WO2019153229A1 - 一种具有光热协同效应的复合光催化材料的合成方法 - Google Patents

一种具有光热协同效应的复合光催化材料的合成方法 Download PDF

Info

Publication number
WO2019153229A1
WO2019153229A1 PCT/CN2018/075946 CN2018075946W WO2019153229A1 WO 2019153229 A1 WO2019153229 A1 WO 2019153229A1 CN 2018075946 W CN2018075946 W CN 2018075946W WO 2019153229 A1 WO2019153229 A1 WO 2019153229A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
preparation
solution
molar ratio
controlled
Prior art date
Application number
PCT/CN2018/075946
Other languages
English (en)
French (fr)
Inventor
冯泽云
Original Assignee
纳琦环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳琦环保科技有限公司 filed Critical 纳琦环保科技有限公司
Priority to CN201880001114.4A priority Critical patent/CN110366444B/zh
Priority to PCT/CN2018/075946 priority patent/WO2019153229A1/zh
Publication of WO2019153229A1 publication Critical patent/WO2019153229A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/38Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by oxidation; by combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold

Definitions

  • the invention belongs to the field of inorganic metal oxides, and particularly relates to a preparation method of a composite photocatalytic material having a photothermal synergistic catalytic effect.
  • VOCs Volatile organic compounds
  • Photocatalytic technology can be used to purify gas phase pollutants, and it has the characteristics of no secondary pollution and sustainable utilization, and has received extensive attention.
  • As a mild advanced chemical oxidation technology photocatalytic technology can continuously convert the absorbed light energy into chemical energy, thereby effectively mineralizing volatile organic compounds in the air. It is considered to solve related industries, residential distribution, low concentration. An effective solution to the high toxicity of organic volatile gases.
  • Photocatalytic technology is mainly used in indoor applications.
  • the main problem is that the available light source is limited.
  • Most photocatalysts can only absorb ultraviolet light and a small amount of visible light, and the glass will filter out most of the ultraviolet light source under indoor conditions.
  • About 48% of the infrared light enriched in the solar energy can not be used to excite the photocatalytic material, only converted to heat and raise the ambient temperature.
  • a nanocomposite photocatalyst composed of noble metal (Ag, Au, etc.) nanoparticles and semiconductor nanostructures having surface plasmon resonance (SPR) effect has excellent visible light photocatalytic activity, and a distinct feature of utilizing this effect is that No semiconductor material is needed to absorb photons, instead the photons are absorbed by the noble metal, and thermal electrons are transferred to the semiconductor conduction band to generate active oxygen to purify the VOC species. Therefore, if the surface plasmon resonance effect absorption peak is adjusted to the near-infrared region, the indoor infrared light can be utilized to generate a photocatalytic effect.
  • noble metal Au, etc.
  • SPR surface plasmon resonance
  • the photocatalytic-thermal catalytic synergy can be produced by the influence of the electronic structure of the catalyst and the adsorption state of the reaction species in the catalytic process, thereby improving the technical deficiencies of the conventional single catalysis and opening up a practical feasibility.
  • New catalytic pathway due to the thermal effect generated by the surface plasmon resonance effect, the photocatalytic-thermal catalytic synergy can be produced by the influence of the electronic structure of the catalyst and the adsorption state of the reaction species in the catalytic process, thereby improving the technical deficiencies of the conventional single catalysis and opening up a practical feasibility. New catalytic pathway.
  • an object of the present invention is to provide a composite photocatalytic material preparation method which is simple and easy to control, has good effects, and is suitable for large-scale industrial production of photothermal synergistic catalytic effects. .
  • the preparation method comprises the following steps:
  • the inorganic base is added to the titanium ion aqueous solution having a Ti 4+ ion concentration of 0.01 to 0.50 mol/L, so that the pH of the titanium liquid is 7 to 11, and the original titanic acid is precipitated, and the obtained precipitate is subjected to purification to remove impurities;
  • the orthotitanic acid obtained by dispersing a percentage by concentration of 10% to 60% of hydrogen peroxide solution is precipitated into a solution state, wherein the molecular molar ratio of H 2 O 2 to Ti is controlled to be 1:7 to 1:15;
  • Ammonia hydrate is added to the titanium oxide solution to form a titanium-peroxide-ammonia complex complex solution, wherein the molecular molar ratio of NH 4 + to Ti is controlled to be 1:7 to 1:15, and then a silver nitrate solution is added thereto.
  • Forming a titanium-peroxide-silver-ammonia composite precursor solution wherein the molecular molar ratio of Ag to Ti
  • the molar ratio of ethyl acetate to Ti is 1:20 to 1:15, and the reaction is stirred at 25-35 ° C for 12-24 hours, then the mixture is deliberated, washed, and dried for use;
  • aqueous solution of hydroxylamine hydrochloride with a mass percentage of 1% is disposed, and the ordered mesoporous metal material powder (inserted into the "precursor") material is added to the solution under heating and refluxing, and heated under reflux for 4 hours to obtain ordered mesoporous metal/ The titanium dioxide composite material, wherein the weight ratio of the aqueous hydroxylamine hydrochloride solution to the ordered mesoporous metal material powder material is from 20:1 to 5:1.
  • the Ti 4+ ion in step 1) is derived from titanium tetrachloride, titanium oxysulfate or tetrabutyl titanate.
  • the inorganic base in step 1) is selected from the group consisting of sodium hydroxide, potassium hydroxide and aqueous ammonia, preferably aqueous ammonia.
  • the molecular molar ratio of H 2 O 2 to Ti in step 1) is controlled to be 1:8 to 1:10.
  • the molecular molar ratio of H 2 O 2 to Ti in the step 1) is controlled to be 1:8 to 1:9.
  • the molecular molar ratio of NH 4 + to Ti in step 1) is controlled to be 1:7 to 1:10.
  • the molecular molar ratio of NH 4 + to Ti in the step 1) is controlled to be 1:7 to 1:8.
  • the molecular molar ratio of Ag to Ti in the step 1) is controlled to be 1:10 to 1:25.
  • the molecular molar ratio of Ag to Ti in the step 1) is controlled to be 1:19 to 1:25.
  • the weight ratio of the aqueous hydroxylamine hydrochloride solution to the ordered mesoporous metal material powder material in the step 3) is from 15:1 to 8:1.
  • the weight ratio of the aqueous hydroxylamine hydrochloride solution to the ordered mesoporous metal material powder material in the step 3) is from 12:1 to 10:1.
  • another object of the present invention is to provide a composite photocatalytic material having a photothermal synergistic catalytic effect, which is prepared by the above method.
  • the composite photocatalytic material BJH has a fitting pore size of from 1.5 nm to 6.5 nm, preferably from 2.0 nm to 5.0 nm, more preferably from 2.5 to 3.50 nm, and most preferably from 2.7 nm to 3.1 nm.
  • the composite photocatalytic material has a diameter of from 1 ⁇ m to 10 ⁇ m, preferably from 2 ⁇ m to 8 ⁇ m, more preferably from 2 ⁇ m to 6 ⁇ m.
  • said photocatalytic material composite by N 2 adsorption - desorption analysis shows that the specific surface area of 350 ⁇ 780m 2 / g, preferably from 450 ⁇ 720m 2 / g, more preferably 470 ⁇ 680m 2 / g.
