WO2019151428A1 - Inspection system and inspection device of hollow columnar structure aggregate - Google Patents

Inspection system and inspection device of hollow columnar structure aggregate Download PDF

Info

Publication number
WO2019151428A1
WO2019151428A1 PCT/JP2019/003461 JP2019003461W WO2019151428A1 WO 2019151428 A1 WO2019151428 A1 WO 2019151428A1 JP 2019003461 W JP2019003461 W JP 2019003461W WO 2019151428 A1 WO2019151428 A1 WO 2019151428A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
columnar structure
hollow
hollow columnar
structure aggregate
Prior art date
Application number
PCT/JP2019/003461
Other languages
French (fr)
Japanese (ja)
Inventor
谷本 尚之
太郎 柴垣
佐藤 昌司
伊藤 勲
章弘 庭田
省吾 野沢
池田 聡
拓也 植松
Original Assignee
池上通信機株式会社
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 池上通信機株式会社, エヌ・イーケムキャット株式会社 filed Critical 池上通信機株式会社
Publication of WO2019151428A1 publication Critical patent/WO2019151428A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores

Definitions

  • the present invention relates to an inspection apparatus and an inspection system for a hollow columnar structure assembly in which a plurality of columnar hollow portions are arranged in parallel. For example, by utilizing a chemical reaction with a fluid or filtering particulate matter.
  • the present invention relates to a technique for inspecting a hollow columnar structure aggregate used in automobile catalysts and filters for cleaning fluids.
  • automobile catalysts and filters are configured as a hollow columnar structure aggregate in which a large number of very thin hollow portions are arranged in parallel. If there is a defect in the hollow part of such a hollow columnar structure aggregate, the desired performance cannot be exhibited, so it is important to correctly inspect the presence or absence of the defect.
  • Patent Literature 1 As a device for inspecting defects such as clogging by condensing and imaging light that has passed through the hollow portion on the other end surface side while irradiating light to one end surface of the hollow columnar structure aggregate, Patent Literature 1 has been proposed (the contents of this document are incorporated into this application by reference).
  • an illumination device that irradiates uniform diffused light is disposed on one end surface (hereinafter referred to as an incident end) of a hollow columnar structure assembly, and the other end surface (hereinafter referred to as an output end) is disposed on the other end surface.
  • Disposing a line sensor array including a lens array is disclosed.
  • the arrangement position of the line sensor array is set to a position where the lens array is spaced from the emission end of the hollow columnar structure aggregate by a distance equal to or greater than the focal length.
  • the hollow columnar structure aggregate When using an illumination device that emits parallel light, if the hollow columnar structure aggregate is tilted and the extension axis of the hollow portion does not coincide with the optical axis of the parallel light, the parallel light incident from the incident end is used. It is preferable to use an illuminating device that irradiates diffused light as in the same document, because erroneous determination may occur due to light striking a partition wall that defines a hollow portion.
  • setting the lens array at a position more than the focal length with respect to the emission end of the hollow columnar structure aggregate can ensure the necessary resolution in the sensor array, and the interval when inspecting the hollow columnar structure aggregate. Even if there is a fluctuation of the above, and even if there is an inclination of the hollow columnar structure aggregate, it is preferable because observation is possible.
  • the present invention provides an accurate inspection of a hollow columnar structure aggregate by providing a guideline for appropriately determining the configuration and arrangement of the illumination device in relation to the hollow columnar structure aggregate as a subject. With the goal.
  • the present invention is an inspection apparatus for a hollow columnar structure assembly in which a plurality of columnar hollow portions, in which the emitted light becomes light that spreads slightly when the light is emitted, are arranged in parallel,
  • An illumination device having a light emitting unit that irradiates diffused light to one end surface of the hollow columnar structure aggregate in which one end of the plurality of hollow portions is located;
  • a line sensor array that is arranged so as to be able to receive light from the other end surface of the hollow columnar structure aggregate where the other ends of the plurality of hollow portions are located, and detects the amount of light received from the plurality of hollow portions.
  • first portions having relatively high light intensity and second portions having relatively low light intensity are alternately arranged,
  • the widths of the first part and the second part in the arrangement direction are c 1 and c 2 , the length of the hollow part is h, the width of the hollow part in the arrangement direction is w, and the light emission from the other end surface
  • c 2 ⁇ w ⁇ d / h It is characterized by satisfying the relationship.
  • the present invention is an inspection system for a hollow columnar structure assembly provided with the above inspection device, Conveying means for supporting and transporting the hollow columnar structure aggregate to the inspection device,
  • the transport means is disposed at an interval in the transport direction with respect to the upstream transport unit so that light passes from the upstream transport unit disposed on the upstream side in the transport direction and the other end surface.
  • the lighting device and the line sensor array are arranged up and down across the conveying means,
  • the upstream side transport unit and the downstream side transport unit have a form of an endless belt conveyor and a regulating member that regulates the surface of the belt supporting the hollow columnar structure aggregate to a flat state. It is characterized by that.
  • the hollow columnar structure aggregate is accurately inspected.
  • FIG. 1 It is a fracture perspective view showing typically an example of the hollow columnar structure aggregate which can become the inspection object of the present invention. It is a fracture
  • (A) And (b) is a schematic diagram for demonstrating the basic composition and inspection principle of the inspection apparatus of the hollow columnar structure aggregate
  • (A) is an inspection in a state where the gap between the light emitting end of the hollow columnar structure having a closed structure and the sensor device is uniform
  • (b) is a state in which the hollow columnar structure is removed from the horizontal plane with respect to the horizontal plane.
  • (A) And (b) is for demonstrating the light reception amount detection waveform by a detection element array in the case of setting a gap with respect to the hollow columnar structure of an open type structure, and the hollow columnar structure of a block type structure, respectively.
  • FIG. 1 It is a block diagram which shows the structural example of the control system of the inspection system shown in FIG. It is a flowchart which shows an example of the test
  • FIGS. 1 and 2 show two examples of a hollow columnar structure assembly (hereinafter also referred to as a subject) that can be an object of an inspection apparatus and an inspection system according to the embodiments described below.
  • the subject C shown in FIG. 1 has a large number of hollow columnar structures extending in a straight tube shape through two opposing ends, that is, the light incident end C1 of the subject C and the light emitting end C2 opposed thereto. 2 have a plurality of hollow portions H that are open at both ends and partitioned by a partition wall P (hereinafter also referred to as an open type structure).
  • a partition wall P hereinafter also referred to as an open type structure
  • the 2 has a hollow portion H1 having one end opened at the light incident end F1 and closed at the other end on the light exit end F2, and one end on the incident end F1 side. It has a configuration in which the hollow portions H2 that are closed and open at the other end on the side of the emission end F2 are arranged in a staggered manner (hereinafter also referred to as a closed-type structure).
  • a subject to which the present invention can be preferably applied has a hollow portion having a cross-sectional dimension and a length such that the emitted light becomes a minutely spread light (quasi-parallel light) (for example, a hollow portion having a circular cross-section) If so, it has a length more than a significant multiple of the diameter).
  • the form of the specimen is a catalyst (hollow columnar structure aggregate C in FIG. 1) or a filter (hollow in FIG. 2) that cleans the fluid by utilizing a chemical reaction with the fluid or filtering particulate matter.
  • Columnar structure aggregates F are included, but not limited to them. That is, according to the present invention, if the subject has a plurality of open-type hollow portions H or closed-type hollow portions H1 and H2 that are arranged in parallel, the hollow columnar structures, It can be used to inspect the state (such as the presence or absence of defects).
  • the term “defect” means, for example, in an open type structure, clogging of an open type hollow part caused by manufacturing factors or mixing of unnecessary substances (in addition to those that are completely blocked, Including those partially occluded or constricted), manufacturing factors of the subject itself, or unevenness of the partition wall caused by unevenness of the substance applied to the inner surface of the hollow part.
  • the “defect” in the closed structure includes a hole in the closed end, a notch of a partition between cells, and the like.
  • FIG. 3A is a schematic diagram for explaining a basic configuration and an inspection principle of an inspection apparatus for a subject C according to an embodiment of the present invention.
  • the inspection apparatus includes an illumination device 10 for irradiating light to an incident end C1 of a subject C, and a contact image sensor (CIS) configured to be able to receive light emitted from the output end C2.
  • the illumination device 10 is configured as an illumination device that irradiates the incident end of the subject C with the diffused light DL.
  • the line sensor array 20 includes a lens array, and the lens array is set at a position that is more than the focal length with respect to the emission end C2 of the subject C, and collects the light OL that has passed through the hollow portion H. ⁇ Inspect defects such as clogging by imaging.
  • a device having an appropriate light emitting unit can be adopted as long as it can emit diffused light.
  • it is not a two-dimensional or planar light emitting unit, but a one-dimensional or linear extension. It is advantageous to employ one having an existing light emitting unit. In this case, it has an effective irradiation width corresponding to the dimension of the end face of the hollow columnar structure that can be an inspection target.
  • the line sensor array 20 can perform the required detection.
  • “Inclination” which is a problem in the inspection means a state where the axis of the hollow portion is inclined with respect to the optical axis, and is not necessarily limited to the state shown in FIG. That is, for example, even when the emission end C2 of the subject C is not perpendicular to the axis of the hollow portion H, the axis of the hollow portion is inclined with respect to the optical axis. It is effective to use light.
  • the diffused light is used even when a partition wall defect that cannot be found by just visually observing the end face occurs. Is valid. That is, the light incident from the hollow portion H1 having the open end H1i at the incident end F1 enters the adjacent hollow portion H2 having the open end H2o at the output end H2 through the defect portion, and is emitted from the open end H2o. Therefore, by detecting this, it is possible to know the presence or absence of a partition wall defect.
  • Patent Document 1 exemplifies an illuminating device having a linear light emitting section such as a straight tube fluorescent lamp, a transmission light type halogen lamp, and a metal halide lamp.
  • Mercury is generally used for fluorescent lamps, and lighting equipment can be used as long as the content is within the limits of the regulation value, it is not subject to the Minamata Convention on Mercury and production and sales will continue. It is. However, its use should be avoided as much as possible from the viewpoint of eliminating environmental impact.
  • the halogen lamp and the metal halide lamp are inferior in responsiveness until the light emission state is stabilized, and also have problems in maintenance performance such as running cost and replacement of the inspection apparatus due to large power consumption or heat generation.
  • use of organic EL is also considered. However, organic EL does not have sufficient illuminance to be used as a light emitting unit for examining a subject.
  • Patent Document 1 exemplifies using an LED array as a light emitting unit.
  • an LED array for example, an axial lead type LED element called a shell type (hereinafter also simply referred to as an LED element), or an LED chip, particularly an LED chip using a phosphor (hereinafter simply referred to as an LED element) (Also referred to as LED chip).
  • the light-emitting portion that is the first portion that actually emits light of one LED element or one LED chip is a substantial light source.
  • the light-emitting unit A light-emitting part (light source) that actually emits light and a non-light-emitting part that is a second part that does not emit light periodically appear along the length direction.
  • the line sensor array 20 does not detect the emitted light OL from the hollow portion, so that it is determined that there is a defect (open). Erroneous detection leading to a determination that there is no defect (in the case of a closed structure). In order to avoid such false detection, it is strongly desirable that light be incident on any hollow part.
  • the light emitting unit sufficiently separated from the incident end of the subject.However, separating the light emitting unit more than necessary leads to an increase in the size of the device, or a necessary and sufficient distance due to the space of the device. It may be difficult to set.
  • the illuminance at the incident end can be reduced. To compensate for this, the input power to the light emitting device must be increased to increase the light intensity of the light source. However, as the temperature of the light emitting device rises accordingly, the light emission efficiency is lowered, and the life is also affected. To avoid these, it is necessary to add a large cooling means.
  • FIG. 5 is a diagram schematically showing the light emitting unit 11 that is a component of the illumination apparatus 10 and the subject C in order to explain the conditions.
  • the light emitting units 12 and the non-light emitting units 14 are periodically and alternately arranged.
  • the widths of the light emitting unit 12 and the non-light emitting unit 14 in the arrangement direction are c 1 and c 2 , respectively, and the value obtained by adding them is c
  • the value c is the light emitting unit 12 in the extending direction of the light emitting unit 12.
  • the length (that is, the height from the exit end C2 to the entrance end C1) and the width of the hollow portion H are set to h and w, respectively, and the distance from the exit end C2 to the light source surface 16 of the light emitting unit 11 (hereinafter referred to as a counter light source). D) is referred to as the surface distance.
  • the line sensor array 20 is configured to include a lens array and a detection element array, and incident light is captured by the sensor element via the lens. Even if the arrangement period of the sensor elements does not coincide with the period of the exit opening Ho, the light captured by the sensor element always passes through one point in the exit opening Ho. In other words, when it is assumed that the light source surface 16 is viewed from the point of view, if the light emitting portion is in the field of view, light is always incident on the sensor element regardless of the thickness of the partition wall P.
  • the width of the light source surface entering the field of view from an arbitrary point in the exit aperture Ho (hereinafter referred to as field of view width) v is the same for any hollow part.
  • c 2 c ⁇ c 1 Therefore, if the field width v from an arbitrary point in the exit aperture Ho is larger than the length of the non-outgoing region corresponding to the width c 2 of the non-light emitting portion 14, it is within the range of the field width v. Has a light emitting region corresponding to the length of at least a part of the light emitting unit 12.
  • the light emitting unit 11 is disposed so as to satisfy the above condition (basic condition) (that is, the distance d from the emission end C2 to the light source surface 16 of the light emitting unit 11) and / or the structure of the light emitting unit 11 ( By designing the width c 1 of the light emitting portion, the width c 2 of the non-light emitting portion, and the period c), light can be incident on and emitted from all the hollow portions H facing the light emitting unit 11.
  • FIG. 6A shows a case where the light emitting unit 12 is small enough to be regarded as a point light source (c 1 ⁇ 0) and the non-light emitting unit 14 is large enough to occupy most of the visual field width v (c 2 ⁇ v).
  • FIG. 6A shows a case where the light emitting unit 12 is small enough to be regarded as a point light source (c 1 ⁇ 0) and the non-light emitting unit 14 is large enough to occupy most of the visual field width v (c 2 ⁇ v).
  • the field width v is always obtained regardless of the size of the widths c1 and c2 and regardless of the relative position of the light emitting unit 11. It can be seen that there is a light emitting region corresponding to the length of at least a part of the light emitting unit 12 within the range.
  • FIG. 7A illustrates the case of c 1 ⁇ 0 and c 2 ⁇ v / 2 in the former case, and it can be seen that there are always two light emitting portions 12 in the field of view width v.
  • FIG. 7B also illustrates the case where c 1 ⁇ v / 4 and c 2 ⁇ v / 2.
  • the field width v has two light emitting units 12 at the maximum and 1 at the minimum. It can be seen that there are two light emitting portions 12.
  • FIG. 7C illustrates a case where c 1 ⁇ v / 2 and c 2 ⁇ v / 2 when the field width is greater than or equal to v, and the field width v always includes one light emitting unit. It can be seen that a light emitting region corresponding to a width c 1 of 12 exists.
  • the relationship between the value Ho max and the minimum value Ho min is Ho max / 2 ⁇ Ho min
  • c 2 ⁇ v / n w ⁇ d / (n ⁇ h); n> 2 And it is sufficient.
  • the minimum value Ho min of the amount of emitted light is not less than (n ⁇ 1) / n times the maximum value Ho max , and uniform illumination without unevenness can be performed as the n value increases.
  • the visual field width v is calculated, the width c 2 of the non-light emitting portion is determined according to the basic condition or the development condition, and the light emitting unit 11 is designed and manufactured.
  • the width c 2 of the non-light emitting portion specified value it is possible to determine the value of the pair light source surface distance d or the working distance wd based on the basic conditions or development conditions. Or further, considering the light intensity or the like of the space and the light emitting portion of the inspection apparatus, it may be set to values wd and width c 2 while compromise other.
  • the length of the light emitting region included in the range of the visual field width v does not necessarily mean that the light emitting unit 12 fills the length. Since the width c 1 of the light emitting part 12 (or the width c 2 of the non-light emitting part 14) and the period c generally do not coincide with the width and period of the hollow part H in the extending direction of the light emitting unit 11, FIG. , (C), it should be noted that two or more light emitting units 12 may be filled. Further, although the LED element can be generally regarded as a point light source, since it actually has a light emitting part of a finite length, even when a light emitting unit 11 having an array of LED elements is employed, The basic conditions and development conditions are applicable.
  • the present invention does not require a diffusion plate, but does not exclude its use. In the case where there is a restriction on the arrangement position of the light emitting unit 11 or the illumination device 10, it is also effective to insert a diffusion plate.
  • the diffusion plate does not eliminate the periodicity of the light emitting part.
  • the diffuser plate has a strong light emitting part which is a first part having a relatively high light intensity and a first light emitting part having a relatively low light intensity.
  • the weak light emitting parts which are two parts appear alternately alternately.
  • an illuminating device in which an appropriate arrangement position and structure are determined in relation to the hollow columnar structure aggregate is realized in consideration of environmental performance and power saving.
  • restrictions on the arrangement position and structure design of the light emitting unit 11 are eased based on the basic conditions and the development conditions. Further, even when a diffusion plate is used, it is not necessary to use a low transmittance so as to eliminate the periodicity of the light emitting part as much as possible.
  • the line sensor array 20 of this embodiment includes a lens array (for example, a rod lens array in which a plurality of rod lenses are linearly arranged over a range corresponding to the dimension of the end surface of a hollow columnar structure that can be a subject) and The configuration disclosed in Patent Document 1 can be adopted as including the detection element array. The configuration will be described. First, the illumination device 10 and the line sensor array 20 are arranged on the same plane, preferably in parallel. In the present embodiment, the CIS type line sensor array 20 is used as the line sensor array 20, and the distance between the light incident end of the lens and the light exit end of the other end surface of the subject is equal to or greater than the focal length (hereinafter referred to as a gap). The light emitted from the hollow portion is captured.
  • a lens array for example, a rod lens array in which a plurality of rod lenses are linearly arranged over a range corresponding to the dimension of the end surface of a hollow columnar structure that can be a subject
  • the configuration disclosed in Patent Document 1 can
  • the light emitting end of the hollow columnar structure is observed at a position out of focus (non-imaging position).
  • the light receiving angle is large, and therefore, to some extent. Light can be received even if a gap is present, and a necessary resolution can be secured in the sensor array. This also means that observation is possible even when there is a change in the gap or the inclination of the subject during examination of the subject.
  • FIG. 8A shows an inspection in a state where a gap according to the provision of the present invention is set between the light emitting end of the hollow columnar structure C having an open structure and the light incident end of the lens array 22.
  • FIG. FIG. 8B shows an inspection in a state inclined from the state of FIG. 8A, that is, a state where the gap is not uniform.
  • the incident position shifts in the lateral direction by tilting the optical axis incident on the lens array 22 compared to the state of FIG. 8A, but the incident light is refracted in the lens. Since the light is guided to the detection element array 24, black spots corresponding to defects such as clogging are detected even if there is an inclination.
  • FIG. 9 (a) shows an inspection of a hollow columnar structure F with a closed structure in a state where the gap is uniform as in FIG. 8 (a), and FIG. 9 (b) shows the state shown in FIG. 8 (b).
  • FIG. 9 shows the case where the inspection is performed in a state inclined from the state of FIG.
  • the incident light from the defective hollow portion H2 ′ is refracted in the lens and guided to the detection element array 24. Bright spots corresponding to defects such as unintended holes are detected.
  • FIG. 10A is a schematic diagram for explaining a received light amount detection waveform by the detection element of the detection element array 24 when a gap is set for the hollow columnar structure C having an open type structure.
  • Ha schematically represents a hollow part having no defect
  • Hb represents a hollow part having a defect due to clogging
  • Hc schematically represents a hollow part having a defect due to irregularities in the partition wall P.
  • the detection waveform of the detection element is drawn based on a simple rectangular wave.
  • the detection element array 24 can capture the light coming inward from the light emitting end.
  • the incident position and intensity of the light differ depending on the degree of clogging and the unevenness of the partition wall, and this appears as a difference in the contour of the detection waveform of the detection element, making it easy to identify the type of defect. .
  • FIG. 10B is a schematic diagram for explaining a received light amount detection waveform by the detection element of the sensor array 24 when a gap is set for the hollow columnar structure F having a closed structure.
  • H1a and H2a schematically show a hollow portion having no defect
  • H2b schematically shows a hollow portion in which a defect due to perforation occurs at the end to be closed
  • the hollow portion H2b and A state in which there is a partial defect in the partition wall P ′ between the adjacent hollow portions H1b is shown.
  • the light that has entered the hollow portion H2b through the perforated portion reaches its open end.
  • a part of the light incident on the adjacent hollow portion H1b enters the hollow portion H2b through the missing portion of the partition wall P ', and this also reaches the open end.
  • the quality of the subject is comprehensively determined based on the number of defective hollow portions, the ratio to the total number, the distribution state of defective hollow portions, and the like. However, it is meaningful to specify the type of defect because it can contribute to improvement of the manufacturing process and the like by ascertaining the cause of occurrence through analysis of its occurrence frequency and distribution.
  • FIG. 11 is a schematic side view showing a schematic configuration of an inspection system according to the embodiment.
  • the inspection system 30 according to the present embodiment includes an introduction unit 40, a preprocessing unit 50, and an inspection unit 60, and the subject A that is the hollow columnar structure aggregate C or F is conveyed in the direction of the arrow T along these.
  • the inspection system 30 includes an introduction unit 40, a preprocessing unit 50, and an inspection unit 60, and the subject A that is the hollow columnar structure aggregate C or F is conveyed in the direction of the arrow T along these.
  • the introduction unit 40 is a unit that guides the manufactured subject A to the preprocessing unit 50.
  • the driving pulley 42 and the driven pulley 44 that are arranged on the upstream side and the downstream side in the transport direction are stretched over these.
  • the preprocessing unit 50 is a means for removing dust and the like from the subject A prior to the examination.
  • a large amount of dust may be generated at the time of manufacture and may adhere to the subject A. If dust remains attached to the subject A, or drops and accumulates on the line sensor array 20 or the like at the time of inspection, the inspection accuracy is remarkably lowered and erroneous detection may occur. Therefore, in the present embodiment, the pretreatment unit 50 performs a process for efficiently and actively removing the dust.
  • the pre-processing unit 50 includes one or more conveyance rollers 52 interposed between the introduction unit 40 and the inspection unit 60, a gap between the introduction unit 40 and the conveyance roller 52, and the conveyance roller 52 and the inspection unit.
  • An air nozzle 54 that ejects air is provided so as to face the gap with the section 60 or the gap between the conveyance rollers 52.
  • a vibration exciter 56 is provided for the transport roller 52 so that vibration is transmitted to the subject A via the transport roller 52 so that dust can be easily removed from the subject A. That is, in the pre-processing unit 50, dust is eliminated by the vibration of the transport roller 52 by the vibrator 56 and the air jetted from the air nozzle 54.
  • the air nozzle 54 alternately arranges the one that injects air downward and the one that injects upward. According to this, dust is excluded from the upper surface (incident end C1 or F1) and the lower surface (exit end C2 or F2) of the subject A. Further, when the subject A is the hollow columnar structure aggregate C, the dust is removed from the hollow portion H when the dust is dropped by the downward jetting or blown up by the upward jetting. On the other hand, when the subject A is the hollow columnar structure aggregate F, the dust is wound up from the hollow portion H1 by the downward injection, the dust is separated from the hollow portion H2 by the upward injection, and falls off due to the interruption of the upward injection. , Dust is eliminated.
  • an air nozzle that injects obliquely upward, obliquely downward, or laterally may be provided.
  • the air injection force and the excitation force can be appropriately determined.
  • the pretreatment unit 50 is accommodated in a chamber as indicated by a one-dot chain line, and an exhaust unit is provided in the chamber to discharge and collect the dust to the outside. It may not be reattached.
  • the inspection unit 60 includes a transport unit (upstream transport unit) 61 that receives and transports the subject A from the preprocessing unit 50, and a transport unit that is disposed on the downstream side in the transport direction with a predetermined interval from the transport unit 61. (Downstream transport unit) 71 as transport means.
  • the predetermined interval is an interval through which light passes from the other end surface, and is an interval at which the subject does not tilt at the time of transition between the transport units.
  • These conveying sections 61 and 71 generally have the same configuration, and drive pulleys 62 and 72 and driven pulleys 64 and 74, respectively, and conveying belts 66 and 76 in the form of endless belt conveyors stretched around them, respectively.
  • the transport system of the inspection unit 60 can also be configured by a transport roller in the same manner as the preprocessing unit 50. However, as in the present embodiment, it is assumed that the transport belt is used and the back surface side of the transport surface is supported by a flat plate-shaped regulating member, so that the transport roller is highly accurate in order to prevent rattling of the subject A. It is preferable that the flatness can be maintained over a long period of time.
  • the illumination device 10 including the light emitting unit 11 and the line sensor array 20 including the detection element array 24 are disposed above and below the transport unit including the interval between the transport unit 61 and the transport unit 71 (described later). This arrangement relationship may be reversed as shown).
  • the lighting device 10 may be provided with a lighting lifting / lowering device 120 (FIG. 12) that adjusts the position so that a height (to the light source surface distance d) that satisfies the basic condition or the development condition described above is set. it can.
  • the line sensor array 20 can also be provided with a sensor lifting device (FIG. 12) that adjusts the position so that the above-described appropriate gap is set with high accuracy.
  • the illuminating device 10 is arranged on the upper side as in the present embodiment, if only one type of subject having a fixed length (fixed height) is to be examined, or even if it is not a fixed length, the range of change is large. If a plurality of small types of subjects are to be examined, the arrangement of the illumination lifting device 120 is not essential. However, as described above, the arrangement of the illumination lifting / lowering device 120 is effective in consideration that subjects having various dimensions with different heights are to be examined.
  • the illumination device 10 emits light to the incident end C1 or H1, and the line sensor array 20 causes the light exit end C2 or H2 side to be irradiated.
  • a scan is performed.
  • the lighting device 10 and the line sensor array 20 are preferably arranged so as to be parallel to each other so as to be in the same plane.
  • the illuminating device 10 and the line sensor array 20 can be arrange
  • the inspection unit 60 has an air nozzle 81 that removes dust by injecting air in order to further improve inspection accuracy.
  • an air nozzle 81 By disposing an air nozzle 81 in the immediate vicinity of the inspection position, that is, the position between the light emitting unit 11 and the detection element array 24 and upstream of the illumination device 10 in the transport direction, the subject A, in particular, immediately before the inspection.
  • the hollow portion H of the hollow columnar structure aggregate C By injecting air into the hollow portion H of the hollow columnar structure aggregate C, the hollow portion H is brought into a cleaner state.
  • a configuration is provided on the side of the line sensor array 20 opposite to the air nozzle 81 to receive and exclude the falling dust.
  • This configuration includes a transparent thin plate 91 that covers the line sensor array 20 and is inclined, and means for cleaning the thin plate 91.
  • the cleaning means includes an air nozzle 93 that injects air onto the surface of the thin plate, and a wiper 95 that wipes the surface of the thin plate 91 by rotating about the rotation shaft 95a.
  • the light emitted from the exit end of the subject A passes through the transparent thin plate 91 and reaches the line sensor array 20.
  • the dust falling on the thin plate 91 is quickly and effectively excluded from the detection area of the line sensor array 20 by the inclination of the thin plate 91 and the injection of air.
  • the wiper 95 is driven to completely remove dust accumulated on the thin plate 91.
  • a cleaning process can be performed.
  • FIG. 12 is a block diagram showing a configuration example of a control system of the inspection system shown in FIG. 11, and FIG. 13 is a flowchart showing an example of an inspection processing procedure by the control system of FIG.
  • the above units are controlled by the control device 100 shown in FIG.
  • the control device 100 has, for example, a CPU 101, a ROM 103, an EEPROM 105, a RAM 107, and a VRAM 109 as basic configurations.
  • the CPU 101 controls each unit according to a program stored in the ROM 103 and corresponding to a processing procedure as will be described later.
  • the EEPROM 105 is used to hold required information even when the system power is off, for example, while the RAM 107 can be used as a temporary work memory in the course of data processing by the CPU 101.
  • the VRAM 109 is used to develop information based on the detection output of the line sensor array 20, for example, data obtained from the light exit end of the subject in association with scanning, in association with the position of the light exit end. Can do.
  • the transport system 160 including 72, the air nozzles 54 and 93, and the wiper 95 are connected to the CPU 101 via the input / output device 111, and driving / stopping and the like are controlled.
  • the air nozzle is connected to a compressed air source such as a compressor
  • the driving / stopping may be performed by starting and stopping the compressed air source, or may be performed by opening and closing a valve provided in the middle. .
  • the detection output of the line sensor array 20 is input via the input / output device 111, subjected to appropriate processing as necessary, and developed in the VRAM 109.
  • a GUI 70 is further connected to the input / output device 111.
  • the GUI 70 includes, for example, information on the subject, that is, the type of the subject (whether it is a hollow columnar structure aggregate C having an open structure or a hollow columnar structure aggregate F having a closed structure), shape, dimensions,
  • input means such as a keyboard and a pointing device for setting the shape and dimensions of the hollow portion, information for assisting the operator in inputting the information, information transmitted from the control device 100 (according to a processing procedure described later)
  • Display means for displaying the determined information and the light output end visualization information).
  • step S1 when the examination processing procedure shown in FIG. 13 is started, first, the information relating to the subject described above is fetched in step S1, and then the examination conditions are fetched in step S3. Is called.
  • the inspection condition is, for example, whether the above-described defect type identification is desired, or whether it is desired to acquire clear data in order to know only the presence or absence of a defect.
  • step S5 based on the acquired information, the lighting lifting device 120 and / or the lighting device 10 and / or the line sensor array 20 are set to an appropriate height and / or an appropriate gap of the line sensor array 20 as necessary. Alternatively, the sensor lifting device 130 may be controlled.
  • the dimensions of the end face of the subject captured in step S1 are used. It is possible to make a setting so that irradiation corresponding to is performed. At this time, since the width in the direction intersecting the subject transport direction changes in the transport process with respect to the irradiation light, the irradiation light deviated from the edge of the subject affects the detection operation of the line sensor array. May be set so that the irradiation range dynamically changes in accordance with the change.
  • the diffused light illuminating device 10 is turned on, and the transport system 160 and the air nozzle 54 (or the air nozzle 93 when the subject is the hollow columnar structure aggregate C) are activated (step) S7). Then, scanning of the light emitting end is performed while the subject is being transported, and in this process, data corresponding to the detection output of the detection element array 24 (noise removal as necessary, as described in FIG. 10B).
  • the threshold setting or signal amplification processing for processing a weak detection signal change, waveform shaping or contour correction, and other processing can be performed), which are developed in the VRAM 109 (step S9).
  • step S9 Prior to the processing in step S9, when dust adheres to the thin plate 91 based on the detection output of the detection element array 24, the transport system 160 is stopped and the wiper 95 is activated to clean the thin plate 91.
  • the transport of the subject can be resumed after the conversion.
  • step S11 When the data development for one subject is completed, the following processing is performed (step S11). That is, in step S13, the state of each hollow part is analyzed and determined (the presence or absence of a defect, and if desired, the result type is determined), and further, in step S15, the defective hollow part The quality of the subject is determined on the basis of the number, the ratio to the total number, the distribution state of the defective hollow portions, and the like.
  • step S17 these determinations and determination results are notified to the GUI 70 and can be presented to the operator via the display means. Further, based on the data developed in the VRAM 109 corresponding to the detection output of the detection element array 24, the subject as shown in FIGS. 8 (a), 6 (b) and FIGS. 9 (a), 7 (b). It is possible to construct a two-dimensional image of the light emitting end of the light and display it on the display means, or to determine the quality of the subject based on the two-dimensional image.
  • step S19 it is determined whether or not there is a subject to be subsequently transferred. If an affirmative determination is made, the process returns to step S7 and the subsequent steps are repeated. On the other hand, if a negative determination is made, diffuse light illumination is performed. Termination processing including turning off the apparatus 10 and stopping the conveyance system 160 and the air nozzle is performed. Prior to returning to step S7, when dust adheres to the thin plate 91, the same cleaning process as described above may be performed.
  • the hollow columnar structure aggregate that is the subject in the process of passing between the line sensor array 20 and the diffused light illuminating device 10 arranged in the space between the transport unit 61 and the transport unit 71. Since the inspection is performed, a plurality of hollow columnar structure aggregates can be inspected continuously and at high speed while having a simple and small configuration. Moreover, since the height of the illuminating device 10 and the gap of the line sensor array 20 are set according to information and requests relating to the subject, it is possible to perform a highly accurate and appropriate examination on the hollow columnar structure aggregate. It becomes like this.
  • the configuration in which one set of the diffused light illumination device 10 and the line sensor array 20 is provided has been described, but two or more sets may be provided.
  • the positions of the light emitting units 12 in the extending direction of the light emitting units 12 are complemented between the two or more lighting devices 10, and the images of corresponding pixels are detected with respect to the detection results of the two or more line sensor arrays 20. It is possible to perform an inter-operation. According to this, the detection accuracy is further improved, and the occurrence of erroneous detection can be effectively prevented.
  • the illumination device 10 including the light emitting unit 11 and the line sensor array including the detection element array 24 are respectively provided on the upper side and the lower side of the conveyance unit including the interval between the conveyance unit 61 and the conveyance unit 71.
  • a configuration in which 20 is arranged is illustrated. However, as shown in parentheses for reference numerals 10 and 20 that refer to the illumination device and the line sensor array, respectively, these arrangement positions may be reversed.
  • the sensor lifting device 130 needs to be disposed in order to deal with subjects having various heights. Installation may not be necessary.
  • FIG. 11 illustrates a configuration in which the illumination device 10 and the line sensor array 20 are arranged to face each other and the optical path (broken line) between the illumination device 10 and the line sensor array 20 is linear.
  • the line sensor array 20 is arranged in a non-opposing state with respect to the illumination device 10, and a mirror 97 that bends the optical path between the illumination device 10 and the line sensor array 20 as indicated by a broken line is provided. You may arrange.
  • the air nozzle 93 injects air to the mirror 97, and the wiper 95 performs an operation of wiping the surface of the mirror 97 as necessary.
  • the subject in the inspection unit 60, is transported by the transport units 61 and 71 including the transport belts 66 and 76.
  • it may be transported by transport units 61 and 71 including one or more transport rollers 69 and 79, respectively.
  • the light used for inspection is not limited to visible light.
  • the illumination device 10 may irradiate light in the wavelength band of 830 nm to 3 ⁇ m (near infrared light), and the line sensor array 20 may have a detection element having sensitivity in the wavelength band.

