WO2019153695A1 - 投影镜头 - Google Patents

投影镜头 Download PDF

Info

Publication number
WO2019153695A1
WO2019153695A1 PCT/CN2018/100481 CN2018100481W WO2019153695A1 WO 2019153695 A1 WO2019153695 A1 WO 2019153695A1 CN 2018100481 W CN2018100481 W CN 2018100481W WO 2019153695 A1 WO2019153695 A1 WO 2019153695A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
projection lens
image
projection
source side
Prior art date
Application number
PCT/CN2018/100481
Other languages
English (en)
French (fr)
Inventor
黄林
王新权
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810122637.6A external-priority patent/CN108132575B/zh
Priority claimed from CN201820213319.6U external-priority patent/CN207764539U/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019153695A1 publication Critical patent/WO2019153695A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present application relates to a projection lens, and more particularly, to a projection lens including two lenses.
  • the optical projection lens is used to project the light emitted by the infrared laser diode (LD) or the vertical cavity surface emitting laser (VCSEL) toward the target object; the projection beam is projected to the target object after passing through the optical diffraction element (DOE).
  • LD infrared laser diode
  • VCSEL vertical cavity surface emitting laser
  • a three-dimensional image containing the depth information of the position of the projected object can be calculated.
  • Three-dimensional images with depth information can be further used for various deep application developments such as biometrics.
  • a projection lens conventionally used for imaging eliminates various aberrations and improves resolution by increasing the number of lenses.
  • this will result in an increase in the total optical length (TTL) of the projection lens, and the lens assembly requires structural support such as a lens barrel, so that the overall volume of the lens is large, which is disadvantageous for miniaturization of the lens.
  • the conventional lens structure cannot achieve the borderless arrangement between the lenses in the array lens.
  • the present application provides a projection lens that can be adapted for use in a portable electronic product that at least solves or partially addresses at least one of the above disadvantages of the prior art.
  • the present application provides a projection lens that includes, in order from the source side to the imaging side along the optical axis, a first lens and a second lens having optical power.
  • the first lens may include a first planar glass disposed between the image source side surface of the first lens and the imaging side surface of the first lens;
  • the second lens may include an image source side surface and a second lens disposed on the second lens The second planar glass is imaged between the side surfaces.
  • the thickness CT1p of the first planar glass and the center thickness CT1 of the first lens on the optical axis may satisfy 0.1 ⁇ CT1p/CT1 ⁇ 0.5.
  • the thickness CT2p of the second planar glass and the center thickness CT2 of the second lens on the optical axis may satisfy 0.1 ⁇ CT2p/CT2 ⁇ 0.5.
  • the center thickness CT1 of the first lens on the optical axis and the center thickness CT2 of the second lens on the optical axis may satisfy 0.6 ⁇ CT1/CT2 ⁇ 1.4.
  • both the first lens and the second lens may have positive power.
  • the effective focal length f2 of the second lens and the total effective focal length f of the projection lens may satisfy 0.6 ⁇ f2 / f ⁇ 1.6.
  • the image source side surface of the second lens may be a concave surface, and the imaging side surface may be a convex surface; the curvature radius R4 of the imaging side surface of the second lens and the total effective focal length f of the projection lens may satisfy -0.5 ⁇ R4 /f ⁇ -0.1.
  • the maximum half aperture DT1f of the image source side surface of the first lens and the maximum half aperture DT2r of the imaging side surface of the second lens may satisfy 0.8 ⁇ DT1f / DT2r ⁇ 1.2.
  • the maximum half angle of view HFOV of the projection lens may satisfy tan(HFOV) ⁇ 0.26.
  • the object side numerical aperture NA of the projection lens can satisfy NA > 0.18.
  • the shortest wavelength of the actual applied wavelength ⁇ of the projection lens is shorter than the shortest wavelength using the light source by 0 nm to 100 nm, and the longest wavelength of the actual applied wavelength ⁇ of the projection lens is longer than the longest wavelength of the light source by 0 nm to 100 nm.
  • the maximum incident angle CRAmax of the chief ray of the projection lens may satisfy CRAmax ⁇ 10°.
  • the present application provides a projection lens, which is cut into a lens array including one lens or a plurality of lenses after being aligned and stacked by a plurality of arranged optical elements, and the edge shape of the lens array may be circular, A rectangle or a polygon.
  • the present application also provides a method of making a projection lens, the method comprising: curing one or both sides of opposite sides of a substrate by curing a quantity of plastic body or by pressing the substrate Forming a plurality of portions having curvature on outer side surfaces of opposite sides of the substrate to form a lens array; and cutting the lens array such that each portion cut includes at least one of the curvatures Part, and each of the cut portions has a circular, rectangular or polygonal edge shape.
  • the substrate is a flat glass.
  • the present application employs a plurality of (eg, two) lenses by providing planar glass in each lens and rationally distributing the power, shape, center thickness of each lens, and on-axis spacing between the lenses.
  • the above projection lens has the advantages of miniaturization, high image quality and the like.
  • the lens of the above configuration can form an array lens with few boundaries or even zero boundaries.
  • FIG. 1 is a schematic structural view of a projection lens according to Embodiment 1 of the present application.
  • FIG. 3 is a schematic structural view of a projection lens according to Embodiment 2 of the present application.
  • FIG. 5 is a schematic structural diagram of a projection lens according to Embodiment 3 of the present application.
  • FIG. 7 is a schematic structural diagram of a projection lens according to Embodiment 4 of the present application.
  • FIG. 8 is a view showing a distortion curve of the projection lens of Embodiment 4.
  • FIG. 9 is a schematic structural diagram of a projection lens according to Embodiment 5 of the present application.
  • FIG. 10 is a view showing a distortion curve of the projection lens of Embodiment 5.
  • FIG. 11 is a schematic structural view of a projection lens according to Embodiment 6 of the present application.
  • Figure 12 is a view showing a distortion curve of the projection lens of Embodiment 6;
  • FIG. 13 is a schematic structural diagram of a projection lens according to Embodiment 7 of the present application.
  • Figure 14 is a view showing a distortion curve of the projection lens of Embodiment 7.
  • FIG. 15 is a schematic structural view of a projection lens according to Embodiment 8 of the present application.
  • Figure 16 is a view showing a distortion curve of the projection lens of Embodiment 8.
  • Figure 17 shows a cross-sectional view of a projection lens in accordance with an embodiment of the present application.
  • FIG. 18 illustrates a perspective view of a lens array including a plurality of lens units in accordance with an embodiment of the present application
  • Figure 19 shows a front view of Figure 18
  • FIG. 20 shows a front view of a lens array including a plurality of lens units in accordance with another embodiment of the present application
  • FIG. 21 shows a front view of a lens array including a plurality of lens units in accordance with another embodiment of the present application.
  • Figure 22 shows a lens array including a lens having an edge shape of a pentagon
  • Figure 23 shows a lens array including a lens having an edge shape of a hexagon
  • Figure 24 shows a lens array including a lens having an edge shape that is circular
  • FIG. 25 illustrates a lens array including a plurality of lenses whose edge shapes are circular
  • Figure 26 shows a lens array including a lens having an edge shape that is rectangular
  • FIG. 27 shows a lens array including a plurality of lenses whose edge shapes are rectangular.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens
  • second lens may also be referred to as a first lens, without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the image source side in each lens is referred to as an image source side surface, and the surface closest to the image side in each lens is referred to as an image side surface.
  • a projection lens according to an exemplary embodiment of the present application may include, for example, two (sets) lenses having powers, that is, a first lens and a second lens.
  • the two lenses are sequentially arranged from the source side to the image side along the optical axis.
  • the first lens may include a first planar glass disposed between the image source side surface and the image forming side surface, the first planar glass dividing the first lens into the first image source near the image source side A side portion and a first imaging side portion near the imaging side.
  • the second lens may include a second planar glass disposed between the image source side surface and the image forming side surface, the second planar glass dividing the second lens into the second image source side portion near the image source side and near the image forming side The second imaging side portion.
  • Planar glass is disposed between the image source side surface and the image forming side surface of each lens, such an arrangement is advantageous for supporting the lens to realize an array of different numbers and different shapes, which is advantageous for avoiding bending of the lens due to the radius of curvature. Deformation or shrinkage deformation; at the same time, the flat glass facilitates stacking and optical alignment, and does not require a conventional structural member such as a lens barrel after stacking, which is advantageous for miniaturization of the lens module.
  • both the first lens and the second lens may have positive power.
  • Such an arrangement is advantageous for reducing the chief ray angle on the image source side, improving the matching of the lens with the cone angle of the illumination source, and improving the brightness uniformity of the projected image.
  • the projection lens of the present application may satisfy the conditional formula tan(HFOV) ⁇ 0.26, where HFOV is the maximum half angle of view of the projection lens. More specifically, HFOV can further satisfy tan (HFOV) ⁇ 0.20, for example, 0.14 ⁇ tan (HFOV) ⁇ 0.18. Satisfying the conditional tan(HFOV) ⁇ 0.26 is beneficial to reduce the projection beam divergence angle and increase the projected depth of field; it is beneficial to the front and back depth of field of the projection lens to be flat; it is also beneficial for algorithm processing to obtain more accurate depth information.
  • tan(HFOV) ⁇ 0.26 Satisfying the conditional tan(HFOV) ⁇ 0.26 is beneficial to reduce the projection beam divergence angle and increase the projected depth of field; it is beneficial to the front and back depth of field of the projection lens to be flat; it is also beneficial for algorithm processing to obtain more accurate depth information.
  • the projection lens of the present application may satisfy the conditional expression 0.6 ⁇ CT1/CT2 ⁇ 1.4, where CT1 is the center thickness of the first lens on the optical axis (ie, the center of the source side surface of the first lens image) To the distance of the center of the imaging side surface of the first lens on the optical axis, CT2 is the center thickness of the second lens on the optical axis (ie, the center of the second lens image source side surface to the second lens imaging side surface) The distance between the centers on the optical axis). More specifically, CT1 and CT2 can further satisfy 0.69 ⁇ CT1/CT2 ⁇ 1.33.
  • the conditional formula 0.6 ⁇ CT1/CT2 ⁇ 1.4 is satisfied, which is advantageous for rationally distributing the on-axis space and miniaturizing the lens; at the same time, it is advantageous for the lens to realize stacking and optical alignment.
  • the projection lens of the present application may satisfy the conditional expression 0.6 ⁇ f2/f ⁇ 1.6, where f2 is the effective focal length of the second lens, and f is the total effective focal length of the projection lens. More specifically, f2 and f can further satisfy 0.69 ⁇ f2 / f ⁇ 1.50. Satisfying the conditional expression 0.6 ⁇ f2/f ⁇ 1.6, it is advantageous to reduce the ratio of the total optical length (TTL) of the projection lens to the total effective focal length f of the projection lens, thereby miniaturizing the lens module; at the same time, it is advantageous for reducing the projection beam. Divergence angle and increased projection depth of field, with better projection imaging quality.
  • the projection lens of the present application may satisfy the conditional expression NA>0.18, where NA is the object-side numerical aperture of the projection lens. More specifically, the NA can further satisfy 0.20 ⁇ NA ⁇ 0.21.
  • NA>0.18 is satisfied, and the projection lens has a large numerical aperture, which is advantageous for increasing the light source receiving capability of the lens and improving the projection energy efficiency, thereby obtaining a projection image with higher brightness.
  • the projection lens of the present application may satisfy the conditional expression 0.1 ⁇ CT1p/CT1 ⁇ 0.5, wherein CT1p is the thickness of the first planar glass (ie, the image source side surface of the first planar glass to the first plane) The distance of the imaging side surface of the glass on the optical axis), CT1 is the center thickness of the first lens on the optical axis. More specifically, CT1p and CT1 can further satisfy 0.15 ⁇ CT1p/CT1 ⁇ 0.35, for example, 0.17 ⁇ CT1p/CT1 ⁇ 0.31.
  • the projection lens of the present application may satisfy the conditional expression 0.1 ⁇ CT2p/CT2 ⁇ 0.5, wherein CT2p is the thickness of the second planar glass (ie, the image source side surface to the second plane of the second planar glass) The distance between the imaging side surfaces of the glass on the optical axis), CT2 is the center thickness of the second lens on the optical axis. More specifically, CT2p and CT2 can further satisfy 0.15 ⁇ CT2p/CT2 ⁇ 0.30, for example, 0.17 ⁇ CT2p/CT2 ⁇ 0.24.
  • the second lens may be a meniscus lens having a convex surface toward the image forming side, the image side surface being concave and the image forming side surface being convex.
  • the projection lens of the present application may satisfy the conditional expression -0.5 ⁇ R4 / f ⁇ -0.1, where R4 is the radius of curvature of the imaging side surface of the second lens, and f is the total effective focal length of the projection lens. More specifically, R4 and f may further satisfy -0.4 ⁇ R4 / f ⁇ - 0.2, for example, -0.31 ⁇ R4 / f ⁇ -0.23.
  • Satisfying the conditional expression -0.5 ⁇ R4/f ⁇ -0.1 is beneficial to reduce spherical aberration and astigmatism, and improve the imaging quality of the projection lens; at the same time, it is advantageous to correct the distortion introduced by the first lens.
  • the projection lens of the present application may satisfy the conditional expression 0.8 ⁇ DT1f/DT2r ⁇ 1.2, where DT1f is the maximum half aperture of the image source side surface of the first lens, and DT2r is the imaging side surface of the second lens The largest half-caliber. More specifically, DT1f and DT2r can further satisfy 0.82 ⁇ DT1f / DT2r ⁇ 1.09. Satisfying the conditional formula 0.8 ⁇ DT1f/DT2r ⁇ 1.2 is beneficial to the reasonable distribution of the power; it is beneficial to improve the processability of the lens; and it is beneficial to balance the tolerance sensitivity of the optical system.
