WO2020261873A1 - Tire - Google Patents

Tire Download PDF

Info

Publication number
WO2020261873A1
WO2020261873A1 PCT/JP2020/021276 JP2020021276W WO2020261873A1 WO 2020261873 A1 WO2020261873 A1 WO 2020261873A1 JP 2020021276 W JP2020021276 W JP 2020021276W WO 2020261873 A1 WO2020261873 A1 WO 2020261873A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
group
parts
less
rubber composition
Prior art date
Application number
PCT/JP2020/021276
Other languages
French (fr)
Japanese (ja)
Inventor
佳彦 小森
達也 宮崎
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Publication of WO2020261873A1 publication Critical patent/WO2020261873A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • C08K5/40Thiurams, i.e. compounds containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a tire.
  • An object of the present invention is to provide a tire capable of solving the above problems and improving the overall performance of wet grip performance and wear resistance.
  • ash which is a component derived from silica, zinc oxide, aluminum hydroxide, magnesium sulfate, a processing aid, etc. in the rubber composition. Then, it was found that the correlation between the ash content and the wet grip performance is high, and the wet grip performance tends to be improved by increasing the ash content. However, when the proportion of ash is increased, the rubber composition may become too hard and the wear resistance may decrease.
  • the amount of sulfur after acetone extraction that is, the sulfur content involved in cross-linking
  • the number of polysulfide bonds that crosslink the polymer chain is reduced, and the amount of sulfur atoms released into the rubber during use is reduced.
  • the rubber composition is less likely to be cured over time, and even when the proportion of ash is increased, good wear resistance can be ensured, and both wet grip performance and wear resistance can be achieved at the same time. I came up with the headline and the present invention.
  • the present invention comprises a tire comprising a rubber component and a silane coupling agent, and having a tread composed of a rubber composition having an ash content of 37% by mass or more and a sulfur content after acetone extraction of 0.75% by mass or less. Regarding.
  • the amount of sulfur is preferably 0.65% by mass or less.
  • the content of silica with respect to 100 parts by mass of the rubber component is preferably 110 parts by mass or more.
  • the sulfur content of the silane coupling agent is preferably 10% by mass or less.
  • the content of carbon black with respect to 100 parts by mass of the rubber component is preferably 10 parts by mass or less.
  • the content of the amide compound or the nonionic surfactant having an SP value of 9.0 or more with respect to 100 parts by mass of the rubber component is preferably 0.1 part by mass or more.
  • the rubber composition contains a thiuram-based vulcanization accelerator.
  • the rubber composition contains at least one inorganic filler selected from the group consisting of aluminum hydroxide, alumina, zirconium oxide, magnesium sulfate, aluminum silicate, potassium carbonate and silicon carbide.
  • the rubber composition contains a solid resin.
  • a tire comprising a tread containing a rubber component and a silane coupling agent and having a rubber composition having an ash content of 37% by mass or more and a sulfur content after acetone extraction of 0.75% by mass or less. Therefore, the overall performance of wet grip performance and wear resistance can be improved.
  • the tire of the present invention includes a tread containing a rubber component and a silane coupling agent, and is composed of a rubber composition having an ash content of 37% by mass or more and a sulfur content after acetone extraction of 0.75% by mass or less.
  • the rubber composition contains a rubber component and a silane coupling agent and has an ash content of a predetermined amount or more, excellent wet grip performance can be obtained. Further, as described above, when the proportion of ash is high, the wear resistance may decrease. However, since the amount of sulfur in the rubber composition after extraction with acetone is less than a predetermined amount, the rubber composition is cured over time. Is less likely to occur, and excellent wear resistance can be obtained. It is presumed that these actions improve the overall performance of wet grip performance and wear resistance.
  • the ash content may be 37% by mass or more, preferably 38% by mass or more, more preferably 39% by mass or more, and preferably 55% by mass or less, more preferably 50% by mass. It is mass% or less, more preferably 44 mass% or less. Within the above range, the effect tends to be better obtained.
  • the ash content is a component derived from silica, zinc oxide, aluminum hydroxide, magnesium sulfate, a processing aid, etc. in the rubber composition, and the ash content can be adjusted from the blending amount of these components.
  • the amount of ash can be measured by the method described in Examples described later.
  • the amount of sulfur after acetone extraction may be 0.75% by mass or less, preferably 0.65% by mass or less, and more preferably 0.45% by mass or more. Is 0.55% by mass or more, more preferably 0.60% by mass or more. Within the above range, both wet grip performance and wear resistance tend to be obtained, and vulcanization adhesion between the tread and the adjacent rubber tends to be satisfactorily obtained.
  • the amount of sulfur after acetone extraction is considered to be derived from the sulfur content involved in cross-linking, that is, the sulfur content contained in powdered sulfur, hybrid cross-linking agent, vulcanization accelerator, silane coupling agent, and the like.
  • the amount of sulfur after acetone extraction can be adjusted from these blending amounts. Sulfur contained in process oil, resin, etc. is considered to be removed by acetone extraction without participating in cross-linking.
  • the amount of sulfur after acetone extraction can be measured by the method described in Examples described later.
  • Examples of the rubber component that can be used in the rubber composition include isoprene-based rubber, butadiene rubber (BR), styrene-butadiene rubber (SBR), styrene-isoprene-butadiene rubber (SIBR), acrylonitrile-butadiene rubber (NBR), and chloroprene rubber (CR). ), Diene rubber such as butyl rubber (IIR).
  • the rubber component may be used alone or in combination of two or more. Of these, SBR, BR, and isoprene-based rubber are preferable, and SBR and BR are more preferable.
  • the rubber component is a polymer having a weight average molecular weight (Mw) of preferably 150,000 or more, more preferably 350,000 or more.
  • Mw weight average molecular weight
  • the upper limit of Mw is not particularly limited, but is preferably 4 million or less, more preferably 3 million or less.
  • the SBR is not particularly limited, and for example, emulsion polymerization SBR (E-SBR), solution polymerization SBR (S-SBR), and the like, which are common in the tire industry, can be used. These may be used alone or in combination of two or more.
  • E-SBR emulsion polymerization SBR
  • S-SBR solution polymerization SBR
  • the amount of styrene in SBR is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably. Is 35% by mass or less. Within the above range, the effect tends to be better obtained.
  • the vinyl content of SBR is preferably 10% by mass or more, more preferably 15% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less. Within the above range, the effect tends to be better obtained.
  • the SBR may be a non-modified SBR or a modified SBR.
  • the modified SBR may be any SBR having a functional group that interacts with a filler such as silica.
  • at least one end of the SBR is modified with a compound having the above functional group (modifying agent).
  • SBR terminal modified SBR having the above functional group at the end
  • main chain modified SBR having the above functional group in the main chain
  • main chain terminal modified SBR having the above functional group in the main chain and the end for example, in the main chain
  • Main chain terminal modified SBR having the above functional group and having at least one end modified with the above modifying agent or a polyfunctional compound having two or more epoxy groups in the molecule, which is modified (coupling) with a hydroxyl group.
  • terminally modified SBR into which an epoxy group has been introduced may be used alone or in combination of two or more.
  • Examples of the functional group include an amino group, an amide group, a silyl group, an alkoxysilyl group, an isocyanate group, an imino group, an imidazole group, a urea group, an ether group, a carbonyl group, an oxycarbonyl group, a mercapto group, a sulfide group and a disulfide.
  • Examples thereof include a group, a sulfonyl group, a sulfinyl group, a thiocarbonyl group, an ammonium group, an imide group, a hydrazo group, an azo group, a diazo group, a carboxyl group, a nitrile group, a pyridyl group, an alkoxy group, a hydroxyl group, an oxy group and an epoxy group. ..
  • these functional groups may have a substituent.
  • an amino group preferably an amino group in which the hydrogen atom of the amino group is replaced with an alkyl group having 1 to 6 carbon atoms
  • an alkoxy group preferably an alkoxy group having 1 to 6 carbon atoms
  • an alkoxysilyl group preferably an alkoxy group having 1 to 6 carbon atoms.
  • An alkoxysilyl group having 1 to 6 carbon atoms) and an amide group are preferable.
  • SBR for example, products such as Sumitomo Chemical Co., Ltd., JSR Corporation, Asahi Kasei Co., Ltd., and Zeon Corporation can be used.
  • the content of SBR in 100% by mass of the rubber component is preferably 40% by mass or more, more preferably 50% by mass or more, further preferably 70% by mass or more, and preferably 95% by mass or less, more preferably 95% by mass or less. It is 90% by mass or less. Within the above range, the effect tends to be better obtained.
  • the BR is not particularly limited, and a BR commonly used in the tire industry can be used.
  • BR having a high cis content BR having 1,2-syndiotactic polybutadiene crystals (SPB-containing BR), butadiene rubber synthesized using a rare earth element catalyst (rare earth BR), and modified with a tin compound.
  • SPB-containing BR 1,2-syndiotactic polybutadiene crystals
  • IR BR rare earth element catalyst
  • tin compound examples thereof include those commonly used in the tire industry, such as tin-modified butadiene rubber (tin-modified BR). These may be used alone or in combination of two or more.
  • rare earth-based BRs are preferable because they can further improve wear resistance while maintaining good wet grip performance.
  • Rare earth-based BR is a butadiene rubber synthesized by using a rare earth element-based catalyst, and has a feature of high cis content and low vinyl content.
  • a general-purpose product in tire manufacturing can be used.
  • the rare earth element-based catalyst known catalysts can be used, and examples thereof include lanthanum series rare earth element compounds, organoaluminum compounds, aluminoxanes, halogen-containing compounds, and catalysts containing a Lewis base, if necessary.
  • an Nd-based catalyst using a neodymium (Nd) -containing compound as the lanthanum-series rare earth element compound is preferable.
  • the cis content of BR is preferably 90% by mass or more, more preferably 93% by mass or more, still more preferably 95% by mass or more, and the upper limit is not particularly limited. Within the above range, the effect tends to be better obtained.
  • the vinyl content of BR is preferably 1.8% by mass or less, more preferably 1.0% by mass or less, still more preferably 0.5% by mass or less, and particularly preferably 0.3% by mass or less. Within the above range, the effect tends to be better obtained.
  • the BR may be either a non-modified BR or a modified BR.
  • modified BR include modified BRs into which the above-mentioned functional groups have been introduced.
  • the preferred embodiment is the same as for the modified SBR.
  • BR for example, products such as Ube Industries, Ltd., JSR Corporation, Asahi Kasei Corporation, and ZEON Corporation can be used.
  • the content of BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably. It is 30% by mass or less. Within the above range, the effect tends to be better obtained.
  • the total content of SBR and BR in 100% by mass of the rubber component is preferably 30% by mass or more, more preferably 50% by mass or more, further preferably 70% by mass or more, and particularly preferably 90% by mass or more, 100% by mass. It may be% by mass. Within the above range, the effect tends to be better obtained.
  • isoprene rubber examples include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, modified IR and the like.
  • NR natural rubber
  • IR isoprene rubber
  • modified NR for example, SIR20, RSS # 3, TSR20 and the like, which are common in the tire industry, can be used.
  • the IR is not particularly limited, and for example, an IR 2200 or the like that is common in the tire industry can be used.
  • Modified NR includes deproteinized natural rubber (DPNR), high-purity natural rubber (UPNR), etc.
  • modified NR includes epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc.
  • modified IR examples include epoxidized isoprene rubber, hydrogenated isoprene rubber, grafted isoprene rubber and the like. These may be used alone or in combination of two or more. Of these, natural rubber is preferable.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are gel permeation chromatographs (GPC) (GPC-8000 series manufactured by Toso Co., Ltd., detector: differential refractometer, column: It can be obtained by standard polystyrene conversion based on the measured value by TSKGEL SUPERMULTIPORE HZ-M manufactured by Toso Co., Ltd.
  • the cis content (cis-1,4-bonded butadiene unit amount) and vinyl content (1,2-bonded butadiene unit amount) can be measured by infrared absorption spectrum analysis, and the amount of styrene is measured by 1 H-NMR. Can be measured by.
  • the rubber composition preferably contains silica as a reinforcing filler.
  • silica examples include dry silica (silicic anhydride) and wet silica (hydrous silicic acid), but wet silica is preferable because it contains a large amount of silanol groups. These may be used alone or in combination of two or more.
  • Nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 60 m 2 / g or more, more preferably 150 meters 2 / g or more, further preferably 220 m 2 / g or more, and preferably not more than 320 m 2 / g , More preferably 280 m 2 / g or less. Within the above range, the effect tends to be better obtained. In particular, by using silica having an N 2 SA of 220 m 2 / g or more, wear resistance can be further improved while maintaining good wet grip performance.
  • the nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.
  • silica for example, products such as Degussa, Rhodia, Tosoh Silica Co., Ltd., Solvay Japan Co., Ltd., Tokuyama Corporation can be used.
  • the content of silica is preferably 90 parts by mass or more, more preferably 110 parts by mass or more, further preferably 130 parts by mass or more, and preferably 200 parts by mass or less, based on 100 parts by mass of the rubber component. It is preferably 180 parts by mass or less, and more preferably 160 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the content of silica in 100% by mass of the reinforcing filler is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and particularly preferably 80% by mass or more.
  • the upper limit is not particularly limited and may be 100% by mass, but is preferably 98% by mass or less.
  • the rubber composition contains a silane coupling agent.
  • the silane coupling agent is not particularly limited, and for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4-triethoxysilylbutyl) tetrasulfide, Bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (2-triethoxysilylethyl) trisulfide, bis (4-trimethoxysilylbutyl) trisulfide, bis ( 3-Triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (4-triethoxysilylbutyl) disulfide, bis (3-trimethoxysilylpropyl
  • products such as Degussa, Momentive, Shin-Etsu Silicone Co., Ltd., Tokyo Chemical Industry Co., Ltd., Azumax Co., Ltd., and Toray Dow Corning Co., Ltd. can be used. These may be used alone or in combination of two or more.
  • a silane coupling agent having a sulfur content of 10% by mass or less can be preferably used.
  • the sulfur content is usually 10% by mass or less.
  • the lower limit of the sulfur content is not particularly limited, but is preferably 1% by mass or more, more preferably 2% by mass or more.
  • the sulfur content of the silane coupling agent can be measured by the same method as the "sulfur content after acetone extraction" described in Examples described later.
  • silane coupling agent having a sulfur content of 10% by mass or less a silane coupling agent containing a binding unit A represented by the following formula (I) and a binding unit B represented by the following formula (II) is preferably used. It can.
  • v is an integer of 0 or more
  • w is an integer of 1 or more.
  • R 11 is hydrogen, halogen, an alkyl group having 1 to 30 branched or unbranched carbon atoms, and 2 to 2 branched or unbranched carbon atoms. 30 alkenyl groups, branched or unbranched alkynyl groups having 2 to 30 carbon atoms, or hydrogens at the ends of the alkyl groups substituted with hydroxyl groups or carboxyl groups.
  • R 12 has branched or unbranched carbon atoms. It represents 1 to 30 alkylene groups, branched or non-branched alkenylene groups having 2 to 30 carbon atoms, or branched or non-branched alkynylene groups having 2 to 30 carbon atoms.
  • a ring structure is formed by R 11 and R 12. May be.
  • the content of the binding unit A is preferably 30 mol% or more, more preferably 50 mol. % Or more, preferably 99 mol% or less, more preferably 90 mol% or less.
  • the content of the binding unit B is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 10 mol% or more, preferably 70 mol% or less, more preferably 65 mol% or less. More preferably, it is 55 mol% or less.
  • the total content of the binding units A and B is preferably 95 mol% or more, more preferably 98 mol% or more, and further preferably 100 mol%.
  • the content of the binding units A and B is an amount including the case where the binding units A and B are located at the ends of the silane coupling agent.
  • the form in which the binding units A and B are located at the ends of the silane coupling agent is not particularly limited, and a unit corresponding to the formulas (I) and (II) representing the binding units A and B may be formed. ..
  • examples of the halogen include chlorine, bromine and fluorine.
  • examples of the branched or non-branched alkyl group having 1 to 30 carbon atoms include a methyl group and an ethyl group.
  • examples of the branched or non-branched alkenyl group having 2 to 30 carbon atoms include a vinyl group and a 1-propenyl group.
  • examples of the branched or non-branched alkynyl group having 2 to 30 carbon atoms include an ethynyl group and a propynyl group.
  • Examples of the branched or non-branched alkenylene group having 2 to 30 carbon atoms include a vinylene group and a 1-propenylene group.
  • Examples of the branched or non-branched alkynylene group having 2 to 30 carbon atoms include an ethynylene group and a propynylene group.
  • the number of repetitions (v) of the binding unit A and the number of repetitions (w) of the binding unit B is preferably in the range of 3 to 300.
  • a silane coupling agent represented by the following formula (S1) can also be preferably used.
  • R 101 to R 103 are branched or non-branched alkyl groups having 1 to 12 carbon atoms, branched or non-branched alkoxy groups having 1 to 12 carbon atoms, or —O— (R 111 ⁇ O) d.
  • -R 112 (d R 111s represent branched or non-branched divalent hydrocarbon groups having 1 to 30 carbon atoms. The d R 111s may be the same or different, respectively. R 112 may be the same or different.
  • R 101 to R 103 may be the same or different, respectively.
  • R 104 is a branched or non-branched alkylene group having 1 to 6 carbon atoms. Represents.
  • R 101 to R 103 are branched or non-branched alkyl groups having 1 to 12 carbon atoms (preferably 1 to 5 carbon atoms), and branched or non-branched alkyl groups having 1 to 12 carbon atoms (preferably 1 to 5 carbon atoms).
  • R 111 has 1 to 30 branched or non-branched carbon atoms (preferably 1 to 15 carbon atoms, more preferably 1 carbon atom).
  • the hydrocarbon group include an alkylene group, an alkenylene group, an arylene group and the like. Of these, an alkylene group is preferable.
  • d represents an integer of 1 to 30 (preferably 2 or more, more preferably 3 or more, still more preferably 5 or more, preferably 20 or less, more preferably 7 or less, still more preferably 6 or less).
  • R 112 represents a branched or non-branched monovalent hydrocarbon group having 1 to 30 carbon atoms (preferably 1 to 15 carbon atoms, more preferably 1 to 3 carbon atoms).
  • the hydrocarbon group include an alkyl group, an alkenylene group, an aryl group, an aralkyl group and the like. Of these, an alkyl group is preferable.
  • Specific examples of the group represented by -O- (R 111- O) d- R 112 include, for example, -O- (C 2 H 4- O) 5- C 11 H 23 , -O- (C 2). H 4- O) 5- C 12 H 25 , -O- (C 2 H 4- O) 5- C 13 H 27 , -O- (C 2 H 4- O) 5- C 14 H 29 , -O -(C 2 H 4- O) 5- C 15 H 31 , -O- (C 2 H 4- O) 3- C 13 H 27 , -O- (C 2 H 4- O) 4- C 13 H 27 , -O- (C 2 H 4- O) 6- C 13 H 27 , -O- (C 2 H 4- O) 7- C 13 H 27 and the like can be mentioned.
  • the branched or non-branched alkylene group of R 104 having 1 to 6 carbon atoms (preferably 1 to 5 carbon atoms) is the same as that of R 111 .
  • Examples of the mercapto-based silane coupling agent represented by the formula (I) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, and 2-mercaptoethyltriethoxysilane.
  • Examples thereof include a compound represented by the following formula (Si363 manufactured by Ebonic). These may be used alone or in combination of two or more. Among them, the compound represented by the following formula can be preferably used.
  • a silane coupling agent represented by the following formula (S2) can also be preferably used.
  • OSiR 1006 R 1007 R 1008 a monovalent group selected from (R 1006, R 1007 and R 1008 may be the same or different, be each a hydrogen atom or a monovalent hydrocarbon group having 1 to 18 carbon atoms , H has an average value of 1 to 4)
  • R 1002 is R 1001 , a hydrogen atom or a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • R 1003 is- [O (R 1009 O) j.
  • R 1009 is an alkylene group having 1 to 18 carbon atoms, j is an integer of 1 to 4
  • R 1004 is a divalent hydrocarbon group having 1 to 18 carbon atoms
  • R 1005 , R 1006 , R 1007 and R 1008 are independently derived from a linear, cyclic or branched alkyl group having 1 to 18 carbon atoms, an alkenyl group, an aryl group and an aralkyl group, respectively. It is preferable that the group is selected from the group.
  • R 1002 is a monovalent hydrocarbon group having 1 to 18 carbon atoms, it is selected from the group consisting of a linear, cyclic or branched alkyl group, an alkenyl group, an aryl group and an aralkyl group. It is preferably a group.
  • R 1009 is preferably a linear, cyclic or branched alkylene group, and particularly preferably linear.
  • R1004 is, for example, an alkylene group having 1 to 18 carbon atoms, an alkenylene group having 2 to 18 carbon atoms, a cycloalkylene group having 5 to 18 carbon atoms, a cycloalkylalkylene group having 6 to 18 carbon atoms, and an arylene having 6 to 18 carbon atoms. Examples thereof include an aralkylene group having 7 to 18 carbon atoms.
  • the alkylene group and the alkenylene group may be linear or branched, and the cycloalkylene group, the cycloalkylalkylene group, the arylene group and the aralkylene group have a functional group such as a lower alkyl group on the ring. You may be doing it.
  • an alkylene group having 1 to 6 carbon atoms is preferable, and a linear alkylene group such as a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group and a hexamethylene group are particularly preferable.
  • R 1002 , R 1005 , R 1006 , R 1007 and R 1008 in the formula (S2) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and sec-butyl.
  • R 1009 in the formula (S2) examples include a methylene group, an ethylene group, an n-propylene group, an n-butylene group, a hexylene group and the like as the linear alkylene group, and examples of the branched alkylene group include a branched alkylene group. Examples thereof include an isopropylene group, an isobutylene group and a 2-methylpropylene group.
  • silane coupling agent represented by the formula (S2) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, and 3-.
  • the content of the silane coupling agent is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and preferably 20 parts by mass or less, more preferably 15 parts by mass or less, based on 100 parts by mass of silica. Is. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain carbon black as a reinforcing filler.
  • the carbon black is not particularly limited, and examples thereof include N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, and N762. These may be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more, and preferably 200 m 2 / g or less, more preferably 150 m 2 / g. It is as follows. Within the above range, the effect tends to be better obtained. In this specification, N 2 SA of carbon black is a value measured in accordance with JIS K6217-2: 2001.
  • As carbon black for example, products of Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Corporation, Lion Corporation, Shin Nikka Carbon Co., Ltd., Columbia Carbon Co., Ltd., etc. Can be used.
  • the content of carbon black is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and preferably 20 parts by mass or less in order to suppress the generation of cracks due to ultraviolet rays with respect to 100 parts by mass of the rubber component. , More preferably 10 parts by mass or less.
  • Carbon black forms a thick gel layer with the polymer. This gel layer improves wear resistance, but its wet grip performance is inferior to that of silica. When the content of carbon black is within the above range, good wet grip performance and wear resistance tend to be ensured.
  • the rubber composition preferably contains an amide compound and / or a nonionic surfactant having an SP value of 9.0 or more.
