WO2019154199A1 - 传输上行信号的方法及通信装置 - Google Patents

传输上行信号的方法及通信装置 Download PDF

Info

Publication number
WO2019154199A1
WO2019154199A1 PCT/CN2019/073789 CN2019073789W WO2019154199A1 WO 2019154199 A1 WO2019154199 A1 WO 2019154199A1 CN 2019073789 W CN2019073789 W CN 2019073789W WO 2019154199 A1 WO2019154199 A1 WO 2019154199A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
uplink control
access parameter
orthogonal access
time
Prior art date
Application number
PCT/CN2019/073789
Other languages
English (en)
French (fr)
Inventor
王磊
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19750938.3A priority Critical patent/EP3745752A4/en
Publication of WO2019154199A1 publication Critical patent/WO2019154199A1/zh
Priority to US16/988,499 priority patent/US11870727B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present application relates to the field of communications, and in particular, to a method and a communication device for transmitting an uplink signal.
  • the resources occupied by the uplink control information and the resources occupied by the uplink data in the uplink transmission are orthogonally multiplexed, because multiple users may perform uplink transmission on the same resource.
  • the transmission of the uplink control information will require a large amount of time-frequency resources, and the time-frequency resources available for transmitting the uplink data are relatively reduced, resulting in low utilization of time-frequency resources.
  • the present application provides a method and a communication device for transmitting an uplink signal, which are beneficial to improving the utilization of channel resources.
  • the application provides a method for transmitting an uplink signal, including:
  • transmitting the signal carrying the uplink data and the signal carrying the uplink control information is beneficial to improving utilization of time-frequency resources.
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter comprise different non-orthogonal access spreading factors;
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different bit group to symbol group mapping rules; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different interleaving parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different scrambling parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter comprise different transmit powers.
  • the method further includes determining the second non-orthogonal access parameter according to the type of the uplink control information.
  • the method further includes:
  • the uplink control information includes first uplink control information and second uplink control information
  • determining, according to the type of the uplink control information, the second non-orthogonal access parameter includes:
  • the determining, according to the type of the uplink control information, the second time-frequency resource includes:
  • the first uplink control information and the second uplink control information are encoded as a whole.
  • the first uplink control information and the second uplink control information are separately encoded separately.
  • the method further includes: acquiring configuration information for determining the second non-orthogonal access parameter according to the type of the uplink control information.
  • the present application provides another method for transmitting an uplink signal, including:
  • first configuration information includes information of a first non-orthogonal access parameter for transmitting uplink data and a first one for transmitting the uplink data Information of a time-frequency resource
  • second configuration information including information of a second non-orthogonal access parameter for transmitting uplink control information on the second video resource, wherein the first non-orthogonal access parameter and The second orthogonal access parameter is different, and the first time-frequency resource and the second time-frequency resource have overlapping time-frequency resources;
  • an uplink signal where the uplink signal includes a signal that is generated according to the first non-orthogonal access parameter and that carries the uplink data, and generates according to the first non-orthogonal access parameter.
  • the signal carrying the uplink control information, the signal carrying the uplink data occupies the first time-frequency resource, and the signal carrying the uplink control information occupies the second time-frequency resource.
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter comprise different non-orthogonal access spreading factors;
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different bit group to symbol group mapping rules; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different interleaving parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different scrambling parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter comprise different transmit powers.
  • the second configuration information further includes information about the second time-frequency resource.
  • the second time-frequency resource is determined according to the type of the uplink control information.
  • the second non-orthogonal access parameter is determined according to the type of the uplink control information.
  • the uplink control information includes first uplink control information and second uplink control information
  • the information about the second non-orthogonal access parameter used for transmitting the uplink control information includes: information for transmitting the second non-orthogonal access parameter of the first uplink control information, and for transmitting the second Information of the second non-orthogonal access parameter of the uplink control information.
  • the second time-frequency resource includes: a second time-frequency resource for transmitting the first uplink control information, and a second time-frequency resource for transmitting the second uplink control information.
  • an embodiment of the present application provides a communications apparatus, including:
  • a generating unit configured to generate a signal carrying uplink data according to the first non-orthogonal access parameter, where the signal carrying the uplink data occupies the first time-frequency resource
  • the generating unit is configured to generate a signal carrying uplink control information according to the second non-orthogonal access parameter, where the signal carrying the uplink control information occupies a second time-frequency resource, where the first time-frequency resource There is an overlapping time-frequency resource between the second time-frequency resource; the first non-orthogonal access parameter and the second non-orthogonal access parameter are different;
  • a sending unit configured to send the signal carrying the uplink data and the signal carrying the uplink control information.
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter comprise different non-orthogonal access spreading factors;
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different bit group to symbol group mapping rules; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different interleaving parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different scrambling parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter comprise different transmit powers.
  • the communication device further includes:
  • the first determining unit is configured to determine the second non-orthogonal access parameter according to the type of the uplink control information.
  • the communication device further includes:
  • the second determining unit is configured to determine the second time-frequency resource according to the type of the uplink control information.
  • the uplink control information includes first uplink control information and second uplink control information
  • the first determining unit is specifically configured to:
  • the second determining unit is specifically configured to:
  • the first uplink control information and the second uplink control information are encoded as a whole.
  • the first uplink control information and the second uplink control information are separately coded separately.
  • the communication device further includes:
  • an obtaining unit configured to acquire, according to the type of the uplink control information, configuration information used to determine the second non-orthogonal access parameter.
  • the present application provides another communication device, including:
  • a first sending unit configured to send first configuration information and second configuration information to the terminal device, where the first configuration information includes information for transmitting the first non-orthogonal access parameter of the uplink data, and is used for transmitting Information about the first time-frequency resource of the uplink data, where the second configuration information includes information about a second non-orthogonal access parameter for transmitting uplink control information on the second video resource, where the first The non-orthogonal access parameter and the second orthogonal access parameter are different, and the first time-frequency resource and the second time-frequency resource have overlapping time-frequency resources;
  • a receiving unit configured to receive an uplink signal sent by the terminal device, where the uplink signal includes a signal that is sent according to the first non-orthogonal access parameter and that carries the uplink data, and according to the first non-positive a signal carrying the uplink control information generated by the access parameter, the signal carrying the uplink data occupies the first time-frequency resource, and the signal carrying the uplink control information occupies the second time-frequency Resources.
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter comprise different non-orthogonal access spreading factors;
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different bit group to symbol group mapping rules; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different interleaving parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different scrambling parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter comprise different transmit powers.
  • the second configuration information further includes information about the second time-frequency resource.
  • the second time-frequency resource is determined according to the type of the uplink control information.
  • the second non-orthogonal access parameter is determined according to the type of the uplink control information.
  • the uplink control information includes first uplink control information and second uplink control information
  • the information about the second non-orthogonal access parameter used for transmitting the uplink control information includes: information for transmitting the second non-orthogonal access parameter of the first uplink control information, and for transmitting the second Information of the second non-orthogonal access parameter of the uplink control information.
  • the second time-frequency resource includes: a second time-frequency resource for transmitting the first uplink control information, and a second time-frequency resource for transmitting the second uplink control information.
  • the present application provides another communication device, including:
  • a processor that invokes executable program code for performing all or part of the methods as described in the first aspect.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium includes program instructions, when the program instructions are run on a computer, causing the computer to perform the method as described in the first aspect. All or part of the method.
  • the embodiment of the present application provides another communication apparatus, including:
  • a processor that invokes executable program code for performing all or part of the methods as described in the second aspect.
  • the embodiment of the present application provides another computer readable storage medium, where the computer readable storage medium includes program instructions, when the program instructions are run on a computer, causing the computer to perform the second aspect All or part of the method described.
  • the network device sends the first configuration information and the second configuration information to the terminal device, where the first configuration information includes the first non-orthogonal access parameter for transmitting the uplink data.
  • Information and information for transmitting the first time-frequency resource of the uplink data where the second configuration information includes information for transmitting a second non-orthogonal access parameter of the uplink control information in the second time-frequency resource, where the first non- The orthogonal access parameter and the second non-orthogonal access parameter are different, and the first time-frequency resource and the second time-frequency resource have overlapping time-frequency resources
  • the terminal device is configured according to the first non-orthogonal access parameter and the second non-orthogonal
  • the traffic access parameters respectively generate a signal carrying the uplink data and a signal carrying the uplink control information, and respectively send the signal carrying the uplink data and the signal carrying the uplink control information to the network device on the first time-frequency resource and the second time-frequency resource, respectively. .
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for transmitting an uplink signal according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of processing uplink data/uplink control information according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of another method for transmitting an uplink signal according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of transmitting an uplink signal according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another transmission uplink signal according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another transmission uplink signal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another transmission uplink signal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • the application scenario diagram includes a terminal device 101 and a network device 102.
  • the application scenario shown in FIG. 1 may be specifically applied in a 5G communication system or a subsequently evolved communication system, or may be an interaction between a 5G communication system and other different standard communication systems.
  • the network device 102 may be a macro network device, a micro network device, a pico network device, a distributed network device, or other types of network devices.
  • the network device 102 may be, for example, a wireless-fidelity (Wi-Fi) access point, a base station of a next-generation communication, such as a 5G gNB or a small station, a micro station, and a transmission reception point (transmission reception) Point, TRP), may also be a base station in 2G, 3G, and 4G, and may also be a relay station, an access point, an in-vehicle device, or the like.
  • Wi-Fi wireless-fidelity
  • TRP transmission reception point
  • the terminal device 101 may be a user equipment (UE), that is, a device that provides voice and/or data connectivity to the user, and may also be a handheld device or an in-vehicle device with a wireless connection function.
  • UE user equipment
  • Common terminal devices include: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), Internet of Things devices, wearable devices (eg smart watches, smart bracelets, pedometers, etc.) .
  • the network device 102 transmits the first configuration information and the second configuration information to the terminal device 101 to the terminal device.
  • the first configuration information includes information for transmitting a first non-orthogonal access parameter of the uplink data and information for transmitting a first time-frequency resource of the uplink data, where the second configuration information is included for the second time-frequency resource.
  • the terminal device 101 respectively generates a signal carrying the uplink data and carrying the uplink control information according to the first non-orthogonal access parameter and the second non-orthogonal access parameter
  • the signal carrying the uplink data occupies the first time-frequency resource
  • the signal carrying the uplink control information occupies the second time-frequency resource
  • the overlapping time-frequency resource exists between the first time-frequency resource and the second time-frequency resource.
  • the terminal device 101 sends a signal carrying the uplink data to the network device 102 on the first time-frequency resource, and sends a signal carrying the uplink control information to the network device 103 on the second time-frequency resource, where the network device 102 receives a signal carrying uplink data and a signal carrying uplink control information.
  • FIG. 2 is a schematic flowchart of a method for transmitting an uplink signal according to an embodiment of the present application. As shown in Figure 2, the method includes:
  • the terminal device generates a signal that carries uplink data according to the first non-orthogonal access parameter, where the signal that carries the uplink data occupies the first time-frequency resource.
  • the first non-orthogonal access parameter includes one or more of an encoding parameter, a spreading factor, a mapping rule of a bit group to a symbol group, a scrambling parameter, an interleaving parameter, and a transmission power.
  • the terminal device generates a signal that carries uplink control information according to the second non-orthogonal access parameter, where the signal that carries the uplink control information occupies the second time-frequency resource.
  • the time-frequency resource overlaps between the first time-frequency resource and the second time-frequency resource. Specifically, the first time-frequency resource and the second time-frequency resource partially overlap the time-frequency resource, or the first time-frequency resource and the second time-frequency resource are completely the same, or the first time-frequency resource includes the foregoing Second time-frequency resource.
  • the first time-frequency resource and the second time-frequency resource do not have overlapping time-frequency resources.
  • the second non-orthogonal access parameter includes an encoding parameter, a spreading factor, a mapping rule of a bit group to a symbol group, a scrambling parameter, an interleaving parameter, and a transmission power.
  • FIG. 3 is a schematic flowchart of an uplink data/uplink control information processing process according to an embodiment of the present application.
  • the terminal device separately performs channel coding on the uplink data according to the channel coding manner indicated by the coding parameter in the first non-orthogonal access parameter to obtain a first bit stream, where the first bit stream is obtained.
  • the one bit stream is binary data, and the above channel coding manner may be a turbo code, or a low density parity check (LDPC) code, or a polar code or the like.
  • LDPC low density parity check
  • the terminal device generates a binary scrambling sequence according to the scrambling parameter in the first non-orthogonal access parameter, and then according to the binary scrambling sequence and the interleaving manner indicated by the interleaving parameter in the first non-orthogonal access parameter
  • the first bit stream is separately subjected to a bit scrambling operation and a bit interleaving operation to obtain a second bit stream, and the order of the bit scrambling operation and the bit interleaving operation is not limited, and the bit scrambling operation may be performed first, followed by bit interleaving. Operation; it is also possible to perform a bit interleaving operation first, followed by a bit scrambling operation.
  • the bit scrambling operation performs an exclusive OR operation on the first bit stream according to the scrambling sequence, and the bit interleaving operation is to change the order of the bits in the first bit stream.
  • the terminal device performs symbol mapping on the second bit stream according to the mapping rule of the bit group to the symbol group in the first non-orthogonal access parameter, groups the second bit stream, and maps each group of bits into M symbols. , to get the first symbol sequence.
  • the M is a spreading factor in the first non-orthogonal access parameter.
  • the terminal device divides the bit stream B into multiple groups, and then maps each group of bits into N symbols.
  • N is called the spreading factor.
  • the value of each of the N symbols is a complex number.
  • each group of bits has m bits, and its value has 2m. There are two ways to map a bit group to a symbol group:
  • mapping m bits of each group of bits into one complex symbol by using the correspondence table of the above 2m values and one complex symbol, and multiplying the complex symbol by a spreading code of length N, Get N symbols.
  • This mapping can be seen, for example, in the multi-user shared access (MUSA) technology.
  • the m bits of each group of bits are directly mapped into N complex symbols by using the correspondence table of the above 2m values and the N complex symbols.
  • the relationship between the m bits and the N complex symbols in each group of bits may be a non-linear relationship, and the N complex symbols may include multiple zeros. This mapping can be seen, for example, in the sparse coded multiple access (SCMA) technique.
  • SCMA sparse coded multiple access
  • the terminal device generates a complex scrambling sequence according to the scrambling parameter in the first non-orthogonal access parameter, and according to the interleaving manner indicated by the interleaving parameter in the complex scrambling sequence and the first non-orthogonal access parameter, respectively.
  • the first symbol sequence performs a symbol scrambling operation to obtain a second symbol sequence.
  • the symbol scrambling operation multiplies the complex scrambling sequence by the first symbol sequence.
  • the terminal device maps the second symbol sequence to the first time-frequency resource according to the transmit power in the first non-orthogonal access parameter, to obtain a signal carrying the uplink data, and sends the signal carrying the uplink data to the network device. .
  • the terminal device before performing the symbol scrambling operation or after performing the symbol scrambling operation, performs a symbol interleaving operation on the first symbol sequence, where the symbol interleaving operation changes the order of the first symbol sequence.
  • the terminal device according to the channel coding mode indicated by the coding parameter in the second non-orthogonal access parameter, the scrambling sequence generated according to the scrambling parameter, the interleaving manner indicated by the interleaving parameter, and the bit
  • the group-to-symbol group mapping rule and the spreading factor convert the uplink control information into a second symbol sequence, and then map the second symbol sequence to the second time-frequency resource according to the transmit power in the second non-orthogonal access parameter.
  • the signal carrying the uplink control information is obtained, and the signal carrying the uplink control information is sent to the network device.
  • the terminal device when the terminal device performs the method shown in FIG. 3 on the uplink data or the uplink control information, after performing a resource mapping operation on the second symbol sequence, obtaining the signal carrying the uplink data or The signal carrying the uplink control information.
  • the difference between the first non-orthogonal access parameter and the second non-orthogonal access parameter includes:
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different spreading factors of non-orthogonal access, and/or;
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different mapping rules of bit groups to symbol groups, and/or;
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different interleaving parameters, and/or;
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different scrambling parameters, and/or;
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different transmit powers.
  • the terminal device uses different spreading factors when performing uplink processing on the uplink data and the uplink control information; and/or adopts different interleaving modes when performing the interleaving operation, and/or adopts different interleaving operations when performing the scrambling operation.
  • the terminal device uses the same spreading factor when performing uplink processing on the uplink data and the uplink control information; and/or uses the same interleaving manner when performing the interleaving operation, and/or performs a scrambling operation.
  • the same scrambling sequence/complex scrambling sequence is used, and/or the same bit group to symbol group mapping rule is used for symbol mapping, and/or the signal carrying the uplink data and the signal carrying the uplink control information are transmitted.
  • the same transmission power is used when the above network device is used.
  • the spreading factor used in the spreading operation of the uplink data and the uplink control information by the terminal device the interleaving method used for the interleaving operation, and the scrambling sequence/complex scrambling sequence used when performing the scrambling operation are used.
  • the mapping procedure of the bit group to the symbol group used for symbol mapping and the transmission of the signal carrying the uplink data and the signal carrying the uplink control information to the network device are different.
  • the method further includes:
  • the uplink control information includes a channel quality indicator (CQI), a rank indicator (RI), a precoding matrix indicator (PMI), a scheduling request (SR), and a hybrid automatic One or more of information such as hybird automatic repeat request acknowledgement (HARQ-ACK).