  • the molar ratio of the final product is controlled at the molecular level by synthesizing the precursor of the titanium peroxide silver ammonia complex; and at the same time, since the Ti and Ag form a complex in one ligand, the nanocrystal TiO 2 and Ag are formed in situ after the subsequent reduction.
  • the heterojunction structure facilitates carrier migration and enhances catalytic activity.
  • the in-situ synthesis of nanostructures was achieved by the catalysis of surfactants in the precursor of titanium peroxide silver ammonia composite precursor.
  • the problem of blocking the mesopores and easy to fall off caused by the catalyst after the synthesis of the silicon oxide is avoided, and the fixation of the nano metal by the silicon skeleton is prevented, thereby preventing the agglomeration of the nano metal during the catalytic process.
  • the photocatalytic-thermal catalytic synergy can be produced only under the condition that the precious metals are regularly arranged to form nanostructures, because the silicon oxide material forms an ordered mesoporous structure and at the same time distributes therein. Nanosilver also forms an ordered structure. Compared with the usual Ag-TiO 2 composite materials, there is a significant plasma near-field enhancement effect.
  • the method of the invention has simple process, strong operability, low cost, is suitable for batch preparation, has the possibility of industrial production, and has wide application prospects.
  • Example 1 is a transmission electron micrograph of the photothermal synergistic composite prepared in Example 1.
  • Example 2 is a transmission electron micrograph of the photothermal synergistic composite prepared in Example 1.
  • Example 3 is a transmission electron micrograph of a transmission electron micrograph of the photothermal synergistic composite prepared in Example 1.
  • Example 4 is an XRD chart of the photothermal synergistic composite prepared in Example 1.
  • silver ions are first compounded on the basis of forming a titanium-peroxide-ammonia complex, and then a surfactant Triton X-100 and a cationic surfactant cetyltrimethyl
  • a surfactant Triton X-100 and a cationic surfactant cetyltrimethyl The ordered mesoporous metal/titanium dioxide composite was successfully synthesized by using ammonium bromide as a template.
  • the composite photocatalytic material BJH obtained according to the preparation method of the present invention has a fitting pore size of from 1.5 nm to 6.5 nm, preferably from 2.0 nm to 5.0 nm, more preferably from 2.5 to 3.50 nm, most preferably from 2.7 nm to 3.1 nm; is 1 ⁇ m ⁇ 10 ⁇ m, preferably from 2 ⁇ m ⁇ 8 ⁇ m, more preferably 2 ⁇ m ⁇ 6 ⁇ m; by N 2 adsorption - desorption analysis calculation shows that specific surface area of 350 ⁇ 780m 2 / g, preferably from 450 ⁇ 720m 2 / g, more preferably 470 ⁇ 680m 2 / g. Has a good photothermal synergy effect.
  • the molecular molar ratio of H 2 O 2 to Ti in the step (1) is controlled to be 1:7 to 1:15, preferably 1:8 to 1:10, more preferably 1 : 8 to 1:9.
  • the molecular molar ratio of Ti to H 2 O 2 is less than 1:8, the titanium-peroxide-silver-ammonia complex cannot be effectively formed; when the molecular molar ratio of Ti to H 2 O 2 is more than 1:10, When H 2 O 2 is excessive, the presence of Ag ions may cause decomposition of H 2 O 2 , and the reaction is not easily controlled.
  • an ammonia hydrate is added to the obtained titanium peroxide solution to form a titanium-peroxide-ammonia complex complex solution in which NH 4 + and Ti are present.
  • the molecular molar ratio is controlled from 1:7 to 1:15, preferably from 1:7 to 1:10, more preferably from 1:7 to 1:8, and a silver nitrate solution is added thereto to form titanium-peroxide-silver- Ammonia composite precursor solution.
  • the molecular molar ratio of Ti to NH 4 + is greater than 1:7, that is, Ti is excessive, the formed titanium-peroxide-silver-ammonia composite precursor is unstable and easily decomposed; when the molar ratio of Ti to NH 4 + is When the ratio is less than 1:10, that is, the excess of NH 4 + may cause the Ag ions to flocculate and cause phase separation, and Ti and Ag do not uniformly recombine well.
  • the molecular molar ratio of Ag to Ti in the step (1) is controlled to be 1:5 to 1:25, preferably 1:10 to 1:25, more preferably 1:19 to 1:25.
  • the molecular molar ratio of Ag to Ti is greater than 1:10, that is, Ag is excessive, the complexing of Ag and Ti may be incomplete, and phase separation occurs; when the molecular molar ratio of Ag to Ti is less than 1:25, that is, Ag In excess, the photocatalytic effect may be insufficient.
  • the surfactant Triton X-100 and the cationic surfactant cetyltrimethylammonium bromide are used as a template, and tetraethyl orthosilicate is added. It forms a skeleton of mesoporous material with Ti, wherein the molar ratio of tetraethyl orthosilicate to Ti is 1:20 to 1:15. When the molar ratio of tetraethyl orthosilicate to Ti is out of this range, there is a problem that the mesoporous structure is not easily formed or the photocatalytic effect is not conspicuous.
  • the ordered mesoporous metal material powder obtained in the step (2) is reduced with an aqueous solution of hydroxylamine hydrochloride in an amount of 1% by mass.
  • the hydroxylamine hydrochloride is an acidic reducing agent.
  • titanium peroxide is reduced to titanium dioxide, and silver ions are reduced to elemental silver.
  • the hydroxylamine hydrochloride is moderately and more controllable than the reducing agent such as hydrazine or sodium borohydride, the reaction conditions are milder and controllable, and the hydroxylamine hydrochloride itself is acidic, which can effectively promote the preparation of the present invention.
  • the reduction reaction proceeds in the process.
  • the weight ratio of the aqueous hydroxylamine hydrochloride solution to the ordered mesoporous metal material powder material is from 20:1 to 5:1, preferably from 15:1 to 8:1, more preferably from 12:1 to 10:1.
  • weight ratio of the aqueous hydroxylamine hydrochloride solution to the ordered mesoporous metal material powder material is greater than 15:1, that is, the aqueous hydroxylamine hydrochloride solution is excessive, the solution is too acidic, resulting in premature decomposition of H 2 O 2 in the composite, Ti and Ag.
  • Phase separation occurs; when the weight ratio of the aqueous hydroxylamine hydrochloride solution to the ordered mesoporous metal material powder material is less than 8:1, that is, the aqueous hydroxylamine hydrochloride solution is insufficient, the reduction is insufficient, flocculation occurs, and the photocatalytic effect of the product is not good.
  • the product was uniformly spherical, and the BJH fit pore size was 2.7 nm and the diameter was 2.7 to 3.1 ⁇ m.
  • the specific surface area was 694 m 2 /g by N 2 adsorption-desorption analysis.
  • 1, 2 and 3 are transmission electron micrographs of the prepared photothermal synergistic composite material. As can be seen from the figure, the composite material has a uniform spherical shape with a diameter of 2 ⁇ m to 8 ⁇ m and a distinct mesoporous structure.
  • Figure 4 is an XRD pattern of the prepared photothermal synergistic composite material. It can be seen from the figure that elemental silver and TiO 2 are present in the composite material.
  • a photothermal synergistic composite material was prepared in the same manner as in Example 1 except that the molecular molar ratio of NH 4 + to Ti in the step (1) was controlled to 1:8.
  • the product has a uniform spherical shape, and the BJH has a pore size of 3.1 nm and a diameter of 2.7 to 8 ⁇ m.
