WO2018124299A1 - Virtual image display device and method - Google Patents

Virtual image display device and method Download PDF

Info

Publication number
WO2018124299A1
WO2018124299A1 PCT/JP2017/047352 JP2017047352W WO2018124299A1 WO 2018124299 A1 WO2018124299 A1 WO 2018124299A1 JP 2017047352 W JP2017047352 W JP 2017047352W WO 2018124299 A1 WO2018124299 A1 WO 2018124299A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
virtual image
optical path
path length
image
Prior art date
Application number
PCT/JP2017/047352
Other languages
French (fr)
Japanese (ja)
Inventor
中村健太郎
野村英司
橋村淳司
中村彰宏
菅原和弘
山田範秀
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018559647A priority Critical patent/JPWO2018124299A1/en
Publication of WO2018124299A1 publication Critical patent/WO2018124299A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording

Definitions

  • the present invention relates to a virtual image display device and a virtual image display method in which a virtual image is displayed at the tip of a line of sight and the projection position of the virtual image is variable.
  • HUD devices generally generate a virtual image at a position away from a driver by a certain distance, and display contents by HUD are limited to vehicle speed, car navigation information, and the like. It was.
  • the purpose of installing the HUD in the car is to support the safer driving by minimizing the movement of the driver's line of sight.
  • a system in which, for example, a car, a pedestrian, an obstacle, etc. in front of the vehicle are detected by a camera or a sensor, and the driver is informed of the danger in advance through HUD to prevent an accident.
  • Patent Document 1 discloses a method of changing a distance from a driver to a virtual image by switching a reflector to be projected by moving a mirror.
  • Patent Document 2 discloses a method of generating a plurality of virtual images by arranging a plurality of display elements. In such a method, the virtual image distance is reduced due to physical restrictions such as the thickness of the display elements and wiring. It is difficult to make fine adjustments, and there is a concern that the cost may increase due to having a plurality of display elements, and the display control circuit may be complicated.
  • the present invention has been made in view of the above-described background art, and has a simple configuration and can display a virtual image display device capable of displaying additional information as described above at a large number of distances to allow proper recognition. It is another object of the present invention to provide a virtual image display method.
  • An optical path length changing element having a structure with different thicknesses in the optical axis direction is arranged in the optical path from the display area to the first reflector.
  • a virtual image display method reflecting one aspect of the present invention includes a display unit and a virtual image display optical system that enlarges an image formed in the display region by the display unit.
  • an optical path length changing element having a structure having a different thickness in the optical axis direction is arranged in the optical path from the display region to the first reflector, and the projection distance is set by the arrangement of the optical path length changing element. Change.
  • FIG. 1A is a side cross-sectional view showing a state in which the virtual image display device of the first embodiment is mounted on a vehicle body
  • FIG. 1B is a front view from the vehicle inner side explaining the image display device. It is an expanded side sectional view explaining the specific structural example of a virtual image display apparatus.
  • 3A and 3B are a side sectional view and a front view illustrating the optical path length changing element and the like.
  • 4A and 4B are diagrams for explaining the positional relationship between the virtual image position and the see-through object in the virtual image display device according to the first embodiment.
  • 5A and 5B are diagrams for explaining the positional relationship between a virtual image position and a see-through object in the virtual image display device of the comparative example.
  • FIG. 8A and 8B are a side sectional view and a front view illustrating the optical path length changing element.
  • the virtual image display apparatus of 3rd Embodiment. 10A and 10B are a side sectional view and a front view illustrating the optical path length changing element.
  • the virtual image display apparatus of 4th Embodiment It is a figure explaining the virtual image display apparatus of 5th Embodiment. It is a figure explaining the virtual image display apparatus of 6th Embodiment.
  • FIG. 14A and 14B are a partially broken side view and a partially broken front view for explaining the structure of the diffusion portion incorporating the intermediate screen.
  • FIG. 15A is a diagram specifically illustrating a change in the position of the functional area
  • FIG. 15B is a diagram specifically illustrating a change in the movable projection position of the intermediate image. It is a figure explaining the display zone and distance zone while showing the relationship between the position of an apparent intermediate image, and projection distance. It is a figure explaining the operation example of the virtual image display apparatus of 6th Embodiment. It is a conceptual diagram explaining an example of the display switching in a display zone. It is a figure explaining the virtual image display apparatus of 7th Embodiment. It is a figure explaining the virtual image display apparatus of 8th Embodiment.
  • FIG. 1A and 1B are a conceptual side sectional view and a front view illustrating a virtual image display device 100 according to the present embodiment and a use state thereof.
  • the virtual image display device 100 is mounted in the vehicle body 2 as a head-up display device, for example, and includes a drawing unit 10 and a display screen 20.
  • the virtual image display device 100 displays image information displayed on an image forming element 11 (to be described later) in the drawing unit 10 for a driver UN through the display screen 20.
  • the drawing unit 10 of the virtual image display device 100 is installed so as to be embedded in the dashboard 4 of the vehicle body 2 and emits display light HK corresponding to an image including driving-related information and the like toward the display screen 20.
  • the display screen 20 is a half mirror also called a combiner, and is a concave mirror or a plane mirror having a semi-transmission property.
  • the display screen 20 is erected on the dashboard 4 with the lower end supported, and reflects the display light HK from the drawing unit 10 toward the rear of the vehicle body 2. That is, in the illustrated case, the display screen 20 is an independent type that is installed separately from the windshield 8.
  • the display light HK reflected by the display screen 20 which is a half mirror is guided to an eye box (not shown) corresponding to the pupil HT of the driver UN sitting on the driver's seat 6 and its peripheral position.
  • the driver UN can observe the display light HK reflected by the display screen 20, that is, the display image IM as a virtual image in front of the vehicle body 2.
  • the driver UN can observe external light transmitted through the display screen 20 that is a half mirror, that is, a real image of a front view, a car, and the like.
  • the driver UN observes a display image (virtual image) IM including operation-related information and the like formed by reflection of the display light HK on the display screen 20 so as to overlap the external image behind the display screen 20. Can do.
  • the drawing unit 10 operates a main body optical system 13 including a magnification image forming system or a projection optical system including an image forming element 11 and a virtual image type reflection optical system, and a main body optical system 13.
  • a display control unit 18 and a housing 14 for housing the main optical system 13 and the like are provided.
  • the combination of the main body optical system 13 and the display screen (combiner) 20 constitutes a virtual image display optical system 30.
  • the main body optical system (projection optical system) 13 includes an image forming optical system 15 capable of forming an intermediate image TI obtained by enlarging an image formed on the image forming element 11 in addition to the image forming element 11 serving as a display unit.
  • An optical path length changing element 16 disposed in the latter stage of the optical path in the vicinity of the imaging position of the image TI and a virtual image forming optical system 17 for converting the intermediate image TI into a virtual image are provided.
  • the image forming element 11 is a display unit having a two-dimensional display surface 11a.
  • the image formed on the display surface 11a of the image forming element 11 is enlarged by the image forming optical system 15 in the main body optical system 13 to form an intermediate image TI, passes through the optical path length changing element 16, and is a virtual image forming optical system. To 17 mag.
  • the image forming element 11 capable of two-dimensional display, the intermediate image TI or the display image (virtual image) IM can be switched at a relatively high speed.
  • the image forming element 11 may be a reflective element such as DMD or LCOS, or a transmissive element such as liquid crystal.
  • the image forming element 11 when a DMD is used as the image forming element 11, it becomes easy to switch images at high speed while maintaining brightness, which is advantageous for display in which a virtual image distance or a projection distance is changed.
  • the image forming element 11 operates at a frame rate of 30 fps or higher. This makes it easy to make it appear as if a plurality of display images IM are simultaneously displayed at different projection distances.
  • the imaging optical system 15 is a fixed-focus lens system, and has a plurality of lenses (not shown).
  • the imaging optical system 15 enlarges and projects an image formed on the display surface 11a of the image forming element (display unit) 11 at an appropriate magnification, and intermediate image TI at a position close to the incident surface 16j of the optical path length changing element 16.
  • the imaging optical system 15 has a stop 15a arranged closest to the optical path length changing element 16 of the imaging optical system 15.
  • the optical path length changing element 16 is a rotating body formed of resin or glass, and is driven by a rotation driving device 62a provided in the arrangement changing device 62 that is a moving portion and rotates at a constant speed. Although the optical path length changing element 16 will be described in detail later, the optical path length changing element 16 has a plurality of partial areas having different thicknesses. These partial areas are intermediate areas formed by the imaging optical system 15 as the optical path length changing element 16 rotates. Sequentially arranged at the position of the image TI. By moving the optical path length changing element 16 around the optical axis AX by the arrangement changing device 62, the virtual image forming optical system 17 displays the display image IM as a virtual image formed behind the display screen (combiner) 20 and the observer.
  • the distance to a certain driver UN can be increased or decreased.
  • the display image IM is changed while changing the virtual image distance to the display image IM by changing the position of the projected display image IM forward and backward and by changing the display contents according to the position.
  • the display image IM as a series of projection images can be made three-dimensional.
  • Fig. A is a side sectional view for explaining the optical path length changing element 16 and the arrangement changing device 62
  • Fig. 3B is a front view for explaining the optical path length changing element 16.
  • the optical path length changing element 16 includes a shaft portion 19a through which a rotation axis RX extending parallel to the optical axis AX passes, and four partial regions 16a to 16d supported by the shaft portion 19a and arranged around the rotation axis RX.
  • the rotation driving device 62a rotates the optical path length changing element 16 via the shaft portion 19a.
  • the rotation drive device 62a is fixed on a support member 62b having a pedestal and a support column.
  • the optical path length changing element 16 is a stepped structure including four partial regions 16a to 16d, and is a disk-shaped structure 116 provided with the partial regions 16a to 16d around the center.
  • the optical path length changing element 16 as the disk-like structure 116 has a role of changing the optical path length converted into air in, for example, four stages.
  • Each of the partial areas 16a to 16d constituting the optical path length changing element 16 has a size corresponding to the intermediate image TI formed in the display area.
  • These partial regions 16a to 16d have different thicknesses in the optical axis AX direction.
  • the optical path length changing element 16 has a plurality of exit surfaces 16e to 16h arranged stepwise along a circumference 16r through which the optical axis AX passes on the virtual image forming optical system 17 side or the rear stage side of the optical path.
  • Each of the exit surfaces 16e to 16h is a flat surface. That is, in the optical path length changing element 16, the exit surfaces 16e to 16h arranged on the opposite side of the intermediate image TI formed in the display area are stepped.
  • the optical path length changing element 16 has an incident surface 16j that is a single plane on the imaging optical system 15 side or the optical path pre-stage side.
  • the intermediate image TI is formed in a display region from the optical path length changing element 16 to the preceding stage of the optical path.
  • the optical path length changing element 16 that is, the incident surface 16j is within ⁇ 1 mm from the imaging position of the intermediate image TI. Has been placed.
  • the incident surface 16j of the optical path length changing element 16 has a diffusion function.
  • the incident surface 16j is processed into a polished glass surface, for example.
  • a compulsory intermediate image is formed on the incident surface 16j, and light diffuses therefrom, so that a wide eye box can be secured.
  • diffusion function can be affixed on the entrance plane 16j of the optical path length change element 16 as another component, for example.
  • a polished glass plate, a diffusion plate, a microlens array, or the like can be used as another part to be affixed on the incident surface 16j.
  • the optical path length changing element 16 is also rotated around the rotation axis RX by rotating the shaft portion 19a, for example, at a constant speed by the rotation drive device 62a.
  • the four partial regions 16a to 16d sequentially move on the optical axis AX, and the partial regions 16a to 16d move so as to cross the optical axis AX.
  • the positional relationship is adjusted and positioned so that the centers of the partial areas 16a to 16d cross the optical axis AX.
  • the shaft portion 19a rotates in the clockwise direction when viewed from the front, for example, the partial regions 16a to 16d are arranged on the optical axis AX in the order.
  • the partial region 16a is the thickest, and the image or intermediate image TI displayed on the image forming element 11 which is the display unit at this time is a half mirror. It is displayed as a virtual image closest to the back of a certain display screen (combiner) 20. Further, at the timing when the center of the partial region 16d is arranged on the optical axis AX, the partial region 16d is the thinnest, and the image or intermediate image TI displayed on the image forming element 11 at this time is a half mirror. It is displayed as a virtual image farthest behind the screen (combiner) 20.
  • the apparent position of the intermediate image TI viewed from the virtual image forming optical system 17 is closest to the virtual image forming optical system 17 when the thickest partial region 16a is positioned on the optical axis AX, and the thinnest portion.
  • the region 16d is positioned on the optical axis AX, it is closest to the display surface 11a of the image forming element 11.
  • the image display on the image forming element 11 is intermittent, like a strobe, and is at the timing when the center or the periphery of the partial areas 16a to 16d is arranged on the optical axis AX.
  • the number of partial regions is not limited to four, and the number of partial regions may be changed according to the number of distances at which a virtual image is desired to be displayed.
  • the virtual image forming optical system 17 shown in FIG. 2 enlarges the intermediate image TI formed on the optical path length changing element 16 in cooperation with the display screen 20, and forms a display image IM as a virtual image in front of the driver UN.
