WO2019151314A1 - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
WO2019151314A1
WO2019151314A1 PCT/JP2019/003142 JP2019003142W WO2019151314A1 WO 2019151314 A1 WO2019151314 A1 WO 2019151314A1 JP 2019003142 W JP2019003142 W JP 2019003142W WO 2019151314 A1 WO2019151314 A1 WO 2019151314A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
image
display device
projection
optical system
Prior art date
Application number
PCT/JP2019/003142
Other languages
French (fr)
Japanese (ja)
Inventor
橋村淳司
山田範秀
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019569170A priority Critical patent/JPWO2019151314A1/en
Publication of WO2019151314A1 publication Critical patent/WO2019151314A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to a display device in which the projection position of a virtual image is variable.
  • a head-up display (hereinafter also referred to as HUD (Head-Up Display)) device including a projection optical system for projecting an image displayed on a display element and a display screen for displaying the image as a virtual image.
  • the HUD device can reduce the risk compared to conventional speedometers and other instrument panel displays because the driving driver can check the display without moving the line of sight or viewpoint.
  • the HUD device will be actively used as a display device for supporting the driver's safe driving. At that time, it is necessary to surely convey the danger information to be conveyed and the information to be noted to the driver. In order to convey information more reliably to the driver, for example, it is possible to recognize information such as danger on the target that the driver should be aware of in front of the driver without greatly shifting the line of sight or viewpoint from the target. Display is desired.
  • a virtual image is formed using a plurality of display panels having different arrangements in an optical system for forming a virtual image, thereby changing a display distance to the virtual image without providing a movable portion.
  • Patent Document 2 discloses a virtual image control method and a virtual image control device in a head-up display that uses a windshield of an automobile or the like as a combiner.
  • a concave mirror is used as a turning mirror, and a virtual image point of the concave mirror appears.
  • the focal length and the size of the appearing virtual image are controlled by moving the display within the range.
  • a display optical system that projects a formed display image to form a virtual image, and when changing the projection position of the virtual image by the display optical system, the display device is placed in the optical axis direction and a predetermined direction in a plane perpendicular to the optical axis direction.
  • a device drive unit that moves the device to at least one of the above.
  • FIG. 1A is a side sectional view showing a state in which the head-up display device, which is the display device of the first embodiment, is mounted on a vehicle body
  • FIG. 1B is a front view from the inside of the vehicle illustrating the head-up display device. is there.
  • It is an expansion side sectional view explaining the example of concrete composition of the projection optical system etc. which constitute the head up display device which is a display.
  • It is a side view explaining a device drive part.
  • 4A and 4B are a partially broken plan view and a partially broken side view for explaining the structure of the diffusion portion incorporating the intermediate screen.
  • 5A and 5B are partial cross-sectional views for explaining the setting of the reference axis of the rotating body, and FIG.
  • 5C is a diagram for explaining the movement of the functional area accompanying the rotation of the intermediate screen. It is a figure which illustrates concretely the change of the position of an intermediate image. It is a figure explaining the display zone and distance zone while showing the relationship between the position of an intermediate image, and projection distance. It is a block diagram explaining the whole structure of a head-up display apparatus. It is a perspective view explaining the concrete display state. 10A corresponds to FIG. 6, and FIGS. 10B to 10D correspond to the projected images or frame frames in FIG. It is a figure explaining the operation example of the head up display apparatus shown in FIG. It is a conceptual diagram explaining an example of the display switching in a display zone. It is a figure explaining the display apparatus or head-up display apparatus of 2nd Embodiment. It is a figure which illustrates concretely the change of the position of an intermediate image in a 2nd embodiment.
  • FIG. 1A and 1B are a conceptual side sectional view and a front view for explaining an image display device 100 in a head-up display device as a display device of an embodiment.
  • the image display device 100 is mounted, for example, in a car body 2 of an automobile, and includes a projection unit 10 and a display screen 20.
  • the image display device 100 displays image information displayed on a display device 11 (to be described later) in the projection unit 10 to a driver VD that is an observer via the display screen 20, and is also called a display device.
  • a display device 11 to be described later
  • the projection unit 10 is installed in the dashboard 4 of the vehicle body 2 so as to be embedded behind the display 50, and is display light that is image light corresponding to an image including driving-related information. DL is emitted toward the display screen 20.
  • the display screen 20 is also called a combiner, and is a concave mirror or a plane mirror having semi-transparency.
  • the display screen 20 is erected on the dashboard 4 with the lower end supported, and reflects the display light (image light) DL from the projection unit 10 toward the rear of the vehicle body 2. That is, in the illustrated case, the display screen 20 is an independent type that is installed separately from the front window 8.
  • the display light DL reflected by the display screen 20 is guided to the eye box EB corresponding to the pupil PU of the driver VD sitting on the driver's seat 6 and its peripheral position.
  • the driver VD can observe the display light DL reflected by the display screen 20, that is, the projection image IM as a virtual image in front of the vehicle body 2.
  • the driver VD can observe external light transmitted through the display screen 20, that is, a real image of a front scene, a car, and the like.
  • the driver VD as the observer includes related information such as driving related information formed by reflection of the display light DL on the display screen 20 so as to be superimposed on the external field image or the see-through image behind the display screen 20.
  • a projected image (virtual image) IM can be observed.
  • the display screen 20 is configured separately from the front window 8, the front window 8 is used as a display screen, projection is performed on the display range set in the front window 8, and the driver VD projects the projection image IM. It does not matter even if it is the composition which can observe.
  • the reflection area can be secured by changing the reflectance of a partial area of the glass of the front window 8 by a coat or the like. Further, if the reflection angle at the front window 8 is about 60 degrees, for example, the reflectivity is secured about 15%, and it can be used as a reflective surface having transparency even without providing a coat.
  • a display screen can be provided in a configuration sandwiched in the glass of the front window 8.
  • the projection unit 10 includes a display device 11, a main body optical system 13 that is a virtual image type magnification imaging system, and the display device 11 in the plane perpendicular to the optical axis AX direction and the optical axis AX direction.
  • the device drive unit 14 that moves in at least one of the predetermined directions, the display control unit 18 that controls the operation of the display device 11, the display device 11, the device drive unit 14, the main body optical system 13, the display control unit 18, and the like are stored.
  • Housing 12 the combination of the main body optical system 13 and the display screen 20 constitutes the display optical system 30.
  • the display device 11 is a display element having a two-dimensional display surface 11a.
  • the display device 11 is a light modulation type display device illuminated by a light source.
  • the image formed on the display surface 11 a of the display device (display element) 11 is magnified by the imaging optical system (first projection optical system) 15 and projected onto the spiral surface intermediate screen 19 provided in the diffusion unit 16.
  • the display device 11 capable of two-dimensional display switching of the projection image IM with respect to the intermediate screen 19, that is, switching of the projection image IM displayed as a virtual image through the display screen 20 can be performed at a relatively high speed.
  • the display device 11 is a reflective element that does not require a backlight and is small and can be controlled at high speed.
  • DMD Digital Mirror Device
  • LCOS Liquid crystal on silicon
  • the display device 11 When DMD or LCOS is used as the display device 11, not only can it move itself at high speed, but also it is easy to switch images at high speed while maintaining brightness (including high-speed intermittent display), and a virtual image. This is advantageous for displays that change the distance or the projection distance.
  • the display distance When the display distance is changed, the display device 11 operates at a frame rate of 30 fps or more, more preferably 60 fps or more with respect to each projection distance. This makes it possible to make it appear as if a plurality of projection images (virtual images) IM are simultaneously displayed on the driver (observer) VD at different projection distances.
  • DMD or LCOS is desirable as the display device 11.
  • the projected image IM can be a sign such as a frame surrounding the object in front of the eye.
  • the device driving unit 14 includes a first driving unit 14 a that moves the display device 11 in the optical axis AX direction or the Y direction, and an X direction in a plane perpendicular to the optical axis AX direction. And a third drive unit 14c for moving the display device 11 in the Z direction in a plane perpendicular to the optical axis AX direction.
  • the first to third drive units 14a, 14b, and 14c are actuators using piezo elements 14e, 14f, and 14g.
  • the device driving unit 14 is an actuator using the piezo elements 14e, 14f, and 14g, the amount of movement of the display device 11 can be controlled at high speed and relatively accurately, and the small image mechanism can be used while changing the virtual image position at high speed. The accuracy can be displayed.
  • the first drive unit 14a includes a guide for guiding the movement of the display device 11 in the optical axis AX direction in addition to the circuit associated with the piezo element 14e.
  • the second drive unit 14b includes a guide for guiding the movement of the display device 11 in the ⁇ X direction in addition to the circuit associated with the piezo element 14f.
  • the third drive unit 14c includes a guide for guiding the movement of the display device 11 in the ⁇ Z direction in addition to the circuit associated with the piezo element 14g.
  • the display device 11 can be moved in the direction of the optical axis AX by the first drive unit 14a, and the display state can be maintained corresponding to the change in the projection distance, as will be described later.
  • the display device 11 can be moved in the ⁇ X direction by the second drive unit 14b, and the viewing angle can be expanded in the horizontal X direction or the eye box size in the X direction can be increased as compared with the case where the display device 11 is not moved. It can be enlarged.
  • the display device 11 can be moved in the ⁇ Z direction by the third driving unit 14c. Compared to the case where the display device 11 is not moved, the viewing angle is expanded in the vertical Z direction, or the eyebox size in the Z direction is increased. It can be enlarged.
  • the main body optical system 13 converts the intermediate image TI into a virtual image
  • the imaging optical system 15 that is a first projection optical system that forms an intermediate image TI obtained by enlarging the image formed on the display device 11.
  • the imaging optical system 15 which is the first projection optical system does not particularly have a lens or a movable mechanism, but can also have a focusing position changing unit.
  • the in-focus position changing unit is a part that operates in accordance with a change in the projection distance by the display optical system 30.
  • the display control unit 18 Under the control of the display control unit 18, for example, only the display device 11 is driven to drive the intermediate screen 19.
  • the focus drive unit 15c is driven to suppress the focus blur and the like.
  • the diffusing unit 16 is disposed at a projection position or an imaging position by the imaging optical system (first projection optical system) 15 (that is, at or near the imaging position of the intermediate image), and the rotator 16a, the hollow frame 16b, and the like. And is driven by a rotation driving unit 64, which is a screen driving unit, and rotates around the reference axis SX at a constant speed, for example.
  • a rotation driving unit 64 which is a screen driving unit, and rotates around the reference axis SX at a constant speed, for example.
  • FIG. 4A is a front view illustrating the diffusing portion 16, and FIG. 4B is a side cross-sectional view illustrating the diffusing portion 16.
  • the diffusing unit 16 includes a spiral rotating body 16a having an outline close to a disk as a whole, and a cylindrical hollow frame body 16b that houses the rotating body 16a.
  • the rotating body 16a has a central portion 16c and an outer peripheral optical portion 16p.
  • One surface 16f formed on the outer peripheral optical part 16p of the rotating body 16a is formed as a smooth surface or an optical surface, and the intermediate screen 19 is formed over the entire surface on the surface 16f.
  • the surface 16f of the rotating body 16a functions as the three-dimensional shape portion 116.
  • the intermediate screen 19 is a diffusion plate whose light distribution angle is controlled to a desired angle, and has a diffusion degree (a diffusion angle of a half-value intensity of the diffusion distribution) of, for example, 20 ° or more.
  • the intermediate screen 19 can be a sheet attached to the rotating body 16a, but may be a fine uneven pattern formed on the surface of the rotating body 16a.
  • the intermediate screen 19 may be formed so as to be embedded in the rotating body 16a.
  • the intermediate screen 19 forms an intermediate image TI by diffusing the incident display light DL (see FIG. 2).
  • the other surface 16s formed on the outer peripheral optical part 16p of the rotating body 16a is formed on a smooth surface or an optical surface.
  • the rotating body 16a is a spiral member having optical transparency, and the pair of surfaces 16f and 16s are spiral surfaces having the reference axis SX as a spiral axis.
  • the intermediate screen 19 formed on one surface 16f is also formed along a continuous spiral surface.
  • the rotating body 16a has substantially the same thickness t with respect to the direction of the reference axis SX or the optical axis AX.
  • the intermediate screen 19 is formed in a range corresponding to one period of the spiral. That is, the intermediate screen 19 is formed in a range corresponding to one pitch of the spiral.
  • a stepped portion 16j is formed at one place along the periphery of the diffusing portion 16.
  • the step portion 16j has a connection surface 16k that connects the step between the spiral ends and is inclined with respect to a plane including the reference axis SX that rotates the diffusion portion 16.
  • a functional area FA through which the optical axis AX of the main body optical system 13 passes, and an intermediate image TI is formed by a portion of the intermediate screen 19 in the functional area FA.
  • This functional area FA moves at a constant speed on the rotating body 16a as the rotating body 16a rotates. That is, the display light (video light) DL is incident on the functional area FA which is a part of the rotating body 16a while rotating, so that the position of the functional area FA or the intermediate image TI reciprocates along the optical axis AX. (If the display of the display device 11 is not operating, an intermediate image as a display is not necessarily formed, but the position where the intermediate image will be formed is also called the position of the intermediate image).
  • the functional area FA or the intermediate image TI of the intermediate screen 19 is stepped in the optical axis AX direction by one rotation of the rotating body 16a. It makes one round trip for a distance corresponding to.
  • the first drive unit 14a operates in synchronization with the rotational position of the rotating body 16a, and moves the display device 11 in the optical axis AX direction or the Y direction according to the position of the functional area FA of the intermediate screen 19. .
  • the driving of the display device 11 in the optical axis AX direction by the first driving unit 14a constituting the device driving unit and the driving of the intermediate screen 19 in the optical axis AX direction are synchronized.
  • the positional relationship between the display device 11 and the intermediate screen 19 is kept optically conjugate. Thereby, it is possible to drive without causing a blur of the virtual image regardless of the projection distance.
  • the driving range of the display device 11 in the optical axis AX direction by the device driving unit 14 is within the range of the depth of focus in consideration of the movement of the intermediate image TI in the display optical system 30. In this case, for example, it is possible to display with the virtual image projection distance changed without reducing the virtual image blur regardless of the projection distance while reducing the driving amount of the intermediate screen 19.
  • the imaging optical system (first projection optical system) 15 has a predetermined depth of focus that is greater than or equal to the moving range of the functional area FA so as not to cause defocusing depending on the position of the intermediate screen 19. It is assumed that the imaging optical system 15 has a focusing function.
  • the hollow frame 16b has a cylindrical outer contour, and includes a side surface portion 16e and a pair of end surface portions 16g and 16h.
  • the side surface portion 16e and the pair of end surface portions 16g and 16h are formed of the same material having optical transparency. However, the side part 16e does not need to have a light transmittance.
  • the main surfaces 63a and 63b of one end surface portion 16g are smooth surfaces or optical surfaces parallel to each other, and the main surfaces 64a and 64b of the other end surface portion 16h are also smooth surfaces or optical surfaces parallel to each other. Yes.
  • the main surfaces 63a and 63b or the main surfaces 64a and 64b do not necessarily have to be parallel planes.
  • the rotating body 16a in the hollow frame body 16b is fixed to the hollow frame body 16b via a pair of central shaft portions 65, and the hollow frame body 16b and the rotating body 16a rotate integrally around the reference axis SX. To do.
  • the rotating body 16a provided with the intermediate screen 19 in the hollow frame body 16b, it is possible to suppress dust and the like from adhering to the rotating body 16a, and to generate sound accompanying the rotation of the rotating body 16a. Therefore, it is easy to stabilize the rotation of the rotating body 16a at a high speed.
  • the setting of the reference axis SX of the rotating body 16a (or the three-dimensional shape portion 116) will be described with reference to FIGS. 5A and 5B.
  • the reference axis SX of the rotator 16a is disposed slightly tilted in a non-parallel state with respect to the optical axis AX of the main body optical system 13.
  • the intermediate screen 19 on the rotator 16 a is arranged such that the local functional area FA is substantially orthogonal to the optical axis AX direction of the main body optical system 13. That is, as shown in FIG.
  • the reference axis SX when the rotator 16a is observed from a viewpoint away from the optical axis AX in the lateral direction with the functional area FA, the reference axis SX is inclined by a predetermined angle ⁇ with respect to the optical axis AX.
  • the reference axis SX when viewed from a viewpoint away from the rotating body 16a in a direction orthogonal to the case of FIG. 5A, the reference axis SX is set at a predetermined interval d with respect to the optical axis AX. It is in a state that is only separated.
  • the first position PO1 indicated by the alternate long and short dash line indicates a case where the functional area FA or the intermediate image TI is located on the most upstream side of the optical path.
  • the second position PO2 indicated by the alternate long and short dashed line indicates the functional area FA or The case where the intermediate image TI is located on the most downstream side of the optical path is shown.
  • the distance D between these positions PO1 and PO2 corresponds to the displacement amount of the functional area FA or the intermediate image TI in the optical axis AX direction.
  • the intermediate screen 19 (or the three-dimensional shape portion 116) of the rotating body 16 a is made light by rotating the diffusion portion 16 around the reference axis SX at a constant speed by the rotation driving portion 64 that is a screen driving portion.
  • a position intersecting the axis AX (that is, the functional area FA) also moves in the direction of the optical axis AX. That is, as shown in FIG. 5C, with the rotation of the rotating body 16a, the functional area FA on the intermediate screen 19 is sequentially shifted to the adjacent functional area FA ′ set at a position shifted at an equal angle, for example. Move in the direction of the optical axis AX.
  • the position of the intermediate image TI can also be moved in the optical axis AX direction.
  • the position of the intermediate image TI can be moved to the display device (display element) 11 side.
  • the projection distance or the virtual image distance to the projection image IM can be increased.
  • the position of the intermediate image TI toward the virtual image forming optical system 17 the projection distance or virtual image distance to the projection image IM can be reduced.
  • the virtual image forming optical system (second projection optical system) 17 enlarges the intermediate image TI formed by the imaging optical system (first projection optical system) 15 in cooperation with the display screen 20, and is a driver who is an observer.
  • a projection image IM as a virtual image is formed in front of VD.
  • the virtual image forming optical system 17 includes at least one mirror, but in the illustrated example, includes two mirrors 17a and 17b.
  • the virtual image forming optical system (second projection optical system) 17 can have an optical characteristic that corrects the curvature of the intermediate screen 19 in the functional area FA of the rotating body 16a (that is, the curvature of field of the intermediate image TI).
  • the diffusion unit 16 rotates around the reference axis SX and corresponds to the functional area FA.
  • the position of TI repeatedly moves periodically in the direction of the optical axis AX, and the distance between the projected image IM as a virtual image formed behind the display screen 20 by the virtual image forming optical system 17 and the driver VD as an observer is increased. Or it can be made smaller. In this manner, the position of the projected image IM to be projected is changed back and forth, and the display device 11 is moved in synchronization with the arrangement of the intermediate image TI in synchronization with the optical axis AX direction under the control of the display control unit 18.
  • the display content of the projection image IM is changed while changing the projection distance to the projection image IM or the virtual image distance by making the display content on the display device (display element) 11 according to the position.
  • the projection image IM as a series of projection images can be made three-dimensional. Even if the functional area FA moves in the direction of the optical axis AX, the curved state of the intermediate screen 19 in the functional area FA is maintained, so the virtual image forming optical system (second projection optical system) regardless of the position of the projection image IM. ) The effect of correction by 17 is maintained.
  • the rotational speed of the diffusing unit 16 or the rotating body 16a or the moving speed of the functional area FA is as if the projection images IM as virtual images are simultaneously displayed at a plurality of locations or a plurality of projection distances in the depth direction as will be described in detail later. It is desirable that the speed be able to show.
  • the projection image IM of each distance zone is switched at 30 fps or more, preferably 60 fps or more, a plurality of displayed images are visually recognized as continuous images.
  • the projection image IM is sequentially projected in five steps from a short distance to a long distance in accordance with the operation of the diffusing unit 16
  • each distance for example, short distance
  • the display of the projection image IM is switched at 40 fps, and the projection images IM of the respective distance zones are performed in parallel and the switching is recognized as being substantially continuous.
  • FIG. 6 is a diagram specifically illustrating a change in the position of the intermediate image TI accompanying the rotation of the diffusion unit 16.
  • the functional area FA of the diffusing unit 16 is periodically moved in a sawtooth time-dependent pattern PA along the optical axis AX direction, and the display device (display element) 11 continuously displays the position of the intermediate image TI.
  • the display device display element 11 continuously displays the position of the intermediate image TI.
  • it periodically and periodically moves in a sawtooth shaped temporal pattern PA along the optical axis AX direction. That is, the position of the intermediate image TI changes continuously and periodically with the rotation of the diffusing unit 16 while being discontinuous at the portion corresponding to the stepped portion 16j.
  • the position of the projected image (virtual image) IM is also different in scale, but like the position of the intermediate image TI, it repeatedly moves periodically along the optical axis AX direction, and the projection distance is continuous. Can be changed.
  • the display device 11 since the display device 11 does not perform continuous display but performs intermittent display while switching display contents, the display position of the intermediate image TI is also discrete on the sawtooth temporal pattern PA. It becomes a position.
  • the display position Pn closest to the near distance side or the virtual image forming optical system 17 and the display position Pf closest to the far distance side or the anti-virtual image forming optical system 17 ensure a margin
  • the temporal pattern PA It is set at a position away from the both ends by a predetermined amount.
  • the break PD of the temporal pattern PA corresponds to the stepped portion 16j provided on the rotating body 16a of the diffusing portion 16.
  • the displayed distance in the depth direction changes by changing the position of the intermediate image TI within the displayed time as shown in FIG.
  • the display distance that can be seen by the observer (driver VD) in such a display zone in which the distance in the depth direction changes is approximately the average position of the distance in the depth direction that changes within the display time.
  • FIG. 7 is a diagram for explaining the relationship between the position of the intermediate image TI and the projection distance or the relationship between the position of the intermediate image TI and the display zone.
  • the display unit having a depth is set as a display zone, and the time of the one cycle is displayed in each display zone. If the time is shorter than the product of the number n, the display zone extends over a plurality of distance zones, and at least the adjacent display zones overlap in the projection distance range (see display zones DZ1 to DZn in FIG. 7). By performing the overlapping display with respect to the projection distance in this way, it is possible to display the same projected image (virtual image) IM with a spread in the depth direction, and in each display zone as compared with a display that does not overlap. The display time can be extended, and the brightness of the projected image (virtual image) IM is improved.