  • the specific surface area is 720 m 2 /g by N 2 adsorption-desorption analysis.
  • a photothermal synergistic composite material was prepared in the same manner as in Example 1 except that the molecular molar ratio of Ag to Ti in the step (1) was controlled to 1:19.
  • the product has a uniform spherical shape, and the BJH has a pore size of 5.0 nm and a diameter of 1 ⁇ m to 6.5 ⁇ m.
  • the specific surface area is 450 m 2 /g by N 2 adsorption-desorption analysis.
  • a photothermal synergistic composite material was prepared in the same manner as in Example 1 except that the molecular molar ratio of Ag to Ti in the step (1) was controlled to 1:25.
  • the product has a uniform spherical shape, and the BJH has a pore size of 2.0 nm and a diameter of 1 ⁇ m to 3 ⁇ m.
  • the specific surface area is 780 m 2 /g by N 2 adsorption-desorption analysis.
  • a photothermal synergistic composite material was prepared in the same manner as in Example 1 except that the weight ratio of the aqueous hydroxylamine hydrochloride solution to the ordered mesoporous metal material powder material in the step (3) was controlled to be 10:1.
  • the product has a uniform spherical shape, and the BJH has a fitting pore size of 6.5 nm and a diameter of 1 ⁇ m to 3 ⁇ m.
  • the specific surface area is 780 m 2 /g by N 2 adsorption-desorption analysis.
  • a photothermal synergistic composite material was prepared in the same manner as in Example 1 except that the molecular molar ratio of H 2 O 2 to Ti in the step (1) was controlled to 1:10.
  • the product has a uniform spherical shape, and the BJH has a pore size of 3.5 nm and a diameter of 4 ⁇ m to 6 ⁇ m.
  • the specific surface area is 350 m 2 /g by N 2 adsorption-desorption analysis.
  • a photothermal synergistic composite material was prepared in the same manner as in Example 1 except that no ethyl orthosilicate was added in the step (2).
  • the product was spherical, and the BJH fit pore size was 1.1 nm and the diameter was 2 ⁇ m to 12 ⁇ m.
  • the specific surface area was 270 m 2 /g by N 2 adsorption-desorption analysis.
  • a photothermal synergistic composite material was prepared in the same manner as in Example 1 except that the molecular molar ratio of NH 4 + to Ti in the step (1) was controlled to be 1:15.
  • the product is spherical, but the spherical morphology is not regular.
  • the BJH fits the pore size of 14 nm and the diameter is 20 ⁇ m to 60 ⁇ m.
  • the specific surface area is 247 m 2 /g by N 2 adsorption-desorption analysis.
  • a photothermal synergistic composite was prepared in the same manner as in Example 1 except that the molecular molar ratio of Ag to Ti in the step (1) was controlled to 1:5, and as a result, the particles were not completely spherical, and the Ag element was separated from the TiO 2 .
  • a photothermal synergistic composite material was prepared in the same manner as in Example 1 except that the molecular molar ratio of Ag to Ti in the step (1) was controlled to 1:30.
  • the product is spherical, but the spherical shape is not regular.
  • the BJH fitting pore size is close to 0 nm and the diameter is 2 ⁇ m to 47 ⁇ m.
  • the specific surface area is 349 m 2 /g by N 2 adsorption-desorption analysis.
  • a photothermal synergistic composite material was prepared in the same manner as in Example 1 except that the weight ratio of the aqueous hydroxylamine hydrochloride solution to the ordered mesoporous metal material powder material in the step (3) was controlled to 30:1.
  • the product is spherical, but the spherical morphology is not regular.
  • the BJH fits the pore size of 7 nm and the diameter is 4 ⁇ m to 17 ⁇ m.
  • the specific surface area is 478 m 2 /g by N 2 adsorption-desorption analysis.
  • a photothermal synergistic composite was prepared in the same manner as in Example 1 except that hydroxyamine hydrochloride was replaced with hydrazine. Since hydrazine was an alkaline reducing agent, the particles were not completely spherical, and the Ag element was separated from TiO 2 .
  • a photothermal synergistic composite material was prepared in the same manner as in Example 1 except that NaHH 4 was used to replace hydroxylamine hydrochloride. Since the reductive property of NaBH 4 was too strong, the reaction was too vigorous and difficult to control, and an effective product could not be obtained.
  • a photothermal synergistic composite was prepared in the same manner as in Example 1 except that only the surfactant Triton X-100 was used.
  • the mesoporous structure of the product is not obvious, and the particle size is not uniform enough.
  • a photothermal synergistic composite was prepared in the same manner as in Example 1 except that only the surfactant cetyltrimethylammonium bromide was used.
  • the results show that the obtained microspheres have a dense structure, no mesoporous structure, and have a diameter of 1 ⁇ m to 23 ⁇ m.
  • the specific surface area is only 284 m 2 /g by N 2 adsorption-desorption analysis.
  • the composite materials prepared in Examples 1 to 6 and Comparative Examples 1, 2, 4, 5 and 8 were saturated with 0.02 mmol/l methylene blue solution for 48 h, and then centrifuged to separate 100 mg of the sample and dispersed in 20 mL of 0.01 mmol/L methylene blue.
  • the light source was irradiated with a light source having a wavelength of 365 nm and a light intensity of 20 mW/cm 2 , and the photodegradation experiments were carried out at a reaction temperature of 8 ° C, 25 ° C and 45 ° C, respectively, and the degradation rate was calculated by measuring the methylene blue concentration with an ultraviolet spectrophotometer.
  • Table 1 Table 2 and Table 3 below.
  • the composite materials prepared in Examples 1 to 6 and Comparative Examples 1, 2, 4, 5 and 8 were saturated with 0.02 mmol/l methylene blue solution for 48 h, and then centrifuged to separate 100 mg of the sample and dispersed in 20 mL of 0.01 mmol/L methylene blue.
  • the reaction temperature was set to 8 ° C, and the light source was irradiated with a light source having a wavelength of 800 nm and a light intensity of 20 mW/cm 2 , and the degradation rate was calculated by measuring the methylene blue concentration with an ultraviolet spectrophotometer.
  • Table 4 The results are shown in Table 4 below.
  • Example 2 80% 88% 97% 98% Example 3 81% 90% 94% 96% Example 4 77% 87% 95% 95% Example 5 89% 93% 97% 97% Example 6 89% 90% 97% 99% Comparative Example 1 55% 68% 77% 80% Comparative Example 2 49% 55% 70% 76% Comparative Example 4 28% 43% 56% 62% Comparative Example 5 52% 65% 71% 82% Comparative Example 8 65% 78% 86% 95%
  • the composite material prepared by the preparation method of the present invention has a good photocatalytic effect, and the catalytic purification performance is remarkably improved as the temperature is increased, and the composite material light obtained in the comparative example is improved.
  • the catalytic effect is not ideal, and the effect of temperature increase is not obvious.
  • the composite material prepared by the preparation method of the present invention has a good photothermal synergistic catalytic effect, and in the excitation condition of 800 nm, Comparative Example 1, 2 in which the noble metal-TiO 2 composite system is not formed, 4,5 failed to form an effective excitation, and the degradation efficiency was extremely low.
  • Examples 1 to 6 have a photothermal synergistic effect, relying on the thermal electrons generated by the near-infrared excitation of the noble metal and the near-field plasma enhancement effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Catalysts (AREA)