  • the amide compound is not particularly limited, and examples thereof include fatty acid amides and fatty acid amide esters. These may be used alone or in combination of two or more. Of these, fatty acid amides are preferable, and a mixture of fatty acid amides and fatty acid amide esters is more preferable.
  • the amide compound may be a mixture with a fatty acid metal salt.
  • the metal constituting the fatty acid metal salt include potassium, sodium, magnesium, calcium, barium, zinc, nickel, molybdenum and the like. These may be used alone or in combination of two or more. Of these, alkaline earth metals such as calcium and zinc are preferable, and calcium is more preferable.
  • the fatty acid constituting the fatty acid metal salt may be a saturated fatty acid or an unsaturated fatty acid.
  • saturated fatty acid include decanoic acid, dodecanoic acid, and stearic acid
  • unsaturated fatty acid include oleic acid. , Elaidic acid and the like. These may be used alone or in combination of two or more. Of these, saturated fatty acids are preferable, and stearic acid is more preferable. Moreover, oleic acid is preferable as an unsaturated fatty acid.
  • the fatty acid amide may be a saturated fatty acid amide or an unsaturated fatty acid amide.
  • saturated fatty acid amide include stearic acid amide and behenic acid amide
  • unsaturated fatty acid amide include oleic acid amide.
  • examples include erucic acid amide. These may be used alone or in combination of two or more. Of these, unsaturated fatty acid amides are preferable, and oleic acid amides are more preferable.
  • the fatty acid amide ester may be a saturated fatty acid amide ester or an unsaturated fatty acid amide ester, and examples of the saturated fatty acid amide ester include stearic acid amide ester and behenic acid amide ester. Examples thereof include oleic acid amide ester and erucic acid amide ester. These may be used alone or in combination of two or more. Of these, unsaturated fatty acid amide esters are preferable, and oleic acid amide esters are more preferable.
  • amide compound for example, products such as NOF CORPORATION, Stractol, and Lanxess can be used.
  • the content of the amide compound is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass or more, and preferably 4 by mass with respect to 100 parts by mass of the rubber component. It is less than a part by mass, more preferably 2 parts by mass or less. Within the above range, the bleed layer on the tread surface tends to be soft, and the initial grip performance tends to be good.
  • the content of the amide compound when the amide compound is a mixture with the fatty acid metal salt, the content of the amide compound also includes the amount of the fatty acid metal salt contained in the amide compound.
  • the content thereof is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass or more, and more preferably. Is 4 parts by mass or less, more preferably 2 parts by mass or less. Within the above range, the deterioration of wear resistance tends to be small.
  • the nonionic surfactant (nonionic surfactant having an SP value of 9.0 or more) is not particularly limited, and is, for example, a nonionic surfactant represented by the following formula (1); the following formula.
  • R 1 represents a hydrocarbon group having 6 to 26 carbon atoms.
  • D represents an integer.
  • R 2 and R 3 represent the same or different hydrocarbon groups having 6 to 26 carbon atoms.
  • E represents an integer.
  • nonionic surfactant represented by the formula (1) examples include ethylene glycol monooleate, ethylene glycol monopalmiate, ethylene glycol monopalmitate, ethylene glycol monopaxenate, ethylene glycol monolinoleate, and ethylene glycol monolith.
  • examples thereof include norenate, ethylene glycol monoarachidonate, ethylene glycol monostearate, ethylene glycol monocetylate, and ethylene glycol monolaurate.
  • nonionic surfactant represented by the formula (2) examples include ethylene glycol dioleate, ethylene glycol dipalmiate, ethylene glycol dipalmitate, ethylene glycol dipaxenate, ethylene glycol dilinolete, and ethylene glycol dilinole. Nate, ethylene glycol diarachidonate, ethylene glycol distearate, ethylene glycol disetylate, ethylene glycol dilaurate and the like can be mentioned.
  • the pluronic nonionic surfactant is also called polyoxyethylene polyoxypropylene glycol, polyoxyethylene polyoxypropylene block polymer, or polypropylene glycol ethylene oxide adduct, and is generally represented by the following formula (3). It is an ionic surfactant. As represented by the following formula (3), the pluronic nonionic surfactant has a hydrophilic group composed of an ethylene oxide structure on both sides, and is composed of a propylene oxide structure so as to be sandwiched between the hydrophilic groups. Has a hydrophobic group to be treated. (In the formula, a, b, and c represent integers.)
  • the degree of polymerization of polypropylene oxide block which is a pluronic nonionic surfactant (b in formula (3)), and the amount of polyethylene oxide added (a + c in formula (3)) are not particularly limited, and may be used under conditions of use, purpose, etc. It can be selected as appropriate.
  • the degree of polymerization of the polypropylene oxide block (b in formula (3)) is preferably 10 or more, more preferably 20 or more, and preferably 20 or more, because the bloom of the nonionic surfactant can be preferably controlled. Is 100 or less, more preferably 60 or less, still more preferably 40 or less.
  • the amount of polyethylene oxide added (a + c in the formula (3)) is preferably 5 or more, more preferably 15 or more, and preferably 90 or less, more preferably 50 or less, still more preferably 30. It is as follows.
  • pluronic nonionic surfactant examples include the Pluronic series manufactured by BASF Japan Ltd., the New Pole PE series manufactured by Sanyo Chemical Industries, Ltd., and the ADEKA Pluronic L or F manufactured by Asahi Denka Kogyo Co., Ltd. Products such as series, Epan series manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Pronon series manufactured by NOF Corporation, and Unilube can be used.
  • the SP value of the nonionic surfactant may be 9.0 or more, preferably 9.1 or more, more preferably 9.2 or more, and preferably 12 or less, more preferably 11. Below, it is more preferably 10.5 or less. Within the above range, the effect tends to be better obtained.
  • the SP value means a solubility parameter (Solubility Parameter) calculated by the Hoy method based on the structure of the compound.
  • the Hoy method is, for example, K.K. L. Hoy "Table of Solubility Parameters", Solvent and Coatings Materials Research and Development Development, Union Carbites Corp. It is a calculation method described in (1985).
  • the content of the nonionic surfactant is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, and further preferably 1 part by mass or more with respect to 100 parts by mass of the rubber component. Further, it is preferably 4 parts by mass or less, more preferably 2 parts by mass or less. Within the above range, the flexibility of the bleed layer on the tread surface is improved, and the effect tends to be better obtained.
  • the rubber composition may contain a solid resin (a resin in a solid state at room temperature (25 ° C.)).
  • the solid resin is not particularly limited as long as it is widely used in the tire industry.
  • styrene resin, C5 resin, C9 resin, terpene resin, rosin resin, Kumaron inden resin, p. -T-Butylphenol acetylene resin, acrylic resin and the like can be mentioned. These may be used alone or in combination of two or more. Of these, styrene-based resins are preferable.
  • the styrene-based resin is a polymer containing a styrene-based monomer as a constituent monomer, and examples thereof include a polymer obtained by polymerizing a styrene-based monomer as a main component (50% by mass or more).
  • styrene-based monomers styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, A homopolymer obtained by independently polymerizing o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc.), a copolymer obtained by copolymerizing two or more styrene-based monomers, and a styrene-based monomer. And a copolymer with another monomer copolymerizable therewith.
  • Other monomers include acrylonitrile such as acrylonitrile and methacrylonitrile, unsaturated carboxylic acids such as acrylics and methacrylic acid, unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate, terpene compounds, and chloroprene.
  • Conjugate dienes such as butadiene isoprene, olefins such as 1-butene and 1-pentene; ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydride or acid anhydrides thereof; and the like can be exemplified. These may be used alone or in combination of two or more.
  • Styrene-based resins are ⁇ -methylstyrene-based resins ( ⁇ -methylstyrene homopolymers, copolymers of ⁇ -methylstyrene and styrene, etc.) and styrene-based resins because the effects tend to be better.
  • a copolymer of a monomer and a terpen compound is preferable.
  • the ⁇ -methylstyrene resin is more preferably a copolymer of ⁇ -methylstyrene and styrene.
  • Solid resin products include, for example, Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Toso Co., Ltd., Rutgers Chemicals Co., Ltd., BASF, Arizona Chemical Co., Ltd., and Nikko Chemical Co., Ltd. , Nippon Catalyst Co., Ltd., JXTG Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Co., Ltd., ExxonMobil Co., Ltd., CrayValley Co., Ltd. and the like can be used.
  • the softening point of the solid resin is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and preferably 160 ° C. or lower, more preferably 150 ° C. or lower. Within the above range, the effect tends to be better obtained.
  • the softening point is the temperature at which the sphere has fallen when the softening point defined in JIS K 6220-1: 2001 is measured by a ring-ball type softening point measuring device.
  • the content of the solid resin is preferably 1 part by mass or more, more preferably 2 parts by mass or more, still more preferably 3 parts by mass or more, and preferably 60 parts by mass or less, based on 100 parts by mass of the rubber component. It is more preferably 50 parts by mass or less, still more preferably 40 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain a liquid plasticizer (a plasticizer in a liquid state at room temperature (25 ° C.)).
  • the liquid plasticizer is not particularly limited as long as it is widely used in the tire industry, and examples thereof include oils, liquid resins, and liquid diene polymers. These may be used alone or in combination of two or more. Of these, oil and liquid resin are preferable.
  • oils examples include process oils, vegetable oils and fats, or mixtures thereof.
  • process oil examples include paraffin-based process oil, aroma-based process oil, naphthen-based process oil, mild extraction solvate (MES (mild extraction solutions)), and treated distillate aromatic extract (TDAE (treated distillate)).
  • MES millimetric extraction solutions
  • TDAE treated distillate aromatic extract
  • Vegetable oils and fats include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pineapple, tall oil, corn oil, rice oil, beni flower oil, sesame oil, Examples thereof include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, tung oil, and oleic acid-containing oil. These may be used alone or in combination of two or more. Of these, process oils are preferable, and aroma-based process oils are more preferable.
  • oils examples include Idemitsu Kosan Co., Ltd., Sankyo Yuka Kogyo Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Ltd., Toyokuni Seiyu Co., Ltd., Showa Shell Sekiyu Co., Ltd., Fuji Kosan Co., Ltd. And other products can be used.
  • liquid resin for example, a low molecular weight substance of the above-mentioned solid resin can be used. Of these, liquid Kumaron indene resin is preferable.
  • the liquid kumaron indene resin is a polymer containing kumaron and indene as constituent monomers, and examples thereof include a liquid polymer obtained by polymerizing these as main components (50% by mass or more).
  • the monomer component that may be contained in the skeleton other than kumaron and indene include styrene, ⁇ -methylstyrene, methylindene, vinyltoluene and the like.
  • liquid resin for example, products such as Rutgers Chemicals and CrayValley can be used.
  • the softening point of the liquid resin is preferably 1 ° C. or higher, more preferably 5 ° C. or higher, and preferably 40 ° C. or lower, more preferably 30 ° C. or lower. Within the above range, the effect tends to be better obtained.
  • the content of the liquid plasticizer is preferably 2 parts by mass or more, more preferably 3 parts by mass or more, and preferably 60 parts by mass or less, more preferably 50 parts by mass or less, based on 100 parts by mass of the rubber component. Is. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain an inorganic filler other than silica.
  • an inorganic filler other than silica.
  • the inorganic filler include aluminum hydroxide, alumina, zirconium oxide, magnesium sulfate, aluminum silicate, potassium carbonate, silicon carbide and the like. These may be used alone or in combination of two or more. Of these, aluminum hydroxide and magnesium sulfate are preferable, and aluminum hydroxide is more preferable.
  • N 2 SA Nitrogen adsorption specific surface area of aluminum hydroxide (N 2 SA) of preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, and preferably 60 m 2 / g or less, more preferably 50 m 2 / It is less than or equal to g. Within the above range, the effect tends to be better obtained.
  • the N 2 SA of aluminum hydroxide is a value measured by the BET method according to ASTM D3037-81.
  • the inorganic filler for example, products such as Nabaltec and Fujifilm Wako Pure Chemical Industries, Ltd. can be used.
  • the content of the inorganic filler (content of the inorganic filler other than silica) is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 50 parts by mass with respect to 100 parts by mass of the rubber component. Parts or less, more preferably 40 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain wax.
  • the wax is not particularly limited, and examples thereof include petroleum wax such as paraffin wax and microcrystalline wax; natural wax such as plant wax and animal wax; and synthetic wax such as a polymer such as ethylene and propylene. These may be used alone or in combination of two or more. Of these, petroleum wax is preferable, and paraffin wax is more preferable.
  • wax for example, products such as Ouchi Shinko Kagaku Kogyo Co., Ltd., Nippon Seiro Co., Ltd., and Seiko Kagaku Co., Ltd. can be used.
  • the content of the wax is preferably 0.7 parts by mass or more, more preferably 1.0 part by mass or more, and preferably 15 parts by mass or less, more preferably 10 parts by mass, based on 100 parts by mass of the rubber component. It is less than a part. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain an anti-aging agent.
  • the anti-aging agent include naphthylamine-based anti-aging agents such as phenyl- ⁇ -naphthylamine; diphenylamine-based anti-aging agents such as octylated diphenylamine and 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine; N. -Isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc.
  • P-Phenylenediamine-based anti-aging agent P-Phenylenediamine-based anti-aging agent; quinoline-based anti-aging agent such as a polymer of 2,2,4-trimethyl-1,2-dihydroquinolin; 2,6-di-t-butyl-4-methylphenol, Monophenolic anti-aging agents such as styrenated phenol; tetrakis- [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] bis, tris, polyphenolic aging such as methane Examples include preventive agents. These may be used alone or in combination of two or more. Of these, p-phenylenediamine-based anti-aging agents and quinoline-based anti-aging agents are preferable.
  • anti-aging agent for example, products of Seiko Chemical Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinko Chemical Industry Co., Ltd., Flexis Co., Ltd. and the like can be used.
  • the content of the anti-aging agent is preferably 1 part by mass or more, more preferably 2 parts by mass or more, still more preferably 3 parts by mass or more, and preferably 10 parts by mass or less with respect to 100 parts by mass of the rubber component. , More preferably 8 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain fatty acids, preferably stearic acid.
  • stearic acid conventionally known ones can be used, and for example, products such as NOF Corporation, NOF Corporation, Kao Corporation, Fujifilm Wako Pure Chemical Industries, Ltd., and Chiba Fatty Acid Co., Ltd. can be used.
  • the content of fatty acid (preferably stearic acid) is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and preferably 10 parts by mass or less, based on 100 parts by mass of the rubber component. It is preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain zinc oxide.
  • Conventionally known zinc oxide can be used.
  • products of Mitsui Metal Mining Co., Ltd., Toho Zinc Co., Ltd., HakusuiTech Co., Ltd., Shodo Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd., etc. Can be used.
  • the content of zinc oxide is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 10 parts by mass or less, based on 100 parts by mass of the rubber component. It is preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain sulfur.
  • sulfur examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur, which are generally used in the rubber industry. These may be used alone or in combination of two or more.
  • sulfur for example, products such as Tsurumi Chemical Industry Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Chemicals Corporation, Flexis Co., Ltd., Nippon Inui Kogyo Co., Ltd., Hosoi Chemical Industry Co., Ltd. can be used.
  • the sulfur content is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, and preferably 1.5 parts by mass or less, more preferably 1.5 parts by mass or more, based on 100 parts by mass of the rubber component. 1.1 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain a hybrid cross-linking agent.
  • a hybrid cross-linking agent for example, 1,3-bis (citraconimidemethyl) benzene, a compound represented by the following formula ( ⁇ ), or the like can be used. These may be used alone or in combination of two or more.
  • A represents an alkylene group having 2 to 10 carbon atoms
  • B 1 and B 2 represent monovalent organic groups containing a nitrogen atom, which are the same or different.
  • the alkylene group (carbon number 2 to 10) of A is not particularly limited, and examples thereof include a linear group, a branched group, and a cyclic group. Among them, a linear alkylene group is preferable. The number of carbon atoms is preferably 4 to 8. Specific examples of the alkylene group include an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, and a decamethylene group. Of these, a hexamethylene group is preferable.
  • Examples of the compound represented by the formula ( ⁇ ) include 1,2-bis (N, N'-dibenzylthiocarbamoyldithio) ethane and 1,3-bis (N, N'-dibenzylthiocarbamoyldithio).
  • hybrid cross-linking agent for example, a product such as LANXESS can be used.
  • the content of the hybrid cross-linking agent is preferably 0.5 parts by mass or more, more preferably 1.5 parts by mass or more, and preferably 4 parts by mass or less, more preferably more preferably, with respect to 100 parts by mass of the rubber component. It is 3 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the rubber composition may contain a vulcanization accelerator.
  • sulfide accelerator include thiazole-based sulfide-based sulfide accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and N-cyclohexyl-2-benzothiazyl sulfenamide; tetramethylthiuram disulfide (TMTD).
  • TMTD tetramethylthiuram disulfide
  • TzTD Tetrabenzyl thiuram disulfide
  • TOT-N tetrakis (2-ethylhexyl) thiuram disulfide
  • other thiuram-based sulfide accelerators N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl- 2-benzothiazolyl sulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N, N'-diisopropyl-2-benzothiazolesulfenamide, etc.
  • Sulfenamide-based sulfide accelerator such as diphenylguanidine, dioltotrilguanidine, orthotrilbiguanidine can be mentioned. These may be used alone or in combination of two or more. Of these, sulfenamide-based vulcanization accelerators, guanidine-based vulcanization accelerators, and thiuram-based vulcanization accelerators are preferable. Further, a thiuram-based vulcanization accelerator is more preferable because it functions as a scorch inhibitor for a mercapto-based silane coupling agent.
  • vulcanization accelerator for example, products manufactured by Kawaguchi Chemical Industry Co., Ltd., Ouchi Shinko Chemical Co., Ltd., Sanshin Chemical Industry Co., Ltd., etc. can be used.
  • the content of the vulcanization accelerator is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 10 parts by mass or less, more preferably 8 parts by mass with respect to 100 parts by mass of the rubber component. Hereinafter, it is more preferably 6 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • additives generally used in the tire industry such as organic peroxides, may be further added to the rubber composition.
  • the content of these additives is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition can be produced, for example, by kneading each of the components using a rubber kneading device such as an open roll or a Banbury mixer, and then vulcanizing if necessary.
  • a rubber kneading device such as an open roll or a Banbury mixer
  • the kneading temperature is usually 100 to 180 ° C., preferably 120 to 170 ° C.
  • the kneading temperature is usually 120 ° C. or lower, preferably 80 to 110 ° C.
  • the composition obtained by kneading the vulcanizing agent and the vulcanization accelerator is usually subjected to a vulcanization treatment such as press vulcanization.
  • the vulcanization temperature is usually 140 to 190 ° C., preferably 150 to 185 ° C. for passenger car tires, and usually 130 to 160 ° C., preferably 135 to 155 ° C. for truck and bus tires.
  • the vulcanization time is usually 5 to 15 minutes for passenger car tires and 25 to 60 minutes for truck and bus tires.
  • the rubber composition is used for tire treads.
  • a tread composed of a cap tread and a base tread it can be suitably used for a cap tread.
  • the tire of the present invention (pneumatic tire, etc.) is produced by a usual method using the above rubber composition. That is, the unvulcanized tire is produced by extruding the rubber composition according to the shape of the tread at the unvulcanized stage and molding the unvulcanized tire together with other tire members by a normal method on a tire molding machine. Form. A tire is obtained by heating and pressurizing this unvulcanized tire in a vulcanizer.
  • the tread of the tire may be composed of at least a part of the rubber composition, and may be entirely composed of the rubber composition.
  • the tire of the present invention is produced by a usual method using the above rubber composition. That is, the unvulcanized tire is produced by extruding the rubber composition according to the shape of the tread at the unvulcanized stage and molding the unvulcanized tire together with other tire members by a normal method on a tire molding machine. Form. A tire is obtained by heating and pressurizing this unvulcanized tire in a vulcanizer.
  • the above tires are passenger car tires; truck / bus tires; two-wheeled vehicle tires; high-performance tires; winter tires such as studless tires; run-flat tires having side reinforcing layers; sound absorbing members such as sponges.
  • ⁇ SBR1> N9548 E-SBR, oil spread (containing 37.5 parts by mass of oil with respect to 100 parts by mass of rubber solids), styrene amount: 35% by mass, vinyl amount: 18% by mass, Tg, manufactured by Nippon Zeon Corporation : -40 ° C, Mw: 1.09 million
  • ⁇ SBR2> NS612 S-SBR, non-oil-extended, styrene amount: 15% by mass, vinyl amount: 30% by mass, Tg: -65 ° C., Mw: 780,000) manufactured by Nippon Zeon Corporation.
  • BR Nd-based BR
  • Show Black N220 N 2 SA: 114m 2 / g manufactured by Cabot Japan Co., Ltd.
  • ⁇ Anti-aging agent 6PPD Lanxess Vulkanox 4020 (N-Phenyl-N'-(1,3-dimethylbutyl) -p-phenylenediamine)
  • TMQ Lanxess's Vulkanox HS (2,2,4-trimethyl-1,2-dihydroquinoline polymer)
  • Zinc oxide 2 types of zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd.
  • ⁇ Hybrid cross-linking agent > LANXESS Vulcuren VP KA9188 (1,6-bis (N, N'-dibenzylthiocarbamoyldithio) hexane)
  • ⁇ Guanidine-based vulcanization accelerator > Noxeller D (diphenylguanidine) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • Examples and comparative examples According to the formulation shown in Table 1, using a 1.7L Banbury mixer manufactured by Kobe Steel, Ltd., materials other than vulcanizing agents (sulfur, vulcanization accelerator, hybrid cross-linking agent) were used under the condition of 150 ° C. It was kneaded for 5 minutes to obtain a kneaded product. Next, a vulcanizing agent was added to the obtained kneaded product, and the mixture was kneaded under the condition of 80 ° C. for 5 minutes using an open roll to obtain an unvulcanized rubber composition.
  • a vulcanizing agent was added to the obtained kneaded product, and the mixture was kneaded under the condition of 80 ° C. for 5 minutes using an open roll to obtain an unvulcanized rubber composition.
  • the obtained unvulcanized rubber composition is formed into a tread shape and bonded together with other tire members to form an unvulcanized tire, which is press-vulcanized for 12 minutes under the condition of 170 ° C. to obtain a test tire (test tire). Size: 195 / 65R15) was manufactured. The following evaluations were performed using the obtained test tires, and the results are shown in Table 1.
  • a test piece cut out from the tread of each test tire is set in a Soxhlet extractor, and acetone is used under the conditions of test piece: 10 g or less, acetone: 150 ml, constant temperature bath temperature: 95 to 100 ° C., and extraction time: 24-72 hours. Extraction was performed. Then, the test piece after acetone extraction is placed in an oven and heated at 100 ° C. for 30 minutes to remove the solvent in the test piece, and then sulfur in the test piece is subjected to an oxygen combustion flask method based on JIS-K6233: 2016. The amount was calculated.
  • Each test tire is attached to all wheels of the vehicle (domestic FF2000cc), the groove depth of the tire tread after a mileage of 8000 km is measured, and the mileage when the tire groove depth is reduced by 1 mm is calculated and compared. It is expressed as an index when Example 1 is set to 100 (wear resistance index). The larger the index, the longer the mileage and the better the wear resistance. When the index was 110 or more, it was judged to be good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

