WO2019153877A1 - 激光点云数据的处理 - Google Patents

激光点云数据的处理 Download PDF

Info

Publication number
WO2019153877A1
WO2019153877A1 PCT/CN2018/121002 CN2018121002W WO2019153877A1 WO 2019153877 A1 WO2019153877 A1 WO 2019153877A1 CN 2018121002 W CN2018121002 W CN 2018121002W WO 2019153877 A1 WO2019153877 A1 WO 2019153877A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
cloud data
laser
carrier
laser sensor
Prior art date
Application number
PCT/CN2018/121002
Other languages
English (en)
French (fr)
Inventor
程保山
Original Assignee
北京三快在线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京三快在线科技有限公司 filed Critical 北京三快在线科技有限公司
Publication of WO2019153877A1 publication Critical patent/WO2019153877A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • a method for processing laser point cloud data including:
  • the method before the acquiring the laser point cloud data of the laser sensor on the plurality of measurement angles, the method further includes:
  • the laser sensor is controlled to scan to acquire the laser point cloud data set.
  • the method before the controlling the carrier to move according to a preset rule, the method further includes:
  • the carrier is stationary relative to the laser sensor.
  • determining, according to a distribution probability of the laser point cloud data of the measurement angle, an interference angle of the carrier of the laser sensor with respect to the laser sensor including:
  • the measurement angle is determined as an interference angle of the carrier with respect to the laser sensor.
  • determining the measurement angle as an interference angle of the carrier with respect to the laser sensor comprises:
  • the measurement angle is determined as the interference angle.
  • the method further comprises: maintaining the laser point cloud data of the respective measurement angles at a preset number.
  • a processing device for laser point cloud data which includes:
  • a point cloud data acquisition module configured to acquire laser point cloud data of the laser sensor at a plurality of measurement angles to form a laser point cloud data set of the laser sensor
  • An interference angle determining module configured to determine, according to a distribution probability of the laser point cloud data of each measurement angle, an interference angle of the carrier of the laser sensor with respect to the laser sensor;
  • An interference data determining module configured to determine interference point cloud data included in the laser point cloud data set according to the interference angle
  • an interference data filtering module configured to filter the interference point cloud data from the laser point cloud data set.
  • the apparatus further includes an environment scan control module; the environment scan control module includes:
  • a carrier motion control unit configured to control the carrier to perform motion according to a preset rule
  • the environment scanning control unit is configured to control the laser sensor to scan to acquire the laser point cloud data set during the movement of the carrier according to the preset rule.
  • the carrier motion control unit is further configured to:
  • the candidate rule selected by the user is determined as the preset rule.
  • the carrier motion control unit is further configured to:
  • the carrier is controlled to move in accordance with the preset rule upon receiving a first control command for activating the carrier of the laser sensor and a second control command for initiating scanning of the laser sensor.
  • the carrier is stationary relative to the laser sensor.
  • the interference angle determining module is further configured to:
  • the measurement angle is determined as an interference angle of the carrier with respect to the laser sensor.
  • the interference angle determining module is further configured to:
  • the measurement angle is determined as the interference angle.
  • a computer readable storage medium the storage medium storing a computer program for performing a method of processing laser point cloud data according to any of the above.
  • a robot comprising: a carrier, a laser sensor, a processor, and a memory;
  • the carrier is configured to carry the laser sensor and perform motion according to a preset rule
  • the laser sensor is used for scanning an external environment
  • the memory is configured to store a processor processable instruction
  • the processor is configured to perform a method of processing laser point cloud data according to any of the above.
  • the laser point cloud data of the laser sensor at a plurality of measurement angles is acquired to constitute a laser point cloud data set of the laser sensor; according to the distribution probability of the laser point cloud data of each measurement angle, Determining an interference angle of the carrier of the laser sensor with respect to the laser sensor; determining interference point cloud data included in the laser point cloud data set according to the interference angle; and further filtering the laser point cloud data set from the laser point cloud data set Interfere with point cloud data.
  • detecting the external environment according to the laser point cloud data set obtained by filtering the interference point cloud data can improve the accuracy of the laser detection environment, improve the calibration efficiency of the interference point cloud data, reduce the calibration workload, and reduce the carrier motion.
  • the data failure probability is calibrated to improve the robustness of the calibration method.
  • the limitations of the carrier structure design can be reduced.
  • FIG. 1 is a flowchart of a method for processing laser point cloud data according to an exemplary embodiment of the present application
  • FIG. 2 is a flowchart of a method for processing laser point cloud data according to another exemplary embodiment of the present application
  • FIG. 3 is a flowchart of a method for processing laser point cloud data according to still another exemplary embodiment of the present application.
  • FIG. 4 is a flowchart of a method for processing laser point cloud data according to still another exemplary embodiment of the present application.
  • FIG. 5 is a flow chart showing a method for determining an interference angle of a carrier of a laser sensor with respect to a laser sensor, according to an exemplary embodiment of the present application
  • FIG. 6 is a flow chart for determining an interference angle of a carrier of a laser sensor with respect to a laser sensor, according to another exemplary embodiment of the present application.
  • FIG. 7 is a structural block diagram of a processing apparatus for laser point cloud data according to an exemplary embodiment of the present application.
  • FIG. 8 is a structural block diagram of a processing apparatus for laser point cloud data according to another exemplary embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in this application, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information without departing from the scope of the present application.
  • second information may also be referred to as the first information.
  • word "if” as used herein may be interpreted as "when” or “when” or “in response to a determination.”
  • the information of the carrier for carrying the laser sensor can be filtered by manual calibration.
  • a laser sensor is used to collect the laser point cloud data of the indoor environment, and the point cloud data corresponding to the carrier for carrying the laser sensor is found by manual observation, and the influence of the carrier on the laser scanning is eliminated by eliminating the point cloud data. .
  • FIG. 1 is a flowchart of a method for processing laser point cloud data according to an exemplary embodiment of the present application. As shown in FIG. 1, the method includes the following steps S101-S104:
  • S101 Acquire laser point cloud data of the laser sensor at a plurality of measurement angles to form a laser point cloud data set of the laser sensor.
  • the laser point cloud data of the laser sensor at a plurality of measurement angles may be acquired to form a laser point cloud data set of the laser sensor.
  • the laser point cloud data of the measured angle includes the laser ranging return value of the laser sensor at the measurement angle.
  • the external environment refers to an external environment of the laser sensor, and the external environment may include, but is not limited to, an indoor environment.
  • each measurement angle of the sensor corresponds to an angular interval
  • Total angular interval angular measurement range / angular resolution.
  • the total number of angular intervals can be determined to be 360.
  • the measurement angle of the laser sensor may include 1°, 2°, ..., 360°.
  • the laser sensor can scan the external environment in real time with the movement of the carrier (such as the robot carrying the laser sensor) to obtain the laser point cloud data at each measurement angle.
  • the processing method of the laser point cloud data may further include: storing laser point cloud data of each of the measurement angles; if the laser point cloud data of each of the measurement angles reaches a preset number (for example , 2000), the earliest stored laser point cloud data is deleted to maintain the laser point cloud data of the measurement angle at the preset number.