Abstract

一种具有光热协同催化效应的复合光催化材料的制备方法,包括以下步骤:(1)钛过氧化银氨复合物前驱体的合成,(2)有序介孔微球复合物的制备,(3)有序介孔金属/二氧化钛复合材料的制备。根据该制备方法通过合成钛过氧化银氨复合物前驱体,在分子级别控制最终产物的摩尔比,有利于载流子迁移,提高催化活性。在表面活性剂的模板化作用下,实现纳米结构的原位合成。该制备方法流程简单,可操作性强,同时相对成本低廉,适用于批量制备,具备工业化生产的可能性,具有广泛的应用前景。

Description

一种具有光热协同效应的复合光催化材料的合成方法 技术领域
本发明属于无机金属氧化物领域,特别涉及具备光热协同催化效应的复合光催化材料的制备方法。
背景技术
室内装修材料释放的甲醛、苯系物等挥发性有机物(VOCs),汽车排放的碳氢化合物、氮氧化物等会引起严重的空气污染。光催化技术可用于净化气相污染物,且具有无二次污染、可持续利用等特点,受到广泛关注。光催化技术作为一种温和的高级化学氧化技术,能够持续将其所吸收的光能转化为化学能,从而有效矿化空气中挥发性有机物,被认为是解决相关行业、民居分布式、低浓度、高毒害有机挥发气体危害的有效解决方案。
光催化技术在室内应用,其主要面临的问题是可利用的光源有限,大部分光催化剂仅能吸收紫外及少部分可见光,且室内条件下玻璃会过滤掉大部分紫外波段光源。而太阳光能量中在室内富集的约48%的红外光不能用于激发光催化材料,仅转换为热量、提升环境温度。具有表面等离子体共振(surface plasmon resonance,SPR)效应的贵金属(Ag、Au等)纳米粒子和半导体纳米结构组成的纳米复合光催化剂具有优异的可见光光催化活性,利用该效应的一个明显特点是,无需半导体材料来吸收光子,取而代之的是由贵金属吸收光子,产生热电子转移到半导体导带上产生活性氧净化VOC类物质。因此,如果将表面等离子体共振效应吸收峰调节到近红外区域,将可以利用室内红外光产生光催化效应。此外,由于表面等离子体共振效应产生的热效应,可以通过对催化剂电子结构和催化过程中反应物种吸附态的影响,产生光催 化—热催化协同作用,改善常规单一催化的技术性不足,开辟一条切实可行的新催化途径。
发明内容
针对现有技术的问题,根据本发明的一个方面,本发明的一个目的在于提供一种简单易控,效果良好,适于大规模工业生产的光热协同催化效应的复合光催化材料的制备方法。
为了实现本发明的上述目的,所述制备方法包括以下步骤:
(1)钛过氧化银氨复合物前驱体合成
将无机碱加入Ti 4+离子浓度为0.01~0.50mol/L的钛离子水溶液中,使钛液的pH值为7~11,得到原钛酸沉淀,得到的沉淀经纯化过程除去杂质;用质量百分浓度为10%至60%的过氧化氢溶液分散所得到原钛酸沉淀成溶液态,其中H 2O 2与Ti的分子摩尔比控制在1:7至1:15;在所得到的过氧化钛溶液中添加氨水合物,形成钛-过氧化-氨复合络合物溶液,其中NH 4 +与Ti的分子摩尔比控制在1:7至1:15,再向其中加入硝酸银溶液,形成钛-过氧化-银-氨复合前驱体溶液,其中Ag与Ti的分子摩尔比控制在1:5至1:25;
(2)有序介孔微球复合物制备
将表面活性剂曲拉通X-100,在50度溶解,然后再加入阳离子型表面活性剂十六烷基三甲基溴化铵,然后按照十六烷基三甲基溴化铵:曲拉通X-100:钛过氧化银氨复合物前驱体=4:1:4的摩尔比例将钛过氧化银氨复合物前驱体加入到上述表活剂溶液体系,再加入适量丁醇混合搅拌均匀,其中十六烷基三甲基溴化铵的最终重量百分比浓度为0.01%~0.05%、正丁醇的最终重量百分比浓度为10~20%,然后加入正硅酸乙酯,所述正硅酸乙酯 与Ti的摩尔比为1:20至1:15,并在25-35℃下搅拌反应12-24小时,然后将混合物抽虑、洗涤、干燥以备用;
(3)有序介孔金属/二氧化钛复合材料的制备
配置质量百分含量为1%的盐酸羟胺水溶液,在加热回流状态下将上述有序介孔金属材料粉体(插入“前驱体”)材料加入溶液中,加热回流4h得到有序介孔金属/二氧化钛复合材料,其中盐酸羟胺水溶液与有序介孔金属材料粉体材料的重量比为20:1至5:1。
优选地,步骤1)中所述Ti 4+离子来自四氯化钛、硫酸氧钛或钛酸四丁酯。
优选地,步骤1)中所述无机碱选自氢氧化钠、氢氧化钾和氨水中的一种,优选为氨水。
优选地,步骤1)中所述H 2O 2与Ti的分子摩尔比控制为1:8至1:10。
进一步优选地,步骤1)中所述H 2O 2与Ti的分子摩尔比控制为1:8至1:9。
优选地,步骤1)中所述NH 4 +与Ti的分子摩尔比控制为1:7至1:10。
进一步优选地,步骤1)中所述NH 4 +与Ti的分子摩尔比控制为1:7至1:8。
优选地,步骤1)中所述Ag与Ti的分子摩尔比控制为1:10至1:25。
进一步优选地,步骤1)中所述Ag与Ti的分子摩尔比控制为1:19至1:25。
优选地,步骤3)中所述盐酸羟胺水溶液与有序介孔金属材料粉体材料的重量比为15:1至8:1。
进一步优选地,步骤3)中所述盐酸羟胺水溶液与有序介孔金属材料粉体材料的重量比为12:1至10:1。
根据本发明的一个方面,本发明的另一个目的在于提供一种光热协同催化效应的复合光催化材料,所述复合光催化材料由上述方法制备得到。
优选地,所述复合光催化材料BJH拟合孔径尺寸为1.5nm至6.5nm,优选为2.0nm至5.0nm,更优选为2.5至3.50nm,最优选为2.7nm至3.1nm。
优选地,所述复合光催化材料的直径为1μm~10μm,优选为2μm~8μm,更优选为2μm~6μm。
优选地,所述复合光催化材料的经N 2吸附-脱附分析后可知比表面积为350~780m 2/g,优选为450~720m 2/g,更优选为470~680m 2/g。
有益效果
本发明与文献报道的制备方法相比较,具有以下有益效果:
1.通过合成钛过氧化银氨复合物前驱体,在分子级别控制最终产物的摩尔比;同时由于Ti与Ag在一个配体内形成复合物,在后续还原之后纳米晶体TiO 2及Ag原位形成异质结结构,有利于载流子迁移,提高催化活性。
2.利用钛过氧化银氨复合物前驱体中铵根对四已氧基硅烷的催化作用,在表面活性剂的模板化作用下,实现纳米结构的原位合成。既避免了先合成氧化硅后负载造成的催化剂堵塞介孔及易脱落问题,同时通过硅骨架对纳米金属的固定作用,防止在催化过程中纳米金属的团聚作用。
3.通过还原剂在液相直接还原纳米银与纳米氧化钛,无需采用高温烧结,避免高温造成结构坍塌与金属的高温氧化;
4.由于贵金属plasma效应近场增强机制,只有在贵金属规则排列形成纳米结构的条件下,才能产生光催化—热催化协同作用,由于氧化硅材料形成了有序介孔结构,同时使得分布其中的纳米银也形成了有序结构。相比较与通常的Ag-TiO 2复合物材料,有显著的等离子体近场增强效应。
5本发明的方法流程简单,可操作性强,同时相对成本低廉,适用于批 量制备,具备工业化生产的可能性,具有广泛的应用前景。
附图说明
图1为实施例1所制备的光热协同复合材料的透射电镜图。
图2为实施例1所制备的光热协同复合材料的透射电镜图。