  • n display zones can be set along the characteristic C1.
  • the shortest display zone is called a first display zone DZ1
  • the farthest display zone is called an nth display zone DZn (n is a natural number).
  • the distance width of display increases as the distance increases from the short distance.
  • Adjacent display zones among the plurality of display zones DZ1 to DZn have overlapping projection distances, and each display zone includes ones that should originally have different projection distances. That is, the projection distances of the kth display zone DZk (k is a natural number smaller than n) and the (k + 1) th display zone DZk + 1 partially overlap.
  • the second display zone DZ2 and the third display zone DZ3 are projected distances. Are partially overlapping.
  • the k-th display zone DZk also displays an image displayed in the display zone set before, after, or before and after the original display image of the projection distance of the display target to be displayed there. It is a composite projection image.
  • a display in a state where the images corresponding to the distance zones or sub-zones LZk ⁇ 2 to LZk + 1 for the four sections in the whole or a certain period of time while the kth display zone DZk is displayed is overlapped. Has been.
  • the display time of the image displayed in each of the display zones DZ1 to DZn is shifted between the adjacent display zones DZ1 to DZn at the pitch ⁇ of the display time.
  • the distance between both ends of the near side and the far side varies, and the average distance also varies. Since the human eye or brain captures the display image at the average distance of the display zones DZ1 to DZn, even when visual display is simultaneously performed, the display distances of the display zones DZ1 to DZn are displayed as different positions. Can be in a state of being.
  • the display zone DZk is configured by a combination of a series of a plurality of subzones LZk ⁇ 2 to LZk + 1 whose distance changes stepwise.
  • the local image to be projected on the distance zone corresponding to the one reference subzone LZk of interest is repeatedly displayed on the four display zones DZk-2 to DZk + 1.
  • the local image to be obtained has a uniformly improved luminance.
  • IMs are displayed in a superimposed manner so that the position and angle size match.
  • the projection image (virtual image) IM in which the projection distance changes can be displayed in a state where there is no deviation or blurring.
  • the average display distance at this time is a distance corresponding to the reference subzone LZk.
  • the display zones DZ1 to DZn are shown to extend in the horizontal direction. However, when the vertical axis is the position of the intermediate image TI, the display zones DZ1 to DZn have characteristics. It extends along C1.
  • the display times in the first display zone DZ1 to the nth display zone DZn are all equal.
  • the display brightness of the composite projection image IM by each of the display zones DZ1 to DZn can be matched, and it is an observer. It is possible to prevent the driver VD from unintentionally tending to focus on an image at a specific distance.
  • a pair of display objects are images that are displayed in a semi-transparent superimposed manner, and in a difference area or an independent area where a pair of display objects do not overlap,
  • the standard display is sufficient.
  • the viewpoint of the driver VD does not move in the eye box EB (see FIG. 1).
  • the viewpoint of the driver VD moves in the eye box EB
  • the above operation is performed in parallel.
  • the second and third drive units 14b and 14c can be operated under the control of the display control unit 18, and the display device 11 can be displaced to a position corresponding to the viewpoint of the driver VD.
  • the viewpoint position of the driver VD is monitored by an apparatus to be described later, and when the viewpoint position of the driver VD moves laterally from the center of the eye box EB and is displaced in the ⁇ X direction, the second driving unit 14b.
  • the display device 11 is appropriately moved in the ⁇ X direction from the reference position so that the projected image (virtual image) IM of the display device 11 approaches the front of the viewpoint position of the driver VD.
  • the viewpoint position of the driver VD moves in the vertical direction from the center of the eye box EB and is displaced in the ⁇ Z direction
  • the second drive unit 14b is operated, and the projected image (virtual image) IM of the display device 11 becomes the driver VD.
  • the display device 11 is appropriately moved in the ⁇ Z direction from the reference position so as to approach the front of the viewpoint position.
  • the display content of the display device 11 is the movement of the display device 11 so that the projection image (virtual image) IM viewed from the driver VD does not move as the display device 11 moves in the ⁇ X direction or ⁇ Z direction. Corresponding shift, magnification change, distortion correction, and the like are given, and the consistency of the projection image (virtual image) IM viewed from the driver VD is maintained.
  • Image processing for changing the display content of the display device 11 is performed by, for example, the display control unit 18.
  • an apparently large display device is used by moving the display device 11 in two directions perpendicular to the optical axis AX by operating the device driving unit 14 according to the viewpoint position of the driver VD. Since the display device 11 is moved according to the viewpoint position, the viewing angle and the eye box EB can be expanded with a small device.
  • FIG. 8 is a conceptual block diagram for explaining the overall structure of the head-up display device 200.
  • the head-up display device 200 includes the image display device 100 as a part thereof.
  • the image display device 100 has the structure shown in FIG. 2, and a description thereof is omitted here.
  • the head-up display device 200 includes a driver detection unit 71, an environment monitoring unit 72, and a main control unit 90 in addition to the image display device 100.
  • the driver detection unit 71 is a viewpoint detection unit that detects the presence of the driver VD and its viewpoint position, and includes a driver seat camera 71a, a driver seat image processing unit 71b, and a determination unit 71c.
  • the driver's seat camera 71a is installed in front of the driver's seat of the dashboard 4 in the vehicle body 2 (see FIG. 1B), and takes images of the head of the driver VD and its surroundings.
  • the driver seat image processing unit 71b performs various types of image processing such as brightness correction on the image captured by the driver seat camera 71a to facilitate processing in the determination unit 71c.
  • the determination unit 71c detects the head and eyes of the driver VD by extracting or cutting out an object from the driver seat image that has passed through the driver seat image processing unit 71b, and detects the vehicle body 2 from the depth information attached to the driver seat image.
  • the spatial position of the eyes of the driver VD (resulting in the direction of the line of sight) is calculated along with the presence or absence of the head of the driver VD.
  • the environment monitoring unit 72 is an object detection unit that detects an object existing in the detection area, and identifies a moving body or person existing in the vicinity of the front, specifically, a car, a bicycle, a pedestrian, or the like as an object. And a three-dimensional measuring device for extracting three-dimensional position information of the object.
  • the environment monitoring unit (object detection unit) 72 includes an external camera 72a, an external image processing unit 72b, and a determination unit 72c as a three-dimensional measuring instrument.
  • the external camera 72a can capture an external image in the visible or infrared region.
  • the external camera 72a is installed at appropriate positions inside and outside the vehicle body 2, and captures a driver VD or a detection area VF in front of the front window 8 (see FIG.
  • the external image processing unit 72b performs various types of image processing such as brightness correction on the external image captured by the external camera 72a to facilitate processing by the determination unit 72c.
  • the determination unit 72c extracts or cuts out an object image from the external image that has passed through the external image processing unit 72b, thereby identifying an object such as an automobile, a bicycle, or a pedestrian (specifically, an object OB1, FIG. OB2 and OB3) is detected, and the spatial position of the object in front of the vehicle body 2 is calculated from the depth information attached to the external image and stored in the storage unit as three-dimensional position information.
  • Software that enables extraction of an object image from an external image is stored in the storage unit of the determination unit 72c.
  • the determination unit 72c can detect what is an element corresponding to the object element from the shape, size, color, and the like of each object element in the obtained image.
  • the criteria for determination include a method of detecting what an object is based on the degree of matching by performing pattern matching with information registered in advance. Further, from the viewpoint of increasing the processing speed, it is also possible to detect a lane from an image and detect an object from the shape, size, color, etc. of the target or object element in the lane.
  • the external camera 72a is a compound eye type three-dimensional camera, for example, although not shown. That is, the external camera 72a is a camera element in which an imaging lens and a CMOS (Complementary Metal Oxide ⁇ ⁇ ⁇ Semiconductor) or other imaging device are arranged in a matrix, and a driving circuit for the imaging device. Respectively.
  • the plurality of camera elements constituting the external camera 72a can detect relative parallax, for example, and by analyzing the state of the image (focus state, object position, etc.) obtained from the camera element, The target distance to each area or object in the image corresponding to the detection area can be determined.
  • a combination of a two-dimensional camera and an infrared distance sensor may be used in the depth direction with respect to each part (area or object) in the captured screen.
  • a target distance that is distance information can be obtained.
  • a target distance that is distance information in the depth direction can be obtained for each part (region or object) in the captured screen.
  • a target distance that is distance information in the depth direction can be obtained for each part (region or object) in the captured screen by performing imaging while changing the focal length at high speed. it can.
  • distance information in the depth direction can be obtained for each part (region or object) in the detection region by using LIDAR (Light Detection and Ranging) technology.
  • LIDAR Light Detection and Ranging
  • the scattered light for pulsed laser irradiation can be measured, the distance to the object at a long distance and the spread can be measured, and the distance information to the object in the field of view and the information about the spread of the object can be acquired.
  • the detection accuracy of objects can be improved by a complex method that combines radar sensing technology such as LIDAR technology with technology that detects the distance of an object from image information, that is, a method that fuses multiple sensors. Can do.
  • the operation speed of the camera 72a for detecting the object needs to be equal to or higher than the operation speed of the display device (display element) 11 from the viewpoint of speeding up the input.
  • the display switching speed of the display zones DZ1 to DZn or the display zones DZ1 to DZ1 When the display period of one cycle of DZn is, for example, 30 fps or more, it is desirable to make it faster than this.
  • the camera 72a is preferably capable of detecting an object at a high speed by a high-speed operation such as 480 fps or 1000 fps, for example, at a speed higher than 120 fps.
  • a method may be used in which sensing accuracy is increased by using data detected by a high-speed sensor as a base and supplementing with data from a non-high-speed sensor.
  • the display control unit 18 operates the display device 11 and the display optical system 30 under the control of the main control unit 90 to display a three-dimensional projection image IM whose virtual image distance or projection distance changes behind the display screen 20.
  • the main control unit 90 has a role of harmonizing the operations of the image display device 100, the environment monitoring unit 72, and the like.
  • the main control unit 90 operates the rotation drive unit 64 and the device drive unit 14 that are screen drive units via the display control unit 18, for example, thereby periodically changing the projection distance of the virtual image that is the projection image IM by the display optical system 30. Change. That is, the main control unit 90 or the like periodically changes the projection position in the depth direction of the virtual image that is the projection image IM. Further, the main control unit 90 spatially applies the frame frame HW (see FIG. 9) projected by the display device 11 and the display optical system 30 so as to correspond to the spatial position of the object detected by the environment monitoring unit 72. Adjust the placement.
  • the main control unit 90 generates image data corresponding to the projection image IM to be formed by the display device 11 and the display optical system 30 from the display information including the display shape and display distance received from the environment monitoring unit 72.
  • the display content of the projection image IM is synchronized with the operation of the rotation drive unit 64, that is, synchronized with the movement of the intermediate image TI.
  • the projection image IM is, for example, a sign such as a frame frame HW (see FIG. 9) located in the periphery with respect to the depth position direction of a car, a bicycle, a pedestrian, or other object existing behind the display screen 20. be able to.
  • the frame HW is shown in a state having no depth for convenience of explanation, but has a certain depth width.
  • the main control unit 90 functions as an image adding unit in cooperation with the display control unit 18, and detects the detected object at a timing at which the target distance to the detected object substantially coincides with the projection distance.
  • a related information image is added as a virtual image via the display device 11 and the display optical system 30.
  • the main control unit 90 cooperates with the display control unit 18 to operate the device driving unit 14 in accordance with the viewpoint position obtained by the driver detection unit 71 that is the viewpoint detection unit, and to move the display device 11 to the optical axis. It functions as a control unit that moves in two directions perpendicular to AX, and has a role of dynamically expanding a viewing angle and an eye box EB.
  • the front of the driver VD as an observer is a detection region VF corresponding to the observation visual field.
  • objects OB1 and OB3 of a person such as a pedestrian and a moving object OB2 such as an automobile exist in the detection area VF, that is, in and around the road.
  • the main control unit 90 projects a three-dimensional projection image (virtual image) IM by the image display device 100, and the frame frames HW1, HW2, HW3 as related information images for the objects OB1, OB2, OB3. Is added.
  • the projection distances from the driver VD to the projection images IM1, IM2, and IM3 for displaying the frame frames HW1, HW2, and HW3 are different from the driver VD. This corresponds to the distance to OB2 and OB3.
  • the projection distances of the projection images IM1, IM2, and IM3 are formed in display zones DZa to DZc corresponding to a part of the display zones DZ1 to DZn shown in FIG. 7, and the depths corresponding to the display zones DZa to DZc.
  • the projection distance of the projection image IM1 has a depth width corresponding to the projection distance of the projection image IM1 'in FIG.
  • the centers of the respective projection distances, that is, the projection distances of the projection images IM1, IM2, IM3 are discrete, and cannot always be accurately matched to the actual distances to the objects OB1, OB2, OB3.
  • the driver detection unit 71, the device driving unit 14, the display control unit 18 and the like are used to shift the display device 11 itself or the display content of the display device 11 according to the viewpoint of the driver VD. Thus, it is possible to display such that no parallax occurs from the beginning.
  • FIGS. 10A to 10D corresponds to the projection image IM1 or the frame HW1 in FIG.
  • the projection image IM1 is obtained when the functional area FA or the intermediate image TI of the rotating body 16a (or the three-dimensional shape portion 116) is within a predetermined distance range centered on the display position P1.
  • the projection image IM2 is a series of displays formed on the display surface 11a of the display device 11 when the functional area FA of the rotating body 16a (or the three-dimensional shape portion 116) is within a distance range centered on the display position P2.
  • the projection image IM3 is formed on the display surface 11a of the display device 11 when the functional area FA of the rotating body 16a (or the three-dimensional shape portion 116) is within a predetermined distance range centered on the display position P3.
  • a series of displayed images corresponds to a series of displayed images.
  • the projection image IM1 or the frame frame HW1 corresponding to the display position P1 is displayed first, and then the projection image IM2 or the frame frame HW2 corresponding to the display position P2 is displayed. After that, the projection image IM3 or the frame frame HW3 corresponding to the display position P3 is displayed. If the above one period is visually short, the switching of the projection images IM1, IM2, and IM3 becomes very fast, and the driver VD as an observer observes the frame frames HW1, HW2, and HW3 simultaneously as images with depth. Recognize that
  • FIG. 11 is a conceptual diagram for explaining the operation of the main control unit 90.
  • the main control unit 90 detects the objects OB1, OB2, and OB3 using the environment monitoring unit 72
  • the main control unit 90 generates display data corresponding to the frame frames HW1, HW2, and HW3 corresponding to the objects OB1, OB2, and OB3.
  • it is stored in a storage unit (not shown) (step S11).
  • the main control unit 90 performs data conversion such that the display data obtained in step S11 is distributed to the corresponding display zones DZ1 to DZn (step S12).
  • the corresponding frame frames HW1, HW2, and HW3 are set to any one of the display zones DZ1 to DZn (display zones DZa to DZc in the example of FIG. 9) according to the positions of the objects OB1, OB2, and OB3. assign.
  • the main control unit 90 processes the display data corresponding to the frame frames HW1, HW2, and HW3 so as to match the assigned display zones DZ1 to DZn, and stores them in a storage unit (not shown) (step S13).
  • This adaptation includes image processing such as correcting the outline and arrangement of the frame image for each distance zone (subzones LZk ⁇ 2 to LZk + 1).
  • the main control unit 90 synthesizes the display data adapted in step S13 with the existing data (step S14).
  • the display by the display zones DZ1 to DZn is performed in parallel at the same time although there is a time difference, and a display that leaves an afterimage for a short time is performed. Therefore, when new objects OB1, OB2, and OB3 appear, This is because it is necessary to reorganize the display contents so that the object and the new object coexist.
  • the main control unit 90 outputs the display data obtained in step S14 to the display control unit 18 in synchronization with the operation of the rotation driving unit 64, and displays the functional area of the rotating body 16a on the display device (display element) 11. A display operation corresponding to FA is performed (step S15).
  • the display control unit 18 operates the device driving unit 14 according to the viewpoint position obtained from the main control unit 90 to move the display device 11 in two directions perpendicular to the optical axis AX and display the display device 11.
  • the projected image (virtual image) IM is adapted to the viewpoint of the driver (observer) VD by image processing such as shifting the contents.
  • the display control unit 18 uses the device driving unit 14 to move the position of the display device 11 in the optical axis AX direction so as to match the position of the functional area FA or the intermediate image TI, and the focus driving unit 15c. Is used to maintain the focus state of the imaging optical system 15 appropriately.
  • FIG. 12 is a diagram for explaining the operation of the display device (display element) 11.
  • the first to nth display areas arranged in the vertical direction correspond to the first to nth display zones DZ1 to DZn shown in FIG.
  • the first on the display surface 11a of the display device (display element) 11 corresponding to the first to nth display zones DZ1 to DZn.
  • the display in the display area to the nth display area is repeated.
  • the signals F1 to F4 mean that the same display image is repeated in four subzones, and each of the signals F1 to F4 includes R, G, and B signal components for color display. ing.
  • the signals F1 to F4 have a time width corresponding to the display time of the projection image IM.
  • the device driving unit 14 moves the display device 11 in the predetermined direction within the optical axis AX direction and the plane perpendicular to the optical axis AX direction. Therefore, even if the projection position of the projection image (virtual image) IM is changed by the display optical system 30, the projection image (virtual image) can be changed. ) It becomes easy to maintain the image quality of IM. Further, by adopting a configuration using a small and lightweight display device 11 such as DMD or LCOS, the display device 11 can be moved or driven at high speed. For example, the display device 11 can be moved at high speed in the optical axis AX direction. Is possible.
  • the observer can observe a 3D virtual image display.
  • 3D display is performed while performing display that is desired to be displayed almost simultaneously at a plurality of distances of the target object. It becomes possible to show the viewer, and it is possible to alert the observer more naturally and surely.
  • the display device according to the second embodiment will be described below. Note that the display device of the second embodiment is a modification of the display device of the first embodiment, and items that are not particularly described are the same as those of the first embodiment.
  • an intermediate screen 19 is disposed at the projection position or the imaging position of the imaging optical system 15.
  • the intermediate screen 19 is an optical element that is formed along a flat surface and moves in the direction of the optical axis AX.
  • the intermediate screen 19 is a diffusion plate whose light distribution angle is controlled to a desired angle.
  • a ground glass, a lens diffusion plate, a microlens array, or the like is used. In this case, the effective area of the intermediate screen 19 becomes the functional area of the intermediate screen 19.
  • the main control unit 90 and the display control unit 18 as the control unit periodically shift the position of the intermediate screen 19 via the reciprocating drive unit 264 which is a screen drive unit, thereby changing the position of the intermediate image TI in FIG.
  • the image formed on the display device 11 is assumed to correspond to the projection distance while periodically reciprocating to periodically change the projection distance as shown in FIG. Specifically, the projection distance is periodically changed by reciprocating the intermediate screen 19 in the direction of the optical axis AX by the guide portion 264a and the actuator 264b constituting the reciprocating drive portion 264.
  • the display zones DZ1 to DZn shown in FIG. 14 When the position of the intermediate image TI is set to the triangular waveform temporal pattern PA shown in FIG. 14 or when it is periodically reciprocated by a sine curve (not shown), the display zones DZ1 to DZn shown in FIG. Then, the display zones DZ1 to DZn are changed so as to be sequentially switched from a long distance to a short distance, and then the same cycle is repeated.
  • the display zones DZ1 to DZn are different from those shown in FIG. 7, and the display time is also adjusted accordingly.
  • the display device according to the present invention is not limited to the above.
  • the first drive unit 14a of the device drive unit 14 can be used, and the second and third drive units 14b and 14c can be omitted.
  • the display device 11 is moved only in the optical axis AX direction.
  • the second and third drive units 14b and 14c of the device drive unit 14 are used, and the first drive unit 14a can be omitted.
  • the display device 11 is moved in the X direction or the Z direction in a plane perpendicular to the optical axis AX.
  • the display device 11 is made to light according to the viewpoint position of the driver VD. It can be moved in the X direction or the horizontal direction perpendicular to the axis AX.
  • the display screen 20 can also be arranged in the upper part of the front window 8 or the sun visor position by inverting the arrangement of the image display device 100 in this case.
  • a display screen 20 is arranged on the screen. Further, the display screen 20 may be disposed at a position corresponding to a conventional mirror of an automobile.
  • the intermediate screen 19 or the functional area FA is arranged so as to be substantially orthogonal to the optical axis AX direction of the main body optical system 13, but the functional area FA can be forcibly inclined with respect to the optical axis AX. .
  • a projection image IM having no inclination or a predetermined inclination can be projected by combination with the virtual image forming optical system 17.
  • the first to nth display zones DZ1 to DZn described above do not have to be continuous over the entire range of the projection distance, and are separated at a portion corresponding to the boundary of the distance zone (subzones LZ1 to LZn). It may be discontinuous.
  • the display zones DZ1 to DZn are not limited to the same number of subzones, and a different number of subzones can be included for each of the display zones DZ1 to DZn.
  • one intermediate screen 19 is provided in the diffusing unit 16, but two or more intermediate screens 19 may be provided.
  • the intermediate screen 19 is divided and formed in a range corresponding to a spiral 1/2 pitch, 1/3 pitch, or the like.
  • the three-dimensionally shaped portion 116 of the intermediate screen 19 does not need to have a spiral shape over the entire circumference, and has a shape in which a part of the entire circumference is a spiral, or a rotating body structure that can reciprocate without a step. Is also possible.
  • the hollow frame 16b is not essential, and only the rotating body 16a can be used. Also in this case, since the inclined connection surface 16k is formed in the step portion 16j, it is possible to suppress the generation of sound accompanying the rotation of the rotating body 16a and to stabilize the rotation of the rotating body 16a.
  • the outline of the display screen 20 is not limited to a rectangle, but may be various shapes.
  • the imaging optical system 15 and the virtual image forming optical system 17 shown in FIG. 2 are merely examples, and the optical configurations of the imaging optical system 15 and the virtual image forming optical system 17 can be changed as appropriate.
  • the object OB existing in front of the vehicle body 2 is detected by the environment monitoring unit 72, and related information images such as the frame frames HW1, HW2, and HW3 corresponding to the arrangement of the object OB are displayed on the image display device 100.
  • incidental driving-related information can be acquired using the communication network, and such driving-related information can be displayed on the image display device 100.
  • a display that warns of a car, an obstacle, etc. existing in a blind spot is also possible.
  • the virtual image is projected through the intermediate screen 19, but the image formed on the display device 11 can be directly projected without using the intermediate screen 19.
  • the display device of the present invention can be applied not only to a head-up display device (HUD) mounted on a moving body such as a car but also to a head mount device, a wearable display device, and the like that perform three-dimensional display.
  • HUD head-up display device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)