Abstract

A device according to the present invention that applies light to one end surface of a subject in which a plurality of columnar hollow sections are arranged in parallel and inspects the condition of the hollow sections in accordance with light received by a sensor disposed on the other end surface is configured so as to perform an accurate inspection of a hollow columnar structure aggregate by providing guidance to appropriately determine the configuration and arrangement of a lighting device in relation to the subject. The lighting device is provided with a light-emitting unit that has light-emitting sections for emitting diffused light and non-light-emitting sections alternately arrayed on one end surface of the subject. When the widths of the light-emitting sections and the non-light-emitting sections in the array direction are c1 and c2, respectively, the length of the hollow sections of the subject is h, the width of the hollow sections in the array direction is w, and the distance from the other end surface to the light emitting unit is d, the arrangement position of the light-emitting unit and/or the structure of the light-emitting unit is designed so as to satisfy the relationship c2 < w × d/h.

Description

中空柱状構造集合体の検査装置および検査システムInspection apparatus and inspection system for hollow columnar structure aggregate
 本発明は、柱状の中空部が複数、平行に配置された中空柱状構造集合体の検査装置および検査システムに関し、例えば流体との化学反応を利用したり、粒子状物質を濾過したりすることで流体を清浄化する自動車用の触媒やフィルタなどに用いられる中空柱状構造集合体を検査する技術に関する。 The present invention relates to an inspection apparatus and an inspection system for a hollow columnar structure assembly in which a plurality of columnar hollow portions are arranged in parallel. For example, by utilizing a chemical reaction with a fluid or filtering particulate matter. The present invention relates to a technique for inspecting a hollow columnar structure aggregate used in automobile catalysts and filters for cleaning fluids.
 例えば自動車用の触媒やフィルタは、非常に細長い中空部が多数平行に配置された中空柱状構造集合体として構成される。そのような中空柱状構造集合体の中空部に欠陥があると所期の性能を発揮することができなくなるので、欠陥の有無を正しく検査することが重要となる。 For example, automobile catalysts and filters are configured as a hollow columnar structure aggregate in which a large number of very thin hollow portions are arranged in parallel. If there is a defect in the hollow part of such a hollow columnar structure aggregate, the desired performance cannot be exhibited, so it is important to correctly inspect the presence or absence of the defect.
 そこで、中空柱状構造集合体の一端面に光を照射する一方、他端面の側で中空部を通過した光を集光・撮像することで、孔詰まりなどの欠陥を検査する装置として、特許文献1に開示されたものが提案されている(参照によって同文献の内容を本出願に組み込む)。この文献においては、中空柱状構造集合体の一端面(以下、入射端という)の側に一様な拡散光を照射する照明装置を配設し、他端面(以下、出射端という)の側にレンズアレイを含むラインセンサアレイを配設することが開示されている。そして、ラインセンサアレイの配設位置を、レンズアレイが中空柱状構造集合体の出射端に対して焦点距離以上の間隔を置いた位置に設定されることが記載されている。 Therefore, as a device for inspecting defects such as clogging by condensing and imaging light that has passed through the hollow portion on the other end surface side while irradiating light to one end surface of the hollow columnar structure aggregate, Patent Literature 1 has been proposed (the contents of this document are incorporated into this application by reference). In this document, an illumination device that irradiates uniform diffused light is disposed on one end surface (hereinafter referred to as an incident end) of a hollow columnar structure assembly, and the other end surface (hereinafter referred to as an output end) is disposed on the other end surface. Disposing a line sensor array including a lens array is disclosed. In addition, it is described that the arrangement position of the line sensor array is set to a position where the lens array is spaced from the emission end of the hollow columnar structure aggregate by a distance equal to or greater than the focal length.
 照明装置として平行光を照射するものを用いる場合、中空柱状構造集合体が傾くなどして中空部の延在軸が平行光の光軸と一致していない場合には、入射端から入射した平行光が中空部を区画する隔壁に突き当たるなどすることで誤判定が生じ得ることから、同文献のように拡散光を照射する照明装置を使用することは好ましい。また、レンズアレイを中空柱状構造集合体の出射端に対して焦点距離以上の間隔を置いた位置に設定することは、センサアレイにおいて必要な分解能を確保でき、中空柱状構造集合体の検査時に間隔の変動があっても、また中空柱状構造集合体の傾きがあっても観測が可能であることから好ましい。 When using an illumination device that emits parallel light, if the hollow columnar structure aggregate is tilted and the extension axis of the hollow portion does not coincide with the optical axis of the parallel light, the parallel light incident from the incident end is used. It is preferable to use an illuminating device that irradiates diffused light as in the same document, because erroneous determination may occur due to light striking a partition wall that defines a hollow portion. In addition, setting the lens array at a position more than the focal length with respect to the emission end of the hollow columnar structure aggregate can ensure the necessary resolution in the sensor array, and the interval when inspecting the hollow columnar structure aggregate. Even if there is a fluctuation of the above, and even if there is an inclination of the hollow columnar structure aggregate, it is preferable because observation is possible.
特開2015-163857号公報Japanese Patent Laying-Open No. 2015-163857
 本発明は、被検体である中空柱状構造集合体との関連において、照明装置の構成および配置を適切に定める指針を与えることで、正確な中空柱状構造集合体の検査が行われるようにすることを目的とする。 The present invention provides an accurate inspection of a hollow columnar structure aggregate by providing a guideline for appropriately determining the configuration and arrangement of the illumination device in relation to the hollow columnar structure aggregate as a subject. With the goal.
 そのために、本発明は、光が出射する際に当該出射光が微小広がりの光となる柱状の中空部が複数、平行に配置された中空柱状構造集合体の検査装置であって、
 前記複数の中空部の一方の端部が位置する前記中空柱状構造集合体の一端面に拡散光を照射する発光ユニットを有する照明装置と、
 前記複数の中空部の他方の端部が位置する前記中空柱状構造集合体の他端面から光を受光可能に配置され、前記複数の中空部から出射される光の受光量を検出するラインセンサアレイと、
を備え、
 前記発光ユニットには、相対的に光強度の高い第1部分と相対的に光強度の低い第2部分とが交互に配列され、
 当該配列方向における前記第1部分および前記第2部分の幅をそれぞれc1およびc2、前記中空部の長さをh、前記配列方向における前記中空部の幅をw、前記他端面から前記発光ユニットまでの距離をdとしたとき、
  c2<w×d/h
の関係を満たすことを特徴とする。
Therefore, the present invention is an inspection apparatus for a hollow columnar structure assembly in which a plurality of columnar hollow portions, in which the emitted light becomes light that spreads slightly when the light is emitted, are arranged in parallel,
An illumination device having a light emitting unit that irradiates diffused light to one end surface of the hollow columnar structure aggregate in which one end of the plurality of hollow portions is located;
A line sensor array that is arranged so as to be able to receive light from the other end surface of the hollow columnar structure aggregate where the other ends of the plurality of hollow portions are located, and detects the amount of light received from the plurality of hollow portions. When,
With
In the light emitting unit, first portions having relatively high light intensity and second portions having relatively low light intensity are alternately arranged,
The widths of the first part and the second part in the arrangement direction are c 1 and c 2 , the length of the hollow part is h, the width of the hollow part in the arrangement direction is w, and the light emission from the other end surface When the distance to the unit is d,
c 2 <w × d / h
It is characterized by satisfying the relationship.
 また、本発明は、上記検査装置を備えた中空柱状構造集合体の検査システムであって、
 前記検査装置に対し、前記中空柱状構造集合体を支持して搬送する搬送手段を備え、
 該搬送手段は、前記搬送の方向の上流側に配置された上流側搬送部と、前記他端面から光が通過するように、前記上流側搬送部に対し前記搬送の方向に間隔を置いて配置された下流側搬送部を有し、
 前記搬送手段を挟んで前記照明装置および前記ラインセンサアレイが上下に配置され、
 前記上流側搬送部および前記下流側搬送部は、無端式のベルトコンベアの形態を有するとともに、前記中空柱状構造集合体を支持するベルトの面を平坦な状態に規制する規制部材を有する、
ことを特徴とする。
Further, the present invention is an inspection system for a hollow columnar structure assembly provided with the above inspection device,
Conveying means for supporting and transporting the hollow columnar structure aggregate to the inspection device,
The transport means is disposed at an interval in the transport direction with respect to the upstream transport unit so that light passes from the upstream transport unit disposed on the upstream side in the transport direction and the other end surface. Having a downstream conveying section,
The lighting device and the line sensor array are arranged up and down across the conveying means,
The upstream side transport unit and the downstream side transport unit have a form of an endless belt conveyor and a regulating member that regulates the surface of the belt supporting the hollow columnar structure aggregate to a flat state.
It is characterized by that.
 本発明によれば、被検体である中空柱状構造集合体との関連において、照明装置の構成および配置が適切に定められることから、中空柱状構造集合体の正確な検査が行われるようになる。 According to the present invention, since the configuration and arrangement of the illumination device are appropriately determined in relation to the hollow columnar structure aggregate that is the subject, the hollow columnar structure aggregate is accurately inspected.
本発明の検査対象となり得る中空柱状構造集合体の一例を模式的に示す破断斜視図である。It is a fracture perspective view showing typically an example of the hollow columnar structure aggregate which can become the inspection object of the present invention. 本発明の検査対象となり得る中空柱状構造集合体の他の例を模式的に示す破断斜視図である。It is a fracture | rupture perspective view which shows typically the other example of the hollow columnar structure aggregate | assembly which can become the test object of this invention. (a)および(b)は、本発明の一実施形態に係る中空柱状構造集合体の検査装置の基本構成および検査原理を説明するための模式図であり、(a)は中空柱状構造集合体の傾きがない状態を、(b)は中空柱状構造集合体の傾きがある状態を示している。(A) And (b) is a schematic diagram for demonstrating the basic composition and inspection principle of the inspection apparatus of the hollow columnar structure aggregate | assembly which concerns on one Embodiment of this invention, (a) is a hollow columnar structure aggregate | assembly. (B) has shown the state with the inclination of a hollow columnar structure aggregate. 閉塞型構造の中空柱状構造集合体Fにおいて生じ得る欠陥の一例およびその検出態様を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating an example of the defect which may arise in the hollow columnar structure aggregate | assembly F of a closure type | mold structure, and its detection aspect. 照明装置の構成および配置の条件を説明するための説明図である。It is explanatory drawing for demonstrating the structure of an illuminating device, and the conditions of arrangement | positioning. (a)および(b)は、実施形態の照明装置の構成および配置の基本条件を説明するための説明図である。(A) And (b) is explanatory drawing for demonstrating the basic condition of a structure and arrangement | positioning of the illuminating device of embodiment. (a)~(c)は、実施形態の照明装置の構成および配置の発展条件を説明するための説明図である。(A)-(c) is explanatory drawing for demonstrating the development conditions of a structure and arrangement | positioning of the illuminating device of embodiment. (a)は開放型構造の中空柱状構造体の光出射端とセンサ装置とのギャップが一様である状態での検査、(b)は(a)の状態から中空柱状構造体を水平面に対し傾けた状態での検査を説明するための模式図である。(A) is an inspection in a state where the gap between the light emitting end of the hollow columnar structure having an open structure and the sensor device is uniform, and (b) is a state where the hollow columnar structure is removed from the horizontal plane with respect to the horizontal plane. It is a schematic diagram for demonstrating the test | inspection in the state inclined. (a)は閉塞型構造の中空柱状構造体の光出射端とセンサ装置とのギャップが一様である状態での検査、(b)は(a)の状態から中空柱状構造体を水平面に対し傾けた状態での検査を説明するための模式図である。(A) is an inspection in a state where the gap between the light emitting end of the hollow columnar structure having a closed structure and the sensor device is uniform, and (b) is a state in which the hollow columnar structure is removed from the horizontal plane with respect to the horizontal plane. It is a schematic diagram for demonstrating the test | inspection in the state inclined. (a)および(b)は、それぞれ、開放型構造の中空柱状構造体および閉塞型構造の中空柱状構造体に対し、ギャップを設定した場合における検出素子アレイによる受光量検出波形を説明するための模式図である。(A) And (b) is for demonstrating the light reception amount detection waveform by a detection element array in the case of setting a gap with respect to the hollow columnar structure of an open type structure, and the hollow columnar structure of a block type structure, respectively. It is a schematic diagram. 図3に示した検査装置を適用して構成した検査システムの一実施形態の概略構成を示す模式的側面図である。It is a typical side view which shows schematic structure of one Embodiment of the test | inspection system comprised by applying the test | inspection apparatus shown in FIG. 図11に示した検査システムの制御系の構成例を示すブロック図である。It is a block diagram which shows the structural example of the control system of the inspection system shown in FIG. 図12の制御系による検査処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the test | inspection processing procedure by the control system of FIG. 図3に示した検査装置を適用して構成した検査システムの他の実施形態の概略構成を示す模式的側面図である。It is a typical side view which shows schematic structure of other embodiment of the test | inspection system comprised by applying the test | inspection apparatus shown in FIG. 図3に示した検査装置を適用して構成した検査システムのさらに他の実施形態の概略構成を示す模式的側面図である。It is a typical side view which shows schematic structure of other embodiment of the test | inspection system comprised by applying the test | inspection apparatus shown in FIG.
 以下、図面を参照して本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
 1.検査対象および基本構成
 図1および図2は、以下で述べる実施形態に係る検査装置および検査システムの対象となり得る中空柱状構造集合体(以下、被検体ともいう)の2例を示す。図1に示す被検体Cは、その対向する2端間を貫いて直管状に延在する多数の中空柱状構造、すなわち被検体Cの光の入射端C1およびこれに対向する光の出射端C2において両端が開放され、隔壁Pによって区画された複数の中空部Hを有している(以下、開放型構造という場合もある)。また、図2に示す被検体Fは、光の入射端F1において一端が開放されるとともに光の出射端F2の側において他端が閉塞された中空部H1と、入射端F1の側において一端が閉塞されるとともに出射端F2の側において他端が開放された中空部H2とを、千鳥状に配置した構成を有している(以下、閉塞型構造という場合もある)。
1. Inspection Object and Basic Configuration FIGS. 1 and 2 show two examples of a hollow columnar structure assembly (hereinafter also referred to as a subject) that can be an object of an inspection apparatus and an inspection system according to the embodiments described below. The subject C shown in FIG. 1 has a large number of hollow columnar structures extending in a straight tube shape through two opposing ends, that is, the light incident end C1 of the subject C and the light emitting end C2 opposed thereto. 2 have a plurality of hollow portions H that are open at both ends and partitioned by a partition wall P (hereinafter also referred to as an open type structure). Further, the subject F shown in FIG. 2 has a hollow portion H1 having one end opened at the light incident end F1 and closed at the other end on the light exit end F2, and one end on the incident end F1 side. It has a configuration in which the hollow portions H2 that are closed and open at the other end on the side of the emission end F2 are arranged in a staggered manner (hereinafter also referred to as a closed-type structure).
 なお、これらの図に示された被検体は、あくまでも基本的な構成を例示するためのものであって、被検体自体の形状や寸法、中空部の数,断面形状,断面寸法,軸方向長,並び隔壁の厚さなどの限定を企図したものではない。但し、本発明が好ましく適用できる被検体は、出射光が微小広がりの光(準平行光)となるような断面寸法および長さの中空部を有してなるもの(例えば断面円形状の中空部であれば、直径に対して有意の倍数以上の長さを持つもの)である。 It should be noted that the specimens shown in these drawings are only for illustrating the basic configuration, and the shape and dimensions of the specimen itself, the number of hollow portions, the cross-sectional shape, the cross-sectional dimensions, and the axial length , It is not intended to limit the thickness of the partition walls. However, a subject to which the present invention can be preferably applied has a hollow portion having a cross-sectional dimension and a length such that the emitted light becomes a minutely spread light (quasi-parallel light) (for example, a hollow portion having a circular cross-section) If so, it has a length more than a significant multiple of the diameter).