图3为实施例1所制备的光热协同复合材料的透射电镜图的透射电镜图。
图4为实施例1所制备的光热协同复合材料的XRD图。
具体实施方式
以下,将详细地描述本发明。在进行描述之前,应当理解的是,在本说明书和所附的权利要求书中使用的术语不应解释为限制于一般含义和字典含义,而应当在允许发明人适当定义术语以进行最佳解释的原则的基础上,根据与本发明的技术方面相应的含义和概念进行解释。因此,这里提出的描述仅仅是出于举例说明目的的优选实例,并非意图限制本发明的范围,从而应当理解的是,在不偏离本发明的精神和范围的情况下,可以由其获得其他等价方式或改进方式。
根据本发明的制备方法中首先在形成钛-过氧化-氨复合络合物基础上复合银离子,然后以表面活性剂曲拉通X-100和阳离子型表面活性剂十六烷基三甲基溴化铵共同作为模板剂成功地合成出了有序介孔金属/二氧化钛复合材料。根据本发明的制备方法得到的复合光催化材料BJH拟合孔径尺寸为1.5nm至6.5nm,优选为2.0nm至5.0nm,更优选为2.5至3.50nm,最优选为2.7nm至3.1nm;直径为1μm~10μm,优选为2μm~8μm,更优选为2μm~6μm;经N 2吸附-脱附分析计算可知比表面积为350~780m 2/g,优选为450~720m 2/g,更优选为470~680m 2/g。具有良好的光热协同效应。
根据本发明的制备方法中,优选地,步骤(1)中H 2O 2与Ti的分子摩尔比控制在1:7至1:15,优选为1:8至1:10,更优选为1:8至1:9。当Ti与H 2O 2的分子摩尔比小于1:8时,无法有效形成钛-过氧化-银-氨络合物;当Ti与H 2O 2的分子摩尔比大于1:10时,即H 2O 2过量,则Ag离子的存在可能造成H 2O 2发生分解,进而反应不易控制。
根据本发明的制备方法中,优选地,步骤(1)中在所得到的过氧化钛溶液中添加氨水合物,形成钛-过氧化-氨复合络合物溶液,其中NH 4 +与Ti的分子摩尔比控制在1:7至1:15,优选为1:7至1:10,更优选为1:7至1:8,再向其中加入硝酸银溶液,形成钛-过氧化-银-氨复合前驱体溶液。当Ti与NH 4 +的分子摩尔比大于1:7时,即Ti过量,则形成的钛-过氧化-银-氨复合前驱体不稳定,容易分解;当Ti与NH 4 +的分子摩尔比小于1:10时,即NH 4 +过量,则有可能导致Ag离子絮凝,产生相分离的情况,Ti与Ag不能很好地均匀复合。
此外,步骤(1)中所述Ag与Ti的分子摩尔比控制在1:5至1:25,优选为1:10至1:25,更优选为1:19至1:25。当Ag与Ti的分子摩尔比大于1:10时,即Ag过量,则Ag与Ti的复合可能不完全,出现相分离的情况;当Ag与Ti的分子摩尔比小于1:25时,即Ag过量,则光催化效果可能不足。
在根据本发明的制备方法的步骤(2)中采用表面活性剂曲拉通X-100和阳离子型表面活性剂十六烷基三甲基溴化铵作为模板剂,加入正硅酸乙酯,其与Ti形成介孔材料的骨架,其中正硅酸乙酯与Ti的摩尔比为1:20至1:15。当正硅酸乙酯与Ti的摩尔比不在此范围内时,存在介孔结构不易形成或光催化效果不明显等问题。
在根据本发明的制备方法的步骤(3)中采用质量百分含量为1%的盐酸羟胺水溶液还原步骤(2)中得到的有序介孔金属材料粉体。所述盐酸羟胺为酸性还原剂,在本发明中将过氧化钛还原为二氧化钛、将银离子还原为单质银。对于本发明的反应体系而言,相比于肼或硼氢化钠等还原剂,盐酸羟胺还原性适中,反应条件更温和、可控,且为盐酸羟胺自身即为酸性,能够有效促进本发明制备方法中还原反应的进行。盐酸羟胺水溶液与有序介孔金属材料粉体材料的重量比为20:1至5:1,优选为15:1至8:1,更优选为12:1至10:1。当盐酸羟胺水溶液与有序介孔金属材料粉体材料的重量比大于15:1时,即盐酸羟胺水溶液过量,则溶液酸性过强,导致复合物中H 2O 2过早分解,Ti与Ag发生相分离;当盐酸羟胺水溶液与有序介孔金属材料粉体材料的重量比小于8:1时,即盐酸羟胺水溶液不足,则还原不充分,产生絮凝,产品光催化效果不佳。
以下实施例仅是作为本发明的实施方案的例子列举,并不对本发明构成任何限制,本领域技术人员可以理解在不偏离本发明的实质和构思的范围内的修改均落入本发明的保护范围。除非特别说明,以下实施例中使用的试剂和仪器均为市售可得产品。
实施例1:
1)用500ml去离子水溶解硫酸氧钛,得到Ti 4+离子浓度为0.03mol/L硫酸氧钛水溶液;用质量浓度为36%的氨水滴定硫酸氧钛溶液至PH为9得到沉淀物,用去离子水洗涤3次,得到原钛酸。用质量百分浓度为30%的过氧化氢水溶液溶解5g原钛酸得到过氧化钛水溶液,使得H 2O 2与Ti的分子摩尔比为1:8,用质量百分浓度为2.5%的氨水调解调节过氧化钛水溶液的pH约为10 得到过氧化钛铵溶液,NH 4 +与Ti的分子摩尔比1:7;在10ml Ti离子摩尔浓度为0.10mol/L的过氧化钛铵溶液中加入摩尔浓度为0.05mol/L的AgNO 3溶液2ml,形成钛过氧化银氨复合物前驱体,其中Ag与Ti的分子摩尔比为1:10;
2)将0.0025mol的曲拉通X-100和0.01mol的十六烷基三甲基溴化铵加入到25ml正丁醇中,搅拌10分钟,使得溶液均匀,然后向上述溶液中加入100mL Ti离子摩尔浓度为0.1mol/L的过氧化钛银铵溶液,其中十六烷基三甲基溴化铵:曲拉通X-100:钛过氧化银氨复合物前驱体的摩尔比例为4:1:4,继续搅拌5分钟,然后往溶液中加入体积百分含量为37.5%正硅酸乙酯溶液,控制正硅酸乙酯与Ti的摩尔比1:20,并在25-35℃下搅拌12小时,然后将产物抽虑、洗涤、干燥。
3)配置质量百分含量为1%的盐酸羟胺水溶液100ml,在加热回流状态下将上述产物10g加入到水溶液中,加热回流4h得到有序介孔金属/二氧化钛复合材料。
产品为均匀球形,BJH拟合孔径尺寸为2.7nm,直径为2.7至3.1μm,经N 2吸附-脱附分析计算可知比表面积为694m 2/g。
图1、图2和图3为制备的光热协同复合材料的透射电镜图,从图中可以看出,所述复合材料为均匀球形,直径为2μm~8μm,且具有明显介孔结构。图4为制备的光热协同复合材料的XRD图,从图中可以看出,该复合材料中有单质银和TiO 2存在。
实施例2:
除了将步骤(1)中NH 4 +与Ti的分子摩尔比控制为1:8以外,按照实施例1相同的方式制备光热协同复合材料。产品为均匀球形,BJH拟合孔径尺寸 3.1nm,直径为2.7至8μm,经N 2吸附-脱附分析计算可知比表面积为720m 2/g。
实施例3:
除了将步骤(1)中Ag与Ti的分子摩尔比控制为1:19以外,按照实施例1相同的方式制备光热协同复合材料。产品为均匀球形,BJH拟合孔径尺寸5.0nm,直径为1μm~6.5μm,经N 2吸附-脱附分析计算可知比表面积为450m 2/g。
实施例4:
除了将步骤(1)中Ag与Ti的分子摩尔比控制为1:25以外,按照实施例1相同的方式制备光热协同复合材料。产品为均匀球形,BJH拟合孔径尺寸2.0nm,直径为1μm~3μm,经N 2吸附-脱附分析计算可知比表面积为780m 2/g。