  • the projection lens of the present application may satisfy the conditional expression CRAmax ⁇ 10°, where CRAmax is the maximum incident angle of the chief ray of the projection lens. Satisfying the conditional expression CRAmax ⁇ 10° is beneficial to better match the optical cone angle of the off-axis light source, increase the amount of off-axis light entering the optical system, and improve the brightness of the projected image.
  • the above-mentioned projection lens application band may be a monochromatic light source, and the shortest wavelength of the practical application wavelength ⁇ of the projection lens is shorter than the shortest wavelength of the monochromatic light source used by 0 nm-100 nm, and the longest wavelength ratio of the practical application wavelength ⁇ of the projection lens
  • the longest wavelength of the monochromatic source used is from 0 nm to 100 nm.
  • the use of a monochromatic light source is advantageous for reducing chromatic aberration, stray light and the like introduced due to a wide wavelength, and is advantageous for improving the imaging quality of the projection lens; and at the same time, the projection lens can conform to the requirement of the optical interface matching of the optical diffraction element DOE.
  • the above projection lens can be applied to an infrared single wavelength band.
  • FIG. 17 shows a cross-sectional view of a projection lens according to an embodiment of the present application.
  • the projection lens according to the present application may be stacked by a certain number of arranged optical elements.
  • the projection lens may include a first lens E1 and a second lens E2.
  • the first lens E1 may have a first planar glass E1p that divides the first lens E1 into a first image source side portion E1f and a first image forming side portion E1r.
  • the second lens E2 may have a second planar glass E2p that divides the second lens E2 into a second image source side portion E2f and a second image forming side portion E2r.
  • the first lens E1 and the second lens E2 may be a spherical or aspherical integral lens formed on both sides by using a flat glass as a base material and uniformly adhering a certain amount of solid plastic material on both sides.
  • the first lens E1 and the second lens E2 may also be integral lenses with spherical or aspheric surfaces on both sides formed by pressing flat glass, respectively.
  • the first lens E1 or the second lens E2 may also be a unitary lens with a spherical or aspherical surface on both sides formed by attaching a certain amount of solidified plastic material on one side and pressing the flat glass on the other side.
  • FIG. 18 illustrates a perspective view of a lens array 100 including a plurality of lens units, in accordance with an embodiment of the present application.
  • Fig. 19 shows a front view of Fig. 18.
  • the lens array 100 may be a flat glass 10 substrate, and a certain amount of solidified plastic material 20 is evenly attached on both sides to form one or more spherical surfaces (or aspheric surfaces) on both sides. overall.
  • the manufacturing process of the lens array 100 can include the following steps:
  • Step 1 taking, for example, a flat glass as a substrate
  • Step 2 curing the plastic body on opposite sides of the substrate, the plastic body having a plurality of portions having curvature, so that the substrate solidified with the plastic body forms a lens array;
  • Step 3 The lens array is cut such that each of the cut portions includes at least one portion having a curvature, and each of the cut portions has a circular, rectangular or polygonal edge shape.
  • FIG. 20 illustrates a front view of a lens array 200 including a plurality of lens units in accordance with another embodiment of the present application.
  • the lens array 200 may be integrally formed by pressing, for example, the flat glass 10, with one or more spherical surfaces (or aspherical surfaces) on both sides.
  • the manufacturing process of lens array 200 can include the following steps:
  • Step 1 taking flat glass as a substrate
  • Step 2 pressing the substrate to form a plurality of portions having curvature on opposite sides thereof to form a lens array
  • Step 3 The lens array is cut such that each of the cut portions includes at least one portion having a curvature, and each of the cut portions has a circular, rectangular or polygonal edge shape.
  • lens array 300 shows a front view of a lens array 300 including a plurality of lens units in accordance with another embodiment of the present application.
  • lens array 300 may be integrally formed with one or more spherical (or aspherical) sides on one side by attaching a certain amount of cured plastic material 20, one side formed by pressing, for example, flat glass 10.
  • the manufacturing process of lens array 300 can include the following steps:
  • Step 1 taking flat glass as a substrate
  • Step 2 curing the plastic body on either side of the opposite sides of the substrate and pressing the substrate on the other of the opposite sides of the substrate to form on the outer side surfaces of the opposite sides of the substrate a plurality of portions having curvature to form a lens array;
  • Step 3 The lens array is cut such that each of the cut portions includes at least one portion having a curvature, and each of the cut portions has a circular, rectangular or polygonal edge shape.
  • the portion having the curvature may be a concave portion or a convex portion.
  • a projection lens according to another embodiment of the present application may be formed by aligning a plurality of arranged optical elements (for example, a plurality of lens arrays 100, a plurality of lens arrays 200 or a plurality of lens arrays 300), and cutting into a lens.
  • a lens array of a plurality of lenses the lens array may have an edge shape such as a circle, a rectangle, or a polygon.
  • the lens array can be used to achieve miniaturization, achieving the effect of fewer boundaries or even zero boundaries between the array lenses.
  • the shape of the edge of the array lens is set to a shape such as a circle, a rectangle or a polygon, which is advantageous for meeting the lens shape requirements of various installation spaces.
  • the projection lens according to the above embodiment of the present application may employ, for example, two lenses by arranging a flat glass in each lens, and rationally distributing the power, the face shape, the center thickness of each lens, and the respective lenses between the lenses.
  • the on-axis spacing and the like make the projection lens have the advantages of miniaturization and high image quality.
  • the projection lens configured as described above can be used in conjunction with a diffraction element (DOE).
  • DOE diffraction element
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • the various results and advantages described in this specification can be obtained without varying the number of lenses that make up the projection lens without departing from the technical solutions claimed herein.
  • the projection lens is not limited to including two lenses.
  • the projection lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of a projection lens according to Embodiment 1 of the present application.
  • a projection lens sequentially includes, along the optical axis, from an image source side to an imaging side: a first lens E1, a second lens E2, and a stop STO.
  • the first lens E1 has a positive power, the image side surface S1 is a convex surface, and the imaging side surface S2 is a concave surface.
  • the first lens E1 includes a first plane glass E1p disposed between the image source side surface S1 and the image forming side surface S2, and the first plane glass E1p has an image source side surface S1p1 and an image side surface S1p2.
  • the first flat glass E1p divides the first lens E1 into an image source side portion E1f and an image forming side portion E1r.
  • the second lens E2 has a positive power, the image side surface S3 is a concave surface, and the imaging side surface S4 is a convex surface.
  • the second lens E2 includes a second planar glass E2p disposed between the image source side surface S3 and the image forming side surface S4, and the second planar glass E2p has the image source side surface S2p1 and the image forming side surface S2p2.
  • the second flat glass E2p divides the second lens E2 into an image source side portion E2f and an image forming side portion E2r.
  • Light from the image source OBJ sequentially passes through the respective surfaces S1 to S4, passes through, for example, an optical diffraction element DOE (not shown), and is projected onto the target object in the space.
  • DOE optical diffraction element
  • the projection lens of the embodiment is applied to a monochromatic light source, and the shortest wavelength of the practical application wavelength ⁇ of the projection lens is shorter than the shortest wavelength of the light source by about 0 nm to 100 nm, and the longest wavelength of the practical application wavelength ⁇ of the projection lens is smaller than the light source.
  • the longest wavelength is about 0 nm to 100 nm long.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the projection lens of Example 1, wherein the unit of the radius of curvature and the thickness are each mm (mm).
  • each aspherical lens can be defined by using, but not limited to, the following aspherical formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirror faces S1 - S4 in the embodiment 1.
  • Table 3 gives the total effective focal length f of the projection lens in Embodiment 1, the effective focal length f1 of the first lens E1, the effective focal length f2 of the second lens E2, the maximum half angle of view HFOV of the projection lens, and the object value of the projection lens.
  • the projection lens in Embodiment 1 satisfies:
  • Tan(HFOV) 0.15, where HFOV is the maximum half angle of view of the projection lens
  • CT1/CT2 0.76, where CT1 is the center thickness of the first lens E1 on the optical axis, and CT2 is the center thickness of the second lens E2 on the optical axis;
  • F2/f 0.80, where f2 is the effective focal length of the second lens E2, and f is the total effective focal length of the projection lens;
  • CT1p/CT1 0.23, wherein CT1p is the thickness of the plane glass E1p of the first lens E1, and CT1 is the center thickness of the first lens E1 on the optical axis;
  • CT2p / CT2 0.18, wherein CT2p is the thickness of the plane glass E2p of the second lens E2, and CT2 is the center thickness of the second lens E2 on the optical axis;
  • R4/f -0.29, where R4 is the radius of curvature of the imaging side surface S4 of the second lens E2, and f is the total effective focal length of the projection lens;
  • DT1f / DT2r 0.86, where DT1f is the maximum half aperture of the image source side surface S1 of the first lens E1, and DT2r is the maximum half aperture of the imaging side surface S4 of the second lens E2.
  • Fig. 2 is a view showing a distortion curve of the projection lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles. According to FIG. 2, the projection lens given in Embodiment 1 can achieve good image quality.
  • FIG. 3 is a schematic structural view of a projection lens according to Embodiment 2 of the present application.
  • a projection lens sequentially includes, along the optical axis, from the image source side to the imaging side: a first lens E1, a second lens E2, and a stop STO.
  • the first lens E1 has a positive power, the image side surface S1 is a convex surface, and the imaging side surface S2 is a concave surface.
  • the first lens E1 includes a first plane glass E1p disposed between the image source side surface S1 and the image forming side surface S2, and the first plane glass E1p has an image source side surface S1p1 and an image side surface S1p2.
  • the first flat glass E1p divides the first lens E1 into an image source side portion E1f and an image forming side portion E1r.
  • the second lens E2 has a positive power, the image side surface S3 is a concave surface, and the imaging side surface S4 is a convex surface.
  • the second lens E2 includes a second planar glass E2p disposed between the image source side surface S3 and the image forming side surface S4, and the second planar glass E2p has the image source side surface S2p1 and the image forming side surface S2p2.
  • the second flat glass E2p divides the second lens E2 into an image source side portion E2f and an image forming side portion E2r.
  • Light from the image source OBJ sequentially passes through the respective surfaces S1 to S4, passes through, for example, an optical diffraction element DOE (not shown), and is projected onto the target object in the space.
  • DOE optical diffraction element
  • the projection lens of the embodiment is applied to a monochromatic light source, and the shortest wavelength of the practical application wavelength ⁇ of the projection lens is shorter than the shortest wavelength of the light source by about 0 nm to 100 nm, and the longest wavelength of the practical application wavelength ⁇ of the projection lens is smaller than the light source.
  • the longest wavelength is about 0 nm to 100 nm long.
  • Table 4 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the projection lens of Example 2, wherein the unit of the radius of curvature and the thickness are each mm (mm).
  • the image source side surface S1 and the imaging side surface S2 of the first lens E1 and the image source side surface S3 and the image forming side surface S4 of the second lens E2 are both aspherical.
  • Table 5 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 gives the total effective focal length f of the projection lens in Embodiment 2, the effective focal length f1 of the first lens E1, the effective focal length f2 of the second lens E2, the maximum half angle of view HFOV of the projection lens, and the object value of the projection lens.
  • Fig. 4 is a view showing a distortion curve of the projection lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles. As can be seen from FIG. 4, the projection lens given in Embodiment 2 can achieve good image quality.
  • FIG. 5 is a schematic structural view of a projection lens according to Embodiment 3 of the present application.
  • a projection lens sequentially includes, along the optical axis, from the image source side to the imaging side: a first lens E1, a second lens E2, and a stop STO.
  • the first lens E1 has a positive power, the image side surface S1 is a convex surface, and the imaging side surface S2 is a concave surface.
  • the first lens E1 includes a first plane glass E1p disposed between the image source side surface S1 and the image forming side surface S2, and the first plane glass E1p has an image source side surface S1p1 and an image side surface S1p2.
  • the first flat glass E1p divides the first lens E1 into an image source side portion E1f and an image forming side portion E1r.
  • the second lens E2 has a positive power, the image side surface S3 is a concave surface, and the imaging side surface S4 is a convex surface.
  • the second lens E2 includes a second planar glass E2p disposed between the image source side surface S3 and the image forming side surface S4, and the second planar glass E2p has the image source side surface S2p1 and the image forming side surface S2p2.
  • the second flat glass E2p divides the second lens E2 into an image source side portion E2f and an image forming side portion E2r.
  • Light from the image source OBJ sequentially passes through the respective surfaces S1 to S4, passes through, for example, an optical diffraction element DOE (not shown), and is projected onto the target object in the space.
  • DOE optical diffraction element
  • the projection lens of the embodiment is applied to a monochromatic light source, and the shortest wavelength of the practical application wavelength ⁇ of the projection lens is shorter than the shortest wavelength of the light source by about 0 nm to 100 nm, and the longest wavelength of the practical application wavelength ⁇ of the projection lens is smaller than the light source.
  • the longest wavelength is about 0 nm to 100 nm long.