The present invention provides a tire being capable of improved overall performance including wet grip performance and wear resistance. The present invention pertains to a tire comprising a tread composed of a rubber composition which contains a rubber component and a silane coupling agent, and which has at least 37 mass% of an ash content and at most 0.75 mass% of a sulfur content after acetone extraction.

Description

タイヤtire
本発明は、タイヤに関する。 The present invention relates to a tire.
シリカや軟化剤を多量に配合することで、ウェットグリップ性能が向上することが知られている(例えば、特許文献1参照)。しかしながら、この場合、ゴム組成物中のポリマー成分の割合が少なくなることで、引張抗力が低下し、耐摩耗性が低下する傾向がある。 It is known that the wet grip performance is improved by blending a large amount of silica or a softening agent (see, for example, Patent Document 1). However, in this case, as the proportion of the polymer component in the rubber composition decreases, the tensile drag tends to decrease and the wear resistance tends to decrease.
一方、シリカとともに配合するシランカップリング剤として、メルカプト系シランカップリング剤を使用することで、耐摩耗性が向上することが知られている(例えば、特許文献2参照)。 On the other hand, it is known that the wear resistance is improved by using a mercapto-based silane coupling agent as a silane coupling agent to be blended with silica (see, for example, Patent Document 2).
特許第6033786号公報Japanese Patent No. 6033786 特開2012-122015号公報Japanese Unexamined Patent Publication No. 2012-12205
しかしながら、ウェットグリップ性能向上のためにシリカや軟化剤を多量に配合すると、メルカプト系シランカップリング剤を使用しても、充分な耐摩耗性を確保できない場合があった。 However, when a large amount of silica or a softening agent is added to improve the wet grip performance, sufficient wear resistance may not be ensured even if a mercapto-based silane coupling agent is used.
本発明は、前記課題を解決し、ウェットグリップ性能及び耐摩耗性の総合性能を改善できるタイヤを提供することを目的とする。 An object of the present invention is to provide a tire capable of solving the above problems and improving the overall performance of wet grip performance and wear resistance.
本発明者らが前記課題を解決する手法について検討したところ、ゴム組成物中のシリカ、酸化亜鉛、水酸化アルミニウム、硫酸マグネシウム、加工助剤等に由来する成分である、灰分に着目した。そして、灰分量とウェットグリップ性能との相関性が高く、灰分の割合を高めることで、ウェットグリップ性能が向上する傾向があることを見出した。しかしながら、灰分の割合を高めると、ゴム組成物が硬くなり過ぎて、耐摩耗性が低下する場合があった。 When the present inventors examined a method for solving the above problems, they focused on ash, which is a component derived from silica, zinc oxide, aluminum hydroxide, magnesium sulfate, a processing aid, etc. in the rubber composition. Then, it was found that the correlation between the ash content and the wet grip performance is high, and the wet grip performance tends to be improved by increasing the ash content. However, when the proportion of ash is increased, the rubber composition may become too hard and the wear resistance may decrease.
そこで、本発明者らが更に検討を進めたところ、加硫後のゴム組成物のアセトン抽出後の硫黄量に着目した。ゴム組成物中に含まれる硫黄分の内、架橋に関与する硫黄分は、ポリマー、加硫促進剤や酸化亜鉛と結合しており、アセトン抽出では溶出しないと考えられるため、アセトン抽出後の硫黄量から、架橋に関与する硫黄量を推測することができる。 Therefore, as a result of further studies by the present inventors, attention was paid to the amount of sulfur in the rubber composition after vulcanization after extraction with acetone. Of the sulfur contained in the rubber composition, the sulfur involved in cross-linking is bound to the polymer, vulcanization accelerator and zinc oxide, and is considered not to be eluted by acetone extraction. Therefore, sulfur after acetone extraction From the amount, the amount of sulfur involved in cross-linking can be estimated.
そして、アセトン抽出後の硫黄量、すなわち、架橋に関与する硫黄分を少なくすることで、ポリマー鎖を架橋するポリスルフィド結合が少なくなり、使用中にゴム中に放出される硫黄原子量が少なくなる。その結果、ゴム組成物の経時硬化が生じにくくなり、灰分の割合を高めた場合であっても、良好な耐摩耗性を確保し、ウェットグリップ性能及び耐摩耗性の両立が可能となることを見出し、本発明に想到した。 By reducing the amount of sulfur after acetone extraction, that is, the sulfur content involved in cross-linking, the number of polysulfide bonds that crosslink the polymer chain is reduced, and the amount of sulfur atoms released into the rubber during use is reduced. As a result, the rubber composition is less likely to be cured over time, and even when the proportion of ash is increased, good wear resistance can be ensured, and both wet grip performance and wear resistance can be achieved at the same time. I came up with the headline and the present invention.
すなわち、本発明は、ゴム成分及びシランカップリング剤を含み、灰分量が37質量%以上、アセトン抽出後の硫黄量が0.75質量%以下であるゴム組成物で構成されたトレッドを備えるタイヤに関する。 That is, the present invention comprises a tire comprising a rubber component and a silane coupling agent, and having a tread composed of a rubber composition having an ash content of 37% by mass or more and a sulfur content after acetone extraction of 0.75% by mass or less. Regarding.
前記ゴム組成物において、前記硫黄量が0.65質量%以下であることが好ましい。 In the rubber composition, the amount of sulfur is preferably 0.65% by mass or less.
前記ゴム組成物において、前記ゴム成分100質量部に対するシリカの含有量が110質量部以上であることが好ましい。 In the rubber composition, the content of silica with respect to 100 parts by mass of the rubber component is preferably 110 parts by mass or more.
前記シランカップリング剤の硫黄含有量が10質量%以下であることが好ましい。 The sulfur content of the silane coupling agent is preferably 10% by mass or less.
前記ゴム組成物において、前記ゴム成分100質量部に対するカーボンブラックの含有量が10質量部以下であることが好ましい。 In the rubber composition, the content of carbon black with respect to 100 parts by mass of the rubber component is preferably 10 parts by mass or less.
前記ゴム組成物において、前記ゴム成分100質量部に対するアミド化合物又はSP値9.0以上の非イオン性界面活性剤の含有量が0.1質量部以上であることが好ましい。 In the rubber composition, the content of the amide compound or the nonionic surfactant having an SP value of 9.0 or more with respect to 100 parts by mass of the rubber component is preferably 0.1 part by mass or more.
前記ゴム組成物がチウラム系加硫促進剤を含むことが好ましい。 It is preferable that the rubber composition contains a thiuram-based vulcanization accelerator.
前記ゴム組成物が、水酸化アルミニウム、アルミナ、酸化ジルコニウム、硫酸マグネシウム、ケイ酸アルミニウム、炭酸カリウム及び炭化珪素からなる群より選択される少なくとも1種の無機フィラーを含むことが好ましい。 It is preferable that the rubber composition contains at least one inorganic filler selected from the group consisting of aluminum hydroxide, alumina, zirconium oxide, magnesium sulfate, aluminum silicate, potassium carbonate and silicon carbide.
前記ゴム組成物が固体樹脂を含むことが好ましい。 It is preferable that the rubber composition contains a solid resin.
本発明によれば、ゴム成分及びシランカップリング剤を含み、灰分量が37質量%以上、アセトン抽出後の硫黄量が0.75質量%以下であるゴム組成物で構成されたトレッドを備えるタイヤであるため、ウェットグリップ性能及び耐摩耗性の総合性能を改善できる。 According to the present invention, a tire comprising a tread containing a rubber component and a silane coupling agent and having a rubber composition having an ash content of 37% by mass or more and a sulfur content after acetone extraction of 0.75% by mass or less. Therefore, the overall performance of wet grip performance and wear resistance can be improved.
本発明のタイヤは、ゴム成分及びシランカップリング剤を含み、灰分量が37質量%以上、アセトン抽出後の硫黄量が0.75質量%以下であるゴム組成物で構成されたトレッドを備える。 The tire of the present invention includes a tread containing a rubber component and a silane coupling agent, and is composed of a rubber composition having an ash content of 37% by mass or more and a sulfur content after acetone extraction of 0.75% by mass or less.
上記ゴム組成物は、ゴム成分及びシランカップリング剤を含有し、かつ灰分量が所定量以上であるため、優れたウェットグリップ性能が得られる。また、上述のとおり、灰分の割合が高くなると、耐摩耗性が低下する場合があるが、上記ゴム組成物は、アセトン抽出後の硫黄量が所定量以下であるため、ゴム組成物の経時硬化が生じにくく、優れた耐摩耗性が得られる。これらの作用により、ウェットグリップ性能及び耐摩耗性の総合性能が改善されると推察される。 Since the rubber composition contains a rubber component and a silane coupling agent and has an ash content of a predetermined amount or more, excellent wet grip performance can be obtained. Further, as described above, when the proportion of ash is high, the wear resistance may decrease. However, since the amount of sulfur in the rubber composition after extraction with acetone is less than a predetermined amount, the rubber composition is cured over time. Is less likely to occur, and excellent wear resistance can be obtained. It is presumed that these actions improve the overall performance of wet grip performance and wear resistance.
上記ゴム組成物において、灰分量は、37質量%以上であればよいが、好ましくは38質量%以上、より好ましくは39質量%以上であり、また、好ましくは55質量%以下、より好ましくは50質量%以下、更に好ましくは44質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 In the rubber composition, the ash content may be 37% by mass or more, preferably 38% by mass or more, more preferably 39% by mass or more, and preferably 55% by mass or less, more preferably 50% by mass. It is mass% or less, more preferably 44 mass% or less. Within the above range, the effect tends to be better obtained.
なお、上述のとおり、灰分は、ゴム組成物中のシリカ、酸化亜鉛、水酸化アルミニウム、硫酸マグネシウム、加工助剤等に由来する成分であり、これらの配合量から、灰分量を調整できる。
また、灰分量は、後述の実施例に記載の方法で測定できる。
As described above, the ash content is a component derived from silica, zinc oxide, aluminum hydroxide, magnesium sulfate, a processing aid, etc. in the rubber composition, and the ash content can be adjusted from the blending amount of these components.
In addition, the amount of ash can be measured by the method described in Examples described later.
上記ゴム組成物において、アセトン抽出後の硫黄量は、0.75質量%以下であればよいが、好ましくは0.65質量%以下であり、また、好ましくは0.45質量%以上、より好ましくは0.55質量%以上、更に好ましくは0.60質量%以上である。上記範囲内であると、ウェットグリップ性能及び耐摩耗性の両立、並びに、トレッドと隣接ゴムとの加硫接着が良好に得られる傾向がある。 In the above rubber composition, the amount of sulfur after acetone extraction may be 0.75% by mass or less, preferably 0.65% by mass or less, and more preferably 0.45% by mass or more. Is 0.55% by mass or more, more preferably 0.60% by mass or more. Within the above range, both wet grip performance and wear resistance tend to be obtained, and vulcanization adhesion between the tread and the adjacent rubber tends to be satisfactorily obtained.
なお、上述のとおり、アセトン抽出後の硫黄量は、架橋に関与する硫黄分、すなわち、粉末硫黄、ハイブリッド架橋剤、加硫促進剤、シランカップリング剤等に含まれる硫黄分に由来すると考えられ、これらの配合量から、アセトン抽出後の硫黄量を調整できる。プロセスオイルや樹脂等に含まれる硫黄分は、架橋に関与せず、アセトン抽出によって除去されると考えられる。
また、アセトン抽出後の硫黄量は、後述の実施例に記載の方法で測定できる。
As described above, the amount of sulfur after acetone extraction is considered to be derived from the sulfur content involved in cross-linking, that is, the sulfur content contained in powdered sulfur, hybrid cross-linking agent, vulcanization accelerator, silane coupling agent, and the like. , The amount of sulfur after acetone extraction can be adjusted from these blending amounts. Sulfur contained in process oil, resin, etc. is considered to be removed by acetone extraction without participating in cross-linking.
In addition, the amount of sulfur after acetone extraction can be measured by the method described in Examples described later.
上記ゴム組成物に使用できるゴム成分としては、例えば、イソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)等のジエン系ゴムが挙げられる。ゴム成分は、単独で用いてもよく、2種以上を併用してもよい。なかでも、SBR、BR、イソプレン系ゴムが好ましく、SBR、BRがより好ましい。 Examples of the rubber component that can be used in the rubber composition include isoprene-based rubber, butadiene rubber (BR), styrene-butadiene rubber (SBR), styrene-isoprene-butadiene rubber (SIBR), acrylonitrile-butadiene rubber (NBR), and chloroprene rubber (CR). ), Diene rubber such as butyl rubber (IIR). The rubber component may be used alone or in combination of two or more. Of these, SBR, BR, and isoprene-based rubber are preferable, and SBR and BR are more preferable.
ここで、ゴム成分は、重量平均分子量(Mw)が、好ましくは15万以上、より好ましくは35万以上のポリマーである。Mwの上限は特に限定されないが、好ましくは400万以下、より好ましくは300万以下である。 Here, the rubber component is a polymer having a weight average molecular weight (Mw) of preferably 150,000 or more, more preferably 350,000 or more. The upper limit of Mw is not particularly limited, but is preferably 4 million or less, more preferably 3 million or less.
SBRとしては特に限定されず、例えば、乳化重合SBR(E-SBR)、溶液重合SBR(S-SBR)等、タイヤ工業において一般的なものを使用できる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The SBR is not particularly limited, and for example, emulsion polymerization SBR (E-SBR), solution polymerization SBR (S-SBR), and the like, which are common in the tire industry, can be used. These may be used alone or in combination of two or more.
SBRのスチレン量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、また、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは35質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The amount of styrene in SBR is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably. Is 35% by mass or less. Within the above range, the effect tends to be better obtained.
SBRのビニル含量は、好ましくは10質量%以上、より好ましくは15質量%以上であり、また、好ましくは50質量%以下、より好ましくは40質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The vinyl content of SBR is preferably 10% by mass or more, more preferably 15% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less. Within the above range, the effect tends to be better obtained.
SBRは、非変性SBRでもよいし、変性SBRでもよい。
変性SBRとしては、シリカ等の充填剤と相互作用する官能基を有するSBRであればよく、例えば、SBRの少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性SBR(末端に上記官能基を有する末端変性SBR)や、主鎖に上記官能基を有する主鎖変性SBRや、主鎖及び末端に上記官能基を有する主鎖末端変性SBR(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性SBR)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性SBR等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The SBR may be a non-modified SBR or a modified SBR.
The modified SBR may be any SBR having a functional group that interacts with a filler such as silica. For example, at least one end of the SBR is modified with a compound having the above functional group (modifying agent). SBR (terminal modified SBR having the above functional group at the end), main chain modified SBR having the above functional group in the main chain, and main chain terminal modified SBR having the above functional group in the main chain and the end (for example, in the main chain) Main chain terminal modified SBR having the above functional group and having at least one end modified with the above modifying agent) or a polyfunctional compound having two or more epoxy groups in the molecule, which is modified (coupling) with a hydroxyl group. And terminally modified SBR into which an epoxy group has been introduced. These may be used alone or in combination of two or more.
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1~6のアルキル基に置換されたアミノ基)、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)、アミド基が好ましい。 Examples of the functional group include an amino group, an amide group, a silyl group, an alkoxysilyl group, an isocyanate group, an imino group, an imidazole group, a urea group, an ether group, a carbonyl group, an oxycarbonyl group, a mercapto group, a sulfide group and a disulfide. Examples thereof include a group, a sulfonyl group, a sulfinyl group, a thiocarbonyl group, an ammonium group, an imide group, a hydrazo group, an azo group, a diazo group, a carboxyl group, a nitrile group, a pyridyl group, an alkoxy group, a hydroxyl group, an oxy group and an epoxy group. .. In addition, these functional groups may have a substituent. Among them, an amino group (preferably an amino group in which the hydrogen atom of the amino group is replaced with an alkyl group having 1 to 6 carbon atoms), an alkoxy group (preferably an alkoxy group having 1 to 6 carbon atoms), and an alkoxysilyl group (preferably an alkoxy group having 1 to 6 carbon atoms). An alkoxysilyl group having 1 to 6 carbon atoms) and an amide group are preferable.
SBRとしては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。 As the SBR, for example, products such as Sumitomo Chemical Co., Ltd., JSR Corporation, Asahi Kasei Co., Ltd., and Zeon Corporation can be used.
ゴム成分100質量%中のSBRの含有量は、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは70質量%以上であり、また、好ましくは95質量%以下、より好ましくは90質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of SBR in 100% by mass of the rubber component is preferably 40% by mass or more, more preferably 50% by mass or more, further preferably 70% by mass or more, and preferably 95% by mass or less, more preferably 95% by mass or less. It is 90% by mass or less. Within the above range, the effect tends to be better obtained.
BRとしては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、高シス含量のBR、1,2-シンジオタクチックポリブタジエン結晶を含有するBR(SPB含有BR)、希土類元素系触媒を用いて合成されたブタジエンゴム(希土類系BR)、スズ化合物により変性されたスズ変性ブタジエンゴム(スズ変性BR)等、タイヤ工業において一般的なものが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、良好なウェットグリップ性能を維持しながら、耐摩耗性を更に向上させることができるという理由から、希土類系BRが好ましい。 The BR is not particularly limited, and a BR commonly used in the tire industry can be used. For example, BR having a high cis content, BR containing 1,2-syndiotactic polybutadiene crystals (SPB-containing BR), butadiene rubber synthesized using a rare earth element catalyst (rare earth BR), and modified with a tin compound. Examples thereof include those commonly used in the tire industry, such as tin-modified butadiene rubber (tin-modified BR). These may be used alone or in combination of two or more. Of these, rare earth-based BRs are preferable because they can further improve wear resistance while maintaining good wet grip performance.
希土類系BRは希土類元素系触媒を用いて合成されたブタジエンゴムであり、シス含量が高く、かつビニル含量が低いという特徴を有している。希土類系BRとしては、タイヤ製造における汎用品を使用できる。 Rare earth-based BR is a butadiene rubber synthesized by using a rare earth element-based catalyst, and has a feature of high cis content and low vinyl content. As the rare earth BR, a general-purpose product in tire manufacturing can be used.
上記希土類元素系触媒としては、公知のものを使用でき、例えば、ランタン系列希土類元素化合物、有機アルミニウム化合物、アルミノキサン、ハロゲン含有化合物、必要に応じてルイス塩基を含む触媒が挙げられる。なかでも、ランタン系列希土類元素化合物としてネオジム(Nd)含有化合物を用いたNd系触媒が好ましい。 As the rare earth element-based catalyst, known catalysts can be used, and examples thereof include lanthanum series rare earth element compounds, organoaluminum compounds, aluminoxanes, halogen-containing compounds, and catalysts containing a Lewis base, if necessary. Of these, an Nd-based catalyst using a neodymium (Nd) -containing compound as the lanthanum-series rare earth element compound is preferable.
BRのシス含量は、好ましくは90質量%以上、より好ましくは93質量%以上、更に好ましくは95質量%以上であり、上限は特に限定されない。上記範囲内であると、効果がより良好に得られる傾向がある。 The cis content of BR is preferably 90% by mass or more, more preferably 93% by mass or more, still more preferably 95% by mass or more, and the upper limit is not particularly limited. Within the above range, the effect tends to be better obtained.
BRのビニル含量は、好ましくは1.8質量%以下、より好ましくは1.0質量%以下、更に好ましくは0.5質量%以下、特に好ましくは0.3質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The vinyl content of BR is preferably 1.8% by mass or less, more preferably 1.0% by mass or less, still more preferably 0.5% by mass or less, and particularly preferably 0.3% by mass or less. Within the above range, the effect tends to be better obtained.
BRは、非変性BR、変性BRのいずれでもよい。
変性BRとしては、前述の官能基が導入された変性BRが挙げられる。好ましい態様は変性SBRの場合と同様である。
The BR may be either a non-modified BR or a modified BR.
Examples of the modified BR include modified BRs into which the above-mentioned functional groups have been introduced. The preferred embodiment is the same as for the modified SBR.
BRとしては、例えば、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。 As the BR, for example, products such as Ube Industries, Ltd., JSR Corporation, Asahi Kasei Corporation, and ZEON Corporation can be used.