  • CQI channel quality indicator
  • RI rank indicator
  • PMI precoding matrix indicator
  • SR scheduling request
  • HARQ-ACK hybrid automatic One or more of information such as hybird automatic repeat request acknowledgement
  • the uplink control information includes first uplink control information and second uplink control information
  • determining, according to the type of the uplink control information, the second non-orthogonal access parameter includes:
  • the first uplink control information includes any one or more of CQI, RI, PMI, SR, and HARQ-ACK
  • the second uplink control information includes any one of CQI, RI, PMI, SR, and HARQ-ACK.
  • One or more types, and the information included in the first uplink control information is different from the information included in the second uplink control information.
  • the second non-orthogonal access parameter corresponding to the first uplink control information is different from the second non-orthogonal access parameter corresponding to the second uplink control information.
  • the second non-orthogonal access parameter corresponding to the first uplink control information and the second non-orthogonal access parameter corresponding to the second uplink control information include different spreading factors of non-orthogonal access, and/ Or the first non-orthogonal access parameter and the second non-orthogonal access parameter include different bit group to symbol group mapping rules, and/or; the second non-orthogonal corresponding to the first uplink control information
  • the second non-orthogonal access parameter corresponding to the access parameter and the second uplink control information includes different interleaving parameters, and/or the second non-orthogonal access parameter corresponding to the first uplink control information and the second
  • the second non-orthogonal access parameter corresponding to the uplink control information includes different scrambling parameters, and/or the second non-orthogonal access parameter corresponding to the first
  • the method further includes:
  • the determining, according to the type of the uplink control information, the second time-frequency resource includes:
  • the second time-frequency resource occupied by the signal of the information is identical to the second time-frequency resource occupied by the signal carrying the second uplink control information, or the second time-frequency resource occupied by the signal carrying the first uplink control information
  • the second time-frequency resource occupied by the signal carrying the second uplink control information is included.
  • the first uplink control information and the second uplink control information are encoded as a whole.
  • the first uplink control information and the second uplink control information are separately encoded separately.
  • the foregoing uplink control information further includes third uplink control information, where the third uplink control information includes any one or more of CQI, RI, PMI, SR, and HARQ-ACK, and the third uplink control information is The information included in the first uplink control information is different from the information included in the second uplink control information. Determining, by the terminal device, the second non-orthogonal access parameter corresponding to the third uplink control information and the second signal occupied by the signal determining the third uplink control information, according to the type of the third uplink control information Time-frequency resources.
  • the second non-orthogonal access parameter corresponding to the third uplink control information and the second non-orthogonal access parameter corresponding to the first uplink control information and the second non-orthogonal connection corresponding to the second uplink control information The inbound parameters are different, or the second non-orthogonal access parameter corresponding to the third uplink control information is different from the second non-orthogonal access parameter corresponding to the first uplink control information, and corresponds to the second uplink control information.
  • the second non-orthogonal access parameter is the same, or the second non-orthogonal access parameter corresponding to the third uplink control information is different from the second non-orthogonal access parameter corresponding to the second uplink control information, and the first The second non-orthogonal access parameters corresponding to the uplink control information are the same.
  • the second time-frequency resource occupied by the signal carrying the third uplink control information and the second time-frequency resource occupied by the signal carrying the first uplink control information and the second signal occupied by the signal carrying the second uplink control information has a partially overlapping time-frequency resource, or the second time-frequency resource occupied by the signal carrying the third uplink control information and the second time-frequency resource occupied by the signal carrying the first uplink control information
  • the time-frequency resource partially overlapping the second time-frequency resource occupied by the signal carrying the second uplink control information does not overlap with the second time-frequency resource occupied by the signal carrying the first uplink control information a second time-frequency resource occupied by the resource or the signal carrying the third uplink control information, and carrying the first uplink control signal
  • the terminal device In the process of generating a signal carrying the uplink control information, the terminal device encodes the first uplink control information, the second uplink control information, and the third uplink control information as a whole, or
  • the terminal device independently codes the first uplink control information, the second uplink control information, and the third uplink control information.
  • the method further includes:
  • the terminal device sends uplink control information to the network device, and the terminal device needs to obtain configuration information, where the configuration information includes the second non-orthogonal access parameter.
  • the configuration information may be sent by the network device to the terminal, and may be determined by the terminal device according to a communication protocol between the network device and the network device.
  • the terminal device when the non-orthogonal access parameter does not specify a specific parameter of any one of the operations, the terminal device The operation is in the default mode.
  • the terminal device when the non-orthogonal access parameter includes an encoding parameter, a spreading factor, and an interleaving parameter, the terminal device according to the channel coding manner indicated by the coding parameter, a default bit group to symbol group mapping rule, a spreading factor, and a default
  • the above-mentioned uplink control information or uplink data is encoded, bit-interleaved, bit-scrambled and symbol-mapped, symbol-scrambled and symbol-interleaved by the scrambling sequence, the default complex scrambling sequence, and the interleaving manner indicated by the interleaving parameters, and according to the default
  • the power is transmitted to perform resource mapping to obtain a signal carrying uplink control information or a signal carrying uplink data, where the mapped resource is a default time-frequency resource.
  • the terminal device sends the signal carrying the uplink control information or the signal carrying the uplink data to the network device.
  • the terminal device sends the signal carrying the uplink data and the signal carrying the uplink control information.
  • the network device sends the first configuration information and the second configuration information to the terminal device, where the first configuration information includes the first non-orthogonal access parameter for transmitting the uplink data.
  • the terminal device is configured according to the first non-orthogonal access parameter and the second non-
  • the orthogonal access parameters respectively generate a signal carrying the uplink data and a signal carrying the uplink control information, and respectively send the signal carrying the uplink data and the signal carrying the uplink control information to the network on the first time-frequency resource and the second time-frequency resource, respectively.
  • device Compared with the prior art
  • FIG. 4 is a schematic flowchart of a method for transmitting an uplink signal according to an embodiment of the present disclosure. As shown in FIG. 4, the method includes:
  • the network device sends first configuration information and second configuration information to the terminal device, where the first configuration information includes information about a first non-orthogonal access parameter for transmitting uplink data, and is used to transmit the uplink.
  • Information of a first time-frequency resource of data the second configuration information including information of a second non-orthogonal access parameter for transmitting uplink control information, wherein the first non-orthogonal access parameter and the The second orthogonal access parameters are different,
  • the second configuration information further includes information for transmitting the second time-frequency resource of the uplink control information, where the second time-frequency resource and the second time-frequency resource have overlapping time-frequency resources.
  • the network device determines, according to a protocol that the terminal device follows, a second time-frequency resource for transmitting the uplink control information, where the second time-frequency resource overlaps with the first time-frequency resource.
  • the protocol specifies that some of the designated resources in the scheduling resource (eg, the first time-frequency resource) are used to send uplink control information.
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different non-orthogonal access spreading factors; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different bit group to symbol group mapping rules; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different interleaving parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different scrambling parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter comprise different transmit powers.
  • the interleaving parameter is used to interleave the uplink data or the uplink control information
  • the scrambling parameter is used to generate scrambling when scrambling the uplink data or the uplink control information. Sequence or complex scrambling sequence.
  • the time-frequency resource that overlaps between the first time-frequency resource and the second time-frequency resource includes: a time-frequency resource that partially overlaps between the first time-frequency resource and the second time-frequency resource, or the first The time-frequency resource is identical to the second time-frequency resource, or the first time-frequency resource includes the second time-frequency resource.
  • the foregoing second information further includes information of the second time-frequency resource.
  • the second time-frequency resource is determined according to the type of the uplink control information.
  • the uplink control information includes one or more of information such as CQI, RI, PMI, SR, and HARQ-ACK.
  • the second non-orthogonal access parameter is determined according to the type of the uplink control information.
  • the uplink control information includes the first uplink control information and the second uplink control information, where the information about the second non-orthogonal access parameter used for transmitting the uplink control information includes: used to transmit the first uplink control information.
  • Information of the second non-orthogonal access parameter and information of the second non-orthogonal access parameter for transmitting the second uplink control information is included.
  • the first uplink control information includes any one or more of CQI, RI, PMI, SR, and HARQ-ACK
  • the second uplink control information includes any one of CQI, RI, PMI, SR, and HARQ-ACK.
  • One or more types, and the information included in the first uplink control information is different from the information included in the second uplink control information.
  • the second non-orthogonal access parameter of the first uplink control information is different from the second non-orthogonal access parameter of the second uplink control information.
  • the second non-orthogonal access parameter of the foregoing first uplink control information and the second non-orthogonal access parameter of the second uplink control information include different spreading factors of non-orthogonal access, and/or
  • the second non-orthogonal access parameter of the first uplink control information and the second non-orthogonal access parameter of the second uplink control information include different bit group to symbol group mapping rules, and/or;
  • the second non-orthogonal access parameter of the uplink control information and the second non-orthogonal access parameter of the second uplink control information include different interleaving parameters, and/or; the second non-orthogonal of the first uplink control information
  • the second non-orthogonal access parameter of the access parameter and the second uplink control information includes different scrambling parameters, and/or the second non-orthogonal access parameter of the first
  • the second time-frequency resource includes: a second time-frequency resource for transmitting the first uplink control information, and a second time-frequency resource for transmitting the second uplink control information.
  • the network device receives an uplink signal sent by the terminal device, where the uplink signal includes a signal that is sent according to the first non-orthogonal access parameter and that carries the uplink data, and according to the first non-orthogonal And the signal that carries the uplink control information generated by the access parameter, the signal that carries the uplink data occupies the first time-frequency resource, and the signal that carries the uplink control information occupies the second time-frequency resource .
  • the network device After the network device receives the signal that carries the uplink data and the signal that carries the uplink control information that is sent by the terminal device, the network device is configured according to the first non-orthogonal access parameter and the second non-orthogonal access.
  • the parameter respectively performs a solution on the signal carrying the uplink data and the signal carrying the uplink control information, where the solution operation includes de-symbol interleaving, de-symbol scrambling, de-spreading, de-symbol mapping, de-bit interleaving, and de-biting. Operations such as scrambling and decoding to obtain the above uplink data and the uplink control information.
  • de-symbol interleaving for the operations of de-symbol interleaving, de-symbol scrambling, de-symbol mapping, de-bit scrambling, de-bit interleaving, and decoding
  • non-orthogonal access parameters include coding parameters, spreading factors, and interleaving parameters
  • the network device according to the interleaving manner indicated by the interleaving parameters, the default complex scrambling sequence, the spreading factor, and the default bit group to symbol group.
  • the mapping rule, the default scrambling sequence, and the channel coding mode indicated by the coding parameter perform de-symbol interleaving, de-symbol scrambling, solution symbol mapping, and de-symbol addition on the signal carrying the uplink data or the signal carrying the uplink control information. Interference, de-symbol interleaving and decoding to obtain the above uplink data or the uplink control information.
  • a single terminal device sends uplink control information and uplink data to a network device.
  • the uplink control information includes CSI and HARQ-ACK.
  • the CSI includes CQI, PMI, and RI.
  • the uplink control information includes first uplink control information, second uplink control information, and third uplink control information.
  • the first uplink control information includes the CQI/PMI
  • the second uplink control information includes the RI
  • the third uplink control information includes the HARQ-ACK.
  • the first configuration information includes information about a first non-orthogonal access parameter for transmitting uplink data and a second method for transmitting uplink data.
  • the second configuration information includes information of a second non-orthogonal access parameter for transmitting uplink control information and information of a second time-frequency resource for transmitting uplink control information.
  • the information about the second non-orthogonal access parameter used for transmitting the uplink control information includes information for transmitting a second non-orthogonal access parameter of the first uplink control information, and second information for transmitting the second uplink control information.
  • the information of the non-orthogonal access parameter and the information of the second non-orthogonal access parameter used for transmitting the third uplink control information, where the information about the second time-frequency resource used for transmitting the uplink control information includes: Information of the second time-frequency resource of the uplink control information, information of the second time-frequency resource for transmitting the second uplink control information, and information of the second time-frequency resource for transmitting the third uplink control information.
  • the terminal device acquires, from the first configuration information, a first non-orthogonal access parameter for transmitting uplink data and a first time-frequency resource for transmitting uplink data, and the second configuration is configured according to the type of the uplink control information.
  • a second non-orthogonal access parameter for transmitting the first uplink control information Acquiring, in the information, a second non-orthogonal access parameter for transmitting the first uplink control information, a second time-frequency resource for transmitting the first uplink control information, and a second non-orthogonality for transmitting the second uplink control information
  • An access parameter and a second time-frequency resource for transmitting the second uplink control information, and a second non-orthogonal access parameter for transmitting the third uplink control information and a second time for transmitting the third uplink control information Frequency resources.
  • the terminal device performs coding, bit interleaving, bit scrambling, symbol mapping, symbol scrambling, and symbol interleaving on the uplink data according to the first non-orthogonal access parameter of the uplink data, to obtain a signal carrying the first uplink data. .
  • the second non-orthogonal access parameter of the first uplink control information, the second non-orthogonal access parameter of the second uplink control information, and the second non-orthogonal access of the third uplink control information The parameter performs coding, bit interleaving, bit scrambling, symbol mapping, symbol scrambling, and symbol interleaving on the first uplink control information, the second uplink control information, and the third uplink control information, respectively, to obtain the first uplink. a signal for controlling information, a signal carrying the second uplink control information, and a signal carrying the third uplink control information.
  • the second non-orthogonal access parameter of the first uplink control information, the second non-orthogonal access parameter of the second uplink control information, and the second non-orthogonal access parameter of the third uplink control information are different or partially identical or all the same.
  • the second non-orthogonal access parameter of the first uplink control information, the second non-orthogonal access parameter of the second uplink control information, and the second non-orthogonal access parameter of the third uplink control information include different spreading factors, and/or; second non-orthogonal access parameters of the foregoing first uplink control information, second non-orthogonal access parameters of the second uplink control information, and third uplink control information.
  • the second non-orthogonal access parameter includes different mapping rules of the bit group to the symbol group, and/or; the second non-orthogonal access parameter of the first uplink control information, and the second non-second control information of the second uplink control information
  • the second non-orthogonal access parameter of the orthogonal access parameter and the third uplink control information includes different interleaving parameters, and/or the second non-orthogonal access parameter of the first uplink control information, and the second
  • the second non-orthogonal access parameter of the uplink control information and the second non-orthogonal access parameter of the third uplink control information include different scrambling parameters, and/or; the second non-positive of the first uplink control information Delivery parameter
  • the second non-orthogonal access parameter of the second uplink control information and the second non-orthogonal access parameter of the third uplink control information include different transmit powers.
  • the terminal device uses different channel coding modes for the three uplink control information, and/or; uses different bit interleaving methods for the three uplink control information, and/or; and performs the above three uplink control information.
  • Different scrambling sequences are used respectively, and/or different bit group to symbol group mapping rules are respectively used for the above three uplink control information; respectively, different symbol interleaving methods are adopted for the above three uplink control information, and/or; Different complex scrambling sequences are used for the three uplink control information, and/or; different spreading factors are used for the three uplink control information.
  • the terminal device maps the signal carrying the first uplink control information, the signal carrying the second uplink control information, and the signal carrying the third uplink control information to the second time-frequency resource and the transmission of the first uplink information, respectively.
  • the second time-frequency resource of the second uplink information and the second time-frequency resource for transmitting the third uplink information are sent to the network device with different transmission powers.
  • the terminal device maps the signal carrying the data to the first time-frequency resource for transmitting the uplink data, and sends the signal to the network device by using the transmit power in the first non-orthogonal access parameter.
  • the first time-frequency resource for transmitting the uplink data includes a second time-frequency resource for transmitting the first uplink control information, and a second time-frequency resource for transmitting the second uplink control information. And a second time-frequency resource for transmitting the third uplink control information, and a second time-frequency resource for transmitting the first uplink control information, a second time-frequency resource for transmitting the second uplink control information, and There is no overlapping time-frequency resource between the two time-frequency resources for transmitting the third uplink control information.
  • the first time-frequency resource for transmitting the uplink data is the same as the second time-frequency resource for transmitting the third uplink control information, and is used for transmitting the third uplink control information.
  • the second time-frequency resource includes a second time-frequency resource for transmitting the first uplink control information, and a second time-frequency resource for transmitting the second uplink control information, and is configured to transmit the first uplink control information. There is no overlapping time-frequency resource between the second time-frequency resource and the second time-frequency resource for transmitting the second uplink control information.
  • the interleaving method determined by the interleaving parameter, the scrambling sequence and the complex scrambling sequence generated by the scrambling parameter, the mapping rule of the bit group to the symbol group, the spreading factor, and the channel coding manner indicated by the coding parameter respectively carry the foregoing a signal of uplink control information, a signal carrying the second uplink control information, and a signal carrying the third uplink control information, performing de-symbol interleaving, de-symbol scrambling, despreading, de-symbol mapping, de-bit interleaving, and de-biting
  • the interference and decoding operations are performed to obtain the foregoing first uplink control information, second uplink control information, and third uplink control information.
  • the network device After receiving the signal carrying the uplink data, the network device performs de-symbol interleaving and de-symbol scrambling on the signal carrying the uplink data according to the first non-orthogonal access parameter used for transmitting the uplink data.
  • Despreading, de-symbol mapping, de-interleaving, de-biting, and decoding are performed to obtain the above-mentioned uplink data.
  • multiple terminal devices transmit uplink control information and uplink data to the network device.
  • the uplink control information includes CSI and HARQ-ACK.
  • the foregoing CSI includes the foregoing control information block including CQI, PMI, and RI.