  • Table 7 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the projection lens of Example 3, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the image source side surface S1 and the image forming side surface S2 of the first lens E1 and the image source side surface S3 and the image forming side surface S4 of the second lens E2 are both aspherical.
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 gives the total effective focal length f of the projection lens in Embodiment 3, the effective focal length f1 of the first lens E1, the effective focal length f2 of the second lens E2, the maximum half angle of view HFOV of the projection lens, and the object value of the projection lens.
  • Fig. 6 is a view showing a distortion curve of the projection lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles. As can be seen from Fig. 6, the projection lens given in Embodiment 3 can achieve good image quality.
  • FIG. 7 is a block diagram showing the structure of a projection lens according to Embodiment 4 of the present application.
  • a projection lens sequentially includes, along the optical axis, from the image source side to the imaging side: a first lens E1, a second lens E2, and a stop STO.
  • the first lens E1 has a positive power, the image side surface S1 is a convex surface, and the imaging side surface S2 is a concave surface.
  • the first lens E1 includes a first plane glass E1p disposed between the image source side surface S1 and the image forming side surface S2, and the first plane glass E1p has an image source side surface S1p1 and an image side surface S1p2.
  • the first flat glass E1p divides the first lens E1 into an image source side portion E1f and an image forming side portion E1r.
  • the second lens E2 has a positive power, the image side surface S3 is a concave surface, and the imaging side surface S4 is a convex surface.
  • the second lens E2 includes a second planar glass E2p disposed between the image source side surface S3 and the image forming side surface S4, and the second planar glass E2p has the image source side surface S2p1 and the image forming side surface S2p2.
  • the second flat glass E2p divides the second lens E2 into an image source side portion E2f and an image forming side portion E2r.
  • the light from the image source OBJ sequentially passes through the respective surfaces S1 to S4, passes through, for example, an optical diffraction element DOE (not shown), and is projected onto the target object in the space.
  • an optical diffraction element DOE not shown
  • the projection lens of the embodiment is applied to a monochromatic light source, and the shortest wavelength of the practical application wavelength ⁇ of the projection lens is shorter than the shortest wavelength of the light source by about 0 nm to 100 nm, and the longest wavelength of the practical application wavelength ⁇ of the projection lens is smaller than the light source.
  • the longest wavelength is about 0 nm to 100 nm long.
  • Table 10 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the projection lens of Example 4, wherein the unit of the radius of curvature and the thickness are each mm (mm).
  • the image source side surface S1 and the image forming side surface S2 of the first lens E1 and the image source side surface S3 and the image forming side surface S4 of the second lens E2 are both aspherical.
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 gives the total effective focal length f of the projection lens in Embodiment 4, the effective focal length f1 of the first lens E1, the effective focal length f2 of the second lens E2, the maximum half angle of view HFOV of the projection lens, and the object value of the projection lens.
  • Fig. 8 is a view showing a distortion curve of the projection lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles. As can be seen from Fig. 8, the projection lens given in Embodiment 4 can achieve good image quality.
  • FIG. 9 is a block diagram showing the structure of a projection lens according to Embodiment 5 of the present application.
  • a projection lens sequentially includes, along the optical axis, from the image source side to the imaging side: a first lens E1, a second lens E2, and a stop STO.
  • the first lens E1 has a positive power, the image side surface S1 is a concave surface, and the imaging side surface S2 is a convex surface.
  • the first lens E1 includes a first plane glass E1p disposed between the image source side surface S1 and the image forming side surface S2, and the first plane glass E1p has an image source side surface S1p1 and an image side surface S1p2.
  • the first flat glass E1p divides the first lens E1 into an image source side portion E1f and an image forming side portion E1r.
  • the second lens E2 has a positive power, the image side surface S3 is a concave surface, and the imaging side surface S4 is a convex surface.
  • the second lens E2 includes a second planar glass E2p disposed between the image source side surface S3 and the image forming side surface S4, and the second planar glass E2p has the image source side surface S2p1 and the image forming side surface S2p2.
  • the second flat glass E2p divides the second lens E2 into an image source side portion E2f and an image forming side portion E2r.
  • Light from the image source OBJ sequentially passes through the respective surfaces S1 to S4, passes through, for example, an optical diffraction element DOE (not shown), and is projected onto the target object in the space.
  • DOE optical diffraction element
  • the projection lens of the embodiment is applied to a monochromatic light source, and the shortest wavelength of the practical application wavelength ⁇ of the projection lens is shorter than the shortest wavelength of the light source by about 0 nm to 100 nm, and the longest wavelength of the practical application wavelength ⁇ of the projection lens is smaller than the light source.
  • the longest wavelength is about 0 nm to 100 nm long.
  • Table 13 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the projection lens of Example 5, wherein the unit of the radius of curvature and the thickness are each mm (mm).
  • the image source side surface S1 and the image forming side surface S2 of the first lens E1 and the image source side surface S3 and the image forming side surface S4 of the second lens E2 are both aspherical.
  • Table 14 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 gives the total effective focal length f of the projection lens in Embodiment 5, the effective focal length f1 of the first lens E1, the effective focal length f2 of the second lens E2, the maximum half angle of view HFOV of the projection lens, and the object value of the projection lens.
  • Fig. 10 is a view showing a distortion curve of the projection lens of Embodiment 5, which shows distortion magnitude values in different viewing angles. As can be seen from Fig. 10, the projection lens given in Example 5 can achieve good image quality.
  • FIG. 11 is a block diagram showing the structure of a projection lens according to Embodiment 6 of the present application.
  • a projection lens sequentially includes, along the optical axis, from the image source side to the imaging side, a first lens E1, a second lens E2, and a stop STO.
  • the first lens E1 has a positive power, the image side surface S1 is a convex surface, and the imaging side surface S2 is a concave surface.
  • the first lens E1 includes a first plane glass E1p disposed between the image source side surface S1 and the image forming side surface S2, and the first plane glass E1p has an image source side surface S1p1 and an image side surface S1p2.
  • the first flat glass E1p divides the first lens E1 into an image source side portion E1f and an image forming side portion E1r.
  • the second lens E2 has a positive power, the image side surface S3 is a concave surface, and the imaging side surface S4 is a convex surface.
  • the second lens E2 includes a second planar glass E2p disposed between the image source side surface S3 and the image forming side surface S4, and the second planar glass E2p has the image source side surface S2p1 and the image forming side surface S2p2.
  • the second flat glass E2p divides the second lens E2 into an image source side portion E2f and an image forming side portion E2r.
  • Light from the image source OBJ sequentially passes through the respective surfaces S1 to S4, passes through, for example, an optical diffraction element DOE (not shown), and is projected onto the target object in the space.
  • DOE optical diffraction element
  • the projection lens of the embodiment is applied to a monochromatic light source, and the shortest wavelength of the practical application wavelength ⁇ of the projection lens is shorter than the shortest wavelength of the light source by about 0 nm to 100 nm, and the longest wavelength of the practical application wavelength ⁇ of the projection lens is smaller than the light source.
  • the longest wavelength is about 0 nm to 100 nm long.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the projection lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the image source side surface S1 and the image forming side surface S2 of the first lens E1 and the image source side surface S3 and the image forming side surface S4 of the second lens E2 are both aspherical.
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 gives the total effective focal length f of the projection lens in Embodiment 6, the effective focal length f1 of the first lens E1, the effective focal length f2 of the second lens E2, the maximum half angle of view HFOV of the projection lens, and the object value of the projection lens.
  • Fig. 12 is a view showing a distortion curve of the projection lens of Embodiment 6, which shows distortion magnitude values in the case of different viewing angles. As can be seen from Fig. 12, the projection lens given in Example 6 can achieve good image quality.
  • FIG. 13 is a block diagram showing the structure of a projection lens according to Embodiment 7 of the present application.
  • a projection lens sequentially includes, along the optical axis, from the image source side to the imaging side, a first lens E1, a second lens E2, and a stop STO.
  • the first lens E1 has a positive power, the image side surface S1 is a convex surface, and the imaging side surface S2 is a concave surface.
  • the first lens E1 includes a first plane glass E1p disposed between the image source side surface S1 and the image forming side surface S2, and the first plane glass E1p has an image source side surface S1p1 and an image side surface S1p2.
  • the first flat glass E1p divides the first lens E1 into an image source side portion E1f and an image forming side portion E1r.
  • the second lens E2 has a positive power, the image side surface S3 is a concave surface, and the imaging side surface S4 is a convex surface.
  • the second lens E2 includes a second planar glass E2p disposed between the image source side surface S3 and the image forming side surface S4, and the second planar glass E2p has the image source side surface S2p1 and the image forming side surface S2p2.
  • the second flat glass E2p divides the second lens E2 into an image source side portion E2f and an image forming side portion E2r.
  • Light from the image source OBJ sequentially passes through the respective surfaces S1 to S4, passes through, for example, an optical diffraction element DOE (not shown), and is projected onto the target object in the space.
  • DOE optical diffraction element
  • the projection lens of the embodiment is applied to a monochromatic light source, and the shortest wavelength of the practical application wavelength ⁇ of the projection lens is shorter than the shortest wavelength of the light source by about 0 nm to 100 nm, and the longest wavelength of the practical application wavelength ⁇ of the projection lens is smaller than the light source.
  • the longest wavelength is about 0 nm to 100 nm long.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the projection lens of Example 7, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the image source side surface S1 and the image forming side surface S2 of the first lens E1 and the image source side surface S3 and the image forming side surface S4 of the second lens E2 are both aspherical.
  • Table 20 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 21 gives the total effective focal length f of the projection lens in Embodiment 7, the effective focal length f1 of the first lens E1, the effective focal length f2 of the second lens E2, the maximum half angle of view HFOV of the projection lens, and the object value of the projection lens.
  • Fig. 14 is a view showing a distortion curve of the projection lens of Embodiment 7, which shows distortion magnitude values in the case of different viewing angles. As can be seen from Fig. 14, the projection lens given in Embodiment 7 can achieve good image quality.
  • FIG. 15 is a block diagram showing the structure of a projection lens according to Embodiment 8 of the present application.
  • a projection lens sequentially includes, along the optical axis, from the image source side to the imaging side, a first lens E1, a second lens E2, and a stop STO.
  • the first lens E1 has a positive power, the image side surface S1 is a convex surface, and the imaging side surface S2 is a concave surface.
  • the first lens E1 includes a first plane glass E1p disposed between the image source side surface S1 and the image forming side surface S2, and the first plane glass E1p has an image source side surface S1p1 and an image side surface S1p2.
  • the first flat glass E1p divides the first lens E1 into an image source side portion E1f and an image forming side portion E1r.
  • the second lens E2 has a positive power, the image side surface S3 is a concave surface, and the imaging side surface S4 is a convex surface.
  • the second lens E2 includes a second planar glass E2p disposed between the image source side surface S3 and the image forming side surface S4, and the second planar glass E2p has the image source side surface S2p1 and the image forming side surface S2p2.
  • the second flat glass E2p divides the second lens E2 into an image source side portion E2f and an image forming side portion E2r.
  • Light from the image source OBJ sequentially passes through the respective surfaces S1 to S4, passes through, for example, an optical diffraction element DOE (not shown), and is projected onto the target object in the space.
  • DOE optical diffraction element
  • the projection lens of the embodiment is applied to a monochromatic light source, and the shortest wavelength of the practical application wavelength ⁇ of the projection lens is shorter than the shortest wavelength of the light source by about 0 nm to 100 nm, and the longest wavelength of the practical application wavelength ⁇ of the projection lens is smaller than the light source.
  • the longest wavelength is about 0 nm to 100 nm long.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the projection lens of Example 8, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the image source side surface S1 and the image forming side surface S2 of the first lens E1 and the image source side surface S3 and the image forming side surface S4 of the second lens E2 are both aspherical.
  • Table 23 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 8, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 24 gives the total effective focal length f of the projection lens in Embodiment 8, the effective focal length f1 of the first lens E1, the effective focal length f2 of the second lens E2, the maximum half angle of view HFOV of the projection lens, and the object value of the projection lens.
  • Fig. 16 is a view showing a distortion curve of the projection lens of Embodiment 8, which shows distortion magnitude values in the case of different viewing angles. As can be seen from Fig. 16, the projection lens given in Example 8 can achieve good image quality.
  • Embodiments 1 to 8 respectively satisfy the relationship shown in Table 25.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种投影镜头,投影镜头沿着光轴由像源侧至成像侧依序包括:具有光焦度的第一透镜(E1)和第二透镜(E2)。第一透镜(E1)包括设置在第一透镜(E1)的像源侧表面与第一透镜(E1)的成像侧表面之间的第一平面玻璃(E1p)。第二透镜(E2)包括设置在第二透镜(E2)的像源侧表面与第二透镜(E2)的成像侧表面之间的第二平面玻璃(E2p)。

