WO2019153186A1 - 一种对天线阵列进行盲校准的方法和装置 - Google Patents

一种对天线阵列进行盲校准的方法和装置 Download PDF

Info

Publication number
WO2019153186A1
WO2019153186A1 PCT/CN2018/075818 CN2018075818W WO2019153186A1 WO 2019153186 A1 WO2019153186 A1 WO 2019153186A1 CN 2018075818 W CN2018075818 W CN 2018075818W WO 2019153186 A1 WO2019153186 A1 WO 2019153186A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
input
input channels
reference channel
calibration
Prior art date
Application number
PCT/CN2018/075818
Other languages
English (en)
French (fr)
Inventor
赵光玲
陈寅健
Original Assignee
上海诺基亚贝尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海诺基亚贝尔股份有限公司 filed Critical 上海诺基亚贝尔股份有限公司
Priority to CN201880088376.9A priority Critical patent/CN111684310B/zh
Priority to PCT/CN2018/075818 priority patent/WO2019153186A1/zh
Publication of WO2019153186A1 publication Critical patent/WO2019153186A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements

Definitions

  • the present invention relates to the field of antenna calibration technologies, and in particular, to a technique for blind calibration of an antenna array. .
  • Existing antenna calibration methods are based on frequency domain or time domain pilot sequences.
  • the frequency domain method consumes an entire sub-frame to carry a pilot symbol, which is clearly not compatible with the standard.
  • time domain methods a dedicated reference sequence must be inserted into the data stream or embedded in a very long traffic data stream. Since the cyclic prefix of the OFDM (Orthogonal Frequency Division Multiplexing) symbol is very short in the 5G standard, it is impossible to carry the pilot symbol in the guard interval, so The best solution is to use the business data itself for antenna calibration. The inserted pilot sequence will lose a lot of throughput and it is not compatible with official standards.
  • the usual blind calibration method is to synthesize the signal received (or transmitted) by the array element antenna in the uplink (or downlink) as a reference signal, demodulate through the calibration channel, and then demodulate the output with the array uplink channel.
  • the synthesis of the signal (or downlink) is combined to yield a composite error signal, and the algorithm is used to update the calibration weight to track and compensate for the error, without the need for additional additional reference signals.
  • this blind calibration method is not suitable for 5G projects.
  • a method for blind calibration of an antenna array comprising:
  • step d comprises:
  • the calibration filter coefficients are copied to the filters in any of the input channels to calibrate any of the input channels.
  • step a comprises:
  • Channel estimation is performed on the reference channel according to an input signal corresponding to the reference channel and an actual output signal to determine a radio frequency response of the reference channel.
  • the method further comprises:
  • Steps b through d are performed cyclically until the calibration of each input channel other than the reference channel in the plurality of input channels of the antenna array is completed.
  • the input signals corresponding to the input channels of the multiple input channels may be different.
  • the input signals respectively corresponding to the multiple input channels comprise any one of the following:
  • the antenna array transmits signals on the downlink.
  • an apparatus for blindly calibrating an antenna array wherein the apparatus comprises:
  • a selecting device configured to select one channel from the multiple input channels of the antenna array as a reference channel, and calculate a radio frequency response of the reference channel;
  • Determining means for determining, according to the radio frequency response of the reference channel, and an input signal of any one of the plurality of input channels other than the reference channel, determining an input signal of the any one of the input channels via reconstruction The analog output signal of the reference channel;
  • a calculating device configured to calculate a calibration filter coefficient for any one of the input channels according to the simulated output signal of any one of the input channels and the actual output signal transmitted through the any one of the input channels;
  • the calibration device is for:
  • the calibration filter coefficients are copied to the filters in any of the input channels to calibrate any of the input channels.
  • said selection means is for:
  • Channel estimation is performed on the reference channel according to an input signal corresponding to the reference channel and an actual output signal to determine a radio frequency response of the reference channel.
  • the device further comprises:
  • the input signals corresponding to the input channels of the multiple input channels may be different.
  • the input signals respectively corresponding to the multiple input channels comprise any one of the following:
  • the antenna array transmits signals on the downlink.
  • the present invention utilizes the quasi-stationary characteristics of the radio frequency response with respect to the calibration duration, the reconstruction of the reference channel and the calibration of the time domain or the frequency domain to blindly align the antenna array so that It is possible to perform antenna calibration using only business data in the software.
  • the principle of blind calibration of the present invention is to reconstruct the reference channel at different times by using the frequency response of the reference channel, and compare with the output at that time to obtain a compensation filter to realize calibration of the uplink and downlink antenna array.
  • the present invention has many advantages in terms of cost and system performance (throughput), and since there is no need for reference symbols, the present invention has no loss of throughput and is compatible with standards.
  • FIG. 1 shows a flow chart of a method for blind calibration of an antenna array in accordance with an aspect of the present invention
  • FIG. 2 shows a schematic diagram of blind calibration of a downlink of an antenna array in accordance with a preferred embodiment of the present invention
  • FIG. 3 is a schematic diagram showing blind calibration of an uplink of an antenna array in accordance with another preferred embodiment of the present invention.
  • Figure 4 shows the phase difference between the reference channel and all other channels before calibration
  • Figure 5 shows the phase difference between the reference channel and all other channels after frequency domain calibration
  • Figure 6 shows the phase difference between the reference channel and all other channels after time domain calibration
  • Figure 7 shows a schematic diagram of a device for blind calibration of an antenna array in accordance with another aspect of the present invention.
  • base station may be considered synonymous with and may hereinafter sometimes be referred to as a Node B, an evolved Node B, an eNodeB, an eNB, a Transceiver Base Station (BTS), RNC and the like, and can describe a transceiver that communicates with and provides wireless resources to a mobile terminal in a wireless communication network that can span multiple technology generations.
  • BTS Transceiver Base Station
  • RNC Radio Network Controller
  • the methods discussed below can be implemented in hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof.
  • the program code or code segments to carry out the necessary tasks can be stored in a machine or computer readable medium, such as a storage medium.
  • the processor(s) can perform the necessary tasks.
  • FIG. 1 shows a flow chart of a method of blind calibration of an antenna array in accordance with an aspect of the present invention.
  • step S101 the device 1 selects one of the multiple input channels of the antenna array as a reference channel, and calculates a radio frequency response of the reference channel.
  • the device 1 selects one of them as a reference channel, for example, using channel 1 as a reference channel, and performing channel estimation on the reference channel, thereby calculating the radio frequency response of the reference channel.
  • the device 1 can select any one of the multiple input channels as a reference channel.
  • the input signals corresponding to the input channels of the multiple input channels may be different.
  • M the number of ports
  • M channels must be calibrated in terms of amplitude and phase (delay). It is assumed that the RF response of the channel is time-invariant during the calibration interval, which is practical in practice.
  • the reference sequences must be identical, but are not required in the present invention.
  • step S101 it is assumed that the device 1 selects the channel 1 therein as the reference channel without loss of universality, and the device 1 performs LS (Least Square) channel estimation on the reference channel to obtain the radio frequency response of the reference channel. It is denoted here as h, which reflects the dynamic performance of the analog filter.
  • the device 1 performs channel estimation on the reference channel according to an input signal corresponding to the reference channel and an actual output signal to determine a radio frequency response of the reference channel.
  • the device 1 can also buffer the input signal of the reference channel and the actual output signal transmitted via the reference channel, and acquire from the cache during calculation. Further, the device 1 may buffer the input signal and the actual output signal corresponding to each input channel of the multiple input channels, and select from the cache when needed for calculation.
  • the device 1 selects the RF channel 1 as a reference channel.
  • the input signal x 1 of the reference channel is buffered in the DFE (digital front end), and the actual output signal y 1 coupled from the antenna 1 is The analog to digital conversion is cached in the DFE.
  • step S102 the device 1 determines, according to the radio frequency response of the reference channel, and an input signal of any one of the plurality of input channels except the reference channel, the input signal of the any one of the input channels is determined. Reconstruct the simulated output signal of the reference channel.
  • step S102 the device 1 arbitrarily selects one input channel from the multiple input channels except the reference channel, and acquires an input signal of the arbitrary one input channel, such as selecting any one of the input channels in the buffer.
  • step S102 the device 1 selects, for example, the input signal x 2 of the channel 2 in the buffer, and then the device 1 Obtaining x 2 and h according to the radio frequency response h of the reference channel obtained in step S101, and calculating a simulation output signal of the channel 2 Or called ref 2 , the calculation is used to reconstruct an output signal when the input signal of any one of the selected input channels is transmitted by the reference channel.
  • step S103 the device 1 calculates a calibration filter coefficient for the arbitrary one input channel according to the simulated output signal of the arbitrary one input channel and the actual output signal transmitted through the arbitrary one input channel.
  • step S103 the device 1 acquires an actual output signal transmitted through the any one of the input channels, such as selecting an actual output signal transmitted through the arbitrary input channel in the buffer, where the actual output signal is, for example,
  • the corresponding antenna coupling is digitized by a common feedback circuit and buffered in the DFE; then, the device 1 outputs the simulated output signal according to the calculation of the arbitrary one input channel obtained in step S102. Calculate the difference between the actual output signal and obtain the calibration filter coefficients for any of the input channels.