  • the uplink control information of the terminal device 1 includes first uplink control information, second uplink control information, and third uplink control information.
  • the first uplink control information includes a CQI/PMI
  • the second uplink control information includes an RI
  • the third uplink control information includes a HARQ-ACK.
  • the uplink control information of the terminal device 2 includes fourth uplink control information, fifth uplink control information, and sixth uplink control information.
  • the fourth uplink control information includes a CQI/PMI
  • the fifth uplink control information includes an RI
  • the sixth uplink control information includes a HARQ-ACK.
  • the first configuration information includes information about a first non-orthogonal access parameter for transmitting uplink data of the terminal device 1 and Information for transmitting the first time-frequency resource of the uplink data of the terminal device 1, the second configuration information including information for transmitting the second non-orthogonal access parameter of the uplink control information of the terminal device 1 and for transmitting the terminal Information of the second time-frequency resource of the uplink control information of the device 1.
  • the information about the second non-orthogonal access parameter used for transmitting the uplink control information of the terminal device 1 includes information for transmitting a second non-orthogonal access parameter of the first uplink control information, and is used for transmitting the second uplink control.
  • the information includes information for transmitting second time-frequency resources of the first uplink control information, information for transmitting second time-frequency resources for transmitting second uplink control information, and second time for transmitting third uplink control information Information about frequency resources.
  • the terminal device 1 acquires, from the first configuration information, a first non-orthogonal access parameter for transmitting uplink data of the terminal device 1 and a first time-frequency resource for transmitting uplink data of the terminal device 1, and according to the input
  • the type of the uplink control information of the terminal device 1 is obtained by acquiring, from the second configuration information, a second non-orthogonal access parameter for transmitting the first uplink control information, and a second time-frequency resource for transmitting the first uplink control information, a second non-orthogonal access parameter for transmitting second uplink control information, a second time-frequency resource for transmitting second uplink control information, and a second non-orthogonal access for transmitting third uplink control information
  • the parameter and the second time-frequency resource used for transmitting the third uplink control information is obtained by acquiring, from the second configuration information, a second non-orthogonal access parameter for transmitting the first uplink control information, and a second time-frequency resource for transmitting the first uplink control information, a
  • the terminal device 2 receives the third configuration information and the fourth configuration information that are sent by the network device.
  • the third configuration information includes information of a first non-orthogonal access parameter for transmitting uplink data of the terminal device 2 and information of a first time-frequency resource for transmitting uplink data of the terminal device 2, the fourth configuration information.
  • the information of the second non-orthogonal access parameter for transmitting the uplink control information of the terminal device 2 and the second time-frequency resource for transmitting the uplink control information of the terminal device 2 are included.
  • the information about the second non-orthogonal access parameter used for transmitting the uplink control information of the terminal device 2 includes information for transmitting the second non-orthogonal access parameter of the fourth uplink control information, and is used for transmitting the fifth uplink control.
  • the information of the second non-orthogonal access parameter of the information and the information of the second non-orthogonal access parameter used for transmitting the sixth uplink control information, the second time-frequency resource for transmitting the uplink control information of the terminal device 2 The information includes information for transmitting the second time-frequency resource of the fourth uplink control information, information for transmitting the second uplink frequency information and the second time-frequency resource, and a second time for transmitting the sixth uplink control information.
  • the terminal device 2 acquires, from the third configuration information, a first non-orthogonal access parameter for transmitting uplink data of the terminal device 2 and a first time-frequency resource for transmitting uplink data of the terminal device 2, and according to the terminal.
  • the type of the uplink control information of the device 2 is obtained by using the second configuration information, the second non-orthogonal access parameter for transmitting the fourth uplink control information, and the second time-frequency resource for transmitting the fourth uplink control information. And a second non-orthogonal access parameter for transmitting the fifth uplink control information, a second time-frequency resource for transmitting the fifth uplink control information, and a second non-orthogonal access parameter for transmitting the sixth uplink control information. And a second time-frequency resource for transmitting the sixth uplink control information.
  • the terminal device 1 performs channel coding, bit interleaving, bit scrambling, symbol mapping, spreading, symbol scrambling, and symbol interleaving operations on the uplink data according to the first non-orthogonal access parameter corresponding to the uplink data to obtain the bearer.
  • the signal of the uplink data of the terminal device 1 is corresponding to the second non-orthogonal access parameter corresponding to the first uplink control information, the second non-orthogonal access parameter corresponding to the second uplink control information, and the third uplink control information.
  • the second non-orthogonal access parameter performs channel coding, bit interleaving, bit scrambling, symbol mapping, spreading, symbol scrambling, and symbol interleaving on the first uplink control information, the second uplink control information, and the third uplink control information, respectively.
  • the operation is performed to obtain a signal carrying the first uplink control information, a signal carrying the second uplink control information, and a signal carrying the third uplink control information.
  • the terminal device 2 performs channel coding, bit interleaving, bit scrambling, symbol mapping, spreading, symbol scrambling, and symbol interleaving operations on the uplink data according to the first non-orthogonal access parameter corresponding to the uplink data.
  • the second non-orthogonal access parameter corresponding to the information performs channel coding, bit interleaving, bit scrambling, symbol mapping, spreading, and symbol scrambling on the fourth uplink control information, the fifth uplink control information, and the sixth uplink control information, respectively.
  • a symbol interleaving operation to obtain a signal carrying the fourth uplink control information, a signal carrying the fifth uplink control information, and a signal carrying the sixth uplink control information.
  • the second non-orthogonal access parameter corresponding to the fourth uplink control information, the second non-orthogonal access parameter corresponding to the fifth uplink control information, and the second non-orthogonal access parameter corresponding to the sixth uplink control information They are not identical or partially identical or all the same. For details, refer to the above related description.
  • the terminal device 1 maps a signal carrying the first uplink control information, a signal carrying the second uplink control information, and a signal carrying the third uplink control information to a second time-frequency resource for transmitting the first uplink information,
  • the second time-frequency resource for transmitting the second uplink information and the second time-frequency resource for transmitting the third uplink information are sent to the network device with different transmission powers.
  • the terminal device 2 maps the signal carrying the fourth uplink control information, the signal carrying the fifth uplink control information, and the signal carrying the first round uplink control information to the second time for transmitting the fourth uplink information.
  • the frequency resource, the second time-frequency resource for transmitting the fifth uplink information, and the second time-frequency resource for transmitting the sixth uplink information are sent to the network device with different transmission powers.
  • the first time-frequency resource for transmitting the uplink data of the terminal device 1 includes a second time-frequency resource for transmitting the first uplink control information, and a second for transmitting the second uplink control information. a second time-frequency resource and a second time-frequency resource for transmitting the third uplink control information, and a second time-frequency resource for transmitting the first uplink control information, and a second time for transmitting the second uplink control information There is no overlapping time-frequency resource between the time-frequency resource and the second time-frequency resource for transmitting the third uplink control information.
  • the first time-frequency resource for transmitting the uplink data of the terminal device 2 includes a second time-frequency resource for transmitting the fourth uplink control information, a second time-frequency resource for transmitting the fifth uplink control information, and a second time-frequency resource for transmitting the second uplink control information, a second time-frequency resource for transmitting the fourth uplink control information, a second time-frequency resource for transmitting the fifth uplink control information, and There is no overlapping time-frequency resource between the two time-frequency resources transmitting the sixth uplink control information.
  • the frequency resource and the second time-frequency resource for transmitting the sixth uplink control information do not have the same time-frequency resource; the second time-frequency resource for transmitting the second uplink control information and the fifth uplink control information are transmitted.
  • the second time-frequency resource has overlapping time-frequency resources, and the second time-frequency resource for transmitting the fourth uplink control information and the second time-frequency resource for transmitting the sixth uplink control information do not exist.
  • a time-frequency resource in which a second time-frequency resource for transmitting the third uplink control information and a second time-frequency resource for transmitting the sixth uplink control information overlap, and is used for transmitting the fourth uplink control information.
  • the second time-frequency resource and the second time-frequency resource for transmitting the fifth uplink control information do not have the same time-frequency resource.
  • the first time-frequency resource for transmitting the uplink data of the terminal device 1 includes a second time-frequency resource for transmitting the first uplink control information, and is used for transmitting the second uplink.
  • a second time-frequency resource of the control information and a second time-frequency resource for transmitting the third uplink control information, and the second time-frequency resource for transmitting the third uplink control information includes, for transmitting, the foregoing first uplink control
  • the second time-frequency resource of the information and the second time-frequency resource for transmitting the second uplink control information, the second time-frequency resource for transmitting the first uplink control information, and the second time-frequency resource for transmitting the second uplink control information There is no overlapping time-frequency resource between the two time-frequency resources.
  • the first time-frequency resource for transmitting the uplink data of the terminal device 2 includes a second time-frequency resource for transmitting the fourth uplink control information, a second time-frequency resource for transmitting the fifth uplink control information, and
  • the second time-frequency resource for transmitting the sixth uplink control information, and the second time-frequency resource for transmitting the sixth uplink control information includes a second time-frequency resource for transmitting the fourth uplink control information, and is used for And transmitting, by the second time-frequency resource, the second time-frequency resource for transmitting the fourth uplink control information, and the second time-frequency resource for transmitting the fifth uplink control information, There are overlapping time-frequency resources.
  • the second time-frequency resource for transmitting the third uplink control information does not overlap with the second time-frequency resource for transmitting the sixth uplink control information.
  • the first time-frequency resource for transmitting the uplink data of the terminal 1 may be the same as the first time-frequency resource for transmitting the uplink data of the terminal device 2, and is used for transmitting part of the first time-frequency resource of the uplink data of the terminal 1.
  • the resource may be reused for transmitting the uplink control information of the terminal device 1, and another part of the first time-frequency resource for transmitting the uplink data of the terminal 1 may be used for the uplink control information of the transmission terminal device 2.
  • the signals of the three uplink control information are subjected to de-symbol interleaving, de-symbol scrambling, de-spreading, de-symbol mapping, de-bit interleaving, de-bit scrambling, and decoding operations to obtain the first uplink control information
  • the network device after receiving the signal carrying the uplink data of the terminal device 1 and the signal carrying the uplink data of the terminal device 2, the network device according to the first non-orthogonal access for transmitting the uplink data of the terminal device 1 Decoding and interleaving the signal of the uplink data carrying the terminal device 1 and the signal carrying the uplink data of the terminal device 2, respectively, in the parameter and the first non-orthogonal access parameter for transmitting the uplink data of the terminal device 2, De-symbol scrambling, despreading, de-symbol mapping, de-interleaving, de-biting, and decoding are performed to obtain uplink data of the terminal device 1 and uplink data of the terminal device 2.
  • FIG. 9 is a schematic structural diagram of a communication apparatus according to an embodiment of the present invention.
  • the communication device 900 includes:
  • the generating unit 901 is configured to generate a signal carrying uplink data according to the first non-orthogonal access parameter, where the signal carrying the uplink data occupies the first time-frequency resource.
  • the generating unit 901 is configured to generate a signal carrying uplink control information according to the second non-orthogonal access parameter, where the signal carrying the uplink control information occupies a second time-frequency resource, where the first time-frequency resource There is an overlapping time-frequency resource between the resource and the second time-frequency resource; the first non-orthogonal access parameter and the second non-orthogonal access parameter are different.
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different non-orthogonal access spreading factors; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different bit group to symbol group mapping rules; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different interleaving parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different scrambling parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter comprise different transmit powers.
  • the sending unit 902 is configured to send the signal carrying the uplink data and the signal carrying the uplink control information.
  • the communication device 900 further includes:
  • the first determining unit 903 is configured to determine the second non-orthogonal access parameter according to the type of the uplink control information.
  • the uplink control information includes the first uplink control information and the second uplink control information.
  • the first determining unit 903 is specifically configured to:
  • the communication device 900 further includes:
  • the first determining unit 904 is configured to determine the second time-frequency resource according to the type of the uplink control information.
  • the second determining unit 904 is specifically configured to:
  • the signal carrying the uplink control information the first uplink control information and the second uplink control information are encoded as a whole.
  • the signal carrying the uplink control information the first uplink control information and the second uplink control information are separately encoded.
  • the communication device 900 further includes:
  • the obtaining unit 905 is configured to acquire configuration information for determining the second non-orthogonal access parameter according to the type of the uplink control information.
  • each of the above units (the generating unit 901, the transmitting unit 902, the first determining unit 903, the second determining unit 904, and the obtaining unit 905) is for performing the related steps of the method shown in FIG. 2.
  • the communication device 900 is presented in the form of a unit.
  • a "unit” herein may refer to an application-specific integrated circuit (ASIC), a processor that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that provide the functionality described above.
  • ASIC application-specific integrated circuit
  • the above unit may refer to an ASIC, a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above functions.
  • the above generation unit 901, the transmission unit 902, the first determination unit 903, the second determination unit 904, and the acquisition unit 905 can be realized by the processor 1101 and the communication interface 1003 of the communication device shown in FIG.
  • FIG. 10 is a schematic structural diagram of a communication apparatus according to an embodiment of the present invention.
  • the terminal device 1000 includes:
  • the first sending unit 1001 is configured to send first configuration information and second configuration information to the terminal device, where the first configuration information includes information for transmitting the first non-orthogonal access parameter of the uplink data, and is used for Transmitting information of the first time-frequency resource of the uplink data, where the second configuration information includes information for transmitting a second non-orthogonal access parameter of the uplink control information on the second time-frequency resource, where The first non-orthogonal access parameter and the second orthogonal access parameter are different, and the first time-frequency resource and the second time-frequency resource have overlapping time-frequency resources.
  • the receiving unit 1002 is configured to receive an uplink signal sent by the terminal device, where the uplink signal includes a signal that is sent according to the first non-orthogonal access parameter and that carries the uplink data, and according to the first non And a signal that carries the uplink control information generated by the orthogonal access parameter, where the signal carrying the uplink data occupies the first time-frequency resource, and the signal that carries the uplink control information occupies the second time Frequency resources.
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter comprise different non-orthogonal access spreading factors; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different bit group to symbol group mapping rules; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different interleaving parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter include different scrambling parameters; and/or
  • the first non-orthogonal access parameter and the second non-orthogonal access parameter comprise different transmit powers.
  • the second configuration information further includes information of the second time-frequency resource.
  • the second time-frequency resource is determined according to the type of the uplink control information.
  • the second non-orthogonal access parameter is determined according to a type of the uplink control information.
  • the uplink control information includes first uplink control information and second uplink control information
  • the information about the second non-orthogonal access parameter used for transmitting the uplink control information includes: information for transmitting the second non-orthogonal access parameter of the first uplink control information, and for transmitting the second Information of the second non-orthogonal access parameter of the uplink control information.
  • the second time-frequency resource includes: a second time-frequency resource for transmitting the first uplink control information, and a second time-frequency resource for transmitting the second uplink control information.
  • each of the above units (the first transmitting unit 1001 and the receiving unit 1002) is used to perform the related steps of the method shown in FIG. 4.
  • the communication device 1000 is presented in the form of a unit.
  • a "unit” herein may refer to an ASIC, a processor that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that provide the functionality described above.
  • the above-described units may refer to an ASIC, a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the functions described above.
  • the above first transmitting unit 1001, receiving unit 1002, and second transmitting unit 1003 may be implemented by the processor 1101 and the communication interface 1103 of the communication device shown in FIG.
  • FIG. 11 is a schematic structural diagram of a communication apparatus according to an embodiment of the present invention.
  • the communication device 1100 includes at least one processor 1101 and at least one communication interface 1103.
  • the processor 1101, the memory 1102, and the communication interface 1103 are connected by the communication bus and complete communication with each other.
  • the processor 1101 can be a general purpose central processing unit (CPU), a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the above program.
  • CPU general purpose central processing unit
  • ASIC application specific integrated circuit
  • the communication interface 1103 is configured to communicate with other components, devices, or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless local area networks (WLAN), and the like.
  • RAN Radio Access Network
  • WLAN Wireless local area networks
  • the communication device further includes at least one memory 1102, which may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only Memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • disk storage media or other magnetic storage devices or capable of carrying or storing instructions
  • the desired program code in the form of a data structure and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 1102 is configured to store application code that executes the above solution, and is controlled by the processor 1101 to execute.
  • the processor 1101 is configured to execute application code stored in the memory 1102.
  • the communication device 1100 may be a terminal device or a network device.
  • the code stored in the memory 1102 is used to perform the following methods:
  • the ingress parameter is different from the second non-orthogonal access parameter; the signal carrying the uplink data and the signal carrying the uplink control information are sent.
  • the code stored in the memory 1102 is used to perform the following methods:
  • the first configuration information includes information of a first non-orthogonal access parameter for transmitting uplink data and a first one for transmitting the uplink data
  • the information of the time-frequency resource includes information about a second non-orthogonal access parameter for transmitting uplink control information on the second time-frequency resource, where the first non-orthogonal access parameter Different from the second orthogonal access parameter, the first time-frequency resource and the second time-frequency resource have overlapping time-frequency resources; and receive an uplink signal sent by the terminal device, where the uplink signal
  • the signal of the control information occupies the second time-frequency resource.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium can store a program that performs some or all of the steps of the method of the embodiment shown in FIG. 2.
  • Another embodiment of the present invention provides a computer storage medium, wherein the computer storage medium can store a program that performs some or all of the steps of the method of the embodiment shown in FIG.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable memory. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a memory. A number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing memory includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输上行信号的方法,包括:根据第一非正交接入参数生成承载上行数据的信号,其中,所述承载上行数据的信号占用第一时频资源;根据第二非正交接入参数生成承载上行控制信息的信号,其中,所述承载上行控制信息的信号占用第二时频资源,其中,所述第一时频资源与所述第二时频资源之间存在重叠的时频资源;所述第一非正交接入参数和所述第二非正交接入参数不同;发送所述承载上行数据的信号和承载上行控制信息的信号。本申请实施例还提供了一种通信装置。采用本申请实施例有利于提高时频资源的利用率。