ゴム成分100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上であり、また、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは30質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably. It is 30% by mass or less. Within the above range, the effect tends to be better obtained.
ゴム成分100質量%中のSBR及びBRの合計含有量は、好ましくは30質量%以上、より好ましくは50質量%以上、更に好ましくは70質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。上記範囲内であると、効果がより良好に得られる傾向がある。 The total content of SBR and BR in 100% by mass of the rubber component is preferably 30% by mass or more, more preferably 50% by mass or more, further preferably 70% by mass or more, and particularly preferably 90% by mass or more, 100% by mass. It may be% by mass. Within the above range, the effect tends to be better obtained.
イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質NRとしては、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等、が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、天然ゴムが好ましい。 Examples of the isoprene rubber include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, modified IR and the like. As the NR, for example, SIR20, RSS # 3, TSR20 and the like, which are common in the tire industry, can be used. The IR is not particularly limited, and for example, an IR 2200 or the like that is common in the tire industry can be used. Modified NR includes deproteinized natural rubber (DPNR), high-purity natural rubber (UPNR), etc., and modified NR includes epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc. Examples of the modified IR include epoxidized isoprene rubber, hydrogenated isoprene rubber, grafted isoprene rubber and the like. These may be used alone or in combination of two or more. Of these, natural rubber is preferable.
なお、本明細書において、重量平均分子量(Mw)、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
また、シス含量(シス-1,4-結合ブタジエン単位量)、ビニル含量(1,2-結合ブタジエン単位量)は、赤外吸収スペクトル分析法によって測定でき、スチレン量は、H-NMR測定によって測定できる。
In the present specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are gel permeation chromatographs (GPC) (GPC-8000 series manufactured by Toso Co., Ltd., detector: differential refractometer, column: It can be obtained by standard polystyrene conversion based on the measured value by TSKGEL SUPERMULTIPORE HZ-M manufactured by Toso Co., Ltd.
The cis content (cis-1,4-bonded butadiene unit amount) and vinyl content (1,2-bonded butadiene unit amount) can be measured by infrared absorption spectrum analysis, and the amount of styrene is measured by 1 H-NMR. Can be measured by.
上記ゴム組成物は、補強性充填剤として、シリカを含有することが好ましい。
シリカとしては、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The rubber composition preferably contains silica as a reinforcing filler.
Examples of silica include dry silica (silicic anhydride) and wet silica (hydrous silicic acid), but wet silica is preferable because it contains a large amount of silanol groups. These may be used alone or in combination of two or more.
シリカの窒素吸着比表面積(NSA)は、好ましくは60m/g以上、より好ましくは150m/g以上、更に好ましくは220m/g以上であり、また、好ましくは320m/g以下、より好ましくは280m/g以下である。上記範囲内であると、効果がより良好に得られる傾向がある。特に、NSAが220m/g以上のシリカを使用することで、良好なウェットグリップ性能を維持しながら、耐摩耗性を更に向上させることができる。
なお、シリカの窒素吸着比表面積は、ASTM D3037-81に準じてBET法で測定される値である。
Nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 60 m 2 / g or more, more preferably 150 meters 2 / g or more, further preferably 220 m 2 / g or more, and preferably not more than 320 m 2 / g , More preferably 280 m 2 / g or less. Within the above range, the effect tends to be better obtained. In particular, by using silica having an N 2 SA of 220 m 2 / g or more, wear resistance can be further improved while maintaining good wet grip performance.
The nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.
シリカとしては、例えば、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。 As the silica, for example, products such as Degussa, Rhodia, Tosoh Silica Co., Ltd., Solvay Japan Co., Ltd., Tokuyama Corporation can be used.
シリカの含有量は、ゴム成分100質量部に対して、好ましくは90質量部以上、より好ましくは110質量部以上、更に好ましくは130質量部以上であり、また、好ましくは200質量部以下、より好ましくは180質量部以下、更に好ましくは160質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of silica is preferably 90 parts by mass or more, more preferably 110 parts by mass or more, further preferably 130 parts by mass or more, and preferably 200 parts by mass or less, based on 100 parts by mass of the rubber component. It is preferably 180 parts by mass or less, and more preferably 160 parts by mass or less. Within the above range, the effect tends to be better obtained.
補強性充填剤100質量%中のシリカの含有量は、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上、特に好ましくは80質量%以上である。上限は特に限定されず、100質量%であってもよいが、好ましくは98質量%以下である。 The content of silica in 100% by mass of the reinforcing filler is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and particularly preferably 80% by mass or more. The upper limit is not particularly limited and may be 100% by mass, but is preferably 98% by mass or less.
上記ゴム組成物は、シランカップリング剤を含有する。
シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド等のスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン等のメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン等のアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシラン等のニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン等のクロロ系等があげられる。市販されているものとしては、例えば、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
The rubber composition contains a silane coupling agent.
The silane coupling agent is not particularly limited, and for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4-triethoxysilylbutyl) tetrasulfide, Bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (2-triethoxysilylethyl) trisulfide, bis (4-trimethoxysilylbutyl) trisulfide, bis ( 3-Triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (4-triethoxysilylbutyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (2-trimethoxysilylethyl) ) Disulfide, bis (4-trimethoxysilylbutyl) disulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyltetrasulfide, 3- Sulfates such as triethoxysilylpropylmethacrylate monosulfide, mercaptos such as 3-mercaptopropyltrimethoxysilane and 2-mercaptoethyltriethoxysilane, vinyls such as vinyltriethoxysilane and vinyltrimethoxysilane, 3-aminopropyl Amino series such as triethoxysilane and 3-aminopropyltrimethoxysilane, glycidoxy series such as γ-glycidoxypropyltriethoxysilane and γ-glycidoxypropyltrimethoxysilane, 3-nitropropyltrimethoxysilane, 3- Examples thereof include nitro type such as nitropropyltriethoxysilane and chloro type such as 3-chloropropyltrimethoxysilane and 3-chloropropyltriethoxysilane. As commercially available products, for example, products such as Degussa, Momentive, Shin-Etsu Silicone Co., Ltd., Tokyo Chemical Industry Co., Ltd., Azumax Co., Ltd., and Toray Dow Corning Co., Ltd. can be used. These may be used alone or in combination of two or more.
シランカップリング剤としては、硫黄含有量が10質量%以下(好ましくは5質量%以下)のシランカップリング剤を好適に使用できる。上述のシランカップリング剤の内、スルフィド系以外は、通常、硫黄含有量が10質量%以下である。硫黄含有量の下限は特に限定されないが、好ましくは1質量%以上、より好ましくは2質量%以上である。
なお、シランカップリング剤の硫黄含有量は、後述の実施例に記載の「アセトン抽出後の硫黄量」と同様の方法で測定できる。
As the silane coupling agent, a silane coupling agent having a sulfur content of 10% by mass or less (preferably 5% by mass or less) can be preferably used. Among the above-mentioned silane coupling agents, except for sulfide type, the sulfur content is usually 10% by mass or less. The lower limit of the sulfur content is not particularly limited, but is preferably 1% by mass or more, more preferably 2% by mass or more.
The sulfur content of the silane coupling agent can be measured by the same method as the "sulfur content after acetone extraction" described in Examples described later.
硫黄含有量が10質量%以下のシランカップリング剤としては、下記式(I)で示される結合単位Aと下記式(II)で示される結合単位Bとを含むシランカップリング剤を好適に使用できる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
(式中、vは0以上の整数、wは1以上の整数である。R11は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを示す。R12は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を示す。R11とR12とで環構造を形成してもよい。)
As the silane coupling agent having a sulfur content of 10% by mass or less, a silane coupling agent containing a binding unit A represented by the following formula (I) and a binding unit B represented by the following formula (II) is preferably used. it can.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
(In the formula, v is an integer of 0 or more, w is an integer of 1 or more. R 11 is hydrogen, halogen, an alkyl group having 1 to 30 branched or unbranched carbon atoms, and 2 to 2 branched or unbranched carbon atoms. 30 alkenyl groups, branched or unbranched alkynyl groups having 2 to 30 carbon atoms, or hydrogens at the ends of the alkyl groups substituted with hydroxyl groups or carboxyl groups. R 12 has branched or unbranched carbon atoms. It represents 1 to 30 alkylene groups, branched or non-branched alkenylene groups having 2 to 30 carbon atoms, or branched or non-branched alkynylene groups having 2 to 30 carbon atoms. A ring structure is formed by R 11 and R 12. May be.)
式(I)で示される結合単位Aと式(II)で示される結合単位Bとを含むシランカップリング剤において、結合単位Aの含有量は、好ましくは30モル%以上、より好ましくは50モル%以上であり、好ましくは99モル%以下、より好ましくは90モル%以下である。また、結合単位Bの含有量は、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは10モル%以上であり、好ましくは70モル%以下、より好ましくは65モル%以下、更に好ましくは55モル%以下である。また、結合単位A及びBの合計含有量は、好ましくは95モル%以上、より好ましくは98モル%以上、更に好ましくは100モル%である。
なお、結合単位A、Bの含有量は、結合単位A、Bがシランカップリング剤の末端に位置する場合も含む量である。結合単位A、Bがシランカップリング剤の末端に位置する場合の形態は特に限定されず、結合単位A、Bを示す式(I)、(II)と対応するユニットを形成していればよい。
In the silane coupling agent containing the binding unit A represented by the formula (I) and the binding unit B represented by the formula (II), the content of the binding unit A is preferably 30 mol% or more, more preferably 50 mol. % Or more, preferably 99 mol% or less, more preferably 90 mol% or less. The content of the binding unit B is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 10 mol% or more, preferably 70 mol% or less, more preferably 65 mol% or less. More preferably, it is 55 mol% or less. The total content of the binding units A and B is preferably 95 mol% or more, more preferably 98 mol% or more, and further preferably 100 mol%.
The content of the binding units A and B is an amount including the case where the binding units A and B are located at the ends of the silane coupling agent. The form in which the binding units A and B are located at the ends of the silane coupling agent is not particularly limited, and a unit corresponding to the formulas (I) and (II) representing the binding units A and B may be formed. ..
式(I)、(II)におけるR11について、ハロゲンとしては、塩素、臭素、フッ素等があげられる。分岐若しくは非分岐の炭素数1~30のアルキル基としては、メチル基、エチル基等があげられる。分岐若しくは非分岐の炭素数2~30のアルケニル基としては、ビニル基、1-プロペニル基等があげられる。分岐若しくは非分岐の炭素数2~30のアルキニル基としては、エチニル基、プロピニル基等があげられる。 Regarding R 11 in the formulas (I) and (II), examples of the halogen include chlorine, bromine and fluorine. Examples of the branched or non-branched alkyl group having 1 to 30 carbon atoms include a methyl group and an ethyl group. Examples of the branched or non-branched alkenyl group having 2 to 30 carbon atoms include a vinyl group and a 1-propenyl group. Examples of the branched or non-branched alkynyl group having 2 to 30 carbon atoms include an ethynyl group and a propynyl group.
式(I)、(II)におけるR12について、分岐若しくは非分岐の炭素数1~30のアルキレン基としては、エチレン基、プロピレン基等があげられる。分岐若しくは非分岐の炭素数2~30のアルケニレン基としては、ビニレン基、1-プロペニレン基等があげられる。分岐若しくは非分岐の炭素数2~30のアルキニレン基としては、エチニレン基、プロピニレン基等があげられる。 Formula (I), the R 12 in (II), Examples of the branched or unbranched alkylene group having 1 to 30 carbon atoms, an ethylene group, a propylene group, and the like. Examples of the branched or non-branched alkenylene group having 2 to 30 carbon atoms include a vinylene group and a 1-propenylene group. Examples of the branched or non-branched alkynylene group having 2 to 30 carbon atoms include an ethynylene group and a propynylene group.
式(I)で示される結合単位Aと式(II)で示される結合単位Bとを含むシランカップリング剤において、結合単位Aの繰り返し数(v)と結合単位Bの繰り返し数(w)の合計の繰り返し数(v+w)は、3~300の範囲が好ましい。 In a silane coupling agent containing the binding unit A represented by the formula (I) and the binding unit B represented by the formula (II), the number of repetitions (v) of the binding unit A and the number of repetitions (w) of the binding unit B The total number of repetitions (v + w) is preferably in the range of 3 to 300.
硫黄含有量が10質量%以下のシランカップリング剤としては、下記式(S1)で表わされるシランカップリング剤も好適に使用できる。
Figure JPOXMLDOC01-appb-C000003
(式中、R101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(d個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。d個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。dは1~30の整数を表す。)で表される基を表す。R101~R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す。)
As the silane coupling agent having a sulfur content of 10% by mass or less, a silane coupling agent represented by the following formula (S1) can also be preferably used.
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 101 to R 103 are branched or non-branched alkyl groups having 1 to 12 carbon atoms, branched or non-branched alkoxy groups having 1 to 12 carbon atoms, or —O— (R 111 −O) d. -R 112 (d R 111s represent branched or non-branched divalent hydrocarbon groups having 1 to 30 carbon atoms. The d R 111s may be the same or different, respectively. R 112 may be the same or different. It represents a branched or non-branched alkyl group having 1 to 30 carbon atoms, a branched or non-branched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. Represents a group represented by (1 to 30). R 101 to R 103 may be the same or different, respectively. R 104 is a branched or non-branched alkylene group having 1 to 6 carbon atoms. Represents.)
101~R103は、分岐若しくは非分岐の炭素数1~12(好ましくは炭素数1~5)のアルキル基、分岐若しくは非分岐の炭素数1~12(好ましくは炭素数1~5)のアルコキシ基、又は-O-(R111-O)-R112で表される基を表す。効果が良好に得られるという点から、R101~R103は、少なくとも1つが-O-(R111-O)-R112で表される基であることが好ましく、2つが-O-(R111-O)-R112で表される基であり、かつ、1つが分岐若しくは非分岐の炭素数1~12のアルコキシ基であることがより好ましい。 R 101 to R 103 are branched or non-branched alkyl groups having 1 to 12 carbon atoms (preferably 1 to 5 carbon atoms), and branched or non-branched alkyl groups having 1 to 12 carbon atoms (preferably 1 to 5 carbon atoms). Represents an alkoxy group or a group represented by —O— (R 111− O) d— R 112 . From the viewpoint that a good effect can be obtained, it is preferable that at least one of R 101 to R 103 is a group represented by -O- (R 111- O) d- R 112 , and two are -O- (. R 111- O) It is more preferable that the group is represented by d- R 112 and one is a branched or non-branched alkoxy group having 1 to 12 carbon atoms.
101~R103の-O-(R111-O)-R112において、R111は、分岐若しくは非分岐の炭素数1~30(好ましくは炭素数1~15、より好ましくは炭素数1~3)の2価の炭化水素基を表す。該炭化水素基としては、例えば、アルキレン基、アルケニレン基、アリーレン基等が挙げられる。なかでも、アルキレン基が好ましい。
dは1~30(好ましくは2以上、より好ましくは3以上、更に好ましくは5以上であり、好ましくは20以下、より好ましくは7以下、更に好ましくは6以下)の整数を表す。
112は、分岐若しくは非分岐の炭素数1~30(好ましくは炭素数1~15、より好ましくは炭素数1~3)の1価の炭化水素基を表す。該炭化水素基としては、例えば、アルキル基、アルケニレン基、アリール基、アラルキル基等が挙げられる。なかでも、アルキル基が好ましい。
In -O- (R 111- O) d- R 112 of R 101 to R 103 , R 111 has 1 to 30 branched or non-branched carbon atoms (preferably 1 to 15 carbon atoms, more preferably 1 carbon atom). Represents the divalent hydrocarbon group of 3). Examples of the hydrocarbon group include an alkylene group, an alkenylene group, an arylene group and the like. Of these, an alkylene group is preferable.
d represents an integer of 1 to 30 (preferably 2 or more, more preferably 3 or more, still more preferably 5 or more, preferably 20 or less, more preferably 7 or less, still more preferably 6 or less).
R 112 represents a branched or non-branched monovalent hydrocarbon group having 1 to 30 carbon atoms (preferably 1 to 15 carbon atoms, more preferably 1 to 3 carbon atoms). Examples of the hydrocarbon group include an alkyl group, an alkenylene group, an aryl group, an aralkyl group and the like. Of these, an alkyl group is preferable.
-O-(R111-O)-R112で表される基の具体例としては、例えば、-O-(C-O)-C1123、-O-(C-O)-C1225、-O-(C-O)-C1327、-O-(C-O)-C1429、-O-(C-O)-C1531、-O-(C-O)-C1327、-O-(C-O)-C1327、-O-(C-O)-C1327、-O-(C-O)-C1327等が挙げられる。なかでも、-O-(C-O)-C1123、-O-(C-O)-C1327、-O-(C-O)-C1531、-O-(C-O)-C1327が好ましい。 Specific examples of the group represented by -O- (R 111- O) d- R 112 include, for example, -O- (C 2 H 4- O) 5- C 11 H 23 , -O- (C 2). H 4- O) 5- C 12 H 25 , -O- (C 2 H 4- O) 5- C 13 H 27 , -O- (C 2 H 4- O) 5- C 14 H 29 , -O -(C 2 H 4- O) 5- C 15 H 31 , -O- (C 2 H 4- O) 3- C 13 H 27 , -O- (C 2 H 4- O) 4- C 13 H 27 , -O- (C 2 H 4- O) 6- C 13 H 27 , -O- (C 2 H 4- O) 7- C 13 H 27 and the like can be mentioned. Among them, -O- (C 2 H 4- O) 5- C 11 H 23 , -O- (C 2 H 4- O) 5- C 13 H 27 , -O- (C 2 H 4- O) 5- C 15 H 31 , -O- (C 2 H 4- O) 6- C 13 H 27 are preferable.
104の分岐若しくは非分岐の炭素数1~6(好ましくは炭素数1~5)のアルキレン基については、R111と同様である。 The branched or non-branched alkylene group of R 104 having 1 to 6 carbon atoms (preferably 1 to 5 carbon atoms) is the same as that of R 111 .
式(I)で表されるメルカプト系シランカップリング剤としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシランや、下記式で表される化合物(エボニック社製のSi363)等が挙げられる。これらは、単独で用いても、2種以上を併用してもよい。なかでも、下記式で表される化合物を好適に使用できる。
Figure JPOXMLDOC01-appb-C000004
Examples of the mercapto-based silane coupling agent represented by the formula (I) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, and 2-mercaptoethyltriethoxysilane. Examples thereof include a compound represented by the following formula (Si363 manufactured by Ebonic). These may be used alone or in combination of two or more. Among them, the compound represented by the following formula can be preferably used.
Figure JPOXMLDOC01-appb-C000004
硫黄含有量が10質量%以下のシランカップリング剤としては、下記式(S2)で表わされるシランカップリング剤も好適に使用できる。
Figure JPOXMLDOC01-appb-C000005
(式中、R1001は-Cl、-Br、-OR1006、-O(O=)CR1006、-ON=CR10061007、-NR10061007及び-(OSiR10061007(OSiR100610071008)から選択される一価の基(R1006、R1007及びR1008は同一でも異なっていても良く、各々水素原子又は炭素数1~18の一価の炭化水素基であり、hは平均値が1~4である。)であり、R1002はR1001、水素原子又は炭素数1~18の一価の炭化水素基、R1003は-[O(R1009O)]-基(R1009は炭素数1~18のアルキレン基、jは1~4の整数である。)、R1004は炭素数1~18の二価の炭化水素基、R1005は炭素数1~18の一価の炭化水素基を示し、x、y及びzは、x+y+2z=3、0≦x≦3、0≦y≦2、0≦z≦1の関係を満たす数である。)
As the silane coupling agent having a sulfur content of 10% by mass or less, a silane coupling agent represented by the following formula (S2) can also be preferably used.