  • the virtual image forming optical system 17 includes at least one mirror, but in the illustrated example, includes two mirrors 17a and 17b.
  • the one mirror 17a is a first reflector, which is disposed on the intermediate image TI side in the front stage of the optical path, and is a first mirror having optical power.
  • the other mirror 17b is disposed on the display screen (combiner) 20 side in the latter stage of the optical path, and is a second mirror having optical power.
  • the main body optical system (projection optical system) 13 can be increased in magnification and performance.
  • FIG. 4A is a conceptual plan view for explaining display by the virtual image display optical system 30 or the virtual image display device 100 of the embodiment
  • FIG. 4B is a diagram for explaining how the display corresponding to FIG. 4A is seen.
  • a display frame HW which is a display image IM
  • Such a display frame HW is a danger warning signal or other virtual image, and shows, for example, a result of identifying a car, a bicycle, a pedestrian, or the like that is close to the front.
  • the display frame HW projects the display frame HW in the vicinity of the object KT as shown in FIG. 4A, as shown in FIG. 4B, not only the driver UN at the standard position P0 but also the head
  • the target object KT and the display frame HW are substantially overlapped with each other and the driver UN whose posture is changed to the changed position P1 where the position is moved appears to be substantially free from displacement.
  • FIG. 5A is a conceptual plan view for explaining display by a virtual image display optical system or a virtual image display device of a comparative example
  • FIG. 5B is a diagram for explaining how a display corresponding to FIG. 5A is seen.
  • FIG. 5A a case will be described in which the display frame HW that is the display image IM is formed at a fixed position regardless of the object KT that the driver UN observes.
  • the display frame HW is projected substantially in front of the object KT, as shown in FIG.
  • the object KT and the display frame HW Even if they appear to be substantially overlapped with each other, the display frame HW appears to be greatly displaced in the lateral direction in which the eyes are aligned with respect to the object KT for the driver UN whose posture has been changed to the change position P1. The possibility of misidentifying the frame HW increases.
  • FIG. 6 is a block diagram illustrating the moving body display system 200, and the moving body display system 200 includes the virtual image display device 100 as a part thereof.
  • the virtual image display device 100 has the structure shown in FIG. 2, and a description thereof is omitted here.
  • a moving body display system 200 shown in FIG. 6 is incorporated in an automobile or the like that is a moving body.
  • the moving body display system 200 includes a driver detection unit 71, an environment monitoring unit 72, and a main control device 90 in addition to the virtual image display device 100.
  • the driver detection unit 71 is a part that detects the presence and viewpoint position of the driver UN, and includes a driver seat camera 71a, a driver seat image processing unit 71b, and a determination unit 71c.
  • the driver seat camera 71a is installed in front of the driver seat of the dashboard 4 in the vehicle body 2 (see FIG. 1B), and takes images of the head of the driver UN and its surroundings.
  • the driver seat image processing unit 71b performs various types of image processing such as brightness correction on the image captured by the driver seat camera 71a to facilitate processing in the determination unit 71c.
  • the determination unit 71c detects the head and eyes of the driver UN by extracting or cutting out an object from the driver seat image that has passed through the driver seat image processing unit 71b, and detects the vehicle body 2 from the depth information attached to the driver seat image.
  • the spatial position of the eyes of the driver UN (resulting in the direction of the line of sight) is calculated along with the presence or absence of the head of the driver UN.
  • the environment monitoring unit 72 is a part for identifying a car, a bicycle, a pedestrian, and the like that are close to the front, and includes an external camera 72a, an external image processing unit 72b, and a determination unit 72c.
  • the external camera 72a is installed at appropriate positions inside and outside the vehicle body 2, and captures an external image such as the front or side of the driver UN or the windshield 8.
  • the external image processing unit 72b performs various types of image processing such as brightness correction on the image captured by the external camera 72a to facilitate processing by the determination unit 72c.
  • the determination unit 72c detects the presence / absence of a target KT (for example, see FIG.
  • the spatial position of the object KT in front of the vehicle body 2 is calculated from the depth information attached to the image.
  • the driver's seat camera 71a and the external camera 72a are not shown, but are, for example, compound eye type three-dimensional cameras. That is, both cameras 71a and 72a are obtained by arranging camera elements, each of which includes an imaging lens and a CMOS or other image sensor, in a matrix, and each has a drive circuit for the image sensor.
  • the plurality of camera elements constituting each of the cameras 71a and 72a are adapted to focus at different positions in the depth direction, for example, or to detect relative parallax, and are obtained from each camera element. By analyzing the state of the image (focus state, object position, etc.), the distance to each region or object in the image can be determined.
  • distance information in the depth direction is obtained for each part in the captured screen (dead angle image). Obtainable.
  • distance information in the depth direction can be obtained for each part (region or object) in the captured screen by using a stereo camera in which two two-dimensional cameras are separately arranged in place of the compound-eye cameras 71a and 72a.
  • distance information in the depth direction can be obtained for each part in the captured screen by performing imaging while changing the focal length at high speed.
  • the display control unit 18 operates the virtual image display optical system 30 under the control of the main controller 90, and the three-dimensional display in which the virtual image distance or the projection distance changes behind the display screen (combiner) 20 that is a half mirror.
  • the image IM is displayed.
  • the display control unit 18 is display information including the display shape and display distance received via the main control device 90, and is displayed on the virtual image display optical system 30 from information obtained based on the signal from the environment monitoring unit 72.
  • a display image IM to be generated is generated.
  • the display image IM is, for example, a display frame HW (FIG. 4B) located in the periphery with respect to the depth position direction and the direction orthogonal thereto with respect to an automobile, bicycle, pedestrian, or other object KT existing behind the display screen 20. For example).
  • the display control unit 18 receives a detection output related to the presence of the driver UN and the eye position from the driver detection unit 71 via the main control device 90. Thereby, the projection of the display image IM by the virtual image display optical system 30 can be automatically started and stopped. It is also possible to project the display image IM only in the direction of the line of sight of the driver UN. Further, it is possible to perform projection with emphasis such as brightening or blinking only the display image IM in the direction of the line of sight of the driver UN.
  • the main controller 90 has a role of coordinating the operations of the virtual image display device 100, the environment monitoring unit 72, and the like, and the virtual image display optics so as to correspond to the spatial position of the object KT detected by the environment monitoring unit 72.
  • the spatial arrangement of the display frame HW projected by the system 30 is adjusted.
  • the optical path length changing element 16 having a structure with different thicknesses in the optical axis AX direction is arranged for each of the partial regions 16a to 16d that are predetermined segmented regions. Therefore, the distance from the driver UN to the display image (virtual image) IM can be finely changed depending on the thickness of the optical path length changing element 16, and the display image IM can be superimposed on the real object including the depth direction. Accordingly, even if the viewpoint is shifted, the positional relationship between the display image IM such as a danger signal and the real object does not shift, and thus it is easy to prevent the driver UN from being mistaken.
  • the virtual image display device and method according to the second embodiment will be described below.
  • the virtual image display device according to the second embodiment is a modification of the virtual image display device according to the first embodiment, and matters not specifically described are the same as those in the first embodiment.
  • the optical path length changing element 16 is a rectangular plate-like step-like structure 216.
  • the arrangement changing device 262 which is a moving unit attached to the optical path length changing element 16 or the stepped structure 216, moves the optical path length changing element 16 to a desired position along the vertical direction perpendicular to the optical axis AX. It is for making it happen.
  • the arrangement changing device 262 includes a guide portion 262a that guides the vertical movement of the step-like structure 216 in the vertical direction perpendicular to the optical axis AX, and the step-like structure 216 in the vertical direction perpendicular to the optical axis AX at a desired speed. And a drive unit 262b for reciprocal movement.
  • the staircase structure 216 has a plurality of partial regions 216a to 216c arranged in a direction perpendicular to the optical axis AX, and the partial regions 216a to 216c are formed in the display region. It has a size and contour shape corresponding to the intermediate image TI. These partial regions 216a to 216c have different thicknesses in the optical axis AX direction.
  • the staircase-like structure 216 has a plurality of emission surfaces 216e to 216g arranged in a staircase shape on the virtual image forming optical system 17 side or the rear side of the optical path, and each of the emission surfaces 216e to 216g has It has become a plane.
  • the step-like structure 216 has an incident surface 16j that is a single plane on the imaging optical system 15 side or the optical path upstream side, and the incident surface 16j has a diffusion function.
  • the intermediate image TI is formed in a display region from the step-like structure 216 to the front stage of the optical path.
  • the step-like structure 216 that is, the incident surface 16j is within ⁇ 1 mm from the image formation position of the intermediate image TI. Has been placed.
  • the step-like structure 216 By moving the step-like structure 216 in the direction perpendicular to the optical axis AX by the arrangement changing device 62, the three partial regions 216a to 216c are sequentially moved on the optical axis AX, and the display screen 20 is moved by the virtual image forming optical system 17. It is possible to increase or decrease the distance between the display image IM as a virtual image formed behind the driver UN and the driver UN as an observer. Thus, the display image IM is changed while changing the virtual image distance to the display image IM by changing the position of the projected display image IM forward and backward and by changing the display contents according to the position. As a result, the display image IM as a series of projection images can be made three-dimensional.
  • the moving direction of the staircase structure 216 may be a horizontal direction perpendicular to the optical axis AX, and the number of partial regions is not limited to three.
  • the generation distance of the entire virtual image can be changed by sliding the optical path length changing element 16.
  • the optical path length changing element 16 By sliding the optical path length changing element 16 at a high speed, it can be seen that virtual images are displayed at a plurality of distances simultaneously. Further, the virtual image distance can be finely adjusted by adjusting the number and thickness of the partial regions 216a to 216c constituting the optical path length changing element 16 or the step-like structure 216.
  • the virtual image display device and method according to the third embodiment will be described below.
  • the virtual image display device according to the third embodiment is a modification of the virtual image display device according to the first embodiment, and items that are not particularly described are the same as those in the first embodiment.
  • the optical path length changing element 16 is a rectangular plate-like stepped structure 316, which is fixedly arranged along the optical path.
  • the staircase structure 316 includes a plurality of partial regions 316a to 316c arranged in a direction perpendicular to the optical axis AX, and each partial region 316a to 316c is an intermediate region in the display region.
  • the image TI has a size and contour shape obtained by dividing the image TI into three in the vertical Z direction, and has a size and contour shape corresponding to the intermediate image TI that is the display region as a whole when the partial regions 316a to 316c are combined.
  • These partial regions 316a to 316c have different thicknesses in the optical axis AX direction.
  • the staircase structure 316 has a plurality of emission surfaces 316e to 316g arranged in a staircase shape on the virtual image forming optical system 17 side or the optical path rear side, and each of the emission surfaces 316e to 316g It has become a plane.
  • the step-like structure 316 has an incident surface 16j that is a single plane on the imaging optical system 15 side or the optical path upstream side, and the incident surface 16j has a diffusion function.
  • the intermediate image TI is formed on the stepped structure 316 or the display region from the optical path length changing element 16 to the previous stage of the optical path.
  • the stepped structure 316 that is, the incident surface 16j, forms an image of the intermediate image TI. It is arranged within ⁇ 1 mm from the position.
  • the intermediate image TI is composed of partial images TIa to TIc divided into three in the vertical Z direction.
  • the partial image TIa is an image for relatively short distance projection
  • the partial image TIc is an image for relatively long distance projection
  • the partial image TIb is an image for medium distance projection. That is, the lower part IMa constituting the display image (virtual image) IM by the virtual image display device 100 is imaged at a relatively short distance corresponding to the partial image TIa, and the upper part IMa constituting the display image (virtual image) IM is formed.
  • the portion IMc is imaged at a relatively long distance corresponding to the partial image TIc.
  • an intermediate portion IMb regarding the upper and lower sides of the display image (virtual image) IM is formed at an intermediate distance corresponding to the partial image TIb.
  • the positions of the display images IMa to IMc in the depth direction are fixed, but the display image IM is three-dimensional.
  • the virtual image display device 100 of the third embodiment it is not necessary to provide a movable part for the optical path length changing element, so that it is preferable as a device mounted on a vehicle or other moving body. Furthermore, the virtual image distance can be finely adjusted by adjusting the thickness in each partial region. In addition, it is preferable to set the thickness of the partial region so that the long distance display is performed above the virtual image and the short distance display is performed below the virtual image.
  • the main body optical system 13 omits the imaging optical system 15, and the image forming element 11, the optical path length changing element 16, and the virtual image forming optics. It consists of a system 17.
  • the display surface 11a of the image forming element 11 serving as a display unit is disposed in the vicinity of the position where the intermediate image TI is present in FIG.
  • the incident surface 16 j disposed on the side of the optical path length changing element 16 facing the image forming element 11 is disposed within 1 cm from the display surface 11 a of the image forming element 11.
  • the display surface 11a of the image forming element 11 serves as a display area as it is, and the image formed on the display surface 11a is directly enlarged and projected as a display image (virtual image) IM by the virtual image forming optical system 17 or the like.
  • the incident surface 16j of the optical path length changing element 16 does not have a diffusion function.
  • the optical path length changing element 16 can be reduced in size.
  • the thinnest partial region 16c among the partial regions 16a to 16c can be omitted as having a thickness of zero.