实施例5:
除了将步骤(3)中盐酸羟胺水溶液与有序介孔金属材料粉体材料的重量比为控制为10:1以外,按照实施例1相同的方式制备光热协同复合材料。产品为均匀球形,BJH拟合孔径尺寸6.5nm,直径为1μm~3μm,经N 2吸附-脱附分析计算可知比表面积为780m 2/g。
实施例6:
除了将步骤(1)中H 2O 2与Ti的分子摩尔比控制为1:10以外,按照实施例1相同的方式制备光热协同复合材料。产品为均匀球形,BJH拟合孔径尺寸3.5nm,直径为4μm~6μm,经N 2吸附-脱附分析计算可知比表面积为350m 2/g。
对比实施例1:
除了步骤(2)中不加正硅酸乙酯以外,按照实施例1相同的方式制备 光热协同复合材料。产品为球形,BJH拟合孔径尺寸1.1nm,直径为2μm~12μm,经N 2吸附-脱附分析计算可知比表面积为270m 2/g。
对比实施例2
除了将步骤(1)中NH 4 +与Ti的分子摩尔比控制为1:15以外,按照实施例1相同的方式制备光热协同复合材料。产品为球形,但球形形貌不够规则,BJH拟合孔径尺寸14nm,直径为20μm~60μm,经N 2吸附-脱附分析计算可知比表面积为247m 2/g。
对比实施例3
除了将步骤(1)中Ag与Ti的分子摩尔比控制为1:5以外,按照实施例1相同的方式制备光热协同复合材料,结果颗粒不是完整的球形,且Ag单质和TiO 2分离。
对比实施例4
除了将步骤(1)中Ag与Ti的分子摩尔比控制为1:30以外,按照实施例1相同的方式制备光热协同复合材料。产品为球形,但球形形貌不够规则,BJH拟合孔径尺寸接近0nm,直径为2μm~47μm,经N 2吸附-脱附分析计算可知比表面积为349m 2/g。
对比实施例5
除了将步骤(3)中盐酸羟胺水溶液与有序介孔金属材料粉体材料的重量比控制为30:1以外,按照实施例1相同的方式制备光热协同复合材料。产品为球形,但球形形貌不够规则,BJH拟合孔径尺寸7nm,直径为4μm~17μm,经N 2吸附-脱附分析计算可知比表面积为478m 2/g。
对比实施例6
除了用肼替换盐酸羟胺以外,按照实施例1相同的方式制备光热协同复合材料,由于肼为碱性还原剂,结果颗粒不是完整的球形,且Ag单质和TiO 2分离。
对比实施例7
除了用NaBH 4替换盐酸羟胺以外,按照实施例1相同的方式制备光热协同复合材料,由于NaBH 4的还原性过强,反应过于剧烈,不易控制,无法得到有效产品。
对比实施例8
除了仅采用表面活性剂曲拉通X-100以外,按照实施例1相同的方式制备光热协同复合材料。产品介孔结构不明显,颗粒尺寸从不够均匀。
对比实施例9
除了仅采用表面活性剂十六烷基三甲基溴化铵以外,按照实施例1相同的方式制备光热协同复合材料。但结果显示得到的微球为密实结构,无介孔结构,直径为1μm~23μm,经N 2吸附-脱附分析计算可知比表面积仅为284m 2/g。
实验实施例1:光热协同效应测定
将实施例1至6以及对比实施例1、2、4、5和8制备的复合材料用0.02mmol/l亚甲基蓝溶液饱和吸附48h,然后离心分离后取100mg样品分散于20mL的0.01mmol/L亚甲基蓝溶液中,用波长为365nm且光强为20mW/cm 2的光源照射,分别设定反应温度为8℃、25℃和45℃下进行光降解实验,用紫外分光光度计测定亚甲基蓝浓度计算降解率,结果列于下表1、表2和表3中。
将实施例1至6以及对比实施例1、2、4、5和8制备的复合材料用0.02mmol/l亚甲基蓝溶液饱和吸附48h,然后离心分离后取100mg样品分散于20mL的0.01mmol/L亚甲基蓝溶液中,设定反应温度为8℃,用波长为800nm且光强为20mW/cm 2的光源照射,用紫外分光光度计测定亚甲基蓝浓度计算降解率,结果列于下表4。
表1:反应温度为8℃,波长为365nm
编号 1小时降解率 3小时降解率 8小时降解率 12小时降解率
实施例1 65% 78% 86% 92%
实施例2 59% 72% 82% 95%
实施例3 58% 68% 81% 91%
实施例4 62% 70% 82% 91%
实施例5 61% 75% 85% 92%
实施例6 57% 66% 79% 90%
对比实施例1 32% 40% 58% 70%
对比实施例2 39% 45% 52% 59%
对比实施例4 24% 30% 35% 43%
对比实施例5 40% 48% 53% 61%
对比实施例8 53% 68% 78% 85%
表2:反应温度为25℃,波长为365nm
编号 1小时降解率 3小时降解率 8小时降解率 12小时降解率
实施例1 80% 89% 94% 98%
实施例2 76% 84% 94% 97%
实施例3 77% 87% 92% 94%
实施例4 73% 83% 90% 96%
实施例5 75% 85% 90% 94%
实施例6 79% 84% 93% 96%
对比实施例1 42% 49% 61% 75%
对比实施例2 45% 51% 63% 70%
对比实施例4 25% 38% 49% 60%
对比实施例5 47% 56% 64% 65%
对比实施例8 60% 69% 74% 90%
表3:反应温度为45℃,波长为365nm
编号 1小时降解率 3小时降解率 8小时降解率 12小时降解率
实施例1 65% 92% 98% 99%
实施例2 80% 88% 97% 98%
实施例3 81% 90% 94% 96%
实施例4 77% 87% 95% 95%
实施例5 89% 93% 97% 97%
实施例6 89% 90% 97% 99%
对比实施例1 55% 68% 77% 80%
对比实施例2 49% 55% 70% 76%
对比实施例4 28% 43% 56% 62%
对比实施例5 52% 65% 71% 82%
对比实施例8 65% 78% 86% 95%
从表1至3的数据可以看出,根据本发明的制备方法制备的复合材料具有良好的光催化效果,且随着温度的升高催化净化性能提高显著,而对比实施例得到的复合材料光催化效果不够理想,随温度提升效果不明显。
表4:反应温度为8℃,波长为800nm
编号 1小时降解率 3小时降解率 8小时降解率 12小时降解率
实施例1 65% 72% 84% 91%
实施例2 59% 63% 85% 92%
实施例3 58% 67% 80% 92%
实施例4 58% 60% 83% 93%
实施例5 68% 71% 83% 92%
实施例6 70% 71% 82% 91%
对比实施例1 15% 16% 17% 18%
对比实施例2 9% 9% 10% 11%
对比实施例4 6% 7% 8% 9%
对比实施例5 5% 7% 8% 10%
对比实施例8 63% 75% 84% 92%
从表4的数据可以看出,根据本发明的制备方法制备的复合材料具有良好的光热协同催化效果,在800nm激发条件下,未形成贵金属-TiO 2复合体系的对比实施例1,2,4,5未能形成有效激发,降解效率极低。实施例1~6由于具有光热协同效应,依靠贵金属近红外激发产生的热电子及近场等离子体增强效应。

