 2 include an ethylene group and a propylene group. Examples of the branched or unbranched alkenylene group having 2 to 30 carbon atoms include vinylene group and 1-propenylene group. Examples of the branched or unbranched alkynylene group having 2 to 30 carbon atoms include an ethynylene group and a propynylene group.
式(I)で示される結合単位Aと式(II)で示される結合単位Bとを含むシランカップリング剤において、結合単位Aの繰り返し数(x)と結合単位Bの繰り返し数(y)の合計の繰り返し数(x+y)は、3~300の範囲が好ましい。 In the silane coupling agent containing the bonding unit A represented by the formula (I) and the coupling unit B represented by the formula (II), the number of repeating units (x) of the bonding unit A and the number of repeating units (y) of the bonding unit B The total number of repetitions (x + y) is preferably in the range of 3 to 300.
シランカップリング剤としては、例えば、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。 Examples of the silane coupling agent that can be used include Degussa, Momentive, Shin-Etsu Silicone Co., Ltd., Tokyo Chemical Industry Co., Ltd., Amax Co., Ltd., and Toray Dow Corning Co., Ltd.
シランカップリング剤の含有量は、無機充填剤100質量部(好ましくはシリカ及び水酸化アルミニウムの合計含有量100質量部)に対して、3質量部以上が好ましく、5質量部以上がより好ましい。下限以上であると、シランカップリング剤を配合したことによる効果が充分に得られる傾向がある。また、上記含有量は、20質量部以下が好ましく、15質量部以下がより好ましい。20質量部以下であると、配合量に見合った効果が充分に得られ、良好な混練時の加工性が得られる傾向がある。 The content of the silane coupling agent is preferably 3 parts by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the inorganic filler (preferably the total content of silica and aluminum hydroxide is 100 parts by mass). If it is at least the lower limit, the effect of blending the silane coupling agent tends to be sufficiently obtained. The content is preferably 20 parts by mass or less, and more preferably 15 parts by mass or less. When it is 20 parts by mass or less, an effect commensurate with the blending amount is sufficiently obtained, and good workability during kneading tends to be obtained.
上記ゴム組成物には、シリカに加えて、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカ等の無機充填剤を配合してもよい。なお、本明細書において、水酸化アルミニウムとはAl(OH)又はAl・3HOを意味する。これら充填剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。 In addition to silica, the rubber composition may contain an inorganic filler such as calcium carbonate, talc, alumina, clay, aluminum hydroxide, and mica. In this specification, aluminum hydroxide means Al (OH) 3 or Al 2 O 3 .3H 2 O. These fillers may be used individually by 1 type, and may use 2 or more types together.
上記ゴム組成物には、固体樹脂、オイル等を配合してもよい。
固体樹脂としては、α-メチルスチレン及び/又はスチレンを重合して得られるα-メチルスチレン系樹脂等の芳香族ビニル重合体などが挙げられる。該固体樹脂は、軟化点が60~120℃であることが好ましい。なお、固体樹脂の軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
You may mix | blend solid resin, oil, etc. with the said rubber composition.
Examples of the solid resin include aromatic vinyl polymers such as α-methylstyrene and / or α-methylstyrene resins obtained by polymerizing styrene. The solid resin preferably has a softening point of 60 to 120 ° C. The softening point of the solid resin is the temperature at which the sphere descends when the softening point specified in JIS K 6220-1: 2001 is measured with a ring and ball softening point measuring device.
α-メチルスチレン系樹脂としては、ウェットグリップ性能等に優れていることから、α-メチルスチレン若しくはスチレンの単独重合体又はα-メチルスチレンとスチレンとの共重合体が好ましく、α-メチルスチレンとスチレンとの共重合体がより好ましい。 As the α-methylstyrene-based resin, α-methylstyrene or a homopolymer of styrene or a copolymer of α-methylstyrene and styrene is preferable because of excellent wet grip performance and the like. A copolymer with styrene is more preferred.
固体樹脂の含有量は、ゴム成分100質量部に対して、好ましくは3~30質量部、より好ましくは5~20質量部である。所定量の固体樹脂を配合することで、グリップ性能等が向上する傾向がある。 The content of the solid resin is preferably 3 to 30 parts by mass, more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the rubber component. By blending a predetermined amount of solid resin, grip performance and the like tend to be improved.
固体樹脂としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)等の製品を使用できる。 Examples of the solid resin include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yashara Chemical Co., Ltd., Tosoh Co., Ltd., Rutgers Chemicals Co., Ltd., BASF Co., Arizona Chemical Co., Ltd., Nikko Chemical Co., Ltd. ) Products such as Nippon Shokubai, JX Energy Co., Ltd., Arakawa Chemical Co., Ltd., Taoka Chemical Co., Ltd. can be used.
オイルとしては、例えば、プロセスオイル、植物油脂、又はその混合物が挙げられる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどを用いることができる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生湯、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。 Examples of the oil include process oil, vegetable oil and fat, or a mixture thereof. As the process oil, for example, a paraffin process oil, an aroma process oil, a naphthenic process oil, or the like can be used. As vegetable oils and fats, castor oil, cottonseed oil, sesame oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut hot water, rosin, pine oil, pineapple, tall oil, corn oil, rice bran oil, beet flower oil, sesame oil, Examples include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, and tung oil. These may be used alone or in combination of two or more.
オイルとしては、例えば、出光興産(株)、三共油化工業(株)、(株)ジャパンエナジー、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。 Examples of the oil include Idemitsu Kosan Co., Ltd., Sankyo Oil Chemical Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Toyokuni Oil Co., Ltd., Showa Shell Sekiyu Co., Ltd., Fuji Kosan Co., Ltd. Etc. can be used.
オイルの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上である。また、上記含有量は、好ましくは50質量部以下、より好ましくは30質量部以下である。上記数値範囲内であると、本発明の効果がより良好に得られる傾向がある。
なお、オイルの含有量には、ゴム(油展ゴム)に含まれるオイルの量も含まれる。
The oil content is preferably 1 part by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 50 parts by mass or less, more preferably 30 parts by mass or less. If it is within the above numerical range, the effect of the present invention tends to be obtained better.
The oil content includes the amount of oil contained in rubber (oil-extended rubber).
上記ゴム組成物には、ワックスを配合してもよい。
ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックスなどが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、石油系ワックスが好ましく、パラフィンワックスがより好ましい。
You may mix | blend a wax with the said rubber composition.
The wax is not particularly limited, and examples thereof include petroleum waxes such as paraffin wax and microcrystalline wax; natural waxes such as plant waxes and animal waxes; synthetic waxes such as polymers such as ethylene and propylene. These may be used alone or in combination of two or more. Of these, petroleum wax is preferable, and paraffin wax is more preferable.
ワックスの含有量は、ゴム成分100質量部に対して、好ましくは1.0質量部以上、より好ましくは1.5質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは7質量部以下である。上記数値範囲内であると、本発明の効果が良好に得られる傾向がある。 The content of the wax is preferably 1.0 part by mass or more, more preferably 1.5 parts by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 7 parts by mass or less. Within the above numerical range, the effects of the present invention tend to be obtained satisfactorily.