  • the virtual image display device 100 of the first embodiment is modified.
  • the virtual image display devices 100 of the second and third embodiments can be similarly changed, and the main body optical system 13 to the imaging optical system. 15 can be omitted, and the image formed on the display surface 11a as a display area can be directly enlarged and projected as a display image (virtual image) IM without using the intermediate image TI.
  • the virtual image display device and method according to the fifth embodiment will be described below.
  • the virtual image display device according to the fifth embodiment is a modification of the virtual image display device according to the first to fourth embodiments, and items not specifically described are the same as those in the first embodiment.
  • the virtual image forming optical system 17 includes only one mirror 517a.
  • the mirror 517a is a first reflector and is a first mirror having optical power.
  • the main body optical system (projection optical system) 13 can be simplified, the virtual image display device 100 can be made inexpensive.
  • the virtual image display device and method according to the sixth embodiment will be described below.
  • the virtual image display device according to the sixth embodiment is a modification of the virtual image display device according to the first embodiment, and matters not specifically described are the same as those in the first embodiment.
  • the main body optical system 13 includes an optical path length changing element 416 disposed between the imaging optical system 15 and the virtual image forming optical system 17.
  • the apparent position of the intermediate image TI viewed from the virtual image forming optical system 17 does not change discretely as in the first embodiment, but by the optical path length changing element 416, the virtual image forming optical system.
  • the apparent position of the intermediate image TI viewed from 17 is continuously changed.
  • the optical path length changing element 416 is arranged immediately after a projection position or an imaging position by the imaging optical system (first projection optical system) 15, and has a rotating body 6a and a hollow frame body 6b, and is an arrangement that is a moving unit. It is driven by the rotation drive device 62a of the changing device 62 and rotates around the rotation axis RX at a constant speed, for example.
  • FIG. 14A is a partially broken side view for explaining the optical path length changing element 416
  • FIG. 14B is a partially broken front view for explaining the optical path length changing element 416.
  • FIG. The optical path length changing element 416 includes a spiral rotator 6a having a profile close to a disk as a whole, and a cylindrical hollow frame 6b that houses the rotator 6a.
  • the rotating body 6a has a central portion 6c and an outer peripheral optical portion 6p.
  • the rotating body 6a is a spiral member having light permeability, and the outer peripheral optical part 6p of the rotating body 6a functions as the three-dimensional shape part 106.
  • One surface 6f or the incident surface 16j formed on the outer peripheral optical part 6p of the rotator 6a is a plane perpendicular to the rotation axis RX, but may have a diffusion function.
  • the intermediate image TI is formed in a display region from the optical path length changing element 416 to the preceding stage of the optical path. Specifically, the optical path length changing element 416, that is, the incident surface 16j is within ⁇ 1 mm from the imaging position of the intermediate image TI. Has been placed.
  • the other surface 6s formed on the outer peripheral optical part 6p of the rotating body 6a is a spiral surface having the rotation axis RX as a spiral axis. Since one surface 6s is a flat surface and the other surface 6s is a spiral surface, the rotator 6a has a thickness t that changes in the direction of the rotation axis RX or the optical axis AX.
  • a step portion 6j is formed at one place along the circumference of the optical path length changing element 416.
  • the step portion 6j has a connecting surface 6k that connects the steps between the spiral ends and is inclined with respect to a plane including the rotation axis RX that rotates the optical path length changing element 416.
  • a functional area FA through which the optical axis AX of the main body optical system 13 passes, and an intermediate image TI is formed in the vicinity of the functional area FA on the image forming element 11 side. Is done.
  • This functional area FA moves at a constant speed on the rotating body 6a as the rotating body 6a rotates. That is, by rotating the rotating body 6a and causing the display light (image light) HK to enter the functional area FA that is a part of the rotating body 6a, the thickness of the functional area FA in the optical axis AX direction is continuously changed instead of stepwise. To do.
  • the apparent position of the intermediate image TI viewed from the virtual image forming optical system 17 can be continuously changed in the optical axis AX direction. If the display of the image forming element 11 is not operating, an intermediate image as a display is not necessarily formed, but an apparent position where the intermediate image will be formed is also referred to as an apparent position of the intermediate image. In the illustrated example, the apparent position of the intermediate image TI is reciprocated once in the direction of the optical axis AX by one rotation of the rotating body 6a.
  • the apparent position of the intermediate image TI viewed from the virtual image forming optical system 17 is also referred to as a movable projection position of the intermediate image TI.
  • the hollow frame 6b has a cylindrical outer contour, and includes a side surface portion 6e and a pair of end surface portions 6g and 6h.
  • the side surface portion 6e and the pair of end surface portions 6g and 6h are formed of the same material having optical transparency. However, the side part 6e does not need to have light transmittance.
  • the rotating body 6a in the hollow frame body 6b is fixed to the hollow frame body 6b via a pair of central shaft portions 65, and the hollow frame body 6b and the rotating body 6a rotate integrally around the rotation axis RX. To do.
  • the rotating body 6a provided with the intermediate screen 19 in the hollow frame body 6b, it is possible to suppress dust and the like from adhering to the rotating body 6a, and to generate sound accompanying the rotation of the rotating body 6a. Therefore, it is easy to stabilize the rotation of the rotating body 6a at a high speed.
  • the arrangement of the functional area FA on the rotating body 16a is rotated by rotating the optical path length changing element 416 around the rotation axis RX at a constant speed by the rotation driving device 62a which is a screen driving unit.
  • the rotation driving device 62a which is a screen driving unit.
  • the optical path length of the optical path passing through the rotating body 6a changes so as to continuously decrease, and the apparent position or intermediate image of the intermediate image TI viewed from the virtual image forming optical system 17
  • the movable projection position of TI can also be moved to the display surface 11a side of the image forming element 11 along the optical axis AX direction.
  • the projection distance or virtual image distance to the projection image IM can be reduced. Can be increased.
  • the projection distance or the virtual image distance to the projection image IM can be reduced.
  • the virtual image forming optical system (second projection optical system) 17 enlarges the intermediate image TI formed by the imaging optical system (first projection optical system) 15 through the optical path length changing element 416, and the driver VD as an observer.
  • a projection image IM as a virtual image is formed in front of.
  • the virtual image forming optical system 17 can have an optical characteristic that compensates for distortion of image formation and light beam deflection caused by the optical path length changing element 416 and the like.
  • the optical path length changing element 416 rotates around the rotation axis RX and corresponds to the functional area FA by operating the rotation driving device 62a under the control of the display control unit 18.
  • the apparent position of the intermediate image TI or the movable projection position of the intermediate image TI repeatedly and periodically moves in the direction of the optical axis AX, and the projected image IM as a virtual image formed behind the display screen 20 by the virtual image forming optical system 17.
  • the driver VD as the observer can be made larger or smaller.
  • the position of the projected image IM to be projected is changed back and forth, and the image forming element 11 is synchronized with the apparent arrangement of the intermediate image TI under the control of the display control unit 18.
  • the display content of the display element 11 is changed while changing the projection distance or virtual image distance to the projection image IM, and a series of projection images
  • the projected image IM can be made three-dimensional.
  • the rotational speed of the optical path length changing element 416 or the rotating body 6a or the moving speed of the functional area FA can be seen as if the projected image IM as a virtual image is simultaneously displayed at a plurality of locations or a plurality of projection distances in the depth direction. It is desirable to be speed.
  • the projection image IM of each distance zone is switched at 30 fps or more, preferably 60 fps or more, a plurality of displayed images are visually recognized as continuous images.
  • each distance for example, The display of the short-distance projection image IM is switched at 40 fps, and the projection image IM at each distance is performed in parallel and the switching is recognized as being substantially continuous.
  • FIG. 15B is a diagram specifically illustrating a change in the apparent position of the intermediate image TI as viewed from the virtual image forming optical system 17 or the movable projection position of the intermediate image TI as the optical path length changing element 416 rotates.
  • the movable projection position of the intermediate image TI is a sawtooth shaped temporal pattern PA along the optical axis AX direction when the image forming element (display element) 11 performs continuous display. Repeatedly move periodically. That is, the position of the intermediate image TI changes continuously and periodically with the rotation of the optical path length changing element 416, while being discontinuous at the position corresponding to the step portion 6j.
  • the position of the projected image (virtual image) IM is also different in scale, but repeatedly moves periodically along the optical axis AX in the same manner as the movable projected position of the intermediate image TI, and the projection distance Can be changed continuously.
  • the image forming element 11 does not perform continuous display but performs intermittent display while switching display contents, the movable projection position of the intermediate image TI is also discrete on the sawtooth-shaped temporal pattern. Position.
  • the display position Pn closest to the near distance side or the virtual image forming optical system 17 and the display position Pf closest to the far distance side or the anti-virtual image forming optical system 17 ensure a margin
  • the temporal pattern PA It is set at a position away from the both ends by a predetermined amount.
  • the break PD in the temporal pattern PA corresponds to the step portion 6j provided in the rotating body 6a of the optical path length changing element 416.
  • the displayed distance in the depth direction changes by changing the position of the apparent intermediate image within the displayed time as shown in FIG. 15B.
  • the display distance that can be seen by the observer (driver) in the display zone in which the distance in the depth direction changes is approximately the average position of the distance in the depth direction that changes within the display time.
  • FIG. 16 is a diagram for explaining the relationship between the movable projection position of the intermediate image and the projection distance or the relationship between the movable projection position of the intermediate image and the display zone.
  • the switching time interval ⁇ of each distance zone is set to a constant value.
  • the step size of the projection distance is short at a short distance and long at a long distance.
  • the apparent step size ⁇ of the movement of the intermediate image or the virtual image of the intermediate image TI is equal to the switching time of the distance zone to be displayed.
  • the display unit having the depth is set as a display zone, and the time of the one cycle is the display time of each display zone, If the time is shorter than the product of the number n of display zones, the display zone extends over a plurality of distance zones, and at least adjacent display zones overlap in the projection distance range displayed in each zone (FIG. 16). Display zones DZ1 to DZn). By performing overlapping display in this way, the same projected image (virtual image) can be displayed with a spread in the depth direction, and the display time of each display zone is made longer compared to a display that does not overlap. And the brightness of the projection image (virtual image) IM is improved.
  • n display zones can be set along the characteristic C1.
  • the shortest display zone is called a first display zone DZ1
  • the farthest display zone is called an nth display zone DZn (n is a natural number).
  • the distance width of display increases as the distance increases from the short distance.
  • adjacent display zones partially overlap in projection distance. That is, the projection distances of the kth display zone DZk (k is a natural number smaller than n) and the (k + 1) th display zone DZk + 1 partially overlap.
  • the second display zone DZ2 and the third display zone DZ3 are projected distances.
  • the k-th display zone DZk also displays an image displayed in the display zone set before, after, or before and after the original display image of the projection distance of the display target to be displayed there. It is a composite projection image.
  • the entire zone or the corresponding zones corresponding to the sub-zones LZk-2 to LZk + 1 are displayed in a certain period of time while the k-th display zone is being displayed. ing.
  • the display time of the image displayed in each of the display zones DZ1 to DZn is shifted between the adjacent display zones DZ1 to DZn at the pitch ⁇ of the display time.
  • the distance between both ends of the near side and the far side varies, and the average distance also varies. Since the human eye or the brain captures the display image at the average distance of the display zones DZ1 to DZn, even when displaying simultaneously, the display distances of the respective display zones DZ1 to DZn are displayed as different positions. Can be in a state.
  • the display zone DZk is configured by a combination of a series of a plurality of subzones LZk ⁇ 2 to LZk + 1 whose distance changes stepwise.
  • the same projection image (virtual image) IM is displayed in an overlapping manner in the adjacent distance zones LZk ⁇ 2 to LZk + 1 so that the positions and the angle sizes coincide with each other.
  • the projection image (virtual image) IM in which the projection distance changes can be displayed in a state where there is no deviation or blurring.
  • the average display distance at this time is a distance corresponding to the reference subzone LZk.
  • the display zones DZ1 to DZn are shown to extend in the horizontal direction. However, when the vertical axis is the position of the intermediate image, the display zones DZ1 to DZn have characteristics C1. It will extend along.
  • the display times in the first display zone DZ1 to the nth display zone DZn are all equal.
  • the display brightness of each of the display zones DZ1 to DZn can be matched, and the driver VD who is an observer unintentionally focuses on an image at a specific distance. Can be prevented from occurring.
  • a pair of display objects are images that are displayed in a semi-transparent superimposed manner, and in a difference area or an independent area where a pair of display objects do not overlap.
  • the standard display is sufficient.
  • it is possible to make a display that makes a difference by using methods such as color and size (including thickness in the case of lines), brightness, and blinking, and use various display methods that are devised to communicate to the driver. Can do.
  • FIG. 17 is a conceptual diagram illustrating the operation of the main control unit 90 in the sixth embodiment.
  • the main control unit 90 detects an object using the environment monitoring unit 72
  • the main control unit 90 generates display data corresponding to the display frame HW surrounding the target object KT (see FIG. 4A and the like) corresponding to the object. It is stored in the illustrated storage unit (step S11).
  • the main control unit 90 performs data conversion such that the display data obtained in step S11 is distributed to the corresponding display zones DZ1 to DZn (step S12).
