WO2019153104A1 - 一种大尺寸铝合金拼焊板类构件冷冻成形方法 - Google Patents

一种大尺寸铝合金拼焊板类构件冷冻成形方法 Download PDF

Info

Publication number
WO2019153104A1
WO2019153104A1 PCT/CN2018/000188 CN2018000188W WO2019153104A1 WO 2019153104 A1 WO2019153104 A1 WO 2019153104A1 CN 2018000188 W CN2018000188 W CN 2018000188W WO 2019153104 A1 WO2019153104 A1 WO 2019153104A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
tailor welded
welded blank
mold
forming
Prior art date
Application number
PCT/CN2018/000188
Other languages
English (en)
French (fr)
Inventor
苑世剑
Original Assignee
苑世剑
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苑世剑 filed Critical 苑世剑
Priority to US16/234,371 priority Critical patent/US10376943B1/en
Publication of WO2019153104A1 publication Critical patent/WO2019153104A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/22Deep-drawing with devices for holding the edge of the blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides

Definitions

  • the invention relates to the technical field of sheet metal forming, in particular to a method for freezing forming a large-sized aluminum alloy tailor welded blank component.
  • Aluminum alloy has excellent specific strength, specific stiffness and corrosion resistance, and has always been one of the main structural materials of aerospace equipment such as rockets and aircraft.
  • the proportion of aluminum alloy in the structure quality of the launch vehicle is about 80%, and the proportion of civil aircraft is more than 50%.
  • large-size monolithic aluminum alloy thin-walled members are urgently required to meet the requirements for high reliability, long life and light weight.
  • the existing technical route for the manufacture of aluminum alloy thin-walled members is "sheet forming + welding into integral members + heat treatment regulation performance".
  • the main problem in the prior art is that the welding causes a large deformation after the block forming, and then undergoes a heat treatment to cause a larger deformation.
  • the integral member cannot be shaped after being deformed, resulting in low precision and incapability of meeting the use requirements.
  • the technical route to be adopted is "preformed large-size billet by sheet metal welding + heat treatment regulation performance + integral forming of large-sized members".
  • friction stir welding has the advantage of high joint strength coefficient, it has become the preferred welding method for aluminum alloy components in the aerospace field in recent years, replacing the fusion welding methods such as arc welding and laser welding. Therefore, there is an urgent need to develop an overall forming technology for large-size aluminum alloy FSW tailor-welded sheets.
  • the present invention provides a method for cold forming of an aluminum alloy tailor welded blank component, which is characterized in that the aluminum alloy tailor welded blank is cooled to a suitable ultra-low temperature interval by a coolant, and is formed by using a mold.
  • the complex aluminum alloy tailor welded blank component comprises the following steps:
  • a first step placing the aluminum alloy tailor welded blank on the mold;
  • the second step the mold is clamped, the mold is filled with a coolant, the mold temperature is lowered to -150 ° C ⁇ -196 ° C;
  • the third step when the temperature of the weld zone of the aluminum alloy tailor welded blank reaches -150 ° C ⁇ -196 ° C, and the temperature of the weld zone is lower than the temperature of the base material zone, that is, the weld zone When a temperature difference occurs between the base material region, the mold applies pressure to deform the aluminum alloy tailor welded blank, and is formed into an aluminum alloy tailor welded blank member;
  • the fourth step separating the molds in the second step, taking out the aluminum alloy tailor welded blank members, and completing the frozen forming of the aluminum alloy tailor welded blank members.
  • the temperature difference between the weld zone and the base material zone in the third step is not less than 30 °C.
  • the aluminum alloy tailor welded blank is an Al-Cu-Mg alloy plate, an Al-Cu-Mn alloy plate, an Al-Mg-Si alloy plate, an Al-Zn-Mg-Cu alloy plate, and an Al-Cu.
  • the aluminum alloy tailor welded blank is an Al-Cu-Mg alloy plate, an Al-Cu-Mn alloy plate, an Al-Mg-Si alloy plate, an Al-Zn-Mg-Cu alloy plate, and an Al-Cu.
  • One of the -Li alloy plates is an Al-Cu-Mg alloy plate, an Al-Cu-Mn alloy plate, an Al-Mg-Si alloy plate, an Al-Zn-Mg-Cu alloy plate, and an Al-Cu.
  • the large-size aluminum alloy tailor welded blank is a large-size aluminum alloy FSW tailor welded blank prepared by friction stir welding technology.
  • the coolant is an ultra-low temperature cooling medium and is one of liquid nitrogen or liquid helium.
  • the aluminum alloy tailor welded blank is subjected to solution treatment, and the aluminum alloy panel tailor welded blank member is subjected to artificial aging treatment after the fourth step.
  • the mold comprises at least one cooling chamber, and the cooling chamber is disposed in the mold in the weld zone for cooling.
  • the mold temperature of the second step is adjusted by the control device, and the control device is connected to the cooling chamber, and the temperature of the cooling chamber is controlled by adjusting the flow rate of the coolant.
  • the mold is further provided with a cold insulation layer.
  • the mold is provided with a cooling passage, and the cooling passage is disposed below the aluminum alloy tailor welded blank.
  • the beneficial effects of the present invention are as follows: 1) The invention utilizes the characteristics that the weld zone has higher plasticity and strength than the base material zone, and the differential temperature forming of the aluminum alloy tailor welded blank under ultra-low temperature can avoid deformation of the weld zone. The cracking problem caused by the large amount; 2) The aluminum alloy tailor welded blank component manufactured by the method of the invention does not cause internal microstructural damage, the microstructure has no change after ultra-low temperature forming, and the original microstructure state is restored after forming; 3) tailor welding The working surface of the plate and the mold forms a frozen lubricating layer, which can reduce the frictional resistance of the plate flow, reduce the forming force, and greatly reduce the tonnage and cost of the forming equipment.
  • FIG. 1 is a schematic view showing the initial state of frozen forming of an aluminum alloy FSW tailor welded blank provided with a cooling passage in a mold according to the present invention
  • FIG. 2 is a schematic view showing an initial state of a freeze-formed flat-bottomed cylindrical member of an aluminum alloy FSW tailor welded blank according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing the end state of a freeze-formed flat-bottomed cylindrical member of an aluminum alloy FSW tailor welded blank according to Embodiment 1 of the present invention
  • Figure 4 is a structural view showing a flat-bottomed cylindrical member formed by freeze-forming an aluminum alloy FSW tailor welded blank according to Embodiment 1 of the present invention
  • Figure 5 is a schematic view showing the initial state of the frozen-formed hemispherical member of the aluminum alloy FSW tailor welded blank according to the embodiment 3 of the present invention
  • Figure 6 is a schematic view showing the final state of the frozen-formed hemispherical member of the aluminum alloy FSW tailor welded blank according to the embodiment 3 of the present invention
  • Figure 7 is a structural view showing a hemispherical member formed by freeze-forming an aluminum alloy FSW tailor welded blank according to a third embodiment of the present invention.
  • Figure 8 is a schematic view showing the initial state of the frozen shaped three-shaped member of the aluminum alloy FSW tailor welded blank according to the embodiment 5 of the present invention
  • Figure 9 is a schematic view showing the end state of the frozen forming of the aluminum alloy FSW tailor welded blank according to the fifth embodiment of the present invention.