ワックスとしては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。 As the wax, for example, products such as Ouchi Shinsei Chemical Co., Ltd., Nippon Seiwa Co., Ltd., Seiko Chemical Co., Ltd. can be used.
上記ゴム組成物は、老化防止剤を含むことが好ましい。
老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。なかでも、p-フェニレンジアミン系老化防止剤、キノリン系老化防止剤が好ましく、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物がより好ましい。
The rubber composition preferably contains an anti-aging agent.
Examples of the antiaging agent include naphthylamine type antiaging agents such as phenyl-α-naphthylamine; diphenylamine type antiaging agents such as octylated diphenylamine and 4,4′-bis (α, α′-dimethylbenzyl) diphenylamine; N -Isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc. P-phenylenediamine-based anti-aging agent; quinoline-based anti-aging agent such as a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline; 2,6-di-t-butyl-4-methylphenol; Monophenolic anti-aging agents such as styrenated phenol; tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydride Kishifeniru) propionate] bis methane, tris, and the like polyphenolic antioxidants. These may be used alone or in combination of two or more. Of these, p-phenylenediamine-based antioxidants and quinoline-based antioxidants are preferable, and N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, 2,2,4-trimethyl-1 More preferred is a polymer of 1,2-dihydroquinoline.
老化防止剤の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは7質量部以下である。上記数値範囲内であると、本発明の効果が良好に得られる傾向がある。 The content of the anti-aging agent is preferably 1 part by mass or more, more preferably 2 parts by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 7 parts by mass or less. Within the above numerical range, the effects of the present invention tend to be obtained satisfactorily.
老化防止剤としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。 As the anti-aging agent, for example, products such as Seiko Chemical Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinsei Chemical Co., Ltd., and Flexis Co. can be used.
上記ゴム組成物は、ステアリン酸を含むことが好ましい。
ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
The rubber composition preferably contains stearic acid.
A conventionally well-known thing can be used as a stearic acid, For example, products, such as NOF Corporation, NOF company, Kao Corporation, FUJIFILM Wako Pure Chemicals Co., Ltd., and Chiba fatty acid company, can be used.
ステアリン酸の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは5質量部以下である。上記数値範囲内であると、本発明の効果が良好に得られる傾向がある。 The content of stearic acid is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 5 parts by mass or less. Within the above numerical range, the effects of the present invention tend to be obtained satisfactorily.
上記ゴム組成物は、酸化亜鉛を含むことが好ましい。
酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
The rubber composition preferably contains zinc oxide.
Conventionally known zinc oxide can be used, for example, Mitsui Kinzoku Mining Co., Ltd., Toho Zinc Co., Ltd., Hakusui Tech Co., Ltd., Shodo Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd. Can be used.
酸化亜鉛の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは5質量部以下である。上記数値範囲内であると、本発明の効果がより良好に得られる傾向がある。 The content of zinc oxide is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 5 parts by mass or less. If it is within the above numerical range, the effect of the present invention tends to be obtained better.
上記ゴム組成物は、硫黄を含むことが好ましい。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
The rubber composition preferably contains sulfur.
Examples of sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur that are generally used in the rubber industry. These may be used alone or in combination of two or more.
硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは0.8質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは5質量部以下、更に好ましくは3質量部以下である。上記数値範囲内であると、本発明の効果が良好に得られる傾向がある。 The sulfur content is preferably 0.5 parts by mass or more, more preferably 0.8 parts by mass or more, with respect to 100 parts by mass of the rubber component. The content is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and still more preferably 3 parts by mass or less. Within the above numerical range, the effects of the present invention tend to be obtained satisfactorily.
硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。 As the sulfur, for example, products such as Tsurumi Chemical Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Kasei Kogyo Co., Ltd., Flexis Co., Nihon Kiboshi Kogyo Co., Ltd., Hosoi Chemical Co., Ltd. can be used.
上記ゴム組成物は、加硫促進剤を含むことが好ましい。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、本発明の効果がより好適に得られるという理由から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましい。
The rubber composition preferably contains a vulcanization accelerator.
Examples of vulcanization accelerators include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, N-cyclohexyl-2-benzothiazylsulfenamide; tetramethylthiuram disulfide (TMTD ), Tetrabenzylthiuram disulfide (TBzTD), tetrakis (2-ethylhexyl) thiuram disulfide (TOT-N), and other thiuram vulcanization accelerators; N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl- 2-benzothiazolylsulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N, N′-diisopropyl-2-benzothiazolesulfenamide, etc. The sulfenami And guanidine vulcanization accelerators such as diphenyl guanidine, diortolyl guanidine, and orthotolyl biguanidine. These may be used alone or in combination of two or more. Of these, sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferred because the effects of the present invention can be obtained more suitably.
加硫促進剤の含有量は、ゴム成分100質量部に対して、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは7質量部以下である。上記数値範囲内であると、本発明の効果が良好に得られる傾向がある。 The content of the vulcanization accelerator is preferably 1 part by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 7 parts by mass or less. Within the above numerical range, the effects of the present invention tend to be obtained satisfactorily.
上記ゴム組成物には、上記成分の他、タイヤ工業において一般的に用いられている添加剤を配合することができ、有機過酸化物;可塑剤、滑剤などの加工助剤;等を例示できる。 In addition to the above components, additives generally used in the tire industry can be added to the rubber composition, and examples include organic peroxides; processing aids such as plasticizers and lubricants, and the like. .
上記ゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、上記各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法などにより製造できる。 As a method for producing the rubber composition, known methods can be used. For example, the above components can be produced by kneading each component using a rubber kneading device such as an open roll or a Banbury mixer, and then vulcanizing. .
混練条件としては、架橋剤(加硫剤)及び加硫促進剤以外の添加剤を混練するベース練り工程では、混練温度は、通常100~180℃、好ましくは120~170℃である。加硫剤、加硫促進剤を混練する仕上げ練り工程では、混練温度は、通常120℃以下、好ましくは85~110℃である。また、加硫剤、加硫促進剤を混練した組成物は、通常、プレス加硫などの加硫処理が施される。加硫温度としては、通常140~190℃、好ましくは150~185℃である。 Regarding the kneading conditions, in the base kneading step in which additives other than the crosslinking agent (vulcanizing agent) and the vulcanization accelerator are kneaded, the kneading temperature is usually 100 to 180 ° C., preferably 120 to 170 ° C. In the final kneading step of kneading the vulcanizing agent and vulcanization accelerator, the kneading temperature is usually 120 ° C. or lower, preferably 85 to 110 ° C. Further, a composition obtained by kneading a vulcanizing agent and a vulcanization accelerator is usually subjected to vulcanization treatment such as press vulcanization. The vulcanization temperature is usually 140 to 190 ° C, preferably 150 to 185 ° C.