  • a preset number for example , 2000
  • S102 Determine an interference angle of the carrier of the laser sensor with respect to the laser sensor according to a distribution probability of laser point cloud data of each of the measurement angles.
  • the distribution probability of the laser point cloud data at each measurement angle may be separately determined.
  • the laser sensor scans the external environment along with the movement of the carrier, the laser sensor is stationary with respect to the carrier and is movable relative to the external environment.
  • the distribution probability of the acquired laser point cloud data is different, and thus the distribution probability of the laser point cloud data can be determined according to each measurement angle.
  • the specific manner of determining the interference angle of the carrier with respect to the laser sensor according to the distribution probability of the laser point cloud data can be referred to the embodiment shown in FIG. 5 below, which will not be described in detail herein.
  • S103 Determine interference point cloud data included in the laser point cloud data set according to the interference angle.
  • the carrier of the laser sensor is stationary relative to the laser sensor. Therefore, after determining the interference angle of the carrier of the laser sensor with respect to the laser sensor, the interference point cloud data included in the laser point cloud data set can be determined according to the interference angle.
  • the interference point cloud data is interference point cloud data acquired by the laser beam scanning to the surface of the carrier.
  • S104 Filter out the interference point cloud data from the laser point cloud data set.
  • the interference point cloud data is filtered out from the laser point cloud data set.
  • the laser point cloud data in the laser point cloud data set can be distinguished according to the measurement angle index.
  • the measurement angle index corresponding to the interference angle may be determined, and then the laser point cloud data corresponding to the measurement angle index is determined as the interference point cloud data.
  • the laser point cloud data set after filtering the interference point cloud data from the laser point cloud data set, does not contain the carrier information, so that a relatively accurate laser point cloud data set can be obtained. Since the laser point cloud data set after filtering the interference point cloud data does not contain the carrier information, the accuracy of the detection of the external environment is relatively high.
  • the laser point cloud data of the laser sensor at a plurality of measurement angles is acquired to form a laser point cloud data set of the laser sensor, and the distribution probability is determined according to the distribution probability of the laser point cloud data of each measurement angle.
  • An interference angle of the carrier of the laser sensor relative to the laser sensor and then determining interference point cloud data included in the laser point cloud data set according to the interference angle, and filtering the interference point cloud from the laser point cloud data set data.
  • the calibration efficiency of the interference point cloud data is improved, the calibration workload is reduced, and the calibration data failure probability caused by the carrier motion can be reduced, thereby improving the robustness of the calibration method and the accuracy of the laser detection environment.
  • the limitations of the carrier structure design can also be reduced by eliminating the need for a full-open design that does not block the laser.
  • S201 If receiving a control instruction for starting a laser sensor for scanning, controlling the laser sensor to scan an external environment.
  • the physical button may be a button provided on a control device of the laser sensor, or may be a physical button on a wireless device, and the wireless device may be wirelessly connected with a control device of the laser sensor.
  • S202 Acquire laser point cloud data of the laser sensor at a plurality of measurement angles to form a laser point cloud data set of the laser sensor.
  • S203 Determine an interference angle of the carrier of the laser sensor with respect to the laser sensor according to a distribution probability of laser point cloud data of each of the measurement angles.
  • S204 Determine interference point cloud data included in the laser point cloud data set according to the interference angle.
  • S205 Filter the interference point cloud data from the laser point cloud data set.
  • the laser sensor when the control command for starting the scanning of the laser sensor is received, the laser sensor is controlled to scan the external environment, so that the scanning of the laser sensor can be started according to the user's control command.
  • Laser point cloud data processing is performed in real time during the scanning process, thereby improving the efficiency of laser point cloud data processing and the accuracy of interference data calibration.
  • the determination operation of the interference point cloud data may not be performed until the control command for turning off the laser sensor is received.
  • the present application does not limit the inspection period of the interference angle. In order to make the detection result of the environment more accurate, the determination operation of the interference point cloud data may be performed every other set time period.
  • FIG. 3 is a flowchart of a method for processing laser point cloud data according to still another exemplary embodiment of the present application; as shown in FIG. 3, the method includes the following steps S301-S306:
  • S301 If receiving a control instruction for starting the scanning of the laser sensor, and receiving a control instruction for starting the movement of the carrier of the laser sensor, controlling the carrier to move according to a preset rule.
  • the preset rule may be used to control the carrier to move in space in a plurality of different directions and positions to avoid undifferentiated measurement results of different poses of the robot due to the environmental structure.
  • the laser sensor is stationary with respect to the carrier, so that the control carrier can be moved according to a preset rule, so that the laser sensor can emit a laser beam to the environment at multiple measurement angles at different positions as much as possible, thereby completing Collect laser point cloud data from the surrounding environment.
  • the physical button may be a button provided on a control device of the carrier of the laser sensor, or may be a physical button on a wireless device, and the wireless device may be wirelessly connected to the control device of the carrier.
  • S302 Control the laser sensor to scan an external environment during the movement of the carrier according to the preset rule.
  • the laser sensor is controlled to scan the external environment during the movement of the carrier according to a preset rule.
  • the control carrier can be moved according to a preset rule, so that the laser sensor can emit a laser beam from multiple locations and multiple directions to the external environment as much as possible. Laser point cloud data from the surrounding environment can be collected.
  • S303 Acquire laser point cloud data of the laser sensor at a plurality of measurement angles to form a laser point cloud data set of the laser sensor.
  • S304 Determine an interference angle of the carrier of the laser sensor with respect to the laser sensor according to a distribution probability of laser point cloud data of each of the measurement angles.
  • S305 Determine interference point cloud data included in the laser point cloud data set according to the interference angle.
  • S306 Filter the interference point cloud data from the laser point cloud data set.
  • the steps S303-S306 are the same as the steps S101-S104 in the foregoing embodiment of the present invention. For related explanations, reference may be made to the foregoing embodiments, and details are not described herein.
  • FIG. 4 is a flowchart of a method for processing laser point cloud data according to still another exemplary embodiment of the present application; as shown in FIG. 4, the method includes the following steps S401-S408:
  • the display when a control command for starting the scanning of the laser sensor is received, and a control command for starting the movement of the carrier of the laser sensor is received, the display may be output through the display for prompting from a plurality of In the alternative rule, the prompt information of the preset rule is selected.
  • a plurality of preset rule names may be displayed through the display, including a celestial body revolution plus rotation motion, an elliptical motion, and a sawtooth motion, etc., for the user to select.
  • S402 Determine an alternative rule selected by the user as the preset rule.
  • the user can enter a selection command by clicking on the display.
  • the preset rule selected by the user may be determined according to the selection instruction to determine a preset rule of the carrier motion.
  • S403 Control the carrier to perform motion according to the preset rule.
  • the carrier after determining a preset rule for controlling the movement of the carrier, the carrier can be controlled to move in accordance with a preset rule.
  • S404 Control the laser sensor to scan an external environment during the movement of the carrier according to a preset rule.
  • S405 Acquire laser point cloud data of the laser sensor at a plurality of measurement angles to form a laser point cloud data set of the laser sensor.
