WO2020258449A1 - 自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置 - Google Patents

自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置 Download PDF

Info

Publication number
WO2020258449A1
WO2020258449A1 PCT/CN2019/099186 CN2019099186W WO2020258449A1 WO 2020258449 A1 WO2020258449 A1 WO 2020258449A1 CN 2019099186 W CN2019099186 W CN 2019099186W WO 2020258449 A1 WO2020258449 A1 WO 2020258449A1
Authority
WO
WIPO (PCT)
Prior art keywords
rigid
tension spring
strength
linear tension
model
Prior art date
Application number
PCT/CN2019/099186
Other languages
English (en)
French (fr)
Inventor
许福友
张明杰
马召宇
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/055,089 priority Critical patent/US11293832B2/en
Publication of WO2020258449A1 publication Critical patent/WO2020258449A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/027Specimen mounting arrangements, e.g. table head adapters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details

Definitions

  • the invention relates to a test device for studying the wind-induced large-scale vertical and torsional coupled free vibrations of the rigid model of the bridge's large-scale main girder in a natural wind field instead of a wind tunnel laboratory, and specifically relates to a light-weight high-strength string and a linear stretch
  • the spring suspends the large-scale rigid model on the turntable of the tower standing in a good natural wind field
  • the motor drives the turntable to drive the suspension system to adjust the deflection angle of the rigid model relative to the natural wind direction, thereby simulating the relative wind direction of the actual bridge girder attitude. Because it is placed in a natural wind field, the size of the model is basically unlimited, so large-scale model tests can be realized.
  • this device has many advantages such as easy realization of large amplitude, arbitrary wind deflection angle, energy saving, and no need to occupy a wind tunnel laboratory.
  • the vertical and torsional coupling free vibration method of the bridge girder segment model is an important method to study the wind-induced vibration (vortex, buffeting, gallop, flutter) of the bridge structure, and it is also a kind of identification of the flutter derivative of the bridge girder Common test methods.
  • the wind-induced bending-torsion coupled free vibration test of the bridge girder was usually carried out in the wind tunnel laboratory.
  • the advantage is that the wind speed of the flow field is controllable and the flow field quality is good.
  • the spring suspension system is divided into two types: inner bracket and outer bracket.
  • the outer bracket supports the spring suspension system on a bracket located outside the wind tunnel. The spring is not affected by wind load and is suitable for occasions with a small wind tunnel width.
  • wind tunnel walls are often used as end plates to ensure the dual flow as much as possible.
  • a bracket must be set inside the wind tunnel to support the suspension system.
  • the spring needs to be closed to avoid wind load, which increases the difficulty of the test to a certain extent. If the spring is placed in the wind field, it will affect the test accuracy.
  • the length-to-width ratio of the wind tunnel test model is generally not more than 4, and it is necessary to specially set the end plate (or use the wind tunnel wall as the end plate) to ensure the binary flow as much as possible.
  • Wind tunnel tests are generally only applicable to small scale models. However, the model is too small to accurately simulate the shape and ensure the rigidity of the model. Sometimes the system mass and mass moment of inertia cannot meet the requirements.
  • the existing free vibration wind tunnel test device is difficult to adjust the wind deflection angle. Since the wind direction of the wind tunnel is fixed, the wind declination can only be adjusted by adjusting the angle of the model relative to the wind direction of the wind tunnel. For the outer bracket spring suspension system, the wind deflection angle cannot be adjusted basically. For the internal support system, the operation of adjusting the wind deflection angle is very complicated, and it is inconvenient to comprehensively study the wind resistance performance of the structure under various wind direction angle conditions. In addition, it is difficult for traditional wind tunnel test methods to achieve large vibrations. The main reasons are as follows: (1) The length of the tension spring used to suspend the model is short (usually in the range of 40 ⁇ 80 cm).
  • the technical problem to be solved by the present invention is to meet the needs of the vertical and torsional coupling large-amplitude free vibration test of the main girder segment model in the bridge wind resistance design, and provide a method that can effectively solve the bottleneck problem faced by the current wind tunnel test method.
  • a test device for large-amplitude coupled free vibration under different wind directions is carried out in a good natural wind field.
  • the device includes a rigid model of the bridge main girder, a light-weight high-strength string, a linear tension spring, a spring protective tube, a rigid bracket, a turntable, a rigid column, a motor, a gravity block and a rigid thin round rod.
