WO2019153247A1 - 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置 - Google Patents

一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置 Download PDF

Info

Publication number
WO2019153247A1
WO2019153247A1 PCT/CN2018/076000 CN2018076000W WO2019153247A1 WO 2019153247 A1 WO2019153247 A1 WO 2019153247A1 CN 2018076000 W CN2018076000 W CN 2018076000W WO 2019153247 A1 WO2019153247 A1 WO 2019153247A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
string
vertical
rigid
wind tunnel
Prior art date
Application number
PCT/CN2018/076000
Other languages
English (en)
French (fr)
Inventor
许福友
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/481,431 priority Critical patent/US10866159B2/en
Priority to PCT/CN2018/076000 priority patent/WO2019153247A1/zh
Publication of WO2019153247A1 publication Critical patent/WO2019153247A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • G01M9/062Wind tunnel balances; Holding devices combined with measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels

Definitions

  • the invention relates to a free-vibration wind tunnel test device capable of realizing large amplitude of a bridge rigid model and capable of ensuring linear vertical stiffness and linear torsional stiffness, and specifically relates to fixing a model at both ends by a vertical linear tension spring
  • a system consisting of a lightweight rigid circular hub and a high-strength string connecting the spring and the hub converts the vertical and torsional coupling of the bridge model into large amplitude free vibrations into the vertical free-expansion of the linear spring, using the linear tensile stiffness of the spring and
  • the circular rigid hub achieves linear vertical translation and linear rotational stiffness of the system. Since the mass and mass habits remain constant throughout the large coupling vibration process, the vertical translation frequency and the center rotation frequency around the hub remain constant.
  • the vertical and torsional coupling free vibration method is a main method for bridge wind tunnel test vibration measurement (vortex vibration, buffeting, galloping, flutter), and an important wind tunnel test method for bridge flutter derivative identification.
  • the traditional coupled free vibration test device adopts a spring suspension main beam segment model, and has the advantages of simple device and convenient implementation.
  • the lateral inclination of the vertical spring is small, and the spring approximately satisfies the condition of vertical linear geometric stiffness.
  • the torsional amplitude is large, the vertical spring is obviously laterally inclined, and the spring geometric stiffness does not satisfy the linear condition.
  • the vertical and torsional stiffness of the coupled vibration system are no longer kept constant, but are related to the amplitude, so the subsequent test The result is an unacceptable and significant error.
  • the torsional amplitude reaches an astonishing 35°, and the conventional free vertical and torsional coupling free vibration test device cannot be simulated at all. Even if the torsional amplitude is only 10°, the result may be completely wrong.
  • the technical problem to be solved by the invention is to meet the need of vertical and torsion coupling large amplitude free vibration of bridge and other structural member segment models in wind tunnel test, and to provide a nonlinear factor which can effectively avoid the test process and ensure vertical and Torsional coupling large amplitude linear free vibration test device.
  • the vertical and torsion coupling free vibration wind tunnel test device includes a rigid test model, a rigid rod, a circular hub, a linear tension spring, and a string.
  • a vertical and torsion coupling large amplitude free vibration wind tunnel test device for a bridge comprising a rigid test model 1, a lightweight rigid rod 2, a lightweight rigid round hub 3, a first string 4, a linear tension spring 5 and a second The string 6; the rigid test model 1 is fixed at both ends of the rigid rod 2, the rigid rod 2 is vertically passed through the center of the hub 3 and fixed thereto, and the rigidity test model 1 is ensured to be twisted center line with the rigid rod 2 axis and the hub 3 center line
  • the first string 4 is wound in the groove of the hub 3, one end of the first string 4 is fixed to the bottom of the hub 3, and the other end is connected to the lower end of the spring 5 to ensure vertical and torsional coupling of the rigid test model 1 and the hub 3.
  • the first string 4 drives the spring 5 to move up and down vertically, and the spring 5 only produces vertical tensile deformation during the stretching process without lateral tilting.
  • the diameter of the hub 3 is determined according to several parameters such as the mass of the rigid test model 1, the mass inertia, and the ratio of the torsional frequency to the vertical bending frequency, and is generally in the range of 0.2 m to 1.5 m.