  • any one of the input channels selected by the device 1 is the channel 2, and in step S102, the device 1 calculates and obtains the simulation output signal of the channel 2. Or ref 2 ; in step S103, the device 1 obtains the actual output signal of the channel 2 as y 2 , and the device 1 can be based on y 2 . Calculate the calibration filter coefficients for this channel 2.
  • step S104 the device 1 calibrates the arbitrary one input channel according to the calibration filter coefficient.
  • the device 1 may calibrate the arbitrary one input channel according to the calibration filter coefficient to make the calibration in step S104.
  • the subsequent one of the input channels transmits the corresponding input signal.
  • the device 1 copies the calibration filter coefficients to a filter in any one of the input channels to calibrate any one of the input channels.
  • a filter such as a compensation filter
  • a filter may be disposed in each channel of the multiple input channels of the antenna array as a calibration filter; thus, when the device 1 calculates and determines the random in step S103 After calibrating the filter coefficients of one input channel, in step S104, the device 1 may copy the calibration filter coefficients to the filter in any one of the input channels to calibrate any one of the input channels, so that the calibrated arbitrary One input channel transmits the corresponding input signal.
  • any one of the input channels selected by the device 1 is the channel 2, and in step S102, the device 1 calculates and obtains the simulation output signal of the channel 2. Or ref 2 ; in step S103, the device 1 obtains the actual output signal of the channel 2 as y 2 , and the device 1 can be based on y 2 .
  • the calibration filter coefficients in the frequency or time domain are calculated to be used as the calibration filter coefficients for channel 2; in step S104, device 1 copies the calibration filter coefficients to the filters in channel 2. At this point, the filter in channel 2 can be started to calibrate the channel 2, causing the calibrated channel 2 to transmit the corresponding input signal x 2 .
  • the frequency domain method or the time domain method can be used to obtain the calibration filter coefficients.
  • each carrier in the frequency domain is known, which can be used as a reference to calculate the phase difference, so that the calibration filter coefficients can be obtained; for the time domain method, it can be obtained directly in the time domain. Calibrate the filter coefficients.
  • the method of obtaining the calibration filter coefficients by using the frequency domain or the time domain method can adopt the existing method, and therefore, the details are not described herein and are included in the referenced method.
  • the key point of the present invention is that the blind calibration principle is to reconstruct the reference channel at different times by using the frequency response of the reference channel, and compare with the output at that time to obtain a compensation filter to realize calibration of the uplink and downlink antenna array.
  • the apparatus 1 cyclically performs the above steps S102 to S104 until the calibration of each of the plurality of input channels of the antenna array other than the reference channel is completed.
  • the device 1 may cyclically perform the above steps S102 to S104, that is, the device 1 selects any one of the input channels except the reference channel for the first time in the multiple input channels, and after completing the calibration of the input channel,
  • the device 1 can continue to select one input channel, that is, the device 1 can select any one of the input channels in addition to the reference channel and the input channel that has been calibrated for the first time in the multiple input channels, and execute the input channel on the input channel.
  • the input channel is calibrated by the operations in the foregoing steps S102 to S104.
  • the apparatus 1 continuously performs the above steps S102 to S104 cyclically until the calibration of each input channel other than the reference channel in the multiple input channels of the antenna array is completed.
  • the device 1 can also calibrate the channels 2 to M in sequence until the input of the antenna array except the reference channel is completed. Calibration of the channel.
  • the input signals corresponding to the M input channels can be continuously transmitted. If one of the input channels is not calibrated, the corresponding input signal is transmitted on the input channel that has not been calibrated. If the input channel has been calibrated, The corresponding input signal is transmitted on the calibrated input channel.
  • the reference channel selected by the device 1 is channel 1, and each of the channels 2 to M is arranged with a filter.
  • the device 1 first obtains the channel 2 according to the radio frequency response h of the reference channel.
  • the filter coefficients are calibrated and the channel 2 is calibrated.
  • the device 1 performs the same processing on the channels 3 to M in turn.
  • the calibration filter coefficients of the channels 2 to M are derived, they are copied to each filter. Calibrate each channel.
  • the traffic data stream of the antenna array is continuous until the filters in channels 2 through M start operating with updated coefficients.
  • the input signals respectively corresponding to the multiple input channels include any one of the following:
  • the antenna array transmits signals on the downlink.
  • the present invention takes advantage of the quasi-stationary nature of the RF channel response relative to the calibration duration. Based on this fact, the output is reconstructed through the same input, satisfying the preconditions of simultaneous excitation.
  • the present invention is a reconstruction of the reference channel and a time domain or frequency domain calibration to blindly calibrate the antenna array, i.e., the same input and only one common feedback path. It makes it possible to perform antenna calibration using only business data in software.
  • the present invention is designed to calibrate the antenna array with only traffic data to accommodate 5G beamforming without any pilot symbols. It is a general architecture and other suitable calibration algorithms are also available.
  • FIG. 2 shows a schematic diagram of calibrating the downlink of an antenna array in accordance with a preferred embodiment of the present invention.
  • x 1 , x 2 , ... x m are the input signal sequences for each input channel of the antenna array, which are vectors and need not be the same.
  • CHi means the RF channel response of each channel, and CH is the channel response of the common feedback channel.
  • channel 1 When calibration begins, channel 1 is used as a reference channel, and its input signal x 1 is buffered in the DFE.
  • the actual output signal y 2 of channel 2 is coupled and analog-to-digital converted to DFE.
  • y 2 The filter coefficients in the frequency or time domain can be derived together.
  • the device 1 is copied to the filter coefficients of the FIR filter 2 in channel 2, the FIR filter 2 which can begin to work.
  • the input signal x 3 to x m of the device 1 to the channel 3 to the channel M also performs the same operation as the input signal x 2 of the channel 2 as described above.
  • all of the filter FIRs can begin to operate, and the antenna array transmits the input signal with the calibrated input channel.
  • FIG. 3 shows a schematic diagram of blind calibration of an uplink of an antenna array in accordance with another preferred embodiment of the present invention.
  • the blind calibration of the uplink is similar to the blind calibration of the downlink described above and, therefore, is not described herein, and is hereby incorporated by reference.
  • Figure 4 shows the phase difference between the reference channel and all other channels before calibration.
  • Figure 5 shows the phase difference between the reference channel and all other channels after calibration.
  • the straight regression line cannot converge to one because the time-sharing characteristic of the scheme, ie serial calibration, and the calibration data is not data for channel estimation, which is inevitable.
  • the phase error is close to ⁇ 10°. The result is based on a frequency domain approach.
  • Figure 6 shows the phase difference between the reference channel and all other channels after calibration. The result of this party is based on the time domain method.
  • the present invention has many advantages in terms of cost and system performance (throughput). This method is implemented in DFE, relative to methods that use only business data streams and are implemented in hardware. Since no reference symbols are needed, the present invention has no loss of throughput and is compatible with standards. It has strong compatibility, high throughput and low implementation cost. In 5G products, calibration is a must and can be used for digital front ends.
  • Figure 7 shows a schematic diagram of a device for blind calibration of an antenna array in accordance with another aspect of the present invention.
  • the device 1 includes a selection device 701, a determination device 702, a calculation device 703, and a calibration device 704.
  • the selecting device 701 selects one of the multiple input channels of the antenna array as a reference channel, and calculates a radio frequency response of the reference channel.
  • the selecting device 701 selects one of them as a reference channel, for example, using channel 1 as a reference channel, and performing channel estimation on the reference channel, thereby calculating a radio frequency response of the reference channel.
  • the selection device 701 can select any one of the multiple input channels as a reference channel.
  • the input signals corresponding to the input channels of the multiple input channels may be different.
  • M the number of ports
  • M channels must be calibrated in terms of amplitude and phase (delay). It is assumed that the RF response of the channel is time-invariant during the calibration interval, which is practical in practice.
  • the reference sequences must be identical, but are not required in the present invention.
  • the following line calibration is taken as an example, assuming that the traffic input for each of the multiple input channels is x 1 , x 2 , ... x m , where the traffic input for each channel is x 1 , x 2 ,...x m does not have to be the same.
  • the selection device 701 selects the channel 1 therein as the reference channel without loss of universality, the selection device 701 performs LS (Least Square) channel estimation on the reference channel to obtain the radio frequency response of the reference channel. Is h, which reflects the dynamic performance of the analog filter.
  • the selection selecting means 701 performs channel estimation on the reference channel according to the input signal corresponding to the reference channel and the actual output signal to determine the radio frequency response of the reference channel.
  • the reference channel has a corresponding input signal and an actual output signal transmitted through the reference channel
  • the selection device 701 selects the RF channel 1 as a reference channel.
  • the selection device 701 acquires the input of the reference channel.
  • the device 1 can also buffer the input signal of the reference channel and the actual output signal transmitted via the reference channel, and acquire from the cache during calculation. Further, the device 1 may buffer the input signal and the actual output signal corresponding to each input channel of the multiple input channels, and select from the cache when needed for calculation.
  • the selection device 701 selects the RF channel 1 as the reference channel.