  • the bridge large-amplitude vertical and torsional coupling free vibration test device in the natural wind field is placed in a test field with good natural wind field conditions (such as a broad and flat coast, square, open field, etc.).
  • the field meets the requirements of high wind speed, stable wind field, and Conditions such as low turbulence and long wind field duration. Sites that meet the above characteristics are not difficult to find in areas that are significantly affected by monsoons and local sea and land winds.
  • the test device includes rigid model 1, first light-weight high-strength string 2, first linear tension spring 3, rigid bracket 4, first spring guard tube 5, turntable 6, rigid post 7, motor 8, second light-weight high-strength
  • the string 9, the second linear tension spring 10, the gravity block 11, the second spring protection tube 12, the rigid thin round rod 13, and the third light-weight high-strength long string 14.
  • the rigid model 1 is connected to the lower end of the first linear tension spring 3 through the first light-weight high-strength string 2, and the upper end of the first linear tension spring 3 is suspended on the rigid support 4; the first linear tension spring 3 is placed in the first spring In the protective cylinder 5, the first linear tension spring 3 is prevented from being subjected to wind load; the first spring protective cylinder 5 is fixed on the rigid support 4; the rigid support 4 is fixed on the upper part of the turntable 6, and the turntable 6 is fixed on the top of the rigid column 7, fixed The motor 8 on the rigid column drives the turntable 6 and then rotates the rigid support 4 and the rigid model 1 to adjust the test wind direction angle of the rigid model 1.
  • the rigid model 1 is connected to the upper end of the second linear tension spring 10 through a second light-weight high-strength string 9, and the lower end of the second linear tension spring 10 is connected to a movable gravity block 11 on the ground.
  • the position of the gravity block 11 follows the position of the model Adjust to ensure that the axis of the second linear extension spring 10 is vertical; the second linear extension spring 10 is placed in the second spring protection tube 12 to prevent the second linear extension spring 10 from being subjected to wind load; the second spring protection tube 12 Fixed on the gravity block 11; rigid thin round rods 13 are set at both ends of the rigid model 1, whose axis passes through the torsion centerline of the model.
  • the rigid thin round rod 13 restricts the wind-induced lateral direction of the rigid model 1 through the third light-weight high-strength long string 14 Vibration, and can ensure that the vertical and torsional vibration of the model is basically unconstrained.
  • the first light-weight high-strength string 2, the first linear tension spring 3, the second light-weight high-strength string 9 and the second linear tension spring 10 are vertically collinear; along the width direction of the rigid model 1, The distance between the hanging points of the first light-weight high-strength string 2, the first linear tension spring 3, the second light-weight high-strength string 9 and the second linear tension spring 10 can be adjusted to adjust the torsion and vertical bending of the rigid model 1.
  • Frequency ratio By adjusting the relative height of the upstream and downstream lifting points of the rigid model 1, the test wind angle of attack can be changed.
  • the size of the rigid model 1 is not restricted by wind tunnel conditions, and can be tested under conditions of large scale, large amplitude, and different wind deflection angles.
  • the length of the rigid model 1 is generally in the range of 10 to 12 m
  • the width is in the range of 1.0 to 2.0 m
  • the aspect ratio is in the range of 5 to 12
  • the equivalent mass of the suspension system is in the range Within the range of 500 ⁇ 2000 kg.
  • the size of the rigid model 1 is not restricted by wind tunnel conditions, and vertical and torsional coupled free vibration tests are carried out under conditions of large scale, large amplitude, and different wind deflection angles.
  • the stiffness of the first linear extension spring 3 and the second linear extension spring 10 is determined according to the mass and vertical bending frequency of the rigid model 1, and the strength is determined according to the mass, vertical bending and torsion amplitude of the rigid model 1.
  • a light-weight high-strength string 2, the first linear tension spring 3, the second light-weight high-strength string 9 and the second linear tension spring 10, the horizontal spacing of the suspension points is based on the ratio of the torsion frequency to the vertical bending frequency of the rigid model 1, and The radius of gyration of the suspension system is determined.
  • the first light-weight high-strength string 2 and the second light-weight high-strength string 9 are always in tension, and the first linear tension spring 3 and the second linear tension spring 10 are always in a linear elastic state.