上記ゴム組成物は、タイヤ用ゴム組成物として好適に使用できる。上記ゴム組成物は、タイヤの各部材に使用できるが、なかでも、トレッドに好適に使用できる。 The rubber composition can be suitably used as a tire rubber composition. Although the said rubber composition can be used for each member of a tire, it can be used conveniently for a tread especially.
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法で製造できる。
すなわち、上記成分を配合したゴム組成物を、未加硫の段階でトレッド、サイドウォール、クリンチ、ウイング等のタイヤ部材の形状にあわせて押出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成できる。この未加硫タイヤを加硫機中で加熱加圧することによりタイヤが得られる。
The pneumatic tire of the present invention can be produced by a usual method using the rubber composition.
That is, the rubber composition blended with the above components is extruded in accordance with the shape of the tire member such as tread, sidewall, clinch, wing, etc. in the unvulcanized stage, and put on the tire molding machine together with other tire members. Thus, an unvulcanized tire can be formed by molding by a usual method. A tire is obtained by heating and pressurizing the unvulcanized tire in a vulcanizer.
本発明の空気入りタイヤは、乗用車用タイヤ、大型乗用車用、大型SUV用タイヤ、トラック・バス用タイヤ、競技用タイヤ、スタッドレスタイヤ(冬用タイヤ)、2輪車用タイヤ、ランフラットタイヤ、航空機用タイヤ、鉱山用タイヤ等に好適に使用可能である。 The pneumatic tire of the present invention is a tire for passenger cars, a tire for large passenger cars, a tire for large SUVs, a tire for trucks and buses, a tire for competition, a studless tire (winter tire), a tire for motorcycles, a run flat tire, an aircraft. It can be suitably used for tyres, mining tires and the like.
図1は、摩擦時の最高温度を測定する方法における温度測定の状況を示した断面図である。図1において、矢印Xで示された方向が上方向であり、その逆が下方向である。この温度測定方法のための装置2は、測定板4と、温度測定器6と、測定台8と、摩擦特性測定器10とを備えている。図1には、測定されるゴム12も示されている。図2は、これらのうち、測定板4と、温度測定器6と、測定台8とが示された斜視図である。 FIG. 1 is a cross-sectional view showing a state of temperature measurement in a method for measuring the maximum temperature during friction. In FIG. 1, the direction indicated by the arrow X is the upward direction, and the opposite is the downward direction. The apparatus 2 for this temperature measuring method includes a measuring plate 4, a temperature measuring device 6, a measuring table 8, and a friction characteristic measuring device 10. Also shown in FIG. 1 is a rubber 12 to be measured. FIG. 2 is a perspective view showing the measuring plate 4, the temperature measuring device 6, and the measuring table 8 among them.
測定板4は板状である。測定板4は、測定台8の上に載せられている。図に示されるように、測定板4はその下面側に窪み14を備えている。窪み14の底と測定板4の上面16との間の厚みは、窪み14がない部分での測定板4の上面16と下面18との間の厚みに比べて薄い。この厚みが薄くなった部分は、測定板4の測定窓20と称される。図では、測定窓20の形状は、平面視において円形を呈している。測定窓20の形状は円形でなくてもよい。 The measurement plate 4 is plate-shaped. The measurement plate 4 is placed on the measurement table 8. As shown in the figure, the measurement plate 4 includes a recess 14 on the lower surface side. The thickness between the bottom of the recess 14 and the upper surface 16 of the measurement plate 4 is thinner than the thickness between the upper surface 16 and the lower surface 18 of the measurement plate 4 at a portion where the recess 14 is not present. The portion where the thickness is reduced is referred to as a measurement window 20 of the measurement plate 4. In the figure, the shape of the measurement window 20 is circular in plan view. The shape of the measurement window 20 may not be circular.
測定板4の測定窓20は、ゴム12から熱輻射で放射される電磁波22を透過させる。測定板4に対する電磁波22の透過率は、電磁波22の波長によって変化する。測定板4に対する電磁波22の透過率は、測定板4の材料や測定窓20の厚みによっても変化する。この透過板の測定窓20は、温度測定器6がゴム12の温度を測定できる程度に、ゴム12からの電磁波22を透過させる。 The measurement window 20 of the measurement plate 4 transmits the electromagnetic wave 22 radiated from the rubber 12 by heat radiation. The transmittance of the electromagnetic wave 22 with respect to the measurement plate 4 varies depending on the wavelength of the electromagnetic wave 22. The transmittance of the electromagnetic wave 22 with respect to the measurement plate 4 also varies depending on the material of the measurement plate 4 and the thickness of the measurement window 20. The measurement window 20 of the transmission plate transmits the electromagnetic wave 22 from the rubber 12 to such an extent that the temperature measuring device 6 can measure the temperature of the rubber 12.
測定台8は、測定板4を載せるための台である。測定台8の上面に、測定板4が載せられる。測定台8は測定板4を固定する。測定板4の上面は中央が開いている。測定板4を測定台8に載せたとき、測定台8の下側から測定窓20を見ることができる。 The measurement table 8 is a table on which the measurement plate 4 is placed. A measurement plate 4 is placed on the upper surface of the measurement table 8. The measurement table 8 fixes the measurement plate 4. The center of the upper surface of the measuring plate 4 is open. When the measurement plate 4 is placed on the measurement table 8, the measurement window 20 can be seen from the lower side of the measurement table 8.
温度測定器6は、物質から熱輻射で放射される電磁波の強度を計測することで、物質の温度を測定する。温度測定器6は、測定台8に載せられた測定板4の下に位置する。温度測定器6は、測定板4の測定窓20の下に位置する。温度測定器6は、ゴム12から放射され、測定板4の測定窓20を透過してきた電磁波22の強度を測定する。これにより、温度測定器6は、ゴム12の温度を測定する。 The temperature measuring device 6 measures the temperature of the substance by measuring the intensity of the electromagnetic wave radiated from the substance by thermal radiation. The temperature measuring device 6 is located under the measuring plate 4 placed on the measuring table 8. The temperature measuring device 6 is located under the measuring window 20 of the measuring plate 4. The temperature measuring device 6 measures the intensity of the electromagnetic wave 22 radiated from the rubber 12 and transmitted through the measurement window 20 of the measurement plate 4. Thereby, the temperature measuring device 6 measures the temperature of the rubber 12.
摩擦特性測定器10は、回転板24と本体26とを備えている。回転板24は円形である。回転板24の下面には、温度の測定対象となるゴム12がセットされる。本体26は回転板24の上側に位置する。本体26は回転板24を回転させる。本体26は所望の速度で回転板24を回転させることができる。本体26は、回転板24の上側からゴム12に対して荷重を負荷することができる。ゴム12が測定板4に接触させられ、ゴム12に荷重が負荷された状態で、回転板24が回転させられる。これによりゴム12は測定板4に対して滑る。本体26はゴム12と測定板4との間のすべり抵抗を計測する。この摩擦特性測定器10は、ダイナミックフリクションテスターである。 The friction characteristic measuring instrument 10 includes a rotating plate 24 and a main body 26. The rotating plate 24 is circular. On the lower surface of the rotating plate 24, the rubber 12 to be measured is set. The main body 26 is located above the rotating plate 24. The main body 26 rotates the rotating plate 24. The main body 26 can rotate the rotating plate 24 at a desired speed. The main body 26 can apply a load to the rubber 12 from above the rotating plate 24. The rubber plate 12 is brought into contact with the measurement plate 4, and the rotating plate 24 is rotated in a state where a load is applied to the rubber 12. As a result, the rubber 12 slides with respect to the measurement plate 4. The main body 26 measures the slip resistance between the rubber 12 and the measuring plate 4. The friction characteristic measuring instrument 10 is a dynamic friction tester.
