WO2021208332A1 - 一种三层金属复合钢板的制造方法 - Google Patents

一种三层金属复合钢板的制造方法 Download PDF

Info

Publication number
WO2021208332A1
WO2021208332A1 PCT/CN2020/113229 CN2020113229W WO2021208332A1 WO 2021208332 A1 WO2021208332 A1 WO 2021208332A1 CN 2020113229 W CN2020113229 W CN 2020113229W WO 2021208332 A1 WO2021208332 A1 WO 2021208332A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
composite
heating
temperature
clad steel
Prior art date
Application number
PCT/CN2020/113229
Other languages
English (en)
French (fr)
Inventor
陈建才
Original Assignee
绿华投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 绿华投资有限公司 filed Critical 绿华投资有限公司
Publication of WO2021208332A1 publication Critical patent/WO2021208332A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/386Plates

Definitions

  • the invention relates to a method for manufacturing a three-layer metal composite steel plate, which belongs to the technical field of metal composite material manufacturing.
  • the metal composite plate refers to the combination of two or more metal plates through layer contact to achieve the effect of saving resources and reducing costs without reducing the use effect.
  • the research of metal composite plate was first started in the United States in 1860. After more than one hundred years of development, the production technology of metal composite plate has been continuously improved, and the production methods have also increased. In 1986, the hot rolling method and thick plate were developed. Rolling method. In 1990, the continuous hot-rolled strip production method was developed, which mainly refers to the production of thin plates.
  • the excellent combination properties of metal composite panels have been widely used in chemical, electric power, machinery, etc., and the demand is constantly increasing.
  • the commonly used manufacturing methods of metal composite panels include explosive compounding method and explosive-rolling compound method; explosive compounding method is a kind of high practical value high-tech that uses explosives as energy for metal welding and production of metal composite materials.
  • the biggest feature of the explosive compound method is to weld the same or any combination of metals together in a simple, rapid and strong manner in an instant. Its biggest use is to manufacture bimetals and multi-metals in various combinations, shapes, and uses.
  • Metal composite materials; explosive composite method has high bonding strength and good reprocessing performance. Explosive composite can be applied to tantalum and lead with large melting points, titanium and carbon steel with large thermal expansion coefficients, and lead and steel with large hardness differences.
  • the method is used for production, especially the composite of bimetals such as intermetallic compound is easily formed at the bonding interface. It is very difficult to use the usual composite method, and the explosive composite method can be used to obtain a composite board with good performance.
  • the Chinese patent with the application number CN201110347172.2 discloses a composite steel plate and a manufacturing method thereof, and specifically discloses that the manufacturing method of the composite steel plate includes the following steps: pairing a substrate and a composite plate; polishing the surface roughness value of the bonding surface of the surface substrate Not greater than Ra 25 ⁇ m; explosive welding explosives are placed on the composite plate to ignite and detonate, and explosively welded together; surface repair welding is used to repair unwelded points; heat treatment is maintained at 900-920°C for 15-20min; the composite steel plate is cut to composite The finished size of the steel plate; the performance test is carried out according to GB/T6396-2008 to test the mechanical properties of the composite steel plate; the ultrasonic flaw detection is carried out according to the NB/T47002-
  • the composite plate produced by the explosive composite method has a large size due to the limitation of the process technology. Limitations, lack of competitiveness in the production of bimetal composite panels with thin cladding and large panel size.
  • the explosive-rolling composite method based on the explosive composite method, rolls the composite plate, making full use of the advantages of the explosive process, and at the same time improving the surface quality and dimensional accuracy of the composite plate.
  • the rolling process includes hot rolling and cold rolling.
  • the present invention provides a method for manufacturing a three-layer metal clad steel plate, which can be welded in a closed vacuum chamber to produce high-performance, high-value-added clad steel plates without polluting the environment, and has a safety factor. High, belongs to the green environmental protection process.
  • a method for manufacturing a three-layer metal composite steel plate the specific steps are as follows:
  • pretreatment milling and grinding the surface of the composite billet steel plate to be composited
  • Adhesive Apply adhesive on the composite surface of the treated composite blank steel plate, and stack the composite surfaces of the two composite blank steel plates coated with the adhesive face-to-face in a four-corner alignment manner;
  • Welding Use argon arc welding to perform spot welding on the composite boundary line of the laminated composite steel plate. After the spot welding is completed, put the composite steel plate into the vacuum chamber of the welder, and evacuate the vacuum chamber of the welder to a high vacuum state. Weld and seal around the composite interface of the composite steel plate;
  • S5. Heating Use a soaking furnace to heat up the welded clad steel plate in three stages including low-temperature heating, medium-temperature heating and high-temperature heating.
  • the total heating time is no less than 34 hours, and the temperature after heating is no less than 1270°C;
  • the thickness of the composite billet steel plate is not greater than 370 mm.
  • step S4 spot welding is performed on each composite boundary line of the composite steel plate, three welding points are set on each side, and the spot welding length is 2 to 3 cm; the high vacuum state is that the vacuum degree is 5.0 ⁇ 10 - 2 Pa.