  • the first light-weight high-strength string 2 and the second light-weight high-strength string 9 are always in tension, and the first linear tension spring 3 and the second linear tension spring 10 are always in a linear elastic state.
  • the rigid post 7 should have sufficient height, strength and rigidity.
  • the rigid column 7 can generally be made of steel tube concrete, with a height of 15-20 m, the outer diameter of the steel tube is generally 0.8-1.0 m, and the wall thickness of the steel tube is generally 8.0-10.0 mm. If the outer diameter of the rigid column 7 is too large, it will not only increase the cost, but also increase the interference effect of the steel pipe on the flow field; if the outer diameter of the rigid column 7 is too small, it is difficult to ensure its strength and rigidity, and there may be safety hazards.
  • the beneficial effects of the present invention to carry out the vertical and torsional coupling large-amplitude free vibration test of the large-scale rigid segment model of the bridge main girder in a good natural wind field, which has the following advantages: (1) No large-scale wind tunnel equipment is required, and device cost Low; (2) Relatively small area of wind tunnel, this device occupies no more than 100 square meters; (3) No need for high-power equipment, saving energy consumption; (4) Model ratio can be increased by 3 times compared with wind tunnel test model, Even larger; (5) Large-amplitude coupled free vibration can be realized with confidence, reducing safety hazards; (6) The length of the spring is more than 5 times the length of the spring in the wind tunnel test, which greatly reduces the geometric nonlinearity caused by the spring inclination during large vibrations (7) It can solve the problem of too high blocking rate in the large-vibration wind tunnel test; (8) It is convenient to adjust the wind deflection angle.
  • Figure 1 is a structural diagram of a bridge large-amplitude vertical and torsional coupled free vibration test device in a natural wind field.
  • the large-amplitude vertical and torsional coupled free vibration test device of a bridge in a natural wind field includes a rigid model 1, a first light-weight high-strength string 2, a first linear tension spring 3, a rigid support 4, and a second A spring guard tube 5, a turntable 6, a rigid column 7, a motor 8, a second light-weight high-strength string 9, a second linear tension spring 10, a gravity block 11, a second spring guard tube 12, a rigid thin round rod 13, and The third light-weight high-strength long string 14.
  • the rigid model 1 is connected to the lower end of the first linear tension spring 3 through the first light-weight high-strength string 2, and the upper end of the first linear tension spring 3 is suspended on the rigid support 4; the first linear tension spring 3 is placed in the first spring In the protective cylinder 5, the first linear tension spring 3 is prevented from being subjected to wind load; the first spring protective cylinder 5 is fixed on the rigid support 4; the rigid support 4 is fixed on the upper part of the turntable 6, and the turntable 6 is fixed on the top of the rigid column 7, fixed The motor 8 on the rigid column drives the turntable 6 and then rotates the rigid support 4 and the rigid model 1 to adjust the test wind direction angle of the rigid model 1.
  • the rigid model 1 is connected to the upper end of the second linear tension spring 10 through a second light-weight high-strength string 9, and the lower end of the second linear tension spring 10 is connected to a movable gravity block 11 on the ground.
  • the position of the gravity block 11 follows the position of the model Adjust to ensure that the axis of the second linear extension spring 10 is vertical; the second linear extension spring 10 is placed in the second spring protection tube 12 to prevent the second linear extension spring 10 from being subjected to wind load; the second spring protection tube 12 Fixed on the gravity block 11; rigid thin round rods 13 are set at both ends of the rigid model 1, whose axis passes through the torsion centerline of the model.
  • the rigid thin round rod 13 restricts the wind-induced lateral direction of the rigid model 1 through the third light-weight high-strength long string 14 Vibration, and can ensure that the vertical and torsional vibration of the model is basically unconstrained.
  • the first light-weight high-strength string 2, the first linear tension spring 3, the second light-weight high-strength string 9 and the second linear tension spring 10 are vertically collinear; along the width direction of the rigid model 1, The distance between the hanging points of the first light-weight high-strength string 2, the first linear tension spring 3, the second light-weight high-strength string 9 and the second linear tension spring 10 can be adjusted to adjust the torsion and vertical bending of the rigid model 1.
  • Frequency ratio By adjusting the relative height of the upstream and downstream lifting points of the rigid model 1, the test wind angle of attack can be changed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