  • step S12 the main control unit 90 performs data conversion such that the display data obtained in step S11 is distributed to the corresponding display zones DZ1 to DZn.
  • one or more corresponding display frames HW are displayed in any one of the display zones DZ1 to DZn (in the example of FIG.
  • step S13 the main control unit 90 processes the display data corresponding to one or more display frames HW so as to match the assigned display zones DZ1 to DZn, and stores them in a storage unit (not shown) (step S13).
  • This adaptation includes image processing such as correcting the outline and arrangement of the frame image for each of the distance zones LZk ⁇ 2 to LZk + 1.
  • the main control unit 90 synthesizes the display data adapted in step S13 with the existing data (step S14).
  • the main control unit 90 outputs the display data obtained in step S15 to the display control unit 18 in synchronization with the operation of the rotation driving device 62a, and the image forming element (display element) 11 has the function of the rotating body 6a. A display operation corresponding to the movable projection position of the area FA or the intermediate image TI is performed.
  • FIG. 18 is a diagram for explaining the operation of the image forming element 11.
  • the first to nth display areas arranged in the vertical direction correspond to the first to nth display zones DZ1 to DZn shown in FIG.
  • the first display area to the nth display on the display surface 11a of the image forming element (display element) 11 corresponding to the first to nth display zones DZ1 to DZn.
  • the display in the area is repeated.
  • the signals F1 to F4 mean that the same display image is repeated in four subzones, and each of the signals F1 to F4 includes R, G, and B signal components for color display. ing.
  • the spiral shape as a three-dimensional shape formed on the rotating body 6a is not limited to one cycle, and the azimuth region can be divided into a plurality of cycles. Further, the spiral shape of the rotating body 6a is not limited to linearly increasing / decreasing the thickness, but may be one that increases / decreases the thickness nonlinearly.
  • the movable projection position of the intermediate image is continuously changed by rotating the optical path length changing element 416 around the rotation axis RX, and the simple configuration is reliable. It is possible to display while changing the display position of the virtual image at a high speed including the depth direction while securing the property.
  • the image forming element (display element) 11 since the image forming element (display element) 11 performs display in synchronization with the rotation of the optical path length changing element 416 that changes the projection distance, the depth direction is included.
  • the control units 90 and 18 set the projection distance so as to partially overlap in adjacent display zones among the plurality of display zones DZ1 to DZn that change the projection distance.
  • the projection distance of the adjacent display zone Compared to a display without overlapping, by providing overlapping even with the same number of divisions, it is possible to lengthen the projection time or display time by each display zone, and it becomes easy to simultaneously project a high-luminance image.
  • the virtual image display device and method according to the seventh embodiment will be described below.
  • the virtual image display device according to the seventh embodiment is a modification of the virtual image display device according to the second embodiment or the sixth embodiment, and matters not specifically described are the same as those in the second or sixth embodiment.
  • the main body optical system 13 includes an optical path length changing element 516 disposed between the imaging optical system 15 and the virtual image forming optical system 17.
  • the optical path length changing element 516 is a three-dimensionally shaped portion formed in a wedge shape, and is thin on the tip side and thick on the root side.
  • the optical path length changing element 516 By moving the optical path length changing element 516 in the direction perpendicular to the optical axis AX by the arrangement changing device 62, the location where the optical axis AX crosses in the optical path length changing element 516 sequentially moves, and the intermediate position viewed from the virtual image forming optical system 17 The apparent position of the image TI or the movable projection position of the intermediate image TI moves. As a result, the distance between the display image IM as a virtual image formed behind the display screen 20 by the virtual image forming optical system 17 and the driver UN as an observer can be increased or decreased.
  • the apparent position of the intermediate image TI viewed from the virtual image forming optical system 17 is continuously changed as in the sixth embodiment. Therefore, display control similar to that in the sixth embodiment is performed. I do.
  • the movable projection position of the intermediate image TI can be moved at a constant speed as shown in FIG. 15B, but can also be moved at a periodically changing speed such as a sine wave.
  • the display zones DZ1 to DZn are set in consideration of the moving speed of the optical path length changing element 516, the luminance of the display frame HW and the like can be made uniform regardless of the projection position.
  • the image forming element 11 can perform display with a color shift in advance.
  • the virtual image display device according to the eighth embodiment will be described below.
  • the virtual image display device according to the eighth embodiment is a modification of the virtual image display device according to the first to seventh embodiments, and items not specifically described are the same as those in the first embodiment.
  • a display screen 220 is pasted inside a rectangular reflection region 8d provided in front of the driver's seat of the windshield 8 forming the front window. ing. That is, a half mirror is formed on the windshield 8.
  • the display screen 220 can also be embedded in the windshield 8.
  • the virtual image display device 100 as a specific embodiment has been described above, the virtual image display device according to the present invention is not limited to the above.
  • the optical path length changing element 16 in the first to fifth embodiments is not limited to the staircase structure, and may include divided regions or partial regions 16a to 16d separated from each other.
  • the divided area or the partial area can be connected to each other by a connecting member such as a frame.
  • each of the partial regions 16a to 16d constituting the optical path length changing element 16 has a different thickness, it is desirable to incorporate a balancer for smooth rotation.
  • the rotational balance of the optical path length changing element 16 is arranged by arranging the partial areas corresponding to the same virtual image display distance to face each other. Can be increased.
  • the arrangement of the virtual image display device 100 can be turned upside down, and the display screen 20 can be arranged at the upper part of the windshield 8 or at the sun visor position.
  • a screen 20 is arranged. Further, the display screen 20 may be disposed at a position corresponding to a conventional mirror of an automobile.
  • the outline of the display screen 20 is not limited to a rectangle, but may be various shapes.
  • the image forming optical system 15 and the virtual image forming optical system 17 shown in FIG. 2 and the like are merely examples, and the optical configurations of the image forming optical system 15 and the virtual image forming optical system 17 can be changed as appropriate.
  • an intermediate image as a preceding stage of the intermediate image TI can be additionally formed in the imaging optical system 15.
  • One or more mirrors having no optical power may be disposed in the optical path of the imaging optical system 15 and the virtual image forming optical system 17. In this case, it may be advantageous for downsizing the drawing unit 10 and the like by folding.
  • the display screen (combiner) 20 is a flat plate, but the display screen 20 can be a free curved surface or other curved surface while taking into consideration the optical specifications of the main body optical system 13.
  • the display position of the display image (virtual image) IM is not limited to the three or four illustrated in the above embodiment, and can be set to an appropriate number of five or more.
  • the display of the display image IM can be performed continuously or intermittently by changing the position.
  • the diffusion regions 16a to 16d of the optical path length changing element 16 are illustrated as rectangles.
  • the diffusion region of the optical path length changing element 16 may be trapezoidal, fan-shaped, or other shapes.
  • the shape is in consideration of the number of regions of the diffusion screen, the relationship between the rotation axis RX and the optical axis AX, the rotation speed, and the like.
  • the virtual image display device 100 described above is not limited to a projection device mounted on an automobile or other moving body, but can be incorporated in a digital signage or the like, but can also be applied to other uses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Instrument Panels (AREA)

Abstract

Provided are a virtual image display device and method with which it is possible for hazard signals and other additional information, in addition to display contents such as vehicle speed, to be displayed at multiple distances in such a way as to allow appropriate recognition thereof, while having a simple configuration. A virtual image display device 100 is provided with an image forming element 11, which is a display unit, and a virtual image display optical system 30 which enlarges an image formed in a display region by the image forming element 11, wherein an optical path length varying element 16 having a construction with different thicknesses in an optical axis AX direction is disposed in an optical path from the display region to a mirror 17a, which is a first reflective body.

Description

虚像表示装置及び方法Virtual image display apparatus and method
 本発明は、視線の先に虚像を表示し、かつ虚像の投影位置を可変とした虚像表示装置及び虚像表示方法に関するものである。 The present invention relates to a virtual image display device and a virtual image display method in which a virtual image is displayed at the tip of a line of sight and the projection position of the virtual image is variable.
 従来のヘッドアップディスプレイ(HUD)装置は、虚像を運転者からある一定の距離だけ離れた位置に生成するのが一般的であり、HUDによる表示内容は、車速、カーナビゲーション情報等に限られていた。そもそもHUDを車に搭載する目的は、運転者の視線移動を最小限に抑えることで、より安全な運転を支援するものであるが、安全運転支援という意味においては、車速等の表示内容だけでは不十分であり、例えば前方の車、歩行者、障害物等をカメラやセンサーで検知し、HUDを通して運転者に事前に危険を察知させて事故を未然に防ぐようなシステムの方がより好ましい。こういったシステムを実現するには、例えば車、人、障害物等のシースルー像に対して危険信号その他の追加情報を重畳させて表示させることが考えられる。 Conventional head-up display (HUD) devices generally generate a virtual image at a position away from a driver by a certain distance, and display contents by HUD are limited to vehicle speed, car navigation information, and the like. It was. In the first place, the purpose of installing the HUD in the car is to support the safer driving by minimizing the movement of the driver's line of sight. It is more preferable to use a system in which, for example, a car, a pedestrian, an obstacle, etc. in front of the vehicle are detected by a camera or a sensor, and the driver is informed of the danger in advance through HUD to prevent an accident. In order to realize such a system, for example, it is conceivable to display a danger signal or other additional information superimposed on a see-through image of a car, a person, an obstacle or the like.
 上記のような危険信号を重畳させて表示するシステムにおいて、運転者から虚像までの距離が一定だと、運転者の目の位置がずれた場合に実物の位置と危険信号の位置とがずれてしまい、運転者が危険信号を誤認してしまうという課題がある。このような問題を解決する手法としては、実物に対して虚像を奥行き方向も含めて重畳させることが考えられる。 In the system that displays the danger signal superimposed as described above, if the distance from the driver to the virtual image is constant, the actual position and the position of the danger signal will be shifted if the driver's eyes are displaced. Therefore, there is a problem that the driver misidentifies the danger signal. As a technique for solving such a problem, it is conceivable to superimpose a virtual image on the real object including the depth direction.
 例えば特許文献1では、ミラーを動かすことにより、投影する反射体を切り替えて運転者から虚像までの距離を変える手法が開示されているが、このような手法では、虚像位置は多くて2つであるため、運転者の誤認を防ぐには不十分である。また、特許文献2には、表示素子を複数並べることによって虚像を複数生成する手法が開示されているが、このような手法では、表示素子の厚みや配線等による物理的な制約により虚像距離の細かな調整が難しく、また表示素子を複数有することによるコストアップや、表示制御回路の複雑化が懸念される。 For example, Patent Document 1 discloses a method of changing a distance from a driver to a virtual image by switching a reflector to be projected by moving a mirror. However, in such a method, there are at most two virtual image positions. As such, it is not sufficient to prevent driver misidentification. Patent Document 2 discloses a method of generating a plurality of virtual images by arranging a plurality of display elements. In such a method, the virtual image distance is reduced due to physical restrictions such as the thickness of the display elements and wiring. It is difficult to make fine adjustments, and there is a concern that the cost may increase due to having a plurality of display elements, and the display control circuit may be complicated.
特開平6-144082号公報Japanese Patent Laid-Open No. 6-144082 特開2004-168230号公報JP 2004-168230 A
 本発明は、上記背景技術に鑑みてなされたものであり、簡素な構成でありながら、上記のような追加情報を適切な認識が可能な程度に多数の距離に表示させることができる虚像表示装置及び虚像表示方法を提供することを目的とする。 The present invention has been made in view of the above-described background art, and has a simple configuration and can display a virtual image display device capable of displaying additional information as described above at a large number of distances to allow proper recognition. It is another object of the present invention to provide a virtual image display method.
 上記した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した虚像表示装置は、表示部と、表示部によって表示領域に形成された像を拡大する虚像表示光学系とを備え、表示領域から第1の反射体までの光路中に、光軸方向に厚みの異なる構造を有する光路長変化素子が配置されている。 In order to achieve at least one of the above objects, a virtual image display device reflecting one aspect of the present invention includes a display unit and a virtual image display optical system that enlarges an image formed in the display region by the display unit. An optical path length changing element having a structure with different thicknesses in the optical axis direction is arranged in the optical path from the display area to the first reflector.
 上記した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した虚像表示方法は、表示部と、表示部によって表示領域に形成された像を拡大する虚像表示光学系とを用いた虚像表示方法であって、光軸方向に厚みの異なる構造を有する光路長変化素子を表示領域から第1の反射体までの光路中に配置し、光路長変化素子の配置によって投影距離を変化させる。 In order to achieve at least one of the above objects, a virtual image display method reflecting one aspect of the present invention includes a display unit and a virtual image display optical system that enlarges an image formed in the display region by the display unit. In the virtual image display method used, an optical path length changing element having a structure having a different thickness in the optical axis direction is arranged in the optical path from the display region to the first reflector, and the projection distance is set by the arrangement of the optical path length changing element. Change.