Description

传输上行信号的方法及通信装置
本申请要求于2018年2月12日递交中国知识产权局、申请号为2018101483197,发明名称为“传输上行信号的方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种传输上行信号的方法及通信装置。
背景技术
在长期演进(long term evolution,LTE)技术中,上行传输中上行控制信息所占用的资源和上行数据所占用的资源是正交复用的由于多个用户可能会在同样的资源上进行上行传输,则传输上行控制信息将需要占用大量的时频资源,而可用于传输上行数据的时频资源相对减少,导致时频资源的利用率低。
发明内容
本申请提供一种传输上行信号的方法及通信装置,有利于提高信道资源的利用率。
第一方面,本申请提供一种传输上行信号的方法,包括:
根据第一非正交接入参数生成承载上行数据的信号,其中,所述承载上行数据的信号占用第一时频资源;
根据第二非正交接入参数生成承载上行控制信息的信号,其中,所述承载上行控制信息的信号占用第二时频资源,其中,所述第一时频资源与所述第二时频资源之间存在重叠的时频资源;所述第一非正交接入参数和所述第二非正交接入参数不同;
发送所述承载上行数据的信号和承载上行控制信息的信号。与现有技术相比,通过非正交复用的方式发送承载上行数据的信号和承载上行控制信息的信号,有利于提高时频资源的利用率。
在一种可能的设计中,所述第一非正交接入参数和所述第二非正交接入参数包含不同的非正交接入的扩频因子;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的比特组到符号组的映射规则;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的交织参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的加扰参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的发送功率。
在一种可能的设计中,所述方法还包括:根据所述上行控制信息的类型,确定所述第二非正交接入参数。
在一种可能的设计中,所述方法还包括:
根据所述上行控制信息的类型,确定所述第二时频资源。
在一种可能的设计中,所述上行控制信息包含第一上行控制信息和第二上行控制信息;
相应地,所述根据所述上行控制信息的类型,确定第二非正交接入参数包括:
根据所述第一上行控制信息的类型,确定所述第一上行控制信息对应的第二非正交接入参数;
根据所述第二上行控制信息的类型,确定所述第二上行控制信息对应的第二非正交接入参数。
在一种可能的设计中,所述根据所述上行控制信息的类型,确定所述第二时频资源包括:
根据所述第一上行控制信息的类型,确定承载所述第一上行控制信息的信号所占用的第二时频资源;
根据所述第二上行控制信息的类型,确定承载所述第二的上行控制信息的信号所占用的第二时频资源。
在一种可能的设计中,在生成所述承载所述上行控制信息的信号过程中,将所述第一上行控制信息和所述第二上行控制信息作为整体进行编码。
在一种可能的设计中,在生成所述承载所述上行控制信息的信号过程中,对所述第一上行控制信息和所述第二上行控制信息分别进行独立编码。
在一种可能的设计中,所述方法还包括:根据所述上行控制信息的类型,获取用于确定所述第二非正交接入参数的配置信息。
第二方面,本申请提供了另一种传输上行信号的方法,包括:
向终端设备发送第一配置信息和第二配置信息;其中,所述第一配置信息包括用于传输上行数据的第一非正交接入参数的信息和用于传输所述上行数据的第一时频资源的信息,所述第二配置信息包括用于在第二视频资源上传输上行控制信息的第二非正交接入参数的信息,其中,所述第一非正交接入参数和所述第二正交接入参数不同,所述第一时频资源和所述第二时频资源存在重叠的时频资源;
接收所述终端设备发送的上行信号,其中,所述上行信号包括根据所述第一非正交接入参数生成的承载所述上行数据的信号和根据所述第一非正交接入参数生成的承载所述上行控制信息的信号,所述承载所述上行数据的信号占用所述第一时频资源,所述承载所述上行控制信息的信号占用所述第二时频资源。
在一种可能的设计中,所述第一非正交接入参数和所述第二非正交接入参数包含不同的非正交接入的扩频因子;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的比特组到符号组的映射规则;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的交织参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的加扰参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的发送功率。
在一种可能的设计中,所述第二配置信息还包括所述第二时频资源的信息。
在一种可能的设计中,所述第二时频资源是根据所述上行控制信息的类型确定的。
在一种可能的设计中,所述第二非正交接入参数是根据所述上行控制信息的类型确定的。
在一种可能的设计中,所述上行控制信息包含第一上行控制信息和第二上行控制信息;
所述用于传输上行控制信息的第二非正交接入参数的信息包括:用于传输所述第一上行控制信息的第二非正交接入参数的信息和用于传输所述第二上行控制信息的第二非正交接入参数的信息。
在一种可能的设计中,所述第二时频资源包括:用于传输所述第一上行控制信息的第二时频资源和用于传输所述第二上行控制信息的第二时频资源。
第三方面,本申请实施例提供了一种通信装置,包括:
生成单元,用于根据第一非正交接入参数生成承载上行数据的信号,其中,所述承载上行数据的信号占用第一时频资源;
所述生成单元,用于根据第二非正交接入参数生成承载上行控制信息的信号,其中,所述承载上行控制信息的信号占用第二时频资源,其中,所述第一时频资源与所述第二时频资源之间存在重叠的时频资源;所述第一非正交接入参数和所述第二非正交接入参数不同;
发送单元,用于发送所述承载上行数据的信号和承载上行控制信息的信号。
在一种可能的设计中,所述第一非正交接入参数和所述第二非正交接入参数包含不同的非正交接入的扩频因子;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的比特组到符号组的映射规则;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的交织参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的加扰参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的发送功率。
在一种可能的设计中,所述通信装置还包括:
第一确定单元,用于根据所述上行控制信息的类型,确定所述第二非正交接入参数。
在一种可能的设计中,所述通信装置还包括:
第二确定单元,用于根据所述上行控制信息的类型,确定所述第二时频资源。
在一种可能的设计中,所述上行控制信息包含第一上行控制信息和第二上行控制信息;
相应地,所述第一确定单元具体用于:
根据所述第一上行控制信息的类型,确定所述第一上行控制信息对应的第二非正交接入参数;
根据所述第二上行控制信息的类型,确定所述第二上行控制信息对应的第二非正交接入参数。
在一种可能的设计中,所述第二确定单元具体用于:
根据所述第一上行控制信息的类型,确定承载所述第一上行控制信息的信号所占用的第二时频资源;
根据所述第二上行控制信息的类型,确定承载所述第二的上行控制信息的信号所占用的第二时频资源。
在一种可能的设计中,在所述生成单元生成所述承载所述上行控制信息的信号过程中,将所述第一上行控制信息和所述第二上行控制信息作为整体进行编码。
在一种可能的设计中,在所述生成单元生成所述承载所述上行控制信息的信号过程中, 对所述第一上行控制信息和所述第二上行控制信息分别进行独立编码。
在一种可能的设计中,所述通信装置还包括:
获取单元,用于根据所述上行控制信息的类型,获取用于确定所述第二非正交接入参数的配置信息。
第四方面,本申请提供了另一种通信装置,包括:
第一发送单元,用于向终端设备发送第一配置信息和第二配置信息;其中,所述第一配置信息包括用于传输上行数据的第一非正交接入参数的信息和用于传输所述上行数据的第一时频资源的信息,所述第二配置信息包括用于在第二视频资源上传输上行控制信息的第二非正交接入参数的信息,其中,所述第一非正交接入参数和所述第二正交接入参数不同,所述第一时频资源和所述第二时频资源存在重叠的时频资源;
接收单元,用于接收所述终端设备发送的上行信号,其中,所述上行信号包括根据所述第一非正交接入参数生成的承载所述上行数据的信号和根据所述第一非正交接入参数生成的承载所述上行控制信息的信号,所述承载所述上行数据的信号占用所述第一时频资源,所述承载所述上行控制信息的信号占用所述第二时频资源。
在一种可能的设计中,所述第一非正交接入参数和所述第二非正交接入参数包含不同的非正交接入的扩频因子;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的比特组到符号组的映射规则;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的交织参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的加扰参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的发送功率。
在一种可能的设计中,所述第二配置信息还包括所述第二时频资源的信息。
在一种可能的设计中,所述第二时频资源是根据所述上行控制信息的类型确定的。
在一种可能的设计中,所述第二非正交接入参数是根据所述上行控制信息的类型确定的。
在一种可能的设计中,所述上行控制信息包含第一上行控制信息和第二上行控制信息;
所述用于传输上行控制信息的第二非正交接入参数的信息包括:用于传输所述第一上行控制信息的第二非正交接入参数的信息和用于传输所述第二上行控制信息的第二非正交接入参数的信息。
在一种可能的设计中,所述第二时频资源包括:用于传输所述第一上行控制信息的第二时频资源和用于传输所述第二上行控制信息的第二时频资源。
第五方面,本申请提供了另一种通信装置,包括:
用于发送信号的发送器与;
调用可执行程序代码用于执行如第一方面所述的全部或者部分方法的处理器。
第六方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质包括程序指令,所述程序指令在计算机上运行时,使所述计算机执行如第一方面所述的全部或者部分方法。
第七方面,本申请实施例提供了另一种通信装置,包括:
用于发送信号的发送器与;
调用可执行程序代码用于执行如第二方面所述的全部或者部分方法的处理器。
第八方面,本申请实施例提供了另一种计算机可读存储介质,所述计算机可读存储介质包括程序指令,所述程序指令在计算机上运行时,使所述计算机执行如第二方面所述的全部或者部分方法。
可以看出,在本申请实施例的方案中,网络设备向终端设备发送第一配置信息和第二配置信息,该第一配置信息包括用于传输上行数据的第一非正交接入参数的信息和用于传输上行数据的第一时频资源的信息,第二配置信息包括用于在第二时频资源传输上行控制信息的第二非正交接入参数的信息,其中,第一非正交接入参数和第二非正交接入参数不同且第一时频资源和第二时频资源存在重叠的时频资源,终端设备根据第一非正交接入参数和第二非正交接入参数分别生成承载上行数据的信号和承载上行控制信息的信号,并分别在第一时频资源和第二时频资源上发送承载上行数据的信号和承载上行控制信息的信号至网络设备。与现有技术相比,终端设备通过非正交复用的方式向网络设备发送承载上行控制信息的信号和承载上行数据的信号,有利于提高时频资源的利用率。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种应用场景示意图;
图2为本申请实施例提供的一种传输上行信号的方法流程示意图;
图3为本申请实施例提供的一种上行数据/上行控制信息处理流程示意图;
图4为本申请实施例提供的另一种传输上行信号的方法流程示意图;
图5为本申请实施例提供的一种传输上行信号的示意图;
图6为本申请实施例提供的另一种传输上行信号的示意图;
图7为本申请实施例提供的另一种传输上行信号的示意图;
图8为本申请实施例提供的另一种传输上行信号的示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的另一种通信装置的结构示意图;
图11为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面结合附图对本申请的实施例进行描述。
请参见图1,图1为本发明实施例提供的一种应用场景示意图。如图1所示,该应用场景示意图包括终端设备101和网络设备102。
其中,上述网络设备102与上述终端设备101采用无线方式通信,为了表示方便,图1中仅以闪电型线条表示。图1所示的应用场景具体可以应用在5G通信系统或后续演进的通信系统中,也可以是5G通信系统与其它不同制式通信系统的交互中。
上述网络设备102可为宏网络设备、微网络设备、微微网络设备、分布式网络设备或者其他类型的网络设备。网络设备102,具体可以是,例如,无线保真(wireless-fidelity,Wi-Fi)的接入点、下一代通信的基站,如5G的gNB或小站、微站,传输接收点(transmission reception point,TRP),也可以是2G、3G和4G中的基站,还可以是中继站、接入点、车载设备等。
上述终端设备101可以是用户设备(User Equipment,UE),即一种向用户提供语音和/或数据连通性的设备,还可以是具有无线连接功能的手持式设备或车载设备等。常见的终端设备包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、物联网设备,可穿戴设备(例如,智能手表、智能手环、计步器)等。
上述网络设备102向终端设备发送向该终端设备101发送第一配置信息和第二配置信息。第一配置信息包括用于传输上行数据的第一非正交接入参数的信息和用于传输上行数据的第一时频资源的信息,第二配置信息包括用于在第二时频资源上传输上行控制信息的第二非正交接入参数的信息;上述终端设备101根据第一非正交接入参数和第二非正交接入参数分别生成承载上行数据的信号和承载上行控制信息的信号,承载上行数据的信号占用上述第一时频资源,承载上行控制信息的信号占用上述第二时频资源,该第一时频资源和第二时频资源之间存在重叠的时频资源;上述终端设备101在第一时频资源上将承载上行数据的信号发送至上述网络设备102,并在第二时频资源上将承载上行控制信息的信号发送至上述网络设备103,该网络设备102接收承载上行数据的信号和承载上行控制信息的信号。