Abstract

The purpose of the present invention is to provide a display apparatus that makes high-speed display drive possible, while also increasing the degree of freedom of display, by widening a display range of a virtual image as pertains to projection distance or display direction. This display apparatus, namely a head-up display apparatus (200), is provided with: a display device (11) that has a reflecting display element that is DMD or LCOS, and forms a display image; a display optical system (30) for projecting the display image formed by the display device (11) to form a projection image (virtual image) IM; and a device drive unit (14) for causing the display device (11) to move in an optical axis AX direction and/or a predetermined direction within a plane perpendicular to the optical axis AX direction when a projection location of the projection image (virtual image) from the display optical system (30) is to be changed.

Description

表示装置Display device
 本発明は、虚像の投影位置を可変とした表示装置に関するものである。 The present invention relates to a display device in which the projection position of a virtual image is variable.
 表示装置として、表示素子に表示した画像を投影するための投影光学系と、画像を虚像として表示する表示スクリーンとを備えるヘッドアップディスプレイ(以下HUD(Head-Up Display)とも称する)装置が存在する。HUD装置は、運転中のドライバーが視線や視点を大きく動かすことなく表示を確認することができる点で、従来の速度メーターその他のインパネ(instrument panel)に情報表示する装置に比べ危険性を減らせるメリットがある。今後、ドライバーの安全運転を支援するための表示装置としてHUD装置が積極的に用いられることが予想され、その際、伝えるべき危険情報や、注意すべき情報をドライバーに確実に伝える必要がある。ドライバーに対してより確実に情報を伝えるには、例えば運転中の前方でドライバーが注意すべき対象であるターゲットについて、そのターゲットから大きく目線や視点をずらすことなく、危険等の情報を認識できるような表示が望まれる。 As a display device, there is a head-up display (hereinafter also referred to as HUD (Head-Up Display)) device including a projection optical system for projecting an image displayed on a display element and a display screen for displaying the image as a virtual image. . The HUD device can reduce the risk compared to conventional speedometers and other instrument panel displays because the driving driver can check the display without moving the line of sight or viewpoint. There are benefits. In the future, it is expected that the HUD device will be actively used as a display device for supporting the driver's safe driving. At that time, it is necessary to surely convey the danger information to be conveyed and the information to be noted to the driver. In order to convey information more reliably to the driver, for example, it is possible to recognize information such as danger on the target that the driver should be aware of in front of the driver without greatly shifting the line of sight or viewpoint from the target. Display is desired.
 例えば特許文献1の装置では、虚像形成用の光学系において、配置が異なる複数の表示パネルを用いて虚像を形成することで、可動部を設けないで虚像までの表示距離を変えている。 For example, in the apparatus of Patent Document 1, a virtual image is formed using a plurality of display panels having different arrangements in an optical system for forming a virtual image, thereby changing a display distance to the virtual image without providing a movable portion.
 しかしながら、特許文献1の装置は、各表示パネルの位置とこれによる表示距離とが固定となるため、虚像の投影距離を設定すれば虚像の表示方向が制限され、虚像の表示方向を設定すれば虚像の投影距離が制限され、表示の自由度が制限される。 However, since the position of each display panel and the display distance due to this are fixed in the device of Patent Document 1, the virtual image display direction is limited when the virtual image projection distance is set, and the virtual image display direction is set. The projection distance of the virtual image is limited, and the degree of freedom of display is limited.
 また、特許文献2では、自動車等のフロントガラスをコンバイナーとして使用するヘッドアップディスプレイにおける虚像のコントロール方法及び虚像のコントロール装置が示されており、凹面鏡をターニングミラーとして用い、該凹面鏡の虚像点を出現させる範囲内で表示器を移動させることにより、出現する虚像の焦点距離と大きさとをコントロールしている。 Patent Document 2 discloses a virtual image control method and a virtual image control device in a head-up display that uses a windshield of an automobile or the like as a combiner. A concave mirror is used as a turning mirror, and a virtual image point of the concave mirror appears. The focal length and the size of the appearing virtual image are controlled by moving the display within the range.
 しかしながら、特許文献2の装置では、表示器として液晶を使用したLCDを用いており、バックに光源を配置すること等から、移動させる表示器全体の重量が重く、例えば表示器を高速に駆動させるとともに虚像を投影する距離を高速に変化させて、観察者(ドライバー)が表示を3D的に観察できる装置等を考えた場合、高速な駆動が困難となり望ましくない。 However, in the apparatus of Patent Document 2, an LCD using liquid crystal is used as a display, and the weight of the entire display to be moved is heavy because a light source is disposed on the back. For example, the display is driven at high speed. At the same time, when a device or the like in which the observer (driver) can observe the display in 3D by changing the distance at which the virtual image is projected at high speed is considered, high-speed driving becomes difficult.
特開2004-168230号公報JP 2004-168230 A 特開平6-115381号公報JP-A-6-115381
 本発明は、投影距離や表示方向に関して虚像の表示範囲を広げることで表示の自由度を高めつつ高速の表示駆動を可能にする表示装置を提供することを目的とする。 It is an object of the present invention to provide a display device that enables high-speed display driving while increasing the degree of freedom of display by expanding the display range of a virtual image with respect to the projection distance and display direction.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した表示装置は、DMD又はLCOSである反射型表示素子を有し表示像を形成する表示デバイスと、表示デバイスによって形成された表示像を投影して虚像を形成する表示光学系と、表示光学系による虚像の投影位置を変更する際に、表示デバイスを光軸方向及び光軸方向に垂直な面内の所定方向の少なくとも一方に移動させるデバイス駆動部と、を備える。 In order to achieve at least one of the above objects, a display device reflecting one aspect of the present invention includes a display device that includes a reflective display element that is a DMD or LCOS and forms a display image. A display optical system that projects a formed display image to form a virtual image, and when changing the projection position of the virtual image by the display optical system, the display device is placed in the optical axis direction and a predetermined direction in a plane perpendicular to the optical axis direction. A device drive unit that moves the device to at least one of the above.
図1Aは、第1実施形態の表示装置であるヘッドアップディスプレイ装置を車体に搭載した状態を示す側方断面図であり、図1Bは、ヘッドアップディスプレイ装置を説明する車内側からの正面図である。FIG. 1A is a side sectional view showing a state in which the head-up display device, which is the display device of the first embodiment, is mounted on a vehicle body, and FIG. 1B is a front view from the inside of the vehicle illustrating the head-up display device. is there. 表示装置であるヘッドアップディスプレイ装置を構成する投影光学系等の具体的な構成例を説明する拡大側方断面図である。It is an expansion side sectional view explaining the example of concrete composition of the projection optical system etc. which constitute the head up display device which is a display. デバイス駆動部を説明する側面図である。It is a side view explaining a device drive part. 図4A及び4Bは、中間スクリーンを組み込んだ拡散部の構造を説明する一部破断平面図及び一部破断側面図である。4A and 4B are a partially broken plan view and a partially broken side view for explaining the structure of the diffusion portion incorporating the intermediate screen. 図5A及び5Bは、回転体の基準軸の設定について説明する部分側断面図であり、図5Cは、中間スクリーンの回転に伴う機能領域の移動を説明する図である。5A and 5B are partial cross-sectional views for explaining the setting of the reference axis of the rotating body, and FIG. 5C is a diagram for explaining the movement of the functional area accompanying the rotation of the intermediate screen. 中間像の位置の変化を具体的に例示する図である。It is a figure which illustrates concretely the change of the position of an intermediate image. 中間像の位置と投影距離との関係を示すとともに、表示ゾーン及び距離ゾーンを説明する図である。It is a figure explaining the display zone and distance zone while showing the relationship between the position of an intermediate image, and projection distance. ヘッドアップディスプレイ装置の全体構造を説明するブロック図である。It is a block diagram explaining the whole structure of a head-up display apparatus. 具体的な表示状態を説明する斜視図である。It is a perspective view explaining the concrete display state. 図10Aは、図6に対応し、図10B~10Dは、図9中の投影像又はフレーム枠に対応している。10A corresponds to FIG. 6, and FIGS. 10B to 10D correspond to the projected images or frame frames in FIG. 図8に示すヘッドアップディスプレイ装置の動作例を説明する図である。It is a figure explaining the operation example of the head up display apparatus shown in FIG. 表示ゾーンでの表示の切替えの一例を説明する概念図である。It is a conceptual diagram explaining an example of the display switching in a display zone. 第2実施形態の表示装置又はヘッドアップディスプレイ装置を説明する図である。It is a figure explaining the display apparatus or head-up display apparatus of 2nd Embodiment. 第2実施形態における中間像の位置の変化を具体的に例示する図である。It is a figure which illustrates concretely the change of the position of an intermediate image in a 2nd embodiment.
〔第1実施形態〕
 以下、図面を参照しつつ、本発明に係る第1実施形態の表示装置について説明する。
[First Embodiment]
Hereinafter, a display device according to a first embodiment of the present invention will be described with reference to the drawings.
 図1A及び1Bは、実施形態の表示装置としてのヘッドアップディスプレイ装置のうち画像表示装置100を説明する概念的な側方断面図及び正面図である。この画像表示装置100は、例えば自動車の車体2内に搭載されるものであり、投影ユニット10と表示スクリーン20とを備える。画像表示装置100は、投影ユニット10中の後述する表示デバイス11に表示されている画像情報を表示スクリーン20を介して観察者であるドライバーVDに向けて虚像表示するものであり、表示装置とも呼ぶこともある。 1A and 1B are a conceptual side sectional view and a front view for explaining an image display device 100 in a head-up display device as a display device of an embodiment. The image display device 100 is mounted, for example, in a car body 2 of an automobile, and includes a projection unit 10 and a display screen 20. The image display device 100 displays image information displayed on a display device 11 (to be described later) in the projection unit 10 to a driver VD that is an observer via the display screen 20, and is also called a display device. Sometimes.
 画像表示装置100のうち投影ユニット10は、車体2のダッシュボード4内であってディスプレイ50の背後に埋め込むように設置されており、運転関連情報等を含む画像に対応する映像光である表示光DLを表示スクリーン20に向けて射出する。表示スクリーン20は、コンバイナーとも呼ばれ、半透過性を有する凹面鏡又は平面鏡である。表示スクリーン20は、下端の支持によってダッシュボード4上に立設され、投影ユニット10からの表示光(映像光)DLを車体2の後方に向けて反射する。つまり、図示の場合、表示スクリーン20は、フロントウインドウ8とは別体で設置される独立型のものとなっている。表示スクリーン20で反射された表示光DLは、運転席6に座ったドライバーVDの瞳PU及びその周辺位置に対応するアイボックスEBに導かれる。ドライバーVDは、表示スクリーン20で反射された表示光DL、つまり車体2の前方にある虚像としての投影像IMを観察することができる。一方、ドライバーVDは、表示スクリーン20を透過した外界光、つまり前方景色、自動車等の実像を観察することができる。結果的に、観察者であるドライバーVDは、表示スクリーン20の背後の外界像又はシースルー像に重ねて、表示スクリーン20での表示光DLの反射によって形成される運転関連情報等の関連情報を含む投影像(虚像)IMを観察することができる。 Of the image display device 100, the projection unit 10 is installed in the dashboard 4 of the vehicle body 2 so as to be embedded behind the display 50, and is display light that is image light corresponding to an image including driving-related information. DL is emitted toward the display screen 20. The display screen 20 is also called a combiner, and is a concave mirror or a plane mirror having semi-transparency. The display screen 20 is erected on the dashboard 4 with the lower end supported, and reflects the display light (image light) DL from the projection unit 10 toward the rear of the vehicle body 2. That is, in the illustrated case, the display screen 20 is an independent type that is installed separately from the front window 8. The display light DL reflected by the display screen 20 is guided to the eye box EB corresponding to the pupil PU of the driver VD sitting on the driver's seat 6 and its peripheral position. The driver VD can observe the display light DL reflected by the display screen 20, that is, the projection image IM as a virtual image in front of the vehicle body 2. On the other hand, the driver VD can observe external light transmitted through the display screen 20, that is, a real image of a front scene, a car, and the like. As a result, the driver VD as the observer includes related information such as driving related information formed by reflection of the display light DL on the display screen 20 so as to be superimposed on the external field image or the see-through image behind the display screen 20. A projected image (virtual image) IM can be observed.
 ここで、表示スクリーン20をフロントウインドウ8と別体で構成しているが、フロントウインドウ8を表示スクリーンとして用い、フロントウインドウ8内に設定した表示範囲に投影を行って、ドライバーVDが投影像IMを観察できる構成としても構わない。この際、フロントウインドウ8のガラスの一部領域の反射率をコート等によって変更することで、反射領域を確保することができる。また、フロントウインドウ8での反射角度が例えば60度程度であれば、反射率が15%程度確保され、特にコートを設けなくても透過性を有する反射面として用いることができる。これら以外に、フロントウインドウ8のガラス中にサンドイッチする構成で表示スクリーンを設けることもできる。 Here, although the display screen 20 is configured separately from the front window 8, the front window 8 is used as a display screen, projection is performed on the display range set in the front window 8, and the driver VD projects the projection image IM. It does not matter even if it is the composition which can observe. At this time, the reflection area can be secured by changing the reflectance of a partial area of the glass of the front window 8 by a coat or the like. Further, if the reflection angle at the front window 8 is about 60 degrees, for example, the reflectivity is secured about 15%, and it can be used as a reflective surface having transparency even without providing a coat. In addition to these, a display screen can be provided in a configuration sandwiched in the glass of the front window 8.
 図2に示すように、投影ユニット10は、表示デバイス11と、虚像型の拡大結像系である本体光学系13と、表示デバイス11を光軸AX方向及び光軸AX方向に垂直な面内の所定方向の少なくとも一方に移動させるデバイス駆動部14と、表示デバイス11等の動作制御する表示制御部18と、表示デバイス11、デバイス駆動部14、本体光学系13、表示制御部18等を収納するハウジング12とを備える。これらのうち本体光学系13と表示スクリーン20とを組み合わせたものは、表示光学系30を構成する。 As shown in FIG. 2, the projection unit 10 includes a display device 11, a main body optical system 13 that is a virtual image type magnification imaging system, and the display device 11 in the plane perpendicular to the optical axis AX direction and the optical axis AX direction. The device drive unit 14 that moves in at least one of the predetermined directions, the display control unit 18 that controls the operation of the display device 11, the display device 11, the device drive unit 14, the main body optical system 13, the display control unit 18, and the like are stored. Housing 12. Among these, the combination of the main body optical system 13 and the display screen 20 constitutes the display optical system 30.
 表示デバイス11は、2次元的な表示面11aを有する表示素子である。表示デバイス11は、光源によって照明される光変調型の表示装置となっている。表示デバイス(表示素子)11の表示面11aに形成された像は、結像光学系(第1投影光学系)15で拡大されて拡散部16に設けた螺旋面状の中間スクリーン19に投影される。この際、2次元表示が可能な表示デバイス11を用いることで、中間スクリーン19に対する投影像IMの切替え、つまり表示スクリーン20越しに虚像として表示される投影像IMの切替えを比較的高速とできる。表示デバイス11は、バックライトが不要で小型で高速制御可能な反射型の素子であり、具体的にはDMD(Digital Mirror Device)やLCOS(Liquid crystal on silicon)がある。表示デバイス11としてDMD又はLCOSを用いると、それ自体を高速で移動させることができるだけでなく、明るさを維持しつつ画像を高速で切替えること(高速の間欠表示を含む)が容易であり、虚像距離又は投影距離を変化させる表示に有利である。なお、表示デバイス11は、表示距離を変化させる場合には、それぞれの投影距離に対して30fps以上、更に望ましくは60fps以上のフレームレートで動作する。これにより、異なる投影距離に複数の投影像(虚像)IMをドライバー(観察者)VDに対して同時に表示されているように見せることが可能になる。特に、90fps以上で表示の切替えを行う場合、DMDやLCOSが表示デバイス11として望ましい。なお、投影像IMは、例えば眼前のオブジェクトを囲むフレーム枠のような標識とすることができる。 The display device 11 is a display element having a two-dimensional display surface 11a. The display device 11 is a light modulation type display device illuminated by a light source. The image formed on the display surface 11 a of the display device (display element) 11 is magnified by the imaging optical system (first projection optical system) 15 and projected onto the spiral surface intermediate screen 19 provided in the diffusion unit 16. The At this time, by using the display device 11 capable of two-dimensional display, switching of the projection image IM with respect to the intermediate screen 19, that is, switching of the projection image IM displayed as a virtual image through the display screen 20 can be performed at a relatively high speed. The display device 11 is a reflective element that does not require a backlight and is small and can be controlled at high speed. Specifically, there is a DMD (Digital Mirror Device) or LCOS (Liquid crystal on silicon). When DMD or LCOS is used as the display device 11, not only can it move itself at high speed, but also it is easy to switch images at high speed while maintaining brightness (including high-speed intermittent display), and a virtual image. This is advantageous for displays that change the distance or the projection distance. When the display distance is changed, the display device 11 operates at a frame rate of 30 fps or more, more preferably 60 fps or more with respect to each projection distance. This makes it possible to make it appear as if a plurality of projection images (virtual images) IM are simultaneously displayed on the driver (observer) VD at different projection distances. In particular, when the display is switched at 90 fps or more, DMD or LCOS is desirable as the display device 11. The projected image IM can be a sign such as a frame surrounding the object in front of the eye.
 図3に示すように、デバイス駆動部14は、表示デバイス11を光軸AX方向又はY方向に移動させる第1駆動部14aと、表示デバイス11を光軸AX方向に垂直な面内のX方向に移動させる第2駆動部14bと、表示デバイス11を光軸AX方向に垂直な面内のZ方向に移動させる第3駆動部14cとを有する。第1~第3駆動部14a,14b,14cは、ピエゾ素子14e,14f,14gを用いたアクチュエーターである。デバイス駆動部14がピエゾ素子14e,14f,14gを用いたアクチュエーターであることにより、表示デバイス11の移動量の制御が高速かつ比較的精密になり、小型の機構によって高速に虚像位置を変えながら高精度の表示が可能になる。第1駆動部14aは、ピエゾ素子14eに付随する回路の他に表示デバイス11の光軸AX方向の移動を案内するガイドを備える。第2駆動部14bは、ピエゾ素子14fに付随する回路の他に表示デバイス11の±X方向の移動を案内するガイドを備える。第3駆動部14cは、ピエゾ素子14gに付随する回路の他に表示デバイス11の±Z方向の移動を案内するガイドを備える。第1駆動部14aによって、表示デバイス11を光軸AX方向に移動させることができ、後述するように、投影距離の変化に対応して表示状態を維持することができる。また、第2駆動部14bによって、表示デバイス11を±X方向に移動させることができ、移動させない場合に比較して、横のX方向に関して視野角を拡大したり、X方向のアイボックスサイズを拡大したりすることができる。また、第3駆動部14cによって、表示デバイス11を±Z方向に移動させることができ、移動させない場合に比較して、縦のZ方向に関して視野角を拡大したり、Z方向のアイボックスサイズを拡大したりすることができる。 As shown in FIG. 3, the device driving unit 14 includes a first driving unit 14 a that moves the display device 11 in the optical axis AX direction or the Y direction, and an X direction in a plane perpendicular to the optical axis AX direction. And a third drive unit 14c for moving the display device 11 in the Z direction in a plane perpendicular to the optical axis AX direction. The first to third drive units 14a, 14b, and 14c are actuators using piezo elements 14e, 14f, and 14g. Since the device driving unit 14 is an actuator using the piezo elements 14e, 14f, and 14g, the amount of movement of the display device 11 can be controlled at high speed and relatively accurately, and the small image mechanism can be used while changing the virtual image position at high speed. The accuracy can be displayed. The first drive unit 14a includes a guide for guiding the movement of the display device 11 in the optical axis AX direction in addition to the circuit associated with the piezo element 14e. The second drive unit 14b includes a guide for guiding the movement of the display device 11 in the ± X direction in addition to the circuit associated with the piezo element 14f. The third drive unit 14c includes a guide for guiding the movement of the display device 11 in the ± Z direction in addition to the circuit associated with the piezo element 14g. The display device 11 can be moved in the direction of the optical axis AX by the first drive unit 14a, and the display state can be maintained corresponding to the change in the projection distance, as will be described later. In addition, the display device 11 can be moved in the ± X direction by the second drive unit 14b, and the viewing angle can be expanded in the horizontal X direction or the eye box size in the X direction can be increased as compared with the case where the display device 11 is not moved. It can be enlarged. In addition, the display device 11 can be moved in the ± Z direction by the third driving unit 14c. Compared to the case where the display device 11 is not moved, the viewing angle is expanded in the vertical Z direction, or the eyebox size in the Z direction is increased. It can be enlarged.
 図2に戻って、本体光学系13は、表示デバイス11に形成された画像を拡大した中間像TIを形成する第1投影光学系である結像光学系15と、中間像TIを虚像に変換する第2投影光学系である虚像形成光学系17と、投影用の両光学系15,17間に配置される拡散部16とを備える。 Returning to FIG. 2, the main body optical system 13 converts the intermediate image TI into a virtual image, and the imaging optical system 15 that is a first projection optical system that forms an intermediate image TI obtained by enlarging the image formed on the display device 11. A virtual image forming optical system 17 as a second projection optical system, and a diffusing unit 16 disposed between both optical systems 15 and 17 for projection.
 第1投影光学系である結像光学系15は、特にレンズや可動機構を有していないが、合焦位置変更部を有することも可能である。ここで、合焦位置変更部は、表示光学系30による投影距離の変化に合わせて動作する部分であり、表示制御部18の制御下で、例えば表示デバイス11の駆動だけでは中間スクリーン19の駆動範囲まで動作させることができず、そのままではフォーカスボケが生じてしまう場合等に、フォーカス駆動部15cに駆動されてフォーカスボケ等を抑える機能を有する。 The imaging optical system 15 which is the first projection optical system does not particularly have a lens or a movable mechanism, but can also have a focusing position changing unit. Here, the in-focus position changing unit is a part that operates in accordance with a change in the projection distance by the display optical system 30. Under the control of the display control unit 18, for example, only the display device 11 is driven to drive the intermediate screen 19. When the focus blur cannot occur if it cannot be operated to the range, the focus drive unit 15c is driven to suppress the focus blur and the like.
 拡散部16は、結像光学系(第1投影光学系)15による投影位置又は結像位置(つまり中間像の結像予定位置又はその近傍)に配置され、回転体16aと中空枠体16bとを有し、スクリーン駆動部である回転駆動部64に駆動されて例えば一定速度で基準軸SXの周りに回転する。 The diffusing unit 16 is disposed at a projection position or an imaging position by the imaging optical system (first projection optical system) 15 (that is, at or near the imaging position of the intermediate image), and the rotator 16a, the hollow frame 16b, and the like. And is driven by a rotation driving unit 64, which is a screen driving unit, and rotates around the reference axis SX at a constant speed, for example.
 図4Aは、拡散部16を説明する正面図であり、図4Bは、拡散部16を説明する側方断面図である。拡散部16は、全体として円板に近い輪郭を有する螺旋状の回転体16aと、回転体16aを収納する円筒状の中空枠体16bとを有する。 FIG. 4A is a front view illustrating the diffusing portion 16, and FIG. 4B is a side cross-sectional view illustrating the diffusing portion 16. The diffusing unit 16 includes a spiral rotating body 16a having an outline close to a disk as a whole, and a cylindrical hollow frame body 16b that houses the rotating body 16a.