  • the weld penetration depth is not less than 3.5 cm.
  • step S5 the specific steps of heating in the low temperature section, heating in the middle temperature section and heating in the high temperature section in the step S5 are as follows:
  • Cooling furnace with open cover When the temperature in the soaking furnace is not greater than 500°C, the composite steel plate shall be loaded, and the steel shall be simmered for 1 to 1.5 hours after the cover is opened, and then the steel shall be sealed for simmering for 1 to 1.5 hours. Maintain at 500 ⁇ 600°C;
  • the composite steel plate When the composite steel plate is heated in the low temperature section, it is heated to above 800°C at a heating rate of not more than 65°C/hour, the heating time is 4 to 4.5 hours, and the temperature section is above 800°C for 3.5 to 4 hours;
  • the heating speed in the high temperature section is not limited. After the target temperature, maintain high temperature soaking for 17 to 17.5 hours;
  • the rolling force of rough rolling is not less than 5000 tons
  • the rolling force of finishing rolling is not less than 5000 tons.
  • step S8 the off-line temperature of the composite steel plate is 400-450°C, and the stacking slow cooling time is greater than 48 hours.
  • the composite billet steel plate is one of ordinary carbon structural steel or low-alloy structural steel.
  • the present invention provides a method for manufacturing a three-layer metal clad steel plate.
  • argon arc welding is used to spot weld the composite boundary of the bonded clad steel plate, and then the whole is gas-extracted and welded in a closed vacuum chamber.
  • the welding method of the present invention overcomes the problems of high risk and environmental pollution in the process of using the explosive clad method for the production of clad steel plates in the prior art.
  • the welding process of the manufacturing method of the present invention is completely sealed, with high safety and It does not pollute the environment and belongs to a green environmental protection process.
  • the composite steel plate produced by the welding method provided by the present invention has a high yield and can be artificially Strictly control the welding process to ensure the welding quality and the welding performance of the composite steel plate.
  • the composite steel plate is heated and rolled after welding to make the plate and the plate completely fused.
  • the temperature is strictly controlled during the heating process of the present invention, and the heating temperature is gradually increased so that
  • the welded clad steel plate better adapts to temperature changes, overcomes the sudden high temperature and huge temperature difference in the explosive clad process in the prior art, which causes the steel plate to crack. Yield rate and added value of clad steel plate.
  • Figure 1 is a schematic diagram of the process flow of the present invention
  • Fig. 2 is a heating curve diagram of Example 1 of the present invention.
  • a method for manufacturing a three-layer metal clad steel plate is made of ordinary carbon structural steel. The specific steps are as follows:
  • Magnetic measurement Determine the size of the composite slab and roll the size. The size of each composite slab is not greater than 370mm. Measure the magnetic content of each composite slab. The composite slab needs to be demagnetized to reduce the excessive magnetic content;
  • milling and grinding the surface of the composite billet steel plate includes rough milling, fine milling and edge milling; rough milling first mills off the composite surface oxide scale of the composite billet steel plate, and then fine milling
  • the composite interface is milled flat, and the milling edge mills the length and width dimensions of the composite interface to be consistent; the grinding treatment is mainly to eliminate the composite interface step difference of the milled composite billet steel plate and make it smoother;
  • Adhesive apply adhesive on the composite surface of the treated composite blank steel plate, and the composite surfaces of the two composite blank steel plates coated with the adhesive are stacked face-to-face in a four-corner alignment manner, and then the adhesive is applied Before, it is necessary to ensure that the interface of the composite billet steel plate to be composited is free of oil and no visible dust;
  • Heating use the soaking rate to heat up the welded clad steel plate in three stages, including low temperature heating, medium temperature heating and high temperature heating, and maintain high heat for 1 to 1.5 hours before tapping, and the total time from heating to tapping Not less than 34 hours, and the temperature after heating is not less than 1270°C;
  • the off-line temperature of the clad steel plate after straightening and rolling is 400 ⁇ 450°C.
  • the stacking of the clad steel plate after off-line is slowly cooled, and the stacking slow cooling time is more than 48 hours. After the slow cooling is completed, the clad steel plate is 100% JB/T4730.3-2005 standard carries out flaw detection, cutting segmentation, printing, avoiding surface treatment and other performance testing.
  • the heating rate of the low temperature section heating, the medium temperature section heating and the high temperature section heating are strictly controlled, the heating rate of the low temperature section heating is not more than 65°C/hour, and the heating rate of the medium temperature section heating is not more than 80 °C/hour, the heating rate must be gradually increased.
  • the specific heating steps are as follows :
  • A1 Cooling furnace with open cover. When the temperature in the soaking furnace is not more than 500°C, the composite steel plate is loaded. After opening the cover and braising the steel for 1 hour, then the cover is braised for 1 hour. During the braising process, no ignition and heating are performed, and the temperature is maintained at 500°C. ;
  • the composite steel plate When the composite steel plate is heated in the low temperature section, it is heated to 800°C at a heating rate of not more than 65°C/hour, the heating time is 4 hours, and the temperature is maintained at 800°C for 4 hours;