参见图2,图2为本申请实施例提供的一种传输上行信号的方法流程示意图。如图2所示,该方法包括:
S201、终端设备根据第一非正交接入参数生成承载上行数据的信号,其中,所述承载上行数据的信号占用第一时频资源。
其中,上述第一非正交接入参数包括编码参数、扩频因子、比特组到符号组的映射规则、加扰参数、交织参数和发送功率中的一种或者多种。
S202、终端设备根据第二非正交接入参数生成承载上行控制信息的信号,其中,所述承载上行控制信息的信号占用第二时频资源。
其中,上述第一时频资源与上述第二时频资源之间存在重叠的时频资源。具体地,该第一时频资源与上述第二时频资源存在部分重叠的时频资源,或者上述第一时频资源和上述第二时频资源完全相同,或者上述第一时频资源包含上述第二时频资源。
在一种实施例中,上述第一时频资源与上述第二时频资源不存在重叠的时频资源。
其中,上述第二非正交接入参数包括编码参数、扩频因子、比特组到符号组的映射规则、加扰参数、交织参数和发送功率。
具体地,参见图3,图3为本申请实施例提供的一种上行数据/上行控制信息处理流程 示意图。如图3所示,对于上行数据,上述终端设备根据上述第一非正交接入参数中的编码参数所指示的信道编码方式对上行数据分别进行信道编码,以得到第一比特流,该第一比特流为二进制数据,上述信道编码方式可以是Turbo码,或者低密度奇偶校验(low density parity check,LDPC)码,或者极性(Polar)码等等。上述终端设备根据上述第一非正交接入参数中的加扰参数生成二进制加扰序列,然后根据该二进制加扰序列和上述第一非正交接入参数中的交织参数所指示的交织方式分别对第一比特流进行比特加扰操作和比特交织操作,得到第二比特流,且对比特加扰操作和比特交织操作的顺序不作限定,可以是先进行比特加扰操作,后进行比特交织操作;还可是先进行比特交织操作,后进行比特加扰操作。比特加扰操作是根据加扰序列对第一比特流进行异或运算,比特交织操作是改变第一比特流中比特的排列顺序。上述终端设备根据上述第一非正交接入参数中的比特组到符号组的映射规则对第二比特流进行符号映射,对第二比特流进行分组,并将每组比特映射为M个符号,得到第一符号序列。该M为第一非正交接入参数中的扩频因子。
举例说明,对于经信道编码、比特交织和比特加扰中至少一个操作得到的待发送的比特流B,上述终端设备将该比特流B分为多组,然后将每组比特映射为N个符号,N即称为扩频因子。N个符号中的每个符号的取值均为复数。其中,每组比特有m个比特,其取值有2m种。比特组到符号组的映射方式有两种:
1、通过上述2m种取值与1个复数符号的对应关系表,将每组比特的m个比特映射为1个复数符号,再将该复数符号与一个长度为N的扩频码相乘,得到N个符号。此映射方式可见于,例如,多用户共享访问(multi-user shared access,MUSA)技术。
2、通过上述2m种取值与N个复数符号的对应关系表,直接将每组比特的m个比特映射为N个复数符号。其中,每组比特中的m个比特与N个复数符号的关系可以是非线性关系,该N个复数符号中可以包含多个零。此映射方式可见于,例如,稀疏编码多址(sparse coded multiple access,SCMA)技术。
上述终端设备根据第一非正交接入参数中的加扰参数生成复数加扰序列,根据该复数加扰序列和第一非正交接入参数中的交织参数所指示的交织方式分别对上述第一符号序列进行符号加扰操作,得到第二符号序列。符号加扰操作是将复数加扰序列与第一符号序列进行相乘。上述终端设备根据上述第一非正交接入参数中的发送功率将第二符号序列映射到第一时频资源上,以得到承载上行数据的信号,将该承载上行数据的信号发送至网络设备。
可选地,在进行符号加扰操作之前或者进行符号加扰操作之后,上述终端设备对上述第一符号序列进行符号交织操作,符号交织操作是改变第一符号序列的排列顺序。按照图3所示的过程,上述终端设备根据上述第二非正交接入参数中编码参数所指示的信道编码方式、根据加扰参数生成的加扰序列、交织参数所指示的交织方式、比特组到符号组的映射规则和扩频因子将上述上行控制信息转换成第二符号序列,然后根据第二非正交接入参数中的发送功率将该第二符号序列映射到第二时频资源上,得到承载上述上行控制信息的信号;将该承载上述上行控制信息的信号发送至网络设备。
需要说明的是,上述终端设备对上述上行数据或上述上行控制信息执行图3所示的方法的过程中,在对上述第二符号序列进行资源映射操作后,得到上述承载上述上行数据的 信号或者上述承载上述上行控制信息的信号。
其中,上述第一非正交接入参数和上述第二非正交接入参数不同包括:
上述第一非正交接入参数和上述第二非正交接入参数包含不同的非正交接入的扩频因子,和/或;
上述第一非正交接入参数和上述第二非正交接入参数包含不同的比特组到符号组的映射规则,和/或;
上述第一非正交接入参数和上述第二非正交接入参数包含不同的交织参数,和/或;
上述第一非正交接入参数和所述第二非正交接入参数包含不同的加扰参数,和/或;
上述第一非正交接入参数和所述第二非正交接入参数包含不同的发送功率。
具体地,上述终端设备对上行数据和上行控制信息进行扩频操作时采用不同的扩频因子;和/或,进行交织操作时采用不同的交织方式,和/或进行加扰操作时采用不同的加扰序列/复数加扰序列,和/或进行符号映射时采用不同的比特组到符号组的映射规则,和/或在将承载上行数据的信号和承载上行控制信息的信号发送至上述网络设备时采用不同的发送功率。
在一种实施例中,上述终端设备对上行数据和上行控制信息进行扩频操作时采用相同的扩频因子;和/或,进行交织操作时采用相同的交织方式,和/或进行加扰操作时采用相同的加扰序列/复数加扰序列,和/或进行符号映射时采用相同的比特组到符号组的映射规则,和/或在将承载上行数据的信号和承载上行控制信息的信号发送至上述网络设备时采用相同的发送功率。
需要指出的是,上述终端设备对上行数据和上行控制信息进行扩频操作时采用的扩频因子、进行交织操作是采用的交织方式、进行加扰操作时采用的加扰序列/复数加扰序列、进行符号映射时采用的比特组到符号组的映射规则和将承载上行数据的信号和承载上行控制信息的信号发送至上述网络设备采用的发送功率中至少有一种是不同的。
在一种实施例中,所述方法还包括:
根据所述上行控制信息的类型,确定所述第二非正交接入参数。
其中,上述上行控制信息包括信道质量指示(channel quality indicator,CQI)、秩指示(rank indicator,RI)、预编码矩阵指示(precoding matrix indicator,PMI)、调度请求(scheduling request,SR)和混合自动重传请求确认(hybird automatic repeat request acknowledgement,HARQ-ACK)等信息中的一种或者多种。
一种实现方式中,所述上行控制信息包含第一上行控制信息和第二上行控制信息;
相应地,所述根据所述上行控制信息的类型,确定第二非正交接入参数包括:
根据所述第一上行控制信息的类型,确定所述第一上行控制信息对应的第二非正交接入参数;
根据所述第二上行控制信息的类型,确定所述第二上行控制信息对应的第二非正交接入参数。
其中,上述第一上行控制信息包括CQI、RI、PMI、SR和HARQ-ACK中的任意一种或者多种,上述第二上行控制信息包括CQI、RI、PMI、SR和HARQ-ACK中的任意一种或者多种,且上述第一上行控制信息包含的信息均与上述第二上行控制信息包含的信息不 相同。
其中,上述第一上行控制信息对应的第二非正交接入参数与上述第二上行控制信息对应的第二非正交接入参数不同。具体地,上述第一上行控制信息对应的第二非正交接入参数和第二上行控制信息对应的第二非正交接入参数包含不同的非正交接入的扩频因子,和/或;第一非正交接入参数和所述第二非正交接入参数包含不同的比特组到符号组的映射规则,和/或;上述第一上行控制信息对应的第二非正交接入参数和上述第二上行控制信息对应的第二非正交接入参数包含不同的交织参数,和/或;上述第一上行控制信息对应的第二非正交接入参数和上述第二上行控制信息对应的第二非正交接入参数包含不同的加扰参数,和/或;上述第一上行控制信息对应的第二非正交接入参数和上述第二上行控制信息对应的第二非正交接入参数包含不同的发送功率。
在一种实施例中,所述方法还包括:
根据所述上行控制信息的类型,确定所述第二时频资源。
在一种实现方式中,所述根据所述上行控制信息的类型,确定所述第二时频资源包括:
根据所述第一上行控制信息的类型,确定承载所述第一上行控制信息的信号所占用的第二时频资源;
根据所述第二上行控制信息的类型,确定承载所述第二的上行控制信息的信号所占用的第二时频资源。
其中,承载上述第一上行控制信息的信号所占用的第二时频资源与承载上述第二上行控制信息的信号所占用的第二时频资源存在重叠的时频资源。
承载上述第一上行控制信息的信号所占用的第二时频资源与承载上述第二上行控制信息的信号所占用的第二时频资源存在部分重叠的时频资源,或者承载上述第一上行控制信息的信号所占用的第二时频资源与承载上述第二上行控制信息的信号所占用的第二时频资源完全相同,或者承载上述第一上行控制信息的信号所占用的第二时频资源包含承载上述第二上行控制信息的信号所占用的第二时频资源。
在一种实施例中,在生成所述承载所述上行控制信息的信号过程中,将所述第一上行控制信息和所述第二上行控制信息作为整体进行编码。
在一种实施例中,在生成所述承载所述上行控制信息的信号过程中,对所述第一上行控制信息和所述第二上行控制信息分别进行独立编码。
进一步,上述上行控制信息还包括第三上行控制信息,该第三上行控制信息包括CQI、RI、PMI、SR和HARQ-ACK中的任意一种或多种,且该第三上行控制信息均与上述第一上行控制信息包含的信息均和上述第二上行控制信息包含的信息均不相同。上述终端设备根据所述第三上行控制信息的类型,确定所述第三上行控制信息对应的第二非正交接入参数和确定承载所述第三的上行控制信息的信号所占用的第二时频资源。
其中,上述第三上行控制信息对应的第二非正交接入参数与上述第一上行控制信息对应的第二非正交接入参数和上述第二上行控制信息对应的第二非正交接入参数均不同,或者上述第三上行控制信息对应的第二非正交接入参数与上述第一上行控制信息对应的第二非正交接入参数不同,与上述第二上行控制信息对应的第二非正交接入参数相同,或者上述第三上行控制信息对应的第二非正交接入参数与上述第二上行控制信息对应的第二非正 交接入参数不同,与上述第一上行控制信息对应的第二非正交接入参数相同。
承载上述第三上行控制信息的信号所占用的第二时频资源与承载上述第一上行控制信息的信号所占用的第二时频资源和承载上述第二上行控制信息的信号所占用的第二时频资源均存在部分重叠的时频资源,或者承载上述第三上行控制信息的信号所占用的第二时频资源与承载上述第一上行控制信息的信号所占用的第二时频资源存在部分重叠的时频资源,与承载上述第二上行控制信息的信号所占用的第二时频资源不存在重叠的时频资源,或者承载上述第三上行控制信息的信号所占用的第二时频资源与承载上述第二上行控制信息的信号所占用的第二时频资源存在部分重叠的时频资源,与承载上述第一上行控制信息的信号所占用的第二时频资源不存在重叠的时频资源,或者承载上述第三上行控制信息的信号所占用的第二时频资源与承载上述第一上行控制信息的信号所占用的第二时频资源和承载上述第二上行控制信息的信号所占用的第二时频资源均不存在重叠的时频资源,或者承载上述第三上行控制信息的信号所占用的第二时频资源包含承载上述第一上行控制信息的信号所占用的第二时频资源和承载上述第二上行控制信息的信号所占用的第二时频资源。
在生成承载上述上行控制信息的信号的过程中,上述终端设备将上述第一上行控制信息、上述第二上行控制信息和上述第三上行控制信息作为整体进行编码,或者;
上述终端设备对上述第一上行控制信息、上述第二上行控制信息和上述第三上行控制信息分别进行独立编码。
在一种实施例中,所述方法还包括:
根据所述上行控制信息的类型,获取用于确定所述第二非正交接入参数的配置信息。
其中,上述终端设备在向上述网路设备发送上行控制信息,该终端设备需要获取配置信息,该配置信息包括上述第二非正交接入参数。该配置信息可以是上述网络设备向上述终端发送的,可以是上述终端设备根据其与上述网络设备之间的通信协议确定的。
需要说明的是,对于编码、比特交织、比特加扰、符号映射、符号加扰和符号交织这些操作,当非正交接入参数未指明其中任意一个操作的具体参数时,上述终端设备对于该操作采用默认的方式。比如上述非正交接入参数包括编码参数、扩频因子和交织参数时,上述终端设备根据编码参数所指示的信道编码方式、默认的比特组到符号组的映射规则、扩频因子、默认的加扰序列、默认的复数加扰序列和交织参数所指示的交织方式对上述上行控制信息或者上行数据进行编码、比特交织、比特加扰和符号映射、符号加扰和符号交织,和根据默认的发送功率进行资源映射,以得到承载上行控制信息的信号或者承载上行数据的信号,其中,映射的资源为默认的时频资源。上述终端设备发送该承载上行控制信息的信号或者承载上行数据的信号至上述网络设备。
S203、终端设备发送所述承载上行数据的信号和承载上行控制信息的信号。
可以看出,在本申请实施例的方案中,网络设备向终端设备发送第一配置信息和第二配置信息,该第一配置信息包括用于传输上行数据的第一非正交接入参数的信息和用于传输上行数据的第一时频资源的信息,第二配置信息包括用于在第二时频资源上传输上行控制信息的第二非正交接入参数的信息,其中,第一非正交接入参数和第二非正交接入参数不同且第一时频资源和第二时频资源存在重叠的时频资源,终端设备根据第一非正交接入 参数和第二非正交接入参数分别生成承载上行数据的信号和承载上行控制信息的信号,并分别在第一时频资源和第二时频资源上发送承载上行数据的信号和承载上行控制信息的信号至网络设备。与现有技术相比,终端设备通过非正交复用的方式向网络设备发送承载上行控制信息的信号和承载上行数据的信号,有利于提高时频资源的利用率。
请参见图4,图4为本申请实施例提供的一种传输上行信号的方法流程示意图。如图4所示,该方法包括:
S401、网络设备向终端设备发送第一配置信息和第二配置信息;其中,所述第一配置信息包括用于传输上行数据的第一非正交接入参数的信息和用于传输所述上行数据的第一时频资源的信息,所述第二配置信息包括用于传输上行控制信息的第二非正交接入参数的信息,其中,所述第一非正交接入参数和所述第二正交接入参数不同,
在一种实施例中,上述第二配置信息还包括用于传输上述上行控制信息的第二时频资源的信息,该第二时频资源和上述第二时频资源存在重叠的时频资源。
在一种实施例中,上述网络设备根据其与终端设备遵循的协议确定用于传输上述上行控制信息的第二时频资源的信息,该第二时频资源与上述第一时频资源存在重叠的时频资源。例如,协议规定了调度资源(例如,第一时频资源)中某些指定的资源是用来发送上行控制信息的。