 回転体16aは、中央部16cと外周光学部16pとを有する。回転体16aの外周光学部16pに形成された一方の表面16fは、平滑面又は光学面に形成されており、表面16f上には、全域に亘って中間スクリーン19が形成されている。回転体16aの表面16fは、立体形状部116として機能する。中間スクリーン19は、配光角を所望の角度に制御した拡散板であり、拡散度(拡散分布の半値強度の拡散角)が例えば20°以上である。中間スクリーン19は、回転体16aに貼り付けられるシートとできるが、回転体16aの表面に形成された微細な凹凸パターンであってもよい。さらに、中間スクリーン19は、回転体16aの内部に埋め込むように形成されたものであってもよい。中間スクリーン19は、入射した表示光DLを拡散させることによって中間像TIを形成する(図2参照)。中間像TIの位置に拡散作用を有する中間スクリーン19を設けることにより、中間スクリーン19に形成された像を拡大投影することができ、視野角とアイボックスEBとを大きく確保することができる。回転体16aの外周光学部16pに形成された他方の表面16sは、平滑面又は光学面に形成されている。回転体16aは、光透過性を有する螺旋状の部材であり、一対の表面16f,16sは、基準軸SXを螺旋軸とする螺旋面となっている。結果的に、一方の表面16f上に形成された中間スクリーン19も連続的な螺旋面に沿って形成されたものとなっている。回転体16aは、基準軸SX又は光軸AX方向に関して略等しい厚みtを有する。中間スクリーン19は、螺旋の一周期に対応する範囲に形成されている。つまり、中間スクリーン19は、螺旋の1ピッチ分の範囲に形成されている。この結果、拡散部16の周に沿った一箇所に段差部16jが形成されている。段差部16jは、螺旋端間の段差を繋ぐとともに、拡散部16を回転させる基準軸SXを含む平面に対して傾斜した接続面16kを有する。 The rotating body 16a has a central portion 16c and an outer peripheral optical portion 16p. One surface 16f formed on the outer peripheral optical part 16p of the rotating body 16a is formed as a smooth surface or an optical surface, and the intermediate screen 19 is formed over the entire surface on the surface 16f. The surface 16f of the rotating body 16a functions as the three-dimensional shape portion 116. The intermediate screen 19 is a diffusion plate whose light distribution angle is controlled to a desired angle, and has a diffusion degree (a diffusion angle of a half-value intensity of the diffusion distribution) of, for example, 20 ° or more. The intermediate screen 19 can be a sheet attached to the rotating body 16a, but may be a fine uneven pattern formed on the surface of the rotating body 16a. Further, the intermediate screen 19 may be formed so as to be embedded in the rotating body 16a. The intermediate screen 19 forms an intermediate image TI by diffusing the incident display light DL (see FIG. 2). By providing the intermediate screen 19 having a diffusing action at the position of the intermediate image TI, the image formed on the intermediate screen 19 can be enlarged and projected, and a large viewing angle and eye box EB can be secured. The other surface 16s formed on the outer peripheral optical part 16p of the rotating body 16a is formed on a smooth surface or an optical surface. The rotating body 16a is a spiral member having optical transparency, and the pair of surfaces 16f and 16s are spiral surfaces having the reference axis SX as a spiral axis. As a result, the intermediate screen 19 formed on one surface 16f is also formed along a continuous spiral surface. The rotating body 16a has substantially the same thickness t with respect to the direction of the reference axis SX or the optical axis AX. The intermediate screen 19 is formed in a range corresponding to one period of the spiral. That is, the intermediate screen 19 is formed in a range corresponding to one pitch of the spiral. As a result, a stepped portion 16j is formed at one place along the periphery of the diffusing portion 16. The step portion 16j has a connection surface 16k that connects the step between the spiral ends and is inclined with respect to a plane including the reference axis SX that rotates the diffusion portion 16.
 回転体16aにおいて、周方向に沿った一箇所は、本体光学系13の光軸AXが通る機能領域FAとなっており、機能領域FAにおける中間スクリーン19の部分によって中間像TIが形成される。この機能領域FAは、回転体16aの回転に伴って回転体16a上において一定速度で移動する。つまり、回転体16aを回転させつつその一部である機能領域FAに表示光(映像光)DLを入射させることで、機能領域FA又は中間像TIの位置が光軸AXに沿って往復移動する(表示デバイス11の表示が動作していなければ、必ずしも表示としての中間像は形成されないが、中間像が形成されるであろう位置も中間像の位置と呼ぶ)。図示の例では、中間スクリーン19が螺旋の一周期に対応する範囲に形成されているので、回転体16aの1回転で中間スクリーン19の機能領域FA又は中間像TIは、光軸AX方向に段差に相当する距離だけ1往復することになる。 In the rotating body 16a, one place along the circumferential direction is a functional area FA through which the optical axis AX of the main body optical system 13 passes, and an intermediate image TI is formed by a portion of the intermediate screen 19 in the functional area FA. This functional area FA moves at a constant speed on the rotating body 16a as the rotating body 16a rotates. That is, the display light (video light) DL is incident on the functional area FA which is a part of the rotating body 16a while rotating, so that the position of the functional area FA or the intermediate image TI reciprocates along the optical axis AX. (If the display of the display device 11 is not operating, an intermediate image as a display is not necessarily formed, but the position where the intermediate image will be formed is also called the position of the intermediate image). In the illustrated example, since the intermediate screen 19 is formed in a range corresponding to one cycle of the spiral, the functional area FA or the intermediate image TI of the intermediate screen 19 is stepped in the optical axis AX direction by one rotation of the rotating body 16a. It makes one round trip for a distance corresponding to.
 なお、第1駆動部14aは、回転体16aの回転位置に応じて同期動作しており、中間スクリーン19の機能領域FAの位置に応じて表示デバイス11を光軸AX方向又はY方向に移動させる。ここで、デバイス駆動部を構成する第1駆動部14aによる表示デバイス11の光軸AX方向に関する駆動と、中間スクリーン19の光軸AX方向に関する駆動とは同期したものとなっている。また、表示デバイス11と中間スクリーン19とを駆動している間、表示デバイス11と中間スクリーン19との位置関係が光学的に共役となるように保たれている。これにより、投影距離に関わらず虚像のぼけを生じさせないで駆動することができる。つまり、第1駆動部14aによって中間像TIのフォーカシングが行われ、中間スクリーン19の位置によって中間像TIにピントぼけが殆ど生じないようにしている。デバイス駆動部14による表示デバイス11の光軸AX方向に関する駆動範囲は、表示光学系30において中間像TIの移動も考慮した焦点深度の範囲内である。この場合、例えば中間スクリーン19の駆動量を小さくしながら投影距離に関わらず虚像のぼけが生じないで虚像投影距離を変えた表示が可能となる。第1駆動部14aを設けない場合、中間スクリーン19の位置によってピントぼけが生じないように、結像光学系(第1投影光学系)15が機能領域FAの移動範囲以上の所定の焦点深度を有するものとするか、又は結像光学系15が合焦機能を持つものとする。 The first drive unit 14a operates in synchronization with the rotational position of the rotating body 16a, and moves the display device 11 in the optical axis AX direction or the Y direction according to the position of the functional area FA of the intermediate screen 19. . Here, the driving of the display device 11 in the optical axis AX direction by the first driving unit 14a constituting the device driving unit and the driving of the intermediate screen 19 in the optical axis AX direction are synchronized. Further, while the display device 11 and the intermediate screen 19 are driven, the positional relationship between the display device 11 and the intermediate screen 19 is kept optically conjugate. Thereby, it is possible to drive without causing a blur of the virtual image regardless of the projection distance. That is, focusing of the intermediate image TI is performed by the first drive unit 14a, and the intermediate image TI is hardly defocused depending on the position of the intermediate screen 19. The driving range of the display device 11 in the optical axis AX direction by the device driving unit 14 is within the range of the depth of focus in consideration of the movement of the intermediate image TI in the display optical system 30. In this case, for example, it is possible to display with the virtual image projection distance changed without reducing the virtual image blur regardless of the projection distance while reducing the driving amount of the intermediate screen 19. When the first drive unit 14a is not provided, the imaging optical system (first projection optical system) 15 has a predetermined depth of focus that is greater than or equal to the moving range of the functional area FA so as not to cause defocusing depending on the position of the intermediate screen 19. It is assumed that the imaging optical system 15 has a focusing function.
 中空枠体16bは、円柱状の外形輪郭を有し、側面部16eと一対の端面部16g,16hとで構成される。側面部16eと一対の端面部16g,16hとは、光透過性を有する同一の材料で形成されている。ただし、側面部16eは、光透過性を有していなくてもよい。一方の端面部16gの主面63a,63bは、互いに平行な平滑面又は光学面となっており、他方の端面部16hの主面64a,64bも、互いに平行な平滑面又は光学面となっている。ここで、主面63a,63b又は主面64a,64bは必ずしも平行な平面でなくてもよく、少なくとも機能領域FAに相当する範囲を自由曲面形状や非球面形状とすれば、例えば性能確保が難しい高倍率の光学系においても、光学系に要求される歪みや像面性等の像性能を確保することが可能となるので、必要に応じて望ましい面形状を選択すればよい。中空枠体16b中の回転体16aは、一対の中心軸部65を介して中空枠体16bに固定されており、中空枠体16bと回転体16aとは基準軸SXの周りに一体的に回転する。このように、中間スクリーン19を設けた回転体16aを中空枠体16b中に配置することで、回転体16aに塵等が付着することを抑制でき、回転体16aの回転に伴う音の発生を抑制することができ、回転体16aの高速での回転を安定化させることが容易になる。なお、回転体16aは、その外周部分において中空枠体16bに固定してもよい。この場合、拡散部16の厚みを薄くすることが容易になる。 The hollow frame 16b has a cylindrical outer contour, and includes a side surface portion 16e and a pair of end surface portions 16g and 16h. The side surface portion 16e and the pair of end surface portions 16g and 16h are formed of the same material having optical transparency. However, the side part 16e does not need to have a light transmittance. The main surfaces 63a and 63b of one end surface portion 16g are smooth surfaces or optical surfaces parallel to each other, and the main surfaces 64a and 64b of the other end surface portion 16h are also smooth surfaces or optical surfaces parallel to each other. Yes. Here, the main surfaces 63a and 63b or the main surfaces 64a and 64b do not necessarily have to be parallel planes. If at least a range corresponding to the functional area FA is a free-form surface shape or an aspheric shape, for example, it is difficult to ensure performance. Even in a high-magnification optical system, it is possible to ensure image performance such as distortion and image plane properties required for the optical system, and therefore a desired surface shape may be selected as necessary. The rotating body 16a in the hollow frame body 16b is fixed to the hollow frame body 16b via a pair of central shaft portions 65, and the hollow frame body 16b and the rotating body 16a rotate integrally around the reference axis SX. To do. Thus, by arranging the rotating body 16a provided with the intermediate screen 19 in the hollow frame body 16b, it is possible to suppress dust and the like from adhering to the rotating body 16a, and to generate sound accompanying the rotation of the rotating body 16a. Therefore, it is easy to stabilize the rotation of the rotating body 16a at a high speed. In addition, you may fix the rotary body 16a to the hollow frame 16b in the outer peripheral part. In this case, it becomes easy to reduce the thickness of the diffusion part 16.
 図5A及び5Bを参照して、回転体16a(又は立体形状部116)の基準軸SXの設定について説明する。回転体16aの基準軸SXは、本体光学系13の光軸AXに対して非平行な状態で僅かに傾いて配置されている。ここで、回転体16a上の中間スクリーン19は、その局所的な機能領域FAが本体光学系13の光軸AX方向に対して略直交するように配置される。つまり、図5Aに示すように、回転体16aを光軸AXから機能領域FAのある横方向に離れた視点で観察した場合、基準軸SXは、光軸AXに対して所定角度αだけ傾斜した状態となっており、図5Bに示すように、回転体16aを基準として図5Aの場合と直交する方向に離れた視点で観察した場合、基準軸SXは、光軸AXに対して所定間隔dだけ離れた状態となっている。なお、図5Aにおいて一点鎖線で示す第1位置PO1は、機能領域FA又は中間像TIが最も光路上流側に位置した場合を示し、同様に一点鎖線で示す第2位置PO2は、機能領域FA又は中間像TIが最も光路下流側に位置した場合を示している。これらの位置PO1,PO2間の距離Dは、機能領域FA又は中間像TIの光軸AX方向の変位量に相当するものである。 The setting of the reference axis SX of the rotating body 16a (or the three-dimensional shape portion 116) will be described with reference to FIGS. 5A and 5B. The reference axis SX of the rotator 16a is disposed slightly tilted in a non-parallel state with respect to the optical axis AX of the main body optical system 13. Here, the intermediate screen 19 on the rotator 16 a is arranged such that the local functional area FA is substantially orthogonal to the optical axis AX direction of the main body optical system 13. That is, as shown in FIG. 5A, when the rotator 16a is observed from a viewpoint away from the optical axis AX in the lateral direction with the functional area FA, the reference axis SX is inclined by a predetermined angle α with respect to the optical axis AX. As shown in FIG. 5B, when viewed from a viewpoint away from the rotating body 16a in a direction orthogonal to the case of FIG. 5A, the reference axis SX is set at a predetermined interval d with respect to the optical axis AX. It is in a state that is only separated. In FIG. 5A, the first position PO1 indicated by the alternate long and short dash line indicates a case where the functional area FA or the intermediate image TI is located on the most upstream side of the optical path. Similarly, the second position PO2 indicated by the alternate long and short dashed line indicates the functional area FA or The case where the intermediate image TI is located on the most downstream side of the optical path is shown. The distance D between these positions PO1 and PO2 corresponds to the displacement amount of the functional area FA or the intermediate image TI in the optical axis AX direction.
 図2に戻って、スクリーン駆動部である回転駆動部64によって拡散部16を一定速度で基準軸SXの周りに回転させることで、回転体16aの中間スクリーン19(又は立体形状部116)が光軸AXと交差する位置(つまり機能領域FA)も光軸AX方向に移動する。つまり、図5Cに示すように、回転体16aの回転に伴って、中間スクリーン19上の機能領域FAは、例えば等角度でずれた位置に設定された隣接する機能領域FA’に順次シフトし、光軸AX方向に移動する。このような機能領域FAの光軸AX方向への移動により、中間像TIの位置も光軸AX方向に移動させることができる。詳細は後述するが、例えば中間像TIの位置を表示デバイス(表示素子)11側に移動させることにより、投影像IMまでの投影距離又は虚像距離を増加させることができる。また、中間像TIの位置を虚像形成光学系17側に移動させることにより、投影像IMまでの投影距離又は虚像距離を減少させることができる。 Returning to FIG. 2, the intermediate screen 19 (or the three-dimensional shape portion 116) of the rotating body 16 a is made light by rotating the diffusion portion 16 around the reference axis SX at a constant speed by the rotation driving portion 64 that is a screen driving portion. A position intersecting the axis AX (that is, the functional area FA) also moves in the direction of the optical axis AX. That is, as shown in FIG. 5C, with the rotation of the rotating body 16a, the functional area FA on the intermediate screen 19 is sequentially shifted to the adjacent functional area FA ′ set at a position shifted at an equal angle, for example. Move in the direction of the optical axis AX. By moving the functional area FA in the optical axis AX direction, the position of the intermediate image TI can also be moved in the optical axis AX direction. Although details will be described later, for example, by moving the position of the intermediate image TI to the display device (display element) 11 side, the projection distance or the virtual image distance to the projection image IM can be increased. Further, by moving the position of the intermediate image TI toward the virtual image forming optical system 17, the projection distance or virtual image distance to the projection image IM can be reduced.
 虚像形成光学系(第2投影光学系)17は、結像光学系(第1投影光学系)15によって形成された中間像TIを表示スクリーン20と協働して拡大し、観察者であるドライバーVDの前方に虚像としての投影像IMを形成する。虚像形成光学系17は、少なくとも1枚のミラーで構成されるが、図示の例では2枚のミラー17a,17bを含む。虚像形成光学系(第2投影光学系)17は、回転体16aの機能領域FAにおける中間スクリーン19の湾曲(つまり中間像TIの像面湾曲)を補正するような光学特性を有するものとできる。 The virtual image forming optical system (second projection optical system) 17 enlarges the intermediate image TI formed by the imaging optical system (first projection optical system) 15 in cooperation with the display screen 20, and is a driver who is an observer. A projection image IM as a virtual image is formed in front of VD. The virtual image forming optical system 17 includes at least one mirror, but in the illustrated example, includes two mirrors 17a and 17b. The virtual image forming optical system (second projection optical system) 17 can have an optical characteristic that corrects the curvature of the intermediate screen 19 in the functional area FA of the rotating body 16a (that is, the curvature of field of the intermediate image TI).
 図2等に示す画像表示装置100において、表示制御部18の制御下で回転駆動部64を動作させることで、拡散部16が基準軸SXの周りに回転して機能領域FAに対応する中間像TIの位置が光軸AX方向に繰り返し周期的に移動し、虚像形成光学系17によって表示スクリーン20の背後に形成される虚像としての投影像IMと観察者であるドライバーVDとの距離を大きく、又は小さくすることができる。このように、投影される投影像IMの位置を前後に変化させるとともに、表示制御部18の制御下で、表示デバイス11を中間像TIの配置に同期させて光軸AX方向に同期して移動させつつ、表示デバイス(表示素子)11による表示内容をその位置に応じたものとすることで、投影像IMまでの投影距離又は虚像距離を変化させつつ投影像IMの表示内容を変化させることになり、一連の投影像としての投影像IMを3次元的なものとすることができる。なお、機能領域FAが光軸AX方向に移動しても、機能領域FAにおける中間スクリーン19の湾曲状態は維持されるので、投影像IMの位置に関わらず虚像形成光学系(第2投影光学系)17による補正の効果は維持される。 In the image display apparatus 100 shown in FIG. 2 and the like, by operating the rotation driving unit 64 under the control of the display control unit 18, the diffusion unit 16 rotates around the reference axis SX and corresponds to the functional area FA. The position of TI repeatedly moves periodically in the direction of the optical axis AX, and the distance between the projected image IM as a virtual image formed behind the display screen 20 by the virtual image forming optical system 17 and the driver VD as an observer is increased. Or it can be made smaller. In this manner, the position of the projected image IM to be projected is changed back and forth, and the display device 11 is moved in synchronization with the arrangement of the intermediate image TI in synchronization with the optical axis AX direction under the control of the display control unit 18. The display content of the projection image IM is changed while changing the projection distance to the projection image IM or the virtual image distance by making the display content on the display device (display element) 11 according to the position. Thus, the projection image IM as a series of projection images can be made three-dimensional. Even if the functional area FA moves in the direction of the optical axis AX, the curved state of the intermediate screen 19 in the functional area FA is maintained, so the virtual image forming optical system (second projection optical system) regardless of the position of the projection image IM. ) The effect of correction by 17 is maintained.
 拡散部16若しくは回転体16aの回転速度又は機能領域FAの移動速度は、後に詳述するように虚像としての投影像IMが奥行き方向に関して複数個所又は複数投影距離に同時に表示されているかのように見せることができる速度であることが望ましい。ここで、各距離ゾーン(後述するサブゾーン)の投影像IMを30fps以上、望ましくは60fps以上で切替えれば、表示される複数の画像が視覚的には連続的な画像として認識される。例えば、拡散部16の動作に伴って投影像IMが近距離から遠距離までに5段階で順次投影されるものとして、表示デバイス11に200fpsで表示を行わせると、各距離(例えば近距離)の投影像IMは、40fpsで表示の切替えが行われることになり、各距離ゾーンの投影像IMが並列的に行われかつ切替えが略連続的なものとして認識される。 The rotational speed of the diffusing unit 16 or the rotating body 16a or the moving speed of the functional area FA is as if the projection images IM as virtual images are simultaneously displayed at a plurality of locations or a plurality of projection distances in the depth direction as will be described in detail later. It is desirable that the speed be able to show. Here, if the projection image IM of each distance zone (subzone described later) is switched at 30 fps or more, preferably 60 fps or more, a plurality of displayed images are visually recognized as continuous images. For example, assuming that the projection image IM is sequentially projected in five steps from a short distance to a long distance in accordance with the operation of the diffusing unit 16, when the display device 11 performs display at 200 fps, each distance (for example, short distance) The display of the projection image IM is switched at 40 fps, and the projection images IM of the respective distance zones are performed in parallel and the switching is recognized as being substantially continuous.
 図6は、拡散部16の回転に伴う中間像TIの位置の変化を具体的に例示する図である。拡散部16の機能領域FAは、光軸AX方向に沿って鋸歯状の経時パターンPAで繰り返し周期的に移動しており、中間像TIの位置も、表示デバイス(表示素子)11が連続表示を行っている場合、図示のように光軸AX方向に沿って鋸歯状の経時パターンPAで繰り返し周期的に移動する。つまり、中間像TIの位置は、段差部16jに対応する箇所で不連続的ながら、拡散部16の回転に伴って連続的かつ周期的に変化する。この結果、図示を省略するが、投影像(虚像)IMの位置も、スケールは異なるが、中間像TIの位置と同様に光軸AX方向に沿って繰り返し周期的に移動し、投影距離を連続的に変化させることができる。ここで、表示デバイス11は、連続表示を行うものでなく、表示内容を切り替りえつつ間欠的な表示を行うものであるから、中間像TIの表示位置も鋸歯状の経時パターンPA上における離散的な位置となる。経時パターンPAにおいて、最も近距離側又は虚像形成光学系17寄りの表示位置Pnと、最も遠距離側又は反虚像形成光学系17寄りの表示位置Pfとは、マージンを確保して、経時パターンPAの両端から所定量だけ離れた位置に設定される。また、経時パターンPAの途切れ目PDは、拡散部16の回転体16aに設けた段差部16jに対応する。 FIG. 6 is a diagram specifically illustrating a change in the position of the intermediate image TI accompanying the rotation of the diffusion unit 16. The functional area FA of the diffusing unit 16 is periodically moved in a sawtooth time-dependent pattern PA along the optical axis AX direction, and the display device (display element) 11 continuously displays the position of the intermediate image TI. In the case of performing, as shown in the figure, it periodically and periodically moves in a sawtooth shaped temporal pattern PA along the optical axis AX direction. That is, the position of the intermediate image TI changes continuously and periodically with the rotation of the diffusing unit 16 while being discontinuous at the portion corresponding to the stepped portion 16j. As a result, although the illustration is omitted, the position of the projected image (virtual image) IM is also different in scale, but like the position of the intermediate image TI, it repeatedly moves periodically along the optical axis AX direction, and the projection distance is continuous. Can be changed. Here, since the display device 11 does not perform continuous display but performs intermittent display while switching display contents, the display position of the intermediate image TI is also discrete on the sawtooth temporal pattern PA. It becomes a position. In the temporal pattern PA, the display position Pn closest to the near distance side or the virtual image forming optical system 17 and the display position Pf closest to the far distance side or the anti-virtual image forming optical system 17 ensure a margin, and the temporal pattern PA It is set at a position away from the both ends by a predetermined amount. Further, the break PD of the temporal pattern PA corresponds to the stepped portion 16j provided on the rotating body 16a of the diffusing portion 16.
 ここで、ある距離ゾーンの画像について表示を行う場合、図6に示すように表示している時間内で中間像TIの位置が変化することで、表示している奥行き方向の距離が変化する。この際、そのように奥行き方向の距離が変化する表示ゾーンについて観察者(ドライバーVD)に見える表示距離は、その表示時間内で変化する奥行き方向の距離の略平均位置となる。 Here, when displaying an image in a certain distance zone, the displayed distance in the depth direction changes by changing the position of the intermediate image TI within the displayed time as shown in FIG. At this time, the display distance that can be seen by the observer (driver VD) in such a display zone in which the distance in the depth direction changes is approximately the average position of the distance in the depth direction that changes within the display time.
 図7は、中間像TIの位置と投影距離との関係又は中間像TIの位置と表示ゾーンとの関係を説明する図である。一点鎖線で示す特性C1に従って、中間像TIを光軸AX方向に等しい速度で移動させた場合において、各距離ゾーンの切替時間の刻みδを一定値とすれば、投影距離の刻み幅は、近距離では短く、遠距離では長くなる。中間像TIの移動の刻み幅Δは、表示する距離ゾーンの切替時間に相当する均等なものとなっている。 FIG. 7 is a diagram for explaining the relationship between the position of the intermediate image TI and the projection distance or the relationship between the position of the intermediate image TI and the display zone. When the intermediate image TI is moved at the same speed in the direction of the optical axis AX according to the characteristic C1 indicated by the one-dot chain line, if the step δ of the switching time of each distance zone is set to a constant value, the step width of the projection distance is Short at distance and long at long distance. The step size Δ of the movement of the intermediate image TI is equal to the switching time of the distance zone to be displayed.
 図6に示す中間像TIの位置の両端間を移動する時間を1周期と考えた場合、奥行きを持つ表示の単位を表示ゾーンとして、その1周期の時間が各表示ゾーンの表示時間と表示ゾーン数nとの積よりも短い時間であれば、表示ゾーンは複数の距離ゾーンに亘るものとなり、少なくとも隣り合う表示ゾーンで投影距離範囲に重なりが生じる(図7の表示ゾーンDZ1~DZn参照)。このように投影距離に関して重ねた表示を行うことで、同一の投影像(虚像)IMを奥行方向に広がりを持たせて表示することができ、重なりを生じない表示に比較して各表示ゾーンの表示時間を長くすることが可能となり、投影像(虚像)IMの輝度が向上する。 When the time for moving between both ends of the position of the intermediate image TI shown in FIG. 6 is considered as one cycle, the display unit having a depth is set as a display zone, and the time of the one cycle is displayed in each display zone. If the time is shorter than the product of the number n, the display zone extends over a plurality of distance zones, and at least the adjacent display zones overlap in the projection distance range (see display zones DZ1 to DZn in FIG. 7). By performing the overlapping display with respect to the projection distance in this way, it is possible to display the same projected image (virtual image) IM with a spread in the depth direction, and in each display zone as compared with a display that does not overlap. The display time can be extended, and the brightness of the projected image (virtual image) IM is improved.