  • the hub 3 can generally adopt a bicycle hub, which is convenient and economical; the larger diameter hub 3 can be processed by a lightweight rigid alloy aluminum profile.
  • the linear tensile stiffness of the first string 4 and the second string 6 is much greater than the stiffness of the spring 5, and the light weight, high strength, torsion and bending stiffness are substantially negligible, ensuring that the first string 4 can be freely wound around the hub. 3, it is ensured that the second string 6 can be freely twisted around its fixed end following the model.
  • the mass and vibration frequency are not too high, many strings on the market can meet the requirements.
  • the first string 4 does not have to be fixed to the bottom of the hub 3 as long as it is ensured that the consolidation point is not higher than the tangent point of the vertical section of the string 4 and the hub 3 during the vibration.
  • the connection point of the spring 5 with the first string 4 during the vibration process cannot be lower than the tangent point of the vertical section of the first string 4 and the hub 3.
  • the hub 3 is not necessarily a complete circle. In order to reduce the mass, a part of the arc can be cut up and down as long as the first string 4 is always wound around the hub 3 during the whole vibration process. It can be kept vertical together with the spring 5.
  • the second string 6 has the characteristics of light weight, high strength, no bending and torsion resistance. Since the rigid test model 1 has vertical vibration, the second string 6 rotates around a fixed point at one end. The stiffness of the second string 6 should not be too large, otherwise it will limit the up and down vibration of the model.
  • the length of the second string 6 can be taken in the range of 1.5 m - 3 m to accommodate the vertical and torsional coupled vibration of the rigid test model 1.
  • the second string 6 can be slightly pre-tensioned under windless conditions.
  • the invention has the beneficial effects that the vertical and torsional coupling of the bridge rigid model is converted into a large linear tensile deformation of the spring, without lateral tilting, and the geometric stiffness linear condition is satisfied.
  • the tensile stiffness of the linear spring is constant during the free vibration process, the system mass and the mass inertia are unchanged, and the circular hub ensures that the force arm is also unchanged, so the vertical, torsional stiffness and vibration frequency of the system are throughout the vibration process. It remains unchanged and successfully avoids the geometric nonlinearity and stiffness nonlinearity caused by spring tilt during the traditional method test. If there is only a single degree of freedom for vertical vibration, the four springs on both sides of the model are deformed in the same direction.
  • the test device has the following advantages: (1) low cost. Compared to the conventional free vibration test device, one horizontal boom connecting the spring 5 and the rigid rod 2 is missing, and a circular hub member and a string are added.
  • Wheels with a diameter of 20-70cm can be used for bicycle wheels, which are easy to buy on the market, low in price (tens to hundreds of dollars, aluminum alloy, carbon steel, etc.), light weight (within 2kg), and The strength and stiffness are sufficient. Large diameters (generally not exceeding 150 cm) can be processed by alloy aluminum profiles at a low cost.
  • (3) The initial angle of attack adjustment is simple. It is possible to use either a conventional free vibration device adjustment method or a simpler model and hub initial pre-rotation method. (4) It can realize large amplitude linear coupling free vibration which cannot be realized by conventional devices, which is the biggest advantage of the device. (5) Rolling friction between the string and the hub, the damping is very small, even if the single side torsional amplitude reaches 20° The mechanical damping ratio can also be controlled within 0.5%.
  • Fig. 1 is a structural view of a bridge-rigid model bending-torsion coupling free-vibration wind tunnel test device.
  • a bridge vertical and torsion coupling large amplitude free vibration wind tunnel test device including a rigid test model 1, a lightweight rigid rod 2, a lightweight rigid round hub 3, a first string 4, a linear pull Stretching spring 5 and second string 6; rigid test model 1 is fixed with rigid rod 2 at both ends, rigid rod 2 vertically passes through the center of the hub 3 and fixed thereto, and ensures the rigidity test model 1 torsion center line and rigid rod 2 axis
  • the center line of the hub 3 is collinear; the first string 4 is wound in the groove of the hub 3, one end of the first string 4 is fixed to the bottom of the hub 3, and the other end is connected with the lower end of the spring 5 to ensure the rigidity test model 1 and the hub 3
  • the second string 6 limits the lateral vibration of the rigid test model 1 during wind-induced large coupling free vibration; rigidity In the test model 1 during the vertical vibration and the torsion coupling