其中,所述第一非正交接入参数和所述第二非正交接入参数包含不同的非正交接入的扩频因子;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的比特组到符号组的映射规则;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的交织参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的加扰参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的发送功率。
其中,上述交织参数用于对上述上行数据或者上述上行控制信息进行交织时所采用的交织方式;上述加扰参数用于生成对上述上行数据或者上述上行控制信息进行加扰时所采用的加扰序列或者复数加扰序列。
具体地,上述第一时频资源和上述第二时频资源存在重叠的时频资源包括:该第一时频资源和第二时频资源之间存在部分重叠的时频资源,或者上述第一时频资源与第二时频资源完全相同,或者上述第一时频资源包含上述第二时频资源。
在一种实施例中,上述第二信息还包括第二时频资源的信息。
其中,上述第二时频资源是根据上述上行控制信息的类型确定的。
其中,上述上行控制信息包括CQI、RI、PMI、SR和HARQ-ACK等信息中的一种或者多种。
其中,上述第二非正交接入参数是根据上述上行控制信息的类型确定的。
进一步地,上述上行控制信息包含第一上行控制信息和第二上行控制信息,上述用于传输上行控制信息的第二非正交接入参数的信息包括:用于传输上述第一上行控制信息的第二非正交接入参数的信息和用于传输上述第二上行控制信息的第二非正交接入参数的信 息。
其中,上述第一上行控制信息包括CQI、RI、PMI、SR和HARQ-ACK中的任意一种或者多种,上述第二上行控制信息包括CQI、RI、PMI、SR和HARQ-ACK中的任意一种或者多种,且上述第一上行控制信息包含的信息均与上述第二上行控制信息包含的信息不相同。
上述第一上行控制信息的第二非正交接入参数和上述第二上行控制信息的第二非正交接入参数不同。具体地,上述第一上行控制信息的第二非正交接入参数和上述第二上行控制信息的第二非正交接入参数包含不同的非正交接入的扩频因子,和/或上述第一上行控制信息的第二非正交接入参数和上述第二上行控制信息的第二非正交接入参数包含不同的比特组到符号组的映射规则,和/或;上述第一上行控制信息的第二非正交接入参数和上述第二上行控制信息的第二非正交接入参数包含不同的交织参数,和/或;上述第一上行控制信息的第二非正交接入参数和上述第二上行控制信息的第二非正交接入参数包含不同的加扰参数,和/或;上述第一上行控制信息的第二非正交接入参数和上述第二上行控制信息的第二非正交接入参数包含不同的发送功率。
进一步地,上述第二时频资源包括:用于传输上述第一上行控制信息的第二时频资源和用于传输上述第二上行控制信息的第二时频资源。
S402、网络设备接收所述终端设备发送的上行信号,其中,所述上行信号包括根据所述第一非正交接入参数生成的承载所述上行数据的信号和根据所述第一非正交接入参数生成的承载所述上行控制信息的信号,所述承载所述上行数据的信号占用所述第一时频资源,所述承载所述上行控制信息的信号占用所述第二时频资源。
其中,上述网络设备接收到上述终端设备发送的承载上述上行数据的信号和承载上述上行控制信息的信号后,该网络设备根据上述第一非正交接入参数和上述第二非正交接入参数分别对上述承载上述上行数据的信号和上述承载上述上行控制信息的信号进行解操作,该解操作包括解符号交织、解符号加扰、解扩、解符号映射、解比特交织、解比特加扰和解码等操作,以得到上述上行数据和上述上行控制信息。
需要说明的是,对于解符号交织、解符号加扰、解符号映射、解比特加扰、解比特交织和解码这些操作,当非正交接入参数未指明其中任意一个操作的具体参数时,上述网络设备对于该操作采用默认的方式。比如上述非正交接入参数包括编码参数、扩频因子和交织参数时,上述网络设备根据交织参数所指示的交织方式、默认的复数加扰序列、扩频因子、默认的比特组到符号组的映射规则、默认的加扰序列和编码参数所指示的信道编码方式对承载上述上行数据的信号或者承载上述上行控制信息的信号进行解符号交织、解符号加扰、解符号映射、解符号加扰、解符号交织和解码,以得到上述上行数据或者上述上行控制信息。
在一个具体的应用场景中,单个终端设备向网络设备发送上行控制信息和上行数据。该上行控制信息包括CSI和HARQ-ACK。其中,该CSI包括CQI、PMI和RI。
如图5所示,上述上行控制信息包括第一上行控制信息、第二上行控制信息和第三上行控制信息。上述第一上行控制信息包括上述CQI/PMI,上述第二上行控制信息包括上述 RI,上述第三上行控制信息包括上述HARQ-ACK。
上述终端设备接收到网络设备发送的第一配置信息和第二配置信息后、该第一配置信息包括用于传输上行数据的第一非正交接入参数的信息和用于传输上行数据的第一时频资源的信息,上述第二配置信息包括用于传输上行控制信息的第二非正交接入参数的信息和用于传输上行控制信息的第二时频资源的信息。上述用于传输上行控制信息的第二非正交接入参数的信息包括用于传输第一上行控制信息的第二非正交接入参数的信息、用于传输第二上行控制信息的第二非正交接入参数的信息和用于传输第三上行控制信息的第二非正交接入参数的信息,上述用于传输上行控制信息的第二时频资源的信息包括用于传输第一上行控制信息的第二时频资源的信息、用于传输第二上行控制信息的而第二时频资源的信息和用于传输第三上行控制信息的第二时频资源的信息。上述终端设备从上述第一配置信息中获取用于传输上行数据的第一非正交接入参数和用于传输上行数据的第一时频资源,并根据上行控制信息的类型从上述第二配置信息中获取用于传输第一上行控制信息的第二非正交接入参数和用于传输第一上行控制信息的第二时频资源、用于传输第二上行控制信息的第二非正交接入参数和用于传输第二上行控制信息的第二时频资源,和用于传输第三上行控制信息的第二非正交接入参数和用于传输第三上行控制信息的第二时频资源。
上述终端设备根据上述上行数据的第一非正交接入参数对该上行数据进行编码、比特交织、比特加扰、符号映射、符号加扰和符号交织,以得到承载上述第一上行数据的信号。上述终端设备根据上述第一上行控制信息的第二非正交接入参数、上述第二上行控制信息的第二非正交接入参数和上述第三上行控制信息的第二非正交接入参数分别对上述第一上行控制信息、上述第二上行控制信息和上述第三上行控制信息进行编码、比特交织、比特加扰、符号映射、符号加扰和符号交织,以得到承载上述第一上行控制信息的信号、承载上述第二上行控制信息的信号和承载上述第三上行控制信息的信号。
其中,上述第一上行控制信息的第二非正交接入参数、上述第二上行控制信息的第二非正交接入参数和上述第三上行控制信息的第二非正交接入参数两两互不相同或者部分相同或者全部相同。
具体地,上述第一上行控制信息的第二非正交接入参数、上述第二上行控制信息的第二非正交接入参数和上述第三上行控制信息的第二非正交接入参数包含不同的扩频因子,和/或;上述第一上行控制信息的第二非正交接入参数、上述第二上行控制信息的第二非正交接入参数和上述第三上行控制信息的第二非正交接入参数包含不同的比特组到符号组的映射规则,和/或;上述第一上行控制信息的第二非正交接入参数、上述第二上行控制信息的第二非正交接入参数和上述第三上行控制信息的第二非正交接入参数包含不同的交织参数,和/或;上述第一上行控制信息的第二非正交接入参数、上述第二上行控制信息的第二非正交接入参数和上述第三上行控制信息的第二非正交接入参数包含不同的加扰参数,和/或;上述第一上行控制信息的第二非正交接入参数、上述第二上行控制信息的第二非正交接入参数和上述第三上行控制信息的第二非正交接入参数包含不同的发送功率。
换言之,上述终端设备对上述3个上行控制信息分别采用不同的信道编码方式,和/或;对上述3个上行控制信息分别采用不同的比特交织方式,和/或;对上述3个上行控制信息分别采用不同的加扰序列,和/或对上述3个上行控制信息分别采用不同的比特组到符号组 的映射规则;对上述3个上行控制信息分别采用不同的符号交织方式,和/或;对上述3个上行控制信息分别采用不同的复数加扰序列,和/或;对上述3个上行控制信息分别采用不同的扩频因子。上述终端设备将承载上述第一上行控制信息的信号、承载上述第二上行控制信息的信号和承载上述第三上行控制信息的信号分别映射到传输上述第一上行信息的第二时频资源、传输上述第二上行信息的第二时频资源和传输上述第三上行信息的第二时频资源上以不同的发送功率发送至上述网络设备。
同理,上述终端设备将承载上述数据的信号映射到上述用于传输上述上行数据的第一时频资源上,以第一非正交接入参数中的发送功率发送至上述网络设备。
如图5所示,用于传输上述上行数据的第一时频资源包含用于传输上述第一上行控制信息的第二时频资源、用于传输上述第二上行控制信息的第二时频资源和用于传输上述第三上行控制信息的第二时频资;且用于传输上述第一上行控制信息的第二时频资源、用于传输上述第二上行控制信息的第二时频资源和用于传输上述第三上行控制信息的第二时频资两两之间不存在重叠的时频资源。
再举例说明,如图6所示,用于传输上述上行数据的第一时频资源与用于传输上述第三上行控制信息的第二时频资源相同;用于传输上述第三上行控制信息的第二时频资包含用于传输上述第一上行控制信息的第二时频资源与用于传输上述第二上行控制信息的第二时频资源,且用于传输上述第一上行控制信息的第二时频资源与用于传输上述第二上行控制信息的第二时频资源之间不存在重叠的时频资源。
上述网络设备接收到上述承载上述第一上行控制信息的信号、承载上述第二上行控制信息的信号和承载上述第三上行控制信息的信号后,分别根据对应的第二非正交接入参数中的交织参数确定的交织方式、加扰参数生成的加扰序列和复数加扰序列、比特组到符号组的映射规则、扩频因子、和编码参数所指示的信道编码方式分别对上述承载上述第一上行控制信息的信号、承载上述第二上行控制信息的信号和承载上述第三上行控制信息的信号进行解符号交织、解符号加扰、解扩、解符号映射、解比特交织、解比特加扰和解码操作,以得到上述第一上行控制信息、第二上行控制信息和第三上行控制信息。
同理,上述网络设备接收到承载上述上行数据的信号后,根据用于传输上述上行数据的第一非正交接入参数中对承载上述上行数据的信号进行解符号交织、解符号加扰、解扩、解符号映射、解比特交织、解比特加扰和解码,以得到上述上行数据。
在一个具体的应用场景中,多个终端设备向网络设备传输上行控制信息和上行数据。该上行控制信息包括CSI和HARQ-ACK。其中,上述CSI包括上述控制信息块包括CQI、PMI和RI。
终端设备1的上行控制信息包括第一上行控制信息、第二上行控制信息和第三上行控制信息。上述第一上行控制信息包括CQI/PMI,上述第二上行控制信息包括RI,上述第三上行控制信息包括HARQ-ACK。终端设备2的上行控制信息包括第四上行控制信息、第五上行控制信息和第六上行控制信息。上述第四上行控制信息包括CQI/PMI,上述第五上行控制信息包括RI,上述第六上行控制信息包括HARQ-ACK。
上述终端设备1接收到上述网络设备发送的的第一配置信息和第二配置信息后、该第 一配置信息包括用于传输终端设备1的上行数据的第一非正交接入参数的信息和用于传输终端设备1的上行数据的第一时频资源的信息,上述第二配置信息包括用于传输终端设备1的上行控制信息的第二非正交接入参数的信息和用于传输终端设备1的上行控制信息的第二时频资源的信息。上述用于传输终端设备1的上行控制信息的第二非正交接入参数的信息包括用于传输第一上行控制信息的第二非正交接入参数的信息、用于传输第二上行控制信息的第二非正交接入参数的信息和用于传输第三上行控制信息的第二非正交接入参数的信息,上述用于传输终端设备1的上行控制信息的第二时频资源的信息包括用于传输第一上行控制信息的第二时频资源的信息、用于传输第二上行控制信息的而第二时频资源的信息和用于传输第三上行控制信息的第二时频资源的信息。上述终端设备1从上述第一配置信息中获取用于传输终端设备1的上行数据的第一非正交接入参数和用于传输终端设备1的上行数据的第一时频资源,并根据输终端设备1的上行控制信息的类型从上述第二配置信息中获取用于传输第一上行控制信息的第二非正交接入参数和用于传输第一上行控制信息的第二时频资源、用于传输第二上行控制信息的第二非正交接入参数和用于传输第二上行控制信息的第二时频资源,和用于传输第三上行控制信息的第二非正交接入参数和用于传输第三上行控制信息的第二时频资源。
同理,上述终端设备2接收上述网络设备发送的第三配置信息和第四配置信息。该第三配置信息包括用于传输终端设备2的上行数据的第一非正交接入参数的信息和用于传输终端设备2的上行数据的第一时频资源的信息,上述第四配置信息包括用于传输终端设备2的上行控制信息的第二非正交接入参数的信息和用于传输终端设备2的上行控制信息的第二时频资源的信息。上述用于传输终端设备2的上行控制信息的第二非正交接入参数的信息包括用于传输第四上行控制信息的第二非正交接入参数的信息、用于传输第五上行控制信息的第二非正交接入参数的信息和用于传输第六上行控制信息的第二非正交接入参数的信息,上述用于传输终端设备2的上行控制信息的第二时频资源的信息包括用于传输第四上行控制信息的第二时频资源的信息、用于传输第五上行控制信息的而第二时频资源的信息和用于传输第六上行控制信息的第二时频资源的信息。上述终端设备2从上述第三配置信息中获取用于传输终端设备2的上行数据的第一非正交接入参数和用于传输终端设备2的上行数据的第一时频资源,并根据终端设备2的上行控制信息的类型从上述第二配置信息中获取用于传输第四上行控制信息的第二非正交接入参数和用于传输第四上行控制信息的第二时频资源、用于传输第五上行控制信息的第二非正交接入参数和用于传输第五上行控制信息的第二时频资源,和用于传输第六上行控制信息的第二非正交接入参数和用于传输第六上行控制信息的第二时频资源。
上述终端设备1根据其上行数据对应的第一非正交接入参数对该上行数据进行信道编码、比特交织、比特加扰、符号映射、扩频、符号加扰和符号交织操作,以得到承载终端设备1的上行数据的信号,并根据第一上行控制信息对应的第二非正交接入参数、第二上行控制信息对应的第二非正交接入参数和第三上行控制信息对应的第二非正交接入参数分别对第一上行控制信息、第二上行控制信息和第三上行控制信息进行信道编码、比特交织、比特加扰、符号映射、扩频、符号加扰和符号交织操作,以得到承载上述第一上行控制信息的信号、承载上述第二上行控制信息的信号和承载上述第三上行控制信息的信号。同理, 上述终端设备2根据其上行数据对应的第一非正交接入参数对该上行数据进行信道编码、比特交织、比特加扰、符号映射、扩频、符号加扰和符号交织操作,以得到承载终端设备2的上行数据的信号,并根据第四上行控制信息对应的第二非正交接入参数、第五上行控制信息对应的第二非正交接入参数和第六上行控制信息对应的第二非正交接入参数分别对第四上行控制信息、第五上行控制信息和第六上行控制信息进行信道编码、比特交织、比特加扰、符号映射、扩频、符号加扰和符号交织操作,以得到承载上述第四上行控制信息的信号、承载上述第五上行控制信息的信号和承载上述第六上行控制信息的信号。