一种自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置,包括刚性模型(1)、轻质高强细绳(2,9,14)、线性拉伸弹簧(3,10)、刚性支架(4)、弹簧护筒(5,12)、转盘(6)、刚性立柱(7)、电机(8)、重力块(11)和刚性细圆杆(13)。利用本装置可在良好的自然风场中开展桥梁刚性模型自由振动试验,无需大型风洞设备,试验模型尺寸不受风洞尺寸限制,因此可实现大比例模型试验。相比于传统风洞试验方法,本装置不仅可以大大减弱大幅振动时的几何非线性,而且可以解决大幅振动风洞试验中阻塞率过高的问题,因此适合于研究大幅振动。利用转盘可容易地调节模型风偏角,进而方便地全面研究不同风偏角下桥梁的抗风性能,相对传统风洞试验更为便利。

Description

自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置 技术领域
本发明涉及在自然风场而非风洞实验室中研究桥梁大比例主梁刚性模型风致大幅竖向和扭转耦合自由振动的一种试验装置,具体涉及到通过轻质高强细绳、线性拉伸弹簧将大比例刚性模型悬吊在立于良好自然风场中的塔架的转盘上,通过电机驱动转盘带动悬吊系统调节刚性模型相对自然风向的偏角,从而模拟实际桥梁主梁的相对风向姿态。由于置于自然风场,模型尺寸基本不受限制,因此可实现大比例模型试验。此外,相比于传统风洞试验方法,本装置具有便于实现大振幅、任意风偏角、节省能耗、且无需占用风洞实验室等诸多优势。
背景技术
桥梁主梁节段模型竖向和扭转耦合自由振动法是研究桥梁结构风致振动(涡振、抖振、驰振、颤振)的一种重要方法,也是识别桥梁主梁颤振导数的一种常用试验方法。以往桥梁主梁风致弯扭耦合自由振动试验通常在风洞实验室中开展,优点在于流场风速可控,流场品质良好。弹簧悬挂系统分为内支架和外支架两种。外支架是将弹簧悬挂系统支撑在位于风洞外的支架上,弹簧不受风荷载作用,适用于风洞宽度较小场合。此时,往往利用风洞洞壁作为端板来尽可能保证二元流动。对于宽度较大的风洞(如大于4 m),模型难以甚至无法横跨风洞,则需要在风洞内部设置支架以支撑悬挂系统。此时,需将弹簧封闭起来,避免其承受风荷载,一定程度上增加了试验难度。如果弹簧置于风场中,则影响试验精度。受风洞尺寸限制,风洞试验模型长宽比一般不超过4,需要专门设置端板(或利用风洞壁作为端板)来尽可能保证二元流动。风洞试验一般只适用于小比例模型情况。然而模型太小,难以准确模拟外形、保证模型刚度,有时系统质量和质量惯矩难以满足要求。
另外,现有自由振动风洞试验装置难以调节风偏角。由于风洞风向是固定的,因此只能通过调整模型相对风洞风向的角度来调节风偏角。对于外支架弹簧悬挂系统,其风偏角基本无法调节。对于内支架系统,调节风偏角的操作十分繁杂,不便全面研究各种风向角条件下结构的抗风性能。此外,传统风洞试验方法较难实现大幅振动,主要原因如下:(1)用于悬挂模型的拉伸弹簧长度较短(通常在40 ~ 80 cm范围内),模型大幅扭转振动时弹簧发生明显侧向倾斜,系统刚度出现明显非线性,进而对后续试验结果造成不可接受的误差;(2)大幅扭转振动时阻塞率较高,阻塞率可能不满足试验要求;小比例模型虽然可以降低阻塞率,但其气动外形、模型刚度、模型质量及质量惯矩等难以准确模拟;(3)模型大幅振动时存在安全隐患,一旦发生破坏,可能对风洞及设备造成巨大破坏。将风洞中的自由振动测试装置移到室外自然风场,对装置的某些参数(主要是尺寸)加以调整,并增加驱动机构调节试验风偏角,可以有效解决风洞试验面临的问题。
技术问题
本发明要解决的技术问题是针对桥梁抗风设计中主梁节段模型竖向和扭转耦合大振幅自由振动试验的需要,提供一种可以有效解决目前风洞试验方法所面临的瓶颈问题,在良好的自然风场中开展不同风向条件下大振幅耦合自由振动的试验装置。该装置包括桥梁主梁刚性模型、轻质高强细绳、线性拉伸弹簧、弹簧护筒、刚性支架、转盘、刚性立柱、电机、重力块和刚性细圆杆。
技术解决方案
本发明的技术方案:
自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置,置于具有良好自然风场条件的试验场地(如广阔平坦的海岸、广场、旷野等),场地满足风速高、风场稳、紊流度低,风场持时长等条件。符合上述特征的场地在受季风、地方性的海陆风影响明显的区域并不难寻。试验装置包括刚性模型1、第一轻质高强细绳2、第一线性拉伸弹簧3、刚性支架4、第一弹簧护筒5、转盘6、刚性立柱7、电机8、第二轻质高强细绳9、第二线性拉伸弹簧10、重力块11、第二弹簧护筒12、刚性细圆杆13和第三轻质高强长细绳14。刚性模型1通过第一轻质高强细绳2与第一线性拉伸弹簧3下端连接,第一线性拉伸弹簧3上端悬挂在刚性支架4上;第一线性拉伸弹簧3置于第一弹簧护筒5内,避免第一线性拉伸弹簧3承受风荷载作用;第一弹簧护筒5固定在刚性支架4上;刚性支架4固定于转盘6上部,转盘6固定在刚性立柱7顶部,固定在刚性立柱上的电机8驱动转盘6、进而带着刚性支架4及刚性模型1转动,从而调节刚性模型1的试验风向角。刚性模型1通过第二轻质高强细绳9与第二线性拉伸弹簧10上端连接,第二线性拉伸弹簧10下端连接在地面上可移动的重力块11上,重力块11位置随模型位置调整,保证第二线性拉伸弹簧10轴线竖直;第二线性拉伸弹簧10置于第二弹簧护筒12内,避免第二线性拉伸弹簧10承受风荷载作用;第二弹簧护筒12固定在重力块11上;刚性模型1两端设置刚性细圆杆13,其轴线通过模型扭转中心线,刚性细圆杆13通过第三轻质高强长细绳14限制刚性模型1的风致侧向振动,并能保证模型竖向和扭转振动基本不受约束。刚性模型1静止时,第一轻质高强细绳2、第一线性拉伸弹簧3、第二轻质高强细绳9和第二线性拉伸弹簧10垂直共线;沿刚性模型1宽度方向,第一轻质高强细绳2、第一线性拉伸弹簧3、第二轻质高强细绳9和第二线性拉伸弹簧10吊点间距均可调节,以调节刚性模型1的扭转和竖弯频率比;通过调节刚性模型1上下游吊点相对高度可以实现试验风攻角的变化。