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置,属于桥梁风洞试验装置技术领域。桥梁竖向和扭转耦合大振幅自由振动风洞试验装置包括刚性试验模型(1)、轻质刚性杆(2)、轻质刚性圆轮毂(3)、第一细绳(4)、线性拉伸弹簧(5)和第二细绳(6)。可实现传统自由振动试验装置无法实现的桥梁模型竖向和扭转大振幅耦合自由振动,竖向弹簧(5)只有伸缩变形而不发生侧向倾斜,不存在传统自由振动试验装置中弹簧(5)发生明显倾斜而无法保证线性扭转刚度的问题;装置简单,安装方便,易于调节初始攻角,由于第一细绳(4)与轮毂(3)之间为滚动摩擦,因此即使在大幅振动过程中仍然能够保证很低且较稳定的机械阻尼比。

Description

一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置 技术领域
本发明涉及一种可以实现桥梁刚性模型大振幅的、且能够保证线性竖向刚度和线性扭转刚度的自由振动风洞试验装置,具体涉及到通过竖置线性拉伸弹簧、在两端固定模型的轻质刚性圆形轮毂、连接弹簧与轮毂的高强细绳构成的系统,将桥梁模型的竖向和扭转耦合大振幅自由振动转化为线性弹簧的竖向自由伸缩,利用弹簧的线性拉伸刚度和圆形刚性轮毂实现系统的线性竖向平动和线性转动刚度。由于系统在整个大幅耦合振动过程中,质量和质量惯矩始终不变,因此竖向平动频率和绕轮毂中心转动频率保持恒定。
背景技术
竖向和扭转耦合自由振动法是桥梁风洞试验测振(涡振、抖振、驰振、颤振)的一种主要方法,也是桥梁颤振导数识别的一种重要风洞试验方法。传统耦合自由振动试验装置采用弹簧悬挂主梁节段模型,优点在于装置简单,实现方便。对于弯扭耦合小振幅自由振动,竖向弹簧的侧向倾斜较小,弹簧近似满足竖向线性几何刚度条件。但当扭转振幅较大时,竖向弹簧发生明显侧向倾斜,弹簧几何刚度不满足线性条件,因此耦合振动系统的竖向和扭转刚度不再保持常数,而是与振幅相关,因此对后续试验结果造成不可接受的明显误差。竖向和扭转耦合自由振动振幅越大,弹簧侧向倾斜越大,试验误差也越大。一般认为当扭转振幅在2°之内时,误差基本可以忽略。但对于研究大振幅的扭转振动情况,如塔科马旧桥风毁时,扭转振幅达到惊人的35°,采用传统自由竖向和扭转耦合自由振动试验装置根本无法模拟。扭转振幅即使只有10°,结果可能就已经完全错误。
技术问题
本发明要解决的技术问题是针对风洞试验中桥梁及其他结构构件节段模型竖向和扭转耦合大振幅自由振动的需要,提供一种可以有效避免试验过程中非线性因素,保证竖向和扭转耦合大振幅线性自由振动试验装置。竖向和扭转耦合自由振动风洞试验装置包括刚性试验模型、刚性杆、圆形轮毂、线性拉伸弹簧和细绳。
技术解决方案
本发明的技术方案:
一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置,包括刚性试验模型1、轻质刚性杆2、轻质刚性圆轮毂3、第一细绳4、线性拉伸弹簧5和第二细绳6;刚性试验模型1两端固结刚性杆2,刚性杆2垂直穿过轮毂3的中心并与其固定,且保证刚性试验模型1扭转中心线与刚性杆2轴线、轮毂3中心线共线;第一细绳4缠绕在轮毂3的凹槽内,第一细绳4一端与轮毂3底部固定,另一端与弹簧5下端连接,保证刚性试验模型1和轮毂3在竖向和扭转耦合自由振动过程中,轮毂3与第一细绳4之间仅发生相对滚动;第二细绳6限制刚性试验模型1在风致大幅耦合自由振动过程中的侧向振动;刚性试验模型1在做竖向和扭转耦合自由振动过程中,第一细绳4带动弹簧5做上下竖直运动,弹簧5在伸缩过程中只产生竖向拉伸变形而不发生侧向倾斜。
所述的轮毂3的直径根据刚性试验模型1的质量、质量惯矩及扭转频率与竖弯频率的比值等几个参数确定,一般在0.2m-1.5m范围内。当轮毂3的直径在0.2m-0.7m范围内时,轮毂3一般可以采用自行车轮毂,既方便又经济;直径较大的轮毂3可以采用轻质刚性合金铝型材加工。