  • Fig. 10 is a structural view showing a figure-shaped member for freeze forming of an aluminum alloy FSW tailor welded blank according to a fifth embodiment of the present invention.
  • first control valve 1-1 second control valve 1-2, coolant storage tank 2, die 3-1, binder ring 3-2, punch 3-3, cooling chamber 3 4, ice groove 3-5, aluminum alloy tailor welded blank 4, base material area 4-1, weld zone 4-2, first temperature sensor 5-1, second temperature sensor 5-2, first cold insulation The heat insulating layer 6-1, the second cold insulating layer 6-2, the aluminum alloy tailor welded blank member 7, and the cooling passage 8.
  • FIG. 1 is a schematic view showing the initial state of frozen forming of an aluminum alloy FSW tailor welded blank provided with a cooling passage in a mold according to the present invention
  • the invention provides a method for cold forming of an aluminum alloy tailor welded blank component, which is prepared by a friction stir welding (FSW) technology, and the technical proposal is to use the coolant to make the aluminum alloy fight
  • the welding plate 4 is cooled to a suitable ultra-low temperature section, and a complex aluminum alloy tailor welded blank member 7 is formed by using a mold. Specific steps are as follows:
  • a first step placing the aluminum alloy tailor welded blank on the mold;
  • the second step the mold is clamped, the mold is filled with a coolant, the mold temperature is lowered to -150 ° C ⁇ -196 ° C;
  • the third step when the temperature of the weld zone 4-2 of the aluminum alloy tailor welded blank reaches -150 ° C ⁇ -196 ° C, and the temperature of the weld zone 4-2 is lower than the base material zone 4-1
  • the temperature that is, when the temperature difference ⁇ T between the weld zone 4-2 and the base material zone 4-1 occurs, the mold applies pressure to deform the aluminum alloy tailor welded blank, and is formed into an aluminum alloy tailor welded plate component. 7;
  • the fourth step separating the molds in the second step, taking out the aluminum alloy tailor welded blank members 7, and completing the freezing forming of the aluminum alloy tailor welded members 7.
  • the large-size aluminum alloy tailor welded plate type member freeze forming method relates to a freeze forming device including a mold, the mold including a punch 3-3, a concave die 3-1, and a presser ring 3-2, the die 3-1 is disposed under the mold, the bead ring 3-2 is disposed at a middle portion of the mold, and the punch 3-3 is disposed above the mold for being used for the aluminum alloy
  • the welding plate 4 applies pressure to promote its formation.
  • the first cold insulation layer 6-1 and the second cold insulation layer 6-2 are disposed in the mold to reduce heat exchange or heat conduction between the mold and the outside, avoid loss of cooling capacity, and improve cooling effect of the mold.
  • a groove 3-5 is reserved on the contact surface of the mold and the aluminum alloy tailor welded blank 4 for storing ice.
  • a cooling chamber 3-4 is disposed in the lower concave mold 3-1 of the welded portion 4-2 of the aluminum alloy tailor welded blank 4 for cooling temperature;
  • the freeze forming apparatus further includes a first temperature sensor 5-1 and a second temperature sensor 5-2 for monitoring the temperatures of the weld zone 4-2 and the base material zone 4-1, respectively.
  • the agent storage tank 2 is connected to the cooling chamber 3-4 for regulating the flow rate of the coolant, thereby controlling the temperature of the cooling chamber 3-4.
  • a cooling passage 8 is disposed in the mold, and the cooling passage 8 is disposed under the aluminum alloy tailor welded blank 4 to avoid direct contact between the coolant and the aluminum alloy tailor welded blank 4. The evaporation and loss of the coolant are reduced to facilitate recycling of the coolant in the sealed cooling passage 8.
  • FIG. 2 is a schematic view showing the initial state of the aluminum alloy FSW tailor welded blank in the embodiment of the present invention
  • FIG. 3 is a schematic view showing the end state of the aluminum alloy FSW tailor welded blank in the embodiment of the present invention
  • Fig. 4 is a structural view showing the flat-bottomed cylindrical member of the aluminum alloy FSW tailor welded blank in the present embodiment.
  • the embodiment provides a method for freezing a flat-bottomed cylindrical member of a large-size aluminum alloy FSW tailor welded blank, wherein the aluminum alloy plate is an Al-Cu-Mn alloy, and the specific material is an annealed 2219 aluminum alloy plate having a thickness of 6 mm.
  • the friction stir welding parameters were: the welding forward speed was 300 mm/min, the welding rotational speed was 800 rpm; the circular slab diameter was 2700 mm, and one weld was located on the slab symmetry axis.
  • a flat-bottom cylindrical rigid mold having a diameter of 2250 mm is used, and the mold includes a punch 3-3, a die 3-1, and a binder ring 3-2, wherein the cooling chamber 3-4 is preset in the die 3-1. Specific steps are as follows:
  • a first step placing the 2219 aluminum alloy tailor welded blank 4 on the mold such that the weld zone 4-2 is located above the die cooling chamber 3-4;
  • the second step the coolant is filled into the die cooling chamber 3-4, the temperature of the die cooling chamber 3-4 is cooled to -150 ° C;
  • the third step clamping the bead ring 3-2 and the punch 3-3, the bead ring 3-2 applying a unit pressure of 3 MPa, passing through the first control valve 1-1 and the
  • the second control valve 1-2 regulates the coolant flow rate when the temperature of the weld zone 4-2 of the 2219 aluminum alloy tailor welded blank 4 reaches -150 ° C, and the temperature of the base material zone 4-1 is higher than - At 120 ° C, the punch 3-3 is downwardly applied with a drawing force, so that the 2219 aluminum alloy tailor welded blank 4 is subjected to deep drawing deformation, and is formed into a 2219 aluminum alloy tailor welded blank flat cylindrical member;
  • the punch 3-3, the bead ring 3-2 and the die 3-1 are separated, and the 2219 aluminum alloy tailor welded plate flat bottom cylindrical piece is taken out to complete the 2219 aluminum alloy.
  • the tailor welded blank flat cylindrical member 7 is formed by freezing.
  • the coolant is an ultra-low temperature cooling medium and may be one of liquid nitrogen or liquid helium.
  • the plasticity and strength of the weld zone are higher than that of the base material zone, and the differential temperature forming of the aluminum alloy tailor welded blank under ultra-low temperature is adopted, which can avoid the cracking problem caused by the large deformation of the weld zone;
  • the aluminum alloy formed in this embodiment The flat-bottomed cylindrical part of the tailor welded blank does not cause internal microstructural damage, and the formation of the microstructure is not changed at the ultra-low temperature, and the original tissue state is restored after the forming;
  • the aluminum alloy tailor welded blank flat-bottomed cylindrical piece is frozen forming process of the present embodiment
  • the working surface of the tailor welded blank and the mold form a frozen lubricating layer, which can reduce the frictional resistance of the sheet flow, reduce the forming force, and greatly reduce the tonnage and cost of the forming equipment.
  • the embodiment provides a method for freezing a flat-bottom cylindrical member of an aluminum alloy FSW tailor welded blank, which is different from the embodiment 1 in that the aluminum alloy plate is an Al-Cu-Mg alloy, and the specific material is an annealed state of 2024 aluminum. Alloy plate with a thickness of 7mm.
  • the parameters of the friction stir welding are: the welding forward speed is 200 mm/min, the welding rotation speed is 1000 rpm; the circular slab diameter is 2700 mm, and one weld is located on the slab symmetry axis.
  • a flat-bottom cylindrical rigid mold having a diameter of 2250 mm is used, and the mold includes a punch 3-3, a die 3-1, and a binder ring 3-2, wherein the cooling chamber 3-4 is preset in the die 3-1. Specific steps are as follows:
  • a first step placing the 2024 aluminum alloy tailor welded blank 4 on the mold such that the weld zone 4-2 is located above the die cooling chamber 3-4;
  • the second step the coolant is filled into the die cooling chamber 3-4, the temperature of the die cooling chamber 3-4 is cooled to -172 ° C;
  • the third step clamping the bead ring 3-2 and the punch 3-3, the bead ring 3-2 applying a unit pressure of 3 MPa, passing through the first control valve 1-1 and the
  • the second control valve 1-2 regulates the coolant flow rate when the temperature of the weld zone 4-2 of the 2024 aluminum alloy tailor welded blank 4 reaches -172 ° C, and the temperature of the base material zone 4-1 is higher than - At 142 ° C, the punch 3-3 is downwardly applied with a drawing force, so that the 2024 aluminum alloy tailor welded blank 4 is subjected to deep drawing deformation, and is formed into a flat bottom cylindrical member of 2024 aluminum alloy tailor welded blank;
  • the punch 3-3, the bead ring 3-2 and the die 3-1 are separated, and the 2024 aluminum alloy tailor welded plate flat bottom cylindrical piece is taken out to complete the 2024 aluminum alloy.
  • the tailor welded blank flat cylindrical member 7 is formed by freezing.
  • the coolant is an ultra-low temperature cooling medium and may be one of liquid nitrogen or liquid helium.
  • the plasticity and strength of the weld zone are higher than that of the base material zone, and the differential temperature forming of the aluminum alloy tailor welded blank under ultra-low temperature is adopted, which can avoid the cracking problem caused by the large deformation of the weld zone;
  • the aluminum alloy formed in this embodiment The flat-bottomed cylindrical part of the tailor welded blank does not cause internal microstructural damage, and the formation of the microstructure is not changed at the ultra-low temperature, and the original tissue state is restored after the forming;
  • the aluminum alloy tailor welded blank flat-bottomed cylindrical piece is frozen forming process of the present embodiment
  • the working surface of the tailor welded blank and the mold form a frozen lubricating layer, which can reduce the frictional resistance of the sheet flow, reduce the forming force, and greatly reduce the tonnage and cost of the forming equipment.
  • Figure 5 is a schematic view showing the initial state of the cryo-formed hemispherical member of the aluminum alloy FSW tailor welded blank of the fourth embodiment of the present invention
  • Figure 6 is a schematic view showing the final state of the frozen-formed hemispherical member of the aluminum alloy FSW tailor welded blank according to the fourth embodiment of the present invention.
  • Fig. 7 is a structural view showing a hemispherical member formed by freeze-forming an aluminum alloy FSW tailor welded blank according to a fourth embodiment of the present invention.
  • the embodiment provides a method for cryogenic forming of a semi-spherical component of an aluminum alloy FSW tailor welded blank, wherein the aluminum alloy plate is an Al-Cu-Mn alloy, and the specific material is an annealed 2219 aluminum alloy plate having a thickness of 8 mm.
  • the friction stir welding parameters were: the welding advance speed was 300 mm/min, and the welding rotational speed was 800 rpm.
  • the circular slab has a diameter of 4200 mm, and two welds are respectively located on both sides of the slab symmetry axis of 1750 mm, and a semi-ellipsoidal rigid mold having a diameter of 3350 mm is used, and the mold includes a punch 3-3 and a concave die 3- 1.
  • the first step solid solution treatment of the aluminum alloy tailor welded blank 4, solid solution is heated to 535 ° C by a box type heating furnace, and the aluminum alloy tailor welded blank 4 is placed and then insulated for 45 minutes, and quickly quenched after being taken out;
  • a second step placing the 2219 aluminum alloy tailor welded blank 4 on the mold such that the weld zone 4-2 is located above the die cooling chamber 3-4;
  • the third step the coolant is filled into the die cooling chamber 3-4, the temperature of the die cooling chamber 3-4 is cooled to -180 ° C;
  • the fourth step clamping the blanking ring 3-2 and the punch 3-3, the crimping ring 3-2 applying a unit pressure of 3 MPa, passing through the first control valve 1-1 and the
  • the second control valve 1-2 regulates the coolant flow rate when the temperature of the weld zone 4-2 of the 2219 aluminum alloy tailor welded blank 4 reaches -180 ° C, and the temperature of the base material zone 4-1 is higher than - At 150 ° C, the punch 3-3 is applied with a drawing force downward, so that the 2219 aluminum alloy tailor welded blank 4 is subjected to deep drawing deformation, and is formed into a 2219 aluminum alloy tailor welded blank hemispherical member;
  • the punch 3-3, the bead ring 3-2 and the die 3-1 are separated, and the 2219 aluminum alloy tailor welded plate hemispherical member is taken out to complete the 2219 aluminum alloy tailor welding.
  • the plate hemispherical member 7 is formed by freezing;
  • Step 6 Perform artificial aging treatment on the thin-walled member 7 of the aluminum alloy tailor welded blank, put the 2219 aluminum alloy tailor welded plate hemispherical member into an aging furnace, and after incubated at 175 ° C for 18 hours, take out air cooling to Room temperature.
  • the coolant is an ultra-low temperature cooling medium and may be one of liquid nitrogen or liquid helium.
  • the plasticity and strength of the weld zone are higher than that of the base material zone, and the differential temperature forming of the aluminum alloy tailor welded blank under ultra-low temperature is adopted, which can avoid the cracking problem caused by the large deformation of the weld zone; the aluminum alloy formed in this embodiment
  • the tailor-welded semi-spherical parts do not cause internal microstructural damage.
  • the ultra-low temperature forming has no change in the microstructure, and the original tissue state is restored after forming.
  • the aluminum alloy tailor welded blanks of the aluminum alloy tailor welded blanks are formed during the freeze forming process.
  • the working surface of the mold forms a frozen lubricating layer, which can reduce the frictional resistance of the sheet flow, reduce the forming force, and greatly reduce the tonnage and cost of the forming equipment.
  • the embodiment provides a method for cryogenic forming of a semi-spherical component of an aluminum alloy FSW tailor welded blank, which is different from the third embodiment in that the aluminum alloy plate is an Al-Mg-Si alloy, and the specific material is a quenched 6016 aluminum alloy plate.
  • the thickness is 6mm.
  • the friction stir welding parameters were: the welding advance speed was 400 mm/min, and the welding rotational speed was 1200 rpm.
  • the circular slab has a diameter of 4200 mm, and two welds are respectively located on both sides of the slab symmetry axis of 1750 mm, and a semi-ellipsoidal rigid mold having a diameter of 3350 mm is used, and the mold includes a punch 3-3 and a concave die 3- 1.
  • a first step placing the 6016 aluminum alloy tailor welded blank 4 on the mold such that the weld zone 4-2 is located above the die cooling chamber 3-4;
  • the third step the coolant is filled into the die cooling chamber 3-4, the temperature of the die cooling chamber 3-4 is cooled to -160 ° C;
  • the fourth step clamping the blanking ring 3-2 and the punch 3-3, the crimping ring 3-2 applying a unit pressure of 3 MPa, passing through the first control valve 1-1 and the
  • the second control valve 1-2 regulates the coolant flow rate when the temperature of the weld zone 4-2 of the 6016 aluminum alloy tailor welded blank 4 reaches -160 ° C, and the temperature of the base material zone 4-1 is higher than - At 130 ° C, the punch 3-3 is applied with a drawing force downward, so that the 6016 aluminum alloy tailor welded blank 4 is subjected to deep drawing deformation, and is formed into a 6016 aluminum alloy tailor welded blank hemispherical member;
  • the punch 3-3, the bead ring 3-2 and the die 3-1 are separated, and the 6016 aluminum alloy tailor welded plate hemispherical member is taken out to complete the 6016 aluminum alloy tailor welding.