  • A3. Increase the heating rate to no more than 80°C/hour in the middle temperature section and continue heating to 1000°C and keep it at this temperature for 1 hour.
  • the total heating and holding time in the middle temperature section shall not be less than 3.5 hours;
  • the temperature is higher than 1000°C, increase the heating rate of the soaking furnace, and use 1270°C as the target temperature for heating.
  • the heating speed in the high temperature section is not limited, and the high temperature heating time is 2.5 hours. After reaching the target temperature, maintain high temperature soaking for 17 hours;
  • Embodiment 2 The difference between Embodiment 2 and Embodiment 1 is:
  • Low-alloy structural steel is selected for the metal clad billet steel plate
  • the heating rate of the low temperature section heating, the medium temperature section heating and the high temperature section heating are strictly controlled, the heating rate of the low temperature section heating is not more than 65°C/hour, and the heating rate of the middle temperature section heating is not more than 80°C/hour ,
  • the heating rate must be gradually increased. No, the temperature rise from the base temperature to the target temperature during the process of slowly offsetting the heating and stress release can prevent the composite steel plate from cracking due to stress release during heating; the heating rate of the high temperature section is not controlled.
  • the initial temperature when the high-temperature section is turned on is as high as 1000°C.
  • the long-term heating has made the heating temperature of the composite steel plate uniform and the stress is also released. Therefore, the heating rate of the high-temperature section does not need to be strictly controlled.
  • the specific heating steps are as follows:
  • Cooling furnace with open cover When the temperature in the soaking furnace is not greater than 500°C, it is filled with composite steel plate. After opening the cover and braising for 1.5 hours, the cover is braised for 1 hour. During the braising process, the heating will not be ignited and the temperature may be tempered. , Keep at 550°C;
  • the composite steel plate When the composite steel plate is heated in the low temperature section, it is heated to 840°C at a heating rate of not more than 65°C/hour, the heating time is 4.5 hours, and the temperature is maintained at 840°C for 3.5 hours;
  • A3. Increase the heating rate to no more than 80°C/hour in the middle temperature section and continue heating to 1050°C and keep it at this temperature for 1.5 hours.
  • the total heating and holding time in the middle temperature section shall not be less than 3.5 hours;
  • the temperature is greater than 1000°C, increase the heating rate of the soaking furnace, and use 1285°C as the target temperature for heating.
  • the heating speed in the high temperature section is not limited, and the high temperature heating time is 2.5 hours. After reaching the target temperature, maintain high temperature soaking for 17.5 hours;
  • Embodiment 3 The difference between Embodiment 3 and Embodiment 1 is:
  • the heating rate of the low temperature section heating, the medium temperature section heating and the high temperature section heating are strictly controlled, the heating rate of the low temperature section heating is not more than 65°C/hour, and the heating rate of the middle temperature section heating is not more than 80°C/hour ,
  • the heating rate must be gradually increased. No, the temperature rise from the base temperature to the target temperature during the process of slowly offsetting the heating and stress release can prevent the composite steel plate from cracking due to stress release during heating; the heating rate of the high temperature section is not controlled.
  • the initial temperature when the high-temperature section is turned on is as high as 1000°C.
  • the long-term heating has made the heating temperature of the composite steel plate uniform and the stress is also released. Therefore, the heating rate of the high-temperature section does not need to be strictly controlled.
  • the specific heating steps are as follows:
  • A1 Cooling furnace with open cover. When the temperature in the soaking furnace is not more than 500°C, the composite steel plate is loaded. After opening the cover and braising the steel for 1 hour, then the cover is braised for 1.5 hours. During the braising process, no ignition and heating are performed, and the temperature is maintained at 530°C. ;
  • the composite steel plate When the composite steel plate is heated in the low temperature section, it is heated to 820°C at a heating rate of no more than 65°C/hour, the heating time is 4 hours, and the temperature is maintained at 820°C for 3.5 hours;
  • A3. Increase the heating rate to no more than 80°C/hour in the middle temperature section and continue heating to 1020°C and keep it at this temperature for 1 hour.
  • the total heating and holding time in the middle temperature section shall not be less than 3.5 hours;
  • the temperature is greater than 1000°C, increase the heating rate of the soaking furnace, and use 1255°C as the target temperature for heating.
  • the heating speed in the high temperature section is not limited, and the high temperature heating time is 2 hours. After reaching the target temperature, maintain high temperature soaking for 17 hours;
  • the soaking furnace temperature is controlled at the lower limit temperature of high temperature soaking at 1255°C, and the total time from heating to tapping is 34 hours.
  • the three-layer metal composite steel plates prepared according to the above-mentioned embodiments 1 to 3 are used in the fields of high-performance double-layer metal container manufacturing, steel pipe manufacturing, or building structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本发明提供一种三层金属复合钢板的制造方法,具体步骤如下:测磁;铣面、打磨复合坯钢板预处理;涂抹粘合剂叠放粘合复合坯钢板;通过点焊结合真空抽气焊接完成复合钢板的焊接、密封;采用均热炉对焊接后的复合钢板进行包括低温加热、中温加热和高温加热三个阶段的加热升温;出炉后的复合钢板经除磷箱清除复合钢板表面氧化皮后分别进行粗轧和精轧;矫直轧制后的复合钢板;对下线后的复合钢板堆垛缓冷及探伤检测,本发明的方法能够制造高性能、高附加值的复合钢板且不污染环境,安全系数高,属于绿色环保工艺。