この装置2を使用した温度計測方法では、まず測定板4が測定台8に固定される。測定板4の測定窓20の下に温度測定器6が配置される。試験対象となるゴム12が摩擦特性測定器10の回転板24にセットされる。この摩擦特性測定器10が測定板4の上面16側に配置される。このゴム12が測定板4の上面16に接触させられる。ゴム12は測定板4の測定窓20と接触させられる。本体26により、ゴム12が測定板4に押し付けられる。ゴム12に対して、測定板4の方向に荷重が付加される。本体26により、回転板24が回転される。ゴム12は回転する。これにより、ゴム12が測定板4に対して滑る。本体26が、このときのすべり抵抗力を測定する。同時に、温度測定器6が、測定窓20から透過してきた電磁波22を計測する。温度測定器6は、測定板4と接触している部分のゴム12の温度を測定する。温度測定器6は、摩擦力が働いている部分におけるゴム12の温度を測定する。 In the temperature measurement method using this apparatus 2, first, the measurement plate 4 is fixed to the measurement table 8. Under the measurement window 20 of the measurement plate 4, the temperature measuring device 6 is arranged. The rubber 12 to be tested is set on the rotating plate 24 of the friction characteristic measuring instrument 10. This friction characteristic measuring instrument 10 is arranged on the upper surface 16 side of the measuring plate 4. This rubber 12 is brought into contact with the upper surface 16 of the measuring plate 4. The rubber 12 is brought into contact with the measurement window 20 of the measurement plate 4. The rubber 12 is pressed against the measuring plate 4 by the main body 26. A load is applied to the rubber 12 in the direction of the measurement plate 4. The rotating plate 24 is rotated by the main body 26. The rubber 12 rotates. Thereby, the rubber 12 slides with respect to the measurement plate 4. The main body 26 measures the slip resistance at this time. At the same time, the temperature measuring device 6 measures the electromagnetic wave 22 transmitted from the measurement window 20. The temperature measuring device 6 measures the temperature of the rubber 12 in the part in contact with the measuring plate 4. The temperature measuring device 6 measures the temperature of the rubber 12 in the portion where the frictional force is working.
測定板4の材料は、Al(サファイア)である。Alを材料とした測定板4は高い強度を有する。さらに熱変化や物理的な衝撃に対しても十分な強度を有する測定板4が形成できる。 The material of the measurement plate 4 is Al 2 O 3 (sapphire). The measuring plate 4 made of Al 2 O 3 has high strength. Furthermore, the measuring plate 4 having sufficient strength against thermal changes and physical impacts can be formed.
図1において、両矢印Tは測定窓20の厚みである。厚みTは4.0mm以下が好ましい。厚みTを4.0mm以下とすることで、この測定板4は良好な透過率を有する。測定板4の材料がAlであるとき、厚みTは4.0mm以下とすることで、70%透過波長帯が波長帯(2μm-4μm)を含む測定板4を形成することができる。 In FIG. 1, a double arrow T is the thickness of the measurement window 20. The thickness T is preferably 4.0 mm or less. By setting the thickness T to 4.0 mm or less, the measurement plate 4 has good transmittance. When the material of the measurement plate 4 is Al 2 O 3 , the measurement plate 4 including the 70% transmission wavelength band including the wavelength band (2 μm-4 μm) can be formed by setting the thickness T to 4.0 mm or less. .
測定板4の上面16は、粗面加工されていることが好ましい。図1の中に、測定板4の上面16の拡大図が示されている。この拡大図には、上面16が粗面加工された状態が示されている。測定板4の上面16を粗面加工することにより、摩擦係数を大きくすることができる。摩擦係数は、測定板4の粗面粗さに依存する。異なる粗面粗さを有する測定板4を用意することにより、種々の摩擦係数のもとで、摩擦が生じている部分のゴム12の温度測定が可能となる。 The upper surface 16 of the measurement plate 4 is preferably roughened. An enlarged view of the upper surface 16 of the measuring plate 4 is shown in FIG. This enlarged view shows a state in which the upper surface 16 has been roughened. By roughing the upper surface 16 of the measuring plate 4, the friction coefficient can be increased. The coefficient of friction depends on the rough surface roughness of the measuring plate 4. By preparing the measuring plate 4 having different rough surface roughnesses, it is possible to measure the temperature of the rubber 12 where friction occurs under various friction coefficients.
測定板4の粗面加工には、ショットブラスト及びサンドブラストが適している。測定板4の上面16に対してショットブラスト又はサンドブラストを実施することにより、容易に所望の粗面粗さを有する測定板4が形成できる。測定板4の材料がAlであるとき、ショットブラストで測定板4の上面16に吹き付けるブラスト材としては、炭化ケイ素の粒が好ましい。炭化ケイ素の粒は、Alでできた測定板4に対しても、粗面を形成することができる。炭化ケイ素の粒径を変えることで、粗面粗さを変えることができる。 Shot blasting and sand blasting are suitable for roughing the measurement plate 4. By performing shot blasting or sand blasting on the upper surface 16 of the measuring plate 4, the measuring plate 4 having a desired rough surface roughness can be easily formed. When the material of the measurement plate 4 is Al 2 O 3 , silicon carbide grains are preferable as the blast material to be sprayed onto the upper surface 16 of the measurement plate 4 by shot blasting. The silicon carbide grains can form a rough surface even on the measuring plate 4 made of Al 2 O 3 . By changing the particle size of silicon carbide, the roughness of the rough surface can be changed.
測定板4の下面18は、鏡面加工されていることが好ましい。測定板4の下面18を鏡面加工することで、電磁波22の透過率を向上させることができる。 The lower surface 18 of the measuring plate 4 is preferably mirror-finished. The transmittance of the electromagnetic wave 22 can be improved by mirror-treating the lower surface 18 of the measurement plate 4.
ゴム12から熱輻射で放出される電磁波22は、ほとんどが0.1μm以上1.0mm以下の波長を有する。温度測定器6により強度を測定できる電磁波22の波長帯は、波長帯(0.2μm-1.0mm)に含まれているのが好ましい。 Most of the electromagnetic waves 22 emitted from the rubber 12 by thermal radiation have a wavelength of 0.1 μm or more and 1.0 mm or less. The wavelength band of the electromagnetic wave 22 whose intensity can be measured by the temperature measuring device 6 is preferably included in the wavelength band (0.2 μm-1.0 mm).