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 1001 is -Cl, -Br, -OR 1006 , -O (O =) CR 1006 , -ON = CR 1006 R 1007 , -NR 1006 R 1007 and-(OSiR 1006 R 1007 ) h (OSiR 1006 R 1007 R 1008) a monovalent group selected from (R 1006, R 1007 and R 1008 may be the same or different, be each a hydrogen atom or a monovalent hydrocarbon group having 1 to 18 carbon atoms , H has an average value of 1 to 4), R 1002 is R 1001 , a hydrogen atom or a monovalent hydrocarbon group having 1 to 18 carbon atoms, and R 1003 is- [O (R 1009 O) j. ] -Group (R 1009 is an alkylene group having 1 to 18 carbon atoms, j is an integer of 1 to 4), R 1004 is a divalent hydrocarbon group having 1 to 18 carbon atoms, and R 1005 is 1 carbon atom. It represents a monovalent hydrocarbon group of to 18, and x, y and z are numbers that satisfy the relationship of x + y + 2z = 3, 0 ≦ x ≦ 3, 0 ≦ y ≦ 2, 0 ≦ z ≦ 1).
式(S2)において、R1005、R1006、R1007及びR1008はそれぞれ独立に、炭素数1~18の直鎖状、環状もしくは分枝状のアルキル基、アルケニル基、アリール基及びアラルキル基からなる群から選択される基であることが好ましい。また、R1002が炭素数1~18の一価の炭化水素基である場合は、直鎖状、環状もしくは分枝状のアルキル基、アルケニル基、アリール基及びアラルキル基からなる群から選択される基であることが好ましい。R1009は直鎖状、環状又は分枝状のアルキレン基であることが好ましく、特に直鎖状のものが好ましい。R1004は例えば炭素数1~18のアルキレン基、炭素数2~18のアルケニレン基、炭素数5~18のシクロアルキレン基、炭素数6~18のシクロアルキルアルキレン基、炭素数6~18のアリーレン基、炭素数7~18のアラルキレン基を挙げることができる。アルキレン基及びアルケニレン基は、直鎖状及び分枝状のいずれであってもよく、シクロアルキレン基、シクロアルキルアルキレン基、アリーレン基及びアラルキレン基は、環上に低級アルキル基等の官能基を有していてもよい。このR1004としては、炭素数1~6のアルキレン基が好ましく、特に直鎖状アルキレン基、例えばメチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基が好ましい。 In formula (S2), R 1005 , R 1006 , R 1007 and R 1008 are independently derived from a linear, cyclic or branched alkyl group having 1 to 18 carbon atoms, an alkenyl group, an aryl group and an aralkyl group, respectively. It is preferable that the group is selected from the group. When R 1002 is a monovalent hydrocarbon group having 1 to 18 carbon atoms, it is selected from the group consisting of a linear, cyclic or branched alkyl group, an alkenyl group, an aryl group and an aralkyl group. It is preferably a group. R 1009 is preferably a linear, cyclic or branched alkylene group, and particularly preferably linear. R1004 is, for example, an alkylene group having 1 to 18 carbon atoms, an alkenylene group having 2 to 18 carbon atoms, a cycloalkylene group having 5 to 18 carbon atoms, a cycloalkylalkylene group having 6 to 18 carbon atoms, and an arylene having 6 to 18 carbon atoms. Examples thereof include an aralkylene group having 7 to 18 carbon atoms. The alkylene group and the alkenylene group may be linear or branched, and the cycloalkylene group, the cycloalkylalkylene group, the arylene group and the aralkylene group have a functional group such as a lower alkyl group on the ring. You may be doing it. As the R 1004 , an alkylene group having 1 to 6 carbon atoms is preferable, and a linear alkylene group such as a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group and a hexamethylene group are particularly preferable.
式(S2)におけるR1002、R1005、R1006、R1007及びR1008の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、シクロペンチル基、シクロヘキシル基、ビニル基、プロぺニル基、アリル基、ヘキセニル基、オクテニル基、シクロペンテニル基、シクロヘキセニル基、フェニル基、トリル基、キシリル基、ナフチル基、ベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。
式(S2)におけるR1009の例として、直鎖状アルキレン基としては、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、ヘキシレン基等が挙げられ、分枝状アルキレン基としては、イソプロピレン基、イソブチレン基、2-メチルプロピレン基等が挙げられる。
Specific examples of R 1002 , R 1005 , R 1006 , R 1007 and R 1008 in the formula (S2) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and sec-butyl. Group, tert-butyl group, pentyl group, hexyl group, octyl group, decyl group, dodecyl group, cyclopentyl group, cyclohexyl group, vinyl group, propenyl group, allyl group, hexenyl group, octenyl group, cyclopentenyl group, cyclo Examples thereof include a hexenyl group, a phenyl group, a tolyl group, a xsilyl group, a naphthyl group, a benzyl group, a phenethyl group and a naphthylmethyl group.
Examples of R 1009 in the formula (S2) include a methylene group, an ethylene group, an n-propylene group, an n-butylene group, a hexylene group and the like as the linear alkylene group, and examples of the branched alkylene group include a branched alkylene group. Examples thereof include an isopropylene group, an isobutylene group and a 2-methylpropylene group.
式(S2)で表されるシランカップリング剤の具体例としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシラン等を挙げることができる。これらは、単独で用いても、2種以上を併用してもよい。なかでも、3-オクタノイルチオプロピルトリエトキシシランが特に好ましい。 Specific examples of the silane coupling agent represented by the formula (S2) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, and 3-. Lauroylthiopropyltriethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoy Luciopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-lauroylthiopropyltrimethoxysilane, 2-hexanoylthioethyltrimethoxysilane, 2-octanoylthio Examples thereof include ethyltrimethoxysilane, 2-decanoylthioethyltrimethoxysilane, and 2-lauroylthioethyltrimethoxysilane. These may be used alone or in combination of two or more. Of these, 3-octanoylthiopropyltriethoxysilane is particularly preferable.
シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは3質量部以上、より好ましくは5質量部以上であり、また、好ましくは20質量部以下、より好ましくは15質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the silane coupling agent is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and preferably 20 parts by mass or less, more preferably 15 parts by mass or less, based on 100 parts by mass of silica. Is. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、補強性充填剤として、カーボンブラックを含んでもよい。
カーボンブラックとしては、特に限定されず、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
The rubber composition may contain carbon black as a reinforcing filler.
The carbon black is not particularly limited, and examples thereof include N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, and N762. These may be used alone or in combination of two or more.
カーボンブラックの窒素吸着比表面積(NSA)は、好ましくは80m/g以上、より好ましくは100m/g以上であり、また、好ましくは200m/g以下、より好ましくは150m/g以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、本明細書において、カーボンブラックのNSAは、JIS K6217-2:2001に準拠して測定される値である。
The nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more, and preferably 200 m 2 / g or less, more preferably 150 m 2 / g. It is as follows. Within the above range, the effect tends to be better obtained.
In this specification, N 2 SA of carbon black is a value measured in accordance with JIS K6217-2: 2001.
カーボンブラックとしては、例えば、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱ケミカル(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。 As carbon black, for example, products of Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Corporation, Lion Corporation, Shin Nikka Carbon Co., Ltd., Columbia Carbon Co., Ltd., etc. Can be used.
カーボンブラックの含有量は、ゴム成分100質量部に対して、紫外線によるクラック発生を抑制するため、好ましくは3質量部以上、より好ましくは5質量部以上であり、また、好ましくは20質量部以下、より好ましくは10質量部以下である。カーボンブラックは、ポリマーと厚いゲル層を形成する。このゲル層は耐摩耗性を向上させるが、ウェットグリップ性能はシリカに劣る。カーボンブラックの含有量が上記範囲内であれば、良好なウェットグリップ性能及び耐摩耗性を確保できる傾向がある。 The content of carbon black is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and preferably 20 parts by mass or less in order to suppress the generation of cracks due to ultraviolet rays with respect to 100 parts by mass of the rubber component. , More preferably 10 parts by mass or less. Carbon black forms a thick gel layer with the polymer. This gel layer improves wear resistance, but its wet grip performance is inferior to that of silica. When the content of carbon black is within the above range, good wet grip performance and wear resistance tend to be ensured.
上記ゴム組成物は、アミド化合物及び/又はSP値9.0以上の非イオン性界面活性剤を含有することが好ましい。 The rubber composition preferably contains an amide compound and / or a nonionic surfactant having an SP value of 9.0 or more.
アミド化合物としては、特に限定されないが、脂肪酸アミド、脂肪酸アミドエステルが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、脂肪酸アミドが好ましく、脂肪酸アミドと脂肪酸アミドエステルの混合物がより好ましい。 The amide compound is not particularly limited, and examples thereof include fatty acid amides and fatty acid amide esters. These may be used alone or in combination of two or more. Of these, fatty acid amides are preferable, and a mixture of fatty acid amides and fatty acid amide esters is more preferable.
アミド化合物は脂肪酸金属塩との混合物であってもよい。
脂肪酸金属塩を構成する金属としては、カリウム、ナトリウム、マグネシウム、カルシウム、バリウム、亜鉛、ニッケル、モリブデン等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、カルシウム、亜鉛等のアルカリ土類金属が好ましく、カルシウムがより好ましい。
The amide compound may be a mixture with a fatty acid metal salt.
Examples of the metal constituting the fatty acid metal salt include potassium, sodium, magnesium, calcium, barium, zinc, nickel, molybdenum and the like. These may be used alone or in combination of two or more. Of these, alkaline earth metals such as calcium and zinc are preferable, and calcium is more preferable.
脂肪酸金属塩を構成する脂肪酸は、飽和脂肪酸であっても不飽和脂肪酸であってもよく、飽和脂肪酸としては、デカン酸、ドデカン酸、ステアリン酸等が挙げられ、不飽和脂肪酸としては、オレイン酸、エライジン酸等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、飽和脂肪酸が好ましく、ステアリン酸がより好ましい。また、不飽和脂肪酸としてはオレイン酸が好ましい。 The fatty acid constituting the fatty acid metal salt may be a saturated fatty acid or an unsaturated fatty acid. Examples of the saturated fatty acid include decanoic acid, dodecanoic acid, and stearic acid, and examples of the unsaturated fatty acid include oleic acid. , Elaidic acid and the like. These may be used alone or in combination of two or more. Of these, saturated fatty acids are preferable, and stearic acid is more preferable. Moreover, oleic acid is preferable as an unsaturated fatty acid.
脂肪酸アミドは、飽和脂肪酸アミドであっても不飽和脂肪酸アミドであってもよく、飽和脂肪酸アミドとしては、ステアリン酸アミド、ベヘニン酸アミド等が挙げられ、不飽和脂肪酸アミドとしては、オレイン酸アミド、エルカ酸アミド等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、不飽和脂肪酸アミドが好ましく、オレイン酸アミドがより好ましい。 The fatty acid amide may be a saturated fatty acid amide or an unsaturated fatty acid amide. Examples of the saturated fatty acid amide include stearic acid amide and behenic acid amide, and examples of the unsaturated fatty acid amide include oleic acid amide. Examples include erucic acid amide. These may be used alone or in combination of two or more. Of these, unsaturated fatty acid amides are preferable, and oleic acid amides are more preferable.
脂肪酸アミドエステルは、飽和脂肪酸アミドエステルであっても不飽和脂肪酸アミドエステルであってもよく、飽和脂肪酸アミドエステルとしては、ステアリン酸アミドエステル、ベヘニン酸アミドエステル等が挙げられ、不飽和脂肪酸アミドエステルとしては、オレイン酸アミドエステル、エルカ酸アミドエステル等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、不飽和脂肪酸アミドエステルが好ましく、オレイン酸アミドエステルがより好ましい。 The fatty acid amide ester may be a saturated fatty acid amide ester or an unsaturated fatty acid amide ester, and examples of the saturated fatty acid amide ester include stearic acid amide ester and behenic acid amide ester. Examples thereof include oleic acid amide ester and erucic acid amide ester. These may be used alone or in combination of two or more. Of these, unsaturated fatty acid amide esters are preferable, and oleic acid amide esters are more preferable.
アミド化合物としては、例えば、日油(株)、ストラクトール社、ランクセス社等の製品を使用できる。 As the amide compound, for example, products such as NOF CORPORATION, Stractol, and Lanxess can be used.
アミド化合物の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上であり、また、好ましくは4質量部以下、より好ましくは2質量部以下である。上記範囲内であると、トレッド表面のブリード層が柔らかくなり、初期グリップ性能が良好に得られる傾向がある。
なお、本明細書において、アミド化合物が脂肪酸金属塩との混合物である場合、アミド化合物の含有量には、アミド化合物に含まれる脂肪酸金属塩量も含まれる。
The content of the amide compound is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass or more, and preferably 4 by mass with respect to 100 parts by mass of the rubber component. It is less than a part by mass, more preferably 2 parts by mass or less. Within the above range, the bleed layer on the tread surface tends to be soft, and the initial grip performance tends to be good.
In the present specification, when the amide compound is a mixture with the fatty acid metal salt, the content of the amide compound also includes the amount of the fatty acid metal salt contained in the amide compound.
アミド化合物とは別に脂肪酸金属塩を配合する場合、その含有量は、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上であり、また、好ましくは4質量部以下、より好ましくは2質量部以下である。上記範囲内であると、耐摩耗性の悪化が小さい傾向がある。 When the fatty acid metal salt is blended separately from the amide compound, the content thereof is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass or more, and more preferably. Is 4 parts by mass or less, more preferably 2 parts by mass or less. Within the above range, the deterioration of wear resistance tends to be small.
上記非イオン性界面活性剤(SP値9.0以上の非イオン性界面活性剤)としては、特に限定されず、例えば、下記式(1)で表される非イオン性界面活性剤;下記式(2)で表される非イオン性界面活性剤;プルロニック型非イオン性界面活性剤;モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、モノパルミチン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、トリステアリン酸ポリオキシエチレンソルビタン、トリパルミチン酸ポリオキシエチレンソルビタン等のソルビタン脂肪酸エステル;ポリオキシエチレンドデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレン2-エチルヘキシルエーテル、ポリオキシエチレンオレイルエーテル、エチレングリコールジブチルエーテル、エチレングリコールジラウリルエーテル、エチレングリコールジ2-エチルヘキシルエーテル、エチレングリコールジオレイルエーテル等のポリオキシエチレンアルキルエーテル等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、プルロニック型非イオン性界面活性剤が好ましい。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、炭素数6~26の炭化水素基を表す。dは整数を表す。)
Figure JPOXMLDOC01-appb-C000007
(式中、R及びRは、同一若しくは異なって、炭素数6~26の炭化水素基を表す。eは整数を表す。)
The nonionic surfactant (nonionic surfactant having an SP value of 9.0 or more) is not particularly limited, and is, for example, a nonionic surfactant represented by the following formula (1); the following formula. Nonionic surfactant represented by (2); Pluronic nonionic surfactant; Polyoxyethylene sorbitan monostearate, Polyoxyethylene sorbitan monooleate, Polyoxyethylene sorbitan monopalmitate, Trioleic acid Solbitan fatty acid esters such as polyoxyethylene sorbitan, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan tripalmitate; polyoxyethylene dodecyl ether, polyoxyethylene lauryl ether, polyoxyethylene 2-ethylhexyl ether, polyoxyethylene oleyl Examples thereof include polyoxyethylene alkyl ethers such as ether, ethylene glycol dibutyl ether, ethylene glycol dilauryl ether, ethylene glycol di2-ethylhexyl ether, and ethylene glycol dioleyl ether. These may be used alone or in combination of two or more. Of these, a pluronic nonionic surfactant is preferable.
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 represents a hydrocarbon group having 6 to 26 carbon atoms. D represents an integer.)
Figure JPOXMLDOC01-appb-C000007
(In the formula, R 2 and R 3 represent the same or different hydrocarbon groups having 6 to 26 carbon atoms. E represents an integer.)
式(1)で表される非イオン性界面活性剤としては、エチレングリコールモノオレエート、エチレングリコールモノパルミエート、エチレングリコールモノパルミテート、エチレングリコールモノパクセネート、エチレングリコールモノリノレート、エチレングリコールモノリノレネート、エチレングリコールモノアラキドネート、エチレングリコールモノステアレート、エチレングリコールモノセチルエート、エチレングリコールモノラウレート等が挙げられる。 Examples of the nonionic surfactant represented by the formula (1) include ethylene glycol monooleate, ethylene glycol monopalmiate, ethylene glycol monopalmitate, ethylene glycol monopaxenate, ethylene glycol monolinoleate, and ethylene glycol monolith. Examples thereof include norenate, ethylene glycol monoarachidonate, ethylene glycol monostearate, ethylene glycol monocetylate, and ethylene glycol monolaurate.
式(2)で表される非イオン性界面活性剤としては、エチレングリコールジオレエート、エチレングリコールジパルミエート、エチレングリコールジパルミテート、エチレングリコールジパクセネート、エチレングリコールジリノレート、エチレングリコールジリノレネート、エチレングリコールジアラキドネート、エチレングリコールジステアレート、エチレングリコールジセチルエート、エチレングリコールジラウレート等が挙げられる。 Examples of the nonionic surfactant represented by the formula (2) include ethylene glycol dioleate, ethylene glycol dipalmiate, ethylene glycol dipalmitate, ethylene glycol dipaxenate, ethylene glycol dilinolete, and ethylene glycol dilinole. Nate, ethylene glycol diarachidonate, ethylene glycol distearate, ethylene glycol disetylate, ethylene glycol dilaurate and the like can be mentioned.
プルロニック型非イオン性界面活性剤は、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリプロピレングリコールエチレンオキシド付加物とも呼ばれ、一般的には、下記式(3)で表わされる非イオン性界面活性剤である。下記式(3)で表されるように、プルロニック型非イオン性界面活性剤は、両側にエチレンオキシド構造から構成される親水基を有し、この親水基に挟まれるように、プロピレンオキシド構造から構成される疎水基を有する。
Figure JPOXMLDOC01-appb-C000008
(式中、a、b、cは整数を表す。)
The pluronic nonionic surfactant is also called polyoxyethylene polyoxypropylene glycol, polyoxyethylene polyoxypropylene block polymer, or polypropylene glycol ethylene oxide adduct, and is generally represented by the following formula (3). It is an ionic surfactant. As represented by the following formula (3), the pluronic nonionic surfactant has a hydrophilic group composed of an ethylene oxide structure on both sides, and is composed of a propylene oxide structure so as to be sandwiched between the hydrophilic groups. Has a hydrophobic group to be treated.
Figure JPOXMLDOC01-appb-C000008
(In the formula, a, b, and c represent integers.)
プルロニック型非イオン性界面活性剤のポリプロピレンオキシドブロックの重合度(式(3)のb)、及びポリエチレンオキシドの付加量(式(3)のa+c)は特に限定されず、使用条件・目的等に応じて適宜選択できる。ポリプロピレンオキシドブロックの割合が高くなる程ゴムとの親和性が高く、ゴム表面に移行する速度が遅くなる傾向がある。 The degree of polymerization of polypropylene oxide block, which is a pluronic nonionic surfactant (b in formula (3)), and the amount of polyethylene oxide added (a + c in formula (3)) are not particularly limited, and may be used under conditions of use, purpose, etc. It can be selected as appropriate. The higher the proportion of polypropylene oxide blocks, the higher the affinity with rubber, and the slower the rate of migration to the rubber surface tends to be.
上記非イオン性界面活性剤のブルームを好適にコントロールできるという理由から、ポリプロピレンオキシドブロックの重合度(式(3)のb)は、好ましくは10以上、より好ましくは20以上であり、また、好ましくは100以下、より好ましくは60以下、更に好ましくは40以下である。
同様の理由から、ポリエチレンオキシドの付加量(式(3)のa+c)は、好ましくは5以上、より好ましくは15以上であり、また、好ましくは90以下、より好ましくは50以下、更に好ましくは30以下である。
The degree of polymerization of the polypropylene oxide block (b in formula (3)) is preferably 10 or more, more preferably 20 or more, and preferably 20 or more, because the bloom of the nonionic surfactant can be preferably controlled. Is 100 or less, more preferably 60 or less, still more preferably 40 or less.
For the same reason, the amount of polyethylene oxide added (a + c in the formula (3)) is preferably 5 or more, more preferably 15 or more, and preferably 90 or less, more preferably 50 or less, still more preferably 30. It is as follows.
上記プルロニック型非イオン性界面活性剤としては、例えば、BASFジャパン(株)製のプルロニックシリーズ、三洋化成工業(株)製のニューポールPEシリーズ、旭電化工業(株)製のアデカプルロニックL又はFシリーズ、第一工業製薬(株)製エパンシリーズ、日油(株)製のプロノンシリーズ又はユニルーブ等の製品を使用できる。 Examples of the pluronic nonionic surfactant include the Pluronic series manufactured by BASF Japan Ltd., the New Pole PE series manufactured by Sanyo Chemical Industries, Ltd., and the ADEKA Pluronic L or F manufactured by Asahi Denka Kogyo Co., Ltd. Products such as series, Epan series manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Pronon series manufactured by NOF Corporation, and Unilube can be used.
上記非イオン性界面活性剤のSP値は、9.0以上であればよいが、好ましくは9.1以上、より好ましくは9.2以上であり、また、好ましくは12以下、より好ましくは11以下、更に好ましくは10.5以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The SP value of the nonionic surfactant may be 9.0 or more, preferably 9.1 or more, more preferably 9.2 or more, and preferably 12 or less, more preferably 11. Below, it is more preferably 10.5 or less. Within the above range, the effect tends to be better obtained.