  • S406 Determine an interference angle of the carrier of the laser sensor with respect to the laser sensor according to a distribution probability of laser point cloud data of each of the measurement angles.
  • S407 Determine interference point cloud data included in the laser point cloud data set according to the interference angle.
  • S408 Filter the interference point cloud data from the laser point cloud data set.
  • the steps S404-S408 are the same as the steps S302-S306 in the foregoing embodiment of the present invention. For related explanation, reference may be made to the foregoing embodiments, and details are not described herein.
  • the prompt information for prompting the selection of the preset rule from the plurality of candidate rules is output, and the preset rule of the carrier is determined based on the selection instruction input by the user.
  • the manner of determining the motion of the carrier of the laser sensor according to the user's selection instruction can be realized, thereby improving the accuracy of subsequently acquiring the laser point cloud data at multiple measurement angles.
  • FIG. 5 is a flowchart of a method for determining an interference angle of a carrier of a laser sensor with respect to a laser sensor according to an exemplary embodiment of the present application; the embodiment is based on the above embodiment, how to determine a carrier of the laser sensor An example of the interference angle with respect to the laser sensor is exemplified.
  • determining the interference angle of the carrier of the laser sensor with respect to the laser sensor according to the distribution probability of the laser point cloud data of each of the measurement angles in step S102 may include the following steps S501-S502:
  • S501 Determine, for each of the measurement angles, whether a distribution probability of the laser point cloud data of the measurement angle conforms to a single pulse distribution.
  • the distribution probability of the laser point cloud data of the measurement angle it may be determined whether the distribution probability of the laser point cloud data of the measurement angle conforms to a single pulse distribution.
  • the laser sensor since the laser sensor is stationary relative to the carrier, it is movable relative to the external environment. Thus, when the laser beam emitted by the laser sensor is scanned to the components of the carrier and scanned into an object in the external environment, the distribution probability of the acquired laser point cloud data is different.
  • the distribution probability of the laser point cloud data acquired when scanning the components of the carrier is consistent with a single pulse distribution (indicating that the currently scanned object is relatively stationary with the laser sensor), and scanning The distribution probability of the laser point cloud data acquired when the object in the external environment is in accordance with the normal distribution rule.
  • S502 Determine a measurement angle corresponding to the laser point cloud data whose distribution probability is consistent with a single pulse distribution as an interference angle of the carrier with respect to the laser sensor.
  • the measurement angle is determined as an interference angle of the carrier with respect to the laser sensor.
  • the measurement angle is determined as the interference angle of the carrier with respect to the laser sensor.
  • the interference angle of the carrier relative to the laser sensor can be determined according to the distribution probability of the laser point cloud data, and the interference of the carrier of the laser sensor to the laser scanning process can be effectively filtered out accordingly.
  • FIG. 6 is a flow chart showing a method for determining an interference angle of a carrier of a laser sensor with respect to a laser sensor according to another exemplary embodiment of the present application; this embodiment is based on the above embodiment, how to determine the laser sensor
  • the interference angle of the carrier with respect to the laser sensor is exemplified as an example.
  • the measurement angle corresponding to the laser point cloud data whose distribution probability is consistent with the single pulse distribution is determined as the interference angle of the carrier with respect to the laser sensor, and may include:
  • S601 Calculate a variance value of the laser point cloud data whose distribution probability is consistent with a single pulse distribution.
  • the variance values of the laser point cloud data may be further determined. After determining the variance value of the laser point cloud data, the variance value may be compared with a preset threshold to obtain a comparison result.
  • S602 Determine, if the variance value is less than a preset threshold, a measurement angle corresponding to the laser point cloud data as the interference angle.
  • the measurement angle corresponding to the laser point cloud data may be determined as the interference angle.
  • the variance probability is consistent with the variance value of the laser point cloud data of the single pulse distribution, and when the variance value is less than the preset threshold, the distribution probability is consistent with the laser point cloud of the single pulse distribution.
  • the measurement angle corresponding to the data is determined as the interference angle, so that the deterministicity of the interference point cloud data can be increased, that is, the point cloud data can be ensured to conform to the single pulse distribution, and fluctuate within a small range to improve the calibration of the interference data.
  • the accuracy rate can further reduce the probability of calibration data failure caused by carrier motion and improve the robustness of the calibration method.
  • FIG. 7 is a structural block diagram of a processing apparatus for laser point cloud data according to an exemplary embodiment of the present application; as shown in FIG. 7, the apparatus includes: a point cloud data acquiring module 110, an interference angle determining module 120, and interference data.
  • the determining module 130 and the interference data filtering module 140 wherein:
  • the point cloud data acquiring module 110 is configured to acquire laser point cloud data of the laser sensor at a plurality of measurement angles to form a laser point cloud data set of the laser sensor;
  • the interference angle determining module 120 is configured to determine, according to the distribution probability of the laser point cloud data of each measurement angle, an interference angle of the carrier of the laser sensor with respect to the laser sensor;
  • the interference data determining module 130 is configured to determine interference point cloud data included in the laser point cloud data set according to the interference angle;
  • the interference data filtering module 140 is configured to filter the interference point cloud data from the laser point cloud data set.
  • FIG. 8 is a structural block diagram of a processing apparatus for laser point cloud data according to another exemplary embodiment of the present application.
  • the functions of the interference data determination module 130 and the interference data filtering module 140 are the same, and are not described herein.
  • the apparatus may further include:
  • the environment scan control module 210 is configured to control the laser sensor to scan the external environment when receiving a control instruction for starting the laser sensor to scan.
  • the environment scan control module 210 may include:
  • the carrier motion control unit 211 is configured to control the carrier to perform motion according to a preset rule when receiving a control instruction for starting motion of the carrier of the laser sensor;
  • the environment scanning control unit 212 is configured to control the laser sensor to scan the external environment during the movement of the carrier according to a preset rule.
  • the carrier motion control unit 211 can also be used to:
  • the candidate rule selected by the user is determined as a preset rule of the carrier.
  • the interference angle determining module 240 may include:
  • a point cloud data determining unit 241 configured to determine whether a distribution probability of the laser point cloud data of the measurement angle conforms to a single pulse distribution
  • the interference angle determining unit 242 is configured to determine the measurement angle as an interference angle of the carrier with respect to the laser sensor when a distribution probability of the laser point cloud data of the measurement angle conforms to the single pulse distribution.
  • the interference angle determining unit is further configured to:
  • the measurement angle is determined as the interference angle.
  • the device may further include: a point cloud data storage module 230;
  • the point cloud data storage module 230 may include:
  • a point cloud data storage unit 231, configured to store laser point cloud data on each of the measurement angles
  • the point cloud data deleting unit 232 is configured to: when the laser point cloud data on each of the measurement angles reaches a preset number, delete the earliest stored laser point cloud data to maintain the laser point cloud data at the measurement angle The preset number.
  • the present application further provides a computer readable storage medium storing a computer program for executing the processing method of the laser point cloud data provided by the embodiments shown in FIG. 1 to FIG.