 図7に例示するように、特性C1に沿ってn個の表示ゾーンを設定することができる。ここで、説明の便宜上、最も近距離の表示ゾーンを第1表示ゾーンDZ1と呼び、最も遠距離の表示ゾーンを第n表示ゾーンDZn(nは自然数)と呼ぶ。複数の表示ゾーンDZ1~DZnは、近距離から遠距離になるに従って表示する距離幅が広がっている。複数の表示ゾーンDZ1~DZnのうち隣り合う表示ゾーンは、投影距離が部分的に重複しており、各表示ゾーンは、本来投影距離を異ならせるべきものを含む。すなわち、第k表示ゾーンDZk(kはnより小さい自然数)と第k+1表示ゾーンDZk+1とは、投影距離が部分的に重複し、例えば第2表示ゾーンDZ2と第3表示ゾーンDZ3とは、投影距離が部分的に重複している。第k表示ゾーンDZkは、そこに表示すべき表示対象の投影距離の本来の表示像に対して、その前、後、又は前後の双方で設定される表示ゾーンで表示する像も合せて表示した複合的な投影像となっている。図示の例では、第k表示ゾーンDZkを表示している間の全体又はある一定時間内では4区間分の距離ゾーン又はサブゾーンLZk-2~LZk+1に相当するそれぞれの像が重なった状態の表示がされている。この場合、それぞれの表示ゾーンDZ1~DZnで表示される像の表示時間は、表示時間の刻みδのピッチで隣り合う表示ゾーンDZ1~DZn間でズレがあるため、その分表示されている間の近側と遠側との両端の距離が変動してその平均距離も変動する。人の目又は脳は、その表示ゾーンDZ1~DZnの平均距離で表示像を捉えるので、視覚的に同時に表示を行っている場合でも、それぞれの表示ゾーンDZ1~DZnの表示距離を異なる位置として表示している状態にできる。 As illustrated in FIG. 7, n display zones can be set along the characteristic C1. Here, for convenience of explanation, the shortest display zone is called a first display zone DZ1, and the farthest display zone is called an nth display zone DZn (n is a natural number). In the plurality of display zones DZ1 to DZn, the distance width of display increases as the distance increases from the short distance. Adjacent display zones among the plurality of display zones DZ1 to DZn have overlapping projection distances, and each display zone includes ones that should originally have different projection distances. That is, the projection distances of the kth display zone DZk (k is a natural number smaller than n) and the (k + 1) th display zone DZk + 1 partially overlap. For example, the second display zone DZ2 and the third display zone DZ3 are projected distances. Are partially overlapping. The k-th display zone DZk also displays an image displayed in the display zone set before, after, or before and after the original display image of the projection distance of the display target to be displayed there. It is a composite projection image. In the example shown in the figure, a display in a state where the images corresponding to the distance zones or sub-zones LZk−2 to LZk + 1 for the four sections in the whole or a certain period of time while the kth display zone DZk is displayed is overlapped. Has been. In this case, the display time of the image displayed in each of the display zones DZ1 to DZn is shifted between the adjacent display zones DZ1 to DZn at the pitch δ of the display time. The distance between both ends of the near side and the far side varies, and the average distance also varies. Since the human eye or brain captures the display image at the average distance of the display zones DZ1 to DZn, even when visual display is simultaneously performed, the display distances of the display zones DZ1 to DZn are displayed as different positions. Can be in a state of being.
 なお、第k表示ゾーンDZkを重なり合う距離ゾーンが切り替わるタイミングで分割して、基準サブゾーンLZkを含む一連のサブゾーンLZk-2~LZk+1として考えた場合、表示デバイス(表示素子)11に適宜表示動作を行わせることにより同一の投影像(虚像)IMをそれぞれのサブゾーンで表示させていることになる。つまり、距離が段階的に変化する一連の複数のサブゾーンLZk-2~LZk+1の組合せによって表示ゾーンDZkが構成される。見方を変えれば、着目する1つの基準サブゾーンLZkに対応する距離ゾーンに投影したい局所的な像は、4つの表示ゾーンDZk-2~DZk+1に重複して繰り返し表示されるので、各距離ゾーンに投影される局所的な像は、輝度を一様に向上させたものとなる。この際、投影距離の変化を考慮して、隣り合う表示ゾーンDZk-2~DZk+1に共通する距離ゾーン(サブゾーンLZk-2~LZk+1に対応)に投影される共通の局所的な投影像(虚像)IMを位置及び角度サイズが一致するように重ねて表示させる。これにより、投影距離が変化する投影像(虚像)IMをズレや滲みがない状態で表示することができる。また、この時の平均的な表示距離が、基準サブゾーンLZkに相当する距離となる。なお、図7では、表示の便宜上、各表示ゾーンDZ1~DZnが横方向に延びるように示されているが、縦軸を中間像TIの位置とした場合、各表示ゾーンDZ1~DZnは、特性C1に沿って延びるものとなる。 In addition, when the kth display zone DZk is divided at the timing when the overlapping distance zones are switched and considered as a series of subzones LZk-2 to LZk + 1 including the reference subzone LZk, a display operation is appropriately performed on the display device (display element) 11. By doing so, the same projected image (virtual image) IM is displayed in each subzone. That is, the display zone DZk is configured by a combination of a series of a plurality of subzones LZk−2 to LZk + 1 whose distance changes stepwise. In other words, the local image to be projected on the distance zone corresponding to the one reference subzone LZk of interest is repeatedly displayed on the four display zones DZk-2 to DZk + 1. The local image to be obtained has a uniformly improved luminance. At this time, in consideration of changes in the projection distance, a common local projection image (virtual image) projected on a distance zone common to adjacent display zones DZk-2 to DZk + 1 (corresponding to subzones LZk-2 to LZk + 1). IMs are displayed in a superimposed manner so that the position and angle size match. Thereby, the projection image (virtual image) IM in which the projection distance changes can be displayed in a state where there is no deviation or blurring. In addition, the average display distance at this time is a distance corresponding to the reference subzone LZk. In FIG. 7, for convenience of display, the display zones DZ1 to DZn are shown to extend in the horizontal direction. However, when the vertical axis is the position of the intermediate image TI, the display zones DZ1 to DZn have characteristics. It extends along C1.
 第1表示ゾーンDZ1~第n表示ゾーンDZnでの表示時間は、全て等しくなっている。複数の表示ゾーンを構成する各表示ゾーンDZ1~DZnでの表示時間を等しくすることで、各表示ゾーンDZ1~DZnによる複合的な投影像IMの表示輝度を一致させることができ、観察者であるドライバーVDが意図せず特定距離の像に偏って着目する傾向が生じることを防止できる。なお、用途によっては、各表示ゾーンDZ1~DZnでの表示輝度に差を持たせることができる。例えば遠距離投影に対応する表示ゾーンについては、表示輝度を上げるといった処理が可能である。 The display times in the first display zone DZ1 to the nth display zone DZn are all equal. By equalizing the display time in each of the display zones DZ1 to DZn constituting a plurality of display zones, the display brightness of the composite projection image IM by each of the display zones DZ1 to DZn can be matched, and it is an observer. It is possible to prevent the driver VD from unintentionally tending to focus on an image at a specific distance. Depending on the application, it is possible to provide a difference in display luminance in each of the display zones DZ1 to DZn. For example, for a display zone corresponding to long-distance projection, it is possible to increase the display brightness.
 画面内の特定の奥行き方向で異なる対象を表示する場合、距離の異なる表示対象が、奥行き方向以外の2次元平面内において重なる、又は略重なるような近い位置にあり、それらに対する表示間の干渉が発生してしまうことが考えられ、これを回避する必要がある。例えば表示ゾーンDZkの表示対象に対して別の表示距離DZk’に存在する表示対象が2次元平面内で近傍に位置していてそれぞれの対象に対する表示に干渉が生ずる場合には、干渉領域ではそれらを合成するような表示を行うことが考えられる。具体的には、一対の表示対象が重なる共通領域又は交わり領域では、一対の表示対象が半透過重畳表示されるような画像とし、一対の表示対象が重ならない差分領域又は独立領域では、各部分で標準的な表示を行えば足る。又は、色や大きさ(線の場合は太さも含む)、明るさ、及び明滅といった手法で違いを出した表示とする方法も考えられ、ドライバーVDに伝わるような工夫がされた各種表示方法を用いることができる。 When different objects are displayed in a specific depth direction on the screen, display objects with different distances are close to each other in a two-dimensional plane other than the depth direction, or overlap each other, and there is interference between the displays. It is thought that it will occur, and it is necessary to avoid this. For example, when a display target existing at a different display distance DZk ′ with respect to a display target in the display zone DZk is located in the vicinity in the two-dimensional plane and interference occurs in the display for each target, these are displayed in the interference region. It is conceivable to display such that Specifically, in a common area or intersection area where a pair of display objects overlap, a pair of display objects are images that are displayed in a semi-transparent superimposed manner, and in a difference area or an independent area where a pair of display objects do not overlap, The standard display is sufficient. Alternatively, there may be a method of making a difference display by a method such as color and size (including thickness in the case of a line), brightness, and blinking, and various display methods that are devised to be transmitted to the driver VD. Can be used.
 以上の説明は、ドライバーVDの視点がアイボックスEB(図1参照)内で移動しないことが前提となっているが、ドライバーVDの視点がアイボックスEB内で移動した場合、以上の動作と並行して、表示制御部18の制御下で第2及び第3駆動部14b,14cを動作させ、表示デバイス11をドライバーVDの視点に対応する位置に変位させることも可能である。具体的には、後述する装置でドライバーVDの視点位置を監視しており、ドライバーVDの視点位置がアイボックスEBの中央から横方向に動いて±X方向に変位した場合、第2駆動部14bを動作させて表示デバイス11の投影像(虚像)IMがドライバーVDの視点位置の正面に近づくように、表示デバイス11を基準位置から±X方向に適宜移動させる。同様に、ドライバーVDの視点位置がアイボックスEBの中央から縦方向に動いて±Z方向に変位した場合、第2駆動部14bを動作させて表示デバイス11の投影像(虚像)IMがドライバーVDの視点位置の正面に近づくように、表示デバイス11を基準位置から±Z方向に適宜移動させる。このような表示デバイス11の±X方向又は±Z方向の移動に伴ってドライバーVDから見た投影像(虚像)IMが移動しないように、表示デバイス11の表示内容は、表示デバイス11の移動に応じたシフト、倍率変更、ゆがみ補正等が与えられ、ドライバーVDから見た投影像(虚像)IMの整合性が維持される。表示デバイス11の表示内容を変更する画像処理は、例えば表示制御部18にて行われる。以上のように、ドライバーVDの視点位置に応じて、デバイス駆動部14を動作させることによって表示デバイス11を光軸AXに垂直な直交2方向に移動させることにより、見かけ上大型の表示デバイスを用いたことと等価とすることができ、視点位置に応じて表示デバイス11を移動させるため、小型の装置で視野角やアイボックスEBを広げることができる。 The above description is based on the premise that the viewpoint of the driver VD does not move in the eye box EB (see FIG. 1). However, when the viewpoint of the driver VD moves in the eye box EB, the above operation is performed in parallel. Then, the second and third drive units 14b and 14c can be operated under the control of the display control unit 18, and the display device 11 can be displaced to a position corresponding to the viewpoint of the driver VD. Specifically, the viewpoint position of the driver VD is monitored by an apparatus to be described later, and when the viewpoint position of the driver VD moves laterally from the center of the eye box EB and is displaced in the ± X direction, the second driving unit 14b. And the display device 11 is appropriately moved in the ± X direction from the reference position so that the projected image (virtual image) IM of the display device 11 approaches the front of the viewpoint position of the driver VD. Similarly, when the viewpoint position of the driver VD moves in the vertical direction from the center of the eye box EB and is displaced in the ± Z direction, the second drive unit 14b is operated, and the projected image (virtual image) IM of the display device 11 becomes the driver VD. The display device 11 is appropriately moved in the ± Z direction from the reference position so as to approach the front of the viewpoint position. The display content of the display device 11 is the movement of the display device 11 so that the projection image (virtual image) IM viewed from the driver VD does not move as the display device 11 moves in the ± X direction or ± Z direction. Corresponding shift, magnification change, distortion correction, and the like are given, and the consistency of the projection image (virtual image) IM viewed from the driver VD is maintained. Image processing for changing the display content of the display device 11 is performed by, for example, the display control unit 18. As described above, an apparently large display device is used by moving the display device 11 in two directions perpendicular to the optical axis AX by operating the device driving unit 14 according to the viewpoint position of the driver VD. Since the display device 11 is moved according to the viewpoint position, the viewing angle and the eye box EB can be expanded with a small device.
 図8は、ヘッドアップディスプレイ装置200の全体構造を説明する概念的ブロック図であり、ヘッドアップディスプレイ装置200は、その一部として画像表示装置100を含む。画像表示装置100は、図2に示す構造を有するものであり、ここでは説明を省略する。 FIG. 8 is a conceptual block diagram for explaining the overall structure of the head-up display device 200. The head-up display device 200 includes the image display device 100 as a part thereof. The image display device 100 has the structure shown in FIG. 2, and a description thereof is omitted here.
 ヘッドアップディスプレイ装置200は、画像表示装置100のほかに、運転者検出部71と、環境監視部72と、主制御部90とを備える。 The head-up display device 200 includes a driver detection unit 71, an environment monitoring unit 72, and a main control unit 90 in addition to the image display device 100.
 運転者検出部71は、ドライバーVDの存在やその視点位置を検出する視点検出部であり、運転席用カメラ71aと、運転席用画像処理部71bと、判断部71cとを備える。運転席用カメラ71aは、車体2内のダッシュボード4の運転席正面に設置されており(図1B参照)、ドライバーVDの頭部及びその周辺の画像を撮影する。運転席用画像処理部71bは、運転席用カメラ71aで撮影した画像に対して明るさ補正等の各種画像処理を行って判断部71cでの処理を容易にする。判断部71cは、運転席用画像処理部71bを経た運転席画像からオブジェクトの抽出又は切り出しを行うことによってドライバーVDの頭部や目を検出するとともに、運転席画像に付随する奥行情報から車体2内におけるドライバーVDの頭部の存否とともにドライバーVDの目の空間的な位置(結果的に視線の方向)を算出する。 The driver detection unit 71 is a viewpoint detection unit that detects the presence of the driver VD and its viewpoint position, and includes a driver seat camera 71a, a driver seat image processing unit 71b, and a determination unit 71c. The driver's seat camera 71a is installed in front of the driver's seat of the dashboard 4 in the vehicle body 2 (see FIG. 1B), and takes images of the head of the driver VD and its surroundings. The driver seat image processing unit 71b performs various types of image processing such as brightness correction on the image captured by the driver seat camera 71a to facilitate processing in the determination unit 71c. The determination unit 71c detects the head and eyes of the driver VD by extracting or cutting out an object from the driver seat image that has passed through the driver seat image processing unit 71b, and detects the vehicle body 2 from the depth information attached to the driver seat image. The spatial position of the eyes of the driver VD (resulting in the direction of the line of sight) is calculated along with the presence or absence of the head of the driver VD.
 環境監視部72は、検出領域内に存在するオブジェクトを検出するオブジェクト検出部であり、前方に近接して存在する移動体や人、具体的には自動車、自転車、歩行者等をオブジェクトとして識別し、オブジェクトの3次元的な位置情報を抽出する3次元計測器を有する。環境監視部(オブジェクト検出部)72は、3次元計測器として、外部用カメラ72aと、外部用画像処理部72bと、判断部72cとを備える。外部用カメラ72aは、可視又は赤外域において外界像の撮影を可能にする。外部用カメラ72aは、車体2内外の適所に設置されており、ドライバーVD又はフロントウインドウ8の前方の検出領域VF(後述する図9参照)を外部画像として撮影する。外部用画像処理部72bは、外部用カメラ72aで撮影した外部画像に対して明るさ補正等の各種画像処理を行って判断部72cでの処理を容易にする。判断部72cは、外部用画像処理部72bを経た外部画像からオブジェクト画像の抽出又は切り出しを行うことによって自動車、自転車、歩行者等のオブジェクト(具体的には、後述する図9中のオブジェクトOB1,OB2,OB3参照)の存否を検出するとともに、外部画像に付随する奥行情報から車体2前方におけるオブジェクトの空間的な位置を算出し3次元的な位置情報として記憶部に保管する。判断部72cの記憶部には、外部画像からオブジェクト画像の抽出を可能にするソフトウエアが保管されており、外部画像からオブジェクト画像を抽出する動作時には、記憶部から必要となるソフトウエアやデータが読み出される。判断部72cにより、例えば得られた画像内の各オブジェクト要素の形状、大きさ、色等から、オブジェクト要素に対応する要素が何かを検出することができる。その際の判断基準は、予め登録されている情報とのパターンマッチングを行ってマッチングの度合からオブジェクトが何かを検出する方法等がある。また、処理速度を高める観点で、画像から車線を検知し、その車線内にあるターゲット又はオブジェクト要素について、上記の形状、大きさ、色等からオブジェクトの検出を行うこともできる。 The environment monitoring unit 72 is an object detection unit that detects an object existing in the detection area, and identifies a moving body or person existing in the vicinity of the front, specifically, a car, a bicycle, a pedestrian, or the like as an object. And a three-dimensional measuring device for extracting three-dimensional position information of the object. The environment monitoring unit (object detection unit) 72 includes an external camera 72a, an external image processing unit 72b, and a determination unit 72c as a three-dimensional measuring instrument. The external camera 72a can capture an external image in the visible or infrared region. The external camera 72a is installed at appropriate positions inside and outside the vehicle body 2, and captures a driver VD or a detection area VF in front of the front window 8 (see FIG. 9 described later) as an external image. The external image processing unit 72b performs various types of image processing such as brightness correction on the external image captured by the external camera 72a to facilitate processing by the determination unit 72c. The determination unit 72c extracts or cuts out an object image from the external image that has passed through the external image processing unit 72b, thereby identifying an object such as an automobile, a bicycle, or a pedestrian (specifically, an object OB1, FIG. OB2 and OB3) is detected, and the spatial position of the object in front of the vehicle body 2 is calculated from the depth information attached to the external image and stored in the storage unit as three-dimensional position information. Software that enables extraction of an object image from an external image is stored in the storage unit of the determination unit 72c. When the object image is extracted from the external image, necessary software and data are stored from the storage unit. Read out. The determination unit 72c can detect what is an element corresponding to the object element from the shape, size, color, and the like of each object element in the obtained image. The criteria for determination include a method of detecting what an object is based on the degree of matching by performing pattern matching with information registered in advance. Further, from the viewpoint of increasing the processing speed, it is also possible to detect a lane from an image and detect an object from the shape, size, color, etc. of the target or object element in the lane.
 外部用カメラ72aは、図示を省略しているが、例えば複眼型の3次元カメラである。つまり、外部用カメラ72aは、結像用のレンズと、CMOS(Complementary Metal Oxide Semiconductor)その他の撮像素子とを一組とするカメラ素子をマトリックス状に配列したものであり、撮像素子用の駆動回路をそれぞれ有する。外部用カメラ72aを構成する複数のカメラ素子は、例えば相対的な視差を検出できるようになっており、カメラ素子から得た画像の状態(フォーカス状態、オブジェクトの位置等)を解析することで、検出領域に対応する画像内の各領域又はオブジェクトまでの目標距離を判定できる。 The external camera 72a is a compound eye type three-dimensional camera, for example, although not shown. That is, the external camera 72a is a camera element in which an imaging lens and a CMOS (Complementary Metal Oxide そ の 他 Semiconductor) or other imaging device are arranged in a matrix, and a driving circuit for the imaging device. Respectively. The plurality of camera elements constituting the external camera 72a can detect relative parallax, for example, and by analyzing the state of the image (focus state, object position, etc.) obtained from the camera element, The target distance to each area or object in the image corresponding to the detection area can be determined.
 なお、上記のような複眼型の外部用カメラ72aに代えて、2次元カメラと赤外距離センサーとを組み合わせたものを用いても、撮影した画面内の各部(領域又はオブジェクト)に関して奥行方向の距離情報である目標距離を得ることができる。また、複眼型のカメラ72aに代えて、2つの2次元カメラを分離配置したステレオカメラによって、撮影した画面内の各部(領域又はオブジェクト)に関して奥行方向の距離情報である目標距離を得ることができる。その他、単一の2次元カメラにおいて、焦点距離を高速で変化させながら撮像を行うことによっても、撮影した画面内の各部(領域又はオブジェクト)に関して奥行方向の距離情報である目標距離を得ることができる。 Note that, in place of the compound-eye external camera 72a as described above, a combination of a two-dimensional camera and an infrared distance sensor may be used in the depth direction with respect to each part (area or object) in the captured screen. A target distance that is distance information can be obtained. Further, by using a stereo camera in which two two-dimensional cameras are separately arranged instead of the compound-eye camera 72a, a target distance that is distance information in the depth direction can be obtained for each part (region or object) in the captured screen. . In addition, in a single two-dimensional camera, a target distance that is distance information in the depth direction can be obtained for each part (region or object) in the captured screen by performing imaging while changing the focal length at high speed. it can.
 また、複眼型の外部用カメラ72aに代えて、LIDAR(Light Detection and Ranging)技術を用いても、検出領域内の各部(領域又はオブジェクト)に関して奥行方向の距離情報を得ることができる。LIDAR技術により、パルス状のレーザー照射に対する散乱光を測定し、遠距離にある対象までの距離や拡がりを計測して視野内のオブジェクトまでの距離情報やオブジェクトの拡がりに関する情報を取得することができる。さらに、例えばLIDAR技術のようなレーダーセンシング技術と画像情報からオブジェクトの距離等を検出する技術とを組み合わせるような複合的な手法、つまり複数のセンサーをフュージョンさせる手法によって、オブジェクトの検出精度を高めることができる。 Also, in place of the compound-eye external camera 72a, distance information in the depth direction can be obtained for each part (region or object) in the detection region by using LIDAR (Light Detection and Ranging) technology. With the LIDAR technology, the scattered light for pulsed laser irradiation can be measured, the distance to the object at a long distance and the spread can be measured, and the distance information to the object in the field of view and the information about the spread of the object can be acquired. . In addition, the detection accuracy of objects can be improved by a complex method that combines radar sensing technology such as LIDAR technology with technology that detects the distance of an object from image information, that is, a method that fuses multiple sensors. Can do.
 オブジェクトを検出するカメラ72aの動作速度は、入力の高速化の観点で、表示デバイス(表示素子)11の動作速度以上である必要があり、表示ゾーンDZ1~DZnの表示切替え速度又は表示ゾーンDZ1~DZnの1周期の表示期間が例えば30fps以上の場合、これより早くすることが望ましい。カメラ72aは、例えば120fpsより高速、例えば480fpsや1000fpsといった高速動作によってオブジェクトの高速検出を可能にするものが望ましい。また、複数センサーをフュージョンさせる場合、その全てのセンサーが高速である必要は必ずしもなく、少なくとも複数センサーの内1つのセンサーは高速である必要があるが、それ以外は高速でなくても構わない。この場合、高速のセンサーで検出するデータを基本としながら、高速でないセンサーのデータで補完するという使い方で、センシング精度を上げるといった方法を用いてもよい。 The operation speed of the camera 72a for detecting the object needs to be equal to or higher than the operation speed of the display device (display element) 11 from the viewpoint of speeding up the input. The display switching speed of the display zones DZ1 to DZn or the display zones DZ1 to DZ1 When the display period of one cycle of DZn is, for example, 30 fps or more, it is desirable to make it faster than this. The camera 72a is preferably capable of detecting an object at a high speed by a high-speed operation such as 480 fps or 1000 fps, for example, at a speed higher than 120 fps. Further, when a plurality of sensors are to be fused, it is not always necessary that all the sensors be high speed, and at least one of the plurality of sensors needs to be high speed, but the other sensors may not be high speed. In this case, a method may be used in which sensing accuracy is increased by using data detected by a high-speed sensor as a base and supplementing with data from a non-high-speed sensor.
 表示制御部18は、主制御部90の制御下で表示デバイス11及び表示光学系30を動作させて、表示スクリーン20の背後に虚像距離又は投影距離が変化する3次元的な投影像IMを表示させる。 The display control unit 18 operates the display device 11 and the display optical system 30 under the control of the main control unit 90 to display a three-dimensional projection image IM whose virtual image distance or projection distance changes behind the display screen 20. Let
 主制御部90は、画像表示装置100、環境監視部72等の動作を調和させる役割を有する。主制御部90は、例えば表示制御部18を介してスクリーン駆動部である回転駆動部64やデバイス駆動部14を動作させることによって、表示光学系30による投影像IMである虚像の投影距離を周期的に変化させる。つまり、主制御部90等は、投影像IMである虚像の奥行き方向に関する投影位置を周期的に変化させる。また、主制御部90は、環境監視部72によって検出したオブジェクトの空間的な位置に対応するように、表示デバイス11及び表示光学系30によって投影されるフレーム枠HW(図9参照)の空間的な配置を調整する。すなわち、主制御部90は、環境監視部72から受信した表示形状や表示距離を含む表示情報から、表示デバイス11及び表示光学系30によって形成すべき投影像IMに対応する画像データを生成する。投影像IMの表示内容は、回転駆動部64の動作に同期したもの、つまり中間像TIの移動に同期させたものとなっている。投影像IMは、例えば表示スクリーン20の背後に存在する自動車、自転車、歩行者その他のオブジェクトに対して、その奥行き位置方向に関して周辺に位置するフレーム枠HW(図9参照)のような標識とすることができる。このフレーム枠HWは、説明の便宜上奥行きのない状態で示されているが、一定の奥行き幅を有するものとなっている。以上のように、主制御部90は、表示制御部18と協働して像付加部として機能し、検出されたオブジェクトまでの目標距離が投影距離と略一致するタイミングで、検出されたオブジェクトに対して表示デバイス11及び表示光学系30を介して虚像として関連情報像を付加する。この際、主制御部90は、表示制御部18と協働し、視点検出部である運転者検出部71によって得た視点位置に応じてデバイス駆動部14を動作させ、表示デバイス11を光軸AXに垂直な2方向に移動させる制御部として機能し、視野角やアイボックスEBを動的に広げる役割を有する。 The main control unit 90 has a role of harmonizing the operations of the image display device 100, the environment monitoring unit 72, and the like. The main control unit 90 operates the rotation drive unit 64 and the device drive unit 14 that are screen drive units via the display control unit 18, for example, thereby periodically changing the projection distance of the virtual image that is the projection image IM by the display optical system 30. Change. That is, the main control unit 90 or the like periodically changes the projection position in the depth direction of the virtual image that is the projection image IM. Further, the main control unit 90 spatially applies the frame frame HW (see FIG. 9) projected by the display device 11 and the display optical system 30 so as to correspond to the spatial position of the object detected by the environment monitoring unit 72. Adjust the placement. That is, the main control unit 90 generates image data corresponding to the projection image IM to be formed by the display device 11 and the display optical system 30 from the display information including the display shape and display distance received from the environment monitoring unit 72. The display content of the projection image IM is synchronized with the operation of the rotation drive unit 64, that is, synchronized with the movement of the intermediate image TI. The projection image IM is, for example, a sign such as a frame frame HW (see FIG. 9) located in the periphery with respect to the depth position direction of a car, a bicycle, a pedestrian, or other object existing behind the display screen 20. be able to. The frame HW is shown in a state having no depth for convenience of explanation, but has a certain depth width. As described above, the main control unit 90 functions as an image adding unit in cooperation with the display control unit 18, and detects the detected object at a timing at which the target distance to the detected object substantially coincides with the projection distance. On the other hand, a related information image is added as a virtual image via the display device 11 and the display optical system 30. At this time, the main control unit 90 cooperates with the display control unit 18 to operate the device driving unit 14 in accordance with the viewpoint position obtained by the driver detection unit 71 that is the viewpoint detection unit, and to move the display device 11 to the optical axis. It functions as a control unit that moves in two directions perpendicular to AX, and has a role of dynamically expanding a viewing angle and an eye box EB.