  • the input signal x 1 of the reference channel is buffered in the DFE (digital front end), and the actual output signal y 1 coupled from the antenna 1 It is cached in the DFE after analog-to-digital conversion.
  • the determining device 702 determines, according to the radio frequency response of the reference channel, and the input signal of any one of the multiple input channels except the reference channel, the input signal of the any one of the input channels via the reconstructed reference channel The simulated output signal.
  • the determining device 702 arbitrarily selects one input channel from the plurality of input channels except the reference channel, and obtains an input signal of the any one of the input channels, such as selecting an input signal corresponding to the input channel of the arbitrary one in the buffer. And calculating, according to the foregoing selecting device 701, the obtained radio frequency response of the reference channel, and calculating an analog output signal of the input signal of the any one of the input channels via the reconstructed reference channel, where the reconstructed reference channel means The reference channel selected by the device 701 is selected to transmit the input signal of the arbitrary one of the input channels.
  • the determining device 702 selects, for example, the input signal x 2 of the channel 2 in the buffer, and then the determining device 702 selects according to the selection.
  • the radio frequency response h of the reference channel calculated by the device 701 is convolved with x 2 and h, and the simulation output signal of the channel 2 is obtained. Or called ref 2 , the calculation is used to reconstruct an output signal when the input signal of any one of the selected input channels is transmitted by the reference channel.
  • the computing device 703 calculates a calibration filter coefficient for the any one of the input channels according to the simulated output signal of any one of the input channels and the actual output signal transmitted through the arbitrary one of the input channels.
  • the computing device 703 obtains an actual output signal transmitted through the any one of the input channels, such as selecting an actual output signal transmitted through the arbitrary input channel in the buffer, where the actual output signal is, for example, from its corresponding antenna.
  • the coupling is digitized by a common feedback circuit and buffered in the DFE; then, the computing device 703 calculates the obtained simulated output signal of the arbitrary input channel according to the determining device 702, and outputs the simulated output signal and the actual output signal. The difference is calculated to obtain the calibration filter coefficients for any of the input channels.
  • any one of the input channels selected by the selection device 701 is the channel 2, and the determining device 702 calculates and obtains the simulated output signal of the channel 2. Or ref 2 ; computing device 703 obtains the actual output signal of channel 2 as y 2 , then computing device 703 can be based on y 2 , Calculate the calibration filter coefficients for this channel 2.
  • Calibration device 704 calibrates any of the input channels based on the calibration filter coefficients.
  • the calibration device 704 may calibrate the arbitrary one input channel according to the calibration filter coefficient, so that the calibrated one of the input channels is Transfer the corresponding input signal.
  • calibration device 704 copies the calibration filter coefficients to filters in any of the input channels to calibrate any of the input channels.
  • a filter such as a compensation filter
  • a filter may be disposed in each channel of the multiple input channels of the antenna array as a calibration filter; thus, when the computing device 703 calculates and determines the arbitrary input channel After calibrating the filter coefficients, the calibration device 704 can copy the calibration filter coefficients to the filters in the arbitrary one of the input channels to calibrate the arbitrary one of the input channels, so that any one of the calibrated input channels transmits the corresponding input. signal.
  • any one of the input channels selected by the selection device 701 is the channel 2, and the determining device 702 calculates and obtains the simulated output signal of the channel 2.
  • computing device 703 obtains the actual output signal of channel 2 as y 2 , then computing device 703 can be based on y 2 ,
  • the calibration filter coefficients in the frequency or time domain are calculated to be used as the calibration filter coefficients for channel 2; calibration device 704 copies the calibration filter coefficients to the filters in channel 2.
  • the filter in channel 2 can be started to calibrate the channel 2, causing the calibrated channel 2 to transmit the corresponding input signal x 2 .
  • the frequency domain method or the time domain method can be used to obtain the calibration filter coefficients.
  • each carrier in the frequency domain is known, which can be used as a reference to calculate the phase difference, so that the calibration filter coefficients can be obtained; for the time domain method, it can be obtained directly in the time domain. Calibrate the filter coefficients.
  • the method of obtaining the calibration filter coefficients by using the frequency domain or the time domain method can adopt the existing method, and therefore, the details are not described herein and are included in the referenced method.
  • the key point of the present invention is that the blind calibration principle is to reconstruct the reference channel at different times by using the frequency response of the reference channel, and compare with the output at that time to obtain a compensation filter to realize calibration of the uplink and downlink antenna array.
  • the device 1 further comprises a notification device (not shown).
  • the notification device notifies the determining device 702, the computing device 703, and the calibration device 704 to cyclically perform its operations until each of the multiple input channels of the antenna array except the reference channel is completed. Input channel calibration.
  • the determining device 702, the computing device 703, and the calibration device 704 can cyclically perform their operations, that is, the determining device 702, the computing device 703, and the calibration device 704 are in the multiple input channels. After selecting any one of the input channels except the reference channel and completing the calibration of the input channel, the determining device 702 can continue to select one input channel, that is, the determining device 702 is in the multiple input channels. In addition to the reference channel and the input channel that has been calibrated for the first time, any one of the input channels can be selected, and any one of the second selection is determined according to the input signal of the second selected input channel and the RF response of the reference channel.
  • the input signal of the input channel is via the simulated output signal of the reconstructed reference channel; the computing device 703 calculates the second output based on the simulated output signal and the actual output signal transmitted via any of the second selected input channels. a calibration filter coefficient of any one of the selected input channels; the calibration device 704 is based on the calibration filter system , This second calibration any selected one input channel.
  • the notifying means informs the devices to perform their operations cyclically until the calibration of each input channel other than the reference channel in the multiple input channels of the antenna array is completed.
  • the device 1 can also calibrate the channels 2 to M in sequence until the input of the antenna array except the reference channel is completed. Calibration of the channel.
  • the input signals corresponding to the M input channels can be continuously transmitted. If one of the input channels is not calibrated, the corresponding input signal is transmitted on the input channel that has not been calibrated. If the input channel has been calibrated, The corresponding input signal is transmitted on the calibrated input channel.
  • the reference channel selected by the device 1 is channel 1, and each of the channels 2 to M is arranged with a filter.
  • the device 1 first obtains the channel 2 according to the radio frequency response h of the reference channel.
  • the filter coefficients are calibrated and the channel 2 is calibrated.
  • the device 1 performs the same processing on the channels 3 to M in turn.
  • the calibration filter coefficients of the channels 2 to M are derived, they are copied to each filter. Calibrate each channel.
  • the traffic data stream of the antenna array is continuous until the filters in channels 2 through M start operating with updated coefficients.
  • the input signals respectively corresponding to the multiple input channels include any one of the following:
  • the antenna array transmits signals on the downlink.
  • the present invention takes advantage of the quasi-stationary nature of the RF channel response relative to the calibration duration. Based on this fact, the output is reconstructed through the same input, satisfying the preconditions of simultaneous excitation.
  • the present invention is a reconstruction of the reference channel and a time domain or frequency domain calibration to blindly calibrate the antenna array, i.e., the same input and only one common feedback path. It makes it possible to perform antenna calibration using only business data in software.
  • the present invention is designed to calibrate the antenna array with only traffic data to accommodate 5G beamforming without any pilot symbols. It is a general architecture and other suitable calibration algorithms are also available.
  • the present invention can be implemented in software and/or a combination of software and hardware, for example, using an application specific integrated circuit (ASIC), a general purpose computer, or any other similar hardware device.
  • the software program of the present invention may be executed by a processor to implement the steps or functions described above.
  • the software program (including related data structures) of the present invention can be stored in a computer readable recording medium such as a RAM memory, a magnetic or optical drive or a floppy disk and the like.
  • some of the steps or functions of the present invention may be implemented in hardware, for example, as a circuit that cooperates with a processor to perform various steps or functions.
  • a portion of the invention can be applied as a computer program product, such as computer program instructions, which, when executed by a computer, can invoke or provide a method and/or solution in accordance with the present invention.
  • the program instructions for invoking the method of the present invention may be stored in a fixed or removable recording medium and/or transmitted by a data stream in a broadcast or other signal bearing medium, and/or stored in a The working memory of the computer device in which the program instructions are run.
  • an embodiment in accordance with the present invention includes a device including a memory for storing computer program instructions and a processor for executing program instructions, wherein when the computer program instructions are executed by the processor, triggering
  • the apparatus operates based on the aforementioned methods and/or technical solutions in accordance with various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明的目的是提供一种对天线阵列进行盲校准的方法和装置;自天线阵列的多路输入通道中选择一路作为参考通道,计算该参考通道的射频响应;根据该射频响应,以及多路输入通道中除该参考通道以外的任意一路输入通道的输入信号,确定该任意一路输入通道的输入信号经由重构参考通道的仿真输出信号;再结合经由所述任意一路输入通道传输后的实际输出信号,计算对该任意一路输入通道的校准滤波器系数,并据此校准该任意一路输入通道。与现有技术相比,本发明利用参考通道的频响重构不同时刻的参考通道,并与当时的输出进行比较,从而得到补偿滤波器,实现对上下行天线阵列的校准,由于不需要参考符号,没有吞吐量的损失,并且可以和标准兼容。