其中,第一上行控制信息对应的第二非正交接入参数、第二上行控制信息对应的第二非正交接入参数、第三上行控制信息对应的第二非正交接入参数、第四上行控制信息对应的第二非正交接入参数、第五上行控制信息对应的第二非正交接入参数和第六上行控制信息对应的第二非正交接入参数两两互不相同或者部分相同或者全部相同,具体可参见上述相关说明。
上述终端设备1将承载上述第一上行控制信息的信号、承载上述第二上行控制信息的信号和承载上述第三上行控制信息的信号分别映射到传输上述第一上行信息的第二时频资源、传输上述第二上行信息的第二时频资源和传输上述第三上行信息的第二时频资源上以不同的发送功率发送至上述网络设备。同理,上述终端设备2将承载上述第四上行控制信息的信号、承载上述第五上行控制信息的信号和承载上述第轮流上行控制信息的信号分别映射到传输上述第四上行信息的第二时频资源、传输上述第五上行信息的第二时频资源和传输上述第六上行信息的第二时频资源上以不同的发送功率发送至上述网络设备。
如图7所示,用于传输上述终端设备1的上行数据的第一时频资源包含用于传输上述第一上行控制信息的第二时频资源、用于传输上述第二上行控制信息的第二时频资源和用于传输上述第三上行控制信息的第二时频资,且用于传输上述第一上行控制信息的第二时频资源、用于传输上述第二上行控制信息的第二时频资源和用于传输上述第三上行控制信息的第二时频资源两两之间不存在重叠的时频资源。用于传输上述终端设备2的上行数据的第一时频资源包含用于传输上述第四上行控制信息的第二时频资源、用于传输上述第五上行控制信息的第二时频资源和用于传输上述第六上行控制信息的第二时频资,且用于传输上述第四上行控制信息的第二时频资源、用于传输上述第五上行控制信息的第二时频资源和用于传输上述第六上行控制信息的第二时频资源两两之间不存在重叠的时频资源。
用于传输上述第一上行控制信息的第二时频资源与传输上述第四上行控制信息的第二时频资源存在重叠的时频资源,与用于传输上述第五上行控制信息的第二时频资源和用于传输上述第六上行控制信息的第二时频资源均不存在相同的时频资源;用于传输上述第二上行控制信息的第二时频资源与传输上述第五上行控制信息的第二时频资源存在重叠的时频资源,与用于传输上述第四上行控制信息的第二时频资源和用于传输上述第六上行控制信息的第二时频资源均不存在相同的时频资源;用于传输上述第三上行控制信息的第二时频资源与传输上述第六上行控制信息的第二时频资源存在重叠的时频资源,用于传输上述第四上行控制信息的第二时频资源和用于传输上述第五上行控制信息的第二时频资源均不存在相同的时频资源。
再举例说明,如图8所示,用于传输上述终端设备1的上行数据的第一时频资源包含 用于传输上述第一上行控制信息的第二时频资源、用于传输上述第二上行控制信息的第二时频资源和用于传输上述第三上行控制信息的第二时频资,且用于传输上述第三上行控制信息的第二时频资源包含用于传输上述第一上行控制信息的第二时频资源和用于传输上述第二上行控制信息的第二时频资源,用于传输上述第一上行控制信息的第二时频资源和用于传输上述第二上行控制信息的第二时频资源两两之间不存在重叠的时频资源。用于传输上述终端设备2的上行数据的第一时频资源包含用于传输上述第四上行控制信息的第二时频资源、用于传输上述第五上行控制信息的第二时频资源和用于传输上述第六上行控制信息的第二时频资,且用于传输上述第六上行控制信息的第二时频资源包含用于传输上述第四上行控制信息的第二时频资源和用于传输上述第五上行控制信息的第二时频资源,用于传输上述第四上行控制信息的第二时频资源和用于传输上述第五上行控制信息的第二时频资源两两之间不存在重叠的时频资源。
用于传输上述第三上行控制信息的第二时频资源与传输上述第六上行控制信息的第二时频资源不存在重叠的时频资源。用于传输终端1的上行数据的第一时频资源可以和用于传输终端设备2的上行数据的第一时频资源相同,用于传输终端1的上行数据的第一时频资源中的一部分资源可以再用于传输终端设备1的上行控制信息,用于传输终端1的上行数据的第一时频资源中的另一部分资源可以再用于传输终端设备2的上行控制信息。
上述网络设备接收到上述承载上述第一上行控制信息的信号、承载上述第二上行控制信息的信号、承载上述第三上行控制信息的信号、承载上述第四上行控制信息的信号、承载上述第五上行控制信息的信号和承载上述第六上行控制信息的信号后,分别根据对应的第二非正交接入参数中的交织参数确定的交织方式、加扰参数生成的加扰序列和复数加扰序列、比特组到符号组的映射规则、扩频因子、和编码参数所指示的信道编码方式分别对上述承载上述第一上行控制信息的信号、承载上述第二上行控制信息的信号和承载上述第三上行控制信息的信号进行解符号交织、解符号加扰、解扩、解符号映射、解比特交织、解比特加扰和解码操作,以得到上述第一上行控制信息、第二上行控制信息、第三上行控制信息、第四上行控制信息、第五上行控制信息和第六上行控制信息。
同理,上述网络设备接收到承载上述终端设备1的上行数据的信号和承载上述终端设备2的上行数据的信号后,根据用于传输上述终端设备1的上行数据的第一非正交接入参数和用于传输上述终端设备2的上行数据的第一非正交接入参数中分别对承载上述终端设备1的上行数据的信号和承载上述终端设备2的上行数据的信号进行解符号交织、解符号加扰、解扩、解符号映射、解比特交织、解比特加扰和解码,以得到上述终端设备1的上行数据和终端设备2的上行数据。
参见图9,图9为本发明实施例提供了一种通信装置的结构示意图。如图9所示,该通信装置900,包括:
生成单元901,用于根据第一非正交接入参数生成承载上行数据的信号,其中,所述承载上行数据的信号占用第一时频资源。
所述生成单元901,用于根据第二非正交接入参数生成承载上行控制信息的信号,其中,所述承载上行控制信息的信号占用第二时频资源,其中,所述第一时频资源与所述第 二时频资源之间存在重叠的时频资源;所述第一非正交接入参数和所述第二非正交接入参数不同。
其中,所述第一非正交接入参数和所述第二非正交接入参数包含不同的非正交接入的扩频因子;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的比特组到符号组的映射规则;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的交织参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的加扰参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的发送功率。
发送单元902,用于发送所述承载上行数据的信号和承载上行控制信息的信号。
在一种实施例中,所述通信装置900还包括:
第一确定单元903,用于根据所述上行控制信息的类型,确定所述第二非正交接入参数。
进一步地,所述上行控制信息包含第一上行控制信息和第二上行控制信息;相应地,所述第一确定单元903具体用于:
根据所述第一上行控制信息的类型,确定所述第一上行控制信息对应的第二非正交接入参数;
根据所述第二上行控制信息的类型,确定所述第二上行控制信息对应的第二非正交接入参数。
在一种实施例中,所述通信装置900还包括:
第一确定单元904,用于根据所述上行控制信息的类型,确定所述第二时频资源。
进一步地,所述第二确定单元904具体用于:
根据所述第一上行控制信息的类型,确定承载所述第一上行控制信息的信号所占用的第二时频资源;
根据所述第二上行控制信息的类型,确定承载所述第二的上行控制信息的信号所占用的第二时频资源。
在一种实施例中,在所述生成单元901生成所述承载所述上行控制信息的信号过程中,将所述第一上行控制信息和所述第二上行控制信息作为整体进行编码。
在一种实施例中,在所述生成单元901生成所述承载所述上行控制信息的信号过程中,对所述第一上行控制信息和所述第二上行控制信息分别进行独立编码。
在一种实施例中,所述通信装置900还包括:
获取单元905,用于根据所述上行控制信息的类型,获取用于确定所述第二非正交接入参数的配置信息。
需要说明的是,上述各单元(生成单元901、发送单元902、第一确定单元903、第二确定单元904和获取单元905)用于执行图2所示的方法的相关步骤。
在本实施例中,通信装置900是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器,集成逻辑电路,和/或其他可以提供上述功能的器件。当上述通信装置为终端设备 时,上述单元可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,以上生成单元901、发送单元902、第一确定单元903、第二确定单元904和获取单元905可通过图11所示的通信装置的处理器1101和通信接口1003来实现。
参见图10,图10为本发明实施例提供了一种通信装置的结构示意图。如图10所示,该终端设备1000,包括:
第一发送单元1001,用于向终端设备发送第一配置信息和第二配置信息;其中,所述第一配置信息包括用于传输上行数据的第一非正交接入参数的信息和用于传输所述上行数据的第一时频资源的信息,所述第二配置信息包括用于在第二时频资源上传输上行控制信息的第二非正交接入参数的信息,其中,所述第一非正交接入参数和所述第二正交接入参数不同,所述第一时频资源和所述第二时频资源存在重叠的时频资源。
接收单元1002,用于接收所述终端设备发送的上行信号,其中,所述上行信号包括根据所述第一非正交接入参数生成的承载所述上行数据的信号和根据所述第一非正交接入参数生成的承载所述上行控制信息的信号,所述承载所述上行数据的信号占用所述第一时频资源,所述承载所述上行控制信息的信号占用所述第二时频资源。
在一种实施例中,所述第一非正交接入参数和所述第二非正交接入参数包含不同的非正交接入的扩频因子;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的比特组到符号组的映射规则;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的交织参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的加扰参数;和/或
所述第一非正交接入参数和所述第二非正交接入参数包含不同的发送功率。
在一种实施例中,所述第二配置信息还包括所述第二时频资源的信息。
进一步地,所述第二时频资源是根据所述上行控制信息的类型确定的。
进一步地,所述第二非正交接入参数根据所述上行控制信息的类型确定的。
具体地,所述上行控制信息包含第一上行控制信息和第二上行控制信息;
所述用于传输上行控制信息的第二非正交接入参数的信息包括:用于传输所述第一上行控制信息的第二非正交接入参数的信息和用于传输所述第二上行控制信息的第二非正交接入参数的信息。
具体地,所述第二时频资源包括:用于传输所述第一上行控制信息的第二时频资源和用于传输所述第二上行控制信息的第二时频资源。
需要说明的是,上述各单元(第一发送单元1001和接收单元1002)用于执行图4所示的方法的相关步骤。
在本实施例中,通信装置1000是以单元的形式来呈现。这里的“单元”可以指ASIC,执行一个或多个软件或固件程序的处理器,集成逻辑电路,和/或其他可以提供上述功能的器件。当上述通信装置1000为网络设备时,上述单元可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外, 以上第一发送单元1001、接收单元1002和第二发送单元1003可通过图11所示的通信装置的处理器1101和通信接口1103来实现。
参见图11,图11为本发明实施例提供了一种通信装置的结构示意图。如图11所示,该通信装置1100包括至少一个处理器1101以及至少一个通信接口1103。所述处理器1101、所述存储器1102和所述通信接口1103通过所述通信总线连接并完成相互间的通信。
处理器1101可以是通用中央处理器(CPU),微处理器,ASIC,或一个或多个用于控制以上方案程序执行的集成电路。
通信接口1103,用于与其他元件、设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网wireless local area networks,WLAN)等。
其中,上述通信装置还包括至少一个存储器1102,该存储器1102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器1102用于存储执行以上方案的应用程序代码,并由处理器1101来控制执行。所述处理器1101用于执行所述存储器1102中存储的应用程序代码。
上述通信装置1100可为终端设备,也可为网络设备。
当上述通信装置1100为终端设备时,上述存储器1102存储的代码用于执行以下方法:
根据第一非正交接入参数生成承载上行数据的信号,其中,所述承载上行数据的信号占用第一时频资源;根据第二非正交接入参数生成承载上行控制信息的信号,其中,所述承载上行控制信息的信号占用第二时频资源,其中,所述第一时频资源与所述第二时频资源之间存在重叠的时频资源;所述第一非正交接入参数和所述第二非正交接入参数不同;发送所述承载上行数据的信号和承载上行控制信息的信号。
当上述通信装置1100为网络设备时,上述存储器1102存储的代码用于执行以下方法:
向终端设备发送第一配置信息和第二配置信息;其中,所述第一配置信息包括用于传输上行数据的第一非正交接入参数的信息和用于传输所述上行数据的第一时频资源的信息,所述第二配置信息包括用于在第二时频资源上传输上行控制信息的第二非正交接入参数的信息,其中,所述第一非正交接入参数和所述第二正交接入参数不同,所述第一时频资源和所述第二时频资源存在重叠的时频资源;接收所述终端设备发送的上行信号,其中,所述上行信号包括根据所述第一非正交接入参数生成的承载所述上行数据的信号和根据所述第一非正交接入参数生成的承载所述上行控制信息的信号,所述承载所述上行控制信息的信号占用第二时频资源。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序, 该程序执行如图2所示实施例的方法的部分或全部步骤。
本发明实施例还提供另一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行如图4所示实施例的方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本发明的限制。