 図9に示すように、観察者であるドライバーVDの前方は観察視野に相当する検出領域VFとなっている。検出領域VF内、つまり道路及びその周辺に、歩行者等である人のオブジェクトOB1,OB3や、自動車等である移動体のオブジェクトOB2が存在すると考える。この場合、主制御部90は、画像表示装置100によって3次元的な投影像(虚像)IMを投影させ、各オブジェクトOB1,OB2,OB3に対して関連情報像としてのフレーム枠HW1,HW2,HW3を付加する。この際、ドライバーVDから各オブジェクトOB1,OB2,OB3までの距離が異なるので、フレーム枠HW1,HW2,HW3を表示させる投影像IM1,IM2,IM3までの投影距離は、ドライバーVDから各オブジェクトOB1,OB2,OB3までの距離に相当するものとなっている。 As shown in FIG. 9, the front of the driver VD as an observer is a detection region VF corresponding to the observation visual field. It is assumed that objects OB1 and OB3 of a person such as a pedestrian and a moving object OB2 such as an automobile exist in the detection area VF, that is, in and around the road. In this case, the main control unit 90 projects a three-dimensional projection image (virtual image) IM by the image display device 100, and the frame frames HW1, HW2, HW3 as related information images for the objects OB1, OB2, OB3. Is added. At this time, since the distances from the driver VD to the objects OB1, OB2, and OB3 are different, the projection distances from the driver VD to the projection images IM1, IM2, and IM3 for displaying the frame frames HW1, HW2, and HW3 are different from the driver VD. This corresponds to the distance to OB2 and OB3.
 なお、投影像IM1,IM2,IM3の投影距離は、図7に示す表示ゾーンDZ1~DZnの一部に対応する表示ゾーンDZa~DZcに形成されており、各表示ゾーンDZa~DZcに対応する奥行き幅を有する。例えば、表示ゾーンDZaにおいて、投影像IM1の投影距離は、図9中の投影像IM1’の投影距離の分だけ奥行き幅を有する。各投影距離の中心、つまり投影像IM1,IM2,IM3の投影距離は、離散的であり、オブジェクトOB1,OB2,OB3までの現実の距離に対して、常に正確に一致させるということはできない。ただし、投影像IM1,IM2,IM3の投影距離と、オブジェクトOB1,OB2,OB3までの現実の距離との差が大きくなければ、ドライバーVDの視点が動いても視差が生じにくく、オブジェクトOB1,OB2,OB3とフレーム枠HW1,HW2,HW3との配置関係を略維持することができる。なお、運転者検出部71、デバイス駆動部14、表示制御部18等を利用して、ドライバーVDの視点に応じて表示デバイス11自体をシフトさせたり表示デバイス11の表示内容をシフトさせたりすれば、元から視差が生じないような表示が可能になる。 The projection distances of the projection images IM1, IM2, and IM3 are formed in display zones DZa to DZc corresponding to a part of the display zones DZ1 to DZn shown in FIG. 7, and the depths corresponding to the display zones DZa to DZc. Have a width. For example, in the display zone DZa, the projection distance of the projection image IM1 has a depth width corresponding to the projection distance of the projection image IM1 'in FIG. The centers of the respective projection distances, that is, the projection distances of the projection images IM1, IM2, IM3 are discrete, and cannot always be accurately matched to the actual distances to the objects OB1, OB2, OB3. However, if the difference between the projection distance of the projection images IM1, IM2, and IM3 and the actual distance to the objects OB1, OB2, and OB3 is not large, parallax hardly occurs even if the viewpoint of the driver VD moves, and the objects OB1, OB2 , OB3 and the frame frames HW1, HW2, HW3 can be substantially maintained. If the driver detection unit 71, the device driving unit 14, the display control unit 18 and the like are used to shift the display device 11 itself or the display content of the display device 11 according to the viewpoint of the driver VD. Thus, it is possible to display such that no parallax occurs from the beginning.
 図10Aは、図6に対応し、図10Bは、図9中の投影像IM3又はフレーム枠HW3に対応し、図10Cは、図9中の投影像IM2又はフレーム枠HW2に対応し、図10Dは、図9中の投影像IM1又はフレーム枠HW1に対応している。図10A~10Dより明らかなように、投影像IM1は、回転体16a(又は立体形状部116)の機能領域FA又は中間像TIが表示位置P1を中心とする所定の距離範囲にあるとき、具体的には、この距離範囲に応じて図7に示す特性C1に基づいて決定される所定の表示ゾーンの表示タイミングであるときに、表示デバイス(表示素子)11の表示面11aに形成される一連の表示像に対応する。同様に、投影像IM2は、回転体16a(又は立体形状部116)の機能領域FAが表示位置P2を中心とする距離範囲にあるときに表示デバイス11の表示面11aに形成される一連の表示像に対応し、投影像IM3は、回転体16a(又は立体形状部116)の機能領域FAが表示位置P3を中心とする所定の距離範囲にあるときに表示デバイス11の表示面11aに形成される一連の表示像に対応する。中間像TIの移動を基準とする1周期でみた場合、まず表示位置P1に対応する投影像IM1又はフレーム枠HW1が表示され、次いで表示位置P2に対応する投影像IM2又はフレーム枠HW2が表示された後、表示位置P3に対応する投影像IM3又はフレーム枠HW3が表示される。以上の1周期が視覚的に短ければ、投影像IM1,IM2,IM3の切替えが非常に速くなり、観察者であるドライバーVDは、フレーム枠HW1,HW2,HW3を奥行きがある画像として同時に観察していると認識する。 10A corresponds to FIG. 6, FIG. 10B corresponds to the projection image IM3 or the frame frame HW3 in FIG. 9, FIG. 10C corresponds to the projection image IM2 or the frame frame HW2 in FIG. Corresponds to the projection image IM1 or the frame HW1 in FIG. As is apparent from FIGS. 10A to 10D, the projection image IM1 is obtained when the functional area FA or the intermediate image TI of the rotating body 16a (or the three-dimensional shape portion 116) is within a predetermined distance range centered on the display position P1. Specifically, a series formed on the display surface 11a of the display device (display element) 11 at the display timing of a predetermined display zone determined based on the characteristic C1 shown in FIG. Corresponds to the display image. Similarly, the projection image IM2 is a series of displays formed on the display surface 11a of the display device 11 when the functional area FA of the rotating body 16a (or the three-dimensional shape portion 116) is within a distance range centered on the display position P2. Corresponding to the image, the projection image IM3 is formed on the display surface 11a of the display device 11 when the functional area FA of the rotating body 16a (or the three-dimensional shape portion 116) is within a predetermined distance range centered on the display position P3. Corresponds to a series of displayed images. When viewed in one cycle based on the movement of the intermediate image TI, the projection image IM1 or the frame frame HW1 corresponding to the display position P1 is displayed first, and then the projection image IM2 or the frame frame HW2 corresponding to the display position P2 is displayed. After that, the projection image IM3 or the frame frame HW3 corresponding to the display position P3 is displayed. If the above one period is visually short, the switching of the projection images IM1, IM2, and IM3 becomes very fast, and the driver VD as an observer observes the frame frames HW1, HW2, and HW3 simultaneously as images with depth. Recognize that
 図11は、主制御部90の動作を説明する概念図である。まず、主制御部90は、環境監視部72を利用してオブジェクトOB1,OB2,OB3を検出した場合、オブジェクトOB1,OB2,OB3に対応するフレーム枠HW1,HW2,HW3に対応する表示データを生成し、不図示の記憶部に保管する(ステップS11)。その後、主制御部90は、ステップS11で得た表示データを、対応する表示ゾーンDZ1~DZnに振り分けるようなデータの変換を行う(ステップS12)。具体的には、オブジェクトOB1,OB2,OB3の位置に応じて、対応するフレーム枠HW1,HW2,HW3を表示ゾーンDZ1~DZnのいずれか1つ(図9の例では表示ゾーンDZa~DZc)に割り当てる。次に、主制御部90は、フレーム枠HW1,HW2,HW3に対応する表示データを割り当てた表示ゾーンDZ1~DZnに適合するように加工し、不図示の記憶部に保管する(ステップS13)。この適合化は、距離ゾーン(サブゾーンLZk-2~LZk+1)ごとに枠画像の輪郭や配置を補正するといった画像処理を含む。その後、主制御部90は、ステップS13で適合化させた表示データを既存データと合成する(ステップS14)。表示ゾーンDZ1~DZnによる表示は、時間差があるものの同時並行して行われ、短時間であるが残像を残すような表示が行われるので、新たなオブジェクトOB1,OB2,OB3が出現した場合、既存のオブジェクトと新たなオブジェクトとを併存させるように表示内容を組み直す必要があることを考慮したものである。最後に、主制御部90は、ステップS14で得た表示データを、回転駆動部64の動作に同期して表示制御部18に出力し、表示デバイス(表示素子)11に回転体16aの機能領域FAに応じた表示動作を行わせる(ステップS15)。この際、表示制御部18は、主制御部90から得た視点位置に応じてデバイス駆動部14を動作させ、表示デバイス11を光軸AXに垂直な2方向に移動させるとともに表示デバイス11の表示内容をシフトさせる等の画像処理で修正し、投影像(虚像)IMがドライバー(観察者)VDの視点に適合したものになるようにする。また、表示制御部18は、デバイス駆動部14を利用して、表示デバイス11の光軸AX方向の位置を機能領域FA又は中間像TIの位置に適合するように移動させるとともに、フォーカス駆動部15cを利用して結像光学系15のフォーカス状態を適正に保つ。 FIG. 11 is a conceptual diagram for explaining the operation of the main control unit 90. First, when the main control unit 90 detects the objects OB1, OB2, and OB3 using the environment monitoring unit 72, the main control unit 90 generates display data corresponding to the frame frames HW1, HW2, and HW3 corresponding to the objects OB1, OB2, and OB3. Then, it is stored in a storage unit (not shown) (step S11). Thereafter, the main control unit 90 performs data conversion such that the display data obtained in step S11 is distributed to the corresponding display zones DZ1 to DZn (step S12). Specifically, the corresponding frame frames HW1, HW2, and HW3 are set to any one of the display zones DZ1 to DZn (display zones DZa to DZc in the example of FIG. 9) according to the positions of the objects OB1, OB2, and OB3. assign. Next, the main control unit 90 processes the display data corresponding to the frame frames HW1, HW2, and HW3 so as to match the assigned display zones DZ1 to DZn, and stores them in a storage unit (not shown) (step S13). This adaptation includes image processing such as correcting the outline and arrangement of the frame image for each distance zone (subzones LZk−2 to LZk + 1). Thereafter, the main control unit 90 synthesizes the display data adapted in step S13 with the existing data (step S14). The display by the display zones DZ1 to DZn is performed in parallel at the same time although there is a time difference, and a display that leaves an afterimage for a short time is performed. Therefore, when new objects OB1, OB2, and OB3 appear, This is because it is necessary to reorganize the display contents so that the object and the new object coexist. Finally, the main control unit 90 outputs the display data obtained in step S14 to the display control unit 18 in synchronization with the operation of the rotation driving unit 64, and displays the functional area of the rotating body 16a on the display device (display element) 11. A display operation corresponding to FA is performed (step S15). At this time, the display control unit 18 operates the device driving unit 14 according to the viewpoint position obtained from the main control unit 90 to move the display device 11 in two directions perpendicular to the optical axis AX and display the display device 11. The projected image (virtual image) IM is adapted to the viewpoint of the driver (observer) VD by image processing such as shifting the contents. In addition, the display control unit 18 uses the device driving unit 14 to move the position of the display device 11 in the optical axis AX direction so as to match the position of the functional area FA or the intermediate image TI, and the focus driving unit 15c. Is used to maintain the focus state of the imaging optical system 15 appropriately.
 図12は、表示デバイス(表示素子)11の動作を説明する図である。この場合、縦方向に並ぶ第1表示領域~第n表示領域は、図7等に示す第1~第n表示ゾーンDZ1~DZnに対応している。回転体16a(又は立体形状部116)の1回転に対応する1サイクルで、第1~第n表示ゾーンDZ1~DZnに対応して、表示デバイス(表示素子)11の表示面11aにおいて、第1表示領域~第n表示領域での表示が繰り返される。各表示領域において、信号F1~F4は、同一の表示像が4つのサブゾーンで繰り返されることを意味し、信号F1~F4のそれぞれにカラー表示用のR,G、及びBの信号成分が含まれている。信号F1~F4は、投影像IMの表示時間に対応する時間幅を有している。 FIG. 12 is a diagram for explaining the operation of the display device (display element) 11. In this case, the first to nth display areas arranged in the vertical direction correspond to the first to nth display zones DZ1 to DZn shown in FIG. In one cycle corresponding to one rotation of the rotator 16a (or the three-dimensionally shaped portion 116), the first on the display surface 11a of the display device (display element) 11 corresponding to the first to nth display zones DZ1 to DZn. The display in the display area to the nth display area is repeated. In each display area, the signals F1 to F4 mean that the same display image is repeated in four subzones, and each of the signals F1 to F4 includes R, G, and B signal components for color display. ing. The signals F1 to F4 have a time width corresponding to the display time of the projection image IM.
 以上で説明した第1実施形態のヘッドアップディスプレイ装置200又は画像表示装置100によれば、デバイス駆動部14が表示デバイス11を光軸AX方向及び光軸AX方向に垂直な面内の所定方向に移動させるので、表示デバイス11及び表示光学系30による虚像の投影位置を変更する動作が可能になり、或いは表示光学系30によって投影像(虚像)IMの投影位置を変更しても投影像(虚像)IMの画質を維持することが容易になる。また、DMDやLCOSといった小型で軽量の表示デバイス11を用いた構成とすることで、表示デバイス11の高速な移動又は駆動が可能となり、例えば表示デバイス11を光軸AX方向に高速に移動させることが可能となる。これによって、観察者が3D的な虚像表示を観察することが可能となる。例えば前方の歩行者や対向車等、対象となる人や物体に重ねて虚像表示を行うことを考えた場合、対象物のある複数の距離に、ほぼ同時に表示させたい表示を行いながら3D表示を見せることが可能となり、より自然で確実に観察者の注意喚起が可能となる。 According to the head-up display device 200 or the image display device 100 of the first embodiment described above, the device driving unit 14 moves the display device 11 in the predetermined direction within the optical axis AX direction and the plane perpendicular to the optical axis AX direction. Therefore, even if the projection position of the projection image (virtual image) IM is changed by the display optical system 30, the projection image (virtual image) can be changed. ) It becomes easy to maintain the image quality of IM. Further, by adopting a configuration using a small and lightweight display device 11 such as DMD or LCOS, the display device 11 can be moved or driven at high speed. For example, the display device 11 can be moved at high speed in the optical axis AX direction. Is possible. As a result, the observer can observe a 3D virtual image display. For example, when considering virtual image display over a target person or object such as a pedestrian or oncoming vehicle in front, 3D display is performed while performing display that is desired to be displayed almost simultaneously at a plurality of distances of the target object. It becomes possible to show the viewer, and it is possible to alert the observer more naturally and surely.
〔第2実施形態〕
 以下、第2実施形態に係る表示装置について説明する。なお、第2実施形態の表示装置は第1実施形態の表示装置を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Second Embodiment]
The display device according to the second embodiment will be described below. Note that the display device of the second embodiment is a modification of the display device of the first embodiment, and items that are not particularly described are the same as those of the first embodiment.
 図13に示すように、結像光学系15の投影位置又は結像位置には、中間スクリーン19が配置されている。中間スクリーン19は、平坦面に沿って形成され、光軸AX方向に移動する光学素子である。中間スクリーン19は、配光角を所望の角度に制御した拡散板であり、例えば摺りガラス、レンズ拡散板、マイクロレンズアレイ等が用いられる。この場合、中間スクリーン19の有効領域が、中間スクリーン19の機能領域となる。 As shown in FIG. 13, an intermediate screen 19 is disposed at the projection position or the imaging position of the imaging optical system 15. The intermediate screen 19 is an optical element that is formed along a flat surface and moves in the direction of the optical axis AX. The intermediate screen 19 is a diffusion plate whose light distribution angle is controlled to a desired angle. For example, a ground glass, a lens diffusion plate, a microlens array, or the like is used. In this case, the effective area of the intermediate screen 19 becomes the functional area of the intermediate screen 19.
 制御部としての主制御部90及び表示制御部18は、スクリーン駆動部である往復駆動部264を介して、中間スクリーン19の位置を周期的にシフトさせることで、中間像TIの位置を図14に示すように周期的に往復移動させて投影距離を周期的に変化させつつ、表示デバイス11に形成する画像を投影距離に応じたものとする。具体的には、往復駆動部264を構成するガイド部264aとアクチュエーター264bとによって中間スクリーン19を光軸AX方向に往復移動させることで投影距離を周期的に変化させる。 The main control unit 90 and the display control unit 18 as the control unit periodically shift the position of the intermediate screen 19 via the reciprocating drive unit 264 which is a screen drive unit, thereby changing the position of the intermediate image TI in FIG. The image formed on the display device 11 is assumed to correspond to the projection distance while periodically reciprocating to periodically change the projection distance as shown in FIG. Specifically, the projection distance is periodically changed by reciprocating the intermediate screen 19 in the direction of the optical axis AX by the guide portion 264a and the actuator 264b constituting the reciprocating drive portion 264.
 中間像TIの位置を図14に示す三角波形の経時パターンPAとする場合、又は図示していないが例えばサインカーブで周期的に往復移動させる場合、図7に示す表示ゾーンDZ1~DZnを近距離から遠距離に順次切替えるように変化させた後、表示ゾーンDZ1~DZnを遠距離から近距離に順次切替えるように変化させることを1サイクルとして、同様のサイクルを繰り返す動作を行うことになる。中間像TIの位置をサインカーブで周期的に往復移動させる場合、表示ゾーンDZ1~DZnは図7に示すようなものとは異なるものとなり、表示時間もそれに合わせたものとする。 When the position of the intermediate image TI is set to the triangular waveform temporal pattern PA shown in FIG. 14 or when it is periodically reciprocated by a sine curve (not shown), the display zones DZ1 to DZn shown in FIG. Then, the display zones DZ1 to DZn are changed so as to be sequentially switched from a long distance to a short distance, and then the same cycle is repeated. When the position of the intermediate image TI is periodically reciprocated by a sine curve, the display zones DZ1 to DZn are different from those shown in FIG. 7, and the display time is also adjusted accordingly.
〔その他〕
 以上では、具体的な実施形態としてのヘッドアップディスプレイ装置200について説明したが、本発明に係る表示装置は、上記のものには限られない。例えば、デバイス駆動部14のうち第1駆動部14aのみを用い、第2及び第3駆動部14b,14cについては省略することができる。この場合、表示デバイス11を光軸AX方向にのみ移動させることになる。また、デバイス駆動部14のうち第2及び第3駆動部14b,14cのみを用い、第1駆動部14aについては省略することができる。この場合、表示デバイス11を光軸AXに垂直な面内のX方向又はZ方向に移動させることになる。さらに、この場合において、第2及び第3駆動部14b,14cのうち第2駆動部14bのみを設けて第3駆動部14cを省略すれば、ドライバーVDの視点位置に応じて表示デバイス11を光軸AXに垂直なX方向又は横方向に移動させることができる。
[Others]
Although the head-up display device 200 as a specific embodiment has been described above, the display device according to the present invention is not limited to the above. For example, only the first drive unit 14a of the device drive unit 14 can be used, and the second and third drive units 14b and 14c can be omitted. In this case, the display device 11 is moved only in the optical axis AX direction. Further, only the second and third drive units 14b and 14c of the device drive unit 14 are used, and the first drive unit 14a can be omitted. In this case, the display device 11 is moved in the X direction or the Z direction in a plane perpendicular to the optical axis AX. Further, in this case, if only the second drive unit 14b is provided among the second and third drive units 14b and 14c and the third drive unit 14c is omitted, the display device 11 is made to light according to the viewpoint position of the driver VD. It can be moved in the X direction or the horizontal direction perpendicular to the axis AX.
 また、第1実施形態において、画像表示装置100の配置を上下反転させて、フロントウインドウ8の上部又はサンバイザー位置に表示スクリーン20を配置することもでき、この場合、投影ユニット10の斜め下方前方に表示スクリーン20が配置される。また、表示スクリーン20は、自動車の従来のミラーに対応する位置に配置してもよい。 In the first embodiment, the display screen 20 can also be arranged in the upper part of the front window 8 or the sun visor position by inverting the arrangement of the image display device 100 in this case. A display screen 20 is arranged on the screen. Further, the display screen 20 may be disposed at a position corresponding to a conventional mirror of an automobile.
 以上では、中間スクリーン19又は機能領域FAを本体光学系13の光軸AX方向に対して略直交するように配置するとしたが、機能領域FAを光軸AXに対して強制的に傾けることもできる。この場合、虚像形成光学系17との組み合わせによって傾きが無いか又は所定の傾きの投影像IMを投影することができる。 In the above, the intermediate screen 19 or the functional area FA is arranged so as to be substantially orthogonal to the optical axis AX direction of the main body optical system 13, but the functional area FA can be forcibly inclined with respect to the optical axis AX. . In this case, a projection image IM having no inclination or a predetermined inclination can be projected by combination with the virtual image forming optical system 17.
 以上で説明した第1~第n表示ゾーンDZ1~DZnについては、投影距離の全範囲に亘って連続的である必要はなく、距離ゾーン(サブゾーンLZ1~LZn)の境界に対応する部分で分離した不連続なものであってもよい。また、表示ゾーンDZ1~DZnは、同一数のサブゾーンを含むものに限らず、表示ゾーンDZ1~DZnごとに異なる数のサブゾーンを含ませることができる。 The first to nth display zones DZ1 to DZn described above do not have to be continuous over the entire range of the projection distance, and are separated at a portion corresponding to the boundary of the distance zone (subzones LZ1 to LZn). It may be discontinuous. The display zones DZ1 to DZn are not limited to the same number of subzones, and a different number of subzones can be included for each of the display zones DZ1 to DZn.
 第1実施形態では、拡散部16において、1つの中間スクリーン19を設けているが、2つ以上の中間スクリーン19を設けもよい。この場合、中間スクリーン19は、螺旋の1/2ピッチ、1/3ピッチ等に対応する範囲に分割されて形成されることになる。 In the first embodiment, one intermediate screen 19 is provided in the diffusing unit 16, but two or more intermediate screens 19 may be provided. In this case, the intermediate screen 19 is divided and formed in a range corresponding to a spiral 1/2 pitch, 1/3 pitch, or the like.
 中間スクリーン19の立体形状部116は、全周に亘って螺旋形状である必要はなく、全周の内の一部が螺旋となっている形状や、段差なく往復運動が可能となる回転体構造も考えられる。 The three-dimensionally shaped portion 116 of the intermediate screen 19 does not need to have a spiral shape over the entire circumference, and has a shape in which a part of the entire circumference is a spiral, or a rotating body structure that can reciprocate without a step. Is also possible.
 拡散部16において、中空枠体16bは必須でなく、回転体16aのみとすることができる。この場合も、段差部16jに傾斜した接続面16kを形成しているので、回転体16aの回転に伴う音の発生を抑制することができ、回転体16aの回転を安定化させることができる。 In the diffusing section 16, the hollow frame 16b is not essential, and only the rotating body 16a can be used. Also in this case, since the inclined connection surface 16k is formed in the step portion 16j, it is possible to suppress the generation of sound accompanying the rotation of the rotating body 16a and to stabilize the rotation of the rotating body 16a.
 上記実施形態において、表示スクリーン20の輪郭は、矩形に限らず、様々な形状とすることができる。 In the above-described embodiment, the outline of the display screen 20 is not limited to a rectangle, but may be various shapes.
 図2に示す結像光学系15や虚像形成光学系17は、単なる例示であり、これら結像光学系15及び虚像形成光学系17の光学的構成については適宜変更することができる。 The imaging optical system 15 and the virtual image forming optical system 17 shown in FIG. 2 are merely examples, and the optical configurations of the imaging optical system 15 and the virtual image forming optical system 17 can be changed as appropriate.
 以上では、環境監視部72によって車体2の前方に存在するオブジェクトOBを検出し、画像表示装置100にオブジェクトOBの配置に対応するフレーム枠HW1,HW2,HW3といった関連情報像を表示しているが、オブジェクトOBの有無に関わらず、通信ネットワークを利用して付随的な運転関連情報を取得し、このような運転関連情報を画像表示装置100に表示させることができる。例えば死角に存在する車、障害物等を警告するような表示も可能である。 In the above, the object OB existing in front of the vehicle body 2 is detected by the environment monitoring unit 72, and related information images such as the frame frames HW1, HW2, and HW3 corresponding to the arrangement of the object OB are displayed on the image display device 100. Regardless of the presence or absence of the object OB, incidental driving-related information can be acquired using the communication network, and such driving-related information can be displayed on the image display device 100. For example, a display that warns of a car, an obstacle, etc. existing in a blind spot is also possible.
 以上では、中間スクリーン19を介して虚像の投影を行っているが、中間スクリーン19を用いないで表示デバイス11に形成された像を直接的に投影することもできる。 In the above, the virtual image is projected through the intermediate screen 19, but the image formed on the display device 11 can be directly projected without using the intermediate screen 19.
 本発明の表示装置は、車その他の移動体に搭載されるヘッドアップディスプレイ装置(HUD)に限らず、3次元表示を行うヘッドマウント装置、ウェアラブルディスプレイ装置等に適用することができる。 The display device of the present invention can be applied not only to a head-up display device (HUD) mounted on a moving body such as a car but also to a head mount device, a wearable display device, and the like that perform three-dimensional display.