図1Aは、第1実施形態の虚像表示装置を車体に搭載した状態を示す側方断面図であり、図1Bは、画像表示装置を説明する車内側からの正面図である。FIG. 1A is a side cross-sectional view showing a state in which the virtual image display device of the first embodiment is mounted on a vehicle body, and FIG. 1B is a front view from the vehicle inner side explaining the image display device. 虚像表示装置の具体的な構成例を説明する拡大側方断面図である。It is an expanded side sectional view explaining the specific structural example of a virtual image display apparatus. 図3A及び3Bは、光路長変化素子等を説明する側方断面図及び正面図である。3A and 3B are a side sectional view and a front view illustrating the optical path length changing element and the like. 図4A及び4Bは、第1実施形態の虚像表示装置による虚像位置と透視物との配置関係を説明する図である。4A and 4B are diagrams for explaining the positional relationship between the virtual image position and the see-through object in the virtual image display device according to the first embodiment. 図5A及び5Bは、比較例の虚像表示装置による虚像位置と透視物との配置関係を説明する図である。5A and 5B are diagrams for explaining the positional relationship between a virtual image position and a see-through object in the virtual image display device of the comparative example. 虚像表示装置を含む移動体用表示システムを説明するブロック図である。It is a block diagram explaining the display system for moving bodies containing a virtual image display apparatus. 第2実施形態の虚像表示装置を説明する図である。It is a figure explaining the virtual image display apparatus of 2nd Embodiment. 図8A及び8Bは、光路長変化素子を説明する側方断面図及び正面図である。8A and 8B are a side sectional view and a front view illustrating the optical path length changing element. 第3実施形態の虚像表示装置を説明する図である。It is a figure explaining the virtual image display apparatus of 3rd Embodiment. 図10A及び10Bは、光路長変化素子を説明する側方断面図及び正面図である。10A and 10B are a side sectional view and a front view illustrating the optical path length changing element. 第4実施形態の虚像表示装置を説明する図である。It is a figure explaining the virtual image display apparatus of 4th Embodiment. 第5実施形態の虚像表示装置を説明する図である。It is a figure explaining the virtual image display apparatus of 5th Embodiment. 第6実施形態の虚像表示装置を説明する図である。It is a figure explaining the virtual image display apparatus of 6th Embodiment. 図14A及び14Bは、中間スクリーンを組み込んだ拡散部の構造を説明する一部破断側面図及び一部破断正面図である。14A and 14B are a partially broken side view and a partially broken front view for explaining the structure of the diffusion portion incorporating the intermediate screen. 図15Aは、機能領域の位置の変化を具体的に例示する図であり、図15Bは、中間像の可動投影位置の変化を具体的に例示する図である。FIG. 15A is a diagram specifically illustrating a change in the position of the functional area, and FIG. 15B is a diagram specifically illustrating a change in the movable projection position of the intermediate image. 見かけの中間像の位置と投影距離との関係を示すとともに、表示ゾーン及び距離ゾーンを説明する図である。It is a figure explaining the display zone and distance zone while showing the relationship between the position of an apparent intermediate image, and projection distance. 第6実施形態の虚像表示装置の動作例を説明する図である。It is a figure explaining the operation example of the virtual image display apparatus of 6th Embodiment. 表示ゾーンでの表示の切り替えの一例を説明する概念図である。It is a conceptual diagram explaining an example of the display switching in a display zone. 第7実施形態の虚像表示装置を説明する図である。It is a figure explaining the virtual image display apparatus of 7th Embodiment. 第8実施形態の虚像表示装置を説明する図である。It is a figure explaining the virtual image display apparatus of 8th Embodiment.
 〔第1実施形態〕
 以下、図面を参照しつつ、本発明に係る虚像表示装置及び方法の第1実施形態について説明する。
[First Embodiment]
Hereinafter, a virtual image display device and method according to a first embodiment of the present invention will be described with reference to the drawings.
 図1A及び1Bは、本実施形態の虚像表示装置100及びその使用状態を説明する概念的な側方断面図及び正面図である。この虚像表示装置100は、例えばヘッドアップディスプレイ装置として車体2内に搭載されるものであり、描画ユニット10と表示スクリーン20とを備える。虚像表示装置100は、描画ユニット10中の後述する像形成素子11に表示されている画像情報を、表示スクリーン20を介してドライバーUN向けに虚像表示するものである。 1A and 1B are a conceptual side sectional view and a front view illustrating a virtual image display device 100 according to the present embodiment and a use state thereof. The virtual image display device 100 is mounted in the vehicle body 2 as a head-up display device, for example, and includes a drawing unit 10 and a display screen 20. The virtual image display device 100 displays image information displayed on an image forming element 11 (to be described later) in the drawing unit 10 for a driver UN through the display screen 20.
 虚像表示装置100のうち描画ユニット10は、車体2のダッシュボード4内に埋め込むように設置されており、運転関連情報等を含む画像に対応する表示光HKを表示スクリーン20に向けて射出する。表示スクリーン20は、コンバイナーとも呼ばれるハーフミラーであり、半透過性を有する凹面鏡又は平面鏡である。表示スクリーン20は、下端の支持によってダッシュボード4上に立設され、描画ユニット10からの表示光HKを車体2の後方に向けて反射する。つまり、図示の場合、表示スクリーン20は、フロントガラス8とは別体で設置される独立型のものとなっている。ハーフミラーである表示スクリーン20で反射された表示光HKは、運転席6に座ったドライバーUNの瞳HT及びその周辺位置に対応するアイボックス(不図示)に導かれる。ドライバーUNは、表示スクリーン20で反射された表示光HK、つまり車体2の前方にある虚像としての表示像IMを観察することができる。一方、ドライバーUNは、ハーフミラーである表示スクリーン20を透過した外界光、つまり前方景色、自動車等の実像を観察することができる。結果的に、ドライバーUNは、表示スクリーン20の背後の外界像に重ねて、表示スクリーン20での表示光HKの反射によって形成される運転関連情報等を含む表示像(虚像)IMを観察することができる。 The drawing unit 10 of the virtual image display device 100 is installed so as to be embedded in the dashboard 4 of the vehicle body 2 and emits display light HK corresponding to an image including driving-related information and the like toward the display screen 20. The display screen 20 is a half mirror also called a combiner, and is a concave mirror or a plane mirror having a semi-transmission property. The display screen 20 is erected on the dashboard 4 with the lower end supported, and reflects the display light HK from the drawing unit 10 toward the rear of the vehicle body 2. That is, in the illustrated case, the display screen 20 is an independent type that is installed separately from the windshield 8. The display light HK reflected by the display screen 20 which is a half mirror is guided to an eye box (not shown) corresponding to the pupil HT of the driver UN sitting on the driver's seat 6 and its peripheral position. The driver UN can observe the display light HK reflected by the display screen 20, that is, the display image IM as a virtual image in front of the vehicle body 2. On the other hand, the driver UN can observe external light transmitted through the display screen 20 that is a half mirror, that is, a real image of a front view, a car, and the like. As a result, the driver UN observes a display image (virtual image) IM including operation-related information and the like formed by reflection of the display light HK on the display screen 20 so as to overlap the external image behind the display screen 20. Can do.
 図2に示すように、描画ユニット10は、像形成素子11を含む拡大結像系又は投影光学系並びに虚像型の反射光学系から構成される本体光学系13と、本体光学系13を動作させる表示制御部18と、本体光学系13等を収納するハウジング14とを備える。これらのうち本体光学系13と表示スクリーン(コンバイナー)20と組み合わせたものは、虚像表示光学系30を構成する。 As shown in FIG. 2, the drawing unit 10 operates a main body optical system 13 including a magnification image forming system or a projection optical system including an image forming element 11 and a virtual image type reflection optical system, and a main body optical system 13. A display control unit 18 and a housing 14 for housing the main optical system 13 and the like are provided. Among these, the combination of the main body optical system 13 and the display screen (combiner) 20 constitutes a virtual image display optical system 30.
 本体光学系(投影光学系)13は、表示部である像形成素子11のほかに、像形成素子11に形成された画像を拡大した中間像TIを形成可能な結像光学系15と、中間像TIの結像位置に近接して光路後段に配置される光路長変化素子16と、中間像TIを虚像に変換する虚像形成光学系17とを備える。 The main body optical system (projection optical system) 13 includes an image forming optical system 15 capable of forming an intermediate image TI obtained by enlarging an image formed on the image forming element 11 in addition to the image forming element 11 serving as a display unit. An optical path length changing element 16 disposed in the latter stage of the optical path in the vicinity of the imaging position of the image TI and a virtual image forming optical system 17 for converting the intermediate image TI into a virtual image are provided.
 像形成素子11は、2次元的な表示面11aを有する表示部である。像形成素子11の表示面11aに形成された像は、本体光学系13のうち結像光学系15で拡大されて中間像TIを形成し、光路長変化素子16を通過し、虚像形成光学系17等へ導かれる。この際、2次元表示が可能な像形成素子11を用いることで、中間像TI又は表示像(虚像)IMの切換えを比較的高速とできる。像形成素子11は、DMDやLCOS等の反射型の素子であっても、液晶等の透過型の素子であってもよい。特に、像形成素子11としてDMDを用いると、明るさを維持しつつ画像を高速で切り替えることが容易になり、虚像距離又は投影距離を変化させる表示に有利である。なお、像形成素子11は、30fps以上のフレームレートで動作する。これにより、異なる投影距離に複数の表示像IMが同時に表示されているように見せることが容易になる。 The image forming element 11 is a display unit having a two-dimensional display surface 11a. The image formed on the display surface 11a of the image forming element 11 is enlarged by the image forming optical system 15 in the main body optical system 13 to form an intermediate image TI, passes through the optical path length changing element 16, and is a virtual image forming optical system. To 17 mag. At this time, by using the image forming element 11 capable of two-dimensional display, the intermediate image TI or the display image (virtual image) IM can be switched at a relatively high speed. The image forming element 11 may be a reflective element such as DMD or LCOS, or a transmissive element such as liquid crystal. In particular, when a DMD is used as the image forming element 11, it becomes easy to switch images at high speed while maintaining brightness, which is advantageous for display in which a virtual image distance or a projection distance is changed. The image forming element 11 operates at a frame rate of 30 fps or higher. This makes it easy to make it appear as if a plurality of display images IM are simultaneously displayed at different projection distances.
 結像光学系15は、固定焦点のレンズ系であり、図示を省略するが、複数のレンズを有する。結像光学系15は、像形成素子(表示部)11の表示面11aに形成された画像を適当な倍率で拡大投影し、光路長変化素子16の入射面16jに近接した位置に中間像TIを形成する。なお、結像光学系15は、この結像光学系15の最も光路長変化素子16側に配置された絞り15aを有する。 The imaging optical system 15 is a fixed-focus lens system, and has a plurality of lenses (not shown). The imaging optical system 15 enlarges and projects an image formed on the display surface 11a of the image forming element (display unit) 11 at an appropriate magnification, and intermediate image TI at a position close to the incident surface 16j of the optical path length changing element 16. Form. The imaging optical system 15 has a stop 15a arranged closest to the optical path length changing element 16 of the imaging optical system 15.
 光路長変化素子16は、樹脂やガラスで形成された回転体であり、移動部である配置変更装置62に設けた回転駆動装置62aに駆動されて一定速度で回転する。光路長変化素子16は、詳細は後述するが、複数の厚みが異なる部分領域を有し、これらの部分領域は、光路長変化素子16の回転に伴って結像光学系15によって形成される中間像TIの位置に順次配置される。配置変更装置62によって光路長変化素子16を光軸AXの周りに移動させることで、虚像形成光学系17によって表示スクリーン(コンバイナー)20の背後に形成される虚像としての表示像IMと観察者であるドライバーUNとの距離を大きく、または小さくすることができる。このように、投影される表示像IMの位置を前後に変化させるとともに、表示内容をその位置に応じたものとすることで、表示像IMまでの虚像距離を変化させつつ表示像IMを変化させることになり、一連の投影像としての表示像IMを3次元的なものとすることができる。 The optical path length changing element 16 is a rotating body formed of resin or glass, and is driven by a rotation driving device 62a provided in the arrangement changing device 62 that is a moving portion and rotates at a constant speed. Although the optical path length changing element 16 will be described in detail later, the optical path length changing element 16 has a plurality of partial areas having different thicknesses. These partial areas are intermediate areas formed by the imaging optical system 15 as the optical path length changing element 16 rotates. Sequentially arranged at the position of the image TI. By moving the optical path length changing element 16 around the optical axis AX by the arrangement changing device 62, the virtual image forming optical system 17 displays the display image IM as a virtual image formed behind the display screen (combiner) 20 and the observer. The distance to a certain driver UN can be increased or decreased. Thus, the display image IM is changed while changing the virtual image distance to the display image IM by changing the position of the projected display image IM forward and backward and by changing the display contents according to the position. As a result, the display image IM as a series of projection images can be made three-dimensional.
 図Aは、光路長変化素子16及び配置変更装置62を説明する側方断面図であり、図3Bは、光路長変化素子16を説明する正面図である。光路長変化素子16は、光軸AXに平行に延びる回転軸RXが通る軸部19aと、軸部19aに支持されて回転軸RXの周りに配置される4つの部分領域16a~16dとを有する。回転駆動装置62aは、軸部19aを介して光路長変化素子16を回転させる。回転駆動装置62aは、台座及び支柱を有する支持部材62b上に固定されている。 Fig. A is a side sectional view for explaining the optical path length changing element 16 and the arrangement changing device 62, and Fig. 3B is a front view for explaining the optical path length changing element 16. The optical path length changing element 16 includes a shaft portion 19a through which a rotation axis RX extending parallel to the optical axis AX passes, and four partial regions 16a to 16d supported by the shaft portion 19a and arranged around the rotation axis RX. . The rotation driving device 62a rotates the optical path length changing element 16 via the shaft portion 19a. The rotation drive device 62a is fixed on a support member 62b having a pedestal and a support column.