所述的刚性模型1尺寸不受风洞条件限制,可在大比例、大振幅、不同风偏角条件下开展试验。出于经济性和安全性考虑,所述的刚性模型1长度一般在10 ~ 12 m范围内,宽度在1.0 ~ 2.0 m范围内,长宽比在5 ~ 12范围内,悬挂系统等效质量在500 ~ 2000 kg范围内。
所述的刚性模型1尺寸不受风洞条件限制,在大比例、大振幅、不同风偏角条件下开展竖向和扭转耦合自由振动试验。
所述的第一线性拉伸弹簧3和第二线性拉伸弹簧10刚度根据刚性模型1的质量和竖弯频率确定,强度根据刚性模型1的质量、竖弯和扭转振幅确定,所述的第一轻质高强细绳2、第一线性拉伸弹簧3、第二轻质高强细绳9和第二线性拉伸弹簧10吊点横向间距根据刚性模型1的扭转频率与竖弯频率的比值及悬挂系统的回转半径确定。在大幅自由振动过程中,第一轻质高强细绳2和第二轻质高强细绳9始终处于张紧状态,第一线性拉伸弹簧3和第二线性拉伸弹簧10始终处于线性弹性状态。在大幅自由振动过程中,第一轻质高强细绳2和第二轻质高强细绳9始终处于张紧状态,第一线性拉伸弹簧3和第二线性拉伸弹簧10始终处于线性弹性状态。
所述的刚性立柱7应有足够的高度、强度和刚度。出于经济性和安全性考虑,所述的刚性立柱7一般可以采用钢管混凝土制作,高度一般为15 ~ 20 m,钢管外径一般为0.8 ~ 1.0 m,钢管壁厚一般为8.0 ~ 10.0 mm。若刚性立柱7外径太大,不仅会提高造价,且会增加钢管对流场的干扰效应;刚性立柱7外径太小则难以保证其强度和刚度,可能存在安全隐患。
有益效果
本发明的有益效果:在良好的自然风场中开展桥梁主梁大比例刚性节段模型竖向和扭转耦合大振幅自由振动试验,具有如下优越性:(1)无需大型风洞设备,装置成本低;(2)相对风洞占地面积小,本装置占地不超过100平方米;(3)无需大功率设备,节省能耗;(4)模型比例相对风洞试验模型可以提高3倍,甚至更大;(5)可以放心实现大振幅耦合自由振动,减少安全隐患;(6)弹簧长度为风洞试验弹簧长度的5倍以上,大大减轻大幅振动时由弹簧倾斜导致的几何非线性问题;(7)可以解决大幅振动风洞试验中阻塞率过高的问题;(8)便于调节风偏角。
附图说明
图1是自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置的构造图。
图中:1刚性模型;2第一轻质高强细绳;3第一线性拉伸弹簧;4刚性支架;5第一弹簧护筒;6转盘;7刚性立柱;8电机;9第二轻质高强细绳;10第二线性拉伸弹簧;11 重力块;12第二弹簧护筒;13刚性细圆杆;14第三轻质高强长细绳。
本发明的实施方式
以下结合技术方案和附图,详细叙述本发明的具体实施方式:
如图1所示,自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置,包括刚性模型1、第一轻质高强细绳2、第一线性拉伸弹簧3、刚性支架4、第一弹簧护筒5、转盘6、刚性立柱7、电机8、第二轻质高强细绳9、第二线性拉伸弹簧10、重力块11、第二弹簧护筒12、刚性细圆杆13和第三轻质高强长细绳14。刚性模型1通过第一轻质高强细绳2与第一线性拉伸弹簧3下端连接,第一线性拉伸弹簧3上端悬挂在刚性支架4上;第一线性拉伸弹簧3置于第一弹簧护筒5内,避免第一线性拉伸弹簧3承受风荷载作用;第一弹簧护筒5固定在刚性支架4上;刚性支架4固定于转盘6上部,转盘6固定在刚性立柱7顶部,固定在刚性立柱上的电机8驱动转盘6、进而带着刚性支架4及刚性模型1转动,从而调节刚性模型1的试验风向角。刚性模型1通过第二轻质高强细绳9与第二线性拉伸弹簧10上端连接,第二线性拉伸弹簧10下端连接在地面上可移动的重力块11上,重力块11位置随模型位置调整,保证第二线性拉伸弹簧10轴线竖直;第二线性拉伸弹簧10置于第二弹簧护筒12内,避免第二线性拉伸弹簧10承受风荷载作用;第二弹簧护筒12固定在重力块11上;刚性模型1两端设置刚性细圆杆13,其轴线通过模型扭转中心线,刚性细圆杆13通过第三轻质高强长细绳14限制刚性模型1的风致侧向振动,并能保证模型竖向和扭转振动基本不受约束。刚性模型1静止时,第一轻质高强细绳2、第一线性拉伸弹簧3、第二轻质高强细绳9和第二线性拉伸弹簧10垂直共线;沿刚性模型1宽度方向,第一轻质高强细绳2、第一线性拉伸弹簧3、第二轻质高强细绳9和第二线性拉伸弹簧10吊点间距均可调节,以调节刚性模型1的扭转和竖弯频率比;通过调节刚性模型1上下游吊点相对高度可以实现试验风攻角的变化。