 被検体の形態は、流体との化学反応を利用したり、粒子状物質を濾過したりすることで流体を清浄化する触媒(図1の中空柱状構造集合体C)やフィルタ(図2の中空柱状構造集合体F)を含むものであるが、それらに限られるものではない。すなわち、本発明は、柱状に延在する複数の開放型構造の中空部H、または閉塞型構造の中空部H1およびH2が平行に配置された被検体であれば、その中空柱状構造のそれぞれの状態(欠陥の有無など)を検査するために用いることができる。なお、本明細書において、「欠陥」とは、例えば開放型構造にあっては、製造上の要因や不要物質の混入によって生じる開放型中空部の目詰まり(完全に閉塞しているもののほか、一部閉塞すなわち狭窄しているものも含む)、または、被検体自体の製造上の要因あるいは中空部内表面に適用される物質のムラによって生じる隔壁の凹凸などが含まれる。また、閉塞型構造における「欠陥」には、閉塞端の穴あきやセル間の隔壁の欠けなどが含まれる。 The form of the specimen is a catalyst (hollow columnar structure aggregate C in FIG. 1) or a filter (hollow in FIG. 2) that cleans the fluid by utilizing a chemical reaction with the fluid or filtering particulate matter. Columnar structure aggregates F) are included, but not limited to them. That is, according to the present invention, if the subject has a plurality of open-type hollow portions H or closed-type hollow portions H1 and H2 that are arranged in parallel, the hollow columnar structures, It can be used to inspect the state (such as the presence or absence of defects). In the present specification, the term “defect” means, for example, in an open type structure, clogging of an open type hollow part caused by manufacturing factors or mixing of unnecessary substances (in addition to those that are completely blocked, Including those partially occluded or constricted), manufacturing factors of the subject itself, or unevenness of the partition wall caused by unevenness of the substance applied to the inner surface of the hollow part. Further, the “defect” in the closed structure includes a hole in the closed end, a notch of a partition between cells, and the like.
 図3(a)は、本発明の一実施形態に係る被検体Cの検査装置の基本構成および検査原理を説明するための模式図である。図示の実施形態に係る検査装置は、被検体Cの入射端C1に光を照射するための照明装置10と、出射端C2から出射される光を受光可能に構成されたコンタクトイメージセンサ(CIS)形態のラインセンサアレイ20と、を有する。照明装置10は、被検体Cの入射端に拡散光DLを照射する照明装置として構成される。ラインセンサアレイ20は、レンズアレイを含み、そのレンズアレイが被検体Cの出射端C2に対して焦点距離以上の間隔を置いている位置に設定され、中空部Hを通過した光OLを集光・撮像することで、孔詰まりなどの欠陥を検査する。 FIG. 3A is a schematic diagram for explaining a basic configuration and an inspection principle of an inspection apparatus for a subject C according to an embodiment of the present invention. The inspection apparatus according to the illustrated embodiment includes an illumination device 10 for irradiating light to an incident end C1 of a subject C, and a contact image sensor (CIS) configured to be able to receive light emitted from the output end C2. Line sensor array 20 of the form. The illumination device 10 is configured as an illumination device that irradiates the incident end of the subject C with the diffused light DL. The line sensor array 20 includes a lens array, and the lens array is set at a position that is more than the focal length with respect to the emission end C2 of the subject C, and collects the light OL that has passed through the hollow portion H.・ Inspect defects such as clogging by imaging.
2.拡散光照明装置の使用の利点および課題
 照明装置10としては、拡散光を発することができるのであれば適宜の発光ユニットを有するものを採用することができる。しかし構成が簡単であること、必要な光量が得やすいこと、および消費電力を低減することなどの観点からは、2次元状すなわち面状に広がる発光ユニットではなく、1次元状すなわち直線状に延在する発光ユニットを有するものを採用することが有利である。この場合、検査対象となり得る中空柱状構造体の端面の寸法に対応した有効照射幅を有するものとされる。
2. Advantages and Problems of Use of Diffused Light Illuminating Device As the illuminating device 10, a device having an appropriate light emitting unit can be adopted as long as it can emit diffused light. However, from the viewpoints of simple configuration, easy acquisition of the necessary amount of light, and reduction of power consumption, it is not a two-dimensional or planar light emitting unit, but a one-dimensional or linear extension. It is advantageous to employ one having an existing light emitting unit. In this case, it has an effective irradiation width corresponding to the dimension of the end face of the hollow columnar structure that can be an inspection target.
 被検体Cの入射端C1にある中空部Hの開口(以下、入射開口という)Hiには、拡散光DLの一部が入射する。そして、中空部Hの延在方向と平行またはほぼ平行に入射した光は、そのまま出射端という)C2にある中空部Hの開口(以下、出射開口という)Hoに進んで行く。このため、図3(b)に示すように被検体Cに傾きがある場合であっても、ラインセンサアレイ20において所要の検出を行うことが可能である。なお、検査にあたって問題となる「傾き」とは、中空部の軸線が光軸に対して傾いている状態を意味し、必ずしも図3(b)に示した状態に限られるものではない。すなわち、例えば被検体Cの出射端C2が中空部Hの軸線に対して垂直でない場合でも中空部の軸線が光軸に対して傾いている状態となるからであり、そのような場合にも拡散光を用いることは有効である。 Part of the diffused light DL is incident on the opening Hi (hereinafter referred to as an incident opening) Hi of the hollow portion H at the incident end C1 of the subject C. Then, the light incident in parallel or substantially parallel to the extending direction of the hollow portion H proceeds to the opening Ho (hereinafter referred to as an emission opening) Ho of the hollow portion H at C2 as it is. For this reason, even if the subject C is inclined as shown in FIG. 3B, the line sensor array 20 can perform the required detection. “Inclination” which is a problem in the inspection means a state where the axis of the hollow portion is inclined with respect to the optical axis, and is not necessarily limited to the state shown in FIG. That is, for example, even when the emission end C2 of the subject C is not perpendicular to the axis of the hollow portion H, the axis of the hollow portion is inclined with respect to the optical axis. It is effective to use light.
 また、図4に示すように、閉塞型構造の中空部H1,H2を有する被検体Fにおいて、端面を目視するだけでは発見できないような隔壁の欠損が生じていた場合でも、拡散光を用いることは有効である。すなわち、入射端F1に開放端H1iを有する中空部H1から入射した光は、欠損部を介し、出射端H2に開放端H2oを有する隣接中空部H2に入射し、その開放端H2oから出射されるので、これを検出することで隔壁の欠損の有無を知ることができるからである。 Moreover, as shown in FIG. 4, in the subject F having the hollow portions H1 and H2 having the closed structure, the diffused light is used even when a partition wall defect that cannot be found by just visually observing the end face occurs. Is valid. That is, the light incident from the hollow portion H1 having the open end H1i at the incident end F1 enters the adjacent hollow portion H2 having the open end H2o at the output end H2 through the defect portion, and is emitted from the open end H2o. Therefore, by detecting this, it is possible to know the presence or absence of a partition wall defect.
 特許文献1には、直管蛍光灯、伝送ライト式のハロゲンランプ、メタルハライドランプなどの直線状の発光部を有する照明装置が例示されている。蛍光灯には一般に水銀が使用されており、照明器具に関しては、規制値の範囲の含有量であれば、水銀に関する水俣条約の規制対象外であって製造・販売が継続されるため使用は可能である。しかし、環境への影響を排除する観点からは、その使用は極力避けるべきである。また、ハロゲンランプやメタルハライドランプは発光状態が安定するまでの応答性に劣ることに加え、消費電力ないしは発熱量が大きいため検査装置のランニングコストや交換などのメンテナンス性に問題がある。なお、特許文献1には例示されていないが、有機ELの使用も考えられる。しかし有機ELは、被検体の検査を行うための発光部として使用するには照度が十分ではない。 Patent Document 1 exemplifies an illuminating device having a linear light emitting section such as a straight tube fluorescent lamp, a transmission light type halogen lamp, and a metal halide lamp. Mercury is generally used for fluorescent lamps, and lighting equipment can be used as long as the content is within the limits of the regulation value, it is not subject to the Minamata Convention on Mercury and production and sales will continue. It is. However, its use should be avoided as much as possible from the viewpoint of eliminating environmental impact. In addition, the halogen lamp and the metal halide lamp are inferior in responsiveness until the light emission state is stabilized, and also have problems in maintenance performance such as running cost and replacement of the inspection apparatus due to large power consumption or heat generation. In addition, although not illustrated by patent document 1, use of organic EL is also considered. However, organic EL does not have sufficient illuminance to be used as a light emitting unit for examining a subject.
 一方、特許文献1には、発光ユニットとしてLEDアレイを利用することが例示されている。LEDアレイの形態としては、例えば砲弾型と称されるアキシャルリード型LED素子(以下、単にLED素子ともいう)を配列したもの、あるいは、LEDチップ、特に蛍光体を使用したLEDチップ(以下、単にLEDチップともいう)を配列したものが挙げられる。この場合、1つのLED素子あるいは1つのLEDチップの、実際に発光する第1部分である発光部が実質的な光源となる。 On the other hand, Patent Document 1 exemplifies using an LED array as a light emitting unit. As an LED array, for example, an axial lead type LED element called a shell type (hereinafter also simply referred to as an LED element), or an LED chip, particularly an LED chip using a phosphor (hereinafter simply referred to as an LED element) (Also referred to as LED chip). In this case, the light-emitting portion that is the first portion that actually emits light of one LED element or one LED chip is a substantial light source.
 しかしLED素子あるいはLEDチップなどの発光デバイスの筐体、基板あるいは配線の制約から、実質的な光源となる発光部を継ぎ目なく配置することは事実上不可能であるので、実際には、発光ユニットの長さ方向に沿って、実際に発光する発光部(光源)と、発光しない第2部分である非発光部とが周期的に現れることになる。かかる発光ユニットを用いて被検体の検査を行う場合、光が入射しない中空部があると、ラインセンサアレイ20はその中空部からの出射光OLを検出しないため、欠陥があるとの判断(開放型構造の場合)や、欠陥がないとの判断(閉塞型構造の場合)につながる誤検出がなされ得る。それらのような誤検出を避けるためには、まず、どの中空部にも光が入射することが強く望ましい。 However, since it is practically impossible to seamlessly arrange the light-emitting portion that becomes a light source due to restrictions on the housing, substrate, or wiring of a light-emitting device such as an LED element or LED chip, in practice, the light-emitting unit A light-emitting part (light source) that actually emits light and a non-light-emitting part that is a second part that does not emit light periodically appear along the length direction. When the subject is inspected using such a light emitting unit, if there is a hollow portion where no light is incident, the line sensor array 20 does not detect the emitted light OL from the hollow portion, so that it is determined that there is a defect (open). Erroneous detection leading to a determination that there is no defect (in the case of a closed structure). In order to avoid such false detection, it is strongly desirable that light be incident on any hollow part.
 そこで、被検体の入射端から発光ユニットを十分に離隔させて配置することが考えられるが、必要以上に離隔させることは装置の大型化につながり、あるいは装置のスペースの関係から必要十分な距離を設定することが困難な場合もある。また、発光ユニットと被検体の入射端との間に拡散板を介挿することも考えられるが、発光部の周期性を解消するには限界がある。さらに、いずれの構成を採用するにせよ、入射端の照度の低下が生じ得るので、これを補うためには、発光デバイスへの投入電力を大きくして光源の光強度を増大させなければならない。しかしその分、発光デバイスの温度が上昇することで却って発光効率が低下し、また寿命にも影響を与えることにもなるので、これらを避けるためには大型の冷却手段の付加が必要となる。 Therefore, it is conceivable to arrange the light emitting unit sufficiently separated from the incident end of the subject.However, separating the light emitting unit more than necessary leads to an increase in the size of the device, or a necessary and sufficient distance due to the space of the device. It may be difficult to set. In addition, it is conceivable to insert a diffusion plate between the light emitting unit and the incident end of the subject, but there is a limit in eliminating the periodicity of the light emitting unit. Further, regardless of which configuration is employed, the illuminance at the incident end can be reduced. To compensate for this, the input power to the light emitting device must be increased to increase the light intensity of the light source. However, as the temperature of the light emitting device rises accordingly, the light emission efficiency is lowered, and the life is also affected. To avoid these, it is necessary to add a large cooling means.
3.照明装置の構成および配置条件
 以上に鑑み、本実施形態では、照明装置10の離隔配置や拡散板の介挿を必須とせず、すべての中空部に光が入射するように照明装置の構成および配置の条件(以下、基本条件)を定める。さらに、発光部と非発光部とが交互に周期的に現れ、これが中空部のピッチと一致しないことに起因した中空部毎の入射光量ひいては出射光量のムラを低減するように照明装置の構成および配置の条件(発展条件)を定める。
3. Configuration and Arrangement Condition of Illumination Device In view of the above, in this embodiment, the arrangement and arrangement of the illumination device so that light is incident on all the hollow portions without requiring the distant arrangement of the illumination device 10 and the insertion of the diffusion plate. The following conditions (hereinafter referred to as basic conditions) are defined. Furthermore, the configuration of the illumination device and the light emitting unit and the non-light emitting unit appear alternately and periodically so as to reduce the unevenness of the incident light quantity and thus the emitted light quantity for each hollow part due to the fact that this does not coincide with the pitch of the hollow part. Define the conditions (development conditions) for placement.
 図5は、その条件を説明するために、照明装置10の構成要素である発光ユニット11と、被検体Cとを模式的に示した図である。上述したように、発光ユニット11には、発光部12および非発光部14が周期的に交互に配列されたものである。ここで、当該配列方向における発光部12および非発光部14の幅をそれぞれc1およびc2とし、それらを加算した値をcとすると、値cが発光部12の延在方向における発光部12および非発光部14の周期(ピッチ)となる。また、中空部Hの長さ(すなわち出射端C2から入射端C1までの高さ)および幅をそれぞれhおよびwとし、出射端C2から発光ユニット11の光源面16までの距離(以下、対光源面距離という)をdとする。 FIG. 5 is a diagram schematically showing the light emitting unit 11 that is a component of the illumination apparatus 10 and the subject C in order to explain the conditions. As described above, in the light emitting unit 11, the light emitting units 12 and the non-light emitting units 14 are periodically and alternately arranged. Here, when the widths of the light emitting unit 12 and the non-light emitting unit 14 in the arrangement direction are c 1 and c 2 , respectively, and the value obtained by adding them is c, the value c is the light emitting unit 12 in the extending direction of the light emitting unit 12. And the period (pitch) of the non-light emitting portion 14. Further, the length (that is, the height from the exit end C2 to the entrance end C1) and the width of the hollow portion H are set to h and w, respectively, and the distance from the exit end C2 to the light source surface 16 of the light emitting unit 11 (hereinafter referred to as a counter light source). D) is referred to as the surface distance.
 入射開口Hiから入射し、中空部Hを通過して出射開口Hoから出射する光は、ラインセンサアレイ20に入射する。ラインセンサアレイ20は、後述するように、レンズアレイおよび検出素子アレイを含むものとして構成され、入射した光はレンズを介してセンサ素子に捕らえられる。センサ素子の配列周期が出射開口Hoの周期に一致しなくても、センサ素子に捕えられる光は、必ず出射開口Ho内の1点を通過する。換言すれば、その点を視点として光源面16を見たと仮定したとき、その視野に発光部が入っていれば、隔壁Pの厚みに関わらず、センサ素子には必ず光が入射する。 The light that enters from the entrance opening Hi, passes through the hollow portion H, and exits from the exit opening Ho enters the line sensor array 20. As will be described later, the line sensor array 20 is configured to include a lens array and a detection element array, and incident light is captured by the sensor element via the lens. Even if the arrangement period of the sensor elements does not coincide with the period of the exit opening Ho, the light captured by the sensor element always passes through one point in the exit opening Ho. In other words, when it is assumed that the light source surface 16 is viewed from the point of view, if the light emitting portion is in the field of view, light is always incident on the sensor element regardless of the thickness of the partition wall P.
 出射開口Ho内の任意の点から視野に入る光源面の幅(以下、視野幅という)vは、どの中空部についても等しい。図5に示すように、視点が出射開口の最右端(ir)にある場合であっても、中央(ic)にある場合であっても、最左端(il)にある場合であっても、
  v/d=w/h
の関係より、
  v=w×d/h
となるからである。
The width of the light source surface entering the field of view from an arbitrary point in the exit aperture Ho (hereinafter referred to as field of view width) v is the same for any hollow part. As shown in FIG. 5, whether the viewpoint is at the rightmost end (ir) of the exit aperture, the center (ic), or the leftmost end (il),
v / d = w / h
From the relationship
v = w × d / h
Because it becomes.
 ここで、
  c2=c-c1
であることから、非発光部14の幅c2に相当する非出射領域の長さよりも、出射開口Ho内の任意の点からの視野幅vが大であれば、その視野幅vの範囲内には発光部12の少なくとも一部の長さに相当する発光領域が存在する。したがって、
  c2<v=w×d/h
の条件(基本条件)を満たすように、発光ユニット11を配置すること(すなわち出射端C2から発光ユニット11の光源面16までの距離dを定めること)、および/または、発光ユニット11の構造(発光部の幅c1、非発光部の幅c2および周期c)を設計することで、発光ユニット11に対向しているすべての中空部Hに光を入射させ、出射させることができる。