 光路長変化素子16は、4つの部分領域16a~16dを含む階段状構造体であり、部分領域16a~16dを中心の周りに設けた円盤状構造体116である。円盤状構造体116としての光路長変化素子16は、空気換算した光路長を例えば4段階で変化させる役割を有する。光路長変化素子16を構成する各部分領域16a~16dは、表示領域に形成された中間像TIに対応するサイズを有している。これらの部分領域16a~16dは、光軸AX方向の厚みが互いに異なるものとなっている。具体的には、光路長変化素子16は、虚像形成光学系17側又は光路後段側において、光軸AXが通る円周16rに沿って階段状に配置された複数の射出面16e~16hを有しており、各射出面16e~16hは、平面となっている。つまり、光路長変化素子16は、表示領域に形成された中間像TIの反対側に配置される射出面16e~16hが階段状となっている。一方、光路長変化素子16は、結像光学系15側又は光路前段側において、単一の平面である入射面16jを有している。中間像TIは、光路長変化素子16から光路前段にかけての表示領域に結像され、具体的には、光路長変化素子16すなわち入射面16jは、中間像TIの結像位置から±1mm以内に配置されている。光路長変化素子16の入射面16jは、拡散機能を有している。入射面16jは、例えば磨りガラス状の面に加工されている。この場合、入射面16jに強制的な中間像が形成され、ここから光が拡散するので、アイボックスを広く確保することができる。なお、拡散機能に対応する磨りガラス面の部分は、例えば別部品として光路長変化素子16の入射面16j上に貼り付けることができる。入射面16j上に貼り付ける別部品としては、磨りガラス板、拡散板、マイクロレンズアレイ等を用いることができる。 The optical path length changing element 16 is a stepped structure including four partial regions 16a to 16d, and is a disk-shaped structure 116 provided with the partial regions 16a to 16d around the center. The optical path length changing element 16 as the disk-like structure 116 has a role of changing the optical path length converted into air in, for example, four stages. Each of the partial areas 16a to 16d constituting the optical path length changing element 16 has a size corresponding to the intermediate image TI formed in the display area. These partial regions 16a to 16d have different thicknesses in the optical axis AX direction. Specifically, the optical path length changing element 16 has a plurality of exit surfaces 16e to 16h arranged stepwise along a circumference 16r through which the optical axis AX passes on the virtual image forming optical system 17 side or the rear stage side of the optical path. Each of the exit surfaces 16e to 16h is a flat surface. That is, in the optical path length changing element 16, the exit surfaces 16e to 16h arranged on the opposite side of the intermediate image TI formed in the display area are stepped. On the other hand, the optical path length changing element 16 has an incident surface 16j that is a single plane on the imaging optical system 15 side or the optical path pre-stage side. The intermediate image TI is formed in a display region from the optical path length changing element 16 to the preceding stage of the optical path. Specifically, the optical path length changing element 16, that is, the incident surface 16j is within ± 1 mm from the imaging position of the intermediate image TI. Has been placed. The incident surface 16j of the optical path length changing element 16 has a diffusion function. The incident surface 16j is processed into a polished glass surface, for example. In this case, a compulsory intermediate image is formed on the incident surface 16j, and light diffuses therefrom, so that a wide eye box can be secured. In addition, the part of the frosted glass surface corresponding to a spreading | diffusion function can be affixed on the entrance plane 16j of the optical path length change element 16 as another component, for example. As another part to be affixed on the incident surface 16j, a polished glass plate, a diffusion plate, a microlens array, or the like can be used.
 回転駆動装置62aによって軸部19aを例えば一定速度で回転させることで、光路長変化素子16も回転軸RXの周りに回転する。結果的に、4つの部分領域16a~16dが光軸AX上に順次移動し、各部分領域16a~16dは、光軸AXを横切るように移動する。この際、部分領域16a~16dの中央が光軸AXを横切るように配置関係が調整され位置決めがなされている。正面から見て軸部19aが例えば時計方向に回転する場合、部分領域16a~16dの順番で光軸AX上に配置される。部分領域16aの中央が光軸AX上に配置されたタイミングでは、部分領域16aが最も厚く、この時点で表示部である像形成素子11に表示されている画像又は中間像TIが、ハーフミラーである表示スクリーン(コンバイナー)20の背後の最も近くに虚像として表示される。また、部分領域16dの中央が光軸AX上に配置されたタイミングでは、部分領域16dが最も薄く、この時点で像形成素子11に表示されている画像又は中間像TIが、ハーフミラーである表示スクリーン(コンバイナー)20の背後の最も遠くに虚像として表示される。ここで、虚像形成光学系17から見た中間像TIの見かけ上の位置は、最も厚い部分領域16aが光軸AX上に位置するとき最も虚像形成光学系17寄りとなっており、最も薄い部分領域16dが光軸AX上に位置するとき最も像形成素子11の表示面11a寄りとなっている。像形成素子11における画像の表示は、ストロボのように間欠的で部分領域16a~16dの中央又は周辺が光軸AX上に配置されているタイミングとなる。なお、部分領域は4つに限られるものではなく、虚像を表示したい距離数に応じて部分領域数を変えてもよい。 The optical path length changing element 16 is also rotated around the rotation axis RX by rotating the shaft portion 19a, for example, at a constant speed by the rotation drive device 62a. As a result, the four partial regions 16a to 16d sequentially move on the optical axis AX, and the partial regions 16a to 16d move so as to cross the optical axis AX. At this time, the positional relationship is adjusted and positioned so that the centers of the partial areas 16a to 16d cross the optical axis AX. When the shaft portion 19a rotates in the clockwise direction when viewed from the front, for example, the partial regions 16a to 16d are arranged on the optical axis AX in the order. At the timing when the center of the partial region 16a is arranged on the optical axis AX, the partial region 16a is the thickest, and the image or intermediate image TI displayed on the image forming element 11 which is the display unit at this time is a half mirror. It is displayed as a virtual image closest to the back of a certain display screen (combiner) 20. Further, at the timing when the center of the partial region 16d is arranged on the optical axis AX, the partial region 16d is the thinnest, and the image or intermediate image TI displayed on the image forming element 11 at this time is a half mirror. It is displayed as a virtual image farthest behind the screen (combiner) 20. Here, the apparent position of the intermediate image TI viewed from the virtual image forming optical system 17 is closest to the virtual image forming optical system 17 when the thickest partial region 16a is positioned on the optical axis AX, and the thinnest portion. When the region 16d is positioned on the optical axis AX, it is closest to the display surface 11a of the image forming element 11. The image display on the image forming element 11 is intermittent, like a strobe, and is at the timing when the center or the periphery of the partial areas 16a to 16d is arranged on the optical axis AX. Note that the number of partial regions is not limited to four, and the number of partial regions may be changed according to the number of distances at which a virtual image is desired to be displayed.
 図2に示す虚像形成光学系17は、光路長変化素子16に形成された中間像TIを表示スクリーン20と協働して拡大し、ドライバーUNの前方に虚像としての表示像IMを形成する。虚像形成光学系17は、少なくとも1枚のミラーで構成されるが、図示の例では2枚のミラー17a,17bを含む。ここで、一方のミラー17aは、第1の反射体であって、光路前段にある中間像TI側に配置されており、光学的なパワーを有する第1のミラーとなっている。また、他方のミラー17bは、光路後段にある表示スクリーン(コンバイナー)20側に配置されており、光学的なパワーを有する第2のミラーとなっている。この場合、本体光学系(投影光学系)13を高倍かつ高性能にすることができる。 The virtual image forming optical system 17 shown in FIG. 2 enlarges the intermediate image TI formed on the optical path length changing element 16 in cooperation with the display screen 20, and forms a display image IM as a virtual image in front of the driver UN. The virtual image forming optical system 17 includes at least one mirror, but in the illustrated example, includes two mirrors 17a and 17b. Here, the one mirror 17a is a first reflector, which is disposed on the intermediate image TI side in the front stage of the optical path, and is a first mirror having optical power. The other mirror 17b is disposed on the display screen (combiner) 20 side in the latter stage of the optical path, and is a second mirror having optical power. In this case, the main body optical system (projection optical system) 13 can be increased in magnification and performance.
 図4Aは、実施形態の虚像表示光学系30又は虚像表示装置100による表示を説明する概念的な平面図であり、図4Bは、図4Aに対応する表示の見え方を説明する図である。図4Aに示すように、ドライバーUNが観察している対象物(この場合、対向車線を走行する自動車)KTの位置又はその近傍に表示像IMである表示枠HWを形成する場合について説明する。このような表示枠HWは、危険警告信号その他の虚像であり、例えば前方に近接する自動車、自転車、歩行者等を識別した結果を示す。表示枠HWは、この場合、図4Aに示すように対象物KTの近傍に表示枠HWを投影しているので、図4Bに示すように、標準位置P0に居るドライバーUNだけでなく、頭の位置を動かした変動位置P1に姿勢を変化させたドライバーUNにも、対象物KTと表示枠HWとが略重なって略ズレなく見える。 FIG. 4A is a conceptual plan view for explaining display by the virtual image display optical system 30 or the virtual image display device 100 of the embodiment, and FIG. 4B is a diagram for explaining how the display corresponding to FIG. 4A is seen. As shown in FIG. 4A, a case will be described in which a display frame HW, which is a display image IM, is formed at or near the position of an object (in this case, an automobile traveling in an oncoming lane) KT that is being observed by the driver UN. Such a display frame HW is a danger warning signal or other virtual image, and shows, for example, a result of identifying a car, a bicycle, a pedestrian, or the like that is close to the front. In this case, since the display frame HW projects the display frame HW in the vicinity of the object KT as shown in FIG. 4A, as shown in FIG. 4B, not only the driver UN at the standard position P0 but also the head The target object KT and the display frame HW are substantially overlapped with each other and the driver UN whose posture is changed to the changed position P1 where the position is moved appears to be substantially free from displacement.
 図5Aは、比較例の虚像表示光学系又は虚像表示装置による表示を説明する概念的な平面図であり、図5Bは、図5Aに対応する表示の見え方を説明する図である。図5Aに示すように、ドライバーUNが観察している対象物KTに関係なく、固定位置に表示像IMである表示枠HWを形成する場合について説明する。この場合、図5Aに示すように対象物KTのかなり手前に表示枠HWを投影しているので、図5Bに示すように、標準位置P0に居るドライバーUNにとって、対象物KTと表示枠HWとが略重なって略ズレなく見えても、変動位置P1に姿勢を変化させたドライバーUNにとって、表示枠HWが対象物KTに対して目の並ぶ横方向に大きく位置ずれして見えてしまい、表示枠HWを誤認する可能性が高まる。 FIG. 5A is a conceptual plan view for explaining display by a virtual image display optical system or a virtual image display device of a comparative example, and FIG. 5B is a diagram for explaining how a display corresponding to FIG. 5A is seen. As shown in FIG. 5A, a case will be described in which the display frame HW that is the display image IM is formed at a fixed position regardless of the object KT that the driver UN observes. In this case, as shown in FIG. 5A, since the display frame HW is projected substantially in front of the object KT, as shown in FIG. 5B, for the driver UN at the standard position P0, the object KT and the display frame HW Even if they appear to be substantially overlapped with each other, the display frame HW appears to be greatly displaced in the lateral direction in which the eyes are aligned with respect to the object KT for the driver UN whose posture has been changed to the change position P1. The possibility of misidentifying the frame HW increases.
 図6は、移動体用表示システム200を説明するブロック図であり、移動体用表示システム200は、その一部として虚像表示装置100を含む。この虚像表示装置100は、図2に示す構造を有するものであり、ここでは説明を省略する。図6に示す移動体用表示システム200は、移動体である自動車等に組み込まれるものである。 FIG. 6 is a block diagram illustrating the moving body display system 200, and the moving body display system 200 includes the virtual image display device 100 as a part thereof. The virtual image display device 100 has the structure shown in FIG. 2, and a description thereof is omitted here. A moving body display system 200 shown in FIG. 6 is incorporated in an automobile or the like that is a moving body.
 移動体用表示システム200は、虚像表示装置100のほかに、運転者検出部71と、環境監視部72と、主制御装置90とを備える。 The moving body display system 200 includes a driver detection unit 71, an environment monitoring unit 72, and a main control device 90 in addition to the virtual image display device 100.