Claims (10)

  1. 一种具有光热协同催化效应的复合光催化材料的制备方法,所述制备方法包括以下步骤:
    (1)钛过氧化银氨复合物前驱体合成
    将无机碱加入Ti 4+离子浓度为0.01~0.50mol/L的钛离子水溶液中,使钛液的pH值为7~11,得到原钛酸沉淀,得到的沉淀经纯化过程除去杂质;用质量百分浓度为10%至60%的过氧化氢溶液分散所得到原钛酸沉淀成溶液态,其中H 2O 2与Ti的分子摩尔比控制在1:7至1:15;在所得到的过氧化钛溶液中添加氨水合物,形成钛-过氧化-氨复合络合物溶液,其中NH 4 +与Ti的分子摩尔比控制在1:7至1:15,再向其中加入硝酸银溶液,形成钛-过氧化-银-氨复合前驱体溶液,其中Ag与Ti的分子摩尔比控制在1:5至1:25;
    (2)有序介孔微球复合物制备
    将表面活性剂曲拉通X-100,在50度溶解,然后再加入阳离子型表面活性剂十六烷基三甲基溴化铵,然后按照十六烷基三甲基溴化铵:曲拉通X-100:钛过氧化银氨复合物前驱体=4:1:4的摩尔比例将钛过氧化银氨复合物前驱体加入到上述表活剂溶液体系,再加入适量丁醇混合搅拌均匀,其中十六烷基三甲基溴化铵的最终重量百分比浓度为0.01%~0.05%、正丁醇的最终重量百分比浓度为10~20%,然后加入正硅酸乙酯,所述正硅酸乙酯与Ti的摩尔比为1:20至1:15,并在25-35℃下搅拌反应12-24小时,然后将混合物抽虑、洗涤、干燥以备用;
    (3)有序介孔金属/二氧化钛复合材料的制备
    配置质量百分含量为1%的盐酸羟胺水溶液,在加热回流状态下将上述 有序介孔金属材料粉体(插入“前驱体”)材料加入溶液中,加热回流4h得到有序介孔金属/二氧化钛复合材料,其中盐酸羟胺水溶液与有序介孔金属材料粉体材料的重量比为20:1至5:1。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤1)中所述Ti 4+离子来自四氯化钛、硫酸氧钛或钛酸四丁酯。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤1)中所述无机碱选自氢氧化钠、氢氧化钾和氨水中的一种,优选为氨水。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤1)中所述H 2O 2与Ti的分子摩尔比控制为1:8至1:10,优选为1:8至1:9。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤1)中所述NH 4 +与Ti的分子摩尔比控制为1:7至1:10,优选为1:7至1:8。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤1)中所述Ag与Ti的分子摩尔比控制为1:10至1:25,优选为1:19至1:25。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤3)中所述盐酸羟胺水溶液与有序介孔金属材料粉体材料的重量比为15:1至8:1,优选为12:1至10:1。
  8. 一种具有光热协同催化效应的复合光催化材料,所述复合光催化材料由根据权利要求1至7中任意一项所述制备方法制备得到。
  9. 根据权利要求8所述的复合光催化材料,其特征在于,所述复合光催化材料BJH拟合孔径尺寸为1.5nm至6.5nm,优选为2.0nm至5.0nm,更优选为2.5至3.50nm,最优选为2.7nm至3.1nm。
  10. 根据权利要求8所述的复合光催化材料,其特征在于,所述复合光 催化材料的直径为1μm~10μm,优选为2μm~8μm,更优选为2μm~6μm;所述复合光催化材料的经N 2吸附-脱附分析后可知比表面积为350~780m 2/g,优选为450~720m 2/g,更优选为470~680m 2/g。
PCT/CN2018/075946 2018-02-09 2018-02-09 一种具有光热协同效应的复合光催化材料的合成方法 WO2019153229A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880001114.4A CN110366444B (zh) 2018-02-09 2018-02-09 一种具有光热协同效应的复合光催化材料的合成方法
PCT/CN2018/075946 WO2019153229A1 (zh) 2018-02-09 2018-02-09 一种具有光热协同效应的复合光催化材料的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075946 WO2019153229A1 (zh) 2018-02-09 2018-02-09 一种具有光热协同效应的复合光催化材料的合成方法