Description

一种三层金属复合钢板的制造方法 技术领域
本发明涉及一种三层金属复合钢板的制造方法,属于金属复合材料制造技术领域。
背景技术
金属复合板是指两张以上金属板通过层接触结合以达到在不降低使用效果的前提下节约资源、降低成本的效果。金属复合板的研究最早是由美国于1860年开始的,经过一百多年的发展,金属复合板的生产技术得到不断提高,生产方法也日益增多,在1986年开发了热轧法、厚板轧制法。1990年又开发了连续热轧带卷的生产法,主要是指薄板的生产。金属复合板具有的优良组合性能,在化工、电力、机械等方面得到广泛应用,且需求量在不断增加。
目前,常用的金属复合板的制造方法有爆炸复合法和爆炸-轧制复合法;爆炸复合法是用炸药作能源进行金属间焊接和生产金属复合材料的一种很有实用价值的高新技术,爆炸复合法的最大特点是在一瞬间将相同的或者是任意金属组合简单、迅速和强固地焊接在一起,它最大的用途是制造各种组合、各种形状、各种用途的双金属及多金属复合材料;爆炸复合法结合强度高,具有良好的再加工性能,对于熔点相差大的钽与铅、热膨胀系数相差大的钛与碳钢、硬度相差大的铅与钢等均能应用爆炸复合法进行生产,尤其是在结合界面容易生成金属间化合物等双金属的复合,采用通常的复合方法是很困难的,而采用爆炸复合法可以获得性能良好的复合板。申请号为CN201110347172.2的中国专利公开了一种复合钢板及其制造方法,具体公开了复合钢板的制造方法包括以下步骤:将基板和复板组对;打磨表面基板的结合面表面粗糙度值不大于Ra 25μm;爆炸焊接炸药铺放在复板上点燃引爆,爆炸焊接在一起;表面补焊对未焊接点进行补焊;热处理在900-920℃保温15-20min;将复合钢板切到复合钢板的成品尺寸;性能检测按照GB/T6396-2008对复合钢板进行力学性能检验;超声波探伤按照NB/T47002-2009对复合板进行100%探伤检验;打磨复合钢板 表面表面粗糙度值不大于Ra 2μm,利用该发明的方法制造的复合钢板耐腐蚀使用寿命长,但是爆炸复合法安全系数较低,环境污染严重,同时采用爆炸复合方法生产的复合板由于受工艺技术的限制,尺寸有很大的局限性,在生产覆层薄、板面尺寸大的双金属复合板方面缺乏竞争力。爆炸-轧制复合法,在爆炸复合法的基础上,对复合板进行轧制,充分利用了爆炸工艺的优点,同时提高了复合板的表面质量和尺寸精度,轧制工艺包括热轧和冷轧两个步骤,热轧主要是为了获得要求的板材厚度,总加工量较大,冷轧主要是为了获得最终精确的板材厚度尺寸,总加工量较小,通过爆炸-轧制复合法,在一定程度上能够弥补单独采用爆炸法的不足,但是其带来的安全以及环境污染问题并没有得到有效解决。
发明内容
为了克服现有技术的问题,本发明提供一种三层金属复合钢板的制造方法,在密闭真空室中进行抽气焊接,能够制造高性能、高附加值的复合钢板且不污染环境,安全系数高,属于绿色环保工艺。
本发明的技术方案如下:
一种三层金属复合钢板的制造方法,具体步骤如下:
S1、测磁:确定复合坯钢板的尺寸并轧制尺寸,测量复合坯钢板的磁含量;
S2、预处理:对复合坯钢板的待复合面进行铣面、打磨处理;
S3、粘合;在经过处理后的复合坯钢板的复合面涂抹粘合剂并将涂抹粘合剂的两复合坯钢板的复合面以四角对齐的方式面对面叠放粘合;
S4、焊接:使用氩弧焊在叠放粘合后的复合钢板的复合界线上进行点焊,点焊完成后,将复合钢板放入焊机真空室内,将焊机真空室抽至高真空状态后对复合钢板的复合界面四周进行焊接、密封;
S5、加热:采用均热炉对焊接后的复合钢板进行包括低温加热、中温加热和高温加热三个阶段的加热升温,加热时间总计不少于34小时,加热完成后 温度不小于1270℃;
S6、轧制:出炉后的复合钢板经除磷清除复合钢板表面氧化皮后分别进行粗轧和精轧,粗轧的终端温度不小于900℃,精轧的终端温度不小于700℃;
S7、矫直轧制后的复合钢板;
S8、对下线后的复合钢板堆垛缓冷,缓冷结束后复合钢板100%按照JB/T4730.3-2005标准进行探伤检测及切割分段、喷印、避免表面处理及其它性能检测。
进一步地,所述复合坯钢板的厚度不大于370mm。
进一步地,所述步骤S4中在复合钢板的每条复合界线上进行点焊,每条边设置三个焊点,点焊长度为2~3cm;所述高真空状态是真空度为5.0×10 - 2Pa。
进一步地,所述步骤S4中对复合钢板的复合界面四周进行焊接时焊缝熔深不小于3.5cm。
进一步地,所述步骤S5中低温段加热、中温段加热和高温段加热的具体步骤如下:
A1、开罩凉炉,当均热炉中温度不大于500℃时装入复合钢板,开罩焖钢1~1.5小时后再封罩焖钢1~1.5小时,焖钢过程中不点火加热,温度维持在500~600℃;
A2、复合钢板处于低温段加热时以不大于65℃/小时的升温速度加热至800℃以上,加热时间为4~4.5小时,并在800℃以上的温度段保温3.5~4小时;
A3、将升温速度提升到不大于80℃/小时处于中温段继续加热至1000℃以上并在此温度下保温1~1.5小时,中温段加热和保温时间总计不小于3.5小时;
A4、当中温段加热结束后使得温度大于1000℃,提高均热炉升温速度,以1255~1285℃为目标温度进行升温,高温段升温速度不限,高温度加热时间 为2~2.5小时,达到目标温度后维持高温均热17~17.5小时;
A5、出钢前1~2小时,逐渐降低温度将均热炉温度控制在1260℃以下。
进一步地,所述步骤S6中粗轧的轧制力不小于5000吨,精轧的轧制力不小于5000吨。
进一步地,步骤S8中复合钢板下线温度为400~450℃,堆垛缓冷时间大于48小时。
进一步地,所述复合坯钢板为普通碳素结构钢或低合金结构钢中的一种。
本发明具有如下有益效果:
1、本发明提供一种三层金属复合钢板的制造方法,在焊接过程中首先利用氩弧焊对粘合后的复合钢板的复合界限进行点焊,然后整体在密闭真空室中进行抽气焊接,一方面本发明的焊接方法克服了现有技术中采用爆炸复合法进行复合钢板制造过程中存在的较高危险性且污染环境的问题,本发明的制造方法焊接过程完全密闭,安全性高且不污染环境,属于绿色环保工艺;另一方面,相较于爆炸复合法利用爆炸形成的高温进行复合钢板之间融合的过程,本发明提供的焊接方法制成的复合钢板成品率高,能够人为严格的控制焊接过程,保证焊接质量和复合钢板的焊接性能。
2、本发明提供的制造方法中,在焊接后对复合钢板进行加热和轧制使得板与板之间完全融合,本发明的加热过程中对温度进行严格控制,逐级升高的加热温度使得焊接后的复合钢板更好的适应温度变换,克服了现有技术中爆炸复合过程中突然的高温和巨大的温差造成钢板发生硬裂反应,逐级升温有利于严格控制复合钢板的成品质量,提高复合钢板的成品率和附加值。
附图说明
图1为本发明的工艺流程原理图;
图2本发明中实施例1的加热曲线图。
具体实施方式
下面结合具体实施例来对本发明进行详细的说明。
实施例1
一种三层金属复合钢板的制造方法,金属复合坯钢板选用普通碳素结构钢,具体步骤如下:
S1、测磁:确定复合坯钢板的尺寸并轧制尺寸,每一块复合坯钢板的尺寸不大于370mm,测量每一复合坯钢板的磁含量,复合坯钢板需经过消磁处理降低过高磁含量;
S2、预处理:对复合坯钢板的待复合面进行铣面、打磨处理;铣面包括粗铣、细铣和铣边;粗铣先将复合坯钢板待复合表面氧化皮铣去,细铣再将复合界面铣平整,铣边将复合界面的长宽尺寸铣成一致;打磨处理主要是为了让经过铣面的复合坯钢板的复合界面阶差消除,使其更平整;
S3、粘合;在经过处理后的复合坯钢板的复合面涂抹粘合剂并将涂抹粘合剂的两复合坯钢板的复合面以四角对齐的方式面对面叠放粘合,在涂抹粘合剂之前需要确保复合坯钢板的待复合界面无油无肉眼可见的灰尘;
S4、焊接:使用氩弧焊在叠放粘合后的复合钢板的复合界线上进行点焊,复合界面的每条边界点焊三个,点焊长度为2~3cm,点焊完成后,将复合钢板放入焊机真空室内,将焊机真空室抽至高真空5.0×10 -2Pa后对复合钢板的复合界面四周进行焊接、密封;由于在焊接过程有热量的产生,每一块复合坯钢板的碳当量Ceq≤0.5,厚度大,轧制的时候下压量力度大,因此,焊接要保证每条焊缝熔深需达到3.5cm以保证焊接质量;
S5、加热:采用均热率对焊接后的复合钢板进行包括低温加热、中温加热和高温加热三个阶段的加热升温,临出钢前维持高热1~1.5小时,开始加热至出钢的时间总计不少于34小时,加热完成后温度不小于1270℃;
S6、轧制:出炉后的复合钢板经除磷清除复合钢板表面氧化皮后分别进行粗轧和精轧;除磷可采用除磷箱、高压水除磷或水平轧机除磷;粗轧采用四辊可逆式粗轧机,采用抢温快轧的方式进行,粗轧的终端温度不小于900℃,轧制力不小于5000吨并根据轧制宽度选择纵轧、横轧或纵横轧制模式;精轧采 用四辊可逆式精轧机,精轧的终端温度不小于700℃,轧制力不小于5000吨;
S7、通过热矫直机矫直轧制后的复合钢板;
S8、矫直轧制后的复合钢板的下线温度为400~450℃,对下线后的复合钢板堆垛缓冷,堆垛缓冷时间大于48小时,缓冷结束后复合钢板100%按照JB/T4730.3-2005标准进行探伤检测及切割分段、喷印、避免表面处理及其它性能检测。