  • the present application also provides a robot, including: a carrier, a laser sensor, a processor, and a memory;
  • the carrier is configured to carry the laser sensor and perform motion according to a preset rule
  • the laser sensor is used for scanning an external environment
  • the memory is configured to store a processor processable instruction
  • the processor is configured to execute the processing method of the laser point cloud data provided by the embodiment shown in FIG. 1 to FIG. 6 .
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the present application. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种激光点云数据的处理方法及装置,方法包括:获取激光传感器在多个测量角度上的激光点云数据,以构成激光传感器点云数据集(S101);根据每个测量角度的激光点云数据的分布概率,确定激光传感器的载体相对于激光传感器的干扰角度(S102);根据干扰角度确定激光点云数据集中包含的干扰点云数据(S103);从激光点云数据集中滤除干扰点云数据(S104)。

Description

激光点云数据的处理
相关申请的交叉引用
本专利申请要求于2018年2月6日提交的、申请号为201810119294.8、发明名称为“一种激光点云数据的处理方法及装置”的中国专利申请的优先权,该申请的全文以引用的方式并入本文中。
技术领域
本申请涉及激光扫描技术领域的激光点云数据的处理。
背景技术
在用激光传感器检测室内环境之前,可以通过人工标定滤除用于承载激光传感器的载体(如承载着激光传感器的机器人)的信息。例如,采用激光传感器采集室内环境的激光点云数据,并通过人工观察的方式找到用于承载激光传感器的载体对应的点云数据,进而通过消除该点云数据来消除该载体对激光扫描的影响。
发明内容
有鉴于此,本申请提供一种激光点云数据的处理方法及装置,可以减少处理激光点云数据的工作量,提高工作效率,并且增强鲁棒性,无需额外的硬件升级。
具体地,本申请是通过如下技术方案实现的:
根据本申请的第一方面,提出了一种激光点云数据的处理方法,包括:
获取激光传感器在多个测量角度上的激光点云数据,以构成所述激光传感器的激光点云数据集;
根据所述每个测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度;
根据所述干扰角度确定所述激光点云数据集中包含的干扰点云数据;
从所述激光点云数据集中滤除所述干扰点云数据。
在一实施例中,所述获取激光传感器在多个测量角度上的激光点云数据之前,所述 方法还包括:
控制所述载体按照预设规则进行运动,
在所述载体按照所述预设规则进行运动的过程中,控制所述激光传感器进行扫描以获取所述激光点云数据集。
在一实施例中,所述控制所述载体按照预设规则进行运动之前,所述方法还包括:
输出用于提示从多种备选规则中进行选择的提示信息;
将用户选择的备选规则确定为所述预设规则。
在一实施例中,所述方法还包括:当接收到用于启动所述激光传感器的载体进行运动的第一控制指令和用于启动所述激光传感器进行扫描的第二控制指令时,控制所述载体按照所述预设规则进行运动。
在一实施例中,所述载体相对于所述激光传感器是静止的。
在一实施例中,根据所述测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度,包括:
判断所述测量角度的激光点云数据的分布概率是否符合单脉冲分布;
当所述测量角度的激光点云数据的分布概率符合所述单脉冲分布时,将所述测量角度确定为所述载体相对于所述激光传感器的干扰角度。
在一实施例中,当所述测量角度的激光点云数据的分布概率符合所述单脉冲分布时,将所述测量角度确定为所述载体相对于所述激光传感器的干扰角度,包括:
计算所述测量角度的激光点云数据的方差值;
若所述方差值小于预设阈值,则将所述测量角度确定为所述干扰角度。
在一实施例中,所述方法还包括:将所述各个测量角度的激光点云数据维持在预设数量。
根据本申请的第二方面,提出了一种激光点云数据的处理装置,其特征在于,包括:
点云数据获取模块,用于获取激光传感器在多个测量角度上的激光点云数据,以构成所述激光传感器的激光点云数据集;
干扰角度确定模块,用于根据所述每个测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度;
干扰数据确定模块,用于根据所述干扰角度确定所述激光点云数据集中包含的干扰点云数据;
干扰数据滤除模块,用于从所述激光点云数据集中滤除所述干扰点云数据。
在一实施例中,所述装置还包括环境扫描控制模块;所述环境扫描控制模块包括:
载体运动控制单元,用于控制所述载体按照预设规则进行运动;
环境扫描控制单元,用于在所述载体按照所述预设规则进行运动的过程中,控制所述激光传感器进行扫描以获取所述激光点云数据集。
在一实施例中,所述载体运动控制单元,还用于:
输出用于提示从多种备选规则中进行选择的提示信息;
将用户选择的备选规则确定为所述预设规则。
在一实施例中,所述载体运动控制单元,还用于:
当接收到用于启动所述激光传感器的载体进行运动的第一控制指令和用于启动所述激光传感器进行扫描的第二控制指令时,控制所述载体按照所述预设规则进行运动。
在一实施例中,所述载体相对于所述激光传感器是静止的。
在一实施例中,干扰角度确定模块还用于:
判断所述测量角度的激光点云数据的分布概率是否符合单脉冲分布;
当所述测量角度的激光点云数据的分布概率符合所述单脉冲分布时,将所述测量角度确定为所述载体相对于所述激光传感器的干扰角度。
在一实施例中,干扰角度确定模块还用于:
计算所述测量角度的激光点云数据的方差值;
若所述方差值小于预设阈值,则将所述测量角度确定为所述干扰角度。
根据本申请的第三方面,提出了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述任一所述的激光点云数据的处理方法。
根据本申请的第四方面,提出了一种机器人,包括:载体、激光传感器、处理器以及存储器;
其中,所述载体用于承载所述激光传感器,并按照预设规则进行运动;
所述激光传感器用于对外界环境进行扫描;
所述存储器用于存储处理器可处理指令;
所述处理器用于执行上述任一所述的激光点云数据的处理方法。
由以上技术方案可见,获取激光传感器在多个测量角度上的激光点云数据,以构成所述激光传感器的激光点云数据集;根据所述每个测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度;根据所述干扰角度确定所述激光点云数据集中包含的干扰点云数据;进而从所述激光点云数据集中滤除所述干扰点云数据。这样,根据滤除干扰点云数据后得到的激光点云数据集检测外界环境,可以提高激光检测环境的准确率,提高干扰点云数据的标定效率,减少标定的工作量,降低载体运动导致的标定数据失效概率,提高标定方法的鲁棒性。另外,由于不需要采用不遮挡激光的全开口设计,因而还可以减小载体结构设计的局限性。
附图说明
图1是本申请一示例性实施例示出的一种激光点云数据的处理方法的流程图;
图2是本申请另一示例性实施例示出的一种激光点云数据的处理方法的流程图;
图3是本申请又一示例性实施例示出的一种激光点云数据的处理方法的流程图;
图4是本申请又一示例性实施例示出的一种激光点云数据的处理方法的流程图;
图5是本申请一示例性实施例示出的用于确定激光传感器的载体相对于激光传感器的干扰角度的方法的流程图;
图6是本申请另一示例性实施例示出的用于确定激光传感器的载体相对于激光传感器的干扰角度的流程图;