温度測定器6により測定できる電磁波22の波長帯は、測定板4の70%波長帯を含んでいることが好ましい。Alを測定板4の材料とすることで、70%透過波長帯が波長帯(2μm-4μm)を含む測定板4を形成できる。 The wavelength band of the electromagnetic wave 22 that can be measured by the temperature measuring device 6 preferably includes the 70% wavelength band of the measurement plate 4. By using Al 2 O 3 as the material of the measurement plate 4, it is possible to form the measurement plate 4 in which the 70% transmission wavelength band includes the wavelength band (2 μm-4 μm).
温度測定器6は、カメラを備えたサーモグラフィであることが好ましい。このカメラで撮影した範囲内で、ゴム12の表面の温度分布を測定することができる。このカメラは拡大レンズを有しているのが好ましい。このレンズを使用することにより、より細かい面積単位で、ゴム12の表面の温度分布を測定することができる。カメラの拡大率を変更することで、所望の面積の細かさで温度分布を測定できる。 The temperature measuring device 6 is preferably a thermography equipped with a camera. The temperature distribution on the surface of the rubber 12 can be measured within the range photographed by this camera. The camera preferably has a magnifying lens. By using this lens, the temperature distribution on the surface of the rubber 12 can be measured in smaller area units. By changing the magnification of the camera, the temperature distribution can be measured with a desired fineness of area.
温度測定器6は、連続撮影できる機能を有するものが好ましい。ゴム12の表面を連続撮影することで、ゴム12が測定板4上で滑らされたとき、ゴム12の表面温度の時間による変化を測定できる。フレームレート(1秒間に撮影する枚数)を変えることにより、ゴム12が滑る速度に応じた表面温度の変化を測定できる。 The temperature measuring device 6 preferably has a function capable of continuous photographing. By continuously photographing the surface of the rubber 12, when the rubber 12 is slid on the measuring plate 4, a change in the surface temperature of the rubber 12 with time can be measured. By changing the frame rate (the number of images taken per second), it is possible to measure the change in surface temperature according to the speed at which the rubber 12 slides.
ゴム12と測定板4の上面16とを接触させ、このゴム12を測定板4に対して滑らせるために、ダイナミックフリクションテスターを使用することが好ましい。これにより、所望の負荷及び所望の滑り速度に応じた滑り抵抗の測定ができる。測定板4の粗面粗さを変えることで、異なった摩擦係数のもとで、滑り抵抗が測定できる。測定板4を湿らせることにより、測定板4が湿った状態での滑り抵抗の測定ができる。ダイナミックフリクションテスターを使用することで、これらの摩擦特性を測定しながら、摩擦力が働いている部分におけるゴム12の温度を測定できる。 In order to bring the rubber 12 into contact with the upper surface 16 of the measuring plate 4 and to slide the rubber 12 against the measuring plate 4, it is preferable to use a dynamic friction tester. Thereby, the slip resistance can be measured according to the desired load and the desired slip speed. By changing the rough surface roughness of the measuring plate 4, the slip resistance can be measured under different friction coefficients. By dampening the measurement plate 4, it is possible to measure the slip resistance when the measurement plate 4 is wet. By using the dynamic friction tester, it is possible to measure the temperature of the rubber 12 in the portion where the frictional force is working while measuring these friction characteristics.
以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
SBR:旭化成(株)製のタフデン3830(ビニル含有量:35質量%、スチレン含有量:33質量%)
変性SBR:下記製造例1で合成した溶液重合変性SBR(スチレン量35質量%、ビニル量50質量%、Mw70万)
BR:宇部興産(株)製のBR360L(シス1,4結合量98%)
NR:TSR
カーボンブラック:キャボットジャパン(株)製のショウブラックN220(NSA:111m/g、DBP:115ml/100g)
シリカ1:エボニック社製のUltrasil 9000GR(NSA:240m/g)
シリカ2:エボニック社製のUltrasil VN3(NSA:175m/g)
炭素繊維:三菱樹脂(株)製の石炭ピッチ系炭素繊維「K6371T」(チョップドファイバー、平均繊維径:11μm、平均繊維長:6.3mm、熱伝導率:140W/m・K)
樹脂架橋剤:田岡化学工業(株)製のタッキロールV200(アルキルフェノール・塩化硫黄縮合物、上記式(I-1)で表されるアルキルフェノール・塩化硫黄縮合物、硫黄含有率:24質量%、重量平均分子量:9000)
化合物A:住友化学(株)製の(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸ナトリウム(下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000009
ステアリン酸:日油(株)製のステアリン酸「椿」
酸化亜鉛:三井金属鉱業(株)製の亜鉛華2種
老化防止剤6C:大内新興化学工業(株)製のノクラック6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
老化防止剤RD:大内新興化学工業(株)製のノクラック224(2,2,4-トリメチル-1,2-ジヒドロキノリン重合体)
オイル:出光興産(株)製のダイアナプロセスNH-70S
シランカップリング剤1:デグッサ社製のNXT-Z45(結合単位Aと結合単位Bとの共重合体(結合単位A:55モル%、結合単位B:45モル%))
シランカップリング剤2:デグッサ社製のSi266(ビス(3-トリエトキシシリルプロピルジスルフィド))
硫黄:細井化学工業(株)製のHK-200-5(加硫剤、オイル分5質量%)
加硫促進剤CZ:N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド
加硫促進剤DPG:ジフェニルグアニジン
Hereinafter, various chemicals used in Examples and Comparative Examples will be described together.
SBR: Toughden 3830 manufactured by Asahi Kasei Corporation (vinyl content: 35% by mass, styrene content: 33% by mass)
Modified SBR: Solution polymerization modified SBR synthesized in Production Example 1 below (styrene content 35% by mass, vinyl content 50% by mass, Mw 700,000)
BR: BR360L manufactured by Ube Industries, Ltd. (cis 1,4 bond amount 98%)
NR: TSR
Carbon Black: Show Black N220 (N 2 SA: 111 m 2 / g, DBP: 115 ml / 100 g) manufactured by Cabot Japan
Silica 1: Ultrasil 9000GR manufactured by Evonik (N 2 SA: 240 m 2 / g)
Silica 2: Ultrasil VN3 manufactured by Evonik (N 2 SA: 175 m 2 / g)
Carbon fiber: Coal pitch-based carbon fiber “K6331T” manufactured by Mitsubishi Plastics Co., Ltd. (chopped fiber, average fiber diameter: 11 μm, average fiber length: 6.3 mm, thermal conductivity: 140 W / m · K)
Resin cross-linking agent: TAKIROLL V200 (alkylphenol / sulfur chloride condensate, alkylphenol / sulfur chloride condensate represented by the above formula (I-1), Taoka Chemical Industries, Ltd., sulfur content: 24% by mass, weight average Molecular weight: 9000)
Compound A: (2Z) -4-[(4-aminophenyl) amino] -4-oxo-2-butenoic acid sodium salt (compound represented by the following formula) manufactured by Sumitomo Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-C000009
Stearic acid: Stearic acid “椿” manufactured by NOF Corporation
Zinc oxide: Zinc flower type 2 anti-aging agent manufactured by Mitsui Mining & Smelting Co., Ltd. 6C: Nocrack 6C (N- (1,3-dimethylbutyl) -N'-phenyl-p manufactured by Ouchi Shinsei Chemical Co., Ltd.) -Phenylenediamine)
Anti-aging agent RD: NOCRACK 224 (2,2,4-trimethyl-1,2-dihydroquinoline polymer) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Oil: Diana Process NH-70S manufactured by Idemitsu Kosan Co., Ltd.