Claims (34)

  1. 一种传输上行信号的方法,其特征在于,包括:
    根据第一非正交接入参数生成承载上行数据的信号,其中,所述承载上行数据的信号占用第一时频资源;
    根据第二非正交接入参数生成承载上行控制信息的信号,其中,所述承载上行控制信息的信号占用第二时频资源,其中,所述第一时频资源与所述第二时频资源之间存在重叠的时频资源;所述第一非正交接入参数和所述第二非正交接入参数不同;
    发送所述承载上行数据的信号和承载上行控制信息的信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一非正交接入参数和所述第二非正交接入参数包含不同的非正交接入的扩频因子;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的比特组到符号组的映射规则;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的交织参数;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的加扰参数;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的发送功率。
  3. 根据权利要求1或者2所述的方法,其特征在于,所述方法还包括:
    根据所述上行控制信息的类型,确定所述第二非正交接入参数。
  4. 根据权利要求1到3任一项所述的方法,其特征在于,所述方法还包括:
    根据所述上行控制信息的类型,确定所述第二时频资源。
  5. 根据权利要求3或4所述的方法,其特征在于,所述上行控制信息包含第一上行控制信息和第二上行控制信息;
    相应地,所述根据所述上行控制信息的类型,确定第二非正交接入参数包括:
    根据所述第一上行控制信息的类型,确定所述第一上行控制信息对应的第二非正交接入参数;
    根据所述第二上行控制信息的类型,确定所述第二上行控制信息对应的第二非正交接入参数。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述上行控制信息的类型,确定所述第二时频资源包括:
    根据所述第一上行控制信息的类型,确定承载所述第一上行控制信息的信号所占用的第二时频资源;
    根据所述第二上行控制信息的类型,确定承载所述第二的上行控制信息的信号所占用的第二时频资源。
  7. 根据权利要求5或6所述的方法,其特征在于,在生成所述承载所述上行控制信息的信号过程中,将所述第一上行控制信息和所述第二上行控制信息作为整体进行编码。
  8. 根据权利要求5或6所述的方法,其特征在于,在生成所述承载所述上行控制信息的信号过程中,对所述第一上行控制信息和所述第二上行控制信息分别进行独立编码。
  9. 根据权利要求1到8任一项所述的方法,其特征在于,所述方法还包括:
    根据所述上行控制信息的类型,获取用于确定所述第二非正交接入参数的配置信息。
  10. 一种传输上行信号的方法,其特征在于,包括:
    向终端设备发送第一配置信息和第二配置信息;其中,所述第一配置信息包括用于传输上行数据的第一非正交接入参数的信息和用于传输所述上行数据的第一时频资源的信息,所述第二配置信息包括用于在第二时频资源上传输上行控制信息的第二非正交接入参数的信息,其中,所述第一非正交接入参数和所述第二正交接入参数不同,所述第一时频资源和所述第二时频资源存在重叠的时频资源;
    接收所述终端设备发送的上行信号,其中,所述上行信号包括根据所述第一非正交接入参数生成的承载所述上行数据的信号和根据所述第一非正交接入参数生成的承载所述上行控制信息的信号,所述承载所述上行数据的信号占用所述第一时频资源,所述承载所述上行控制信息的信号占用所述第二时频资源。
  11. 根据权利要求10所述的方法,其特征在于,所述第一非正交接入参数和所述第二非正交接入参数包含不同的非正交接入的扩频因子;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的比特组到符号组的映射规则;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的交织参数;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的加扰参数;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的发送功率。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二配置信息还包括所述第二时频资源的信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第二时频资源是根据所述上行控制信息的类型确定的。
  14. 根据权利要求10到13任一项所述的方法,其特征在于,所述第二非正交接入参数是根据所述上行控制信息的类型确定的。
  15. 根据权利要求14所述的方法,其特征在于,所述上行控制信息包含第一上行控制信息和第二上行控制信息;
    所述用于传输上行控制信息的第二非正交接入参数的信息包括:用于传输所述第一上行控制信息的第二非正交接入参数的信息和用于传输所述第二上行控制信息的第二非正交接入参数的信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第二时频资源包括:用于传输所述第一上行控制信息的第二时频资源和用于传输所述第二上行控制信息的第二时频资源。
  17. 一种通信装置,其特征在于,包括:
    生成单元,用于根据第一非正交接入参数生成承载上行数据的信号,其中,所述承载上行数据的信号占用第一时频资源;
    所述生成单元,用于根据第二非正交接入参数生成承载上行控制信息的信号,其中,所述承载上行控制信息的信号占用第二时频资源,其中,所述第一时频资源与所述第二时频资源之间存在重叠的时频资源;所述第一非正交接入参数和所述第二非正交接入参数不同;
    发送单元,用于发送所述承载上行数据的信号和承载上行控制信息的信号。
  18. 根据权利要求17所述的通信装置,其特征在于,所述第一非正交接入参数和所述第二非正交接入参数包含不同的非正交接入的扩频因子;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的比特组到符号组的映射规则;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的交织参数;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的加扰参数;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的发送功率。
  19. 根据权利要求17或者18所述的通信装置,其特征在于,所述通信装置还包括:
    第一确定单元,用于根据所述上行控制信息的类型,确定所述第二非正交接入参数。
  20. 根据权利要求17到19任一项所述的方法,其特征在于,所述通信装置还包括:
    第二确定单元,用于根据所述上行控制信息的类型,确定所述第二时频资源。
  21. 根据权利要求19或20所述的通信装置,其特征在于,所述上行控制信息包含第一上行控制信息和第二上行控制信息;
    相应地,所述第一确定单元具体用于:
    根据所述第一上行控制信息的类型,确定所述第一上行控制信息对应的第二非正交接入参数;
    根据所述第二上行控制信息的类型,确定所述第二上行控制信息对应的第二非正交接入参数。
  22. 根据权利要求21所述的通信装置,其特征在于,所述第二确定单元具体用于:
    根据所述第一上行控制信息的类型,确定承载所述第一上行控制信息的信号所占用的第二时频资源;
    根据所述第二上行控制信息的类型,确定承载所述第二的上行控制信息的信号所占用的第二时频资源。
  23. 根据权利要求21或22所述的通信装置,其特征在于,在所述生成单元生成所述承载所述上行控制信息的信号过程中,将所述第一上行控制信息和所述第二上行控制信息作为整体进行编码。
  24. 根据权利要求21或22所述的通信装置,其特征在于,在所述生成单元生成所述承载所述上行控制信息的信号过程中,对所述第一上行控制信息和所述第二上行控制信息分别进行独立编码。
  25. 根据权利要求17到24任一项所述的通信装置,其特征在于,所述通信装置还包括:
    获取单元,用于根据所述上行控制信息的类型,获取用于确定所述第二非正交接入参数的配置信息。
  26. 一种通信装置,其特征在于,包括:
    第一发送单元,用于向终端设备发送第一配置信息和第二配置信息;其中,所述第一配置信息包括用于传输上行数据的第一非正交接入参数的信息和用于传输所述上行数据的第一时频资源的信息,所述第二配置信息包括用于在第二时频资源上传输上行控制信息的 第二非正交接入参数的信息,其中,所述第一非正交接入参数和所述第二正交接入参数不同,所述第一时频资源和所述第二时频资源存在重叠的时频资源;
    接收单元,用于接收所述终端设备发送的上行信号,其中,所述上行信号包括根据所述第一非正交接入参数生成的承载所述上行数据的信号和根据所述第一非正交接入参数生成的承载所述上行控制信息的信号,所述承载所述上行数据的信号占用所述第一时频资源,所述承载所述上行控制信息的信号占用所述第二时频资源。
  27. 根据权利要求26所述的通信装置,其特征在于,所述第一非正交接入参数和所述第二非正交接入参数包含不同的非正交接入的扩频因子;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的比特组到符号组的映射规则;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的交织参数;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的加扰参数;和/或
    所述第一非正交接入参数和所述第二非正交接入参数包含不同的发送功率。
  28. 根据权利要求26或27所述的通信装置,其特征在于,所述第二配置信息还包括所述第二时频资源的信息。
  29. 根据权利要求28所述的通信装置,其特征在于,所述第二时频资源是根据所述上行控制信息的类型确定的。
  30. 根据权利要求26到29任一项所述的通信装置,其特征在于,所述第二非正交接入参数是根据所述上行控制信息的类型确定的。
  31. 根据权利要求30所述的通信装置,其特征在于,所述上行控制信息包含第一上行控制信息和第二上行控制信息;
    所述用于传输上行控制信息的第二非正交接入参数的信息包括:用于传输所述第一上行控制信息的第二非正交接入参数的信息和用于传输所述第二上行控制信息的第二非正交接入参数的信息。
  32. 根据权利要求31所述的通信装置,其特征在于,所述第二时频资源包括:用于传输所述第一上行控制信息的第二时频资源和用于传输所述第二上行控制信息的第二时频资源。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括程序指令,所述程序指令在计算机上运行时,使所述计算机执行如权利要求1-9任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括程序指令,所述程序指令在计算机上运行时,使所述计算机执行如权利要求10-16任一项所述的方法。
PCT/CN2019/073789 2018-02-12 2019-01-29 传输上行信号的方法及通信装置 WO2019154199A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19750938.3A EP3745752A4 (en) 2018-02-12 2019-01-29 METHOD OF TRANSMISSION OF AN UPLINK SIGNAL AND COMMUNICATION DEVICE
US16/988,499 US11870727B2 (en) 2018-02-12 2020-08-07 Method for transmitting uplink signal and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810148319.7 2018-02-12
CN201810148319.7A CN110167154B (zh) 2018-02-12 2018-02-12 传输上行信号的方法、通信装置及计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/988,499 Continuation US11870727B2 (en) 2018-02-12 2020-08-07 Method for transmitting uplink signal and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019154199A1 true WO2019154199A1 (zh) 2019-08-15

Family

ID=67548141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073789 WO2019154199A1 (zh) 2018-02-12 2019-01-29 传输上行信号的方法及通信装置

Country Status (4)

Country Link
US (1) US11870727B2 (zh)
EP (1) EP3745752A4 (zh)
CN (1) CN110167154B (zh)
WO (1) WO2019154199A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213261B2 (ja) * 2018-03-30 2023-01-26 オッポ広東移動通信有限公司 アップリンク制御情報の伝送方法及び装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2479910A2 (en) * 2009-12-03 2012-07-25 LG Electronics Inc. Method and apparatus for efficient contention-based transmission in a wireless communication system
CN104426633A (zh) * 2013-09-10 2015-03-18 华为技术有限公司 上行控制信息的传输方法、用户设备及网络侧设备
CN105262559A (zh) * 2014-07-15 2016-01-20 中国移动通信集团公司 一种数据发送方法、数据接收方法和相关装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619492A (en) * 1995-06-16 1997-04-08 Unisys Corporation CDMA communication system in which bit rates are dynamically allocated
GB0310289D0 (en) * 2003-05-03 2003-06-11 Koninkl Philips Electronics Nv Communication system
US8724556B2 (en) * 2007-03-19 2014-05-13 Apple Inc. Uplink control channel allocation in a communication system and communicating the allocation
WO2010123304A2 (en) * 2009-04-24 2010-10-28 Samsung Electronics Co., Ltd. Multiplexing large payloads of control information from user equipments
KR20110009025A (ko) * 2009-07-20 2011-01-27 엘지전자 주식회사 상향링크 제어정보 전송 방법 및 장치
US8743802B2 (en) * 2010-11-08 2014-06-03 Blackberry Limited Allocating wireless resources
CN105210403B (zh) * 2013-01-10 2019-04-05 韩国电子通信研究院 用于增强小小区的方法
HUE047100T2 (hu) * 2013-12-03 2020-04-28 Lg Electronics Inc Eljárások és berendezések felfelé irányuló kapcsolat továbbítására géptípusú kommunikációt támogató vezeték nélküli hozzáférési rendszerben
JP6817945B2 (ja) 2015-08-31 2021-01-20 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US10667243B2 (en) * 2015-11-18 2020-05-26 Lg Electronics Inc. Methods for transmitting and receiving reference signals in wireless communication system, and devices for same
WO2017132811A1 (zh) * 2016-02-01 2017-08-10 华为技术有限公司 上行信息传输的方法、装置
WO2017150925A1 (ko) * 2016-03-02 2017-09-08 삼성전자 주식회사 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 장치
US10750533B2 (en) * 2016-04-01 2020-08-18 Lg Electronics Inc. Method for transmitting or receiving uplink control information in wireless communication system, and device therefor
CN109845147B (zh) * 2016-11-03 2021-04-16 Oppo广东移动通信有限公司 用于传输上行信号的方法和装置
JP7082971B2 (ja) * 2017-03-23 2022-06-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末及び通信方法
WO2019016951A1 (ja) * 2017-07-21 2019-01-24 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2479910A2 (en) * 2009-12-03 2012-07-25 LG Electronics Inc. Method and apparatus for efficient contention-based transmission in a wireless communication system
CN104426633A (zh) * 2013-09-10 2015-03-18 华为技术有限公司 上行控制信息的传输方法、用户设备及网络侧设备
CN105262559A (zh) * 2014-07-15 2016-01-20 中国移动通信集团公司 一种数据发送方法、数据接收方法和相关装置

Also Published As

Publication number Publication date
EP3745752A1 (en) 2020-12-02
US20200374058A1 (en) 2020-11-26
EP3745752A4 (en) 2021-02-24
US11870727B2 (en) 2024-01-09
CN110167154A (zh) 2019-08-23
CN110167154B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
TWI554051B (zh) A method, system and apparatus for transmitting and receiving data
RU2645295C1 (ru) Способ модуляционной обработки и устройство для кодирования высокого порядка, базовая станция и терминал
JP2018512774A (ja) アップリンクデータ伝送の方法および装置
WO2016154968A1 (zh) 编码方法、装置、基站和用户设备
JP6426844B2 (ja) 情報伝送方法、装置、及びデバイス
WO2022161201A1 (zh) 编码调制与解调解码方法及装置
CN109792298B (zh) 子信道映射
US10560175B2 (en) Data transmission method and apparatus
US10361896B2 (en) Data communication method, related device, and communications system
WO2019170161A1 (zh) 通知信道质量的方法和装置
WO2019080071A1 (zh) 上行控制信道传输方法、终端设备和网络设备
CN106416166B (zh) 处理数据的方法和通信设备
CN106922206B (zh) 确定调制编码阶数的方法、装置和设备
EP3591846A1 (en) Polar code encoding method and device and polar code decoding method and device
WO2020143366A1 (zh) 发送、接收方法及装置
US11870727B2 (en) Method for transmitting uplink signal and communications apparatus
WO2017133407A1 (zh) 信号传输方法和装置
WO2017054571A1 (zh) 一种数据传输方法、设备和系统
TW201740706A (zh) 設備對設備d2d通信的方法和d2d設備
WO2016145616A1 (zh) 一种信息传输方法、设备及系统
CN107566100B (zh) 一种信息发送、接收方法及设备
KR20110121717A (ko) 피드백 신호 코딩 방법 및 장치
WO2013131491A1 (zh) 数据传输方法及系统、基站和用户设备
CN109474395B (zh) 数据传输方法、终端、网络设备和通信系统
WO2018228506A1 (zh) 一种传输信息的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019750938

Country of ref document: EP

Effective date: 20200824