here,
c 2 = c−c 1
Therefore, if the field width v from an arbitrary point in the exit aperture Ho is larger than the length of the non-outgoing region corresponding to the width c 2 of the non-light emitting portion 14, it is within the range of the field width v. Has a light emitting region corresponding to the length of at least a part of the light emitting unit 12. Therefore,
c 2 <v = w × d / h
The light emitting unit 11 is disposed so as to satisfy the above condition (basic condition) (that is, the distance d from the emission end C2 to the light source surface 16 of the light emitting unit 11) and / or the structure of the light emitting unit 11 ( By designing the width c 1 of the light emitting portion, the width c 2 of the non-light emitting portion, and the period c), light can be incident on and emitted from all the hollow portions H facing the light emitting unit 11.
 図6(a)および(b)を用いてこれを説明する。これらの図において、符号p1~p7は、出射開口Ho内の視点vpに対して異なる相対位置にある発光ユニット11を示す。図6(a)は、発光部12が点光源と見なせるほど小さく(c1≒0)、非発光部14が視野幅vのほとんどを占めるほど大きい場合(c2≒v)である。また、図6(b)は、発光部12の幅c1が視野幅vと等しく(c1=v)、非発光部14の幅c2が視野幅vとほぼ等しい場合(c2≒v)である。これらの図から明らかなように、基本条件(c2<v)を満たしていれば、幅c1およびc2の大きさに関わらず、また、発光ユニット11の相対位置に関わらず、必ず視野幅vの範囲内には発光部12の少なくとも一部の長さに相当する発光領域が存在することがわかる。 This will be described with reference to FIGS. 6 (a) and 6 (b). In these drawings, reference numerals p1 to p7 denote the light emitting units 11 at different relative positions with respect to the viewpoint vp in the emission opening Ho. FIG. 6A shows a case where the light emitting unit 12 is small enough to be regarded as a point light source (c 1 ≈0) and the non-light emitting unit 14 is large enough to occupy most of the visual field width v (c 2 ≈v). FIG. 6B shows the case where the width c 1 of the light emitting portion 12 is equal to the visual field width v (c 1 = v) and the width c 2 of the non-light emitting portion 14 is substantially equal to the visual field width v (c 2 ≈v ). As is apparent from these drawings, if the basic condition (c 2 <v) is satisfied, the field width v is always obtained regardless of the size of the widths c1 and c2 and regardless of the relative position of the light emitting unit 11. It can be seen that there is a light emitting region corresponding to the length of at least a part of the light emitting unit 12 within the range.
 さらに、相対位置に応じて視野幅vにおける発光部12および非発光部14の現れ方が異なることに起因した中空部毎の入射光量ひいては出射光量のムラ(すなわちセンサ素子の受光量のムラ)を低減することで、正確な検査が可能となる。本発明者らは、
  c2<v/2=w×d/(2×h)
の条件(発展条件)を満たすこと、すなわち、視野幅vの半分以上に、発光部12の少なくとも一部の長さに相当する発光領域が存在すれば、正確な検査を担保することができるとの知見を得た。
Furthermore, unevenness in the incident light amount and thus the emitted light amount (that is, unevenness in the received light amount of the sensor element) for each hollow portion caused by the appearance of the light emitting unit 12 and the non-light emitting unit 14 in the visual field width v depending on the relative position. By reducing, accurate inspection becomes possible. The inventors have
c 2 <v / 2 = w × d / (2 × h)
If the light emitting region corresponding to the length of at least a part of the light emitting portion 12 exists in half or more of the visual field width v, the accurate inspection can be ensured. I got the knowledge.
 図7(a)~(c)を用いてこれを説明する。上記発展条件を満たす場合において、さらに、周期cが視野幅以下である場合(c≦v)と、視野幅v以上である場合(c≧v)と、を考察する。 This will be described with reference to FIGS. 7 (a) to (c). In the case where the above development conditions are satisfied, the case where the period c is equal to or smaller than the visual field width (c ≦ v) and the case where the period c is equal to or larger than the visual field width v (c ≧ v) are further considered.
 図7(a)は、前者の場合において、c1≒0、c2≒v/2である場合を例示しており、視野幅vには必ず2つの発光部12が存在することがわかる。また、図7(b)は、同じくc1≒v/4、c2≒v/2である場合を例示しており、視野幅vには、最大で2つの発光部12が、最小で1つの発光部12が存在していることがわかる。さらに、図7(c)は、視野幅v以上である場合において、c1≒v/2、c2≒v/2である場合を例示しており、視野幅vには必ず1つの発光部12の幅c1に相当する発光領域が存在していることがわかる。 FIG. 7A illustrates the case of c 1 ≈0 and c 2 ≈v / 2 in the former case, and it can be seen that there are always two light emitting portions 12 in the field of view width v. FIG. 7B also illustrates the case where c 1 ≈v / 4 and c 2 ≈v / 2. The field width v has two light emitting units 12 at the maximum and 1 at the minimum. It can be seen that there are two light emitting portions 12. Further, FIG. 7C illustrates a case where c 1 ≈v / 2 and c 2 ≈v / 2 when the field width is greater than or equal to v, and the field width v always includes one light emitting unit. It can be seen that a light emitting region corresponding to a width c 1 of 12 exists.
 したがって、これらの図から、発展条件を満たしていれば、幅c1およびc2の大きさに関わらず、また、周期cと視野幅vとの大小関係によらず、生じ得る出射光量の最大値Homaxと最小値Hominとの関係が
  Homax/2<Homin
となり、中空部毎の入射光量ひいては出射光量のムラ(すなわちセンサ素子の受光量のムラ)が低減されることがわかる。
Therefore, from these figures, as long as the development conditions are satisfied, the maximum amount of emitted light that can be generated regardless of the size of the widths c 1 and c 2 and the magnitude relationship between the period c and the visual field width v. The relationship between the value Ho max and the minimum value Ho min is Ho max / 2 <Ho min
Thus, it can be seen that the amount of incident light and thus the amount of emitted light (that is, the amount of light received by the sensor element) for each hollow portion is reduced.
 ムラをさらに低減することが望まれる場合には、
 c2<v/n=w×d/(n×h);n>2
とすればよい。この場合、出射光量の最小値Hominは、最大値Homaxの(n-1)/n倍以上となり、n値が大きいほどムラのない均一な照明を行うことが可能となる。
If it is desired to further reduce unevenness,
c 2 <v / n = w × d / (n × h); n> 2
And it is sufficient. In this case, the minimum value Ho min of the amount of emitted light is not less than (n−1) / n times the maximum value Ho max , and uniform illumination without unevenness can be performed as the n value increases.
 なお、触媒として用いられる中空柱状構造集合体Cあるいはフィルタとして用いられる中空柱状構造集合体Fは、一般に、長さh=50~250mmおよび幅w=1~1.5mm程度の中空部を有し、入射端C1またはF1には、間隔(以下、ワーキングディスタンスと称し、その値をwdとして参照する)を置いて照明装置10の発光ユニット11が対向配置される。したがって、例えばワーキングディスタンスの値wdが規定値(10mm程度)であれば、検査対象となり得る被検体の中空部の長さhと、幅wと、対光源面距離d(=h+wd)とに基づいて視野幅vを算出し、基本条件または発展条件に従って非発光部の幅c2を決定して、発光ユニット11の設計・製造を行えばよい。逆に、非発光部の幅c2が規定値であれば、基本条件または発展条件に基づいて対光源面距離dないしはワーキングディスタンスwdの値を決定することができる。あるいはさらに、検査装置のスペースや発光部の光強度等を考慮し、相互を折衷させつつ値wdおよび幅c2を定めてもよい。 The hollow columnar structure aggregate C used as a catalyst or the hollow columnar structure aggregate F used as a filter generally has a hollow portion having a length h = 50 to 250 mm and a width w = 1 to 1.5 mm. The light emitting unit 11 of the illuminating device 10 is opposed to the incident end C1 or F1 with an interval (hereinafter referred to as a working distance, and the value is referred to as wd). Therefore, for example, if the working distance value wd is a specified value (about 10 mm), it is based on the length h, the width w, and the distance to the light source surface d (= h + wd) of the subject that can be examined. Then, the visual field width v is calculated, the width c 2 of the non-light emitting portion is determined according to the basic condition or the development condition, and the light emitting unit 11 is designed and manufactured. Conversely, if the width c 2 of the non-light emitting portion specified value, it is possible to determine the value of the pair light source surface distance d or the working distance wd based on the basic conditions or development conditions. Or further, considering the light intensity or the like of the space and the light emitting portion of the inspection apparatus, it may be set to values wd and width c 2 while compromise other.
 なお、視野幅vの範囲に含まれる発光領域の長さは、必ずしも1つの発光部12によって満たされることを意味しない。発光部12の幅c1(ないしは非発光部14の幅c2)および周期cは、発光ユニット11の延在方向における中空部Hの幅および周期とは一般に一致しないため、図7(b),(c)からわかるように、2以上の発光部12によって満たされることもあることに注意すべきである。また、LED素子は一般に点光源と見なされ得るものであるが、実際には有限長の発光部を持つものであるから、発光ユニット11としてLED素子の配列を有するものを採用した場合でも、上述の基本条件や発展条件は適用できる。 Note that the length of the light emitting region included in the range of the visual field width v does not necessarily mean that the light emitting unit 12 fills the length. Since the width c 1 of the light emitting part 12 (or the width c 2 of the non-light emitting part 14) and the period c generally do not coincide with the width and period of the hollow part H in the extending direction of the light emitting unit 11, FIG. , (C), it should be noted that two or more light emitting units 12 may be filled. Further, although the LED element can be generally regarded as a point light source, since it actually has a light emitting part of a finite length, even when a light emitting unit 11 having an array of LED elements is employed, The basic conditions and development conditions are applicable.
 さらに、本発明は、拡散板を必須とするものではないが、その使用を排除するものでもない。発光ユニット11ないしは照明装置10の配設位置に制約がある場合においては拡散板を介挿することも有効となり得る。実際には、拡散板によっても発光部の周期性を解消するには至らず、拡散板には相対的に光強度の高い第1部分である強発光部と、相対的に光強度の低い第2部分である弱発光部とが周期的に交互に現れることになる。その低発光部の光強度が高発光部の光強度の1/fである場合には,低発光部の幅に(1-1/f)を乗じた値を仮想的なc2とみなし、発展条件を適用することができる。 Furthermore, the present invention does not require a diffusion plate, but does not exclude its use. In the case where there is a restriction on the arrangement position of the light emitting unit 11 or the illumination device 10, it is also effective to insert a diffusion plate. Actually, the diffusion plate does not eliminate the periodicity of the light emitting part. The diffuser plate has a strong light emitting part which is a first part having a relatively high light intensity and a first light emitting part having a relatively low light intensity. The weak light emitting parts which are two parts appear alternately alternately. When the light intensity of the low light emitting part is 1 / f of the light intensity of the high light emitting part, the value obtained by multiplying the width of the low light emitting part by (1-1 / f) is regarded as virtual c 2 , Development conditions can be applied.
 いずれにせよ、本実施形態によれば、環境性や省電力に考慮しつつ、中空柱状構造集合体との関連において、適切な配設位置や構造が定められた照明装置が実現される。換言すれば、基本条件および発展条件に基づいて発光ユニット11の配設位置や構造設計上の制約が緩和される。また、拡散板を使用する場合でも、発光部の周期性を極力解消するべく透過率の低いものを用いる必要がなくなる。 In any case, according to this embodiment, an illuminating device in which an appropriate arrangement position and structure are determined in relation to the hollow columnar structure aggregate is realized in consideration of environmental performance and power saving. In other words, restrictions on the arrangement position and structure design of the light emitting unit 11 are eased based on the basic conditions and the development conditions. Further, even when a diffusion plate is used, it is not necessary to use a low transmittance so as to eliminate the periodicity of the light emitting part as much as possible.
4.ラインセンサアレイ
 本実施形態のラインセンサアレイ20は、レンズアレイ(例えば、被検体となり得る中空柱状構造体の端面の寸法に対応した範囲にわたって複数のロッドレンズを直線状に配列したロッドレンズアレイ)および検出素子アレイを含んだものとして、特許文献1に開示された構成を採用することができる。その構成を説明すると、まず、照明装置10とラインセンサアレイ20とは、同一平面、好ましくは平行に配置される。また、本実施形態においては、ラインセンサアレイ20としてはCIS形態のものを用い、これを、レンズの光入射端が被検体の他端面の光出射端から焦点距離以上の間隔(以下、ギャップと称する)を置く位置に配設して、中空部からの出射光を捕える。
4). Line Sensor Array The line sensor array 20 of this embodiment includes a lens array (for example, a rod lens array in which a plurality of rod lenses are linearly arranged over a range corresponding to the dimension of the end surface of a hollow columnar structure that can be a subject) and The configuration disclosed in Patent Document 1 can be adopted as including the detection element array. The configuration will be described. First, the illumination device 10 and the line sensor array 20 are arranged on the same plane, preferably in parallel. In the present embodiment, the CIS type line sensor array 20 is used as the line sensor array 20, and the distance between the light incident end of the lens and the light exit end of the other end surface of the subject is equal to or greater than the focal length (hereinafter referred to as a gap). The light emitted from the hollow portion is captured.
 このことには、ピントが合っていない位置(非結像位置)で中空柱状構造体の光出射端を観測する場合が含まれる。しかし本実施形態では、中空部からの出射光が準平行光となっていること、および、短焦点のレンズアレイを有するラインセンサアレイ20を採用しているので受光角が大きいことから、ある程度のギャップが介在しても受光が可能であり、センサアレイにおいて必要な分解能を確保できる。これはまた、被検体の検査時にギャップの変動があっても、また被検体の傾きがあっても観測が可能であることも意味する。 This includes the case where the light emitting end of the hollow columnar structure is observed at a position out of focus (non-imaging position). However, in this embodiment, since the light emitted from the hollow portion is quasi-parallel light and the line sensor array 20 having the short-focus lens array is adopted, the light receiving angle is large, and therefore, to some extent. Light can be received even if a gap is present, and a necessary resolution can be secured in the sensor array. This also means that observation is possible even when there is a change in the gap or the inclination of the subject during examination of the subject.
 図8(a)は、開放型構造の中空柱状構造体Cの光出射端とレンズアレイ22の光入射端との間で本発明の規定に従うギャップが設定されている状態での検査、図8(b)は、図8(a)の状態から傾いた状態、すなわちギャップが一様でない状態での検査をそれぞれ示している。図8(b)の状態では、図8(a)の状態に比べてレンズアレイ22に入射する光軸が傾くことで入射位置は横方向にシフトするが、入射光はレンズ内で屈折して検出素子アレイ24に導かれるので、傾きがあっても、目詰まりなどの欠陥に対応する黒点は検出される。 FIG. 8A shows an inspection in a state where a gap according to the provision of the present invention is set between the light emitting end of the hollow columnar structure C having an open structure and the light incident end of the lens array 22. FIG. FIG. 8B shows an inspection in a state inclined from the state of FIG. 8A, that is, a state where the gap is not uniform. In the state of FIG. 8B, the incident position shifts in the lateral direction by tilting the optical axis incident on the lens array 22 compared to the state of FIG. 8A, but the incident light is refracted in the lens. Since the light is guided to the detection element array 24, black spots corresponding to defects such as clogging are detected even if there is an inclination.
 図9(a)は、閉塞型構造の中空柱状構造体Fに対し、図8(a)と同様にギャップが一様である状態での検査、図9(b)は、図8(b)と同様に、図9(a)の状態から傾いた状態で検査が行われる場合を示す。図9(b)の場合でも、欠陥のある中空部H2’からの入射光はレンズ内で屈折して検出素子アレイ24に導かれるので、傾きがあっても、閉塞されているべき端部での意図しない穴あきなどの欠陥に対応する輝点は検出される。 FIG. 9 (a) shows an inspection of a hollow columnar structure F with a closed structure in a state where the gap is uniform as in FIG. 8 (a), and FIG. 9 (b) shows the state shown in FIG. 8 (b). Similarly to FIG. 9, the case where the inspection is performed in a state inclined from the state of FIG. Even in the case of FIG. 9B, the incident light from the defective hollow portion H2 ′ is refracted in the lens and guided to the detection element array 24. Bright spots corresponding to defects such as unintended holes are detected.
 以上に加え、適切にギャップを設定することは、却って欠陥の有無の正しい検査を可能とすることを見出した。 In addition to the above, it was found that setting a gap appropriately enables a correct inspection for defects.
 図10(a)は、開放型構造の中空柱状構造体Cに対し、ギャップを設定した場合における検出素子アレイ24の検出素子による受光量検出波形を説明するための模式図である。図において、Haは欠陥がない中空部を、Hbは目詰まりによる欠陥のある中空部を、Hcは隔壁Pに凹凸による欠陥がある中空部をそれぞれ模式的に示している。また、簡単化のために、検出素子の検出波形を単純な矩形波を基本として描いてある。 FIG. 10A is a schematic diagram for explaining a received light amount detection waveform by the detection element of the detection element array 24 when a gap is set for the hollow columnar structure C having an open type structure. In the figure, Ha schematically represents a hollow part having no defect, Hb represents a hollow part having a defect due to clogging, and Hc schematically represents a hollow part having a defect due to irregularities in the partition wall P. For simplification, the detection waveform of the detection element is drawn based on a simple rectangular wave.