所述的第一细绳4和第二细绳6的线性抗拉刚度远大于弹簧5刚度,轻质高强、抗扭和抗弯刚度基本可以忽略,保证第一细绳4可以自由缠绕在轮毂3上,保证第二细绳6可以自由绕其固定端跟随模型扭转。对于一般刚性试验模型1,由于质量和振动频率都不太高,因此市面上很多细绳都可满足要求。
所述的第一细绳4不一定要固结在轮毂3的底部,只要保证在振动过程中固结点不会高于细绳4竖直段与轮毂3的相切点即可。另外,在振动过程中弹簧5与第一细绳4的连接点也不能低于第一细绳4竖直段与轮毂3的相切点。
所述的轮毂3也不一定是一个完整的圆形,为了减轻质量,上下都可以切削掉一部分弧段,只要保证在整个振动过程中第一细绳4始终有一部分缠绕在轮毂3上,一部分与弹簧5共同保持竖直即可。
所述的第二细绳6具有轻质、高强、无抗弯抗扭等特性。由于刚性试验模型1会有竖向振动,因此第二细绳6会绕一端固定点转动。第二细绳6刚度不能太大,否则会限制模型的上下振动。第二细绳6长度可以在1.5m-3m范围内取值,以适应刚性试验模型1的竖向和扭转耦合振动。无风条件下,第二细绳6可以稍微有些预张力。
有益效果
本发明的有益效果:将桥梁刚性模型竖向和扭转耦合大幅自由振动位移转化为弹簧的竖向线性拉伸变形,而不发生侧向倾斜,满足几何刚度线性条件。另外,自由振动过程中线性弹簧的拉伸刚度不变,系统质量和质量惯矩不变,圆形轮毂保证力臂也不变,因此系统竖向、扭转刚度及振动频率在整个振动过程中都保持不变,成功避免了传统方法试验过程中弹簧倾斜引起的几何非线性和刚度非线性问题。如果仅有单自由度竖向振动,则模型两端两侧的四根弹簧做同向伸缩变形。如果仅有单自由度扭转振动,则模型任意一端两侧的两根弹簧做反向伸缩变形,而模型上游或下游的对应两根弹簧做同向伸缩变形。如果有竖向和扭转耦合自由振动,弹簧则做以上伸缩变形的线性叠加。另外,该试验装置有以下优点:(1)造价低。相对于传统自由振动测试装置,少了一个连接弹簧5和刚性杆2的水平吊臂,多了一个圆形轮毂部件和细绳。直径在20-70cm范围内的轮毂可以采用自行车轮毂,市面上很容易买到,价格低廉(几十到几百元不等,铝合金、碳钢等)、自重轻(2kg之内)、并且强度刚度足够。大直径(一般不超过150cm)的可以采用合金铝型材自行加工,费用也并不高。(2)安装方便。与传统自由振动装置安装难度基本相当。(3)初始攻角调节简便。既可以采用传统自由振动装置调整方法,也可以采用更简便的模型和轮毂初始预转法。(4)可以实现传统装置无法实现的大振幅线性耦合自由振动,这是本装置的最大优势,(5)细绳和轮毂之间为滚动摩擦,阻尼非常小,即使单侧扭转振幅达到20°,机械阻尼比也能够控制在0.5%之内。
附图说明
图1是桥梁刚性模型弯扭耦合自由振动风洞试验装置的构造图。
图中:1桥梁刚性模型;2轻质刚性杆;3轻质刚性圆轮毂;4第一细绳;5线性拉伸弹簧;6第二细绳。
本发明的实施方式
以下结合技术方案和附图,详细叙述本发明的具体实施方式。
如图1所示,一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置,包括刚性试验模型1、轻质刚性杆2、轻质刚性圆轮毂3、第一细绳4、线性拉伸弹簧5和第二细绳6;刚性试验模型1两端固结刚性杆2,刚性杆2垂直穿过轮毂3的中心并与其固定,且保证刚性试验模型1扭转中心线与刚性杆2轴线、轮毂3中心线共线;第一细绳4缠绕在轮毂3的凹槽内,第一细绳4一端与轮毂3底部固定,另一端与弹簧5下端连接,保证刚性试验模型1和轮毂3在竖向和扭转耦合自由振动过程中,轮毂3与第一细绳4之间仅发生相对滚动;第二细绳6限制刚性试验模型1在风致大幅耦合自由振动过程中的侧向振动;刚性试验模型1在做竖向和扭转耦合自由振动过程中,第一细绳4带动弹簧5做上下竖直运动,弹簧5在伸缩过程中只产生竖向拉伸变形而不发生侧向倾斜,确保竖向和扭转整个耦合振动过程中都是线性的,因此振动频率恒定。