Silane coupling agent 1: NXT-Z45 manufactured by Degussa (copolymer of bonding unit A and bonding unit B (bonding unit A: 55 mol%, bonding unit B: 45 mol%))
Silane coupling agent 2: Si266 (bis (3-triethoxysilylpropyl disulfide)) manufactured by Degussa
Sulfur: HK-200-5 manufactured by Hosoi Chemical Co., Ltd. (vulcanizing agent, oil content 5% by mass)
Vulcanization accelerator CZ: N-cyclohexyl-2-benzothiazylsulfenamide Vulcanization accelerator DPG: Diphenylguanidine
(製造例1:変性SBRの合成)
撹拌機及びジャケットの付いた反応器を用い、窒素雰囲気下で、シクロヘキサン、1,3-ブタジエン、テトラヒドロフラン及びスチレンを仕込み、30℃に調整した後n-ブチルリチウムを添加し、重合を開始した。70℃まで昇温後、2時間重合を行い、重合転化率100%に達した後、少量の四塩化スズを加え、70℃でカップリング反応を行った。その後、3-ジエチルアミノプロピルトリメトキシシランを加え、60℃で変性反応を行った。得られた共重合体溶液に2,6-ジ-tert-ブチル-p-クレゾールを添加した後、スチームストリッピングにより脱溶媒し、更に110℃の熱ロールで乾燥することにより、変性SBRを得た。
(Production Example 1: Synthesis of modified SBR)
Using a reactor equipped with a stirrer and a jacket, under a nitrogen atmosphere, cyclohexane, 1,3-butadiene, tetrahydrofuran and styrene were charged, adjusted to 30 ° C., and then n-butyllithium was added to initiate polymerization. After raising the temperature to 70 ° C., polymerization was performed for 2 hours, and after reaching a polymerization conversion rate of 100%, a small amount of tin tetrachloride was added, and a coupling reaction was performed at 70 ° C. Thereafter, 3-diethylaminopropyltrimethoxysilane was added and a denaturation reaction was performed at 60 ° C. 2,6-di-tert-butyl-p-cresol is added to the obtained copolymer solution, and then the solvent is removed by steam stripping, followed by drying with a hot roll at 110 ° C. to obtain a modified SBR. It was.
<実施例及び比較例>
表1に示す配合内容に従い、硫黄及び加硫促進剤を除く各種薬品を、バンバリーミキサーにて、150℃で5分間混練りした。得られた混練物に、硫黄及び加硫促進剤を添加して、オープンロールを用いて、80℃で5分間混練りし、未加硫ゴム組成物を得た。
得られた未加硫ゴム組成物を170℃で20分間プレス加硫し、加硫ゴムシートを得た。
<Examples and Comparative Examples>
In accordance with the formulation shown in Table 1, various chemicals except sulfur and a vulcanization accelerator were kneaded at 150 ° C. for 5 minutes using a Banbury mixer. Sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded at 80 ° C. for 5 minutes using an open roll to obtain an unvulcanized rubber composition.
The obtained unvulcanized rubber composition was press vulcanized at 170 ° C. for 20 minutes to obtain a vulcanized rubber sheet.
得られた加硫ゴムシート(サンプル)を使用して、下記評価を行った。結果を表1、図3、4に示す。 The following evaluation was performed using the obtained vulcanized rubber sheet (sample). The results are shown in Table 1 and FIGS.
〔最高温度の測定〕
図1、2に示された温度測定装置を用いて、サンプルの温度を測定した。この測定では、Alからなる測定板が準備された。この測定板の測定窓の厚みTは2mmである。測定窓以外の部分での測定板の厚みは10mmである。測定板の上面は、粗面加工されている。粗面は、ショットブラストで形成された。ブラスト材として炭化ケイ素(信濃電気精錬(株)製の商品名「シナノランダムGC  F16)を使用した。
摩擦特性測定器として、日邦産業(株)製のダイナミックフリクションテスター「DFテスター Sタイプ」を使用した。サンプルがこのテスターにセットされた。測定時には、測定板は20℃の水で湿らされた。この湿った測定板の上を、サンプルが7km/hの速度で滑らされた。このときのサンプルの温度を温度測定器で、測定窓から測定した。測定時の環境温度は20℃である。温度測定器として、日本アビオニクス(株)製のサーモグラフィ「InfReC H8000」を使用した。測定の際には15μm顕微鏡レンズが装着された。この温度測定器は、波長が2μm以上5μm以下の電磁波の強度を測定している。
上記サーモグラフィの撮影結果から、ゴム表面の温度分布を確認した。表1には、ゴムの表面の中で最も温度が高い場所での温度(最高温度)が示されている。
〔摩擦条件〕
使用装置:日邦産業(株)製のダイナミックフリクションテスター「DFテスター Sタイプ」
(1)ゴム組成物(サンプル)のサイズ及び形状:
   厚み:2mm厚シート、表面スライス処理(PFT同様)
   (表面ブルームの影響を受けるため、スライス処理後48時間以内に測定実施)
   幅:16mm
   接地長:ゴム剛性により変動(DFテスターSタイプ用附属治具を使用する)
   サンプル:2個取り付け(DFテスターSタイプ)
(2)測定板(測定板に対して試料を滑らせる):
   Alからなる平板(20℃の水で湿らせた平板)
(3)測定窓の厚みT:2mm
(4)ゴム組成物(サンプル)を測定板に対して滑らせる速度:変動
   15km/時間~0km/時間までの減速試験
   試験開始後、7km/時間~0km/時間までの間での最高温度を採用する。
(5)ゴム組成物(サンプル)を測定板に対して滑らせる初速度:15km/時間
(6)ゴム組成物(サンプル)を測定板に対して滑らせる加速度:
   15km/時間~0km/時間までの減速試験
   一定荷重(DFテスターSタイプ)で押しつけた減速試験の為、配合によって変動
(7)ゴム組成物(サンプル)を測定板に対して滑らせる距離
   一定荷重(DFテスターSタイプ)で押しつけた減速試験の為、配合によって変動
(8)ゴム組成物(サンプル)を測定板に対して滑らせる時間
   一定荷重(DFテスターSタイプ)で押しつけた減速試験の為、配合によって変動
[Maximum temperature measurement]
The temperature of the sample was measured using the temperature measuring device shown in FIGS. In this measurement, a measurement plate made of Al 2 O 3 was prepared. The thickness T of the measurement window of this measurement plate is 2 mm. The thickness of the measurement plate at a portion other than the measurement window is 10 mm. The upper surface of the measurement plate is roughened. The rough surface was formed by shot blasting. Silicon carbide (trade name “Shinano Random GC F16” manufactured by Shinano Denki Co., Ltd.) was used as a blast material.