Description

一种对天线阵列进行盲校准的方法和装置 技术领域
本发明涉及天线校准技术领域,尤其涉及一种用于对天线阵列进行盲校准的技术。 .
背景技术
现有的天线校准方法基于频域或时域的导频序列(pilot sequence)。例如,在5G项目中,频域方法消耗了一整个子帧以携带导频符号(pilot symbol),其显然与标准不能兼容。如果是时域方法,专用参考序列(dedicated reference sequence)必须被插入到数据流中,或被嵌入至非常长的业务数据流(traffic)中。由于在5G标准中,OFDM(Orthogonal Frequency Division Multiplexing,正交频分多路复用)符号的循环前缀(cyclic prefix)非常短,其不可能在保护间隔(guard interval)中携带导频符号,因此,最好的方案就是使用业务数据本身来进行天线校准。插入的导频序列将丢失很大的吞吐量,并且其不能与官方标准兼容。如果使用伪随机序列(pseudo sequence),如Zadoff-Chu,嵌入至低于-20dBc甚至-40dBc的业务中,其不得不采用非常长的序列来满足处理所需的SNR(Signal Noise Ratio,信噪比),当端口数量很大时,过大的延迟使得该方法不可行。
目前,通常的盲校准方法是把阵元天线在上行链路(或下行链路)接收到(或发射)的信号的合成作为参考信号,通过校准信道解调后再与阵列上行通道解调输出(或下行要发出)信号的合成比较得出合成误差信号,并利用算法更新校准权值来跟踪和补偿误差,不需要其他附加的参考信号。然而,该种盲校准方法并不适用于5G项目。
因此,如何对天线阵列进行盲校准,以使其适用于5G项目,成为本领域技术人员亟需解决的问题之一。
发明内容
本发明的目的是提供一种对天线阵列进行盲校准的方法和装置。
根据本发明的一个方面,提供了一种对天线阵列进行盲校准的方法,其中,该方法包括:
a自所述天线阵列的多路输入通道中选择一路作为参考通道,计算所述参考通道的射频响应;
b根据所述参考通道的射频响应,以及所述多路输入通道中除所述参考通道以外的任意一路输入通道的输入信号,确定所述任意一路输入通道的输入信号经由重构参考通道的仿真输出信号;
c根据所述任意一路输入通道的仿真输出信号,以及经由所述任意一路输入通道传输后的实际输出信号,计算对所述任意一路输入通道的校准滤波器系数;
d根据所述校准滤波器系数,校准所述任意一路输入通道。
优选地,步骤d包括:
将所述校准滤波器系数复制至所述任意一路输入通道中的滤波器,以校准所述任意一路输入通道。
优选地,步骤a包括:
根据所述参考通道所对应的输入信号和实际输出信号,对所述参考通道进行信道估计,以确定所述参考通道的射频响应。
优选地,该方法还包括:
循环执行步骤b至d,直至完成对所述天线阵列的所述多路输入通道中除所述参考通道外的每一路输入通道的校准。
优选地,所述多路输入通道中各路输入通道所分别对应的输入信号可以不同。
优选地,所述多路输入通道所分别对应的输入信号包括以下任一项:
所述天线阵列在上行链路接收的信号;
所述天线阵列在下行链路发射的信号。
根据本发明的另一方面,还提供了一种对天线阵列进行盲校准的装置,其中,该装置包括:
选择装置,用于自所述天线阵列的多路输入通道中选择一路作为参考通道,计算所述参考通道的射频响应;
确定装置,用于根据所述参考通道的射频响应,以及所述多路输入通道中除所述参考通道以外的任意一路输入通道的输入信号,确定所述任意一路输入通道的输入信号经由重构参考通道的仿真输出信号;
计算装置,用于根据所述任意一路输入通道的仿真输出信号,以及经由所述任意一路输入通道传输后的实际输出信号,计算对所述任意一路输入通道的校准滤波器系数;
校准装置,用于根据所述校准滤波器系数,校准所述任意一路输入通道。
优选地,所述校准装置用于:
将所述校准滤波器系数复制至所述任意一路输入通道中的滤波器,以校准所述任意一路输入通道。
优选地,所述选择装置用于:
根据所述参考通道所对应的输入信号和实际输出信号,对所述参考通道进行信道估计,以确定所述参考通道的射频响应。
优选地,该装置还包括:
通知装置,用于通知所述确定装置、所述计算装置和所述校准装置循环执行其操作,直至完成对所述天线阵列的所述多路输入通道中除所述参考通道外的每一路输入通道的校准。
优选地,所述多路输入通道中各路输入通道所分别对应的输入信号可以不同。
优选地,所述多路输入通道所分别对应的输入信号包括以下任一项:
所述天线阵列在上行链路接收的信号;
所述天线阵列在下行链路发射的信号。
与现有技术相比,本发明利用了相对校准持续时间而言,射频响应的准平稳的特性,对参考通道的重建和时域或频域的校准,以对天线 阵列进行盲校准,使得在软件中只用业务数据进行天线校准成为可能。本发明盲校准原理是利用参考通道的频响重构不同时刻的参考通道,并与当时的输出进行比较,从而得到补偿滤波器,实现对上下行天线阵列的校准。本发明在成本和系统性能(吞吐量)方面有许多优点,由于不需要参考符号,本发明没有吞吐量的损失,并且可以和标准兼容。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1示出根据本发明一个方面的对天线阵列进行盲校准的方法流程图;
图2示出了根据本发明一个优选实施例的对天线阵列的下行链路进行盲校准的示意图;
图3示出了根据本发明另一个优选实施例的对天线阵列的上行链路进行盲校准的示意图;
图4示出了在校准之前参考通道和所有其他通道之间的相位差;
图5示出了在频域校准之后参考通道和所有其他通道之间的相位差;
图6示出了在时域校准之后参考通道和所有其他通道之间的相位差;
图7示出根据本发明另一个方面的对天线阵列进行盲校准的装置示意图。
附图中相同或相似的附图标记代表相同或相似的部件。
具体实施方式
这里所使用的术语“基站”可以被视为与以下各项同义并且在后文中有时可以被称作以下各项:B节点、演进型B节点、eNodeB、eNB、收发器基站(BTS)、RNC等等,并且可以描述在可以跨越多个技术世 代的无线通信网络中与移动端通信并且为之提供无线资源的收发器。除了实施这里所讨论的方法的能力之外,这里所讨论的基站可以具有与传统的众所周知的基站相关联的所有功能。
后面所讨论的方法可以通过硬件、软件、固件、中间件、微代码、硬件描述语言或者其任意组合来实施。当用软件、固件、中间件或微代码来实施时,用以实施必要任务的程序代码或代码段可以被存储在机器或计算机可读介质(比如存储介质)中。(一个或多个)处理器可以实施必要的任务。
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本发明的示例性实施例的目的。但是本发明可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。应当理解的是,虽然在这里可能使用了术语“第一”、“第二”等等来描述各个单元,但是这些单元不应当受这些术语限制。使用这些术语仅仅是为了将一个单元与另一个单元进行区分。举例来说,在不背离示例性实施例的范围的情况下,第一单元可以被称为第二单元,并且类似地第二单元可以被称为第一单元。这里所使用的术语“和/或”包括其中一个或更多所列出的相关联项目的任意和所有组合。
应当理解的是,当一个单元被称为“连接”或“耦合”到另一单元时,其可以直接连接或耦合到所述另一单元,或者可以存在中间单元。与此相对,当一个单元被称为“直接连接”或“直接耦合”到另一单元时,则不存在中间单元。应当按照类似的方式来解释被用于描述单元之间的关系的其他词语(例如“处于...之间”相比于“直接处于...之间”,“与...邻近”相比于“与...直接邻近”等等)。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