  • the plate hemispherical member 7 is formed by freezing;
  • the sixth step artificially aging the thin-walled member 7 of the aluminum alloy tailor welded blank, placing the 6016 aluminum alloy tailor welded plate hemispherical member into the aging furnace, and holding the air at 175 ° C for 20 min, then taking out the air cooling to room temperature. .
  • the coolant is an ultra-low temperature cooling medium and may be one of liquid nitrogen or liquid helium.
  • the plasticity and strength of the weld zone are higher than that of the base material zone, and the differential temperature forming of the aluminum alloy tailor welded blank under ultra-low temperature is adopted, which can avoid the cracking problem caused by the large deformation of the weld zone; the aluminum alloy formed in this embodiment
  • the tailor-welded semi-spherical parts do not cause internal microstructural damage.
  • the ultra-low temperature forming has no change in the microstructure, and the original tissue state is restored after forming.
  • the aluminum alloy tailor welded blanks of the aluminum alloy tailor welded blanks are formed during the freeze forming process.
  • the working surface of the mold forms a frozen lubricating layer, which can reduce the frictional resistance of the sheet flow, reduce the forming force, and greatly reduce the tonnage and cost of the forming equipment.
  • FIG. 8 Please refer to FIG. 8, FIG. 9 and FIG. 10,
  • Figure 8 is a schematic view showing the initial state of the frozen shaped three-shaped aluminum alloy FSW tailor welded blank in the present embodiment
  • Figure 9 is a schematic view showing the end state of the frozen-shaped figure of the aluminum alloy FSW tailor welded blank in the embodiment
  • Fig. 10 is a structural view showing the figure-shaped member of the aluminum alloy FSW tailor welded blank in the present embodiment.
  • the embodiment provides a method for freeze forming a triangular shaped member of an aluminum alloy FSW tailor welded blank, wherein the aluminum alloy plate is an Al-Cu-Li alloy, and the specific material is an annealed 2195 aluminum alloy plate having a thickness of 2 mm.
  • the friction stir welding parameters were: the welding advance speed was 200 mm/min, and the welding rotational speed was 1000 rpm.
  • the rectangular slab is 1200mm long by 600mm wide, and the three welds are located at the center of the symmetry axis in the width direction of the slab and on both sides of the symmetry axis of 200mm.
  • the rigid mold is 1200mm long, 300mm wide and 300mm high.
  • the mold includes a punch 3-3, a die 3-1, and a binder ring 3-2, wherein the cooling chamber 3-4 is preset in the die 3-1. Specific steps are as follows:
  • a first step placing the 2195 aluminum alloy tailor welded blank 4 on the mold such that the weld zone 4-2 is located above the die cooling chamber 3-4;
  • the second step the coolant is filled into the die cooling chamber 3-4, the temperature of the die cooling chamber 3-4 is cooled to -196 ° C;
  • the third step clamping the bead ring 3-2 and the punch 3-3, the bead ring 3-2 applying a unit pressure of 3 MPa, passing through the first control valve 1-1 and the
  • the second control valve 1-2 regulates the coolant flow rate when the temperature of the weld zone 4-2 of the 2195 aluminum alloy tailor welded blank 4 reaches -196 ° C, and the temperature of the base material zone 4-1 is higher than - At 150 ° C, the punch 3-3 is applied with a drawing force downward, so that the 2195 aluminum alloy tailor welded blank 4 is subjected to deep drawing deformation, and is formed into a two-shaped piece of 2195 aluminum alloy tailor welded blank;
  • the punch 3-3, the bead ring 3-2 and the die 3-1 are separated, and the 2195 aluminum alloy tailor welded plate is taken out to complete the 2195 aluminum alloy tailor welding.
  • the plate-shaped member 7 is formed by freezing.
  • the coolant is an ultra-low temperature cooling medium and may be one of liquid nitrogen or liquid helium.
  • the plasticity and strength of the weld zone are higher than that of the base material zone, and the differential temperature forming of the aluminum alloy tailor welded blank under ultra-low temperature is adopted, which can avoid the cracking problem caused by the large deformation of the weld zone;
  • the aluminum alloy formed in this embodiment The figure-shaped piece of the tailor welded blank does not cause internal microstructural damage, and the formation of the microstructure is not changed at the ultra-low temperature, and the original tissue state is restored after the forming;
  • the aluminum alloy tailor welded blank of the present embodiment is formed by the blank forming process of the frozen forming process of the aluminum alloy tailor welded blank
  • the working surface of the mold forms a frozen lubricating layer, which can reduce the frictional resistance of the sheet flow, reduce the forming force, and greatly reduce the tonnage and cost of the forming equipment.
  • the embodiment provides a method for freezing a flat-bottom tubular member of an aluminum alloy FSW tailor welded blank, which is different from the embodiment 1 in that the aluminum alloy plate is an Al-Zn-Mg-Cu alloy, and the specific material is an aged state 7075.
  • Aluminum alloy plate with a thickness of 6.5mm.
  • the friction stir welding parameters were: the welding forward speed was 300 mm/min, the welding rotational speed was 800 rpm; the circular slab diameter was 2700 mm, and one weld was located on the slab symmetry axis.
  • a flat-bottom cylindrical rigid mold having a diameter of 2250 mm is used, and the mold includes a punch 3-3, a die 3-1, and a binder ring 3-2, wherein the cooling chamber 3-4 is preset in the die 3-1. Specific steps are as follows:
  • a first step placing the 7075 aluminum alloy tailor welded blank 4 on the mold such that the weld zone 4-2 is located above the die cooling chamber 3-4;
  • the second step the coolant is filled into the die cooling chamber 3-4, the temperature of the die cooling chamber 3-4 is cooled to -180 ° C;
  • the third step clamping the bead ring 3-2 and the punch 3-3, the bead ring 3-2 applying a unit pressure of 3 MPa, passing through the first control valve 1-1 and the
  • the second control valve 1-2 regulates the coolant flow rate when the temperature of the weld zone 4-2 of the 7075 aluminum alloy tailor welded blank 4 reaches -180 ° C, and the temperature of the base material zone 4-1 is higher than - At 150 ° C, the punch 3-3 is applied with a drawing force downward, so that the 7075 aluminum alloy tailor welded blank 4 is subjected to deep drawing deformation, and is formed into a 7075 aluminum alloy tailor welded blank flat-bottomed cylindrical member;
  • the punch 3-3, the bead ring 3-2 and the die 3-1 are separated, and the 7075 aluminum alloy tailor welded plate flat bottom cylindrical piece is taken out to complete the 7075 aluminum alloy.
  • the tailor welded blank flat cylindrical member 7 is formed by freezing.
  • the coolant is an ultra-low temperature cooling medium and may be one of liquid nitrogen or liquid helium.
  • the plasticity and strength of the weld zone are higher than that of the base material zone, and the differential temperature forming of the aluminum alloy tailor welded blank under ultra-low temperature is adopted, which can avoid the cracking problem caused by the large deformation of the weld zone;
  • the aluminum alloy formed in this embodiment The figure-shaped piece of the tailor welded blank does not cause internal microstructural damage, and the formation of the microstructure is not changed at the ultra-low temperature, and the original tissue state is restored after the forming;
  • the aluminum alloy tailor welded blank of the present embodiment is formed by the blank forming process of the frozen forming process of the aluminum alloy tailor welded blank
  • the working surface of the mold forms a frozen lubricating layer, which can reduce the frictional resistance of the sheet flow, reduce the forming force, and greatly reduce the tonnage and cost of the forming equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Forging (AREA)