图7是本申请一示例性实施例示出的一种激光点云数据的处理装置的结构框图;
图8是本申请另一示例性实施例示出的一种激光点云数据的处理装置的结构框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如 所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在用激光传感器检测室内环境之前,可以通过人工标定滤除用于承载激光传感器的载体(如承载着激光传感器的机器人)的信息。例如,采用激光传感器采集室内环境的激光点云数据,并通过人工观察的方式找到用于承载激光传感器的载体对应的点云数据,进而通过消除该点云数据来消除该载体对激光扫描的影响。
可以发现,在上述消除载体对激光扫描的影响的方案中,当载体的位置发生偏移时,可能导致人工标定的数据失效,鲁棒性相对较差。
图1是本申请一示例性实施例示出的一种激光点云数据的处理方法的流程图。如图1所示,该方法包括如下步骤S101-S104:
S101:获取激光传感器在多个测量角度上的激光点云数据,以构成该激光传感器的激光点云数据集。
在一实施例中,在启动激光传感器对外界环境进行扫描的过程中,可以获取该激光传感器在多个测量角度上的激光点云数据,构成该激光传感器的激光点云数据集。测量角度的激光点云数据包括激光传感器在该测量角度上的激光测距返回值。
在一实施例中,上述外界环境指的是激光传感器的外界环境,该外界环境可以包括但不限于室内环境。
在一实施例中,传感器的每个测量角度对应于一个角度间隔,其中,
角度间隔总数=角度测量范围/角度分辨率。
举例来说,若当前激光传感器的角度测量范围为360°,且该激光传感器的角度分 辨率为1°,则可以确定角度间隔总数为360。在此基础上,该激光传感器的测量角度可以包括1°、2°、……、360°。
在一实施例中,上述激光传感器可以随着载体(如承载着激光传感器的机器人)的运动实时对外界环境进行扫描,以获取各个测量角度上的激光点云数据。
在一实施例中,上述激光点云数据的处理方法还可以包括:对各所述测量角度的激光点云数据进行存储;若各所述测量角度上的激光点云数据到达预设数量(例如,2000个),则删除最早存储的激光点云数据,以将所述测量角度的激光点云数据维持在所述预设数量。
S102:根据各所述测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度。
在一实施例中,当获取激光传感器在多个测量角度上的激光点云数据后,可以分别确定各个测量角度上的激光点云数据的分布概率。
值得说明的是,由于激光传感器是伴随着载体的运动对外界环境进行扫描的,因而激光传感器相对于载体是静止的,而相对于外界环境是运动的。当激光传感器发射的激光束扫描到载体的部件以及扫描到外界环境中的物体时,获取的激光点云数据的分布概率是不同的,因而可以根据各个测量角度的激光点云数据的分布概率确定该激光传感器的载体(或,载体的部件)相对于所述激光传感器的干扰角度。
在一实施例中,根据激光点云数据的分布概率确定载体相对于所述激光传感器的干扰角度的具体方式可以参见下述图5所示实施例,在此先不进行详述。
S103:根据所述干扰角度确定所述激光点云数据集中包含的干扰点云数据。
在一实施例中,由于激光传感器的载体相对于激光传感器是静止的。因而,当确定激光传感器的载体相对于所述激光传感器的干扰角度后,可以根据该干扰角度确定激光点云数据集中包含的干扰点云数据。
其中,该干扰点云数据为激光束扫描到载体表面所获取的干扰点云数据。
S104:从所述激光点云数据集中滤除所述干扰点云数据;
在一实施例中,当确定激光点云数据集中包含的干扰点云数据后,从该激光点云数据集中滤除所述干扰点云数据。
举例来说,可以将激光点云数据集中的激光点云数据根据测量角度索引区分。当确 定载体相对于所述激光传感器的干扰角度后,可以确定该干扰角度对应的测量角度索引,进而确定该测量角度索引对应的激光点云数据为干扰点云数据。
在一实施例中,当从激光点云数据集中滤除干扰点云数据后,激光点云数据集中不含载体的信息,这样,可以得到相对准确的激光点云数据集。由于滤除干扰点云数据后的激光点云数据集中不含载体的信息,因此对外界环境检测的准确率也相对高。
由图1可知,获取激光传感器在多个测量角度上的激光点云数据以构成该激光传感器的激光点云数据集,根据所述每个测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度,然后根据所述干扰角度确定所述激光点云数据集中包含的干扰点云数据,从所述激光点云数据集中滤除所述干扰点云数据。这样,提高了干扰点云数据的标定效率,减少了标定的工作量,而且还可以降低载体运动导致的标定数据失效概率,从而提高了标定方法的鲁棒性以及激光检测环境的准确率。由于不需要采用不遮挡激光的全开口设计,因而还可以减小载体结构设计的局限性。
图2是本申请另一示例性实施例示出的一种激光点云数据的处理方法的流程图;如图2所示,该方法包括以下步骤S201-205:
S201:若接收到用于启动激光传感器进行扫描的控制指令,则控制所述激光传感器对外界环境进行扫描。
在一实施例中,若检测到实体按键被触发,或,接收到终端设备发送的激光扫描指令,则确定接收到用于启动激光传感器进行扫描的控制指令。
上述实体按键可以为激光传感器的控制装置上设置的按键,也可以为一个无线设备上的实体按键,该无线设备可以与激光传感器的控制装置通过无线方式连接。
S202:获取激光传感器在多个测量角度上的激光点云数据以构成该激光传感器的激光点云数据集。
S203:根据各所述测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度。
S204:根据所述干扰角度确定所述激光点云数据集中包含的干扰点云数据。
S205:从所述激光点云数据集中滤除所述干扰点云数据。
其中,步骤S202-S205与前述图1所示实施例中的步骤S101-S104相同,不再进行赘述。
由图2可知,在接收到用于启动激光传感器进行扫描的控制指令时,控制所述激光传感器对外界环境进行扫描,可以实现根据用户的控制指令启动激光传感器的扫描。在扫描过程中实时进行激光点云数据处理工作,从而提高激光点云数据处理的效率,以及干扰数据标定的准确性。当干扰点云数据确定后,为节省资源,在接收到用于关闭激光传感器的控制指令前可以不再进行干扰点云数据的确定操作。另外,本申请对干扰角度的检查周期不做限制,为了使得对环境的检测结果更加准确,也可以每隔一设定时间段进行一次干扰点云数据的确定操作。
图3是本申请又一示例性实施例示出的一种激光点云数据的处理方法的流程图;如图3所示,该方法包括以下步骤S301-S306:
S301:若接收到用于启动激光传感器进行扫描的控制指令,且接收到用于启动所述激光传感器的载体进行运动的控制指令,则控制所述载体按照预设规则进行运动。其中,所述预设规则可以用于控制所述载体以多个不同的方向和位置在空间中进行运动,以避免由于环境结构导致在机器人不同位姿的测量结果没有区分性。
值得说明的是,激光传感器相对于载体是静止的,因而可以通过控制载体按照预设规则运动,使得激光传感器可以尽可能的在不同位置上以多个测量角度向环境发射激光束,进而可以完整地采集周围环境的激光点云数据。
上述预设规则可以由用户或者开发人员根据实际需要进行设置,例如可以设置为拟天体公转加自转运动、椭圆运动或锯齿运动等,本实施例对此不进行限定。
在一实施例中,若检测到实体按键被触发,或,接收到终端设备发送的载体运动指令,则确定接收到用于启动所述激光传感器的载体进行运动的控制指令。
上述实体按键可以为激光传感器的载体的控制装置上设置的按键,也可以为一个无线设备上的实体按键,该无线设备可以与载体的控制装置通过无线方式连接。
S302:在所述载体按照所述预设规则进行运动的过程中,控制所述激光传感器对外界环境进行扫描。
在一实施例中,可在所述载体按照预设规则进行运动的过程中,控制所述激光传感器对外界环境进行扫描。
需要说明的是,由于激光传感器相对于载体是静止的,因此可以通过控制载体按照预设规则运动,使得激光传感器可以尽可能的从多个位置、多个方向向外界环境中发射激光束,进而可以采集周围环境的激光点云数据。
S303:获取激光传感器在多个测量角度上的激光点云数据以构成该激光传感器的激光点云数据集。