Description

投影镜头
相关申请的交叉引用
本申请要求于2018年2月7日提交于中国国家知识产权局(SIPO)的、专利申请号为201810122637.6的中国专利申请以及于2018年2月7日提交至SIPO的、专利申请号为201820213319.6的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种投影镜头,更具体地,本申请涉及一种包括两个透镜的投影镜头。
背景技术
近年,随着科技的不断进步,交互设备逐步兴起,投影镜头的应用范围也越来越广。如今,芯片技术与智能算法发展迅速,利用光学投影镜头向空间物体投射图像并接收该图像信号,即可计算出具有物体位置深度信息的三维图像。具体方法如下:利用光学投影镜头将红外激光二极管(LD)或垂直腔面发射激光器(VCSEL)发出的光向目标物体方向投射;投影光束在经过光学衍射元件(DOE)后实现投影图像在目标物体上的重新分布;利用摄像镜头将投射到物体上的图像接收,即可计算出包含被投射物体位置深度信息的三维图像。具有深度信息的三维图像可进一步用于生物识别等多种深度应用开发。
通常,传统用于成像的投影镜头通过采用增加透镜数量的方式来消除各种像差并提高分辨率。但是,这样会导致投影镜头的光学总长度(TTL)增加,且透镜组装需要镜筒等结构件支撑,使得镜头的整体体积较大,不利于镜头的小型化。另外,传统的镜头结构无法实现阵列镜头中各镜头之间的无边界排列。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解 决现有技术中的上述至少一个缺点的投影镜头。
一方面,本申请提供了这样一种投影镜头,该投影镜头沿着光轴由像源侧至成像侧依序可包括:具有光焦度的第一透镜和第二透镜。第一透镜可包括设置在第一透镜的像源侧表面与第一透镜的成像侧表面之间的第一平面玻璃;第二透镜可包括设置在第二透镜的像源侧表面与第二透镜的成像侧表面之间的第二平面玻璃。
在一个实施方式中,第一平面玻璃的厚度CT1p与第一透镜于光轴上的中心厚度CT1可满足0.1<CT1p/CT1<0.5。
在一个实施方式中,第二平面玻璃的厚度CT2p与第二透镜于光轴上的中心厚度CT2可满足0.1<CT2p/CT2<0.5。
在一个实施方式中,第一透镜于光轴上的中心厚度CT1与第二透镜于光轴上的中心厚度CT2可满足0.6<CT1/CT2<1.4。
在一个实施方式中,第一透镜和第二透镜均可具有正光焦度。
在一个实施方式中,第二透镜的有效焦距f2与投影镜头的总有效焦距f可满足0.6<f2/f<1.6。
在一个实施方式中,第二透镜的像源侧表面可为凹面,成像侧表面可为凸面;第二透镜的成像侧表面的曲率半径R4与投影镜头的总有效焦距f可满足-0.5<R4/f<-0.1。
在一个实施方式中,第一透镜的像源侧表面的最大半口径DT1f与第二透镜的成像侧表面的最大半口径DT2r可满足0.8<DT1f/DT2r<1.2。
在一个实施方式中,投影镜头的最大半视场角HFOV可满足tan(HFOV)<0.26。
在一个实施方式中,投影镜头的物方数值孔径NA可满足NA>0.18。
在一个实施方式中,投影镜头的实际应用波长λ的最短波长比使用光源的最短波长短0nm-100nm,投影镜头的实际应用波长λ的最长波长比使用光源的最长波长长0nm-100nm。
在一个实施方式中,投影镜头的主光线的最大入射角度CRAmax可满足CRAmax<10°。
另一方面,本申请提供了一种投影镜头,由多个排列的光学元件对准堆叠后,切割成含有一个镜头或多个镜头的镜头阵列,并且该镜头阵列的边缘形状可为圆形、矩形或多边形。
又一方面,本申请还提供了一种制造投影透镜的方法,该方法包括:在基材的相对两侧中的一侧或两侧,通过固化一定数量的塑料体或通过压制所述基材,使得在所述基材的相对两侧的外侧表面上形成多个具有曲率的部分,以形成透镜阵列;以及切割所述透镜阵列,使切割出的每个部分包括至少一个所述具有曲率的部分,并且所述切割出的每个部分具有圆形、矩形或多边形的边缘形状。
在一个实施方式中,所述基材为平面玻璃。
本申请采用了多个(例如,两个)透镜,通过在每个透镜中设置平面玻璃并合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述投影镜头具有小型化、高成像品质等有益效果。同时,上述配置的镜头可组成少边界甚至零边界的阵列镜头。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的投影镜头的结构示意图;
图2示出了实施例1的投影镜头的畸变曲线;
图3示出了根据本申请实施例2的投影镜头的结构示意图;
图4示出了实施例2的投影镜头的畸变曲线;
图5示出了根据本申请实施例3的投影镜头的结构示意图;
图6示出了实施例3的投影镜头的畸变曲线;
图7示出了根据本申请实施例4的投影镜头的结构示意图;
图8示出了实施例4的投影镜头的畸变曲线;
图9示出了根据本申请实施例5的投影镜头的结构示意图;
图10示出了实施例5的投影镜头的畸变曲线;
图11示出了根据本申请实施例6的投影镜头的结构示意图;
图12示出了实施例6的投影镜头的畸变曲线;
图13示出了根据本申请实施例7的投影镜头的结构示意图;
图14示出了实施例7的投影镜头的畸变曲线;
图15示出了根据本申请实施例8的投影镜头的结构示意图;
图16示出了实施例8的投影镜头的畸变曲线;
图17示出了根据本申请实施方式的投影镜头的剖面图;
图18示出了根据本申请实施方式的、含有多个透镜单元的透镜阵列的立体图;
图19示出了图18的主视图;
图20示出了根据本申请另一个实施方式的、含有多个透镜单元的透镜阵列的主视图;
图21示出了根据本申请另一个实施方式的、含有多个透镜单元的透镜阵列的主视图;
图22示出了包括一个镜头的镜头阵列,该镜头阵列的边缘形状为五边形;
图23示出了包括一个镜头的镜头阵列,该镜头阵列的边缘形状为六边形;
图24示出了包括一个镜头的镜头阵列,该镜头阵列的边缘形状为圆形;
图25示出了包括多个镜头的镜头阵列,该镜头阵列的边缘形状为圆形;
图26示出了包括一个镜头的镜头阵列,该镜头阵列的边缘形状为矩形;
图27示出了包括多个镜头的镜头阵列,该镜头阵列的边缘形状为矩形。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同 的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜,第二透镜也可被称作第一透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近像源侧的表面称为像源侧表面,每个透镜中最靠近成像侧的表面称为成像侧表面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的投影镜头可包括例如两个(组)具有光焦度的透镜,即,第一透镜和第二透镜。这两个透镜沿着光轴由像源侧至成像侧依序排列。
在示例性实施方式中,第一透镜可包括设置在其像源侧表面与成像侧表面之间的第一平面玻璃,第一平面玻璃将第一透镜分为靠近像源侧的第一像源侧部分和靠近成像侧的第一成像侧部分。第二透镜可包括设置在其像源侧表面与成像侧表面之间的第二平面玻璃,第二平面玻璃将第二透镜分为靠近像源侧的第二像源侧部分和靠近成像侧的第二成像侧部分。在每个透镜的像源侧表面与成像侧表面之间均设置有平面玻璃,这样的布置有利于支撑透镜实现不同数量以及不同形状的阵列,有利于避免透镜因曲率半径的原因而造成的弯曲变形或收缩变形;同时,平面玻璃有利于实现堆叠以及光学对准,且堆叠后不需要镜筒等传统结构件,有利于实现镜头模组的小型化。
在示例性实施方式中,第一透镜和第二透镜均可具有正光焦度。这样的布置有利于减小像源侧的主光线角度,提高镜头与发光源锥角的匹配性,提高投影图像的亮度均匀性。
在示例性实施方式中,本申请的投影镜头可满足条件式tan(HFOV)<0.26,其中,HFOV为投影镜头的最大半视场角。更具体地,HFOV进一步可满足tan(HFOV)<0.20,例如,0.14≤tan(HFOV)≤0.18。满足条件式tan(HFOV)<0.26,有利于减小投影光束发散角并增加投影景深;有利于投影镜头成像侧前后景深面趋于平坦;还有利于算法处理,从而获得更精确的深度信息。
在示例性实施方式中,本申请的投影镜头可满足条件式0.6<CT1/CT2<1.4,其中,CT1为第一透镜于光轴上的中心厚度(即,第一透镜像源侧表面的中心至第一透镜成像侧表面的中心在光轴上的间隔距离),CT2为第二透镜于光轴上的中心厚度(即,第二透镜像源侧表面的中心至第二透镜成像侧表面的中心在光轴上的间隔距离)。更具体地,CT1和CT2进一步可满足0.69≤CT1/CT2≤1.33。满足条件式 0.6<CT1/CT2<1.4,有利于合理分配轴上空间,实现镜头的小型化;同时,有利于透镜实现堆叠以及光学对准。
在示例性实施方式中,本申请的投影镜头可满足条件式0.6<f2/f<1.6,其中,f2为第二透镜的有效焦距,f为投影镜头的总有效焦距。更具体地,f2和f进一步可满足0.69≤f2/f≤1.50。满足条件式0.6<f2/f<1.6,有利于缩小投影镜头的光学总长度(TTL)与投影镜头的总有效焦距f的比值,实现镜头模组的小型化;同时,有利于减小投影光束发散角并增加投影景深,具有较好的投影成像质量。
在示例性实施方式中,本申请的投影镜头可满足条件式NA>0.18,其中,NA为投影镜头的物方数值孔径。更具体地,NA进一步可满足0.20≤NA≤0.21。满足条件式NA>0.18,投影镜头具有较大的数值孔径,有利于增加镜头的光源接收能力,提高投影能量效率,从而获得更高亮度的投影图像。
在示例性实施方式中,本申请的投影镜头可满足条件式0.1<CT1p/CT1<0.5,其中,CT1p为第一平面玻璃的厚度(即,第一平面玻璃的像源侧表面至第一平面玻璃的成像侧表面在光轴上的间隔距离),CT1为第一透镜于光轴上的中心厚度。更具体地,CT1p和CT1进一步可满足0.15<CT1p/CT1<0.35,例如,0.17≤CT1p/CT1≤0.31。满足条件式0.1<CT1p/CT1<0.5,有利于合理分布第一透镜像源侧表面和成像侧表面的曲率半径,以控制边缘光线的分布;同时,有利于较好地平衡第一透镜各表面的曲率半径与第一透镜的制造工艺性。
在示例性实施方式中,本申请的投影镜头可满足条件式0.1<CT2p/CT2<0.5,其中,CT2p为第二平面玻璃的厚度(即,第二平面玻璃的像源侧表面至第二平面玻璃的成像侧表面在光轴上的间隔距离),CT2为第二透镜于光轴上的中心厚度。更具体地,CT2p和CT2进一步可满足0.15<CT2p/CT2<0.30,例如,0.17≤CT2p/CT2≤0.24。满足条件式0.1<CT2p/CT2<0.5,有利于合理分布第二透镜像源侧表面和成像侧表面的曲率半径,以控制边缘光线的分布;同时,有利于较好地平衡第二透镜各表面的曲率半径与第二透镜的制造工艺性。
第二透镜可为凸面朝向成像侧的弯月形透镜,其像源侧表面为凹 面,成像侧表面为凸面。在示例性实施方式中,本申请的投影镜头可满足条件式-0.5<R4/f<-0.1,其中,R4为第二透镜的成像侧表面的曲率半径,f为投影镜头的总有效焦距。更具体地,R4和f进一步可满足-0.4<R4/f<-0.2,例如,-0.31≤R4/f≤-0.23。满足条件式-0.5<R4/f<-0.1,有利于减小球差与象散,提高投影镜头的成像质量;同时,有利于校正由第一透镜所引入的畸变。
在示例性实施方式中,本申请的投影镜头可满足条件式0.8<DT1f/DT2r<1.2,其中,DT1f为第一透镜的像源侧表面的最大半口径,DT2r为第二透镜的成像侧表面的最大半口径。更具体地,DT1f和DT2r进一步可满足0.82≤DT1f/DT2r≤1.09。满足条件式0.8<DT1f/DT2r<1.2,有利于光焦度的合理分配;有利于改善透镜的可加工工艺性;有利于平衡光学系统的公差敏感性。
在示例性实施方式中,本申请的投影镜头可满足条件式CRAmax<10°,其中,CRAmax为投影镜头的主光线的最大入射角度。满足条件式CRAmax<10°,有利于更好地匹配轴外光光源光锥角,增加光学系统的轴外进光量,提高投影图像的亮度。
上述投影镜头应用的波段可为单色光源,并且投影镜头的实际应用波长λ的最短波长比所使用的单色光源的最短波长短0nm-100nm,投影镜头的实际应用波长λ的最长波长比所使用的单色光源的最长波长长0nm-100nm。使用单色光源有利于减少由于宽波长而引入的色差、杂散光等,有利于提高投影镜头的成像质量;同时,可使得投影镜头符合光学衍射元件DOE的光线接口匹配的需求。可选地,上述投影镜头可应用于红外单波长波段。
图17示出了根据本申请实施方式的投影镜头的剖面图。如图17所示,根据本申请的投影镜头可由一定数量排列的光学元件对准堆叠而成。投影镜头可包括第一透镜E1和第二透镜E2。第一透镜E1可具有第一平面玻璃E1p,第一平面玻璃E1p将第一透镜E1分为第一像源侧部分E1f和第一成像侧部分E1r。第二透镜E2可具有第二平面玻璃E2p,第二平面玻璃E2p将第二透镜E2分为第二像源侧部分E2f和第二成像侧部分E2r。
如图17所示,第一透镜E1和第二透镜E2可以分别是以平面玻璃为基材,两侧均匀附着一定数量的固化塑料材质而形成的两侧带有球面或非球面的整体透镜。可选地,第一透镜E1和第二透镜E2还可以分别是通过压制平面玻璃而形成的两侧带有球面或非球面的整体透镜。可选地,第一透镜E1或第二透镜E2还可以是一侧通过附着一定数量的固化塑料材质,另一侧通过压制平面玻璃而形成的两侧带有球面或非球面的整体透镜。
图18示出了根据本申请一个实施方式的、含有多个透镜单元的透镜阵列100的立体图。图19示出了图18的主视图。参见图18和图19,透镜阵列100可以是以平面玻璃10为基材,两侧均匀附着一定数量的固化塑料材质20而形成的两侧均带有一个或多个球面(或非球面)的整体。透镜阵列100的制造过程可以包括以下步骤:
步骤1:取例如平面玻璃作为基材;
步骤2:在基材相对的两侧固化塑料体,塑料体具有多个具有曲率的部分,从而使得固化有塑料体的基材形成透镜阵列;
步骤3:切割透镜阵列,使切割出的每个部分包括至少一个具有曲率的部分,并且切割出的每个部分具有圆形、矩形或多边形的边缘形状。