Claims (9)

  1.  DMD又はLCOSである反射型表示素子を有し、表示像を形成する表示デバイスと、
     前記表示デバイスによって形成された前記表示像を投影して虚像を形成する表示光学系と、
     前記表示光学系による前記虚像の投影位置を変更する際に、前記表示デバイスを光軸方向及び前記光軸方向に垂直な面内の所定方向の少なくとも一方に移動させるデバイス駆動部と、を備える表示装置。
    A display device having a reflective display element which is DMD or LCOS and forming a display image;
    A display optical system that forms a virtual image by projecting the display image formed by the display device;
    A device driving unit that moves the display device in at least one of an optical axis direction and a predetermined direction in a plane perpendicular to the optical axis direction when changing the projection position of the virtual image by the display optical system. apparatus.
  2.  前記デバイス駆動部は、ピエゾ素子を用いたアクチュエーターである、請求項1項に記載の表示装置。 The display device according to claim 1, wherein the device driving unit is an actuator using a piezo element.
  3.  観察者の視点位置を検出する視点検出部と、
     前記視点検出部によって得た視点位置に応じて、前記デバイス駆動部を動作させることによって前記表示デバイスを前記所定方向に移動させる制御部と、をさらに備える、請求項1及び2のいずれか一項に記載の表示装置。
    A viewpoint detector for detecting the viewpoint position of the observer;
    3. The control unit according to claim 1, further comprising: a control unit that moves the display device in the predetermined direction by operating the device driving unit according to a viewpoint position obtained by the viewpoint detection unit. The display device described in 1.
  4.  前記制御部は、前記デバイス駆動部による前記表示デバイスの前記所定方向の移動に同期した画像を前記表示デバイスに表示させる、請求項3に記載の表示装置。 The display device according to claim 3, wherein the control unit causes the display device to display an image synchronized with the movement of the display device in the predetermined direction by the device driving unit.
  5.  前記表示光学系は、前記表示デバイスからの映像光を投影して中間像を形成する第1投影光学系と、前記第1投影光学系によって形成された前記中間像を拡大投影する第2投影光学系とを有する、請求項1~4のいずれか一項に記載の表示装置。 The display optical system projects a video light from the display device to form an intermediate image and a second projection optical to enlarge and project the intermediate image formed by the first projection optical system. The display device according to any one of claims 1 to 4, comprising a system.
  6.  前記中間像の位置に拡散作用を有する中間スクリーンを設けた、請求項5に記載の表示装置。 The display device according to claim 5, wherein an intermediate screen having a diffusing action is provided at a position of the intermediate image.
  7.  前記中間スクリーンを前記光軸方向に移動させるスクリーン駆動部をさらに備える、請求項6に記載の表示装置。 The display device according to claim 6, further comprising a screen driving unit that moves the intermediate screen in the optical axis direction.
  8.  前記デバイス駆動部による前記表示デバイスの前記光軸方向に関する駆動範囲は、前記表示光学系の焦点深度の範囲内である、請求項5~7のいずれか一項に記載の表示装置。 The display device according to any one of claims 5 to 7, wherein a driving range of the display device in the optical axis direction by the device driving unit is within a range of a focal depth of the display optical system.
  9.  前記デバイス駆動部による前記表示デバイスの前記光軸方向に関する駆動と、前記中間像を形成するための中間スクリーンの駆動とは同期しており、駆動している間で両者の位置関係が光学的に共役又は前記表示光学系の焦点深度の範囲内となるように制御する、請求項5~8のいずれか一項に記載の表示装置。 The driving of the display device in the optical axis direction by the device driving unit and the driving of the intermediate screen for forming the intermediate image are synchronized, and the positional relationship between the two is optically determined while driving. The display device according to any one of claims 5 to 8, wherein the display device is controlled to be conjugate or within a range of a focal depth of the display optical system.
PCT/JP2019/003142 2018-01-31 2019-01-30 Display apparatus WO2019151314A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019569170A JPWO2019151314A1 (en) 2018-01-31 2019-01-30 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-015977 2018-01-31
JP2018015977 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151314A1 true WO2019151314A1 (en) 2019-08-08