S304:根据各所述测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度。
S305:根据所述干扰角度确定所述激光点云数据集中包含的干扰点云数据。
S306:从所述激光点云数据集中滤除所述干扰点云数据。
其中,步骤S303-S306与前述图1所述实施例中的步骤S101-S104相同,相关解释说明可以参见前述实施例,在此不进行赘述。
由图3可知,当接收到用于启动所述激光传感器的载体进行运动的控制指令,则控制所述载体按照预设规则进行运动,并在所述载体按照所述预设规则进行运动的过程中,控制所述激光传感器对外界环境进行扫描。在这个过程中,可以实现根据用户的控制指令启动激光传感器的载体进行运动,可以实现控制激光传感器从多个位置、多个测量角度向外界环境中发射激光束,从而提高干扰数据标定的准确性。
图4是本申请又一示例性实施例示出的一种激光点云数据的处理方法的流程图;如图4所示,该方法包括以下步骤S401-S408:
S401:若接收到用于启动激光传感器进行扫描的控制指令,且接收到用于启动所述激光传感器的载体进行运动的控制指令,则输出用于提示从多种备选规则中选择预设规则的提示信息。
在一实施例中,当接收到用于启动激光传感器进行扫描的控制指令,且接收到用于启动所述激光传感器的载体进行运动的控制指令时,可以通过显示屏输出用于提示从多种备选规则中选择预设规则的提示信息,例如,可以通过显示屏展示多种预设规则名称,包括拟天体公转加自转运动、椭圆运动以及锯齿运动等,以供用户选择。
在一实施例中,上述显示屏可以为载体上的显示屏。
S402:将用户选择的备选规则确定为所述预设规则。
在一实施例中,用户可以通过点击显示屏来输入选择指令。当接收到用户输入的选择指令后,可以根据该选择指令将用户选择的备选规则确定所述载体运动的预设规则。
S403:控制所述载体按照所述预设规则进行运动。
在一实施例中,当确定用于控制载体进行运动的预设规则后,可以控制所述载体按 照预设规则进行运动。
S404:在所述载体按照预设规则进行运动的过程中,控制所述激光传感器对外界环境进行扫描。
S405:获取激光传感器在多个测量角度上的激光点云数据以构成该激光传感器的激光点云数据集。
S406:根据各所述测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度。
S407:根据所述干扰角度确定所述激光点云数据集中包含的干扰点云数据。
S408:从所述激光点云数据集中滤除所述干扰点云数据。
其中,步骤S404-S408与前述图3所述实施例中的步骤S302-S306相同,相关解释说明可以参见前述实施例,在此不进行赘述。
由图4可知,输出用于提示从多种备选规则中选择预设规则的提示信息,并基于用户输入的选择指令确定所述载体的预设规则。这样,可以实现根据用户的选择指令确定激光传感器的载体进行运动的方式,进而可以提高后续获取多个测量角度上的激光点云数据的准确性。
图5是本申请一示例性实施例示出的用于确定激光传感器的载体相对于激光传感器的干扰角度的方法的流程图;本实施例在上述实施例的基础上,以如何确定激光传感器的载体相对于激光传感器的干扰角度为例进行示例性说明。如图5所示,步骤S102中根据每个所述测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度,可以包括以下步骤S501-S502:
S501:针对每个所述测量角度,确定所述测量角度的激光点云数据的分布概率是否符合单脉冲分布。
在一实施例中,当确定测量角度的激光点云数据的分布概率后,可以判断所述测量角度的激光点云数据的分布概率是否符合单脉冲分布。
值得说明的是,由于激光传感器相对于载体是静止的,而相对于外界环境是运动的。因而,当激光传感器发射的激光束扫描到载体的部件以及扫描到外界环境中的物体时,获取的激光点云数据的分布概率是不同的。
在一实施例中,在载体运动过程中,扫描到载体的部件时获取的激光点云数据 的分布概率是符合单脉冲分布的(表示当前扫描到的物体与激光传感器相对静止),而扫描到外界环境中的物体时获取的激光点云数据的分布概率是符合正态分布规则的。
S502:将所述分布概率符合单脉冲分布的激光点云数据对应的测量角度确定为所述载体相对于所述激光传感器的干扰角度。
在一实施例中,当某个测量角度的所述激光点云数据的分布概率符合单脉冲分布时,将该测量角度确定为所述载体相对于所述激光传感器的干扰角度。
由图5可知,若某个测量角度的激光点云数据的分布概率符合单脉冲分布,则将所述测量角度确定为所述载体相对于所述激光传感器的干扰角度。这样,可以实现根据激光点云数据的分布概率确定载体相对于激光传感器的干扰角度,并可以据此有效滤除激光传感器的载体对激光扫描过程的干扰。
图6是本申请另一示例性实施例示出的用于确定激光传感器的载体相对于激光传感器的干扰角度的方法的流程图;本实施例在上述实施例的基础上,以如何确定激光传感器的载体相对于激光传感器的干扰角度为例进行示例性说明。如图6所示,步骤S502中将所述分布概率符合单脉冲分布的激光点云数据对应的测量角度确定为所述载体相对于所述激光传感器的干扰角度,可以包括:
S601:计算所述分布概率符合单脉冲分布的激光点云数据的方差值。
在一实施例中,当确定激光点云数据分布概率符合单脉冲分布后,可以进一步确定这些激光点云数据的方差值。当确定上述激光点云数据的方差值后,可以将该方差值与预设阈值进行比较,得到比较结果。
S602:若所述方差值小于预设阈值,则将所述激光点云数据对应的测量角度确定为所述干扰角度。
在一实施例中,若上述步骤S601中得到的比较结果表示所述方差值小于预设阈值,则可以将上述激光点云数据对应的测量角度确定为所述干扰角度。
由图6可知,计算所述分布概率符合单脉冲分布的激光点云数据的方差值,并当所述方差值小于预设阈值时,将所述分布概率符合单脉冲分布的激光点云数据对应的测量角度确定为所述干扰角度,这样,可以增加干扰点云数据的确定性,即可以保证上述点云数据符合单脉冲分布,且在一个很小的范围内波动,提高干扰数据标定的准确率,进而可以降低载体运动导致的标定数据失效概率,提高标定方法的鲁棒性。
图7是本申请一示例性实施例示出的一种激光点云数据的处理装置的结构框图;如图7所示,该装置包括:点云数据获取模块110、干扰角度确定模块120、干扰数据确定模块130以及干扰数据滤除模块140,其中:
点云数据获取模块110,用于获取激光传感器在多个测量角度上的激光点云数据,以构成所述激光传感器的激光点云数据集;
干扰角度确定模块120,用于根据所述每个测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度;
干扰数据确定模块130,用于根据所述干扰角度确定所述激光点云数据集中包含的干扰点云数据;
干扰数据滤除模块140,用于从所述激光点云数据集中滤除所述干扰点云数据。
图8是本申请另一示例性实施例示出的一种激光点云数据的处理装置的结构框图。其中,点云数据获取模块220、干扰角度确定模块240、干扰数据确定模块250以及干扰数据滤除模块260与前述图7所示实施例中的点云数据获取模块110、干扰角度确定模块120、干扰数据确定模块130以及干扰数据滤除模块140的功能相同,在此不进行赘述。如图8所示,所述装置还可以包括:
环境扫描控制模块210,用于当接收到用于启动激光传感器进行扫描的控制指令时,控制所述激光传感器对外界环境进行扫描。
在一实施例中,环境扫描控制模块210,可以包括:
载体运动控制单元211,用于当接收到用于启动所述激光传感器的载体进行运动的控制指令时,控制所述载体按照预设规则进行运动;
环境扫描控制单元212,用于在所述载体按照预设规则进行运动的过程中,控制所述激光传感器对外界环境进行扫描。
在一实施例中,载体运动控制单元211,还可以用于:
输出用于提示从多种备选规则中进行选择的提示信息;
将用户选择的备选规则确定为所述载体的预设规则。
在一实施例中,干扰角度确定模块240,可以包括:
点云数据确定单元241,用于判断所述测量角度的激光点云数据的分布概率是否 符合单脉冲分布;
干扰角度确定单元242,用于当所述测量角度的激光点云数据的分布概率符合所述单脉冲分布时,将所述测量角度确定为所述载体相对于所述激光传感器的干扰角度。