Claims (5)

  1. 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置,其特征在于,所述的桥梁竖向和扭转耦合大振幅自由振动风洞试验装置包括刚性试验模型(1)、轻质刚性杆(2)、轻质刚性圆轮毂(3)、第一细绳(4)、线性拉伸弹簧(5)和第二细绳(6);刚性试验模型(1)两端固结刚性杆(2),刚性杆(2)垂直穿过轮毂(3)的中心并与其固定,且保证刚性试验模型(1)扭转中心线与刚性杆(2)轴线、轮毂(3)中心线共线;第一细绳(4)缠绕在轮毂(3)的凹槽内,第一细绳(4)一端与轮毂(3)底部固定,另一端与弹簧(5)下端连接,保证刚性试验模型(1)和轮毂(3)在竖向和扭转耦合自由振动过程中,轮毂(3)与第一细绳(4)之间仅发生相对滚动;第二细绳(6)限制刚性试验模型(1)在风致大幅耦合自由振动过程中的侧向振动;刚性试验模型(1)在做竖向和扭转耦合自由振动过程中,第一细绳(4)带动弹簧(5)做上下竖直运动,弹簧(5)在伸缩过程中只产生竖向拉伸变形而不发生侧向倾斜。
  2. 根据权利要求1所述的桥梁竖向和扭转耦合大振幅自由振动风洞试验装置,其特征在于,所述的轮毂(3)的直径为0.2m-1.5m,为圆形。
  3. 根据权利要求2所述的桥梁竖向和扭转耦合大振幅自由振动风洞试验装置,其特征在于,所述的圆形轮毂(3)的上下都可以切削掉一部分弧段以减轻其质量,且保证在振动过程中,第一细绳(4)始终有一部分缠绕在轮毂(3)上,一部分与弹簧(5)共同保持竖直。
  4. 根据权利要求1-3任一所述的桥梁竖向和扭转耦合大振幅自由振动风洞试验装置,其特征在于,在振动过程中,轮毂(3)与第一细绳(4)的固结点不高于第一细绳(4)竖直段与轮毂(3)的相切点,弹簧(5)与第一细绳(4)的连接点不低于第一细绳(4)竖直段与轮毂(3)的相切点。
  5. 根据权利要求1-4任一所述的桥梁竖向和扭转耦合大振幅自由振动风洞试验装置,其特征在于,第二细绳(6)长度一般可选为1.5m-3m,可绕固定点转动;以适应刚性试验模型(1)的在一定范围内的竖向和扭转耦合振动。
PCT/CN2018/076000 2018-02-09 2018-02-09 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置 WO2019153247A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/481,431 US10866159B2 (en) 2018-02-09 2018-02-09 Large-amplitude vertical-torsional coupled free vibration device for wind tunnel test
PCT/CN2018/076000 WO2019153247A1 (zh) 2018-02-09 2018-02-09 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076000 WO2019153247A1 (zh) 2018-02-09 2018-02-09 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置