Publications (1)

Publication Number Publication Date
WO2019153229A1 true WO2019153229A1 (zh) 2019-08-15

Family

ID=67549177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075946 WO2019153229A1 (zh) 2018-02-09 2018-02-09 一种具有光热协同效应的复合光催化材料的合成方法

Country Status (2)

Country Link
CN (1) CN110366444B (zh)
WO (1) WO2019153229A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048235A (ko) * 1999-11-25 2001-06-15 전형탁 광반도성 탈취/항균 필터
CN1459474A (zh) * 2002-05-20 2003-12-03 中国科学院理化技术研究所 微介孔二氧化硅异质复合体及其制备方法和用途
CN1784973A (zh) * 2005-11-10 2006-06-14 上海交通大学 复合光触媒抗菌剂的制备方法
WO2009048186A1 (en) * 2007-10-08 2009-04-16 Industrial Cooperation Foundation Chonbuk National University Tio2-capsulated metallic nanoparticles photocatalyst enable to be excited by uv or visible lights and its preparation method
CN101744000A (zh) * 2008-12-11 2010-06-23 陈爽 一种灭菌剂及其制作方法
CN102247878A (zh) * 2011-05-24 2011-11-23 哈尔滨工业大学 一种新型复合型光催化剂Ag-TiO2/SBA-16及其合成方法
CN105195143A (zh) * 2015-09-21 2015-12-30 河海大学 一种介孔光催化材料及其制备方法
US20170216821A1 (en) * 2012-12-31 2017-08-03 Deepika Saraswathy Kurup Photocatalytic Composition for Water Purification

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295310A (zh) * 2010-06-28 2011-12-28 中国科学院理化技术研究所 金属离子掺杂的二氧化钛透明水性溶胶的制备方法
CN102744059B (zh) * 2012-07-16 2014-03-12 黑龙江大学 一种有序介孔二氧化钛/银光催化剂的制备方法
CN104226210B (zh) * 2013-06-21 2017-02-08 中国科学院理化技术研究所 二氧化钛‑金属水性纳米复合溶胶的制备方法
CN105561975A (zh) * 2016-01-27 2016-05-11 北京富莱士博科技发展有限公司 掺杂金属离子的纳米介孔SiO2-TiO2复合光催化材料的制备方法
CN105536757A (zh) * 2016-01-27 2016-05-04 北京富莱士博科技发展有限公司 一种高活性纳米介孔SiO2-TiO2复合光催化材料的制备方法
CN105709686A (zh) * 2016-01-27 2016-06-29 北京富莱士博科技发展有限公司 一种高比表面积纳米介孔SiO2-TiO2复合自清洁材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048235A (ko) * 1999-11-25 2001-06-15 전형탁 광반도성 탈취/항균 필터
CN1459474A (zh) * 2002-05-20 2003-12-03 中国科学院理化技术研究所 微介孔二氧化硅异质复合体及其制备方法和用途
CN1784973A (zh) * 2005-11-10 2006-06-14 上海交通大学 复合光触媒抗菌剂的制备方法
WO2009048186A1 (en) * 2007-10-08 2009-04-16 Industrial Cooperation Foundation Chonbuk National University Tio2-capsulated metallic nanoparticles photocatalyst enable to be excited by uv or visible lights and its preparation method
CN101744000A (zh) * 2008-12-11 2010-06-23 陈爽 一种灭菌剂及其制作方法
CN102247878A (zh) * 2011-05-24 2011-11-23 哈尔滨工业大学 一种新型复合型光催化剂Ag-TiO2/SBA-16及其合成方法
US20170216821A1 (en) * 2012-12-31 2017-08-03 Deepika Saraswathy Kurup Photocatalytic Composition for Water Purification
CN105195143A (zh) * 2015-09-21 2015-12-30 河海大学 一种介孔光催化材料及其制备方法

Also Published As

Publication number Publication date
CN110366444A (zh) 2019-10-22
CN110366444B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
Xiu et al. Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications
Sun et al. Amorphous TiO 2 nanostructures: synthesis, fundamental properties and photocatalytic applications
Andronic et al. Black TiO2 synthesis by chemical reduction methods for photocatalysis applications
Li et al. Fluorinated TiO2 hollow photocatalysts for photocatalytic applications
Jo et al. Enhanced visible light-driven photocatalytic performance of ZnO–g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite
Qin et al. One-step fabrication of TiO2/Ti foil annular photoreactor for photocatalytic degradation of formaldehyde
Zhang et al. The development of better photocatalysts through composition‐and structure‐engineering
CN101116808B (zh) 一种具有负离子释放功能的光催化粉体及其制备方法
Klaysri et al. Impact of calcination atmospheres on the physiochemical and photocatalytic properties of nanocrystalline TiO2 and Si-doped TiO2
Sahoo et al. Black titania an emerging photocatalyst: review highlighting the synthesis techniques and photocatalytic activity for hydrogen generation
Yan et al. Improving the photocatalytic performance of silver phosphate by thermal annealing: Influence of acetate species
Wang et al. Pt-TiO2 microspheres with exposed {001} facets for degradation of formaldehyde in air: Formation mechanism and enhanced visible light photocatalytic activity
Rao et al. Manifestation of enhanced and durable photocatalytic H2 production using hierarchically structured Pt@ Co3O4/TiO2 ternary nanocomposite
Zhang et al. A spontaneous dissolution approach to carbon coated TiO2 hollow composite spheres with enhanced visible photocatalytic performance
She et al. Spatially separated bimetallic cocatalysts on hollow-structured TiO 2 for photocatalytic hydrogen generation
Cheng et al. Enhanced Visible Light Photocatalytic Activity of Mesoporous Anatase TiO 2 Codoped with Nitrogen and Chlorine.
Saensook et al. A factorial experimental design approach to obtain defect-rich black TiO2 for photocatalytic dye degradation
Tai et al. Nano-photocatalyst in photocatalytic oxidation processes
Ali et al. Synthesis of Au-decorated three-phase-mixed TiO 2/phosphate modified active carbon nanocomposites as easily-recycled efficient photocatalysts for degrading high-concentration 2, 4-DCP
Zhang et al. Raspberry-like TiO 2 hollow spheres consisting of small nanocrystals towards efficient NO removal
Xu et al. Activated Carbon Loaded with Ti 3+ Self-Doped TiO 2 Composite Material Prepared by Microwave Method
Yue et al. A facile synthesis method of TiO2@ SiO2 porous core shell structure for photocatalytic hydrogen evolution
Wang et al. Fabrication of g-C3N4 nanosheets anchored with controllable CdS nanoparticles for enhanced visible-light photocatalytic performance
KR102562529B1 (ko) 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법
Arul et al. Visible light proven Si doped TiO2 nanocatalyst for the photodegradation of Organic dye

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904676

Country of ref document: EP

Kind code of ref document: A1