在一实施例中,干扰角度确定单元,还可以用于:
计算所述测量角度的激光点云数据的方差值;
若所述方差值小于预设阈值,则将所述测量角度确定为所述干扰角度。
在一实施例中,所述装置还可以包括:点云数据存储模块230;
所述点云数据存储模块230,可以包括:
点云数据存储单元231,用于对各所述测量角度上的激光点云数据进行存储;
点云数据删除单元232,用于当各所述测量角度上的激光点云数据到达预设数量时,删除最早存储的激光点云数据,以将所述测量角度上的激光点云数据维持在所述预设数量。
另一方面,本申请还提供了一种计算机可读存储介质,存储介质存储有计算机程序,计算机程序用于执行上述图1~图6所示实施例提供的激光点云数据的处理方法。
另一方面,本申请还提供了一种机器人,包括:载体、激光传感器、处理器以及存储器;
其中,所述载体用于承载所述激光传感器,并按照预设规则进行运动;
所述激光传感器用于对外界环境进行扫描;
所述存储器用于存储处理器可处理指令;
所述处理器用于执行上述图1~图6所示实施例提供的激光点云数据的处理方法。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本申请方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的 其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (15)

  1. 一种激光点云数据的处理方法,包括:
    获取激光传感器在多个测量角度上的激光点云数据,以构成所述激光传感器的激光点云数据集;
    根据所述每个测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度;
    根据所述干扰角度确定所述激光点云数据集中包含的干扰点云数据;
    从所述激光点云数据集中滤除所述干扰点云数据。
  2. 根据权利要求1所述的方法,所述方法还包括:
    控制所述载体按照预设规则进行运动,
    在所述载体按照所述预设规则进行运动的过程中,控制所述激光传感器进行扫描以获取所述激光点云数据集。
  3. 根据权利要求2所述的方法,所述方法还包括:
    当接收到用于启动所述激光传感器的载体进行运动的第一控制指令和用于启动所述激光传感器进行扫描的第二控制指令时,控制所述载体按照所述预设规则进行运动。
  4. 根据权利要求3所述的方法,所述方法还包括:
    输出用于提示从多种备选规则中进行选择的提示信息;
    将用户选择的备选规则确定为所述预设规则。
  5. 根据权利要1所述的方法,所述载体相对于所述激光传感器是静止的。
  6. 根据权利要求1-5任一项所述的方法,根据所述测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度,包括:
    判断所述测量角度的激光点云数据的分布概率是否符合单脉冲分布;
    当所述测量角度的激光点云数据的分布概率符合所述单脉冲分布时,将所述测量角度确定为所述载体相对于所述激光传感器的干扰角度。
  7. 根据权利要求6所述的方法,当所述测量角度的激光点云数据的分布概率符合所述单脉冲分布时,将所述测量角度确定为所述载体相对于所述激光传感器的干扰角度,包括:
    计算所述测量角度的激光点云数据的方差值;
    若所述方差值小于预设阈值,则将所述测量角度确定为所述干扰角度。
  8. 根据权利要求1所述的方法,所述方法还包括:
    将所述各个测量角度的激光点云数据维持在预设数量。
  9. 一种激光点云数据的处理装置,包括:
    点云数据获取模块,用于获取激光传感器在多个测量角度上的激光点云数据,以构成所述激光传感器的激光点云数据集;
    干扰角度确定模块,用于根据所述每个测量角度的激光点云数据的分布概率,确定所述激光传感器的载体相对于所述激光传感器的干扰角度;
    干扰数据确定模块,用于根据所述干扰角度确定所述激光点云数据集中包含的干扰点云数据;
    干扰数据滤除模块,用于从所述激光点云数据集中滤除所述干扰点云数据。
  10. 根据权利要求9所述的装置,所述装置还包括环境扫描控制模块;所述环境扫描控制模块包括:
    载体运动控制单元,用于控制所述载体按照预设规则进行运动;
    环境扫描控制单元,用于在所述载体按照所述预设规则进行运动的过程中,控制所述激光传感器进行扫描以获取所述激光点云数据集。
  11. 根据权利要求10所述的装置,所述载体运动控制单元,还用于:
    当接收到用于启动所述激光传感器的载体进行运动的第一控制指令和用于启动所述激光传感器进行扫描的第二控制指令时,控制所述载体按照所述预设规则进行运动。
  12. 根据权利要求11所述的装置,所述载体运动控制单元,还用于:
    输出用于提示从多种备选规则中进行选择的提示信息;
    将用户选择的备选规则确定为所述预设规则。
  13. 根据权利要9所述的装置,所述载体相对于所述激光传感器是静止的。
  14. 一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-8任一所述的激光点云数据的处理方法。
  15. 一种机器人,包括:载体、激光传感器、处理器以及存储器;
    其中,所述载体用于承载所述激光传感器,并按照预设规则进行运动;
    所述激光传感器用于对外界环境进行扫描;
    所述存储器用于存储处理器可处理指令;
    所述处理器用于执行上述权利要求1-8任一所述的激光点云数据的处理方法。
PCT/CN2018/121002 2018-02-06 2018-12-14 激光点云数据的处理 WO2019153877A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810119294.8 2018-02-06
CN201810119294.8A CN108415035B (zh) 2018-02-06 2018-02-06 一种激光点云数据的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2019153877A1 true WO2019153877A1 (zh) 2019-08-15

Family

ID=63127812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121002 WO2019153877A1 (zh) 2018-02-06 2018-12-14 激光点云数据的处理

Country Status (2)

Country Link
CN (1) CN108415035B (zh)
WO (1) WO2019153877A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111476830A (zh) * 2020-03-13 2020-07-31 上海高仙自动化科技发展有限公司 点云数据处理方法、机器人、电子设备和可读存储介质
CN113133319A (zh) * 2019-10-31 2021-07-16 深圳市大疆创新科技有限公司 标定板、测试角分辨率的方法、装置及计算机存储介质
CN116433780A (zh) * 2023-06-14 2023-07-14 深圳市恒鑫通智能精密科技有限公司 一种基于机器视觉的激光结构光自动标定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415035B (zh) * 2018-02-06 2019-08-02 北京三快在线科技有限公司 一种激光点云数据的处理方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001620A1 (en) * 2002-06-26 2004-01-01 Moore Ronald W. Apparatus and method for point cloud assembly
CN101369313A (zh) * 2007-08-17 2009-02-18 鸿富锦精密工业(深圳)有限公司 点云噪声点过滤系统及方法