Claims (8)

  1. 一种自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置,其特征在于,所述的自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置包括刚性模型(1)、第一轻质高强细绳(2)、第一线性拉伸弹簧(3)、刚性支架(4)、第一弹簧护筒(5)、转盘(6)、刚性立柱(7)、电机(8)、第二轻质高强细绳(9)、第二线性拉伸弹簧(10)、重力块(11)、第二弹簧护筒(12)、刚性细圆杆(13)和第三轻质高强长细绳(14);刚性模型(1)上表面通过多根第一轻质高强细绳(2)与第一线性拉伸弹簧(3)下端连接,第一线性拉伸弹簧(3)上端悬挂在刚性支架(4)上;第一线性拉伸弹簧(3)置于第一弹簧护筒(5)内,避免第一线性拉伸弹簧(3)承受风荷载作用;第一弹簧护筒(5)固定在刚性支架(4)上;刚性支架(4)固定于转盘(6)上表面,转盘(6)下表面固定在刚性立柱(7)顶部,通过固定在刚性立柱(7)上的电机(8)驱动,进而带着刚性支架(4)及刚性模型(1)转动,从而调节刚性模型(1)的试验风向角;刚性模型(1)下表面通过第二轻质高强细绳(9)与第二线性拉伸弹簧(10)上端连接,第二线性拉伸弹簧(10)下端连接在地面上可移动的重力块(11)上,重力块(11)位置随刚性模型(1)位置调整,保证第二线性拉伸弹簧(10)的轴线竖直;第二线性拉伸弹簧(10)置于第二弹簧护筒(12)内,避免第二线性拉伸弹簧(10)承受风荷载作用;第二弹簧护筒(12)固定在重力块(11)上;刚性模型(1)两端设置刚性细圆杆(13),其轴线通过刚性模型(1)扭转中心线,刚性细圆杆(13)通过第三轻质高强长细绳(14)限制刚性模型(1)的风致侧向振动,并能保证刚性模型(1)竖向和扭转振动基本不受约束;刚性模型(1)静止时,第一轻质高强细绳(2)、第一线性拉伸弹簧(3)、第二轻质高强细绳(9)和第二线性拉伸弹簧(10)竖直共线;沿刚性模型(1)宽度方向,第一轻质高强细绳(2)、第一线性拉伸弹簧(3)、第二轻质高强细绳(9)和第二线性拉伸弹簧(10)吊点间距均可调节,以调节刚性模型(1)的扭转和竖弯频率比;通过调节刚性模型(1)上下游吊点相对高度实现试验风攻角的变化。
  2. 根据权利要求1所述的自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置,其特征在于,出于经济性和安全性考虑,所述的刚性模型(1)长度在10 ~ 12 m范围内,宽度在1.0 ~ 2.0 m范围内,长宽比在5 ~ 12范围内,悬挂系统等效质量在500 ~ 2000 kg范围内。
  3. 根据权利要求1或2所述的自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置,其特征在于,所述的第一线性拉伸弹簧(3)和第二线性拉伸弹簧(10)刚度根据刚性模型(1)的质量和竖弯频率确定,强度根据刚性模型(1)的质量、竖弯和扭转振幅确定。
  4. 根据权利要求1或2所述的自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置,其特征在于,所述的第一轻质高强细绳(2)、第一线性拉伸弹簧(3)、第二轻质高强细绳(9)和第二线性拉伸弹簧(10)吊点间距根据刚性模型(1)的扭转频率与竖弯频率的比值确定,所述的第一轻质高强细绳(2)、第一线性拉伸弹簧(3)、第二轻质高强细绳(9)和第二线性拉伸弹簧(10)吊点横向间距根据刚性模型(1)的扭转频率与竖弯频率的比值及悬挂系统的回转半径确定。
  5. 根据权利要求3所述的自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置,其特征在于,所述的第一轻质高强细绳(2)、第一线性拉伸弹簧(3)、第二轻质高强细绳(9)和第二线性拉伸弹簧(10)吊点间距根据刚性模型(1)的扭转频率与竖弯频率的比值确定,所述的第一轻质高强细绳(2)、第一线性拉伸弹簧(3)、第二轻质高强细绳(9)和第二线性拉伸弹簧(10)吊点横向间距根据刚性模型(1)的扭转频率与竖弯频率的比值及悬挂系统的回转半径确定。
  6. 根据权利要求1、2或5所述的自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置,其特征在于,所述的刚性立柱(7)应有足够的高度、强度和刚度;出于经济性和安全性考虑,所述的刚性立柱(7)采用钢管混凝土制作,高度为15 ~ 20 m,钢管外径为0.8 ~ 1.0 m,钢管壁厚为8.0 ~ 10.0 mm。
  7. 根据权利要求3所述的自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置,其特征在于,所述的刚性立柱(7)应有足够的高度、强度和刚度;出于经济性和安全性考虑,所述的刚性立柱(7)采用钢管混凝土制作,高度为15 ~ 20 m,钢管外径为0.8 ~ 1.0 m,钢管壁厚为8.0 ~ 10.0 mm。
  8. 根据权利要求4所述的自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置,其特征在于,所述的刚性立柱(7)应有足够的高度、强度和刚度;出于经济性和安全性考虑,所述的刚性立柱(7)采用钢管混凝土制作,高度为15 ~ 20 m,钢管外径为0.8 ~ 1.0 m,钢管壁厚为8.0 ~ 10.0 mm。
PCT/CN2019/099186 2019-06-28 2019-08-05 自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置 WO2020258449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/055,089 US11293832B2 (en) 2019-06-28 2019-08-05 Large-amplitude vertical-torsional coupled free vibration testing device for bridges in natural winds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910576355.8A CN110207925B (zh) 2019-06-28 2019-06-28 自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置
CN201910576355.8 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020258449A1 true WO2020258449A1 (zh) 2020-12-30