还应当提到的是,在一些替换实现方式中,所提到的功能/动作可以按照不同于附图中标示的顺序发生。举例来说,取决于所涉及的功能/动作,相继示出的两幅图实际上可以基本上同时执行或者有时可以按照相反的顺序来执行。
除非另行定义,否则这里使用的所有术语(包括技术和科学术语)都具有与示例性实施例所属领域内的技术人员通常所理解的相同的含义。还应当理解的是,除非在这里被明确定义,否则例如在通常使用的字典中定义的那些术语应当被解释成具有与其在相关领域的上下文中的含义相一致的含义,而不应按照理想化的或者过于正式的意义来解释。
下面结合附图对本发明作进一步详细描述。
图1示出根据本发明一个方面的对天线阵列进行盲校准的方法流程图。
在步骤S101中,装置1自天线阵列的多路输入通道中选择一路作为参考通道,计算所述参考通道的射频响应。
具体地,天线阵列中可以有多路输入通道,装置1从中选择一路作为参考通道,例如,将通道1作为参考通道,并对该参考通道进行信道估计,从而计算该参考通道的射频响应。在此,装置1可以从该多路输入通道中选择任意一路作为参考通道。
在此,所述多路输入通道中各路输入通道所分别对应的输入信号可以不同。
例如,若存在M个射频通道(RF pipe),则端口数量为M。在波束赋形情形下,M个通道必须按照幅度和相位(延迟)来进行校准。假设通道的射频响应(RF response)在校准间隔内是时不变的,其在实际中是可行的。通常的校准方案中,参考序列必须是相同的,但在本发明中并不需要。
以下行链路校准为例,假设所述多路输入通道中每个通道的通信量输入是x 1,x 2,…x m,在此,该每个通道的通信量输入x 1,x 2,…x m不 必相同。在步骤S101中,假设装置1选择其中的通道1作为不失普遍性的参考通道,装置1对该参考通道进行LS(Least Square,最小二乘)信道估计,以获得该参考通道的射频响应,在此记为h,其反映了模拟滤波器的动态性能。
优选地,在步骤S101中,装置1根据所述参考通道所对应的输入信号和实际输出信号,对所述参考通道进行信道估计,以确定所述参考通道的射频响应。
具体地,所述参考通道具有对应的输入信号和经由该参考通道传输后的实际输出信号,假设装置1选取射频通道1作为参考通道,当校准开始时,装置1获取该参考通道的输入信号,在此记为x 1,并获取经由该参考通道传输后的实际输出信号,在此记为y 1,因此,装置1对该参考通道进行信道估计,如根据公式y 1=h*x 1,通过LS算法估计,确定该参考通道的射频响应h。
在此,装置1还可以对该参考通道的输入信号和经由该参考通道传输后的实际输出信号进行缓存,在计算时从该缓存中进行获取。进一步地,装置1可以对所述多路输入通道中的各路输入通道所分别对应的输入信号和实际输出信号都进行缓存,在计算需要时从该缓存中进行选择。
例如,假设装置1选取射频通道1作为参考通道,当校准开始时,参考通道的输入信号x 1被缓存在DFE(digital front end,数字前端)中,自天线1耦合的实际输出信号y 1经模数转换后缓存在DFE中。装置1自该DFE中获取该参考通道所对应的输入信号和实际输出信号,根据公式y 1=h*x 1,通过LS算法估计,确定该参考通道的射频响应h。
在步骤S102中,装置1根据所述参考通道的射频响应,以及所述多路输入通道中除所述参考通道以外的任意一路输入通道的输入信号,确定所述任意一路输入通道的输入信号经由重构参考通道的仿真输出信号。
具体地,在步骤S102中,装置1从该多路输入通道中除所述参考通道以外任意选择一路输入通道,并获取该任意一路输入通道的输 入信号,如在缓存中选择该任意一路输入通道对应的输入信号,再根据前述在步骤S101中计算所获得的该参考通道的射频响应,计算该任意一路输入通道的输入信号经由重构参考通道的仿真输出信号,在此,该重构参考通道意指若以前述步骤S101中所选择的参考通道来传输该任意一路输入通道的输入信号。
例如,假设装置1所选择的任意一路输入通道为通道2,其输入信号为x 2,在步骤S102中,装置1例如在缓存中选择获取该通道2的输入信号x 2,随后,装置1再根据在步骤S101中所计算获得的参考通道的射频响应h,将该x 2与h进行卷积,计算获得该通道2的仿真输出信号
Figure PCTCN2018075818-appb-000001
或称为ref 2,该计算用来重构若以该参考通道传输该选择的任意一路输入通道的输入信号时的输出信号。
在步骤S103中,装置1根据所述任意一路输入通道的仿真输出信号,以及经由所述任意一路输入通道传输后的实际输出信号,计算对所述任意一路输入通道的校准滤波器系数。
具体地,在步骤S103中,装置1获取经由所述任意一路输入通道传输后的实际输出信号,如在缓存中选择经由该任意一路输入通道传输后的实际输出信号,该实际输出信号例如事先自其对应的天线耦合,由普通反馈电路进行数字化,并缓存在DFE中;随后,装置1再根据前述在步骤S102中计算所获得的该任意一路输入通道的仿真输出信号,通过对该仿真输出信号和实际输出信号的差异计算,获得对该任意一路输入通道的校准滤波器系数。
接前例,假设装置1所选择的任意一路输入通道为通道2,在步骤S102中,装置1计算获得该通道2的仿真输出信号
Figure PCTCN2018075818-appb-000002
或称为ref 2;在步骤S103中,装置1获得该通道2的实际输出信号为y 2,则装置1可以根据y 2,
Figure PCTCN2018075818-appb-000003
计算获得该通道2的校准滤波器系数。
在步骤S104中,装置1根据所述校准滤波器系数,校准所述任意一路输入通道。
具体地,当装置1在步骤S103中计算确定该任意一路输入通道的校准滤波器系数之后,在步骤S104中,装置1可以根据该校准滤 波器系数,校准所述任意一路输入通道,以使校准后的该任意一路输入通道传输对应的输入信号。
优选地,在步骤S104中,装置1将所述校准滤波器系数复制至所述任意一路输入通道中的滤波器,以校准所述任意一路输入通道。
具体地,除参考通道外,该天线阵列的多路输入通道的各个通道中可以布置有滤波器,如补偿滤波器,来作为校准滤波器;这样,当装置1在步骤S103中计算确定该任意一路输入通道的校准滤波器系数之后,在步骤S104中,装置1可以将该校准滤波器系数复制至该任意一路输入通道中的滤波器,以校准该任意一路输入通道,使该校准后的任意一路输入通道传输对应的输入信号。
接前例,假设装置1所选择的任意一路输入通道为通道2,在步骤S102中,装置1计算获得该通道2的仿真输出信号
Figure PCTCN2018075818-appb-000004
或称为ref 2;在步骤S103中,装置1获得该通道2的实际输出信号为y 2,则装置1可以根据y 2,
Figure PCTCN2018075818-appb-000005
计算导出频域或时域中的该校准滤波器系数,以作为通道2的校准滤波器系数;在步骤S104中,装置1将该校准滤波器系数复制至该通道2中的滤波器。此时,该通道2中的滤波器即可以开始工作了,从而校准该通道2,使该校准后的通道2传输对应的输入信号x 2
在此,在重构了参考通道后,既可以采用频域方法,也可以采用时域方法来获得校准滤波器系数。对于频域方法而言,频域的每个载波都是已知的,其可以作为参考来计算相位差,从而可以得到校准滤波器系数;针对时域方法而言,其可以直接在时域得到校准滤波器系数。在此,采用频域或时域的方法来获得校准滤波器系数可以采用现有的方法,因此,此处不做赘述并通过引用的方法包含于此。
本发明的重点在于其盲校准原理是利用参考通道的频响重构不同时刻的参考通道,并与当时的输出进行比较,从而得到补偿滤波器,实现对上下行天线阵列的校准。
优选地,装置1循环执行上述步骤S102至S104,直至完成对所述天线阵列的所述多路输入通道中除所述参考通道外的每一路输入 通道的校准。