Abstract

一种大尺寸铝合金拼焊板类构件冷冻成形方法,用冷却剂使所述铝合金拼焊板(4)冷却至超低温区间,并使所述焊缝区(4-2)的温度低于所述母材区(4-1)的温度,采用模具成形出大尺寸铝合金整体曲面构件,从而达到以下技术效果:1)成形极限高,采用超低温下铝合金拼焊板差温成形,利用焊缝区塑性和强度高于母材区的特点,避免焊缝区变形量大导致的开裂问题;2)组织性能好,超低温下成形过程组织性能基本没有改变,成形后恢复原始组织状态,不会产生内部组织损伤;3)成形载荷低,拼焊板和模具的工作表面形成冰冻润滑层,降低板材摩擦阻力和成形力,降低大型装备吨位和造价,适合于制造航空航天领域各种铝合金大尺寸整体薄壁曲面构件。

Description

一种大尺寸铝合金拼焊板类构件冷冻成形方法 技术领域
本发明涉及板材成形技术领域,具体为一种大尺寸铝合金拼焊板类构件冷冻成形方法。
背景技术
铝合金具有优异的比强度、比刚度和耐腐蚀性能,一直是火箭、飞机等航空航天装备的主体结构材料之一。铝合金在运载火箭结构质量的占比约为80%,民用飞机的占比为50%以上。随着新一代大型火箭和大型飞机的发展,迫切需求大尺寸整体结构铝合金薄壁构件,以满足其对高可靠、长寿命和轻量化的要求。
现有的铝合金薄壁构件制造技术路线为“板材分块成形+焊接成整体构件+热处理调控性能”。现有技术存在的主要难题是分块成形后焊接引起较大的变形,再经过热处理带来更大的变形。而且整体构件变形后无法校形,造成精度低,无法满足使用要求。为了解决上述难题,需要采用的技术路线为“板材拼焊制备大尺寸坯料+热处理调控性能+大尺寸构件整体成形”。因搅拌摩擦焊(FSW)具有接头强度系数高的优势,近年来在航空航天领域已经成为铝合金构件首选焊接方法,替代弧焊和激光焊等熔化焊接方法。因此,迫切需要研发大尺寸铝合金FSW拼焊板材整体成形技术。
然而,采用现有的冷成形技术和热成形技术制造大尺寸铝合金薄壁整体构件存在无法克服的难题。对于冷成形技术,当采用普通拉深工艺时,大尺寸薄壁坯料易发生起皱,而FSW焊缝容易引起开裂缺陷,因此起皱开裂缺陷并存无法解决;当采用最先进的板材液压成形工艺时,直径5m构件的成形力达800MN, 超大型流体高压成形装备造价昂贵、风险极大。对于热成形技术,加热状态下FSW焊缝发生软化,导致成形过程开裂无法克服;而且,热成形过程组织性能难于控制。
为了解决传统成形技术制造大尺寸铝合金整体薄壁构件存在的难题,利用发明人前期研究发现的铝合金在超低温下增塑/增强的新现象,发明大尺寸铝合金拼焊板类构件超低温冷冻成形技术。
发明内容
为解决现有技术缺陷,本发明提供一种铝合金拼焊板类构件冷冻成形方法,其技术方案在于,用冷却剂使所述铝合金拼焊板冷却至合适的超低温区间,采用模具成形出复杂铝合金拼焊板构件,具体包括以下步骤:
第一步:将所述铝合金拼焊板放置在所述模具上;
第二步:将所述模具合模,向所述模具内充入冷却剂,使所述模具温度降至-150℃~-196℃;
第三步:当所述铝合金拼焊板焊缝区的温度达到-150℃~-196℃,且所述焊缝区的温度低于所述母材区的温度,即所述焊缝区与所述母材区出现温度差时,所述模具施加压力使所述铝合金拼焊板变形,成形为铝合金拼焊板构件;
第四步:将第二步中所述模具分开,取出所述铝合金拼焊板构件,完成铝合金拼焊板构件的冷冻成形。
较佳的,第三步中所述焊缝区与所述母材区的温度差不小于30℃。
较佳的,所述的铝合金拼焊板是Al-Cu-Mg合金板、Al-Cu-Mn合金板、Al-Mg-Si合金板、Al-Zn-Mg-Cu合金板、Al-Cu-Li合金板中的一种。
较佳的,所述大尺寸铝合金拼焊板为经过搅拌摩擦焊接技术制备的大尺寸铝合金FSW拼焊板。
较佳的,所述冷却剂为一种超低温冷却介质,是液氮或液氦中的一种。
较佳的,在所述第一步之前,对所述铝合金拼焊板进行固溶处理,在所述第四步之后对所述铝合金板拼焊板构件进行人工时效处理。
较佳的,所述模具包括至少一个冷却室,所述冷却室设置于所述焊缝区所在模具内,用于降温。
较佳的,第二步所述模具温度通过控制装置调节,且所述控制装置与所述冷却室相连接,通过调节所述冷却剂的流量,进而控制所述冷却室的温度。
较佳的,所述模具还设置隔冷保温层。
较佳的,所述模具设置冷却通道,所述冷却通道设置于所述铝合金拼焊板的下方。
与现有技术比较,本发明的有益效果在于:1)本发明利用焊缝区塑性和强度高于母材区的特点,采用超低温下铝合金拼焊板差温成形,可以避免焊缝区变形量大导致的开裂问题;2)本发明方法制造的铝合金拼焊板类构件不会产生内部微观组织损伤,超低温下成形对组织性能基本没有改变,成形后恢复原始组织状态;3)拼焊板和模具的工作表面形成冰冻润滑层,可降低板材流动的摩擦阻力,降低成形力,大幅降低成形装备吨位和造价。
附图说明
为了更清楚地说明本发明各实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本发明中模具设置冷却通道的铝合金FSW拼焊板冷冻成形初始状态示意图;
图2本发明实施例1铝合金FSW拼焊板冷冻成形平底圆筒形件初始状态的 示意图;
图3是本发明实施例1铝合金FSW拼焊板冷冻成形平底圆筒形件结束状态的示意图;
图4是本发明实施例1中铝合金FSW拼焊板冷冻成形的平底圆筒形件的结构图;
图5本发明实施例3铝合金FSW拼焊板冷冻成形半球形件初始状态的示意图;
图6是本发明实施例3铝合金FSW拼焊板冷冻成形半球形件结束状态的示意图;
图7是本发明实施例3中铝合金FSW拼焊板冷冻成形的半球形件的结构图;
图8本发明实施例5铝合金FSW拼焊板冷冻成形几字形件初始状态的示意图;
图9是本发明实施例5铝合金FSW拼焊板冷冻成形几字形件结束状态的示意图;
图10是本发明实施例5中铝合金FSW拼焊板冷冻成形的几字形件的结构图。
图中数字表示:第一控制阀1-1、第二控制阀1-2、冷却剂存储罐2、凹模3-1、压边圈3-2、凸模3-3、冷却室3-4、冰凹槽3-5、铝合金拼焊板4、母材区4-1、焊缝区4-2、第一温度传感器5-1、第二温度传感器5-2,第一隔冷保温层6-1,第二隔冷保温层6-2、铝合金拼焊板构件7、冷却通道8。
图中字母表示:温度T、温度差ΔT、拼焊板坯半径R。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
请参见图1,
图1是本发明中模具设置冷却通道的铝合金FSW拼焊板冷冻成形初始状态示意图;
本发明提供一种铝合金拼焊板类构件冷冻成形方法,所述的铝合金拼焊板是经过搅拌摩擦焊接(FSW)技术制备的,其技术方案在于,用冷却剂使所述铝合金拼焊板4冷却至合适的超低温区间,采用模具成形出复杂铝合金拼焊板构件7。具体步骤如下:
第一步:将所述铝合金拼焊板放置在所述模具上;
第二步:将所述模具合模,向所述模具内充入冷却剂,使所述模具温度降至-150℃~-196℃;
第三步:当所述铝合金拼焊板焊缝区4-2的温度达到-150℃~-196℃,且所述焊缝区4-2的温度低于所述母材区4-1的温度,即所述焊缝区4-2与所述母材区4-1出现温度差ΔT时,所述模具施加压力使所述铝合金拼焊板变形,成形为铝合金拼焊板构件7;
第四步:将第二步中所述模具分开,取出所述铝合金拼焊板构件7,完成铝合金拼焊构件7的冷冻成形。
所述大尺寸铝合金拼焊板类构件冷冻成形方法涉及一冷冻成形装置,包括模具,所述模具包括凸模3-3、凹模3-1、压边圈3-2,所述凹模3-1设置于所述模具的下方,所述压边圈3-2设置于所述模具的中部,所述凸模3-3设置于所述模具的上方,用于向所述铝合金拼焊板4施加压力,以促其成形。且在所述模具中设置第一隔冷保温层6-1和第二隔冷保温层6-2,降低模具和外界之间的热交换或热传导,避免冷量损失,提高模具的冷却效果。且在所述模具与所述铝合金拼焊板4接触表面预留一凹槽3-5,用于存冰。且在所述铝合金拼焊板4焊 缝区4-2的下方凹模3-1内设置冷却室3-4,用于冷却温度;
所述冷冻成形装置还包括第一温度传感器5-1和第二温度传感器5-2,分别用于监测所述焊缝区4-2和所述母材区4-1的温度。冷却剂存储罐2和控制装置,所述冷却剂存储罐2用于储存所述冷却剂;所述控制装置包括第一控制阀1-1和第二控制阀1-2,分别与所述冷却剂存储罐2和所述冷却室3-4相连接,用于调节所述冷却剂的流量,进而控制所述冷却室3-4的温度。
作为一种优选方式,所述模具内设置一冷却通道8,所述冷却通道8设置于所述铝合金拼焊板4的下方,避免所述冷却剂和所述铝合金拼焊板4直接接触,降低所述冷却剂的蒸发和损耗,便于冷却剂在密闭的所述冷却通道8中循环利用。