图20示出了根据本申请另一个实施方式的、含有多个透镜单元的透镜阵列200的主视图。参见图20,透镜阵列200可以是通过压制例如平面玻璃10而形成的两侧均带有一个或多个球面(或非球面)的整体。透镜阵列200的制造过程可以包括以下步骤:
步骤1:取平面玻璃作为基材;
步骤2:压制基材以在其相对的两侧形成多个具有曲率的部分以形成透镜阵列;
步骤3:切割透镜阵列,使切割出的每个部分包括至少一个具有曲率的部分,并且切割出的每个部分具有圆形、矩形或多边形的边缘形状。
图21示出了根据本申请另一个实施方式的、含有多个透镜单元的透镜阵列300的主视图。参见图21,透镜阵列300可以是一侧通过附 着一定数量的固化塑料材质20,一侧通过压制例如平面玻璃10而形成的两侧均带有一个或多个球面(或非球面)的整体。透镜阵列300的制造过程可以包括以下步骤:
步骤1:取平面玻璃作为基材;
步骤2:在基材的相对两侧中的任意一侧上固化塑料体,并在基材相对两侧中的另一侧上压制基材,以在基材的相对两侧的外侧表面上形成多个具有曲率的部分,以形成透镜阵列;
步骤3:切割透镜阵列,使切割出的每个部分包括至少一个具有曲率的部分,并且切割出的每个部分具有圆形、矩形或多边形的边缘形状。
在上述实施方式中,具有曲率的部分可以为凹状部分,也可以为凸状部分。
图22至图27示出了包括一个或多个镜头的镜头阵列。根据本申请另一个实施方式的投影镜头可以是由多个排列的光学元件(例如,多个透镜阵列100、多个透镜阵列200或多个透镜阵列300)对准堆叠后,切割成包括一个镜头或多个镜头的镜头阵列,该镜头阵列可具有例如圆形、矩形或多边形的边缘形状。
镜头阵列可以有利于实现小型化,达到阵列镜头之间少边界甚至零边界的效果。而将阵列镜头的边缘形状设置为例如圆形、矩形或多边形等形状,有利于满足各种安装空间对镜头形状的要求。
根据本申请的上述实施方式的投影镜头可采用例如两个透镜,通过在每个透镜中设置平面玻璃,并合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得投影镜头具有小型化、高成像品质等有益效果。同时,通过上述配置的投影镜头能够与衍射元件(DOE)共同配合使用。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像 差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成投影镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以两个透镜为例进行了描述,但是该投影镜头不限于包括两个透镜。如果需要,该投影镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的投影镜头的具体实施例。
实施例1
以下参照图1至图2描述根据本申请实施例1的投影镜头。图1示出了根据本申请实施例1的投影镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的投影镜头沿光轴由像源侧至成像侧依序包括:第一透镜E1、第二透镜E2和光阑STO。
第一透镜E1具有正光焦度,其像源侧表面S1为凸面,成像侧表面S2为凹面。第一透镜E1包括设置在像源侧表面S1与成像侧表面S2之间的第一平面玻璃E1p,第一平面玻璃E1p具有像源侧表面S1p1和成像侧表面S1p2。第一平面玻璃E1p将第一透镜E1分为像源侧部分E1f和成像侧部分E1r。
第二透镜E2具有正光焦度,其像源侧表面S3为凹面,成像侧表面S4为凸面。第二透镜E2包括设置在像源侧表面S3与成像侧表面S4之间的第二平面玻璃E2p,第二平面玻璃E2p具有像源侧表面S2p1和成像侧表面S2p2。第二平面玻璃E2p将第二透镜E2分为像源侧部分E2f和成像侧部分E2r。
来自像源OBJ的光依序穿过各表面S1至S4,再经过例如光学衍射元件DOE(未示出)后,投射至空间中的目标物体上。
本实施例的投影镜头应用于单色光源,并且该投影镜头的实际应用波长λ的最短波长比使用光源的最短波长短约0nm-100nm,投影镜头的实际应用波长λ的最长波长比使用光源的最长波长长约0nm-100nm。
表1示出了实施例1的投影镜头的各透镜的表面类型、曲率半径、 厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100481-appb-000001
表1
由表1可知,第一透镜E1的像源侧表面S1和成像侧表面S2以及第二透镜E2的像源侧表面S3和成像侧表面S4均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2018100481-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S4的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -5.6225E-02 6.6074E-01 -7.1800E+00 3.6145E+01 -1.0523E+02 1.6236E+02 -1.0463E+02
S2 6.9649E-01 4.8315E+00 -1.0297E+02 1.6917E+03 -1.3985E+04 5.9127E+04 -9.8341E+04
S3 -1.6779E-02 2.8309E-01 -1.8121E+00 1.0387E+01 -2.8610E+01 6.7556E+01 -7.9641E+01
S4 2.6800E-02 -1.7740E-02 3.4832E-01 -1.3207E+00 2.8532E+00 -2.9942E+00 1.2754E+00
表2
表3给出实施例1中投影镜头的总有效焦距f、第一透镜E1的有 效焦距f1、第二透镜E2的有效焦距f2、投影镜头的最大半视场角HFOV、投影镜头的物方数值孔径NA以及主光线的最大入射角度CRAmax。
Figure PCTCN2018100481-appb-000003
表3
实施例1中的投影镜头满足:
tan(HFOV)=0.15,其中,HFOV为投影镜头的最大半视场角;
CT1/CT2=0.76,其中,CT1为第一透镜E1于光轴上的中心厚度,CT2为第二透镜E2于光轴上的中心厚度;
f2/f=0.80,其中,f2为第二透镜E2的有效焦距,f为投影镜头的总有效焦距;
CT1p/CT1=0.23,其中,CT1p为第一透镜E1的平面玻璃E1p的厚度,CT1为第一透镜E1于光轴上的中心厚度;
CT2p/CT2=0.18,其中,CT2p为第二透镜E2的平面玻璃E2p的厚度,CT2为第二透镜E2于光轴上的中心厚度;
R4/f=-0.29,其中,R4为第二透镜E2的成像侧表面S4的曲率半径,f为投影镜头的总有效焦距;
DT1f/DT2r=0.86,其中,DT1f为第一透镜E1的像源侧表面S1的最大半口径,DT2r为第二透镜E2的成像侧表面S4的最大半口径。
图2示出了实施例1的投影镜头的畸变曲线,其表示不同视角情况下的畸变大小值。根据图2可知,实施例1所给出的投影镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4描述根据本申请实施例2的投影镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的投影镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的投影镜头沿光轴由像 源侧至成像侧依序包括:第一透镜E1、第二透镜E2和光阑STO。
第一透镜E1具有正光焦度,其像源侧表面S1为凸面,成像侧表面S2为凹面。第一透镜E1包括设置在像源侧表面S1与成像侧表面S2之间的第一平面玻璃E1p,第一平面玻璃E1p具有像源侧表面S1p1和成像侧表面S1p2。第一平面玻璃E1p将第一透镜E1分为像源侧部分E1f和成像侧部分E1r。
第二透镜E2具有正光焦度,其像源侧表面S3为凹面,成像侧表面S4为凸面。第二透镜E2包括设置在像源侧表面S3与成像侧表面S4之间的第二平面玻璃E2p,第二平面玻璃E2p具有像源侧表面S2p1和成像侧表面S2p2。第二平面玻璃E2p将第二透镜E2分为像源侧部分E2f和成像侧部分E2r。
来自像源OBJ的光依序穿过各表面S1至S4,再经过例如光学衍射元件DOE(未示出)后,投射至空间中的目标物体上。
本实施例的投影镜头应用于单色光源,并且该投影镜头的实际应用波长λ的最短波长比使用光源的最短波长短约0nm-100nm,投影镜头的实际应用波长λ的最长波长比使用光源的最长波长长约0nm-100nm。
表4示出了实施例2的投影镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100481-appb-000004
表4
由表4可知,在实施例2中,第一透镜E1的像源侧表面S1和成 像侧表面S2以及第二透镜E2的像源侧表面S3和成像侧表面S4均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 3.2948E-01 -4.2145E-01 6.5823E-01 -9.1905E-01 9.3286E-01
S2 5.0173E-01 -1.8383E-01 7.4761E+00 -2.8217E+01 0.0000E+00
S3 -6.8509E-02 -2.3467E-01 6.4607E-01 -2.0416E+00 0.0000E+00
S4 5.2046E-03 -1.6001E-02 4.8882E-02 -5.6673E-02 0.0000E+00
表5
表6给出实施例2中投影镜头的总有效焦距f、第一透镜E1的有效焦距f1、第二透镜E2的有效焦距f2、投影镜头的最大半视场角HFOV、投影镜头的物方数值孔径NA以及主光线的最大入射角度CRAmax。
Figure PCTCN2018100481-appb-000005
表6
图4示出了实施例2的投影镜头的畸变曲线,其表示不同视角情况下的畸变大小值。根据图4可知,实施例2所给出的投影镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6描述了根据本申请实施例3的投影镜头。图5示出了根据本申请实施例3的投影镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的投影镜头沿光轴由像源侧至成像侧依序包括:第一透镜E1、第二透镜E2和光阑STO。
第一透镜E1具有正光焦度,其像源侧表面S1为凸面,成像侧表面S2为凹面。第一透镜E1包括设置在像源侧表面S1与成像侧表面S2之间的第一平面玻璃E1p,第一平面玻璃E1p具有像源侧表面S1p1和成像侧表面S1p2。第一平面玻璃E1p将第一透镜E1分为像源侧部分E1f和成像侧部分E1r。
第二透镜E2具有正光焦度,其像源侧表面S3为凹面,成像侧表面S4为凸面。第二透镜E2包括设置在像源侧表面S3与成像侧表面S4之间的第二平面玻璃E2p,第二平面玻璃E2p具有像源侧表面S2p1和成像侧表面S2p2。第二平面玻璃E2p将第二透镜E2分为像源侧部分E2f和成像侧部分E2r。
来自像源OBJ的光依序穿过各表面S1至S4,再经过例如光学衍射元件DOE(未示出)后,投射至空间中的目标物体上。
本实施例的投影镜头应用于单色光源,并且该投影镜头的实际应用波长λ的最短波长比使用光源的最短波长短约0nm-100nm,投影镜头的实际应用波长λ的最长波长比使用光源的最长波长长约0nm-100nm。
表7示出了实施例3的投影镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100481-appb-000006
表7
由表7可知,在实施例3中,第一透镜E1的像源侧表面S1和成像侧表面S2以及第二透镜E2的像源侧表面S3和成像侧表面S4均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 3.8840E-01 -8.7365E-01 9.0127E-01 -1.9441E+00 3.6165E-01
S2 1.9446E+00 1.2424E+00 3.9599E+01 -1.7426E+02 0.0000E+00
S3 -2.6976E-01 2.3003E+00 -3.0011E+00 -4.2538E-01 0.0000E+00
S4 -2.8499E-02 -7.5251E-02 2.2820E-01 -2.3970E-01 0.0000E+00
表8
表9给出实施例3中投影镜头的总有效焦距f、第一透镜E1的有效焦距f1、第二透镜E2的有效焦距f2、投影镜头的最大半视场角HFOV、投影镜头的物方数值孔径NA以及主光线的最大入射角度CRAmax。
Figure PCTCN2018100481-appb-000007
表9
图6示出了实施例3的投影镜头的畸变曲线,其表示不同视角情况下的畸变大小值。根据图6可知,实施例3所给出的投影镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8描述了根据本申请实施例4的投影镜头。图7示出了根据本申请实施例4的投影镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的投影镜头沿光轴由像源侧至成像侧依序包括:第一透镜E1、第二透镜E2和光阑STO。
第一透镜E1具有正光焦度,其像源侧表面S1为凸面,成像侧表面S2为凹面。第一透镜E1包括设置在像源侧表面S1与成像侧表面S2之间的第一平面玻璃E1p,第一平面玻璃E1p具有像源侧表面S1p1和成像侧表面S1p2。第一平面玻璃E1p将第一透镜E1分为像源侧部分E1f和成像侧部分E1r。
第二透镜E2具有正光焦度,其像源侧表面S3为凹面,成像侧表面S4为凸面。第二透镜E2包括设置在像源侧表面S3与成像侧表面S4之间的第二平面玻璃E2p,第二平面玻璃E2p具有像源侧表面S2p1和成像侧表面S2p2。第二平面玻璃E2p将第二透镜E2分为像源侧部分E2f和成像侧部分E2r。
来自像源OBJ的光依序穿过各表面S1至S4,再经过例如光学衍 射元件DOE(未示出)后,投射至空间中的目标物体上。
本实施例的投影镜头应用于单色光源,并且该投影镜头的实际应用波长λ的最短波长比使用光源的最短波长短约0nm-100nm,投影镜头的实际应用波长λ的最长波长比使用光源的最长波长长约0nm-100nm。