Publications (1)

Publication Number Publication Date
WO2019153247A1 true WO2019153247A1 (zh) 2019-08-15

Family

ID=67549259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076000 WO2019153247A1 (zh) 2018-02-09 2018-02-09 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置

Country Status (2)

Country Link
US (1) US10866159B2 (zh)
WO (1) WO2019153247A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109614650A (zh) * 2018-11-12 2019-04-12 深圳大学 桥梁风致行为的非线性特性分析方法、存储介质及服务器
CN111044250A (zh) * 2020-01-03 2020-04-21 厦门大学 绳索张紧装置、全机颤振风洞试验系统和试验方法
CN114459709A (zh) * 2022-01-18 2022-05-10 西南交通大学 可自由调节高度的节段模型静态-动态试验装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11371908B2 (en) * 2020-02-06 2022-06-28 Dalian University Of Technology Wind tunnel testing device for torsional-vertical coupled free vibration with adjustable frequency ratio

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU614669A1 (ru) * 1973-07-19 1981-03-23 Предприятие П/Я Г-4903 Подвеска дл испытаний динамическипОдОбНыХ МОдЕлЕй лЕТАТЕльНыХ АппАРА-TOB B АэРОдиНАМичЕСКиХ ТРубАХ МАлыХСКОРОСТЕй
JPS60164233A (ja) * 1984-02-06 1985-08-27 Kawasaki Heavy Ind Ltd 動的空気力の計測方法並びにその計測システム
JP2001041846A (ja) * 1999-08-02 2001-02-16 Nkk Corp 風洞試験の模型支持方法及びその装置
CN202793734U (zh) * 2012-05-11 2013-03-13 中国航空工业集团公司西安飞机设计研究所 一种新型全机低速颤振模型风洞试验悬挂系统
CN107345846A (zh) * 2017-07-28 2017-11-14 大连理工大学 一种大振幅自由竖向和扭转耦合振动风洞试验装置
CN108414186A (zh) * 2018-02-08 2018-08-17 大连理工大学 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2448528A (en) * 1944-05-02 1948-09-07 Herbert M Heuver Wind tunnel balance
DE19549339C1 (de) * 1995-04-07 1996-10-24 Europ Transonic Windtunnel Modellträger für Windkanalmodelle
US6088521A (en) * 1998-05-04 2000-07-11 Ford Global Technologies, Inc. Method and system for providing a virtual wind tunnel
JP2012078260A (ja) * 2010-10-04 2012-04-19 Mitsubishi Heavy Ind Ltd 風洞試験用模型および風洞試験方法
DE102015204019A1 (de) * 2015-03-05 2016-09-08 Maha-Aip Gmbh & Co. Kg Haltevorrichtung für eine Windkanalwaage und Prüfverfahren
DE102016216052A1 (de) * 2016-08-25 2018-03-01 Maha-Aip Gmbh & Co. Kg Windkanalwaage zur Mehrfachkonfiguration
US10267708B2 (en) * 2017-05-18 2019-04-23 The Boeing Company Wind tunnel balance and method of use
US10900865B2 (en) * 2018-03-06 2021-01-26 Dalian University Of Technology Experimental setup for three-degree-of-freedom large-amplitude free vibration in wind tunnel test