なお、本明細書において、SP値は、化合物の構造に基づいてHoy法によって算出される溶解度パラメーター(Solubility Parameter)を意味する。Hoy法とは、例えば、K.L.Hoy “Table of Solubility Parameters”,Solvent and Coatings Materials Research and Development Department,Union Carbites Corp.(1985)に記載された計算方法である。 In the present specification, the SP value means a solubility parameter (Solubility Parameter) calculated by the Hoy method based on the structure of the compound. The Hoy method is, for example, K.K. L. Hoy "Table of Solubility Parameters", Solvent and Coatings Materials Research and Development Development, Union Carbites Corp. It is a calculation method described in (1985).
上記非イオン性界面活性剤の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上であり、また、好ましくは4質量部以下、より好ましくは2質量部以下である。上記範囲内であると、トレッド表面のブリード層の柔軟性が向上し、効果がより良好に得られる傾向がある。 The content of the nonionic surfactant is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, and further preferably 1 part by mass or more with respect to 100 parts by mass of the rubber component. Further, it is preferably 4 parts by mass or less, more preferably 2 parts by mass or less. Within the above range, the flexibility of the bleed layer on the tread surface is improved, and the effect tends to be better obtained.
上記ゴム組成物は、固体樹脂(常温(25℃)で固体状態の樹脂)を含有してもよい。
固体樹脂としては、タイヤ工業で汎用されているものであれば特に限定されず、例えば、スチレン系樹脂、C5系樹脂、C9系樹脂、テルペン系樹脂、ロジン系樹脂、クマロンインデン系樹脂、p-t-ブチルフェノールアセチレン樹脂、アクリル系樹脂等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、スチレン系樹脂が好ましい。
The rubber composition may contain a solid resin (a resin in a solid state at room temperature (25 ° C.)).
The solid resin is not particularly limited as long as it is widely used in the tire industry. For example, styrene resin, C5 resin, C9 resin, terpene resin, rosin resin, Kumaron inden resin, p. -T-Butylphenol acetylene resin, acrylic resin and the like can be mentioned. These may be used alone or in combination of two or more. Of these, styrene-based resins are preferable.
スチレン系樹脂は、スチレン系単量体を構成モノマーとして含むポリマーであり、スチレン系単量体を主成分(50質量%以上)として重合させたポリマー等が挙げられる。具体的には、スチレン系単量体(スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等)をそれぞれ単独で重合した単独重合体、2種以上のスチレン系単量体を共重合した共重合体の他、スチレン系単量体及びこれと共重合し得る他の単量体との共重合体も挙げられる。 The styrene-based resin is a polymer containing a styrene-based monomer as a constituent monomer, and examples thereof include a polymer obtained by polymerizing a styrene-based monomer as a main component (50% by mass or more). Specifically, styrene-based monomers (styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, A homopolymer obtained by independently polymerizing o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc.), a copolymer obtained by copolymerizing two or more styrene-based monomers, and a styrene-based monomer. And a copolymer with another monomer copolymerizable therewith.
他の単量体としては、アクリロニトリル、メタクリロニトリル等のアクリロニトリル類、アクリル類、メタクリル酸等の不飽和カルボン酸類、アクリル酸メチル、メタクリル酸メチル等の不飽和カルボン酸エステル類、テルペン化合物、クロロプレン、ブタジエンイソプレン等の共役ジエン類、1-ブテン、1-ペンテンのようなオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸又はその酸無水物;等が例示できる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。 Other monomers include acrylonitrile such as acrylonitrile and methacrylonitrile, unsaturated carboxylic acids such as acrylics and methacrylic acid, unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate, terpene compounds, and chloroprene. , Conjugate dienes such as butadiene isoprene, olefins such as 1-butene and 1-pentene; α, β-unsaturated carboxylic acids such as maleic anhydride or acid anhydrides thereof; and the like can be exemplified. These may be used alone or in combination of two or more.
効果がより良好に得られる傾向があるという理由から、スチレン系樹脂は、α-メチルスチレン系樹脂(α-メチルスチレン単独重合体、α-メチルスチレンとスチレンとの共重合体等)、スチレン系単量体とテルペン化合物との共重合体が好ましい。また、α-メチルスチレン系樹脂は、α-メチルスチレンとスチレンとの共重合体がより好ましい。 Styrene-based resins are α-methylstyrene-based resins (α-methylstyrene homopolymers, copolymers of α-methylstyrene and styrene, etc.) and styrene-based resins because the effects tend to be better. A copolymer of a monomer and a terpen compound is preferable. Further, the α-methylstyrene resin is more preferably a copolymer of α-methylstyrene and styrene.
固体樹脂の市販品としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXTGエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)、ExxonMobil社、CrayValley社等の製品を使用できる。 Commercially available solid resin products include, for example, Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Toso Co., Ltd., Rutgers Chemicals Co., Ltd., BASF, Arizona Chemical Co., Ltd., and Nikko Chemical Co., Ltd. , Nippon Catalyst Co., Ltd., JXTG Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Co., Ltd., ExxonMobil Co., Ltd., CrayValley Co., Ltd. and the like can be used.
固体樹脂の軟化点は、好ましくは30℃以上、より好ましくは40℃以上であり、また、好ましくは160℃以下、より好ましくは150℃以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
The softening point of the solid resin is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and preferably 160 ° C. or lower, more preferably 150 ° C. or lower. Within the above range, the effect tends to be better obtained.
The softening point is the temperature at which the sphere has fallen when the softening point defined in JIS K 6220-1: 2001 is measured by a ring-ball type softening point measuring device.
固体樹脂の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上、更に好ましくは3質量部以上であり、また、好ましくは60質量部以下、より好ましくは50質量部以下、更に好ましくは40質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the solid resin is preferably 1 part by mass or more, more preferably 2 parts by mass or more, still more preferably 3 parts by mass or more, and preferably 60 parts by mass or less, based on 100 parts by mass of the rubber component. It is more preferably 50 parts by mass or less, still more preferably 40 parts by mass or less. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、液体可塑剤(常温(25℃)で液体状態の可塑剤)を含有してもよい。
液体可塑剤としては、タイヤ工業で汎用されているものであれば特に限定されず、例えば、オイル、液状樹脂、液状ジエン系重合体等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、オイル、液状樹脂が好ましい。
The rubber composition may contain a liquid plasticizer (a plasticizer in a liquid state at room temperature (25 ° C.)).
The liquid plasticizer is not particularly limited as long as it is widely used in the tire industry, and examples thereof include oils, liquid resins, and liquid diene polymers. These may be used alone or in combination of two or more. Of these, oil and liquid resin are preferable.
オイルとしては、例えば、プロセスオイル、植物油脂、又はその混合物が挙げられる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイル、軽度抽出溶媒和物(MES(mild extraction solvates))、処理留出物芳香族系抽出物(TDAE(treated distillate aromatic extracts))等を用いることができる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油、オレイン酸含有油等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、プロセスオイルが好ましく、アロマ系プロセスオイルがより好ましい。 Examples of the oil include process oils, vegetable oils and fats, or mixtures thereof. Examples of the process oil include paraffin-based process oil, aroma-based process oil, naphthen-based process oil, mild extraction solvate (MES (mild extraction solutions)), and treated distillate aromatic extract (TDAE (treated distillate)). Aromatic extracts)) and the like can be used. Vegetable oils and fats include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pineapple, tall oil, corn oil, rice oil, beni flower oil, sesame oil, Examples thereof include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, tung oil, and oleic acid-containing oil. These may be used alone or in combination of two or more. Of these, process oils are preferable, and aroma-based process oils are more preferable.
オイルとしては、例えば、出光興産(株)、三共油化工業(株)、(株)ジャパンエナジー、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。 Examples of oils include Idemitsu Kosan Co., Ltd., Sankyo Yuka Kogyo Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Ltd., Toyokuni Seiyu Co., Ltd., Showa Shell Sekiyu Co., Ltd., Fuji Kosan Co., Ltd. And other products can be used.
液状樹脂としては、例えば、上述の固体樹脂で例示したものの低分子量体を使用できる。なかでも、液状クマロンインデン樹脂が好ましい。 As the liquid resin, for example, a low molecular weight substance of the above-mentioned solid resin can be used. Of these, liquid Kumaron indene resin is preferable.
液状クマロンインデン系樹脂は、クマロン及びインデンを構成モノマーとして含むポリマーであり、これらを主成分(50質量%以上)として重合させた液状ポリマー等が挙げられる。クマロン、インデン以外に骨格に含まれていてもよいモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエン等が挙げられる。 The liquid kumaron indene resin is a polymer containing kumaron and indene as constituent monomers, and examples thereof include a liquid polymer obtained by polymerizing these as main components (50% by mass or more). Examples of the monomer component that may be contained in the skeleton other than kumaron and indene include styrene, α-methylstyrene, methylindene, vinyltoluene and the like.
液状樹脂としては、例えば、Rutgers Chemicals社、CrayValley社等の製品を使用できる。 As the liquid resin, for example, products such as Rutgers Chemicals and CrayValley can be used.
液状樹脂の軟化点は、好ましくは1℃以上、より好ましくは5℃以上であり、また、好ましくは40℃以下、より好ましくは30℃以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The softening point of the liquid resin is preferably 1 ° C. or higher, more preferably 5 ° C. or higher, and preferably 40 ° C. or lower, more preferably 30 ° C. or lower. Within the above range, the effect tends to be better obtained.
液体可塑剤の含有量は、ゴム成分100質量部に対して、好ましくは2質量部以上、より好ましくは3質量部以上であり、また、好ましくは60質量部以下、より好ましくは50質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the liquid plasticizer is preferably 2 parts by mass or more, more preferably 3 parts by mass or more, and preferably 60 parts by mass or less, more preferably 50 parts by mass or less, based on 100 parts by mass of the rubber component. Is. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、シリカ以外の無機フィラーを含有してもよい。これにより、より良好なウェットグリップ性能が得られる。
上記無機フィラーとしては、水酸化アルミニウム、アルミナ、酸化ジルコニウム、硫酸マグネシウム、ケイ酸アルミニウム、炭酸カリウム、炭化珪素等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、水酸化アルミニウム、硫酸マグネシウムが好ましく、水酸化アルミニウムがより好ましい。
The rubber composition may contain an inorganic filler other than silica. As a result, better wet grip performance can be obtained.
Examples of the inorganic filler include aluminum hydroxide, alumina, zirconium oxide, magnesium sulfate, aluminum silicate, potassium carbonate, silicon carbide and the like. These may be used alone or in combination of two or more. Of these, aluminum hydroxide and magnesium sulfate are preferable, and aluminum hydroxide is more preferable.
水酸化アルミニウムの窒素吸着比表面積(NSA)は、好ましくは5m/g以上、より好ましくは10m/g以上であり、また、好ましくは60m/g以下、より好ましくは50m/g以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、水酸化アルミニウムのNSAは、ASTM D3037-81に準じてBET法で測定される値である。
Nitrogen adsorption specific surface area of aluminum hydroxide (N 2 SA) of preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, and preferably 60 m 2 / g or less, more preferably 50 m 2 / It is less than or equal to g. Within the above range, the effect tends to be better obtained.
The N 2 SA of aluminum hydroxide is a value measured by the BET method according to ASTM D3037-81.
上記無機フィラーとしては、例えば、Nabaltec社、富士フイルム和光純薬(株)等の製品を使用できる。 As the inorganic filler, for example, products such as Nabaltec and Fujifilm Wako Pure Chemical Industries, Ltd. can be used.
上記無機フィラーの含有量(シリカ以外の無機フィラーの含有量)は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上であり、また、好ましくは50質量部以下、より好ましくは40質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the inorganic filler (content of the inorganic filler other than silica) is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 50 parts by mass with respect to 100 parts by mass of the rubber component. Parts or less, more preferably 40 parts by mass or less. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、ワックスを含んでもよい。
ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックス等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、石油系ワックスが好ましく、パラフィンワックスがより好ましい。
The rubber composition may contain wax.
The wax is not particularly limited, and examples thereof include petroleum wax such as paraffin wax and microcrystalline wax; natural wax such as plant wax and animal wax; and synthetic wax such as a polymer such as ethylene and propylene. These may be used alone or in combination of two or more. Of these, petroleum wax is preferable, and paraffin wax is more preferable.
ワックスとしては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。 As the wax, for example, products such as Ouchi Shinko Kagaku Kogyo Co., Ltd., Nippon Seiro Co., Ltd., and Seiko Kagaku Co., Ltd. can be used.
ワックスの含有量は、ゴム成分100質量部に対して、好ましくは0.7質量部以上、より好ましくは1.0質量部以上であり、また、好ましくは15質量部以下、より好ましくは10質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the wax is preferably 0.7 parts by mass or more, more preferably 1.0 part by mass or more, and preferably 15 parts by mass or less, more preferably 10 parts by mass, based on 100 parts by mass of the rubber component. It is less than a part. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、老化防止剤を含んでもよい。
老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤等が挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。なかでも、p-フェニレンジアミン系老化防止剤、キノリン系老化防止剤が好ましい。
The rubber composition may contain an anti-aging agent.
Examples of the anti-aging agent include naphthylamine-based anti-aging agents such as phenyl-α-naphthylamine; diphenylamine-based anti-aging agents such as octylated diphenylamine and 4,4'-bis (α, α'-dimethylbenzyl) diphenylamine; N. -Isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc. P-Phenylenediamine-based anti-aging agent; quinoline-based anti-aging agent such as a polymer of 2,2,4-trimethyl-1,2-dihydroquinolin; 2,6-di-t-butyl-4-methylphenol, Monophenolic anti-aging agents such as styrenated phenol; tetrakis- [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] bis, tris, polyphenolic aging such as methane Examples include preventive agents. These may be used alone or in combination of two or more. Of these, p-phenylenediamine-based anti-aging agents and quinoline-based anti-aging agents are preferable.
老化防止剤としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。 As the anti-aging agent, for example, products of Seiko Chemical Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinko Chemical Industry Co., Ltd., Flexis Co., Ltd. and the like can be used.
老化防止剤の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上、更に好ましくは3質量部以上であり、また、好ましくは10質量部以下、より好ましくは8質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the anti-aging agent is preferably 1 part by mass or more, more preferably 2 parts by mass or more, still more preferably 3 parts by mass or more, and preferably 10 parts by mass or less with respect to 100 parts by mass of the rubber component. , More preferably 8 parts by mass or less. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、脂肪酸、好ましくはステアリン酸を含有してもよい。
ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
The rubber composition may contain fatty acids, preferably stearic acid.
As the stearic acid, conventionally known ones can be used, and for example, products such as NOF Corporation, NOF Corporation, Kao Corporation, Fujifilm Wako Pure Chemical Industries, Ltd., and Chiba Fatty Acid Co., Ltd. can be used.
脂肪酸(好ましくはステアリン酸)の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、また、好ましくは10質量部以下、より好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of fatty acid (preferably stearic acid) is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and preferably 10 parts by mass or less, based on 100 parts by mass of the rubber component. It is preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、酸化亜鉛を含有してもよい。
酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
The rubber composition may contain zinc oxide.
Conventionally known zinc oxide can be used. For example, products of Mitsui Metal Mining Co., Ltd., Toho Zinc Co., Ltd., HakusuiTech Co., Ltd., Shodo Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd., etc. Can be used.
酸化亜鉛を含有する場合、酸化亜鉛の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上であり、また、好ましくは10質量部以下、より好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 When zinc oxide is contained, the content of zinc oxide is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 10 parts by mass or less, based on 100 parts by mass of the rubber component. It is preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、硫黄を含有してもよい。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
The rubber composition may contain sulfur.
Examples of sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur, which are generally used in the rubber industry. These may be used alone or in combination of two or more.
硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。 As the sulfur, for example, products such as Tsurumi Chemical Industry Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Chemicals Corporation, Flexis Co., Ltd., Nippon Inui Kogyo Co., Ltd., Hosoi Chemical Industry Co., Ltd. can be used.
硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上であり、また、好ましくは1.5質量部以下、より好ましくは1.1質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The sulfur content is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, and preferably 1.5 parts by mass or less, more preferably 1.5 parts by mass or more, based on 100 parts by mass of the rubber component. 1.1 parts by mass or less. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、ハイブリッド架橋剤を含有してもよい。これにより、良好なウェットグリップ性能を維持しながら、耐摩耗性を更に向上させることができる。
ハイブリッド架橋剤としては、例えば、1,3-ビス(シトラコンイミドメチル)ベンゼン、下記式(α)で表される化合物等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000009
(式中、Aは炭素数2~10のアルキレン基、B及びBは、同一若しくは異なって、チッ素原子を含む1価の有機基を表す。)
The rubber composition may contain a hybrid cross-linking agent. As a result, wear resistance can be further improved while maintaining good wet grip performance.
As the hybrid cross-linking agent, for example, 1,3-bis (citraconimidemethyl) benzene, a compound represented by the following formula (α), or the like can be used. These may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000009
(In the formula, A represents an alkylene group having 2 to 10 carbon atoms, and B 1 and B 2 represent monovalent organic groups containing a nitrogen atom, which are the same or different.)
Aのアルキレン基(炭素数2~10)としては、特に限定されず、直鎖状、分岐状、環状のものが挙げられるが、なかでも、直鎖状のアルキレン基が好ましい。炭素数は4~8が好ましい。具体的なアルキレン基としては、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、デカメチレン基などが挙げられる。なかでも、ヘキサメチレン基が好ましい。 The alkylene group (carbon number 2 to 10) of A is not particularly limited, and examples thereof include a linear group, a branched group, and a cyclic group. Among them, a linear alkylene group is preferable. The number of carbon atoms is preferably 4 to 8. Specific examples of the alkylene group include an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, and a decamethylene group. Of these, a hexamethylene group is preferable.