 運転者検出部71は、ドライバーUNの存在や視点位置を検出する部分であり、運転席用カメラ71aと、運転席用画像処理部71bと、判断部71cとを備える。運転席用カメラ71aは、車体2内のダッシュボード4の運転席正面に設置されており(図1B参照)、ドライバーUNの頭部及びその周辺の画像を撮影する。運転席用画像処理部71bは、運転席用カメラ71aで撮影した画像に対して明るさ補正等の各種画像処理を行って判断部71cでの処理を容易にする。判断部71cは、運転席用画像処理部71bを経た運転席画像からオブジェクトの抽出又は切り出しを行うことによってドライバーUNの頭部や目を検出するとともに、運転席画像に付随する奥行情報から車体2内におけるドライバーUNの頭部の存否とともにドライバーUNの目の空間的な位置(結果的に視線の方向)を算出する。 The driver detection unit 71 is a part that detects the presence and viewpoint position of the driver UN, and includes a driver seat camera 71a, a driver seat image processing unit 71b, and a determination unit 71c. The driver seat camera 71a is installed in front of the driver seat of the dashboard 4 in the vehicle body 2 (see FIG. 1B), and takes images of the head of the driver UN and its surroundings. The driver seat image processing unit 71b performs various types of image processing such as brightness correction on the image captured by the driver seat camera 71a to facilitate processing in the determination unit 71c. The determination unit 71c detects the head and eyes of the driver UN by extracting or cutting out an object from the driver seat image that has passed through the driver seat image processing unit 71b, and detects the vehicle body 2 from the depth information attached to the driver seat image. The spatial position of the eyes of the driver UN (resulting in the direction of the line of sight) is calculated along with the presence or absence of the head of the driver UN.
 環境監視部72は、前方に近接する自動車、自転車、歩行者等を識別する部分であり、外部用カメラ72aと、外部用画像処理部72bと、判断部72cとを備える。外部用カメラ72aは、車体2内外の適所に設置されており、ドライバーUN又はフロントガラス8の前方、側方等の外部画像を撮影する。外部用画像処理部72bは、外部用カメラ72aで撮影した画像に対して明るさ補正等の各種画像処理を行って判断部72cでの処理を容易にする。判断部72cは、外部用画像処理部72bを経た外部画像からオブジェクトの抽出又は切り出しを行うことによって自動車、自転車、歩行者等の対象物KT(例えば図4A参照)の存否を検出するとともに、外部画像に付随する奥行情報から車体2前方における対象物KTの空間的な位置を算出する。 The environment monitoring unit 72 is a part for identifying a car, a bicycle, a pedestrian, and the like that are close to the front, and includes an external camera 72a, an external image processing unit 72b, and a determination unit 72c. The external camera 72a is installed at appropriate positions inside and outside the vehicle body 2, and captures an external image such as the front or side of the driver UN or the windshield 8. The external image processing unit 72b performs various types of image processing such as brightness correction on the image captured by the external camera 72a to facilitate processing by the determination unit 72c. The determination unit 72c detects the presence / absence of a target KT (for example, see FIG. 4A) such as an automobile, a bicycle, and a pedestrian by extracting or cutting out an object from the external image that has passed through the external image processing unit 72b. The spatial position of the object KT in front of the vehicle body 2 is calculated from the depth information attached to the image.
 なお、運転席用カメラ71aや外部用カメラ72aは、図示を省略しているが、例えば複眼型の3次元カメラである。つまり、両カメラ71a,72aは、結像用のレンズと、CMOSその他の撮像素子とを一組とするカメラ素子をマトリックス状に配列したものであり、撮像素子用の駆動回路をそれぞれ有する。各カメラ71a,72aを構成する複数のカメラ素子は、例えば奥行方向の異なる位置にピントを合わせるようになっており、或いは相対的な視差を検出できるようになっており、各カメラ素子から得た画像の状態(フォーカス状態、オブジェクトの位置等)を解析することで、画像内の各領域又はオブジェクトまでの距離を判定できる。 The driver's seat camera 71a and the external camera 72a are not shown, but are, for example, compound eye type three-dimensional cameras. That is, both cameras 71a and 72a are obtained by arranging camera elements, each of which includes an imaging lens and a CMOS or other image sensor, in a matrix, and each has a drive circuit for the image sensor. The plurality of camera elements constituting each of the cameras 71a and 72a are adapted to focus at different positions in the depth direction, for example, or to detect relative parallax, and are obtained from each camera element. By analyzing the state of the image (focus state, object position, etc.), the distance to each region or object in the image can be determined.
 上記のような複眼型のカメラ71a,72aに代えて、2次元カメラと赤外距離センサーとを組み合わせたものを用いても、撮影した画面(死角画像)内の各部に関して奥行方向の距離情報を得ることができる。また、複眼型のカメラ71a,72aに代えて、2つの2次元カメラを分離配置したステレオカメラによって、撮影した画面内の各部(領域又はオブジェクト)に関して奥行方向の距離情報を得ることができる。その他、単一の2次元カメラにおいて、焦点距離を高速で変化させながら撮像を行うことによっても、撮影した画面内の各部に関して奥行方向の距離情報を得ることができる。 Even if a combination of a two-dimensional camera and an infrared distance sensor is used in place of the compound- eye cameras 71a and 72a as described above, distance information in the depth direction is obtained for each part in the captured screen (dead angle image). Obtainable. In addition, distance information in the depth direction can be obtained for each part (region or object) in the captured screen by using a stereo camera in which two two-dimensional cameras are separately arranged in place of the compound- eye cameras 71a and 72a. In addition, in a single two-dimensional camera, distance information in the depth direction can be obtained for each part in the captured screen by performing imaging while changing the focal length at high speed.
 表示制御部18は、主制御装置90の制御下で虚像表示光学系30を動作させて、ハーフミラーである表示スクリーン(コンバイナー)20の背後に虚像距離又は投影距離が変化する3次元的な表示像IMを表示させる。表示制御部18は、主制御装置90を介して受信した表示形状や表示距離を含む表示情報であって、環境監視部72からの信号に基づいて得た情報から、虚像表示光学系30に表示させる表示像IMを生成する。表示像IMは、例えば表示スクリーン20の背後に存在する自動車、自転車、歩行者その他の対象物KTに対して、その奥行き位置方向及びこれと直交する方向に関して周辺に位置する表示枠HW(図4B参照)のような標識とすることができる。 The display control unit 18 operates the virtual image display optical system 30 under the control of the main controller 90, and the three-dimensional display in which the virtual image distance or the projection distance changes behind the display screen (combiner) 20 that is a half mirror. The image IM is displayed. The display control unit 18 is display information including the display shape and display distance received via the main control device 90, and is displayed on the virtual image display optical system 30 from information obtained based on the signal from the environment monitoring unit 72. A display image IM to be generated is generated. The display image IM is, for example, a display frame HW (FIG. 4B) located in the periphery with respect to the depth position direction and the direction orthogonal thereto with respect to an automobile, bicycle, pedestrian, or other object KT existing behind the display screen 20. For example).
 表示制御部18は、主制御装置90を介して運転者検出部71からドライバーUNの存在や目の位置に関する検出出力を受け取る。これにより、虚像表示光学系30による表示像IMの投影の自動的な開始や停止が可能になる。また、ドライバーUNの視線の方向のみに表示像IMの投影を行うこともできる。さらに、ドライバーUNの視線の方向の表示像IMのみを明るくする、点滅する等の強調を行った投影を行うこともできる。 The display control unit 18 receives a detection output related to the presence of the driver UN and the eye position from the driver detection unit 71 via the main control device 90. Thereby, the projection of the display image IM by the virtual image display optical system 30 can be automatically started and stopped. It is also possible to project the display image IM only in the direction of the line of sight of the driver UN. Further, it is possible to perform projection with emphasis such as brightening or blinking only the display image IM in the direction of the line of sight of the driver UN.
 主制御装置90は、虚像表示装置100、環境監視部72等の動作を調和させる役割を有し、環境監視部72によって検出した対象物KTの空間的な位置に対応するように、虚像表示光学系30によって投影される表示枠HWの空間的な配置を調整する。 The main controller 90 has a role of coordinating the operations of the virtual image display device 100, the environment monitoring unit 72, and the like, and the virtual image display optics so as to correspond to the spatial position of the object KT detected by the environment monitoring unit 72. The spatial arrangement of the display frame HW projected by the system 30 is adjusted.
 以上で説明した第1実施形態に係る虚像表示装置100によれば、所定の区分領域である部分領域16a~16dごとに光軸AX方向に厚みの異なる構造を有する光路長変化素子16が配置されているので、ドライバーUNから表示像(虚像)IMまでの距離を光路長変化素子16の厚みによって細かく変えることができ、表示像IMを奥行き方向も含めて実物に重畳させることが可能となる。これにより視点がずれても危険信号等の表示像IMと実物との位置関係がずれないため、ドライバーUNの誤認を防ぐことが容易となる。 According to the virtual image display device 100 according to the first embodiment described above, the optical path length changing element 16 having a structure with different thicknesses in the optical axis AX direction is arranged for each of the partial regions 16a to 16d that are predetermined segmented regions. Therefore, the distance from the driver UN to the display image (virtual image) IM can be finely changed depending on the thickness of the optical path length changing element 16, and the display image IM can be superimposed on the real object including the depth direction. Accordingly, even if the viewpoint is shifted, the positional relationship between the display image IM such as a danger signal and the real object does not shift, and thus it is easy to prevent the driver UN from being mistaken.
〔第2実施形態〕
 以下、第2実施形態に係る虚像表示装置及び方法について説明する。なお、第2実施形態の虚像表示装置は第1実施形態の虚像表示装置を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Second Embodiment]
The virtual image display device and method according to the second embodiment will be described below. The virtual image display device according to the second embodiment is a modification of the virtual image display device according to the first embodiment, and matters not specifically described are the same as those in the first embodiment.
 図7に示すように、第2実施形態の虚像表示装置100の場合、光路長変化素子16が矩形板状の階段状構造体216である。 As shown in FIG. 7, in the case of the virtual image display device 100 of the second embodiment, the optical path length changing element 16 is a rectangular plate-like step-like structure 216.
 光路長変化素子16又は階段状構造体216に付随して設けられた移動部である配置変更装置262は、光路長変化素子16を光軸AXに垂直な上下方向に沿って所望の位置に移動させるためのものである。配置変更装置262は、階段状構造体216の光軸AXに垂直な上下方向への移動を案内するガイド部262aと、階段状構造体216を光軸AXに垂直な上下方向に所望の速度で往復移動させる駆動部262bとを有する。 The arrangement changing device 262, which is a moving unit attached to the optical path length changing element 16 or the stepped structure 216, moves the optical path length changing element 16 to a desired position along the vertical direction perpendicular to the optical axis AX. It is for making it happen. The arrangement changing device 262 includes a guide portion 262a that guides the vertical movement of the step-like structure 216 in the vertical direction perpendicular to the optical axis AX, and the step-like structure 216 in the vertical direction perpendicular to the optical axis AX at a desired speed. And a drive unit 262b for reciprocal movement.
 図8A及び8Bに示すように、階段状構造体216は、光軸AXに垂直な方向に配列された複数の部分領域216a~216cを有し、各部分領域216a~216cは、表示領域に形成された中間像TIに対応するサイズ及び輪郭形状を有している。これらの部分領域216a~216cは、光軸AX方向の厚みが互いに異なるものとなっている。具体的には、階段状構造体216は、虚像形成光学系17側又は光路後段側において、階段状に配置された複数の射出面216e~216gを有しており、各射出面216e~216gは、平面となっている。一方、階段状構造体216は、結像光学系15側又は光路前段側において、単一の平面である入射面16jを有しており、入射面16jは、拡散機能を有する。中間像TIは、階段状構造体216から光路前段にかけての表示領域に結像され、具体的には、階段状構造体216すなわち入射面16jは、中間像TIの結像位置から±1mm以内に配置されている。 As shown in FIGS. 8A and 8B, the staircase structure 216 has a plurality of partial regions 216a to 216c arranged in a direction perpendicular to the optical axis AX, and the partial regions 216a to 216c are formed in the display region. It has a size and contour shape corresponding to the intermediate image TI. These partial regions 216a to 216c have different thicknesses in the optical axis AX direction. Specifically, the staircase-like structure 216 has a plurality of emission surfaces 216e to 216g arranged in a staircase shape on the virtual image forming optical system 17 side or the rear side of the optical path, and each of the emission surfaces 216e to 216g has It has become a plane. On the other hand, the step-like structure 216 has an incident surface 16j that is a single plane on the imaging optical system 15 side or the optical path upstream side, and the incident surface 16j has a diffusion function. The intermediate image TI is formed in a display region from the step-like structure 216 to the front stage of the optical path. Specifically, the step-like structure 216, that is, the incident surface 16j is within ± 1 mm from the image formation position of the intermediate image TI. Has been placed.
 配置変更装置62によって階段状構造体216を光軸AXに垂直な方向に移動させることで、3つの部分領域216a~216cが光軸AX上に順次移動し、虚像形成光学系17によって表示スクリーン20の背後に形成される虚像としての表示像IMと観察者であるドライバーUNとの距離を大きく、または小さくすることができる。このように、投影される表示像IMの位置を前後に変化させるとともに、表示内容をその位置に応じたものとすることで、表示像IMまでの虚像距離を変化させつつ表示像IMを変化させることになり、一連の投影像としての表示像IMを3次元的なものとすることができる。なお、階段状構造体216の移動方向は光軸AXに垂直な水平方向でもよいし、部分領域は3つに限られるものではない。 By moving the step-like structure 216 in the direction perpendicular to the optical axis AX by the arrangement changing device 62, the three partial regions 216a to 216c are sequentially moved on the optical axis AX, and the display screen 20 is moved by the virtual image forming optical system 17. It is possible to increase or decrease the distance between the display image IM as a virtual image formed behind the driver UN and the driver UN as an observer. Thus, the display image IM is changed while changing the virtual image distance to the display image IM by changing the position of the projected display image IM forward and backward and by changing the display contents according to the position. As a result, the display image IM as a series of projection images can be made three-dimensional. The moving direction of the staircase structure 216 may be a horizontal direction perpendicular to the optical axis AX, and the number of partial regions is not limited to three.