表10示出了实施例4的投影镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100481-appb-000008
表10
由表10可知,在实施例4中,第一透镜E1的像源侧表面S1和成像侧表面S2以及第二透镜E2的像源侧表面S3和成像侧表面S4均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 1.8690E+00 -4.4898E+00 7.9989E+00 -5.3227E+00 -1.1876E+00
S2 6.8133E+00 -4.5339E+01 2.8660E+02 -6.4854E+02 0.0000E+00
S3 -4.6988E-01 8.6103E-01 -5.0179E-01 -1.0011E+00 0.0000E+00
S4 5.8622E-03 -3.4423E-02 1.0137E-01 -7.8834E-02 0.0000E+00
表11
表12给出实施例4中投影镜头的总有效焦距f、第一透镜E1的有效焦距f1、第二透镜E2的有效焦距f2、投影镜头的最大半视场角HFOV、投影镜头的物方数值孔径NA以及主光线的最大入射角度CRAmax。
Figure PCTCN2018100481-appb-000009
表12
图8示出了实施例4的投影镜头的畸变曲线,其表示不同视角情况下的畸变大小值。根据图8可知,实施例4所给出的投影镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10描述了根据本申请实施例5的投影镜头。图9示出了根据本申请实施例5的投影镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的投影镜头沿光轴由像源侧至成像侧依序包括:第一透镜E1、第二透镜E2和光阑STO。
第一透镜E1具有正光焦度,其像源侧表面S1为凹面,成像侧表面S2为凸面。第一透镜E1包括设置在像源侧表面S1与成像侧表面S2之间的第一平面玻璃E1p,第一平面玻璃E1p具有像源侧表面S1p1和成像侧表面S1p2。第一平面玻璃E1p将第一透镜E1分为像源侧部分E1f和成像侧部分E1r。
第二透镜E2具有正光焦度,其像源侧表面S3为凹面,成像侧表面S4为凸面。第二透镜E2包括设置在像源侧表面S3与成像侧表面S4之间的第二平面玻璃E2p,第二平面玻璃E2p具有像源侧表面S2p1和成像侧表面S2p2。第二平面玻璃E2p将第二透镜E2分为像源侧部分E2f和成像侧部分E2r。
来自像源OBJ的光依序穿过各表面S1至S4,再经过例如光学衍射元件DOE(未示出)后,投射至空间中的目标物体上。
本实施例的投影镜头应用于单色光源,并且该投影镜头的实际应用波长λ的最短波长比使用光源的最短波长短约0nm-100nm,投影镜头的实际应用波长λ的最长波长比使用光源的最长波长长约0nm-100nm。
表13示出了实施例5的投影镜头的各透镜的表面类型、曲率半径、 厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100481-appb-000010
表13
由表13可知,在实施例5中,第一透镜E1的像源侧表面S1和成像侧表面S2以及第二透镜E2的像源侧表面S3和成像侧表面S4均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 8.5009E-01 1.3345E-01 -1.2386E+00 1.5786E+00 -6.4733E-01
S2 3.9011E-01 3.7352E-01 -5.2303E-01 3.3092E+00 0.0000E+00
S3 9.4435E-02 -2.5150E-01 9.5807E-01 -7.6838E-01 0.0000E+00
S4 9.4040E-03 -1.2408E-02 1.9358E-02 -1.1645E-02 0.0000E+00
表14
表15给出实施例5中投影镜头的总有效焦距f、第一透镜E1的有效焦距f1、第二透镜E2的有效焦距f2、投影镜头的最大半视场角HFOV、投影镜头的物方数值孔径NA以及主光线的最大入射角度CRAmax。
Figure PCTCN2018100481-appb-000011
表15
图10示出了实施例5的投影镜头的畸变曲线,其表示不同视角情 况下的畸变大小值。根据图10可知,实施例5所给出的投影镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12描述了根据本申请实施例6的投影镜头。图11示出了根据本申请实施例6的投影镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的投影镜头沿光轴由像源侧至成像侧依序包括:第一透镜E1、第二透镜E2和光阑STO。
第一透镜E1具有正光焦度,其像源侧表面S1为凸面,成像侧表面S2为凹面。第一透镜E1包括设置在像源侧表面S1与成像侧表面S2之间的第一平面玻璃E1p,第一平面玻璃E1p具有像源侧表面S1p1和成像侧表面S1p2。第一平面玻璃E1p将第一透镜E1分为像源侧部分E1f和成像侧部分E1r。
第二透镜E2具有正光焦度,其像源侧表面S3为凹面,成像侧表面S4为凸面。第二透镜E2包括设置在像源侧表面S3与成像侧表面S4之间的第二平面玻璃E2p,第二平面玻璃E2p具有像源侧表面S2p1和成像侧表面S2p2。第二平面玻璃E2p将第二透镜E2分为像源侧部分E2f和成像侧部分E2r。
来自像源OBJ的光依序穿过各表面S1至S4,再经过例如光学衍射元件DOE(未示出)后,投射至空间中的目标物体上。
本实施例的投影镜头应用于单色光源,并且该投影镜头的实际应用波长λ的最短波长比使用光源的最短波长短约0nm-100nm,投影镜头的实际应用波长λ的最长波长比使用光源的最长波长长约0nm-100nm。
表16示出了实施例6的投影镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100481-appb-000012
Figure PCTCN2018100481-appb-000013
表16
由表16可知,在实施例6中,第一透镜E1的像源侧表面S1和成像侧表面S2以及第二透镜E2的像源侧表面S3和成像侧表面S4均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 1.2327E+00 -6.9878E-01 -9.2988E-01 3.2051E+00 -2.3427E+00
S2 5.8428E-01 2.7787E+00 -1.4997E+01 8.2352E+01 0.0000E+00
S3 -4.2555E-01 -1.7296E+00 5.9905E+00 -4.3330E+01 0.0000E+00
S4 -2.1384E-01 -1.0789E-01 6.8234E-02 -2.1560E-01 0.0000E+00
表17
表18给出实施例6中投影镜头的总有效焦距f、第一透镜E1的有效焦距f1、第二透镜E2的有效焦距f2、投影镜头的最大半视场角HFOV、投影镜头的物方数值孔径NA以及主光线的最大入射角度CRAmax。
Figure PCTCN2018100481-appb-000014
表18
图12示出了实施例6的投影镜头的畸变曲线,其表示不同视角情况下的畸变大小值。根据图12可知,实施例6所给出的投影镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14描述了根据本申请实施例7的投影镜头。图13示出了根据本申请实施例7的投影镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的投影镜头沿光轴由像源侧至成像侧依序包括:第一透镜E1、第二透镜E2和光阑STO。
第一透镜E1具有正光焦度,其像源侧表面S1为凸面,成像侧表面S2为凹面。第一透镜E1包括设置在像源侧表面S1与成像侧表面S2之间的第一平面玻璃E1p,第一平面玻璃E1p具有像源侧表面S1p1和成像侧表面S1p2。第一平面玻璃E1p将第一透镜E1分为像源侧部分E1f和成像侧部分E1r。
第二透镜E2具有正光焦度,其像源侧表面S3为凹面,成像侧表面S4为凸面。第二透镜E2包括设置在像源侧表面S3与成像侧表面S4之间的第二平面玻璃E2p,第二平面玻璃E2p具有像源侧表面S2p1和成像侧表面S2p2。第二平面玻璃E2p将第二透镜E2分为像源侧部分E2f和成像侧部分E2r。
来自像源OBJ的光依序穿过各表面S1至S4,再经过例如光学衍射元件DOE(未示出)后,投射至空间中的目标物体上。
本实施例的投影镜头应用于单色光源,并且该投影镜头的实际应用波长λ的最短波长比使用光源的最短波长短约0nm-100nm,投影镜头的实际应用波长λ的最长波长比使用光源的最长波长长约0nm-100nm。
表19示出了实施例7的投影镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100481-appb-000015
表19
由表19可知,在实施例7中,第一透镜E1的像源侧表面S1和成像侧表面S2以及第二透镜E2的像源侧表面S3和成像侧表面S4均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -4.4844E-02 6.1360E-01 -7.5291E+00 3.6384E+01 -1.0445E+02 1.6047E+02 -1.0495E+02
S2 7.0215E-01 5.1920E+00 -9.2208E+01 1.5786E+03 -1.3874E+04 6.4157E+04 -1.1585E+05
S3 5.4149E-03 2.4368E-01 -1.4111E+00 1.1014E+01 -3.2786E+01 5.1390E+01 -9.2683E+00
S4 2.9852E-02 -1.7764E-02 3.6515E-01 -1.3303E+00 2.8304E+00 -2.9762E+00 1.3198E+00
表20
表21给出实施例7中投影镜头的总有效焦距f、第一透镜E1的有效焦距f1、第二透镜E2的有效焦距f2、投影镜头的最大半视场角HFOV、投影镜头的物方数值孔径NA以及主光线的最大入射角度CRAmax。
Figure PCTCN2018100481-appb-000016
表21
图14示出了实施例7的投影镜头的畸变曲线,其表示不同视角情况下的畸变大小值。根据图14可知,实施例7所给出的投影镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16描述了根据本申请实施例8的投影镜头。图15示出了根据本申请实施例8的投影镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的投影镜头沿光轴由像源侧至成像侧依序包括:第一透镜E1、第二透镜E2和光阑STO。
第一透镜E1具有正光焦度,其像源侧表面S1为凸面,成像侧表面S2为凹面。第一透镜E1包括设置在像源侧表面S1与成像侧表面S2之间的第一平面玻璃E1p,第一平面玻璃E1p具有像源侧表面S1p1和成像侧表面S1p2。第一平面玻璃E1p将第一透镜E1分为像源侧部 分E1f和成像侧部分E1r。
第二透镜E2具有正光焦度,其像源侧表面S3为凹面,成像侧表面S4为凸面。第二透镜E2包括设置在像源侧表面S3与成像侧表面S4之间的第二平面玻璃E2p,第二平面玻璃E2p具有像源侧表面S2p1和成像侧表面S2p2。第二平面玻璃E2p将第二透镜E2分为像源侧部分E2f和成像侧部分E2r。
来自像源OBJ的光依序穿过各表面S1至S4,再经过例如光学衍射元件DOE(未示出)后,投射至空间中的目标物体上。
本实施例的投影镜头应用于单色光源,并且该投影镜头的实际应用波长λ的最短波长比使用光源的最短波长短约0nm-100nm,投影镜头的实际应用波长λ的最长波长比使用光源的最长波长长约0nm-100nm。
表22示出了实施例8的投影镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100481-appb-000017
表22
由表22可知,在实施例8中,第一透镜E1的像源侧表面S1和成像侧表面S2以及第二透镜E2的像源侧表面S3和成像侧表面S4均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.1131E-01 5.1307E-01 -6.5118E+00 3.3377E+01 -1.0043E+02 1.5899E+02 -1.0601E+02
S2 7.0141E-01 5.1257E+00 -1.0198E+02 1.6717E+03 -1.4281E+04 6.3900E+04 -1.1423E+05
S3 -1.4708E-02 2.0285E-01 -8.1941E-01 8.5566E+00 -3.1612E+01 1.0526E+02 -9.1125E+01
S4 3.5034E-02 -2.0306E-02 3.8093E-01 -1.3274E+00 2.7894E+00 -2.9170E+00 1.2954E+00
表23
表24给出实施例8中投影镜头的总有效焦距f、第一透镜E1的有效焦距f1、第二透镜E2的有效焦距f2、投影镜头的最大半视场角HFOV、投影镜头的物方数值孔径NA以及主光线的最大入射角度CRAmax。
Figure PCTCN2018100481-appb-000018
表24
图16示出了实施例8的投影镜头的畸变曲线,其表示不同视角情况下的畸变大小值。根据图16可知,实施例8所给出的投影镜头能够实现良好的成像品质。
综上,实施例1至实施例8分别满足表25中所示的关系。
Figure PCTCN2018100481-appb-000019
表25
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (15)