A dynamic friction tester “DF Tester S type” manufactured by Nihon Sangyo Co., Ltd. was used as a friction characteristic measuring instrument. A sample was set in this tester. At the time of measurement, the measurement plate was moistened with 20 ° C. water. On this wet measuring plate, the sample was slid at a speed of 7 km / h. The temperature of the sample at this time was measured from the measurement window with a temperature measuring device. The environmental temperature at the time of measurement is 20 ° C. A thermography “InfReC H8000” manufactured by Nippon Avionics Co., Ltd. was used as a temperature measuring device. During the measurement, a 15 μm microscope lens was attached. This temperature measuring instrument measures the intensity of electromagnetic waves having a wavelength of 2 μm or more and 5 μm or less.
The temperature distribution on the rubber surface was confirmed from the result of the thermography. Table 1 shows the temperature (maximum temperature) at the place where the temperature is the highest among the rubber surfaces.
[Friction conditions]
Equipment used: Dynamic friction tester “DF Tester S type” manufactured by Nihon Sangyo Co., Ltd.
(1) Size and shape of rubber composition (sample):
Thickness: 2mm thick sheet, surface slicing treatment (similar to PFT)
(Measured within 48 hours after slicing due to the influence of surface bloom)
Width: 16mm
Ground contact length: Depends on rubber rigidity (uses DF tester S type fixture)
Sample: 2 pieces (DF tester S type)
(2) Measuring plate (sliding the sample with respect to the measuring plate):
A flat plate made of Al 2 O 3 (a flat plate moistened with water at 20 ° C.)
(3) Measurement window thickness T: 2 mm
(4) Speed at which the rubber composition (sample) slides against the measuring plate: Fluctuation 15 km / hour to 0 km / hour deceleration test After the start of the test, the maximum temperature between 7 km / hour and 0 km / hour is set. adopt.
(5) Initial speed for sliding the rubber composition (sample) against the measurement plate: 15 km / hour (6) Acceleration for sliding the rubber composition (sample) against the measurement plate:
Deceleration test from 15 km / hour to 0 km / hour, because of the deceleration test pressed with a constant load (DF tester S type), fluctuates depending on the composition. (7) The sliding distance of the rubber composition (sample) with respect to the measurement plate Constant load (8) Time to slide the rubber composition (sample) against the measurement plate for the deceleration test pressed with (DF tester S type) For the deceleration test pressed with a constant load (DF tester S type) Depends on the formulation
〔リニア型摩耗試験機(PFT)による摩擦試験〕
HENTSCHEL製リニア型摩擦試験機「Portable friction tester(型番380.02)」を用いて、下記試験条件で摩擦試験を実施した(連続試験回数:10回)。
なお、試験サンプルは、サンプル表面を表面処理(スライス)したものを使用し、スタート時の表面状態の影響をリセットした(スライスには、(株)ニッピ機械製「NP-120」を使用)。
摩擦試験毎に、路面状態を管理し、路面の状態変化をリセットした。
路面状態の管理には、基準トレッド配合を使用し、本試験では、基準サンプルの基準値としてμ0.800を用い、補正値を求めた(例えば、配合Aの摩擦試験2回目では、その際の測定値、すなわち、基準サンプルのμs20.815(測定値)、サンプルAの測定値0.745(測定値)から、μA2(補正値)が、0.745+(0.800-0.815)=0.73と算出した。
連続的な(繰り返し)摩擦試験において、μ値の低下を抑制しているほど、走行中にグリップ性能が低下せず、走行時全体としてグリップ性能が向上することを示す。
[Friction test by linear wear tester (PFT)]
A friction test was conducted under the following test conditions using a linear friction tester “Portable friction tester (Model No. 380.02)” manufactured by HENTSCHEL (number of continuous tests: 10 times).
The test sample used was a surface treated (sliced) sample surface, and the influence of the surface condition at the start was reset (“NP-120” manufactured by Nippi Machinery Co., Ltd. was used for slicing).
For each friction test, the road surface condition was managed and the change in the road surface condition was reset.
For the management of the road surface condition, the reference tread formulation was used, and in this test, μ s 0.800 was used as the reference value of the reference sample, and a correction value was obtained (for example, in the second friction test of the formulation A, Measured value, that is, μ s2 0.815 (measured value) of the reference sample and 0.745 (measured value) of sample A, μ A2 (corrected value) is 0.745+ (0.800− 0.815) = 0.73.
In the continuous (repetitive) friction test, it is shown that the grip performance is not lowered during traveling and the grip performance is improved as a whole during traveling as the decrease in μ value is suppressed.
(試験条件)
錘なし一定荷重
すべり速度:2000mm/s
加速度:15m/s
接地圧:0.2Mpa
水温:20℃
路面温度:20℃
路面:テストコースモデル路面(タイヤラベリングμ-S評価規格路面)
   TD=0.7±0.3、BPN=42~60
   ※BNPについては参考、基準サンプルのμで管理
(Test conditions)
Constant load sliding speed without weight: 2000mm / s
Acceleration: 15m / s
Ground pressure: 0.2Mpa
Water temperature: 20 ° C
Road surface temperature: 20 ° C
Road surface: Test course model road surface (tire labeling μ-S evaluation standard road surface)
TD = 0.7 ± 0.3, BPN = 42-60
* Reference for BNP, managed with μ of the reference sample
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
表1及び表1の結果を表した図3、4から、所定摩擦条件下での摩擦時の最高温度が35℃である配合Aは、試験回数に応じてμが大幅に下降しているのに対し、上記最高温度が30℃以下である配合B~Fは、試験回数に応じたμの下降は小幅であり、ウェットグリップ性能、ドライグリップ性能等のグリップ性能が向上することが明らかとなった。 3 and 4 showing the results of Table 1 and Table 1, in Formulation A in which the maximum temperature at the time of friction under a predetermined friction condition is 35 ° C., μ greatly decreases according to the number of tests. On the other hand, in Formulations B to F where the maximum temperature is 30 ° C. or less, the decrease in μ according to the number of tests is small, and it is clear that the grip performance such as wet grip performance and dry grip performance is improved. It was.
2  温度測定装置
4  測定板
6  温度測定器
8  測定台
10 摩擦特性測定器
12 ゴム
14 窪み
16 上面
18 下面
20 測定窓
22 電磁波
24 回転板
26 本体
2 Temperature measuring device 4 Measuring plate 6 Temperature measuring device 8 Measuring table 10 Friction characteristic measuring device 12 Rubber 14 Dimple 16 Upper surface 18 Lower surface 20 Measuring window 22 Electromagnetic wave 24 Rotating plate 26 Main body

Claims (4)

  1. 下記摩擦条件下における摩擦時の最高温度が30℃以下であるゴム組成物。
    〔摩擦条件〕
    (1)ゴム組成物のサイズ及び形状:2mm厚シート(幅16mm)
    (2)測定板:Alからなる平板
    A rubber composition having a maximum temperature of 30 ° C. or less during friction under the following friction conditions.