 図10(a)のようにギャップが設定されていることによって、検出素子アレイ24は光出射端から側方に反れて入来する光を捕えることができる。その光の入射位置および強さは目詰まりと隔壁の凹凸の程度とで異なり、これが検出素子の検出波形の輪郭の違いとなって現れるので、欠陥の種類を識別することが容易となるのである。 Since the gap is set as shown in FIG. 10 (a), the detection element array 24 can capture the light coming inward from the light emitting end. The incident position and intensity of the light differ depending on the degree of clogging and the unevenness of the partition wall, and this appears as a difference in the contour of the detection waveform of the detection element, making it easy to identify the type of defect. .
 図10(b)は、閉塞型構造の中空柱状構造体Fに対し、ギャップを設定した場合におけるセンサアレイ24の検出素子による受光量検出波形を説明するための模式図である。図10(b)において、H1aおよびH2aは欠陥がない中空部を、H2bは閉塞されているべき端部に穴あきによる欠陥が生じている中空部をそれぞれ模式的に示すとともに、中空部H2bと隣接する中空部H1bとの間の隔壁P’に一部欠損がある状態を示している。 FIG. 10B is a schematic diagram for explaining a received light amount detection waveform by the detection element of the sensor array 24 when a gap is set for the hollow columnar structure F having a closed structure. In FIG. 10 (b), H1a and H2a schematically show a hollow portion having no defect, H2b schematically shows a hollow portion in which a defect due to perforation occurs at the end to be closed, and the hollow portion H2b and A state in which there is a partial defect in the partition wall P ′ between the adjacent hollow portions H1b is shown.
 穴あき部分を介して中空部H2bに入射した光はその開放端に至る。また、中空部H2bには、隣接する中空部H1bに入射した光の一部が隔壁P’の欠損部分を介して侵入し、これも開放端に至ることになる。 The light that has entered the hollow portion H2b through the perforated portion reaches its open end. In addition, a part of the light incident on the adjacent hollow portion H1b enters the hollow portion H2b through the missing portion of the partition wall P ', and this also reaches the open end.
 図10(b)のように、ギャップを設定することによって、隔壁P’の欠損部分を介して侵入し、中空部H2bの開放端から斜め方向に反れて入来する光による微弱な信号変化を検出することができる。従って、ギャップがない場合や目視による検査では検出が極めて困難な、隔壁の欠損を検出することが容易となるのである。 As shown in FIG. 10B, by setting a gap, a weak signal change caused by light entering through the missing portion of the partition wall P ′ and coming obliquely from the open end of the hollow portion H2b. Can be detected. Therefore, it becomes easy to detect the defect of the partition wall, which is extremely difficult to detect when there is no gap or by visual inspection.
 なお、被検体の良否は、欠陥のある中空部の数、その全数に対する比率、欠陥のある中空部の分布状態などに基づいて総合的に判断される。しかしながら、欠陥の種類を特定することは、その発生頻度や分布などの分析を通じて発生要因を突き止め、製造工程の改善等に資することができることから有意義なものである。 The quality of the subject is comprehensively determined based on the number of defective hollow portions, the ratio to the total number, the distribution state of defective hollow portions, and the like. However, it is meaningful to specify the type of defect because it can contribute to improvement of the manufacturing process and the like by ascertaining the cause of occurrence through analysis of its occurrence frequency and distribution.
 5.検査システム
 次に、上述の実施形態に係る検査装置を適用した検査システムの実施形態を説明する。
5). Next, an embodiment of an inspection system to which the inspection apparatus according to the above-described embodiment is applied will be described.
 図11はその一実施形態による検査システムの概略構成を示す模式的側面図である。本実施形態に係る検査システム30は、導入部40、前処理部50および検査部60を備え、中空柱状構造集合体CまたはFである被検体Aは、これらに沿って矢印T方向に搬送される。 FIG. 11 is a schematic side view showing a schematic configuration of an inspection system according to the embodiment. The inspection system 30 according to the present embodiment includes an introduction unit 40, a preprocessing unit 50, and an inspection unit 60, and the subject A that is the hollow columnar structure aggregate C or F is conveyed in the direction of the arrow T along these. The
 導入部40は、製造された被検体Aを前処理部50に導く手段であり、例えば、搬送方向の上流側および下流側に配された駆動プーリ42および従動プーリ44と、これらに張架された無端式ベルトコンベアの形態の搬送ベルト46とを有する。 The introduction unit 40 is a unit that guides the manufactured subject A to the preprocessing unit 50. For example, the driving pulley 42 and the driven pulley 44 that are arranged on the upstream side and the downstream side in the transport direction are stretched over these. And a conveyor belt 46 in the form of an endless belt conveyor.
 前処理部50は、検査に先立って被検体Aから粉塵等を除去する手段である。特に被検体Aがセラミックス製である場合には、製造時に粉塵が大量に発生し、被検体Aに付着していることがある。被検体Aに粉塵が付着したままであったり、検査時に落下してラインセンサアレイ20などに堆積したりすると、検査精度が著しく低下し、誤検出が生じ得る。そこで本実施形態では、前処理部50によってその粉塵を効率よく積極的に除去する処理を行う。 The preprocessing unit 50 is a means for removing dust and the like from the subject A prior to the examination. In particular, when the subject A is made of ceramics, a large amount of dust may be generated at the time of manufacture and may adhere to the subject A. If dust remains attached to the subject A, or drops and accumulates on the line sensor array 20 or the like at the time of inspection, the inspection accuracy is remarkably lowered and erroneous detection may occur. Therefore, in the present embodiment, the pretreatment unit 50 performs a process for efficiently and actively removing the dust.
 具体的には、前処理部50は、導入部40と検査部60との間に介挿された1以上の搬送ローラ52と、導入部40と搬送ローラ52との間隙、搬送ローラ52と検査部60との間隙、あるいはさらに搬送ローラ52間の間隙に対向してエアを噴射するエアノズル54を有する。さらに、搬送ローラ52に対しては加振器56が配設され、搬送ローラ52を介して被検体Aに振動を伝えることで、被検体Aから粉塵が排除されやすくなるようにしている。すなわち、前処理部50では、加振器56による搬送ローラ52の振動およびエアノズル54から噴射されるエアによって粉塵が排除される。 Specifically, the pre-processing unit 50 includes one or more conveyance rollers 52 interposed between the introduction unit 40 and the inspection unit 60, a gap between the introduction unit 40 and the conveyance roller 52, and the conveyance roller 52 and the inspection unit. An air nozzle 54 that ejects air is provided so as to face the gap with the section 60 or the gap between the conveyance rollers 52. Further, a vibration exciter 56 is provided for the transport roller 52 so that vibration is transmitted to the subject A via the transport roller 52 so that dust can be easily removed from the subject A. That is, in the pre-processing unit 50, dust is eliminated by the vibration of the transport roller 52 by the vibrator 56 and the air jetted from the air nozzle 54.
 本実施形態では、図11に示すように、エアノズル54は、エアを下向きに噴射するものと、上向きに噴射するものとを交互に配置している。これによれば、被検体Aの上面(入射端C1またはF1)および下面(出射端C2またはF2)から粉塵が排除される。また、被検体Aが中空柱状構造集合体Cである場合、中空部Hからは、下向き噴射によって粉塵が落下し、または上向き噴射によって粉塵が吹き上げられることによって粉塵が排除される。一方、被検体Aが中空柱状構造集合体Fである場合は、下向き噴射によって中空部H1から粉塵が巻き上げられ、上向き噴射によって中空部H2から粉塵が剥離し、上向き噴射の中断によって脱落することで、粉塵が排除される。 In this embodiment, as shown in FIG. 11, the air nozzle 54 alternately arranges the one that injects air downward and the one that injects upward. According to this, dust is excluded from the upper surface (incident end C1 or F1) and the lower surface (exit end C2 or F2) of the subject A. Further, when the subject A is the hollow columnar structure aggregate C, the dust is removed from the hollow portion H when the dust is dropped by the downward jetting or blown up by the upward jetting. On the other hand, when the subject A is the hollow columnar structure aggregate F, the dust is wound up from the hollow portion H1 by the downward injection, the dust is separated from the hollow portion H2 by the upward injection, and falls off due to the interruption of the upward injection. , Dust is eliminated.
 なお、図11では、上向きの噴射を行うものと下向きの噴射を行うものとを交互に配置した実施形態を例示したが、エアノズルの配設の態様やエアの噴射方向はこれに限らず、粉塵の効果的な排除を行うために適宜定め得る。例えば、図示の実施形態の配設態様に代えて、あるいはそれとともに、斜め上方、斜め下方または横方向に噴射を行うエアノズルを配設してもよい。また、粉塵の排除を効果的に行うために、エアの噴射力や加振力は適宜定め得るものである。さらに、前処理部50を一点鎖線で示すようにチャンバに収容し、そのチャンバに排気手段を設けて粉塵を外部に排出および回収することで、被検体Aから排除された粉塵が被検体Aに再付着しないようにしてもよい。 In addition, in FIG. 11, although the embodiment which alternately arrange | positioned what performs upward injection and what performs downward injection was illustrated, the arrangement | positioning aspect of an air nozzle and the injection direction of air are not restricted to this, Dust Can be determined as appropriate in order to effectively eliminate the above. For example, instead of or in addition to the arrangement mode of the illustrated embodiment, an air nozzle that injects obliquely upward, obliquely downward, or laterally may be provided. Further, in order to effectively eliminate dust, the air injection force and the excitation force can be appropriately determined. Further, the pretreatment unit 50 is accommodated in a chamber as indicated by a one-dot chain line, and an exhaust unit is provided in the chamber to discharge and collect the dust to the outside. It may not be reattached.
 検査部60は、前処理部50から被検体Aを受容して搬送する搬送部(上流側搬送部)61と、搬送部61と所定の間隔を置いて搬送方向下流側に配置された搬送部(下流側搬送部)71と、を搬送手段として有する。所定の間隔とは、他端面から光が通過する間隔であり、且つ搬送部間の移行時に被検体の傾きが生じない間隔である。これらの搬送部61,71は概して同様の構成を有し、それぞれ駆動プーリ62,72および従動プーリ64,74と、これらにそれぞれ張架された無端式ベルトコンベアの形態の搬送ベルト66,76と、搬送ベルト66,76の上面を平坦な状態に規制するための平板状の規制部材68,78と、を有している。検査部60の搬送系を前処理部50と同様に搬送ローラで構成することも可能である。しかし本実施形態のように搬送ベルトを使用したものとし、且つ搬送面の裏面側を平板状の規制部材で支持することは、被検体Aのがたつきを防止するために搬送ローラを高精度に配置する必要がなく、しかも長期間にわたって平坦性が維持できることから好ましい。 The inspection unit 60 includes a transport unit (upstream transport unit) 61 that receives and transports the subject A from the preprocessing unit 50, and a transport unit that is disposed on the downstream side in the transport direction with a predetermined interval from the transport unit 61. (Downstream transport unit) 71 as transport means. The predetermined interval is an interval through which light passes from the other end surface, and is an interval at which the subject does not tilt at the time of transition between the transport units. These conveying sections 61 and 71 generally have the same configuration, and drive pulleys 62 and 72 and driven pulleys 64 and 74, respectively, and conveying belts 66 and 76 in the form of endless belt conveyors stretched around them, respectively. And plate-like restricting members 68 and 78 for restricting the upper surfaces of the conveyor belts 66 and 76 to a flat state. The transport system of the inspection unit 60 can also be configured by a transport roller in the same manner as the preprocessing unit 50. However, as in the present embodiment, it is assumed that the transport belt is used and the back surface side of the transport surface is supported by a flat plate-shaped regulating member, so that the transport roller is highly accurate in order to prevent rattling of the subject A. It is preferable that the flatness can be maintained over a long period of time.
 搬送部61および搬送部71間の間隔を含めた搬送手段の上下には、それぞれ、上述した発光ユニット11を含む照明装置10および検出素子アレイ24を含むラインセンサアレイ20が配置されている(後述するように、この配置関係を逆にしてもよい)。このように照明装置10を上側に、ラインセンサアレイ20を下側に配置することによって、搬送に伴う被検体Aの揺れや傾きの影響が出射端において最小限となり、撮影条件の時間および空間的な均一性を高めることができる。 The illumination device 10 including the light emitting unit 11 and the line sensor array 20 including the detection element array 24 are disposed above and below the transport unit including the interval between the transport unit 61 and the transport unit 71 (described later). This arrangement relationship may be reversed as shown). By arranging the illumination device 10 on the upper side and the line sensor array 20 on the lower side in this way, the influence of the shaking and inclination of the subject A accompanying the conveyance is minimized at the emission end, and the time and space of the imaging conditions are reduced. Uniformity can be improved.
 照明装置10に対しては、上述した基本条件または発展条件を充足する高さ(対光源面距離d)が設定されるように位置の調整を行う照明昇降装置120(図12)を設けることができる。また、ラインセンサアレイ20に対しても、上述した適宜のギャップが精度高く設定されるように位置の調整を行うセンサ昇降装置(図12)を設けることができる。本実施形態のように照明装置10が上側に配置される場合、一定長(一定高さ)の1種類の被検体のみが検査対象であれば、もしくは、一定長でなくてもその変化幅が小さい複数種類の被検体が検査対象であれば、照明昇降装置120の配設は必須ではない。しかし上述のように、高さの異なる種々寸法の被検体が検査対象となることを考慮すれば、照明昇降装置120の配設は有効である。 The lighting device 10 may be provided with a lighting lifting / lowering device 120 (FIG. 12) that adjusts the position so that a height (to the light source surface distance d) that satisfies the basic condition or the development condition described above is set. it can. The line sensor array 20 can also be provided with a sensor lifting device (FIG. 12) that adjusts the position so that the above-described appropriate gap is set with high accuracy. When the illuminating device 10 is arranged on the upper side as in the present embodiment, if only one type of subject having a fixed length (fixed height) is to be examined, or even if it is not a fixed length, the range of change is large. If a plurality of small types of subjects are to be examined, the arrangement of the illumination lifting device 120 is not essential. However, as described above, the arrangement of the illumination lifting / lowering device 120 is effective in consideration that subjects having various dimensions with different heights are to be examined.
 被検体Aが搬送部61および搬送部71間の間隔を通過する過程で、照明装置10により入射端C1またはH1への光の照射行われ、ラインセンサアレイ20により光出射端C2またはH2側の走査が行われる。照明装置10およびラインセンサアレイ20と同一平面に位置するように、好ましくは平行となるように配置される。また、照明装置10およびラインセンサアレイ20は、それらの長手方向が搬送方向Tと交差する方向、例えば直交する方向に一致するように配置することができる。 In the process in which the subject A passes through the interval between the transport unit 61 and the transport unit 71, the illumination device 10 emits light to the incident end C1 or H1, and the line sensor array 20 causes the light exit end C2 or H2 side to be irradiated. A scan is performed. The lighting device 10 and the line sensor array 20 are preferably arranged so as to be parallel to each other so as to be in the same plane. Moreover, the illuminating device 10 and the line sensor array 20 can be arrange | positioned so that those longitudinal directions may correspond to the direction which cross | intersects the conveyance direction T, for example, the orthogonal direction.
 検査部60には、検査精度をさらに向上するために、エアを噴射することで粉塵を除去するエアノズル81を有する。検査位置すなわち発光ユニット11と検出素子アレイ24との間の位置の直近であって、且つ照明装置10よりも搬送方向上流側にエアノズル81を配設することにより、検査直前に被検体A、特に中空柱状構造集合体Cの中空部Hにエアを噴射することにより、中空部Hはより清浄な状態とされる。 The inspection unit 60 has an air nozzle 81 that removes dust by injecting air in order to further improve inspection accuracy. By disposing an air nozzle 81 in the immediate vicinity of the inspection position, that is, the position between the light emitting unit 11 and the detection element array 24 and upstream of the illumination device 10 in the transport direction, the subject A, in particular, immediately before the inspection. By injecting air into the hollow portion H of the hollow columnar structure aggregate C, the hollow portion H is brought into a cleaner state.
 エアノズル81に対向して、ラインセンサアレイ20側には、落下してくる粉塵を受けて排除する構成が設けられる。この構成は、ラインセンサアレイ20を覆い、且つ傾斜して設けられた透明な薄板91と、薄板91を清浄化する手段と、を有する。清浄化手段は、薄板表面にエアを噴射するエアノズル93と、回動軸95aを中心に回動することで薄板91の表面を払拭するワイパ95と、で構成される。検査時には、被検体Aの出射端から出射した光は透明な薄板91を透過してラインセンサアレイ20に到達する。また、薄板91に落下した粉塵は、薄板91の傾斜およびエアの噴射によってラインセンサアレイ20の検出領域から迅速且つ効果的に排除される。さらに、ラインセンサアレイ20が取得した画像上に不自然な縦方向(搬送方向)の黒い線などが現れた場合には、ワイパ95を駆動し、薄板91上に堆積した粉塵を完全に除去する清浄化処理を行うことができる。 A configuration is provided on the side of the line sensor array 20 opposite to the air nozzle 81 to receive and exclude the falling dust. This configuration includes a transparent thin plate 91 that covers the line sensor array 20 and is inclined, and means for cleaning the thin plate 91. The cleaning means includes an air nozzle 93 that injects air onto the surface of the thin plate, and a wiper 95 that wipes the surface of the thin plate 91 by rotating about the rotation shaft 95a. At the time of inspection, the light emitted from the exit end of the subject A passes through the transparent thin plate 91 and reaches the line sensor array 20. Further, the dust falling on the thin plate 91 is quickly and effectively excluded from the detection area of the line sensor array 20 by the inclination of the thin plate 91 and the injection of air. Further, when an unnatural vertical line (conveying direction) black line or the like appears on the image acquired by the line sensor array 20, the wiper 95 is driven to completely remove dust accumulated on the thin plate 91. A cleaning process can be performed.