  1. 投影镜头,其特征在于,所述投影镜头沿着光轴由像源侧至成像侧依序包括:具有光焦度的第一透镜和第二透镜,
    所述第一透镜包括设置在所述第一透镜的像源侧表面与所述第一透镜的成像侧表面之间的第一平面玻璃;
    所述第二透镜包括设置在所述第二透镜的像源侧表面与所述第二透镜的成像侧表面之间的第二平面玻璃。
  2. 根据权利要求1所述的投影镜头,其特征在于,所述第一平面玻璃的厚度CT1p与所述第一透镜于所述光轴上的中心厚度CT1满足0.1<CT1p/CT1<0.5。
  3. 根据权利要求1所述的投影镜头,其特征在于,所述第二平面玻璃的厚度CT2p与所述第二透镜于所述光轴上的中心厚度CT2满足0.1<CT2p/CT2<0.5。
  4. 根据权利要求2所述的投影镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第二透镜于所述光轴上的中心厚度CT2满足0.6<CT1/CT2<1.4。
  5. 根据权利要求1所述的投影镜头,其特征在于,所述第一透镜和所述第二透镜均具有正光焦度。
  6. 根据权利要求5所述的投影镜头,其特征在于,所述第二透镜的有效焦距f2与所述投影镜头的总有效焦距f满足0.6<f2/f<1.6。
  7. 根据权利要求6所述的投影镜头,其特征在于,所述第二透镜的像源侧表面为凹面,成像侧表面为凸面;
    所述第二透镜的成像侧表面的曲率半径R4与所述投影镜头的总 有效焦距f满足-0.5<R4/f<-0.1。
  8. 根据权利要求1所述的投影镜头,其特征在于,所述第一透镜的像源侧表面的最大半口径DT1f与所述第二透镜的成像侧表面的最大半口径DT2r满足0.8<DT1f/DT2r<1.2。
  9. 根据权利要求1至8中任一项所述的投影镜头,其特征在于,所述投影镜头的最大半视场角HFOV满足tan(HFOV)<0.26。
  10. 根据权利要求1至8中任一项所述的投影镜头,其特征在于,所述投影镜头的物方数值孔径NA满足NA>0.18。
  11. 根据权利要求1至8中任一项所述的投影镜头,其特征在于,所述投影镜头的实际应用波长λ的最短波长比使用光源的最短波长短0nm-100nm,所述投影镜头的实际应用波长λ的最长波长比使用光源的最长波长长0nm-100nm。
  12. 根据权利要求1至8中任一项所述的投影镜头,其特征在于,所述投影镜头的主光线的最大入射角度CRAmax满足CRAmax<10°。
  13. 一种投影镜头,由多个排列的光学元件对准堆叠后,切割成含有一个镜头或多个镜头的镜头阵列,其特征在于,所述镜头阵列的边缘形状为圆形、矩形或多边形。
  14. 一种制造投影透镜的方法,包括:
    在基材的相对两侧中的一侧或两侧,通过固化一定数量的塑料体或通过压制所述基材,使得在所述基材的相对两侧的外侧表面上形成多个具有曲率的部分,以形成透镜阵列;以及
    切割所述透镜阵列,使切割出的每个部分包括至少一个所述具有 曲率的部分,并且所述切割出的每个部分具有圆形、矩形或多边形的边缘形状。
  15. 根据权利要求14所述的方法,其特征在于,所述基材为平面玻璃。
PCT/CN2018/100481 2018-02-07 2018-08-14 投影镜头 WO2019153695A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820213319.6 2018-02-07
CN201810122637.6A CN108132575B (zh) 2018-02-07 2018-02-07 投影镜头
CN201810122637.6 2018-02-07
CN201820213319.6U CN207764539U (zh) 2018-02-07 2018-02-07 投影镜头