进一步地,所述步骤S5中低温段加热、中温段加热和高温段加热的升温速率都有严格的控制,低温段加热的升温速率不大于65℃/小时,中温段加热的升温速率不大于80℃/小时,升温速率必须逐渐升高,否,在加热和应力释放缓慢抵消的过程由基础温度上升到目标温度位置才能避免复合钢板在加热中因应力释放而裂开;高温段加热的升温速率不控制,开启高温段加热的初始温度以高达1000℃,长时间的加热已经让复合钢板的受热温度均匀且应力也释放,所以高温段加热的加热速度不需要严格的把控,具体升温步骤如下:
A1、开罩凉炉,当均热炉中温度不大于500℃时装入复合钢板,开罩焖钢1小时后再封罩焖钢1小时,焖钢过程中不点火加热,温度维持在500℃;
A2、复合钢板处于低温段加热时以不大于65℃/小时的升温速度加热至800℃,加热时间为4小时,并维持在800℃保温4小时;
A3、将升温速度提升到不大于80℃/小时处于中温段继续加热至1000℃并在此温度下保温1小时,中温段加热和保温时间总计不小于3.5小时;
A4、当温度大于1000℃时提高均热炉升温速度,以1270℃为目标温度进行升温,高温段升温速度不限,高温度加热时间为2.5小时,达到目标温度后维持高温均热17小时;
A5、出钢前2小时,逐渐降低温度将均热炉温度控制在1250℃,从开始加热到出钢的时间总计为35小时。
实施例2
实施例2与实施例1的区别在于:
所述金属复合坯钢板选用低合金结构钢;
所述步骤S5中低温段加热、中温段加热和高温段加热的升温速率都有严格的控制,低温段加热的升温速率不大于65℃/小时,中温段加热的升温速率不大于80℃/小时,升温速率必须逐渐升高,否,在加热和应力释放缓慢抵消的过程由基础温度上升到目标温度位置才能避免复合钢板在加热中因应力释放而裂开;高温段加热的升温速率不控制,开启高温段加热的初始温度以高达1000℃,长时间的加热已经让复合钢板的受热温度均匀且应力也释放,所以高温段加热的加热速度不需要严格的把控,具体升温步骤如下:
A1、开罩凉炉,当均热炉中温度不大于500℃时装入复合钢板,开罩焖钢1.5小时后再封罩焖钢1小时,焖钢过程中不点火加热,温度可能会回火,保持在550℃;
A2、复合钢板处于低温段加热时以不大于65℃/小时的升温速度加热至840℃,加热时间为4.5小时,并维持在840℃保温3.5小时;
A3、将升温速度提升到不大于80℃/小时处于中温段继续加热至1050℃并在此温度下保温1.5小时,中温段加热和保温时间总计不小于3.5小时;
A4、当温度大于1000℃时提高均热炉升温速度,以1285℃为目标温度进行升温,高温段升温速度不限,高温度加热时间为2.5小时,达到目标温度后维持高温均热17.5小时;
A5、出钢前1小时,逐渐降低温度将均热炉温度控制在1260℃,从开始加热到出钢的时间总计为35小时。
实施例3
实施例3与实施例1的区别在于:
所述步骤S5中低温段加热、中温段加热和高温段加热的升温速率都有严格的控制,低温段加热的升温速率不大于65℃/小时,中温段加热的升温速率不大于80℃/小时,升温速率必须逐渐升高,否,在加热和应力释放缓慢抵消的过程由基础温度上升到目标温度位置才能避免复合钢板在加热中因应力释放 而裂开;高温段加热的升温速率不控制,开启高温段加热的初始温度以高达1000℃,长时间的加热已经让复合钢板的受热温度均匀且应力也释放,所以高温段加热的加热速度不需要严格的把控,具体升温步骤如下:
A1、开罩凉炉,当均热炉中温度不大于500℃时装入复合钢板,开罩焖钢1小时后再封罩焖钢1.5小时,焖钢过程中不点火加热,温度维持在530℃;
A2、复合钢板处于低温段加热时以不大于65℃/小时的升温速度加热至820℃,加热时间为4小时,并维持在820℃保温3.5小时;
A3、将升温速度提升到不大于80℃/小时处于中温段继续加热至1020℃并在此温度下保温1小时,中温段加热和保温时间总计不小于3.5小时;
A4、当温度大于1000℃时提高均热炉升温速度,以1255℃为目标温度进行升温,高温段升温速度不限,高温度加热时间为2小时,达到目标温度后维持高温均热17小时;
A5、出钢前1.5小时,将均热炉温度控制在高温均热的下限温度1255℃,从开始加热到出钢的时间总计为34小时。
根据上述实施例1至3制得的三层金属复合钢板应用于高性能的双层金属容器制造、钢管制造或建筑物结构等领域。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