 図12は図11に示した検査システムの制御系の構成例を示すブロック図、図13は図12の制御系による検査処理手順の一例を示すフローチャートである。 12 is a block diagram showing a configuration example of a control system of the inspection system shown in FIG. 11, and FIG. 13 is a flowchart showing an example of an inspection processing procedure by the control system of FIG.
 以上の各部は図12に示す制御装置100によって制御される。制御装置100は、例えばCPU101、ROM103、EEPROM105、RAM107およびVRAM109を基本的な構成として有している。CPU101は、ROM103に格納された後述するような処理手順に対応するプログラムに従って各部を制御する。EEPROM105は、例えばシステムの電源がオフである場合にも所要の情報を保持しておくために用いられる一方、RAM107はCPU101によるデータ処理の過程で一時的なワークメモリとして用いることができるものである。さらに、VRAM109は、例えばラインセンサアレイ20の検出出力に基づく情報、すなわち走査に伴って被検体の光出射端から得られたデータを、光出射端の位置に対応付けて展開するために用いることができる。 The above units are controlled by the control device 100 shown in FIG. The control device 100 has, for example, a CPU 101, a ROM 103, an EEPROM 105, a RAM 107, and a VRAM 109 as basic configurations. The CPU 101 controls each unit according to a program stored in the ROM 103 and corresponding to a processing procedure as will be described later. The EEPROM 105 is used to hold required information even when the system power is off, for example, while the RAM 107 can be used as a temporary work memory in the course of data processing by the CPU 101. . Furthermore, the VRAM 109 is used to develop information based on the detection output of the line sensor array 20, for example, data obtained from the light exit end of the subject in association with scanning, in association with the position of the light exit end. Can do.
 拡散光照明装置10と、照明昇降装置120と、ラインセンサアレイ20と、センサ昇降装置130と、導入部40の駆動プーリ42、前処理部50の搬送ローラ52、および検査部の駆動プーリ62,72を含む搬送系160と、エアノズル54,93と、ワイパ95と、は入出力装置111を介してCPU101に接続され、駆動/停止等が制御される。なお、エアノズルはコンプレッサなどの圧縮空気源に接続されるが、駆動/停止は、その圧縮空気源を発停させるものでもよいし、中間に設けられたバルブを開閉することで行われるものでもよい。 Diffuse light illuminator 10, illumination elevating device 120, line sensor array 20, sensor elevating device 130, drive pulley 42 of introduction unit 40, transport roller 52 of pretreatment unit 50, and drive pulley 62 of inspection unit The transport system 160 including 72, the air nozzles 54 and 93, and the wiper 95 are connected to the CPU 101 via the input / output device 111, and driving / stopping and the like are controlled. Although the air nozzle is connected to a compressed air source such as a compressor, the driving / stopping may be performed by starting and stopping the compressed air source, or may be performed by opening and closing a valve provided in the middle. .
 ラインセンサアレイ20の検出出力は入出力装置111を介して入力され、必要に応じ適宜の加工が施されてVRAM109に展開される。入出力装置111にはさらにGUI70が接続されている。GUI70は、例えば、被検体に係る情報、すなわち被検体の種類(開放型構造の中空柱状構造集合体Cであるか閉塞型構造の中空柱状構造集合体Fであるかなど)、形状、寸法、および中空部の形状・寸法等を設定するためのキーボードやポインティングデバイスなどの入力手段と、当該情報入力に際してオペレータを補助する情報のほか、制御装置100から送信されてくる情報(後述する処理手順によって判定された情報や光出力端の可視化情報など)を表示するための表示手段と、を含むものとして構成することができる。 The detection output of the line sensor array 20 is input via the input / output device 111, subjected to appropriate processing as necessary, and developed in the VRAM 109. A GUI 70 is further connected to the input / output device 111. The GUI 70 includes, for example, information on the subject, that is, the type of the subject (whether it is a hollow columnar structure aggregate C having an open structure or a hollow columnar structure aggregate F having a closed structure), shape, dimensions, In addition to input means such as a keyboard and a pointing device for setting the shape and dimensions of the hollow portion, information for assisting the operator in inputting the information, information transmitted from the control device 100 (according to a processing procedure described later) Display means for displaying the determined information and the light output end visualization information).
 以上の制御系の構成において、図13に示す検査処理手順が起動されると、まずステップS1において上述した被検体に係る情報の取り込みが行われ、次にステップS3にて検査条件の取り込みが行われる。検査条件とは、例えば、前述した欠陥種類の識別が望まれているか、あるいは単に欠陥の有無のみを知るために鮮明なデータを取得したいか、などである。そして、ステップS5においては、取り込んだそれらの情報に基づいて、必要に応じ、照明装置10の適切な高さおよび/またはラインセンサアレイ20の適切なギャップを設定するべく、照明昇降装置120および/またはセンサ昇降装置130を制御してもよい。 In the configuration of the control system described above, when the examination processing procedure shown in FIG. 13 is started, first, the information relating to the subject described above is fetched in step S1, and then the examination conditions are fetched in step S3. Is called. The inspection condition is, for example, whether the above-described defect type identification is desired, or whether it is desired to acquire clear data in order to know only the presence or absence of a defect. In step S5, based on the acquired information, the lighting lifting device 120 and / or the lighting device 10 and / or the line sensor array 20 are set to an appropriate height and / or an appropriate gap of the line sensor array 20 as necessary. Alternatively, the sensor lifting device 130 may be controlled.
 さらに、照明装置10として、適宜の個数ずつを単位とした駆動が可能となるようにLED素子やLEDチップを配線した発光ユニット11を用いる場合には、ステップS1で取り込んだ被検体の端面の寸法に対応した照射が行われるようにする設定を行うことができる。なお、この際、照射光に対して搬送過程で被検体の搬送方向に交差する方向の幅が変化して行くために、被検体の縁から外れた照射光がラインセンサアレイの検出動作に影響を及ぼすのであれば、その変化に合わせて動的に照射範囲が変化するよう設定が行われるようにしてもよい。 Furthermore, when using the light emitting unit 11 in which LED elements and LED chips are wired so that an appropriate number of units can be driven as the illumination device 10, the dimensions of the end face of the subject captured in step S1 are used. It is possible to make a setting so that irradiation corresponding to is performed. At this time, since the width in the direction intersecting the subject transport direction changes in the transport process with respect to the irradiation light, the irradiation light deviated from the edge of the subject affects the detection operation of the line sensor array. May be set so that the irradiation range dynamically changes in accordance with the change.
 以上の初期処理を経た後、拡散光照明装置10が点灯されるとともに、搬送系160およびエアノズル54(被検体が中空柱状構造集合体Cである場合にはさらにエアノズル93)が起動される(ステップS7)。そして、被検体を搬送しつつ光出射端の走査が行われ、この過程で検出素子アレイ24の検出出力に対応したデータ(必要に応じて、ノイズ除去、図10(b)において説明したような微弱な検出信号変化を処理するための閾値設定もしくは信号増幅処理、波形整形ないしは輪郭補正およびその他の処理を経たものとすることができる)が、VRAM109に展開されて行く(ステップS9)。なお、ステップS9の処理に先立ち、検出素子アレイ24の検出出力に基づいて薄板91への粉塵の付着が認められたときには、一旦搬送系160を停止してワイパ95を起動し、薄板91の清浄化を行った上で被検体の搬送を再開することができる。 After the above initial processing, the diffused light illuminating device 10 is turned on, and the transport system 160 and the air nozzle 54 (or the air nozzle 93 when the subject is the hollow columnar structure aggregate C) are activated (step) S7). Then, scanning of the light emitting end is performed while the subject is being transported, and in this process, data corresponding to the detection output of the detection element array 24 (noise removal as necessary, as described in FIG. 10B). The threshold setting or signal amplification processing for processing a weak detection signal change, waveform shaping or contour correction, and other processing can be performed), which are developed in the VRAM 109 (step S9). Prior to the processing in step S9, when dust adheres to the thin plate 91 based on the detection output of the detection element array 24, the transport system 160 is stopped and the wiper 95 is activated to clean the thin plate 91. The transport of the subject can be resumed after the conversion.
 1つの被検体についてのデータ展開が終了すると、以下のような処理が行われる(ステップS11)。すなわち、ステップS13にて中空部毎の状態の分析および判断(欠陥の有無、さらには望まれている場合には結果の種類の判断)が行われ、さらにステップS15にて、欠陥のある中空部の数、その全数に対する比率、欠陥のある中空部の分布状態などに基づいて被検体の良否が判定される。そして、ステップS17において、これらの判断および判定の結果がGUI70に通知され、表示手段を介してオペレータに提示することができる。また、検出素子アレイ24の検出出力に対応してVRAM109に展開されたデータに基づき、図8(a),6(b)および図9(a),7(b)に示したような被検体の光出射端の2次元像を構築して表示手段に表示させることや、当該2次元像に基づいて被検体の良否の判定を行うことができる。 When the data development for one subject is completed, the following processing is performed (step S11). That is, in step S13, the state of each hollow part is analyzed and determined (the presence or absence of a defect, and if desired, the result type is determined), and further, in step S15, the defective hollow part The quality of the subject is determined on the basis of the number, the ratio to the total number, the distribution state of the defective hollow portions, and the like. In step S17, these determinations and determination results are notified to the GUI 70 and can be presented to the operator via the display means. Further, based on the data developed in the VRAM 109 corresponding to the detection output of the detection element array 24, the subject as shown in FIGS. 8 (a), 6 (b) and FIGS. 9 (a), 7 (b). It is possible to construct a two-dimensional image of the light emitting end of the light and display it on the display means, or to determine the quality of the subject based on the two-dimensional image.
 ステップS19においては、続いて搬送されてくる被検体の有無が判定され、肯定判定された場合にはステップS7に復帰してそれ以降のステップを繰り返す一方、否定判定された場合には拡散光照明装置10の消灯や、搬送系160およびエアノズルの停止を含む終了処理を行う。なお、ステップS7への復帰に先立ち、薄板91への粉塵の付着が認められたときには、上述と同様の清浄化処理を行うようにしてもよい。 In step S19, it is determined whether or not there is a subject to be subsequently transferred. If an affirmative determination is made, the process returns to step S7 and the subsequent steps are repeated. On the other hand, if a negative determination is made, diffuse light illumination is performed. Termination processing including turning off the apparatus 10 and stopping the conveyance system 160 and the air nozzle is performed. Prior to returning to step S7, when dust adheres to the thin plate 91, the same cleaning process as described above may be performed.
 以上の実施形態によれば、搬送部61および搬送部71間の間隔部分に配置されたラインセンサアレイ20および拡散光照明装置10の間を通過する過程で被検体である中空柱状構造集合体の検査が行われるので、簡単且つ小型の構成でありながらも、複数の中空柱状構造集合体を連続的且つ高速に検査することができるようになる。また、被検体に係る情報や要望に応じて、照明装置10の高さやラインセンサアレイ20のギャップが設定されることから、中空柱状構造集合体に対し精度の高い適切な検査を行うことができるようになる。 According to the above embodiment, the hollow columnar structure aggregate that is the subject in the process of passing between the line sensor array 20 and the diffused light illuminating device 10 arranged in the space between the transport unit 61 and the transport unit 71. Since the inspection is performed, a plurality of hollow columnar structure aggregates can be inspected continuously and at high speed while having a simple and small configuration. Moreover, since the height of the illuminating device 10 and the gap of the line sensor array 20 are set according to information and requests relating to the subject, it is possible to perform a highly accurate and appropriate examination on the hollow columnar structure aggregate. It becomes like this.
6.その他
 本発明は、以上述べた実施形態および随所に説明した変形例に限られない。
6). Others The present invention is not limited to the embodiments described above and the modifications described in various places.
 例えば、上述した実施形態では、拡散光照明装置10およびラインセンサアレイ20のセットを1つ設けた構成について説明したが、2セット以上設けられていてもよい。この場合、発光ユニット11を、2以上の照明装置10間で発光部12の延在方向の位置が補完されるようにし、2以上のラインセンサアレイ20の検出結果について、対応する画素同士の画像間演算を行うようにすることができる。これによれば、検出精度がより高まり、誤検出の発生を効果的に防止できるようになる。 For example, in the above-described embodiment, the configuration in which one set of the diffused light illumination device 10 and the line sensor array 20 is provided has been described, but two or more sets may be provided. In this case, the positions of the light emitting units 12 in the extending direction of the light emitting units 12 are complemented between the two or more lighting devices 10, and the images of corresponding pixels are detected with respect to the detection results of the two or more line sensor arrays 20. It is possible to perform an inter-operation. According to this, the detection accuracy is further improved, and the occurrence of erroneous detection can be effectively prevented.
 また、図11では、搬送部61および搬送部71間の間隔を含めた搬送手段の上側および下側に、それぞれ、上述した発光ユニット11を含む照明装置10および検出素子アレイ24を含むラインセンサアレイ20が配置されている構成を例示した。しかし照明装置およびラインセンサアレイをそれぞれ参照する符号10および20に対して括弧書きで示したように、これらの配設位置を逆にしてもよい。ラインセンサアレイ20が上側に配置される場合、種々高さの被検体に対応するためには、センサ昇降装置130の配設は必要となるが、照明装置10については、照明昇降装置12の配設は必要でない場合もあり得る。これらは、次に述べる図14および図15の実施形態でも同様である。 In FIG. 11, the illumination device 10 including the light emitting unit 11 and the line sensor array including the detection element array 24 are respectively provided on the upper side and the lower side of the conveyance unit including the interval between the conveyance unit 61 and the conveyance unit 71. A configuration in which 20 is arranged is illustrated. However, as shown in parentheses for reference numerals 10 and 20 that refer to the illumination device and the line sensor array, respectively, these arrangement positions may be reversed. In the case where the line sensor array 20 is arranged on the upper side, the sensor lifting device 130 needs to be disposed in order to deal with subjects having various heights. Installation may not be necessary. These also apply to the embodiments of FIGS. 14 and 15 described below.
 また、図11では、照明装置10とラインセンサアレイ20とは対向して配置され、照明装置10とラインセンサアレイ20との間の光路(破線)が直線状となるようにした構成を例示した。しかし図14に示すように、照明装置10に対しラインセンサアレイ20を非対向の状態に配置し、照明装置10とラインセンサアレイ20との間の光路を破線で示すように屈曲させるミラー97を配置してもよい。ミラー97が下側に配置される場合、エアノズル93はミラー97にエアを噴射し、またワイパ95は必要に応じてミラー97の面を払拭する動作を行うものとなる。 Further, FIG. 11 illustrates a configuration in which the illumination device 10 and the line sensor array 20 are arranged to face each other and the optical path (broken line) between the illumination device 10 and the line sensor array 20 is linear. . However, as shown in FIG. 14, the line sensor array 20 is arranged in a non-opposing state with respect to the illumination device 10, and a mirror 97 that bends the optical path between the illumination device 10 and the line sensor array 20 as indicated by a broken line is provided. You may arrange. When the mirror 97 is disposed on the lower side, the air nozzle 93 injects air to the mirror 97, and the wiper 95 performs an operation of wiping the surface of the mirror 97 as necessary.
 さらに、図11および図14の実施形態では、検査部60において、被検体は搬送ベルト66,76を含む搬送部61,71によって搬送されるものとした。しかし図15に示すように、それぞれ1以上の搬送ローラ69,79を含む搬送部61,71によって搬送されるようにしてもよい。 Furthermore, in the embodiment of FIGS. 11 and 14, in the inspection unit 60, the subject is transported by the transport units 61 and 71 including the transport belts 66 and 76. However, as shown in FIG. 15, it may be transported by transport units 61 and 71 including one or more transport rollers 69 and 79, respectively.
 加えて、検査に使用する光としては可視光に限らない。例えば、照明装置10は830nm~3μmの波長帯の光(近赤外光)を照射するものとし、ラインセンサアレイ20にはその波長帯に感度を持つ検出素子を有するものを用いることもできる。 In addition, the light used for inspection is not limited to visible light. For example, the illumination device 10 may irradiate light in the wavelength band of 830 nm to 3 μm (near infrared light), and the line sensor array 20 may have a detection element having sensitivity in the wavelength band.