Publications (1)

Publication Number Publication Date
WO2019153695A1 true WO2019153695A1 (zh) 2019-08-15

Family

ID=67548130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100481 WO2019153695A1 (zh) 2018-02-07 2018-08-14 投影镜头

Country Status (1)

Country Link
WO (1) WO2019153695A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872050A (zh) * 2009-04-27 2010-10-27 一品光学工业股份有限公司 方形堆叠式玻璃镜头模块及其制法
CN102308240A (zh) * 2009-02-18 2012-01-04 柯尼卡美能达精密光学株式会社 透镜单元、位置对准方法、摄像装置及摄像装置制造方法
CN103176258A (zh) * 2011-12-26 2013-06-26 昆山西钛微电子科技有限公司 阵列式免调焦光学摄像头模组
WO2014126092A1 (ja) * 2013-02-14 2014-08-21 コニカミノルタ株式会社 撮像装置、レンズユニット及び撮像装置の製造方法
CN105629356A (zh) * 2014-11-02 2016-06-01 郭作超 一种手机镜头的制造方法
CN108132575A (zh) * 2018-02-07 2018-06-08 浙江舜宇光学有限公司 投影镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308240A (zh) * 2009-02-18 2012-01-04 柯尼卡美能达精密光学株式会社 透镜单元、位置对准方法、摄像装置及摄像装置制造方法
CN101872050A (zh) * 2009-04-27 2010-10-27 一品光学工业股份有限公司 方形堆叠式玻璃镜头模块及其制法
CN103176258A (zh) * 2011-12-26 2013-06-26 昆山西钛微电子科技有限公司 阵列式免调焦光学摄像头模组
WO2014126092A1 (ja) * 2013-02-14 2014-08-21 コニカミノルタ株式会社 撮像装置、レンズユニット及び撮像装置の製造方法
CN105629356A (zh) * 2014-11-02 2016-06-01 郭作超 一种手机镜头的制造方法
CN108132575A (zh) * 2018-02-07 2018-06-08 浙江舜宇光学有限公司 投影镜头

Similar Documents

Publication Publication Date Title
WO2019169889A1 (zh) 投影镜头
CN108121053B (zh) 光学成像镜头
CN108107545B (zh) 光学成像镜头
CN107450157B (zh) 光学成像镜头
CN109358410B (zh) 光学成像镜片组
WO2019137055A1 (zh) 摄像透镜系统
WO2019056817A1 (zh) 光学成像系统
CN110208928B (zh) 投影镜头
WO2019184367A1 (zh) 光学系统
CN107831630B (zh) 投影镜头
WO2019062136A1 (zh) 摄像透镜组
WO2018218889A1 (zh) 光学成像系统
WO2018209890A1 (zh) 成像镜头
WO2019007045A1 (zh) 光学成像镜头
WO2019192160A1 (zh) 光学成像镜头
WO2019210701A1 (zh) 光学成像系统
WO2018223651A1 (zh) 摄像镜头
CN114755802B (zh) 成像镜头
WO2019024490A1 (zh) 光学成像镜头
WO2019052180A1 (zh) 摄像镜头组
CN107728295B (zh) 投影镜头
WO2018227971A1 (zh) 摄像镜头
WO2019015324A1 (zh) 摄像镜头
CN208126003U (zh) 投影镜头
CN108132575B (zh) 投影镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905421

Country of ref document: EP

Kind code of ref document: A1