CN101632001A (zh) * 2006-12-20 2010-01-20 斯甘拉伊斯股份有限公司 一种用于相对于基本参考数据对扫描点云数据定向的系统和方法
US9007422B1 (en) * 2014-09-03 2015-04-14 Center Of Human-Centered Interaction For Coexistence Method and system for mutual interaction using space based augmentation
CN104915986A (zh) * 2015-06-26 2015-09-16 北京航空航天大学 一种实体三维模型自动建模方法
CN108415035A (zh) * 2018-02-06 2018-08-17 北京三快在线科技有限公司 一种激光点云数据的处理方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865996B (zh) * 2010-05-19 2013-03-27 北京航空航天大学 一种用于机载激光雷达俯仰角偏差实时补偿的方法与装置
US20140293263A1 (en) * 2013-03-28 2014-10-02 James Justice LIDAR Comprising Polyhedron Transmission and Receiving Scanning Element
CN103400416B (zh) * 2013-08-15 2016-01-13 东南大学 一种基于概率多层地形的城市环境机器人导航方法
CN108780154B (zh) * 2016-03-14 2023-06-09 亿目朗欧洲股份有限公司 3d点云的处理方法
CN105676209B (zh) * 2016-04-01 2023-02-24 山东理工大学 一种直升机载激光雷达平台三维姿态角复杂振动实时补偿方法与装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001620A1 (en) * 2002-06-26 2004-01-01 Moore Ronald W. Apparatus and method for point cloud assembly
CN101632001A (zh) * 2006-12-20 2010-01-20 斯甘拉伊斯股份有限公司 一种用于相对于基本参考数据对扫描点云数据定向的系统和方法
CN101369313A (zh) * 2007-08-17 2009-02-18 鸿富锦精密工业(深圳)有限公司 点云噪声点过滤系统及方法
US9007422B1 (en) * 2014-09-03 2015-04-14 Center Of Human-Centered Interaction For Coexistence Method and system for mutual interaction using space based augmentation
CN104915986A (zh) * 2015-06-26 2015-09-16 北京航空航天大学 一种实体三维模型自动建模方法
CN108415035A (zh) * 2018-02-06 2018-08-17 北京三快在线科技有限公司 一种激光点云数据的处理方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113133319A (zh) * 2019-10-31 2021-07-16 深圳市大疆创新科技有限公司 标定板、测试角分辨率的方法、装置及计算机存储介质
CN111476830A (zh) * 2020-03-13 2020-07-31 上海高仙自动化科技发展有限公司 点云数据处理方法、机器人、电子设备和可读存储介质
CN111476830B (zh) * 2020-03-13 2023-08-01 上海高仙自动化科技发展有限公司 点云数据处理方法、机器人、电子设备和可读存储介质
CN116433780A (zh) * 2023-06-14 2023-07-14 深圳市恒鑫通智能精密科技有限公司 一种基于机器视觉的激光结构光自动标定方法
CN116433780B (zh) * 2023-06-14 2023-08-25 深圳市恒鑫通智能精密科技有限公司 一种基于机器视觉的激光结构光自动标定方法

Also Published As

Publication number Publication date
CN108415035A (zh) 2018-08-17
CN108415035B (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2019153877A1 (zh) 激光点云数据的处理
CN109613543B (zh) 激光点云数据的修正方法、装置、存储介质和电子设备
JP7214803B2 (ja) 建築物の測位方法、装置、電子デバイス、記憶媒体、プログラム、及び端末デバイス
EP2348700A1 (en) Mobile communication terminal and method
EP3318841B1 (en) Camera controller
CN110619807B (zh) 生成全局热力图的方法和装置
WO2019085081A1 (zh) 地图中目标位置修正方法、装置、计算机设备和存储介质
US11525678B2 (en) Use of offline algorithm to determine location from previous sensor data when location is requested
EP3584603A1 (en) Reflection object position calculating device, reflection object position calculating method, and reflection object position calculating program
WO2022205750A1 (zh) 点云数据生成方法、装置、电子设备及存储介质
US10782409B2 (en) Technologies for LIDAR based moving object detection
CN108225189B (zh) 传感器内的相对定位
CN112330737B (zh) 平行检测方法、设备、存储介质及装置
Wang et al. Automated low-cost photogrammetry for flexible structure monitoring
CN114661049A (zh) 一种巡检方法、装置及计算机可读介质
EP2569958B1 (en) Method, computer program and apparatus for determining an object in sight
EP3688410B1 (en) Queue of data collection tasks for surveying instrument
KR102591370B1 (ko) 실내 측위 장치 및 그 방법
CN113450403B (zh) 热成像相机的测试方法、装置、设备和介质
CN109040749A (zh) 鱼眼模组的光心对位检测方法、装置、设备及存储介质
CN114800499B (zh) 位姿调整方法、装置、计算机可读存储介质及电子设备
JP7464558B2 (ja) 測量データ処理装置、測量データ処理方法および測量データ処理用プログラム
CN110220882B (zh) 样品检测方法、设备、计算设备及计算机存储介质
US20230217260A1 (en) Intelligent wireless network design system
CN111308419B (zh) 定位方法、装置、设备和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904918

Country of ref document: EP

Kind code of ref document: A1