实施例1
请参见图2、图3和图4所示,
图2本实施例中铝合金FSW拼焊板冷冻成形平底圆筒形件初始状态的示意图;
图3是本实施例中铝合金FSW拼焊板冷冻成形平底圆筒形件结束状态的示意图;
图4是本实施例中铝合金FSW拼焊板冷冻成形的平底圆筒形件的结构图。
本实施例提供一种大尺寸铝合金FSW拼焊板平底圆筒形构件冷冻成形方法,其中铝合金板为Al-Cu-Mn合金,具体材料为退火态2219铝合金板,厚度为6mm。搅拌摩擦焊接参数为:焊接前进速度为300mm/min,焊接旋转速度为800rpm;圆形板坯直径为2700mm,1条焊缝位于板坯对称轴。采用直径为2250mm的平底圆柱形刚性模具,且所述模具包括凸模3-3、凹模3-1、压边圈3-2,其中凹模3-1内预置冷却室3-4。具体步骤如下:
第一步:将所述2219铝合金拼焊板4放置在所述模具上,使所述焊缝区4-2位于所述凹模冷却室3-4的上方;
第二步:用所述冷却剂充入所述凹模冷却室3-4,使所述凹模冷却室3-4的温度冷却至-150℃;
第三步:将所述压边圈3-2和所述凸模3-3合模,所述压边圈3-2施加3MPa的单位压力,通过所述第一控制阀1-1和所述第二控制阀1-2调控冷却剂流量,当所述2219铝合金拼焊板4焊缝区4-2的温度达到-150℃,同时所述母材区4-1的温度高于-120℃时,所述凸模3-3下行施加拉深力,使所述2219铝合金拼焊板4发生拉深变形,成形为2219铝合金拼焊板平底圆筒形件;
第四步、将所述凸模3-3、所述压边圈3-2和所述凹模3-1分开,取出所述2219铝合金拼焊板平底圆筒形件,完成2219铝合金拼焊板平底圆筒形构件7冷冻成形。
所述冷却剂为一种超低温冷却介质,可以为液氮或液氦中的一种。
本实施例利用焊缝区塑性和强度高于母材区的特点,采用超低温下铝合金拼焊板差温成形,可以避免焊缝区变形量大导致的开裂问题;本实施例成形的铝合金拼焊板平底圆筒形件不会产生内部微观组织损伤,超低温下成形对组织性能基本没有改变,成形后恢复原始组织状态;本实施例的铝合金拼焊板平底圆筒形件冷冻成形过程拼焊板和模具的工作表面形成冰冻润滑层,可降低板材流动的摩擦阻力,降低成形力,大幅降低成形装备吨位和造价。
实施例2:
本实施例提供一种铝合金FSW拼焊板平底圆筒形构件冷冻成形方法,与实施例1的区别之处在于所述铝合金板为Al-Cu-Mg合金,具体材料为退火态2024铝合金板,厚度为7mm。搅拌摩擦焊接参数为:焊接前进速度为200mm/min, 焊接旋转速度为1000rpm;圆形板坯直径为2700mm,1条焊缝位于板坯对称轴。采用直径为2250mm的平底圆柱形刚性模具,且所述模具包括凸模3-3、凹模3-1、压边圈3-2,其中凹模3-1内预置冷却室3-4。具体步骤如下:
第一步:将所述2024铝合金拼焊板4放置在所述模具上,使所述焊缝区4-2位于所述凹模冷却室3-4的上方;
第二步:用所述冷却剂充入所述凹模冷却室3-4,使所述凹模冷却室3-4的温度冷却至-172℃;
第三步:将所述压边圈3-2和所述凸模3-3合模,所述压边圈3-2施加3MPa的单位压力,通过所述第一控制阀1-1和所述第二控制阀1-2调控冷却剂流量,当所述2024铝合金拼焊板4焊缝区4-2的温度达到-172℃,同时所述母材区4-1的温度高于-142℃时,所述凸模3-3下行施加拉深力,使所述2024铝合金拼焊板4发生拉深变形,成形为2024铝合金拼焊板平底圆筒形件;
第四步、将所述凸模3-3、所述压边圈3-2和所述凹模3-1分开,取出所述2024铝合金拼焊板平底圆筒形件,完成2024铝合金拼焊板平底圆筒形构件7冷冻成形。
所述冷却剂为一种超低温冷却介质,可以为液氮或液氦中的一种。
本实施例利用焊缝区塑性和强度高于母材区的特点,采用超低温下铝合金拼焊板差温成形,可以避免焊缝区变形量大导致的开裂问题;本实施例成形的铝合金拼焊板平底圆筒形件不会产生内部微观组织损伤,超低温下成形对组织性能基本没有改变,成形后恢复原始组织状态;本实施例的铝合金拼焊板平底圆筒形件冷冻成形过程拼焊板和模具的工作表面形成冰冻润滑层,可降低板材流动的摩擦阻力,降低成形力,大幅降低成形装备吨位和造价。
实施例3:
请参见图5、图6和图7所示,
图5本发明实施例4铝合金FSW拼焊板冷冻成形半球形件初始状态的示意图;
图6是本发明实施例4铝合金FSW拼焊板冷冻成形半球形件结束状态的示意图;
图7是本发明实施例4中铝合金FSW拼焊板冷冻成形的半球形件的结构图。
本实施例提供一种铝合金FSW拼焊板半球形构件冷冻成形方法,其中铝合金板为Al-Cu-Mn合金,具体材料为退火态2219铝合金板,厚度为8mm。搅拌摩擦焊接参数为:焊接前进速度为300mm/min,焊接旋转速度为800rpm。圆形板坯直径为4200mm,2条焊缝分别位于距离板坯对称轴1750mm的两侧,采用直径为3350mm的半椭球形刚性模具,且所述模具包括凸模3-3、凹模3-1、压边圈3-2,其中凹模3-1内预置冷却室3-4。具体步骤如下:
第一步:将所述铝合金拼焊板4固溶处理,固溶采用箱式加热炉加热至535℃,所述铝合金拼焊板4放入后保温45分钟,取出后快速水淬;
第二步:将所述2219铝合金拼焊板4放置在所述模具上,使所述焊缝区4-2位于所述凹模冷却室3-4的上方;
第三步:用所述冷却剂充入所述凹模冷却室3-4,使所述凹模冷却室3-4的温度冷却至-180℃;
第四步:将所述压边圈3-2和所述凸模3-3合模,所述压边圈3-2施加3MPa的单位压力,通过所述第一控制阀1-1和所述第二控制阀1-2调控冷却剂流量,当所述2219铝合金拼焊板4焊缝区4-2的温度达到-180℃,同时所述母材区4-1的温度高于-150℃时,所述凸模3-3下行施加拉深力,使所述2219铝合金拼焊板4发生拉深变形,成形为2219铝合金拼焊板半球形件;
第五步、将所述凸模3-3、所述压边圈3-2和所述凹模3-1分开,取出所述2219铝合金拼焊板半球形件,完成2219铝合金拼焊板半球形构件7冷冻成形;
第六步:对所述铝合金拼焊板薄壁构件7进行人工时效处理,把所述2219铝合金拼焊板半球形件放入时效炉中,在175℃下保温18小时后取出空冷至室温。
所述冷却剂为一种超低温冷却介质,可以为液氮或液氦中的一种。
本实施例利用焊缝区塑性和强度高于母材区的特点,采用超低温下铝合金拼焊板差温成形,可以避免焊缝区变形量大导致的开裂问题;本实施例成形的铝合金拼焊板半球形件不会产生内部微观组织损伤,超低温下成形对组织性能基本没有改变,成形后恢复原始组织状态;本实施例的铝合金拼焊板半球形件冷冻成形过程拼焊板和模具的工作表面形成冰冻润滑层,可降低板材流动的摩擦阻力,降低成形力,大幅降低成形装备吨位和造价。
实施例4:
本实施例提供一种铝合金FSW拼焊板半球形构件冷冻成形方法,与实施例3的不同之处在于,其中铝合金板为Al-Mg-Si合金,具体材料为淬火态6016铝合金板,厚度为6mm。搅拌摩擦焊接参数为:焊接前进速度为400mm/min,焊接旋转速度为1200rpm。圆形板坯直径为4200mm,2条焊缝分别位于距离板坯对称轴1750mm的两侧,采用直径为3350mm的半椭球形刚性模具,且所述模具包括凸模3-3、凹模3-1、压边圈3-2,其中凹模3-1内预置冷却室3-4。具体步骤如下:
第一步:将所述6016铝合金拼焊板4放置在所述模具上,使所述焊缝区4-2位于所述凹模冷却室3-4的上方;
第三步:用所述冷却剂充入所述凹模冷却室3-4,使所述凹模冷却室3-4的 温度冷却至-160℃;
第四步:将所述压边圈3-2和所述凸模3-3合模,所述压边圈3-2施加3MPa的单位压力,通过所述第一控制阀1-1和所述第二控制阀1-2调控冷却剂流量,当所述6016铝合金拼焊板4焊缝区4-2的温度达到-160℃,同时所述母材区4-1的温度高于-130℃时,所述凸模3-3下行施加拉深力,使所述6016铝合金拼焊板4发生拉深变形,成形为6016铝合金拼焊板半球形件;
第五步、将所述凸模3-3、所述压边圈3-2和所述凹模3-1分开,取出所述6016铝合金拼焊板半球形件,完成6016铝合金拼焊板半球形构件7冷冻成形;
第六步:对所述铝合金拼焊板薄壁构件7进行人工时效处理,把所述6016铝合金拼焊板半球形件放入时效炉中,在175℃下保温20min后取出空冷至室温。
所述冷却剂为一种超低温冷却介质,可以为液氮或液氦中的一种。