Claims (11)

  1.  光が出射する際に当該出射光が微小広がりの光となる柱状の中空部が複数、平行に配置された中空柱状構造集合体の検査装置であって、
     前記複数の中空部の一方の端部が位置する前記中空柱状構造集合体の一端面に拡散光を照射する発光ユニットを有する照明装置と、
     前記複数の中空部の他方の端部が位置する前記中空柱状構造集合体の他端面から光を受光可能に配置され、前記複数の中空部から出射される光の受光量を検出するラインセンサアレイと、
    を備え、
     前記発光ユニットには、相対的に光強度の高い第1部分と相対的に光強度の低い第2部分とが交互に配列され、
     当該配列方向における前記第1部分および前記第2部分の幅をそれぞれc1およびc2、前記中空部の長さをh、前記配列方向における前記中空部の幅をw、前記他端面から前記発光ユニットまでの距離をdとしたとき、
      c2<w×d/h
    の関係を満たすことを特徴とする中空柱状構造集合体の検査装置。
    A plurality of columnar hollow portions where the emitted light becomes micro-spread light when the light is emitted, an inspection device for a hollow columnar structure aggregate arranged in parallel,
    An illumination device having a light emitting unit that irradiates diffused light to one end surface of the hollow columnar structure aggregate in which one end of the plurality of hollow portions is located;
    A line sensor array that is arranged so as to be able to receive light from the other end surface of the hollow columnar structure aggregate where the other ends of the plurality of hollow portions are located, and detects the amount of light received from the plurality of hollow portions. When,
    With
    In the light emitting unit, first portions having relatively high light intensity and second portions having relatively low light intensity are alternately arranged,
    The widths of the first part and the second part in the arrangement direction are c 1 and c 2 , the length of the hollow part is h, the width of the hollow part in the arrangement direction is w, and the light emission from the other end surface When the distance to the unit is d,
    c 2 <w × d / h
    The hollow columnar structure aggregate inspection apparatus characterized by satisfying the above relationship.
  2.  さらに、c2<w×d/(2×h)の関係を満たすことを特徴とする請求項1に記載の中空柱状構造集合体の検査装置。 The inspection apparatus for a hollow columnar structure aggregate according to claim 1, further satisfying a relationship of c 2 <w × d / (2 × h).
  3.  前記第2部分は非発光部であることを特徴とする請求項1または2に記載の中空柱状構造集合体の検査装置。 3. The inspection apparatus for a hollow columnar structure aggregate according to claim 1 or 2, wherein the second part is a non-light emitting part.
  4.  前記発光ユニットは、前記一端面との間に配置された拡散板を含み、前記拡散板によって、前記第1部分および前記第2部分が、それぞれ、前記拡散板に現れる強発光部および弱発光部となっていることを特徴とする請求項1または2に記載の中空柱状構造集合体の検査装置。 The light emitting unit includes a diffusion plate disposed between the one end surface, and the strong light emitting portion and the weak light emitting portion where the first portion and the second portion appear on the diffusion plate, respectively, by the diffusion plate. The inspection apparatus for a hollow columnar structure aggregate according to claim 1 or 2, wherein the inspection apparatus is a hollow columnar structure aggregate.
  5.  前記発光ユニットは、LED素子またはLEDチップの配列を有することを特徴とする請求項1ないし4のいずれか一項に記載の中空柱状構造集合体の検査装置。 5. The inspection apparatus for a hollow columnar structure aggregate according to any one of claims 1 to 4, wherein the light emitting unit has an array of LED elements or LED chips.
  6.  前記ラインセンサアレイは、レンズアレイおよび検出素子アレイを含み、前記レンズアレイは、その光の入射端が前記中空柱状構造集合体の前記他端面に対して焦点距離以上の間隔を置いた位置に配設されていることを特徴とする請求項1ないし5のいずれか一項に記載の中空柱状構造集合体の検査装置。 The line sensor array includes a lens array and a detection element array, and the lens array is disposed at a position where the light incident end is spaced from the other end surface of the hollow columnar structure aggregate by a distance equal to or greater than a focal length. The inspection apparatus for a hollow columnar structure aggregate according to any one of claims 1 to 5, wherein the inspection apparatus is provided.
  7.  請求項1ないし6のいずれか一項に記載の検査装置を備えた中空柱状構造集合体の検査システムであって、
     前記検査装置に対し、前記中空柱状構造集合体を支持して搬送する搬送手段を備え、
     該搬送手段は、前記搬送の方向の上流側に配置された上流側搬送部と、前記他端面から光が通過するように、前記上流側搬送部に対し前記搬送の方向に間隔を置いて配置された下流側搬送部を有し、
     前記搬送手段を挟んで前記照明装置および前記ラインセンサアレイが上下に配置され、
     前記上流側搬送部および前記下流側搬送部は、無端式のベルトコンベアの形態を有するとともに、前記中空柱状構造集合体を支持するベルトの面を平坦な状態に規制する規制部材を有する、
    ことを特徴とする中空柱状構造集合体の検査システム。
    An inspection system for a hollow columnar structure assembly comprising the inspection device according to any one of claims 1 to 6,
    Conveying means for supporting and transporting the hollow columnar structure aggregate to the inspection device,
    The transport means is disposed at an interval in the transport direction with respect to the upstream transport unit so that light passes from the upstream transport unit disposed on the upstream side in the transport direction and the other end surface. Having a downstream conveying section,
    The lighting device and the line sensor array are arranged up and down across the conveying means,
    The upstream side transport unit and the downstream side transport unit have a form of an endless belt conveyor and a regulating member that regulates the surface of the belt supporting the hollow columnar structure aggregate to a flat state.
    An inspection system for a hollow columnar structure aggregate.
  8.  前記中空柱状構造集合体に対する前記照明装置の位置を設定するための手段、および/または、前記中空柱状構造集合体に対する前記ラインセンサアレイの位置を設定するための手段を備えたことを特徴とする請求項7に記載の中空柱状構造集合体の検査システム。 Means for setting the position of the illumination device with respect to the hollow columnar structure aggregate and / or means for setting the position of the line sensor array with respect to the hollow columnar structure aggregate The inspection system for a hollow columnar structure aggregate according to claim 7.
  9.  前記照明装置および前記ラインセンサアレイは対向して配置されており、
     前記搬送手段の下側に配置されている前記照明装置または前記ラインセンサアレイを覆うように透明な薄板が傾斜して配置されるとともに、前記薄板の表面を清浄化するための手段が配設されていることを特徴とする請求項7または8に記載の中空柱状構造集合体の検査システム。
    The lighting device and the line sensor array are arranged to face each other,
    A transparent thin plate is disposed to be inclined so as to cover the illumination device or the line sensor array disposed below the conveying unit, and a means for cleaning the surface of the thin plate is disposed. The inspection system for a hollow columnar structure aggregate according to claim 7 or 8, wherein
  10.  前記照明装置および前記ラインセンサアレイは非対向に配置されており、
     前記照明装置と前記ラインセンサアレイとの間の光路を屈曲させるミラーが前記搬送手段の下側に配置されるとともに、前記ミラーの表面を清浄化するための手段が配設されていることを特徴とする請求項7または8に記載の中空柱状構造集合体の検査システム。
    The lighting device and the line sensor array are arranged in a non-opposing manner,
    A mirror that bends the optical path between the illumination device and the line sensor array is disposed below the transport unit, and a unit for cleaning the surface of the mirror is disposed. The inspection system for a hollow columnar structure aggregate according to claim 7 or 8.
  11.  前記検査装置よりも前記搬送の方向の上流側に配置され、前記中空柱状構造集合体にエアを噴射するノズルを備えたことを特徴とする請求項7ないし10のいずれか一項に記載の中空柱状構造集合体の検査システム。 11. The hollow according to claim 7, further comprising a nozzle that is disposed upstream of the inspection device in the transport direction and that injects air into the hollow columnar structure aggregate. Inspection system for columnar structures.
PCT/JP2019/003461 2018-01-31 2019-01-31 Inspection system and inspection device of hollow columnar structure aggregate WO2019151428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018015368A JP2019132708A (en) 2018-01-31 2018-01-31 Hallow columnar structure assembly inspection device and inspection system
JP2018-015368 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151428A1 true WO2019151428A1 (en) 2019-08-08