Family

ID=67795284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099186 WO2020258449A1 (zh) 2019-06-28 2019-08-05 自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置

Country Status (3)

Country Link
US (1) US11293832B2 (zh)
CN (1) CN110207925B (zh)
WO (1) WO2020258449A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358322A (zh) * 2021-06-03 2021-09-07 长沙理工大学 一种风洞模拟装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238761B (zh) * 2020-02-06 2021-01-19 大连理工大学 扭转和竖弯振动频率比可调的耦合自由振动风洞试验装置
US11371908B2 (en) * 2020-02-06 2022-06-28 Dalian University Of Technology Wind tunnel testing device for torsional-vertical coupled free vibration with adjustable frequency ratio
CN111562080B (zh) * 2020-05-20 2022-06-10 长沙理工大学 一种竖向扭转耦合大振幅自由振动的风洞实验系统
CN111855130A (zh) * 2020-08-25 2020-10-30 大连理工大学 大跨连续钢箱梁桥超大比例气弹模型自然风场涡振试验装置
CN112051028A (zh) * 2020-09-16 2020-12-08 大连理工大学 一种户外超大比例全桥气弹模型抗风保护装置
CN112504607B (zh) * 2020-12-09 2021-06-29 周蕾 一种风偏角连续可调的扭转风剖面风洞试验被动模拟方法
CN114112292B (zh) * 2021-11-22 2023-08-08 中国建筑第五工程局有限公司 一种大跨度桥梁高阶涡振风洞试验模型系统及其试验方法
CN114111541B (zh) * 2021-11-24 2024-01-19 长安大学 基于应力刚化效应的桥梁动挠度测试系统及方法
CN114459709B (zh) * 2022-01-18 2022-09-30 西南交通大学 可自由调节高度的节段模型静态-动态试验装置
CN117168794B (zh) * 2023-10-23 2024-05-17 无锡知协科技有限公司 双万向节式弹簧寿命测试机
CN117168795B (zh) * 2023-10-23 2024-03-22 无锡知协科技有限公司 弹簧寿命测试装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240835A (ja) * 1988-03-23 1989-09-26 Sumitomo Heavy Ind Ltd 風洞模型実験方法および風洞実験用模型
JP2001041846A (ja) * 1999-08-02 2001-02-16 Nkk Corp 風洞試験の模型支持方法及びその装置
CN203929356U (zh) * 2013-10-23 2014-11-05 西南交通大学 大比例尺节段模型试验装置
CN107345846A (zh) * 2017-07-28 2017-11-14 大连理工大学 一种大振幅自由竖向和扭转耦合振动风洞试验装置
CN206772547U (zh) * 2017-03-24 2017-12-19 西南交通大学 可大振幅扭转的桥梁节段颤振响应风洞试验设备
CN107588923A (zh) * 2017-07-28 2018-01-16 大连理工大学 一种大振幅自由扭转振动风洞试验装置
CN108225715A (zh) * 2018-03-06 2018-06-29 大连理工大学 一种三自由度大振幅自由振动风洞试验装置
CN108414186A (zh) * 2018-02-08 2018-08-17 大连理工大学 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146980B (zh) * 2011-01-07 2012-12-05 湖南大学 风洞试验刚性节段模型阻尼连续调节装置
KR101621483B1 (ko) * 2014-09-18 2016-05-16 서울대학교산학협력단 모형 시험체의 정상진동상태를 유도할 수 있는 정상가진 장치 및 이를 구비한 풍동시험장치
US10837864B2 (en) * 2018-03-05 2020-11-17 Dalian University Of Technology Large-amplitude vertical-torsional coupled free vibration setup for wind tunnel test
CN209858168U (zh) * 2019-06-28 2019-12-27 大连理工大学 自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240835A (ja) * 1988-03-23 1989-09-26 Sumitomo Heavy Ind Ltd 風洞模型実験方法および風洞実験用模型
JP2001041846A (ja) * 1999-08-02 2001-02-16 Nkk Corp 風洞試験の模型支持方法及びその装置
CN203929356U (zh) * 2013-10-23 2014-11-05 西南交通大学 大比例尺节段模型试验装置
CN206772547U (zh) * 2017-03-24 2017-12-19 西南交通大学 可大振幅扭转的桥梁节段颤振响应风洞试验设备
CN107345846A (zh) * 2017-07-28 2017-11-14 大连理工大学 一种大振幅自由竖向和扭转耦合振动风洞试验装置
CN107588923A (zh) * 2017-07-28 2018-01-16 大连理工大学 一种大振幅自由扭转振动风洞试验装置
CN108414186A (zh) * 2018-02-08 2018-08-17 大连理工大学 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置
CN108225715A (zh) * 2018-03-06 2018-06-29 大连理工大学 一种三自由度大振幅自由振动风洞试验装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358322A (zh) * 2021-06-03 2021-09-07 长沙理工大学 一种风洞模拟装置
CN113358322B (zh) * 2021-06-03 2022-05-06 长沙理工大学 一种风洞模拟装置