  1. 一种三层金属复合钢板的制造方法,其特征在于,具体步骤如下:
    S1、测磁:确定复合坯钢板的尺寸并轧制尺寸,测量复合坯钢板的磁含量;
    S2、预处理:对复合坯钢板的待复合面进行铣面、打磨处理;
    S3、粘合;在经过处理后的复合坯钢板的复合面涂抹粘合剂并将涂抹粘合剂的两复合坯钢板的复合面以四角对齐的方式面对面叠放粘合;
    S4、焊接:使用氩弧焊在叠放粘合后的复合钢板的复合界线上进行点焊,点焊完成后,将复合钢板放入焊机真空室内,将焊机真空室抽至高真空状态后对复合钢板的复合界面四周进行焊接、密封;
    S5、加热:采用均热炉对焊接后的复合钢板进行包括低温加热、中温加热和高温加热三个阶段的加热升温,加热时间总计不少于34小时,加热完成后温度不小于1270℃;
    S6、轧制:出炉后的复合钢板经除磷清除复合钢板表面氧化皮后分别进行粗轧和精轧,粗轧的终端温度不小于900℃,精轧的终端温度不小于700℃;
    S7、矫直轧制后的复合钢板;
    S8、对下线后的复合钢板堆垛缓冷,缓冷结束后复合钢板100%按照JB/T4730.3-2005标准进行探伤检测及切割分段、喷印、避免表面处理及其它性能检测。
  2. 如权利要求1所述的一种三层金属复合钢板的制造方法,其特征在于:所述复合坯钢板的厚度不大于370mm。
  3. 如权利要求1所述的一种三层金属复合钢板的制造方法,其特征在于:所述步骤S4中在复合钢板的每条复合界线上进行点焊,每条边设置三个焊点,点焊长度为2~3cm;所述高真空状态是真空度为5.0×10 -2Pa。
  4. 如权利要求3所述的一种三层金属复合钢板的制造方法,其特征在于:所述步骤S4中对复合钢板的复合界面四周进行焊接时焊缝熔深不小于3.5cm。
  5. 如权利要求1所述的一种三层金属复合钢板的制造方法,其特征在于:所述步骤S5中低温段加热、中温段加热和高温段加热的具体步骤如下:
    A1、开罩凉炉,当均热炉中温度不大于500℃时装入复合钢板,开罩焖钢1~1.5小时后再封罩焖钢1~1.5小时,焖钢过程中不点火加热,温度维持在500~600℃;
    A2、复合钢板处于低温段加热时以不大于65℃/小时的升温速度加热至800℃以上,加热时间为4~4.5小时,并在800℃以上的温度段保温3.5~4小时;
    A3、将升温速度提升到不大于80℃/小时处于中温段继续加热至1000℃以上并在此温度下保温1~1.5小时,中温段加热和保温时间总计不小于3.5小时;
    A4、当中温段加热结束后使得温度大于1000℃,提高均热炉升温速度,以1255~1285℃为目标温度进行升温,高温段升温速度不限,高温度加热时间为2~2.5小时,达到目标温度后维持高温均热17~17.5小时;
    A5、出钢前1~2小时,逐渐降低温度将均热炉温度控制在1260℃以下。
  6. 如权利要求1所述的一种三层金属复合钢板的制造方法,其特征在于:所述步骤S6中粗轧的轧制力不小于5000吨,精轧的轧制力不小于5000吨。
  7. 如权利要求1所述的一种三层金属复合钢板的制造方法,其特征在于:步骤S8中复合钢板下线温度为400~450℃,堆垛缓冷时间大于48小时。
  8. 如权利要求1所述的一种三层金属复合钢板的制造方法,其特征在于:所述复合坯钢板为普通碳素结构钢或低合金结构钢中的一种。
PCT/CN2020/113229 2020-04-13 2020-09-03 一种三层金属复合钢板的制造方法 WO2021208332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010285077.3A CN111331965A (zh) 2020-04-13 2020-04-13 一种三层金属复合钢板的制造方法
CN202010285077.3 2020-04-13