Family

ID=67478798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003142 WO2019151314A1 (en) 2018-01-31 2019-01-30 Display apparatus

Country Status (2)

Country Link
JP (1) JPWO2019151314A1 (en)
WO (1) WO2019151314A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220080257A (en) * 2020-12-07 2022-06-14 주식회사 오토웰즈 Vehicle head-up display system that analyzes and displays driver's biometric information

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175744A (en) * 2001-12-12 2003-06-24 Denso Corp Head up display
JP2004029356A (en) * 2002-06-25 2004-01-29 Ricoh Co Ltd Picture projector
JP2009229752A (en) * 2008-03-21 2009-10-08 Toshiba Corp Display device, display method and headup display
JP2009288388A (en) * 2008-05-28 2009-12-10 Nippon Seiki Co Ltd Display device
JP2015179152A (en) * 2014-03-19 2015-10-08 アイシン・エィ・ダブリュ株式会社 Head-up display device
JP2015215476A (en) * 2014-05-12 2015-12-03 矢崎総業株式会社 Display device
JP2016113873A (en) * 2014-12-18 2016-06-23 植村 誠 Concrete box body for open shield method
KR20180000912A (en) * 2016-06-24 2018-01-04 현대모비스 주식회사 Head up display device and method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175744A (en) * 2001-12-12 2003-06-24 Denso Corp Head up display
JP2004029356A (en) * 2002-06-25 2004-01-29 Ricoh Co Ltd Picture projector
JP2009229752A (en) * 2008-03-21 2009-10-08 Toshiba Corp Display device, display method and headup display
JP2009288388A (en) * 2008-05-28 2009-12-10 Nippon Seiki Co Ltd Display device
JP2015179152A (en) * 2014-03-19 2015-10-08 アイシン・エィ・ダブリュ株式会社 Head-up display device
JP2015215476A (en) * 2014-05-12 2015-12-03 矢崎総業株式会社 Display device
JP2016113873A (en) * 2014-12-18 2016-06-23 植村 誠 Concrete box body for open shield method
KR20180000912A (en) * 2016-06-24 2018-01-04 현대모비스 주식회사 Head up display device and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220080257A (en) * 2020-12-07 2022-06-14 주식회사 오토웰즈 Vehicle head-up display system that analyzes and displays driver's biometric information
KR102551870B1 (en) * 2020-12-07 2023-07-06 주식회사 오토웰즈 Vehicle head-up display system that analyzes and displays driver's biometric information

Also Published As

Publication number Publication date
JPWO2019151314A1 (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP7078904B2 (en) Virtual image display optical system and image display device
WO2018180856A1 (en) Head-up display apparatus
WO2018124299A1 (en) Virtual image display device and method
JP2020064235A (en) Display device
WO2019151314A1 (en) Display apparatus
WO2018199244A1 (en) Display system
JP7424823B2 (en) image display device
JP7121349B2 (en) Display method and display device
JP7280557B2 (en) Display device and display method
WO2018180857A1 (en) Head-up display apparatus
WO2020184506A1 (en) Head-up display device
JP7177397B2 (en) Display device
JP2019191368A (en) Virtual image display device and head-up display device
WO2019093500A1 (en) Display device
JP2019120891A (en) Virtual display device and head-up display device
WO2020189258A1 (en) Display device, head-up display device, and head-mounted display device
WO2020031415A1 (en) Display device
WO2019220767A1 (en) Virtual image projection optical system and display device
WO2024090297A1 (en) Head-up display system
JP2020065125A (en) Display device
WO2019177113A1 (en) Virtual image display optical system and display device
JP2020027209A (en) Display device
WO2020080007A1 (en) Display apparatus
WO2019107225A1 (en) Virtual-image display device and head-up display device
JP2020071441A (en) Display unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746750

Country of ref document: EP

Kind code of ref document: A1