具体地,装置1可以循环执行上述步骤S102至S104,即,装置1在该多路输入通道中第一次选择了除参考通道以外的任意一路输入通道,并完成对该输入通道的校准之后,装置1可以继续选择一路输入通道,即,装置1在该多路输入通道中,除参考通道和第一次已完成校准的输入通道以外,可以再选择任意一路输入通道,并对该输入通道执行前述步骤S102至S104中的操作,对该输入通道进行校准。装置1不停地循环执行上述步骤S102至S104,直至完成对该天线阵列的多路输入通道中除参考通道外的每一路输入通道的校准。
优选地,若该天线阵列存在M个输入通道,装置1选择的参考通道为通道1,则该装置1还可以依次校准通道2至M,直至完成对该天线阵列中除参考通道以外的各个输入通道的校准。
在此,该M个输入通道所各自对应的输入信号可以不间断地传输,若其中某个输入通道尚未校准,则以尚未校准的输入通道传输对应的输入信号,若该输入通道已经得到校准,则以校准后的输入通道传输对应的输入信号。
例如,若该天线阵列存在M个输入通道,装置1选择的参考通道为通道1,通道2至M中各自都布置有滤波器,装置1首先依据参考通道的射频响应h,获得通道2中的校准滤波器系数,并对该通道2进行校准,随后,装置1依次对通道3至M进行相同的处理,一旦通道2至M的校准滤波器系数被导出,即被复制到每个滤波器以对各个通道进行校准。而该天线阵列的业务数据流是连续的直至通道2至M中的滤波器以更新的系数开始工作。
在此,所述多路输入通道所分别对应的输入信号包括以下任一项:
所述天线阵列在上行链路接收的信号;
所述天线阵列在下行链路发射的信号。
在此,本发明利用了相对于校准持续时间而言,RF信道响应的准平稳的特性。基于该事实,通过相同的输入重新构建输出,满足了同时激励的前提条件。
本发明是对参考通道的重建和时域或频域的校准,以对天线阵列进行盲校准,即,相同的输入且只有一个公共反馈路径。其使得在软件中只用业务数据进行天线校准成为可能。
本发明设计仅用业务数据来校准天线阵列以适用于5G波束赋形,而不需要任何导频符号。其是一个通用的架构,其他不同合适的校准算法也可以适用。
图2示出了根据本发明一个优选实施例的对天线阵列的下行链路进行校准的示意图。
其中,x 1,x 2,…x m是该天线阵列的每个输入通道的输入信号序列,其是矢量,且不需要相同。CHi意思是每个通道的RF信道响应,CH是公共反馈通道的信道响应。最开始,滤波器FIR 2至FIR m被设置成旁路,或在前一次校准中已经被设置过。
当校准开始时,将通道1作为参考通道,其输入信号x 1被缓存在DFE中,其自天线1耦合的实际输出信号y 1经模数转换后被缓存在DFE中。因此,根据公式y 1=h*x 1,可以通过LS算法估计该h的值;此后,将通道2的输入信号x 2与h卷积得到
Figure PCTCN2018075818-appb-000006
或称为ref 2,从而模拟以通道1传输该输入信号x 2的传输效果。
通道2的实际输出信号y 2被耦合并被模数转换至DFE。y 2,
Figure PCTCN2018075818-appb-000007
一起可以导出频域或时域中的滤波器系数。此时,装置1将该滤波器系数复制至通道2中的滤波器FIR 2,该滤波器FIR 2即可以开始工作了。此后,装置1对通道3至通道M的输入信号x 3至x m也进行如前述对通道2的输入信号x 2一样的操作。最终,所有的滤波器FIR都可以开始工作,该天线阵列即以校准后的输入通道传输输入信号。
图3示出了根据本发明另一个优选实施例的对天线阵列的上行链路进行盲校准的示意图。
对上行链路的盲校准与前述对下行链路的盲校准相类似,因此,此处不做赘述,并通过引用的方式包含于此。
图4示出了在校准之前参考通道和所有其他通道之间的相位差。
图5示出了在校准之后参考通道和所有其他通道之间的相位差。
直线回归线(straight regression line)不能收敛到一个,因为该方案的分时特性,即串行校准,并且校准数据不是用于信道估计的数据,这是必然的。相位误差接近±10°。该结果是基于频域方法。
图6示出了在校准之后参考通道和所有其他通道之间的相位差。该方结果是基于时域方法。
本发明在成本和系统性能(吞吐量)方面有许多优点。相对于仅使用业务数据流并在硬件中实现的方法,该方法是在DFE实现。由于不需要参考符号,本发明没有吞吐量的损失,并且可以和标准兼容。它兼容性强,吞吐量高,实现成本低。在5G产品中,校准是必须的,可用于数字前端。
图7示出根据本发明另一个方面的对天线阵列进行盲校准的装置示意图。
装置1包括选择装置701、确定装置702、计算装置703和校准装置704。
选择装置701自天线阵列的多路输入通道中选择一路作为参考通道,计算所述参考通道的射频响应。
具体地,天线阵列中可以有多路输入通道,选择装置701从中选择一路作为参考通道,例如,将通道1作为参考通道,并对该参考通道进行信道估计,从而计算该参考通道的射频响应。在此,选择装置701可以从该多路输入通道中选择任意一路作为参考通道。
在此,所述多路输入通道中各路输入通道所分别对应的输入信号可以不同。
例如,若存在M个射频通道(RF pipe),则端口数量为M。在波束赋形情形下,M个通道必须按照幅度和相位(延迟)来进行校准。假设通道的射频响应(RF response)在校准间隔内是时不变的,其在实际中是可行的。通常的校准方案中,参考序列必须是相同的,但在本发明中并不需要。
以下行链路校准为例,假设所述多路输入通道中每个通道的通信量输入是x 1,x 2,…x m,在此,该每个通道的通信量输入x 1,x 2,…x m不 必相同。假设选择装置701选择其中的通道1作为不失普遍性的参考通道,选择装置701对该参考通道进行LS(Least Square,最小二乘)信道估计,以获得该参考通道的射频响应,在此记为h,其反映了模拟滤波器的动态性能。
优选地,选择选择装置701根据所述参考通道所对应的输入信号和实际输出信号,对所述参考通道进行信道估计,以确定所述参考通道的射频响应。
具体地,所述参考通道具有对应的输入信号和经由该参考通道传输后的实际输出信号,假设选择装置701选取射频通道1作为参考通道,当校准开始时,选择装置701获取该参考通道的输入信号,在此记为x 1,并获取经由该参考通道传输后的实际输出信号,在此记为y 1,因此,选择装置701对该参考通道进行信道估计,如根据公式y 1=h*x 1,通过LS算法估计,确定该参考通道的射频响应h。
在此,装置1还可以对该参考通道的输入信号和经由该参考通道传输后的实际输出信号进行缓存,在计算时从该缓存中进行获取。进一步地,装置1可以对所述多路输入通道中的各路输入通道所分别对应的输入信号和实际输出信号都进行缓存,在计算需要时从该缓存中进行选择。
例如,假设选择装置701选取射频通道1作为参考通道,当校准开始时,参考通道的输入信号x 1被缓存在DFE(digital front end,数字前端)中,自天线1耦合的实际输出信号y 1经模数转换后缓存在DFE中。选择装置701自该DFE中获取该参考通道所对应的输入信号和实际输出信号,根据公式y 1=h*x 1,通过LS算法估计,确定该参考通道的射频响应h。
确定装置702根据所述参考通道的射频响应,以及所述多路输入通道中除所述参考通道以外的任意一路输入通道的输入信号,确定所述任意一路输入通道的输入信号经由重构参考通道的仿真输出信号。
具体地,确定装置702从该多路输入通道中除所述参考通道以外任意选择一路输入通道,并获取该任意一路输入通道的输入信号,如 在缓存中选择该任意一路输入通道对应的输入信号,再根据前述选择装置701计算所获得的该参考通道的射频响应,计算该任意一路输入通道的输入信号经由重构参考通道的仿真输出信号,在此,该重构参考通道意指若以前述选择装置701所选择的参考通道来传输该任意一路输入通道的输入信号。