Publications (1)

Publication Number Publication Date
WO2021208332A1 true WO2021208332A1 (zh) 2021-10-21

Family

ID=71177040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113229 WO2021208332A1 (zh) 2020-04-13 2020-09-03 一种三层金属复合钢板的制造方法

Country Status (2)

Country Link
CN (1) CN111331965A (zh)
WO (1) WO2021208332A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393372A (zh) * 2021-12-21 2022-04-26 中钢集团邢台机械轧辊有限公司 一种锻钢材质复合轧辊的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331965A (zh) * 2020-04-13 2020-06-26 绿华投资有限公司 一种三层金属复合钢板的制造方法
CN112548499B (zh) * 2020-12-05 2022-11-18 安徽宝恒新材料科技有限公司 一种三层复合钢板的加工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319958A (en) * 1976-07-09 1978-02-23 Asahi Chemical Ind Long stze clad steel pipe manufacturing
CN105880285A (zh) * 2016-06-13 2016-08-24 河北工业大学 不锈钢复合板的真空热轧方法
CN105925889A (zh) * 2016-06-30 2016-09-07 江阴兴澄特种钢铁有限公司 一种特厚规格1.2311模具钢板及其制备方法
CN106191658A (zh) * 2016-08-19 2016-12-07 南京钢铁股份有限公司 一种三坯复合生产特厚低温冲击钢板的工艺
CN106271414A (zh) * 2016-08-23 2017-01-04 南京钢铁股份有限公司 一种tmcp型桥梁用不锈钢复合板的制备方法
CN107177793A (zh) * 2017-04-07 2017-09-19 江阴兴澄特种钢铁有限公司 一种厚度400‑610mm的低合金特厚结构钢板及其制造方法
CN111266815A (zh) * 2020-04-13 2020-06-12 绿华投资有限公司 一种双层金属复合钢板的制造方法
CN111331965A (zh) * 2020-04-13 2020-06-26 绿华投资有限公司 一种三层金属复合钢板的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319958A (en) * 1976-07-09 1978-02-23 Asahi Chemical Ind Long stze clad steel pipe manufacturing
CN105880285A (zh) * 2016-06-13 2016-08-24 河北工业大学 不锈钢复合板的真空热轧方法
CN105925889A (zh) * 2016-06-30 2016-09-07 江阴兴澄特种钢铁有限公司 一种特厚规格1.2311模具钢板及其制备方法
CN106191658A (zh) * 2016-08-19 2016-12-07 南京钢铁股份有限公司 一种三坯复合生产特厚低温冲击钢板的工艺
CN106271414A (zh) * 2016-08-23 2017-01-04 南京钢铁股份有限公司 一种tmcp型桥梁用不锈钢复合板的制备方法
CN107177793A (zh) * 2017-04-07 2017-09-19 江阴兴澄特种钢铁有限公司 一种厚度400‑610mm的低合金特厚结构钢板及其制造方法
CN111266815A (zh) * 2020-04-13 2020-06-12 绿华投资有限公司 一种双层金属复合钢板的制造方法
CN111331965A (zh) * 2020-04-13 2020-06-26 绿华投资有限公司 一种三层金属复合钢板的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393372A (zh) * 2021-12-21 2022-04-26 中钢集团邢台机械轧辊有限公司 一种锻钢材质复合轧辊的制备方法

Also Published As

Publication number Publication date
CN111331965A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021208333A1 (zh) 一种双层金属复合钢板的制造方法
WO2021208332A1 (zh) 一种三层金属复合钢板的制造方法
WO2019148961A1 (zh) 一种钛钢复合板的制备方法
CN105127199B (zh) 一种对称式外包覆控轧控冷热轧复合钢板的工艺技术方法
CN105798062B (zh) 一种斜波纹轧辊轧制复合板带的方法
CN101352805B (zh) 一种不锈钢复合钢板的制造方法
CN101992344B (zh) 一种钛-钢复合板的制备方法
CN104138920B (zh) 一种基层材料为管线钢的轧制金属复合板制造方法
CN105149350B (zh) 轧制制备大波纹结合面金属复合板生产工艺
CN105127198A (zh) 波纹结合面制坯轧制金属复合板工艺
CN105478475A (zh) 一种轧制高强度金属复合板的方法
WO2022110708A1 (zh) 一种高耐蚀容器用n08825复合钢板及其制备方法
CN105690910A (zh) 一种LNG储罐和移动容器用9Ni钢/不锈钢复合钢板及其制造方法
CN105618479B (zh) 一种人字波纹轧辊轧制复合板带的方法
CN101406899A (zh) 一种无焊缝薄复层钛/钢复合板制备方法
CN105479119A (zh) 一种5m级贮箱球形瓜瓣的成形工艺
CN105521994A (zh) 一种铝钢复合板材及其复合方法
CN105234177A (zh) 一种非对称组坯钛钢复合板抑制翘曲的热轧方法
CN113333469B (zh) Tc4钛合金薄板热轧工艺
CN105057353A (zh) 一种爆炸复合的钛-钢-钛双面复合板的轧制方法
CN104138903A (zh) 一种轧制钛-钢复合板制造方法
CN105478476A (zh) 一种轧制金属复合板带的方法
CN106808785A (zh) 一种轧制厚规格复合钢板的生产方法
CN109454313A (zh) 一种大规格低合金钢管板用拼焊平板制备工艺
CN107661900A (zh) 一种热连轧机组生产双面不锈钢复合板的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930729

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20930729

Country of ref document: EP

Kind code of ref document: A1