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU614669A1 (ru) * 1973-07-19 1981-03-23 Предприятие П/Я Г-4903 Подвеска дл испытаний динамическипОдОбНыХ МОдЕлЕй лЕТАТЕльНыХ АппАРА-TOB B АэРОдиНАМичЕСКиХ ТРубАХ МАлыХСКОРОСТЕй
JPS60164233A (ja) * 1984-02-06 1985-08-27 Kawasaki Heavy Ind Ltd 動的空気力の計測方法並びにその計測システム
JP2001041846A (ja) * 1999-08-02 2001-02-16 Nkk Corp 風洞試験の模型支持方法及びその装置
CN202793734U (zh) * 2012-05-11 2013-03-13 中国航空工业集团公司西安飞机设计研究所 一种新型全机低速颤振模型风洞试验悬挂系统
CN107345846A (zh) * 2017-07-28 2017-11-14 大连理工大学 一种大振幅自由竖向和扭转耦合振动风洞试验装置
CN108414186A (zh) * 2018-02-08 2018-08-17 大连理工大学 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109614650A (zh) * 2018-11-12 2019-04-12 深圳大学 桥梁风致行为的非线性特性分析方法、存储介质及服务器
CN109614650B (zh) * 2018-11-12 2023-04-18 深圳大学 桥梁风致行为的非线性特性分析方法、存储介质及服务器
CN111044250A (zh) * 2020-01-03 2020-04-21 厦门大学 绳索张紧装置、全机颤振风洞试验系统和试验方法
CN114459709A (zh) * 2022-01-18 2022-05-10 西南交通大学 可自由调节高度的节段模型静态-动态试验装置
CN114459709B (zh) * 2022-01-18 2022-09-30 西南交通大学 可自由调节高度的节段模型静态-动态试验装置

Also Published As

Publication number Publication date
US10866159B2 (en) 2020-12-15
US20200232876A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
WO2019153247A1 (zh) 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置
CN108414186B (zh) 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置
WO2019169545A1 (zh) 一种三自由度大振幅自由振动风洞试验装置
WO2020258449A1 (zh) 自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置
CN108225715B (zh) 一种三自由度大振幅自由振动风洞试验装置
CN108444670B (zh) 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置
WO2019169527A1 (zh) 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置
WO2021155617A1 (zh) 扭转和竖弯振动频率比可调的耦合自由振动风洞试验装置
US4320602A (en) Stabilizing structures against oscillation
CN111562080B (zh) 一种竖向扭转耦合大振幅自由振动的风洞实验系统
CN109638753B (zh) 一种架空线路分裂导线间隔减震装置
CN101702503A (zh) 多分裂输电导线扭振防舞器
US2215541A (en) Torsional damper for line conductors
CN209858168U (zh) 自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置
CN112924132B (zh) 一种竖直扭转两自由度的节段模型风洞试验系统
CN114778063A (zh) 竖弯和扭转独立支承大攻角大振幅节段模型风洞试验装置
CN103887750A (zh) 一种抑制扭振防舞装置
GB2040429A (en) Improvements in or relating to stabilising structures against oscillation
US6857615B2 (en) Mechanical damping system for structures
JP3732353B2 (ja) 橋梁の制振構造
JPH0925740A (ja) 制振装置および制振方法
US11371908B2 (en) Wind tunnel testing device for torsional-vertical coupled free vibration with adjustable frequency ratio
RU138536U1 (ru) Система гибких оттяжек, обеспечивающая аэродинамическую устойчивость и жесткость мостов
CN113622304B (zh) 一种斜拉索杠杆放大阻尼装置
CN108895227A (zh) 具有隔震补偿功能的风管竖向软接结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905204

Country of ref document: EP

Kind code of ref document: A1