本实施例利用焊缝区塑性和强度高于母材区的特点,采用超低温下铝合金拼焊板差温成形,可以避免焊缝区变形量大导致的开裂问题;本实施例成形的铝合金拼焊板半球形件不会产生内部微观组织损伤,超低温下成形对组织性能基本没有改变,成形后恢复原始组织状态;本实施例的铝合金拼焊板半球形件冷冻成形过程拼焊板和模具的工作表面形成冰冻润滑层,可降低板材流动的摩擦阻力,降低成形力,大幅降低成形装备吨位和造价。
实施例5
请参见图8、图9和图10所示,
图8是本实施例中铝合金FSW拼焊板冷冻成形几字形件初始状态的示意图;
图9是本实施例中铝合金FSW拼焊板冷冻成形几字形件结束状态的示意图;
图10是本实施例中铝合金FSW拼焊板冷冻成形的几字形件的结构图。
本实施例提供一种铝合金FSW拼焊板几字形构件冷冻成形方法,其中铝合 金板为Al-Cu-Li合金,具体材料为退火态2195铝合金板,厚度为2mm。搅拌摩擦焊接参数为:焊接前进速度为200mm/min,焊接旋转速度为1000rpm。矩形板坯尺寸为长1200mm×宽600mm,3条焊缝分别位于板坯宽度方向的对称轴中心、以及距离对称轴200mm的两侧,采用长1200mm、宽300mm、高300mm的刚性模具,且所述模具包括凸模3-3、凹模3-1、压边圈3-2,其中凹模3-1内预置冷却室3-4。具体步骤如下:
第一步:将所述2195铝合金拼焊板4放置在所述模具上,使所述焊缝区4-2位于所述凹模冷却室3-4的上方;
第二步:用所述冷却剂充入所述凹模冷却室3-4,使所述凹模冷却室3-4的温度冷却至-196℃;
第三步:将所述压边圈3-2和所述凸模3-3合模,所述压边圈3-2施加3MPa的单位压力,通过所述第一控制阀1-1和所述第二控制阀1-2调控冷却剂流量,当所述2195铝合金拼焊板4焊缝区4-2的温度达到-196℃,同时所述母材区4-1的温度高于-150℃时,所述凸模3-3下行施加拉深力,使所述2195铝合金拼焊板4发生拉深变形,成形为2195铝合金拼焊板几字形件;
第四步、将所述凸模3-3、所述压边圈3-2和所述凹模3-1分开,取出所述2195铝合金拼焊板几字形件,完成2195铝合金拼焊板几字形构件7冷冻成形。
所述冷却剂为一种超低温冷却介质,可以为液氮或液氦中的一种。
本实施例利用焊缝区塑性和强度高于母材区的特点,采用超低温下铝合金拼焊板差温成形,可以避免焊缝区变形量大导致的开裂问题;本实施例成形的铝合金拼焊板几字形件不会产生内部微观组织损伤,超低温下成形对组织性能基本没有改变,成形后恢复原始组织状态;本实施例的铝合金拼焊板几字形件冷冻成形过程拼焊板和模具的工作表面形成冰冻润滑层,可降低板材流动的摩 擦阻力,降低成形力,大幅降低成形装备吨位和造价。
实施例6
本实施例提供一种铝合金FSW拼焊板平底筒形构件冷冻成形方法,与实施例1的区别之处在于所述铝合金板为Al-Zn-Mg-Cu合金,具体材料为时效态7075铝合金板,厚度为6.5mm。搅拌摩擦焊接参数为:焊接前进速度为300mm/min,焊接旋转速度为800rpm;圆形板坯直径为2700mm,1条焊缝位于板坯对称轴。采用直径为2250mm的平底圆柱形刚性模具,且所述模具包括凸模3-3、凹模3-1、压边圈3-2,其中凹模3-1内预置冷却室3-4。具体步骤如下:
第一步:将所述7075铝合金拼焊板4放置在所述模具上,使所述焊缝区4-2位于所述凹模冷却室3-4的上方;
第二步:用所述冷却剂充入所述凹模冷却室3-4,使所述凹模冷却室3-4的温度冷却至-180℃;
第三步:将所述压边圈3-2和所述凸模3-3合模,所述压边圈3-2施加3MPa的单位压力,通过所述第一控制阀1-1和所述第二控制阀1-2调控冷却剂流量,当所述7075铝合金拼焊板4焊缝区4-2的温度达到-180℃,同时所述母材区4-1的温度高于-150℃时,所述凸模3-3下行施加拉深力,使所述7075铝合金拼焊板4发生拉深变形,成形为7075铝合金拼焊板平底圆筒形件;
第四步、将所述凸模3-3、所述压边圈3-2和所述凹模3-1分开,取出所述7075铝合金拼焊板平底圆筒形件,完成7075铝合金拼焊板平底圆筒形构件7冷冻成形。
所述冷却剂为一种超低温冷却介质,可以为液氮或液氦中的一种。
本实施例利用焊缝区塑性和强度高于母材区的特点,采用超低温下铝合金拼焊板差温成形,可以避免焊缝区变形量大导致的开裂问题;本实施例成形的 铝合金拼焊板几字形件不会产生内部微观组织损伤,超低温下成形对组织性能基本没有改变,成形后恢复原始组织状态;本实施例的铝合金拼焊板几字形件冷冻成形过程拼焊板和模具的工作表面形成冰冻润滑层,可降低板材流动的摩擦阻力,降低成形力,大幅降低成形装备吨位和造价。
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种大尺寸铝合金拼焊板类构件冷冻成形方法,其特征在于,用冷却剂使所述铝合金拼焊板冷却至合适的超低温区间,采用模具成形出大尺寸铝合金拼焊板构件,具体包括以下步骤:
    第一步:将所述铝合金拼焊板放置在所述模具上;
    第二步:将所述模具合模,向所述模具内充入冷却剂,使所述模具温度降至-150℃~-196℃;
    第三步:当所述铝合金拼焊板焊缝区的温度达到-150℃~-196℃,且所述焊缝区的温度低于所述母材区的温度,即所述焊缝区与所述母材区出现温度差时,所述模具施加压力使所述铝合金拼焊板变形,成形为铝合金拼焊板构件;
    第四步:将第二步中所述模具分开,取出所述铝合金拼焊板构件,完成铝合金拼焊板构件的冷冻成形。
  2. 根据权利要求1所述的大尺寸铝合金拼焊板类构件冷冻成形方法,其特征在于,第三步中所述焊缝区与所述母材区的温度差不小于30℃。
  3. 根据权利要求2所述的大尺寸铝合金拼焊板类构件冷冻成形方法,其特征在于,所述的铝合金拼焊板是Al-Cu-Mg合金板、Al-Cu-Mn合金板、Al-Mg-Si合金板、Al-Zn-Mg-Cu合金板、Al-Cu-Li合金板中的一种。
  4. 根据权利要求2或3所述的大尺寸铝合金拼焊板类构件冷冻成形方法,其特征在于,所述的铝合金拼焊板是经过搅拌摩擦焊接技术制备的。
  5. 根据权利要求4所述的大尺寸铝合金拼焊板类构件冷冻成形方法,其特征在于,所述冷却剂为一种超低温冷却介质,是液氮或液氦中的一种。
  6. 根据权利要求1所述的大尺寸铝合金拼焊板类构件冷冻成形方法,其特征在于,在所述第一步之前,对所述铝合金拼焊板进行固溶处理,在所述第四步之后对所述铝合金板件进行人工时效处理。
  7. 根据权利要求1所述的大尺寸铝合金拼焊板类构件冷冻成形方法,其特征在于,所述模具包括至少一个冷却室,所述冷却室设置于所述焊缝区所在模具内,用于降温。
  8. 根据权利要求1所述的大尺寸铝合金拼焊板类构件冷冻成形方法,其特征在于,第二步所述模具温度通过控制装置调节,且所述控制装置与所述冷却室相连接,通过调节所述冷却剂的流量,进而控制所述冷却室的温度。
  9. 根据权利要求8所述的大尺寸铝合金拼焊板类构件冷冻成形方法,其特征在于,所述模具还设置隔冷保温层。
  10. 根据权利要求9所述的大尺寸铝合金拼焊板类构件冷冻成形方法,其特征在于,所述模具设置冷却通道,所述冷却通道设置于所述铝合金拼焊板的焊缝区所在的模具内。
PCT/CN2018/000188 2018-02-08 2018-05-23 一种大尺寸铝合金拼焊板类构件冷冻成形方法 WO2019153104A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/234,371 US10376943B1 (en) 2018-02-08 2018-12-27 Frozen forming method for large tailored plate aluminum alloy component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810126112.XA CN108326159B (zh) 2018-02-08 2018-02-08 一种大尺寸铝合金拼焊板类构件冷冻成形方法
CN201810126112.X 2018-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/234,371 Continuation US10376943B1 (en) 2018-02-08 2018-12-27 Frozen forming method for large tailored plate aluminum alloy component