Also Published As

Publication number Publication date
US11293832B2 (en) 2022-04-05
US20210172830A1 (en) 2021-06-10
CN110207925A (zh) 2019-09-06
CN110207925B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
WO2020258449A1 (zh) 自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置
CN108225715B (zh) 一种三自由度大振幅自由振动风洞试验装置
US10900865B2 (en) Experimental setup for three-degree-of-freedom large-amplitude free vibration in wind tunnel test
CN108414186B (zh) 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置
CN209858168U (zh) 自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置
CN107765722B (zh) 大跨度桥梁钢箱梁颤振主动吹气流动控制装置
WO2021155617A1 (zh) 扭转和竖弯振动频率比可调的耦合自由振动风洞试验装置
CN108643019B (zh) 一种桥梁颤振与涡振一体化控制装置及其控制方法
CN107741749B (zh) 主动抗风的钢箱梁可动风嘴及其控制系统
CN104833474A (zh) 内支架式弹簧悬挂导线节段模型测振试验装置
US20200232876A1 (en) Large-amplitude vertical-torsional coupled free vibration device for wind tunnel test
CN103590323B (zh) 倒角方形桥塔风致振动抑制构造
CN202041363U (zh) 斜拉桥拉索水路的模拟测试设备
CN108061636A (zh) 利用汽车行驶风测试结构驰振的装置与方法
CN104764579A (zh) 多分裂覆冰导线三自由度舞动风洞试验装置
CN203376338U (zh) 一种测风塔用超声波风速仪支撑杆
US11371908B2 (en) Wind tunnel testing device for torsional-vertical coupled free vibration with adjustable frequency ratio
CN206756413U (zh) 一种适用于橡胶缓冲块测试的摆锤式撞击装置
CN113063561A (zh) 一种保证节段模型二元流动特性的风洞内支架测试装置
Larsen et al. Stonecutters Bridge, Hong Kong: wind tunnel tests and studies
CN207178898U (zh) 一种新型直弯头支撑装置
CN207515996U (zh) 一种大风影响下缆机吊罐摆动的风洞试验研究装置
Bosch et al. Wind tunnel experimental investigation on tapered cylinders for highway support structures
CN110006622A (zh) 波浪与移动式龙卷风耦合的物理模拟方法及装置
CN206446781U (zh) 系留气球用锚泊系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935285

Country of ref document: EP

Kind code of ref document: A1