Family

ID=67479085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003461 WO2019151428A1 (en) 2018-01-31 2019-01-31 Inspection system and inspection device of hollow columnar structure aggregate

Country Status (2)

Country Link
JP (1) JP2019132708A (en)
WO (1) WO2019151428A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110128370A1 (en) * 2009-11-30 2011-06-02 Robertson Dewhurst Booth Multi-Camera Skin Inspection System For Extruded Ceramic Honeycomb Structures
JP2015121545A (en) * 2008-08-22 2015-07-02 コーニング インコーポレイテッド Methods for detecting defects in ceramic filter bodies
JP2017518496A (en) * 2014-05-28 2017-07-06 コーニング インコーポレイテッド System and method for inspecting an object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121545A (en) * 2008-08-22 2015-07-02 コーニング インコーポレイテッド Methods for detecting defects in ceramic filter bodies
US20110128370A1 (en) * 2009-11-30 2011-06-02 Robertson Dewhurst Booth Multi-Camera Skin Inspection System For Extruded Ceramic Honeycomb Structures
JP2017518496A (en) * 2014-05-28 2017-07-06 コーニング インコーポレイテッド System and method for inspecting an object

Also Published As

Publication number Publication date
JP2019132708A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP4768014B2 (en) Color filter inspection method, color filter manufacturing method, and color filter inspection apparatus
KR101305262B1 (en) Substrate inspection apparatus
KR100850490B1 (en) Inspection method, inspection device, and manufacturing method for display panel
JP6276069B2 (en) Inspection apparatus and inspection method for hollow columnar structure aggregate
JP3673657B2 (en) Plasma display phosphor inspection apparatus and inspection method
US20040263835A1 (en) Method for inspecting surface and apparatus for inspecting it
JP2008025990A (en) Method and apparatus for detecting surface flaw of steel strip
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
WO2019151428A1 (en) Inspection system and inspection device of hollow columnar structure aggregate
JP2006071284A (en) Inside and outside discrimination method of flaw of glass substrate
JP2015068670A (en) Device and method for inspecting defect of sheet-like matter
KR100858337B1 (en) Inspection Apparatus
JP2006343327A (en) Substrate inspection device
JP2015141096A (en) Inspection device, inspection method, and method for manufacturing glass substrate
KR100748108B1 (en) apparatus and method for inspecting CRT panel
JP7175214B2 (en) inspection equipment
CN113015901A (en) Method for producing glass plate and apparatus for producing glass plate
JP2011203201A (en) Metal defect detection method
JP2007278784A (en) Defect detection method and device of transparent body
KR20130051874A (en) Glass inspecting device
JP2022083641A (en) Wrinkle inspection device and wrinkle determination device
KR20100084829A (en) Inspecting apparatus having line scan camera
KR100863340B1 (en) Particle inspection device for conveyor establishment
JP2002286656A (en) Substrate inspection apparatus
JP2015184019A (en) Inspection method and inspection device of hollow fiber module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19748061

Country of ref document: EP

Kind code of ref document: A1