Publications (1)

Publication Number Publication Date
WO2019153104A1 true WO2019153104A1 (zh) 2019-08-15

Family

ID=62928395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000188 WO2019153104A1 (zh) 2018-02-08 2018-05-23 一种大尺寸铝合金拼焊板类构件冷冻成形方法

Country Status (2)

Country Link
CN (1) CN108326159B (zh)
WO (1) WO2019153104A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605321B (zh) * 2019-09-19 2020-12-18 中南大学 一种铝合金薄壁构件超低温成形方法
CN111745029A (zh) * 2020-07-06 2020-10-09 哈尔滨工业大学 一种径向差厚的曲面件成形方法及装置
CN111940583A (zh) * 2020-07-15 2020-11-17 大连理工大学 一种铝合金薄壁曲面件超低温拉深成形方法
CN111940585B (zh) * 2020-07-15 2021-09-28 大连理工大学 一种高强铝合金薄壳超低温成形过程性能调控方法
CN112139340B (zh) * 2020-09-14 2022-06-21 哈尔滨工业大学 一种铝合金构件超低温成形装置及成型方法
CN112207169A (zh) * 2020-09-15 2021-01-12 比克希汽车科技(合肥)有限公司 一种高速冲压机
CN112139339B (zh) 2020-09-15 2021-08-10 大连理工大学 一种金属薄壁曲面件超低温成形设备
CN112246949A (zh) * 2020-09-27 2021-01-22 大连理工大学 一种铝合金薄壁曲面件超低温介质压力成形方法
CN112517727A (zh) * 2020-11-09 2021-03-19 哈尔滨工业大学 一种铝合金深腔构件超低温成形装置及成形方法
CN112676460A (zh) * 2020-12-07 2021-04-20 北京卫星制造厂有限公司 一种铝锂合金复杂薄壁结构件的超低温柔性成形装置
CN112845787A (zh) * 2021-01-04 2021-05-28 哈尔滨工业大学 一种大尺寸薄壁曲面件超低温成形装置及成型方法
CN114505385B (zh) * 2022-02-23 2022-12-23 山东大学 一种超低温形表一体渐进成形装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227954A (ja) * 2009-03-26 2010-10-14 Furukawa-Sky Aluminum Corp アルミニウム合金板のプレス成形方法
CN103966471A (zh) * 2014-04-09 2014-08-06 马鞍山新嘉机械制造有限公司 一种含有金属碲的汽车铝合金板材的制备方法
CN105397288A (zh) * 2015-12-07 2016-03-16 中色科技股份有限公司 一种等厚铝合金拼焊板的激光焊接方法
CN107159867A (zh) * 2017-04-11 2017-09-15 华南理工大学 高压快冷制备金属材料的方法及装置
CN107520308A (zh) * 2017-08-25 2017-12-29 武汉理工大学 一种高强钢伺服中温冲压工艺
CN107866491A (zh) * 2017-12-06 2018-04-03 哈尔滨工业大学 一种铝合金板类构件冷冻成形方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403768B2 (ja) * 2008-07-25 2014-01-29 ヒュンダイ スチール カンパニー プレス硬化用金型の冷却装置
CN201342446Y (zh) * 2008-10-28 2009-11-11 沈阳理工大学 一种镁合金拼焊板拉深成形装置
KR101253838B1 (ko) * 2010-12-27 2013-04-12 주식회사 포스코 이물성 부품의 제조방법
ES2656564T3 (es) * 2011-04-28 2018-02-27 Kabushiki Kaisha Kobe Seiko Sho Artículo moldeado por prensado en caliente y método de fabricación del mismo
DE102012104734A1 (de) * 2012-05-31 2013-12-05 Outokumpu Nirosta Gmbh Verfahren und Vorrichtung zur Herstellung von umgeformten Blechteilen bei Tieftemperatur
CN102974675A (zh) * 2012-11-01 2013-03-20 哈尔滨工业大学 一种铝合金钣金件固溶水淬后热成形方法
CN203002965U (zh) * 2012-12-26 2013-06-19 武汉钢铁(集团)公司 选择性冷却控制的热冲压件成形模具
DE102013110299A1 (de) * 2013-09-18 2015-03-19 Benteler Automobiltechnik Gmbh Partiell gekühltes Warmformwerkzeug
CN107199289B (zh) * 2017-05-27 2018-11-23 武汉理工大学 高强度铝合金fsw拼焊板车身构件热成形加热设备
CN107520270B (zh) * 2017-08-08 2019-07-16 中南大学 一种铝合金深冷变厚度轧制工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227954A (ja) * 2009-03-26 2010-10-14 Furukawa-Sky Aluminum Corp アルミニウム合金板のプレス成形方法
CN103966471A (zh) * 2014-04-09 2014-08-06 马鞍山新嘉机械制造有限公司 一种含有金属碲的汽车铝合金板材的制备方法
CN105397288A (zh) * 2015-12-07 2016-03-16 中色科技股份有限公司 一种等厚铝合金拼焊板的激光焊接方法
CN107159867A (zh) * 2017-04-11 2017-09-15 华南理工大学 高压快冷制备金属材料的方法及装置
CN107520308A (zh) * 2017-08-25 2017-12-29 武汉理工大学 一种高强钢伺服中温冲压工艺
CN107866491A (zh) * 2017-12-06 2018-04-03 哈尔滨工业大学 一种铝合金板类构件冷冻成形方法

Also Published As

Publication number Publication date
CN108326159A (zh) 2018-07-27
CN108326159B (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2019153104A1 (zh) 一种大尺寸铝合金拼焊板类构件冷冻成形方法
US10376943B1 (en) Frozen forming method for large tailored plate aluminum alloy component
US11932915B2 (en) Method for forming aluminum alloy thin-walled curved part by ultra-low temperature gradient drawing
WO2020103217A1 (zh) 一种铝合金异形管件超低温介质压力成形方法
CN101301714B (zh) 不锈钢板翅式换热器芯体高温钎焊夹具及其制造工艺
CN101782341B (zh) 一种铝制板翅式换热器及其真空钎焊工艺方法
WO2021208333A1 (zh) 一种双层金属复合钢板的制造方法
CN103990901B (zh) 使用预冷的电阻焊接方法
CN105798409A (zh) 靶材组件的焊接方法
KR20180114139A (ko) 알루미늄 저항 점 용접의 품질을 개선하기 위한 방법
CN105479119A (zh) 一种5m级贮箱球形瓜瓣的成形工艺
WO2021208332A1 (zh) 一种三层金属复合钢板的制造方法
CN104588896A (zh) 铝靶材组件的焊接方法
CN104014923B (zh) 一种铝合金扩散连接方法
CN113210830B (zh) 一种增材制造成形γ-TiAl金属间化合物的真空电子束焊接方法
TWI756997B (zh) 一種多腔式均溫板的封口焊接方法
JP7376458B2 (ja) 抵抗スポット溶接方法
US11413672B2 (en) Apparatus and method for forming large-scale thin-walled ring shell by hot-press bending with internal gas pressure
US2100255A (en) Method of making composite bodies of zinc and aluminum
CN111947389B (zh) 真空绝热体及制造真空绝热体的装置
CN108544118B (zh) 随焊加载冷源及位移控制载荷的焊接方法
CN108356392B (zh) 一种用于铝合金新能源汽车动力承载装置的焊接工艺
CN109530916A (zh) T型接头的激光焊接装置及焊接变形的控制方法
CN109807511B (zh) 减小氢裂倾向的在役焊接用套筒
JP4591023B2 (ja) テーラードブランク材のプレス成形方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905244

Country of ref document: EP

Kind code of ref document: A1