    [Friction conditions]
    (1) Size and shape of rubber composition: 2 mm thick sheet (width 16 mm)
    (2) Measuring plate: A flat plate made of Al 2 O 3
  2. 前記最高温度が25℃以下である請求項1記載のゴム組成物。 The rubber composition according to claim 1, wherein the maximum temperature is 25 ° C. or less.
  3. 前記最高温度が23℃以下である請求項1記載のゴム組成物。 The rubber composition according to claim 1, wherein the maximum temperature is 23 ° C. or lower.
  4. 請求項1~3のいずれかに記載のゴム組成物をトレッドに用いた空気入りタイヤ。 A pneumatic tire using the rubber composition according to any one of claims 1 to 3 in a tread.
PCT/JP2019/000119 2018-02-07 2019-01-08 Rubber composition and pneumatic tire WO2019155799A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019526630A JP7259744B2 (en) 2018-02-07 2019-01-08 Rubber composition and pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018020174 2018-02-07
JP2018-020174 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019155799A1 true WO2019155799A1 (en) 2019-08-15

Family

ID=67548466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000119 WO2019155799A1 (en) 2018-02-07 2019-01-08 Rubber composition and pneumatic tire

Country Status (2)

Country Link
JP (1) JP7259744B2 (en)
WO (1) WO2019155799A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127674A (en) * 1994-09-05 1996-05-21 Nikkiso Co Ltd Antistatic rubber composition
JP2004010689A (en) * 2002-06-05 2004-01-15 Bridgestone Corp Tire
JP2007145242A (en) * 2005-11-29 2007-06-14 Bridgestone Corp Tire for construction vehicle
JP2009144110A (en) * 2007-12-18 2009-07-02 Bridgestone Corp Rubber composition and tire using the same
JP2010059398A (en) * 2008-08-08 2010-03-18 Sumitomo Rubber Ind Ltd Rubber composition for cap tread and tire having cap tread comprising the same
JP2010168540A (en) * 2008-12-01 2010-08-05 Sumitomo Rubber Ind Ltd Rubber composition for sidewall reinforcing layer or sidewall, and tire
JP2011074155A (en) * 2009-09-29 2011-04-14 Sumitomo Rubber Ind Ltd Tire rubber composition and pneumatic tire
JP2011074154A (en) * 2009-09-29 2011-04-14 Sumitomo Rubber Ind Ltd Rubber composition for two-wheeled vehicle tread and two-wheeled vehicle tire
JP2011190328A (en) * 2010-03-12 2011-09-29 Sumitomo Rubber Ind Ltd Tread rubber composition and tire for two-wheeled vehicle
JP2013209605A (en) * 2011-04-26 2013-10-10 Sumitomo Chemical Co Ltd Rubber composition
JP2014084312A (en) * 2012-10-25 2014-05-12 Sumitomo Chemical Co Ltd Compound for improving viscoelastic properties of vulcanized rubber, and rubber composition including the compound
JP2016070880A (en) * 2014-10-01 2016-05-09 住友ゴム工業株式会社 Temperature measurement method for rubber for tire
JP2017075224A (en) * 2015-10-14 2017-04-20 住友ゴム工業株式会社 High-performance tire
JP2018062625A (en) * 2016-10-14 2018-04-19 東洋ゴム工業株式会社 Pneumatic tire

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127674A (en) * 1994-09-05 1996-05-21 Nikkiso Co Ltd Antistatic rubber composition
JP2004010689A (en) * 2002-06-05 2004-01-15 Bridgestone Corp Tire
JP2007145242A (en) * 2005-11-29 2007-06-14 Bridgestone Corp Tire for construction vehicle
JP2009144110A (en) * 2007-12-18 2009-07-02 Bridgestone Corp Rubber composition and tire using the same
JP2010059398A (en) * 2008-08-08 2010-03-18 Sumitomo Rubber Ind Ltd Rubber composition for cap tread and tire having cap tread comprising the same
JP2010168540A (en) * 2008-12-01 2010-08-05 Sumitomo Rubber Ind Ltd Rubber composition for sidewall reinforcing layer or sidewall, and tire
JP2011074155A (en) * 2009-09-29 2011-04-14 Sumitomo Rubber Ind Ltd Tire rubber composition and pneumatic tire
JP2011074154A (en) * 2009-09-29 2011-04-14 Sumitomo Rubber Ind Ltd Rubber composition for two-wheeled vehicle tread and two-wheeled vehicle tire
JP2011190328A (en) * 2010-03-12 2011-09-29 Sumitomo Rubber Ind Ltd Tread rubber composition and tire for two-wheeled vehicle
JP2013209605A (en) * 2011-04-26 2013-10-10 Sumitomo Chemical Co Ltd Rubber composition
JP2014084312A (en) * 2012-10-25 2014-05-12 Sumitomo Chemical Co Ltd Compound for improving viscoelastic properties of vulcanized rubber, and rubber composition including the compound
JP2016070880A (en) * 2014-10-01 2016-05-09 住友ゴム工業株式会社 Temperature measurement method for rubber for tire
JP2017075224A (en) * 2015-10-14 2017-04-20 住友ゴム工業株式会社 High-performance tire
JP2018062625A (en) * 2016-10-14 2018-04-19 東洋ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JPWO2019155799A1 (en) 2020-12-03
JP7259744B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
JP6351495B2 (en) Pneumatic tire
US10850564B2 (en) Winter tire
US11549007B2 (en) Copolymer, rubber composition, and tire
WO2015125538A1 (en) Tire rubber composition and pneumatic tire
US20190193464A1 (en) Tread rubber composition and pneumatic tire
US11124632B2 (en) Rubber composition for tires, and pneumatic tires
WO2021065615A1 (en) Rubber composition and tire
JP6824813B2 (en) Pneumatic tires
JP5213369B2 (en) Rubber composition for cap tread of studless tire and studless tire
WO2018128141A1 (en) Vulcanized rubber composition and pneumatic tire
WO2020261873A1 (en) Tire
EP3719067A1 (en) Rubber composition for tire tread and tire
JP7259744B2 (en) Rubber composition and pneumatic tire
WO2020189100A1 (en) Tire
JP7225637B2 (en) Rubber composition and pneumatic tire
JP2018076469A (en) Rubber composition, method for producing rubber composition and tire
JP7222349B2 (en) Rubber composition and pneumatic tire
JP2021195441A (en) Rubber composition for tire and tire
WO2020022324A1 (en) Rubber composition and tire
WO2019193888A1 (en) Rubber composition for tire, and pneumatic tire
JP2018188538A (en) Rubber composition for tire and pneumatic tire
JP6972594B2 (en) Rubber composition and pneumatic tires
WO2021100465A1 (en) Tread rubber composition and tire
JP2023092136A (en) Rubber composition for crawlers and rubber crawler
JP2022018873A (en) tire

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019526630

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751906

Country of ref document: EP

Kind code of ref document: A1