例如,假设选择装置701所选择的任意一路输入通道为通道2,其输入信号为x 2,确定装置702例如在缓存中选择获取该通道2的输入信号x 2,随后,确定装置702再根据选择装置701所计算获得的参考通道的射频响应h,将该x 2与h进行卷积,计算获得该通道2的仿真输出信号
Figure PCTCN2018075818-appb-000008
或称为ref 2,该计算用来重构若以该参考通道传输该选择的任意一路输入通道的输入信号时的输出信号。
计算装置703根据所述任意一路输入通道的仿真输出信号,以及经由所述任意一路输入通道传输后的实际输出信号,计算对所述任意一路输入通道的校准滤波器系数。
具体地,计算装置703获取经由所述任意一路输入通道传输后的实际输出信号,如在缓存中选择经由该任意一路输入通道传输后的实际输出信号,该实际输出信号例如事先自其对应的天线耦合,由普通反馈电路进行数字化,并缓存在DFE中;随后,计算装置703再根据前述确定装置702计算所获得的该任意一路输入通道的仿真输出信号,通过对该仿真输出信号和实际输出信号的差异计算,获得对该任意一路输入通道的校准滤波器系数。
接前例,假设选择装置701所选择的任意一路输入通道为通道2,确定装置702计算获得该通道2的仿真输出信号
Figure PCTCN2018075818-appb-000009
或称为ref 2;计算装置703获得该通道2的实际输出信号为y 2,则计算装置703可以根据y 2,
Figure PCTCN2018075818-appb-000010
计算获得该通道2的校准滤波器系数。
校准装置704根据所述校准滤波器系数,校准所述任意一路输入通道。
具体地,当计算装置703计算确定该任意一路输入通道的校准滤波器系数之后,校准装置704可以根据该校准滤波器系数,校准所述 任意一路输入通道,以使校准后的该任意一路输入通道传输对应的输入信号。
优选地,校准装置704将所述校准滤波器系数复制至所述任意一路输入通道中的滤波器,以校准所述任意一路输入通道。
具体地,除参考通道外,该天线阵列的多路输入通道的各个通道中可以布置有滤波器,如补偿滤波器,来作为校准滤波器;这样,当计算装置703计算确定该任意一路输入通道的校准滤波器系数之后,校准装置704可以将该校准滤波器系数复制至该任意一路输入通道中的滤波器,以校准该任意一路输入通道,使该校准后的任意一路输入通道传输对应的输入信号。
接前例,假设选择装置701所选择的任意一路输入通道为通道2,确定装置702计算获得该通道2的仿真输出信号
Figure PCTCN2018075818-appb-000011
或称为ref 2;计算装置703获得该通道2的实际输出信号为y 2,则计算装置703可以根据y 2,
Figure PCTCN2018075818-appb-000012
计算导出频域或时域中的该校准滤波器系数,以作为通道2的校准滤波器系数;校准装置704将该校准滤波器系数复制至该通道2中的滤波器。此时,该通道2中的滤波器即可以开始工作了,从而校准该通道2,使该校准后的通道2传输对应的输入信号x 2
在此,在重构了参考通道后,既可以采用频域方法,也可以采用时域方法来获得校准滤波器系数。对于频域方法而言,频域的每个载波都是已知的,其可以作为参考来计算相位差,从而可以得到校准滤波器系数;针对时域方法而言,其可以直接在时域得到校准滤波器系数。在此,采用频域或时域的方法来获得校准滤波器系数可以采用现有的方法,因此,此处不做赘述并通过引用的方法包含于此。
本发明的重点在于其盲校准原理是利用参考通道的频响重构不同时刻的参考通道,并与当时的输出进行比较,从而得到补偿滤波器,实现对上下行天线阵列的校准。
优选地,装置1还包括通知装置(未示出)。该通知装置通知所述确定装置702、所述计算装置703和所述校准装置704循环执行其操作,直至完成对所述天线阵列的所述多路输入通道中除所述参考通 道外的每一路输入通道的校准。
具体地,所述确定装置702、所述计算装置703和所述校准装置704可以循环执行其操作,即,该确定装置702、该计算装置703和该校准装置704在该多路输入通道中第一次选择了除参考通道以外的任意一路输入通道,并完成对该输入通道的校准之后,该确定装置702可以继续选择一路输入通道,即,该确定装置702在该多路输入通道中,除参考通道和第一次已完成校准的输入通道以外,可以再选择任意一路输入通道,根据该第二次选择的输入通道的输入信号和参考通道的射频响应,确定该第二次选择的任意一路输入通道的输入信号经由重构参考通道的仿真输出信号;计算装置703再根据该仿真输出信号,以及经由该第二次选择的任意一路输入通道传输后的实际输出信号,计算对该第二次选择的任意一路输入通道的校准滤波器系数;校准装置704根据该校准滤波器系数,校准该第二次选择的任意一路输入通道。通知装置通知这些装置循环执行其操作,直至完成对该天线阵列的多路输入通道中除参考通道外的每一路输入通道的校准。
优选地,若该天线阵列存在M个输入通道,装置1选择的参考通道为通道1,则该装置1还可以依次校准通道2至M,直至完成对该天线阵列中除参考通道以外的各个输入通道的校准。
在此,该M个输入通道所各自对应的输入信号可以不间断地传输,若其中某个输入通道尚未校准,则以尚未校准的输入通道传输对应的输入信号,若该输入通道已经得到校准,则以校准后的输入通道传输对应的输入信号。
例如,若该天线阵列存在M个输入通道,装置1选择的参考通道为通道1,通道2至M中各自都布置有滤波器,装置1首先依据参考通道的射频响应h,获得通道2中的校准滤波器系数,并对该通道2进行校准,随后,装置1依次对通道3至M进行相同的处理,一旦通道2至M的校准滤波器系数被导出,即被复制到每个滤波器以对各个通道进行校准。而该天线阵列的业务数据流是连续的直至通道2至M中的滤波器以更新的系数开始工作。
在此,所述多路输入通道所分别对应的输入信号包括以下任一项:
所述天线阵列在上行链路接收的信号;
所述天线阵列在下行链路发射的信号。
在此,本发明利用了相对于校准持续时间而言,RF信道响应的准平稳的特性。基于该事实,通过相同的输入重新构建输出,满足了同时激励的前提条件。
本发明是对参考通道的重建和时域或频域的校准,以对天线阵列进行盲校准,即,相同的输入且只有一个公共反馈路径。其使得在软件中只用业务数据进行天线校准成为可能。
本发明设计仅用业务数据来校准天线阵列以适用于5G波束赋形,而不需要任何导频符号。其是一个通用的架构,其他不同合适的校准算法也可以适用。
需要注意的是,本发明可在软件和/或软件与硬件的组合体中被实施,例如,可采用专用集成电路(ASIC)、通用目的计算机或任何其他类似硬件设备来实现。在一个实施例中,本发明的软件程序可以通过处理器执行以实现上文所述步骤或功能。同样地,本发明的软件程序(包括相关的数据结构)可以被存储到计算机可读记录介质中,例如,RAM存储器,磁或光驱动器或软磁盘及类似设备。另外,本发明的一些步骤或功能可采用硬件来实现,例如,作为与处理器配合从而执行各个步骤或功能的电路。
另外,本发明的一部分可被应用为计算机程序产品,例如计算机程序指令,当其被计算机执行时,通过该计算机的操作,可以调用或提供根据本发明的方法和/或技术方案。而调用本发明的方法的程序指令,可能被存储在固定的或可移动的记录介质中,和/或通过广播或其他信号承载媒体中的数据流而被传输,和/或被存储在根据所述程序指令运行的计算机设备的工作存储器中。在此,根据本发明的一个实施例包括一个装置,该装置包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处 理器执行时,触发该装置运行基于前述根据本发明的多个实施例的方法和/或技术方案。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。