及びBとしては、チッ素原子を含む1価の有機基であれば特に限定されないが、芳香環を少なくとも1つ含むものが好ましく、炭素原子がジチオ基に結合したN-C(=S)-で表される結合基を含むものがより好ましい。B及びBは、それぞれ同一でも異なっていてもよいが、同一であることが好ましい。 The B 1 and B 2 are not particularly limited as long as they are monovalent organic groups containing a nitrogen atom, but those containing at least one aromatic ring are preferable, and NC (=) in which a carbon atom is bonded to a dithio group. More preferably, it contains a linking group represented by S)-. B 1 and B 2 may be the same or different, but are preferably the same.
式(α)で表される化合物としては、例えば、1,2-ビス(N,N’-ジベンジルチオカルバモイルジチオ)エタン、1,3-ビス(N,N’-ジベンジルチオカルバモイルジチオ)プロパン、1,4-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ブタン、1,5-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ペンタン、1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン、1,7-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘプタン、1,8-ビス(N,N’-ジベンジルチオカルバモイルジチオ)オクタン、1,9-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ノナン、1,10-ビス(N,N’-ジベンジルチオカルバモイルジチオ)デカン等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサンが好ましい。 Examples of the compound represented by the formula (α) include 1,2-bis (N, N'-dibenzylthiocarbamoyldithio) ethane and 1,3-bis (N, N'-dibenzylthiocarbamoyldithio). Propane, 1,4-bis (N, N'-dibenzylthiocarbamoyldithio) butane, 1,5-bis (N, N'-dibenzylthiocarbamoyldithio) pentane, 1,6-bis (N, N' -Dibenzylthiocarbamoyldithio) Hexane, 1,7-bis (N, N'-dibenzylthiocarbamoyldithio) heptane, 1,8-bis (N, N'-dibenzylthiocarbamoyldithio) octane, 1,9 -Bis (N, N'-dibenzylthiocarbamoyldithio) nonane, 1,10-bis (N, N'-dibenzylthiocarbamoyldithio) decane and the like can be mentioned. These may be used alone or in combination of two or more. Of these, 1,6-bis (N, N'-dibenzylthiocarbamoyldithio) hexane is preferable.
ハイブリッド架橋剤としては、例えば、ランクセス社等の製品を使用できる。 As the hybrid cross-linking agent, for example, a product such as LANXESS can be used.
ハイブリッド架橋剤の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1.5質量部以上であり、また、好ましくは4質量部以下、より好ましくは3質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the hybrid cross-linking agent is preferably 0.5 parts by mass or more, more preferably 1.5 parts by mass or more, and preferably 4 parts by mass or less, more preferably more preferably, with respect to 100 parts by mass of the rubber component. It is 3 parts by mass or less. Within the above range, the effect tends to be better obtained.
上記ゴム組成物は、加硫促進剤を含有してもよい。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N′-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤、チウラム系加硫促進剤が好ましい。また、メルカプト系シランカップリング剤に対するスコーチ抑制剤として機能するという点から、チウラム系加硫促進剤が更に好ましい。
The rubber composition may contain a vulcanization accelerator.
Examples of the sulfide accelerator include thiazole-based sulfide-based sulfide accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and N-cyclohexyl-2-benzothiazyl sulfenamide; tetramethylthiuram disulfide (TMTD). ), Tetrabenzyl thiuram disulfide (TBzTD), tetrakis (2-ethylhexyl) thiuram disulfide (TOT-N) and other thiuram-based sulfide accelerators; N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl- 2-benzothiazolyl sulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N, N'-diisopropyl-2-benzothiazolesulfenamide, etc. Sulfenamide-based sulfide accelerator; guanidine-based sulfide accelerators such as diphenylguanidine, dioltotrilguanidine, orthotrilbiguanidine can be mentioned. These may be used alone or in combination of two or more. Of these, sulfenamide-based vulcanization accelerators, guanidine-based vulcanization accelerators, and thiuram-based vulcanization accelerators are preferable. Further, a thiuram-based vulcanization accelerator is more preferable because it functions as a scorch inhibitor for a mercapto-based silane coupling agent.
加硫促進剤としては、例えば、川口化学(株)、大内新興化学(株)、三新化学工業(株)製等の製品を使用できる。 As the vulcanization accelerator, for example, products manufactured by Kawaguchi Chemical Industry Co., Ltd., Ouchi Shinko Chemical Co., Ltd., Sanshin Chemical Industry Co., Ltd., etc. can be used.
加硫促進剤の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上であり、また、好ましくは10質量部以下、より好ましくは8質量部以下、更に好ましくは6質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。 The content of the vulcanization accelerator is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 10 parts by mass or less, more preferably 8 parts by mass with respect to 100 parts by mass of the rubber component. Hereinafter, it is more preferably 6 parts by mass or less. Within the above range, the effect tends to be better obtained.
上記ゴム組成物には、前記成分の他、タイヤ工業において一般的に用いられている添加剤、例えば、有機過酸化物等を更に配合してもよい。これらの添加剤の含有量は、ゴム成分100質量部に対して、0.1~200質量部が好ましい。 In addition to the above components, additives generally used in the tire industry, such as organic peroxides, may be further added to the rubber composition. The content of these additives is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the rubber component.
上記ゴム組成物は、例えば、前記各成分をオープンロール、バンバリーミキサー等のゴム混練装置を用いて混練し、その後必要に応じて加硫する方法等により製造できる。 The rubber composition can be produced, for example, by kneading each of the components using a rubber kneading device such as an open roll or a Banbury mixer, and then vulcanizing if necessary.
混練条件としては、加硫剤及び加硫促進剤以外の添加剤を混練するベース練り工程では、混練温度は、通常100~180℃、好ましくは120~170℃である。加硫剤、加硫促進剤を混練する仕上げ練り工程では、混練温度は、通常120℃以下、好ましくは80~110℃である。また、加硫剤、加硫促進剤を混練した組成物は、通常、プレス加硫等の加硫処理が施される。加硫温度としては、乗用車タイヤでは通常140~190℃、好ましくは150~185℃、トラック・バス用タイヤでは通常130~160℃、好ましくは135~155℃である。加硫時間は、乗用車タイヤでは通常5~15分、トラック・バス用タイヤでは通常25~60分である。 As the kneading conditions, in the base kneading step of kneading additives other than the vulcanizing agent and the vulcanization accelerator, the kneading temperature is usually 100 to 180 ° C., preferably 120 to 170 ° C. In the final kneading step of kneading the vulcanizing agent and the vulcanization accelerator, the kneading temperature is usually 120 ° C. or lower, preferably 80 to 110 ° C. Further, the composition obtained by kneading the vulcanizing agent and the vulcanization accelerator is usually subjected to a vulcanization treatment such as press vulcanization. The vulcanization temperature is usually 140 to 190 ° C., preferably 150 to 185 ° C. for passenger car tires, and usually 130 to 160 ° C., preferably 135 to 155 ° C. for truck and bus tires. The vulcanization time is usually 5 to 15 minutes for passenger car tires and 25 to 60 minutes for truck and bus tires.
上記ゴム組成物は、タイヤのトレッドに使用する。キャップトレッド及びベーストレッドで構成されるトレッドの場合、キャップトレッドに好適に使用可能である。 The rubber composition is used for tire treads. In the case of a tread composed of a cap tread and a base tread, it can be suitably used for a cap tread.
本発明のタイヤ(空気入りタイヤ等)は、上記ゴム組成物を用いて通常の方法で製造される。すなわち、上記ゴム組成物を、未加硫の段階でトレッドの形状にあわせて押出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することによりタイヤを得る。 The tire of the present invention (pneumatic tire, etc.) is produced by a usual method using the above rubber composition. That is, the unvulcanized tire is produced by extruding the rubber composition according to the shape of the tread at the unvulcanized stage and molding the unvulcanized tire together with other tire members by a normal method on a tire molding machine. Form. A tire is obtained by heating and pressurizing this unvulcanized tire in a vulcanizer.
なお、上記タイヤのトレッドは、少なくとも一部が上記ゴム組成物で構成されていればよく、全部が上記ゴム組成物で構成されていてもよい。 The tread of the tire may be composed of at least a part of the rubber composition, and may be entirely composed of the rubber composition.
本発明のタイヤは、上記ゴム組成物を用いて通常の方法で製造される。
すなわち、上記ゴム組成物を、未加硫の段階でトレッドの形状にあわせて押出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することによりタイヤを得る。
The tire of the present invention is produced by a usual method using the above rubber composition.
That is, the unvulcanized tire is produced by extruding the rubber composition according to the shape of the tread at the unvulcanized stage and molding the unvulcanized tire together with other tire members by a normal method on a tire molding machine. Form. A tire is obtained by heating and pressurizing this unvulcanized tire in a vulcanizer.
上記タイヤ(空気入りタイヤ等)は、乗用車用タイヤ;トラック・バス用タイヤ;二輪車用タイヤ;高性能タイヤ;スタッドレスタイヤ等の冬用タイヤ;サイド補強層を備えるランフラットタイヤ;スポンジ等の吸音部材をタイヤ内腔に備える吸音部材付タイヤ;パンク時に封止可能なシーラントをタイヤ内部又はタイヤ内腔に備える封止部材付タイヤ;センサや無線タグ等の電子部品をタイヤ内部又はタイヤ内腔に備える電子部品付タイヤ等に使用可能であり、乗用車用タイヤに好適である。 The above tires (pneumatic tires, etc.) are passenger car tires; truck / bus tires; two-wheeled vehicle tires; high-performance tires; winter tires such as studless tires; run-flat tires having side reinforcing layers; sound absorbing members such as sponges. A tire with a sound absorbing member provided in the tire cavity; a tire having a sealing member provided inside the tire or inside the tire cavity with a sealant that can be sealed at the time of puncture; an electronic component such as a sensor or a wireless tag provided inside the tire or inside the tire cavity. It can be used for tires with electronic parts and the like, and is suitable for passenger car tires.
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on Examples, but the present invention is not limited thereto.
以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
<SBR1>
日本ゼオン(株)製のN9548(E-SBR、油展(ゴム固形分100質量部に対してオイル分37.5質量部含有)、スチレン量:35質量%、ビニル量:18質量%、Tg:-40℃、Mw:109万)
<SBR2>
日本ゼオン(株)製のNS612(S-SBR、非油展、スチレン量:15質量%、ビニル量:30質量%、Tg:-65℃、Mw:78万)
<BR>
ランクセス社製のCB25(Nd系触媒を用いて合成したBR(Nd系BR)、シス含量:97質量%、ビニル量:0.7質量%、Tg:-110℃)
<カーボンブラック>
キャボットジャパン(株)製のショウブラックN220(NSA:114m/g)
<水酸化アルミニウム>
Nabaltec社製のApyral200SM(NSA:15m/g)
<シリカ1>
エボニックデグッサ社製のウルトラシルVN3(NSA:175m/g)
<シリカ2>
Solvay社製のZ1085Gr(NSA:80m/g)
<シリカ3>
エボニックデグッサ社製のウルトラシル9000GR(NSA:240m/g)
<シランカップリング剤1>
エボニックデグッサ社製のSi75(ビス(3-トリエトキシシリルプロピル)ジスルフィド、硫黄含有量:14.4質量%)
<シランカップリング剤2>
Momentive社製のNXT-Z45(結合単位Aと結合単位Bとの共重合体(結合単位A:55モル%、結合単位B:45モル%)、硫黄含有量:3.3質量%)
<シランカップリング剤3>
エボニックデグッサ社製のSi363(下記式で表されるシランカップリング剤、硫黄含有量:3.2質量%)
Figure JPOXMLDOC01-appb-C000010
<シランカップリング剤4>
Momentive社製のNXT(3-オクタノイルチオプロピルトリエトキシシラン、硫黄含有量:8.8質量%)
<固体樹脂>
アリゾナケミカル社製のSylvatraxx4401(α-メチルスチレン及びスチレンの共重合体、軟化点:85℃)
<液状樹脂>
Rutgers Chemicals社製のNovares C10(液状クマロンインデン樹脂、軟化点:10℃)
<アミド化合物>
ストラクトール社製のWB16(脂肪酸カルシウム、脂肪酸アミド及び脂肪酸アミドエステルの混合物)
<界面活性剤>
三洋化成工業(株)製のニューポールPE-64(プルロニック型非イオン性界面活性剤(PEG/PPG-25/30コポリマー、式(3)のa+c:25、b:30、SP値:9.2))
<パラフィンワックス>
日本精蝋(株)製のOzoace0355
<ステアリン酸>
日油(株)製のステアリン酸「椿」
<脂肪酸亜鉛>
ストラクトール社製のEF44
<オイル>
出光興産(株)製のダイアナプロセスAH-24(アロマ系プロセスオイル)
<老化防止剤6PPD>
ランクセス社製のVulkanox4020(N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン)
<老化防止剤TMQ>
ランクセス社製のVulkanox HS(2,2,4-トリメチル-1,2-ジヒドロキノリン重合体)
<酸化亜鉛>
三井金属鉱業(株)製の酸化亜鉛2種
<硫黄>
細井化学(株)製のHK-200-5(5%オイル含有粉末硫黄)
<スルフェンアミド系加硫促進剤>
大内新興化学工業(株)製のノクセラーCZ(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)
<チウラム系加硫促進剤>
三新化学工業(株)製のサンセラーTBZTD(テトラベンジルチウラムジスルフィド)
<ハイブリッド架橋剤>
ランクセス社製のVulcuren VP KA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)
<グアニジン系加硫促進剤>
大内新興化学工業(株)製のノクセラーD(ジフェニルグアニジン)
Hereinafter, various chemicals used in Examples and Comparative Examples will be collectively described.
<SBR1>
N9548 (E-SBR, oil spread (containing 37.5 parts by mass of oil with respect to 100 parts by mass of rubber solids), styrene amount: 35% by mass, vinyl amount: 18% by mass, Tg, manufactured by Nippon Zeon Corporation : -40 ° C, Mw: 1.09 million)
<SBR2>
NS612 (S-SBR, non-oil-extended, styrene amount: 15% by mass, vinyl amount: 30% by mass, Tg: -65 ° C., Mw: 780,000) manufactured by Nippon Zeon Corporation.
<BR>
CB25 manufactured by LANXESS (BR (Nd-based BR) synthesized using an Nd-based catalyst, cis content: 97% by mass, vinyl content: 0.7% by mass, Tg: -110 ° C.)
<Carbon black>
Show Black N220 (N 2 SA: 114m 2 / g) manufactured by Cabot Japan Co., Ltd.
<Aluminum hydroxide>
Apyral 200SM (N 2 SA: 15m 2 / g) manufactured by Navaltec
<Silica 1>
Ultrasil VN3 manufactured by Evonik Degussa (N 2 SA: 175m 2 / g)
<Silica 2>
Z1085Gr manufactured by Solvay (N 2 SA: 80m 2 / g)
<Silica 3>
Ultrasil 9000GR (N 2 SA: 240m 2 / g) manufactured by Evonik Degussa
<Silane coupling agent 1>
Si75 (bis (3-triethoxysilylpropyl) disulfide, sulfur content: 14.4% by mass) manufactured by Evonik Degussa
<Silane coupling agent 2>
NXT-Z45 manufactured by Momentive (copolymer of binding unit A and binding unit B (bonding unit A: 55 mol%, binding unit B: 45 mol%), sulfur content: 3.3% by mass)
<Silane coupling agent 3>
Si363 manufactured by Evonik Degussa (silane coupling agent represented by the following formula, sulfur content: 3.2% by mass)
Figure JPOXMLDOC01-appb-C000010
<Silane coupling agent 4>
NXT manufactured by Momentive (3-octanoylthiopropyltriethoxysilane, sulfur content: 8.8% by mass)
<Solid resin>
Sylvatraxx4401 manufactured by Arizona Chemical Co., Ltd. (copolymer of α-methylstyrene and styrene, softening point: 85 ° C.)
<Liquid resin>
Novares C10 (liquid kumaron indene resin, softening point: 10 ° C.) manufactured by Rutgers Chemicals.
<Amide compound>
WB16 manufactured by Structor (a mixture of fatty acid calcium, fatty acid amide and fatty acid amide ester)
<Surfactant>
Nieuport PE-64 (Pluronic nonionic surfactant (PEG / PPG-25 / 30 copolymer, a + c: 25, b: 30, SP value) of formula (3), manufactured by Sanyo Chemical Industries, Ltd. 2))
<Paraffin wax>
Ozoace0355 manufactured by Nippon Seiro Co., Ltd.
<Stearic acid>
Stearic acid "Camellia" manufactured by NOF CORPORATION
<Fatty acid zinc>
EF44 manufactured by Structor
<Oil>
Diana Process AH-24 (Aroma Process Oil) manufactured by Idemitsu Kosan Co., Ltd.
<Anti-aging agent 6PPD>
Lanxess Vulkanox 4020 (N-Phenyl-N'-(1,3-dimethylbutyl) -p-phenylenediamine)
<Anti-aging agent TMQ>
Lanxess's Vulkanox HS (2,2,4-trimethyl-1,2-dihydroquinoline polymer)
<Zinc oxide>
2 types of zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd. <Sulfur>
HK-200-5 manufactured by Hosoi Chemical Co., Ltd. (powdered sulfur containing 5% oil)
<Sulfenamide-based vulcanization accelerator>
Noxeller CZ (N-cyclohexyl-2-benzothiazolyl sulphenamide) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
<Thiuram-based vulcanization accelerator>
Suncella TBZTD (Tetrabenzyl Thiram Disulfide) manufactured by Sanshin Chemical Industry Co., Ltd.
<Hybrid cross-linking agent>
LANXESS Vulcuren VP KA9188 (1,6-bis (N, N'-dibenzylthiocarbamoyldithio) hexane)
<Guanidine-based vulcanization accelerator>
Noxeller D (diphenylguanidine) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
(実施例及び比較例)
表1に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、加硫剤(硫黄、加硫促進剤、ハイブリッド架橋剤)以外の材料を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に加硫剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃の条件下で12分間プレス加硫し、試験用タイヤ(サイズ:195/65R15)を製造した。得られた試験用タイヤを用いて下記評価を行い、結果を表1に示した。
(Examples and comparative examples)
According to the formulation shown in Table 1, using a 1.7L Banbury mixer manufactured by Kobe Steel, Ltd., materials other than vulcanizing agents (sulfur, vulcanization accelerator, hybrid cross-linking agent) were used under the condition of 150 ° C. It was kneaded for 5 minutes to obtain a kneaded product. Next, a vulcanizing agent was added to the obtained kneaded product, and the mixture was kneaded under the condition of 80 ° C. for 5 minutes using an open roll to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition is formed into a tread shape and bonded together with other tire members to form an unvulcanized tire, which is press-vulcanized for 12 minutes under the condition of 170 ° C. to obtain a test tire (test tire). Size: 195 / 65R15) was manufactured. The following evaluations were performed using the obtained test tires, and the results are shown in Table 1.
(アセトン抽出後の硫黄量)
各試験用タイヤのトレッドから切り出した試験片をソックスレー抽出器にセットし、試験片:10g以下、アセトン:150ml、恒温槽温度:95~100℃、抽出時間:24~72時間の条件で、アセトン抽出を行った。
そして、アセトン抽出後の試験片をオーブンに入れ、100℃で30分加熱し、試験片中の溶媒を除去した後、JIS-K6233:2016に準拠した酸素燃焼フラスコ法により、試験片中の硫黄量を算出した。
(Amount of sulfur after acetone extraction)
A test piece cut out from the tread of each test tire is set in a Soxhlet extractor, and acetone is used under the conditions of test piece: 10 g or less, acetone: 150 ml, constant temperature bath temperature: 95 to 100 ° C., and extraction time: 24-72 hours. Extraction was performed.
Then, the test piece after acetone extraction is placed in an oven and heated at 100 ° C. for 30 minutes to remove the solvent in the test piece, and then sulfur in the test piece is subjected to an oxygen combustion flask method based on JIS-K6233: 2016. The amount was calculated.
(灰分量)
各試験用タイヤのトレッドから切り出した試験片をアルミナ製るつぼに入れ、550℃の電気炉で4時間加熱した。その後、(加熱後の試験片の質量/加熱前の試験片の質量)×100により、灰分量(質量%)を算出した。
(Ash content)
The test pieces cut out from the tread of each test tire were placed in an alumina crucible and heated in an electric furnace at 550 ° C. for 4 hours. Then, the ash content (mass%) was calculated by (mass of test piece after heating / mass of test piece before heating) × 100.
(耐摩耗性)
各試験用タイヤを車両(国産FF2000cc)の全輪に装着して、走行距離8000km後のタイヤトレッド部の溝深さを測定し、タイヤ溝深さが1mm減るときの走行距離を算出し、比較例1を100とした時の指数で表示した(耐摩耗性指数)。指数が大きいほど、走行距離が長く、耐摩耗性に優れることを示す。指数が110以上の場合に良好であると判断した。
(Abrasion resistance)
Each test tire is attached to all wheels of the vehicle (domestic FF2000cc), the groove depth of the tire tread after a mileage of 8000 km is measured, and the mileage when the tire groove depth is reduced by 1 mm is calculated and compared. It is expressed as an index when Example 1 is set to 100 (wear resistance index). The larger the index, the longer the mileage and the better the wear resistance. When the index was 110 or more, it was judged to be good.
(ウェットグリップ性能)
各試験用タイヤを車輌(国産FF2000cc)の全輪に装着して、湿潤アスファルト路面にて初速度100km/hからの制動距離を求め、比較例1を100とした時の指数で表示した(ウェットグリップ性能指数)。指数が大きいほど、制動距離が短く、ウェットグリップ性能に優れることを示す。指数が100以上の場合に良好であると判断した。
(Wet grip performance)
Each test tire was attached to all wheels of the vehicle (domestic FF2000cc), the braking distance from the initial speed of 100km / h was obtained on a wet asphalt road surface, and it was displayed as an index when Comparative Example 1 was set to 100 (wet). Grip performance index). The larger the index, the shorter the braking distance and the better the wet grip performance. When the index was 100 or more, it was judged to be good.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
表1より、ゴム成分及びシランカップリング剤を含み、灰分量が37質量%以上、アセトン抽出後の硫黄量が0.75質量%以下であるゴム組成物で構成されたトレッドを備える実施例は、耐摩耗性及びウェットグリップ性能の両方が目標値を超えており、これらの総合性能(指数の平均)も大きく向上することが分かった。 From Table 1, an example including a tread containing a rubber component and a silane coupling agent and having a rubber composition having an ash content of 37% by mass or more and a sulfur content after acetone extraction of 0.75% by mass or less It was found that both the wear resistance and the wet grip performance exceeded the target values, and the total performance (average of the indexes) was also greatly improved.

Claims (9)

  1. ゴム成分及びシランカップリング剤を含み、灰分量が37質量%以上、アセトン抽出後の硫黄量が0.75質量%以下であるゴム組成物で構成されたトレッドを備えるタイヤ。 A tire comprising a rubber component and a silane coupling agent, and comprising a tread composed of a rubber composition having an ash content of 37% by mass or more and a sulfur content of 0.75% by mass or less after extraction with acetone.
  2. 前記ゴム組成物において、前記硫黄量が0.65質量%以下である請求項1記載のタイヤ。 The tire according to claim 1, wherein the amount of sulfur in the rubber composition is 0.65% by mass or less.
  3. 前記ゴム組成物において、前記ゴム成分100質量部に対するシリカの含有量が110質量部以上である請求項1又は2記載のタイヤ。 The tire according to claim 1 or 2, wherein in the rubber composition, the content of silica with respect to 100 parts by mass of the rubber component is 110 parts by mass or more.
  4. 前記シランカップリング剤の硫黄含有量が10質量%以下である請求項1~3のいずれかに記載のタイヤ。 The tire according to any one of claims 1 to 3, wherein the sulfur content of the silane coupling agent is 10% by mass or less.
  5. 前記ゴム組成物において、前記ゴム成分100質量部に対するカーボンブラックの含有量が10質量部以下である請求項1~4のいずれかに記載のタイヤ。 The tire according to any one of claims 1 to 4, wherein the content of carbon black with respect to 100 parts by mass of the rubber component in the rubber composition is 10 parts by mass or less.
  6. 前記ゴム組成物において、前記ゴム成分100質量部に対するアミド化合物又はSP値9.0以上の非イオン性界面活性剤の含有量が0.1質量部以上である請求項1~5のいずれかに記載のタイヤ。 The rubber composition according to any one of claims 1 to 5, wherein the content of the amide compound or the nonionic surfactant having an SP value of 9.0 or more is 0.1 parts by mass or more with respect to 100 parts by mass of the rubber component. The tires listed.
  7. 前記ゴム組成物がチウラム系加硫促進剤を含む請求項1~6のいずれかに記載のタイヤ。 The tire according to any one of claims 1 to 6, wherein the rubber composition contains a thiuram-based vulcanization accelerator.
  8. 前記ゴム組成物が、水酸化アルミニウム、アルミナ、酸化ジルコニウム、硫酸マグネシウム、ケイ酸アルミニウム、炭酸カリウム及び炭化珪素からなる群より選択される少なくとも1種の無機フィラーを含む請求項1~7のいずれかに記載のタイヤ。 Any of claims 1 to 7, wherein the rubber composition comprises at least one inorganic filler selected from the group consisting of aluminum hydroxide, alumina, zirconium oxide, magnesium sulfate, aluminum silicate, potassium carbonate and silicon carbide. The tires listed in.
  9. 前記ゴム組成物が固体樹脂を含む請求項1~8のいずれかに記載のタイヤ。
     
    The tire according to any one of claims 1 to 8, wherein the rubber composition contains a solid resin.
PCT/JP2020/021276 2019-06-27 2020-05-29 Tire WO2020261873A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-119829 2019-06-27
JP2019119829A JP7236943B2 (en) 2019-06-27 2019-06-27 tire

Publications (1)

Publication Number Publication Date
WO2020261873A1 true WO2020261873A1 (en) 2020-12-30

Family

ID=74061214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021276 WO2020261873A1 (en) 2019-06-27 2020-05-29 Tire

Country Status (2)

Country Link
JP (1) JP7236943B2 (en)
WO (1) WO2020261873A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023183858A (en) * 2022-06-16 2023-12-28 株式会社ブリヂストン Rubber composition for tire, and tire
JP7372567B1 (en) 2022-08-15 2023-11-01 横浜ゴム株式会社 Rubber composition for tires

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130908A (en) * 1997-10-29 1999-05-18 Sumitomo Rubber Ind Ltd Rubber composition
WO2014178336A1 (en) * 2013-04-30 2014-11-06 住友ゴム工業株式会社 Pneumatic tire
JP2017206583A (en) * 2016-05-16 2017-11-24 住友ゴム工業株式会社 Rubber composition
WO2018105230A1 (en) * 2016-12-08 2018-06-14 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP2019034992A (en) * 2017-08-10 2019-03-07 住友ゴム工業株式会社 Pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130908A (en) * 1997-10-29 1999-05-18 Sumitomo Rubber Ind Ltd Rubber composition
WO2014178336A1 (en) * 2013-04-30 2014-11-06 住友ゴム工業株式会社 Pneumatic tire
JP2017206583A (en) * 2016-05-16 2017-11-24 住友ゴム工業株式会社 Rubber composition
WO2018105230A1 (en) * 2016-12-08 2018-06-14 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP2019034992A (en) * 2017-08-10 2019-03-07 住友ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP7236943B2 (en) 2023-03-10
JP2021004332A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP6908071B2 (en) tire
JP2019182982A (en) Rubber composition for tire, and tire
JP7434703B2 (en) Rubber composition for tread and pneumatic tire
JP6897397B2 (en) Pneumatic tires
JP7413795B2 (en) Copolymers, rubber compositions and tires
JP6973048B2 (en) Rubber composition for tires and pneumatic tires
JP7020152B2 (en) Rubber composition for tires and pneumatic tires
WO2021065615A1 (en) Rubber composition and tire
JP6888286B2 (en) Pneumatic tires
WO2020261873A1 (en) Tire
JP7102925B2 (en) Rubber composition for tires and pneumatic tires
JP6824813B2 (en) Pneumatic tires
JP7215304B2 (en) Rubber composition for tire tread and tire
JP7102924B2 (en) Rubber composition for tires and pneumatic tires
JP2019189673A (en) Rubber composition for tire, and pneumatic tire
JP7338391B2 (en) Base tread composition and tire
WO2020189100A1 (en) Tire
JP7225637B2 (en) Rubber composition and pneumatic tire
JP7020151B2 (en) Rubber composition for tires and pneumatic tires
JP2019194289A (en) Tire rubber composition and pneumatic tire
JP2019189756A (en) Rubber composition for tire, and pneumatic tire
JP7358776B2 (en) Rubber composition for tires and pneumatic tires
JP7338209B2 (en) Rubber composition for tire tread and tire
JP7222181B2 (en) Tire rubber composition and pneumatic tire
WO2021100465A1 (en) Tread rubber composition and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831070

Country of ref document: EP

Kind code of ref document: A1