Claims (12)

  1. 一种对天线阵列进行盲校准的方法,其中,该方法包括:
    a自所述天线阵列的多路输入通道中选择一路作为参考通道,计算所述参考通道的射频响应;
    b根据所述参考通道的射频响应,以及所述多路输入通道中除所述参考通道以外的任意一路输入通道的输入信号,确定所述任意一路输入通道的输入信号经由重构参考通道的仿真输出信号;
    c根据所述任意一路输入通道的仿真输出信号,以及经由所述任意一路输入通道传输后的实际输出信号,计算对所述任意一路输入通道的校准滤波器系数;
    d根据所述校准滤波器系数,校准所述任意一路输入通道。
  2. 根据权利要求1所述的方法,其中,步骤d包括:
    将所述校准滤波器系数复制至所述任意一路输入通道中的滤波器,以校准所述任意一路输入通道。
  3. 根据权利要求1或2所述的方法,其中,步骤a包括:
    根据所述参考通道所对应的输入信号和实际输出信号,对所述参考通道进行信道估计,以确定所述参考通道的射频响应。
  4. 根据权利要求1至3中任一项所述的方法,其中,该方法还包括:
    循环执行步骤b至d,直至完成对所述天线阵列的所述多路输入通道中除所述参考通道外的每一路输入通道的校准。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述多路输入通道中各路输入通道所分别对应的输入信号可以不同。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述多路输入通道所分别对应的输入信号包括以下任一项:
    所述天线阵列在上行链路接收的信号;
    所述天线阵列在下行链路发射的信号。
  7. 一种对天线阵列进行盲校准的装置,其中,该装置包括:
    选择装置,用于自所述天线阵列的多路输入通道中选择一路作为参考通道,计算所述参考通道的射频响应;
    确定装置,用于根据所述参考通道的射频响应,以及所述多路输入通道中除所述参考通道以外的任意一路输入通道的输入信号,确定所述任意一路输入通道的输入信号经由重构参考通道的仿真输出信号;
    计算装置,用于根据所述任意一路输入通道的仿真输出信号,以及经由所述任意一路输入通道传输后的实际输出信号,计算对所述任意一路输入通道的校准滤波器系数;
    校准装置,用于根据所述校准滤波器系数,校准所述任意一路输入通道。
  8. 根据权利要求7所述的装置,其中,所述校准装置用于:
    将所述校准滤波器系数复制至所述任意一路输入通道中的滤波器,以校准所述任意一路输入通道。
  9. 根据权利要求7或8所述的装置,其中,所述选择装置用于:
    根据所述参考通道所对应的输入信号和实际输出信号,对所述参考通道进行信道估计,以确定所述参考通道的射频响应。
  10. 根据权利要求7至9中任一项所述的装置,其中,该装置还包括:
    通知装置,用于通知所述确定装置、所述计算装置和所述校准装置循环执行其操作,直至完成对所述天线阵列的所述多路输入通道中除所述参考通道外的每一路输入通道的校准。
  11. 根据权利要求7至10中任一项所述的装置,其中,所述多路输入通道中各路输入通道所分别对应的输入信号可以不同。
  12. 根据权利要求7至11中任一项所述的装置,其中,所述多路输入通道所分别对应的输入信号包括以下任一项:
    所述天线阵列在上行链路接收的信号;
    所述天线阵列在下行链路发射的信号。
PCT/CN2018/075818 2018-02-08 2018-02-08 一种对天线阵列进行盲校准的方法和装置 WO2019153186A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880088376.9A CN111684310B (zh) 2018-02-08 2018-02-08 一种对天线阵列进行盲校准的方法和装置
PCT/CN2018/075818 WO2019153186A1 (zh) 2018-02-08 2018-02-08 一种对天线阵列进行盲校准的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075818 WO2019153186A1 (zh) 2018-02-08 2018-02-08 一种对天线阵列进行盲校准的方法和装置

Publications (1)

Publication Number Publication Date
WO2019153186A1 true WO2019153186A1 (zh) 2019-08-15

Family

ID=67548772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075818 WO2019153186A1 (zh) 2018-02-08 2018-02-08 一种对天线阵列进行盲校准的方法和装置

Country Status (2)

Country Link
CN (1) CN111684310B (zh)
WO (1) WO2019153186A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2623772A (en) * 2022-10-25 2024-05-01 Univ Cape Town Method and system of calibration of a sensor or a network of sensors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015066884A1 (zh) * 2013-11-08 2015-05-14 华为技术有限公司 单板、无线通信系统及单板内外的通道校正方法
CN104849731A (zh) * 2015-04-28 2015-08-19 中国电子科技集团公司第三十六研究所 一种天线阵元通道的校准方法、装置及接收机
CN105940552A (zh) * 2013-08-16 2016-09-14 亚德诺半导体集团 天线阵列校准的通信单元和方法
CN106450796A (zh) * 2016-09-07 2017-02-22 四川九洲电器集团有限责任公司 一种阵列天线系统及天线的校准方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176555C (zh) * 2002-12-25 2004-11-17 大唐移动通信设备有限公司 一种对智能天线阵系统进行实时校准的方法
GB2461082A (en) * 2008-06-20 2009-12-23 Ubidyne Inc Antenna array calibration with reduced interference from a payload signal
CN107315183B (zh) * 2017-06-01 2020-06-26 西南电子技术研究所(中国电子科技集团公司第十研究所) 导航卫星阵列天线接收系统的校准方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105940552A (zh) * 2013-08-16 2016-09-14 亚德诺半导体集团 天线阵列校准的通信单元和方法
WO2015066884A1 (zh) * 2013-11-08 2015-05-14 华为技术有限公司 单板、无线通信系统及单板内外的通道校正方法
CN104849731A (zh) * 2015-04-28 2015-08-19 中国电子科技集团公司第三十六研究所 一种天线阵元通道的校准方法、装置及接收机
CN106450796A (zh) * 2016-09-07 2017-02-22 四川九洲电器集团有限责任公司 一种阵列天线系统及天线的校准方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2623772A (en) * 2022-10-25 2024-05-01 Univ Cape Town Method and system of calibration of a sensor or a network of sensors

Also Published As

Publication number Publication date
CN111684310B (zh) 2023-08-22
CN111684310A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
EP3057252B1 (en) Cell search in a wireless communication network
JP6022593B2 (ja) 多段階のタイミングおよび周波数同期
US9462550B2 (en) Target wakeup time (TWT) grouping modification
JP6480010B2 (ja) ゴレイ系列を使用する効率的なチャネル推定
US7173899B1 (en) Training and synchronization sequences for wireless systems with multiple transmit and receive antennas used in CDMA or TDMA systems
JP2007089165A (ja) 多重アンテナを使用する無線通信システムにおけるチャネル補正装置及び方法
CN107580758A (zh) 用于在支持全双工方案的通信系统中消除自干扰信号的装置和方法
US10542511B2 (en) Method and apparatus for primary synchronization in internet of things
JP4405491B2 (ja) Ofdm信号の受信方法及び受信機
EP3707830B1 (en) Path selection for fine timing measurement protocol
US20190129024A1 (en) Path selection for fine timing measurement protocol
TW200939810A (en) A method of signalling information
WO2015070679A1 (zh) 快速波束合成系统及其源端各发送天线的载波同步方法
US20180219700A1 (en) Methods and Devices for Resetting a Radio Receiver Channel Estimate
JPWO2004075451A1 (ja) マルチキャリア無線通信システム、送信装置および受信装置
WO2019153186A1 (zh) 一种对天线阵列进行盲校准的方法和装置
US11012106B2 (en) Implementation of improved omni mode signal reception
WO2016172849A1 (zh) 信道估计方法、装置和系统
WO2021068145A1 (zh) 一种信道估计方法及装置
JP5047076B2 (ja) 中継無線通信システム、及び、伝達関数推定方法
WO2018196594A1 (zh) 信号传输方法、相关设备及系统
WO2023065950A1 (zh) 一种信号传输装置以及信号传输方法
WO2023206171A1 (zh) Csi的上报方法、预编码矩阵的确定方法、装置及设备
WO2023206170A1 (zh) Csi的上报方法、预编码矩阵的确定方法、装置及设备
JP2003218828A (ja) Ofdm受信装置および伝搬路推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905529

Country of ref document: EP

Kind code of ref document: A1