 第2実施形態の虚像表示装置100では、光路長変化素子16をスライド移動させることで、虚像全体の生成距離を変化させることができる。光路長変化素子16を高速でスライドさせることで、複数の距離に同時に虚像が表示されているように見せることができる。また、光路長変化素子16又は階段状構造体216を構成する部分領域216a~216cの数及び厚みを調整することで虚像距離を細かく調整することができる。 In the virtual image display device 100 of the second embodiment, the generation distance of the entire virtual image can be changed by sliding the optical path length changing element 16. By sliding the optical path length changing element 16 at a high speed, it can be seen that virtual images are displayed at a plurality of distances simultaneously. Further, the virtual image distance can be finely adjusted by adjusting the number and thickness of the partial regions 216a to 216c constituting the optical path length changing element 16 or the step-like structure 216.
〔第3実施形態〕
 以下、第3実施形態に係る虚像表示装置及び方法について説明する。なお、第3実施形態の虚像表示装置は第1実施形態の虚像表示装置を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Third Embodiment]
The virtual image display device and method according to the third embodiment will be described below. The virtual image display device according to the third embodiment is a modification of the virtual image display device according to the first embodiment, and items that are not particularly described are the same as those in the first embodiment.
 図9に示すように、第3実施形態の虚像表示装置100の場合、光路長変化素子16は、矩形板状の階段状構造体316であり、光路に沿って固定的に配置されている。 As shown in FIG. 9, in the case of the virtual image display device 100 of the third embodiment, the optical path length changing element 16 is a rectangular plate-like stepped structure 316, which is fixedly arranged along the optical path.
 図10A及び10Bに示すように、階段状構造体316は、光軸AXに垂直な方向に配列された複数の部分領域316a~316cを有し、各部分領域316a~316cは、表示領域における中間像TIを上下のZ方向に3分割したサイズ及び輪郭形状を有し、部分領域316a~316cを合わせた全体で表示領域である中間像TIに対応するサイズ及び輪郭形状を有している。これらの部分領域316a~316cは、光軸AX方向の厚みが互いに異なるものとなっている。具体的には、階段状構造体316は、虚像形成光学系17側又は光路後段側において、階段状に配置された複数の射出面316e~316gを有しており、各射出面316e~316gは、平面となっている。一方、階段状構造体316は、結像光学系15側又は光路前段側において、単一の平面である入射面16jを有しており、入射面16jは、拡散機能を有する。中間像TIは、階段状構造体316又は光路長変化素子16から光路前段にかけての表示領域に結像され、具体的には、階段状構造体316すなわち入射面16jは、中間像TIの結像位置から±1mm以内に配置されている。 As shown in FIGS. 10A and 10B, the staircase structure 316 includes a plurality of partial regions 316a to 316c arranged in a direction perpendicular to the optical axis AX, and each partial region 316a to 316c is an intermediate region in the display region. The image TI has a size and contour shape obtained by dividing the image TI into three in the vertical Z direction, and has a size and contour shape corresponding to the intermediate image TI that is the display region as a whole when the partial regions 316a to 316c are combined. These partial regions 316a to 316c have different thicknesses in the optical axis AX direction. Specifically, the staircase structure 316 has a plurality of emission surfaces 316e to 316g arranged in a staircase shape on the virtual image forming optical system 17 side or the optical path rear side, and each of the emission surfaces 316e to 316g It has become a plane. On the other hand, the step-like structure 316 has an incident surface 16j that is a single plane on the imaging optical system 15 side or the optical path upstream side, and the incident surface 16j has a diffusion function. The intermediate image TI is formed on the stepped structure 316 or the display region from the optical path length changing element 16 to the previous stage of the optical path. Specifically, the stepped structure 316, that is, the incident surface 16j, forms an image of the intermediate image TI. It is arranged within ± 1 mm from the position.
 この虚像表示装置100では、中間像TIが上下のZ方向に3分割した部分像TIa~TIcからなる。部分像TIaは、比較的近距離投影用の画像であり、部分像TIcは、比較的遠距離投影用の画像であり、部分像TIbは、中距離投影用の画像である。つまり、虚像表示装置100による表示像(虚像)IMを構成する下側の部分IMaは、部分像TIaに対応して比較的近距離に結像され、表示像(虚像)IMを構成する上側の部分IMcは、部分像TIcに対応して比較的遠距離に結像される。さらに、表示像(虚像)IMの上下に関する中間の部分IMbは、部分像TIbに対応して中間距離に結像される。この場合、表示像IMa~IMcの奥行方向の位置は固定的であるが、表示像IMが立体的なものとなる。 In this virtual image display device 100, the intermediate image TI is composed of partial images TIa to TIc divided into three in the vertical Z direction. The partial image TIa is an image for relatively short distance projection, the partial image TIc is an image for relatively long distance projection, and the partial image TIb is an image for medium distance projection. That is, the lower part IMa constituting the display image (virtual image) IM by the virtual image display device 100 is imaged at a relatively short distance corresponding to the partial image TIa, and the upper part IMa constituting the display image (virtual image) IM is formed. The portion IMc is imaged at a relatively long distance corresponding to the partial image TIc. Further, an intermediate portion IMb regarding the upper and lower sides of the display image (virtual image) IM is formed at an intermediate distance corresponding to the partial image TIb. In this case, the positions of the display images IMa to IMc in the depth direction are fixed, but the display image IM is three-dimensional.
 第3実施形態の虚像表示装置100では、光路長変化素子のために可動部を設ける必要がないため、車その他の移動体に搭載する装置として好ましい。さらに各部分領域において厚みを調整することで、虚像距離を細かく調整することができる。なお、虚像の上側で遠距離表示、虚像の下側で近距離表示となるように部分領域の厚みを設定することが好ましい。 In the virtual image display device 100 of the third embodiment, it is not necessary to provide a movable part for the optical path length changing element, so that it is preferable as a device mounted on a vehicle or other moving body. Furthermore, the virtual image distance can be finely adjusted by adjusting the thickness in each partial region. In addition, it is preferable to set the thickness of the partial region so that the long distance display is performed above the virtual image and the short distance display is performed below the virtual image.
 第3実施形態の虚像表示装置100のように単一の像形成素子11によって奥行き方向の異なる位置に虚像を表示する場合、階段状構造体316の段差の境界をまたいで光が入射し、虚像までの距離がアイボックス内の一部で所望の距離ではなくなるおそれや虚像が乱れるおそれがあるため、像形成素子11や中間像TIにおいて境界部として表示に使用しない領域を設けることが好ましい。 When a virtual image is displayed at different positions in the depth direction by the single image forming element 11 as in the virtual image display device 100 of the third embodiment, light is incident across the step boundary of the staircase structure 316, and the virtual image is displayed. Therefore, it is preferable to provide a region that is not used for display as a boundary portion in the image forming element 11 or the intermediate image TI.
〔第4実施形態〕
 以下、第4実施形態に係る虚像表示装置及び方法について説明する。なお、第4実施形態の虚像表示装置は第1~第3実施形態の虚像表示装置を変形したものであり、特に説明しない事項は第1実施形態等と同様である。
[Fourth Embodiment]
The virtual image display device and method according to the fourth embodiment will be described below. Note that the virtual image display device of the fourth embodiment is a modification of the virtual image display device of the first to third embodiments, and items not specifically described are the same as those of the first embodiment.
 図11に示すように、第4実施形態に係る虚像表示装置100において、本体光学系13は、結像光学系15が省略されており、像形成素子11と光路長変化素子16と虚像形成光学系17とで構成される。このため、図2で中間像TIのあった位置付近に、つまり光路長変化素子16の光路前段に、表示部である像形成素子11の表示面11aが配置されている。光路長変化素子16のうち像形成素子11に対向する側に配置される入射面16jは、像形成素子11の表示面11aから1cm以内に配置されている。この場合、像形成素子11の表示面11aがそのまま表示領域となっており、表示面11aに形成された像が虚像形成光学系17等によって直接的に表示像(虚像)IMとして拡大投影される。なお、光路長変化素子16の入射面16jは、拡散機能を有していない。第4実施形態の虚像表示装置100では、光路長変化素子16の光路前段に中間像TIを形成しないため、光路長変化素子16を小型化することができる。 As shown in FIG. 11, in the virtual image display device 100 according to the fourth embodiment, the main body optical system 13 omits the imaging optical system 15, and the image forming element 11, the optical path length changing element 16, and the virtual image forming optics. It consists of a system 17. For this reason, the display surface 11a of the image forming element 11 serving as a display unit is disposed in the vicinity of the position where the intermediate image TI is present in FIG. The incident surface 16 j disposed on the side of the optical path length changing element 16 facing the image forming element 11 is disposed within 1 cm from the display surface 11 a of the image forming element 11. In this case, the display surface 11a of the image forming element 11 serves as a display area as it is, and the image formed on the display surface 11a is directly enlarged and projected as a display image (virtual image) IM by the virtual image forming optical system 17 or the like. . Note that the incident surface 16j of the optical path length changing element 16 does not have a diffusion function. In the virtual image display device 100 of the fourth embodiment, since the intermediate image TI is not formed in the preceding stage of the optical path of the optical path length changing element 16, the optical path length changing element 16 can be reduced in size.
 本実施形態のように、光路長変化素子16の入射面16jに拡散機能を持たせない場合、部分領域16a~16cのうち最も薄い部分領域16cを厚みゼロとして省略することもできる。 When the entrance surface 16j of the optical path length changing element 16 is not provided with a diffusion function as in the present embodiment, the thinnest partial region 16c among the partial regions 16a to 16c can be omitted as having a thickness of zero.
 以上は、第1実施形態の虚像表示装置100を変形した例であるが、第2及び第3実施形態の虚像表示装置100も同様に変更することができ、本体光学系13から結像光学系15を省略し、中間像TIを介さないで、表示面11aを表示領域としてこれに形成された像を直接的に表示像(虚像)IMとして拡大投影することができる。 The above is an example in which the virtual image display device 100 of the first embodiment is modified. However, the virtual image display devices 100 of the second and third embodiments can be similarly changed, and the main body optical system 13 to the imaging optical system. 15 can be omitted, and the image formed on the display surface 11a as a display area can be directly enlarged and projected as a display image (virtual image) IM without using the intermediate image TI.
〔第5実施形態〕
 以下、第5実施形態に係る虚像表示装置及び方法について説明する。なお、第5実施形態の虚像表示装置は第1~第4実施形態の虚像表示装置を変形したものであり、特に説明しない事項は第1実施形態等と同様である。
[Fifth Embodiment]
The virtual image display device and method according to the fifth embodiment will be described below. The virtual image display device according to the fifth embodiment is a modification of the virtual image display device according to the first to fourth embodiments, and items not specifically described are the same as those in the first embodiment.
 図12に示すように、第5実施形態に係る虚像表示装置100の場合、虚像形成光学系17が1枚のミラー517aのみからなる。ここで、ミラー517aは、第1の反射体であって、光学的なパワーを有する第1のミラーとなっている。この場合、本体光学系(投影光学系)13を簡素にできるため、虚像表示装置100を安価なものとすることができる。 As shown in FIG. 12, in the case of the virtual image display device 100 according to the fifth embodiment, the virtual image forming optical system 17 includes only one mirror 517a. Here, the mirror 517a is a first reflector and is a first mirror having optical power. In this case, since the main body optical system (projection optical system) 13 can be simplified, the virtual image display device 100 can be made inexpensive.
〔第6実施形態〕
 以下、第6実施形態に係る虚像表示装置及び方法について説明する。なお、第6実施形態の虚像表示装置は第1実施形態の虚像表示装置を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Sixth Embodiment]
The virtual image display device and method according to the sixth embodiment will be described below. The virtual image display device according to the sixth embodiment is a modification of the virtual image display device according to the first embodiment, and matters not specifically described are the same as those in the first embodiment.
 図13に示すように、本体光学系13は、結像光学系15と虚像形成光学系17との間に配置される光路長変化素子416を備える。 As shown in FIG. 13, the main body optical system 13 includes an optical path length changing element 416 disposed between the imaging optical system 15 and the virtual image forming optical system 17.
 第6実施形態の場合、第1実施形態のように虚像形成光学系17から見た中間像TIの見かけ上の位置が離散的に変化するのではなく、光路長変化素子416によって虚像形成光学系17から見た中間像TIの見かけ上の位置を連続的に変化させる。 In the case of the sixth embodiment, the apparent position of the intermediate image TI viewed from the virtual image forming optical system 17 does not change discretely as in the first embodiment, but by the optical path length changing element 416, the virtual image forming optical system. The apparent position of the intermediate image TI viewed from 17 is continuously changed.
 光路長変化素子416は、結像光学系(第1投影光学系)15による投影位置又は結像位置の直後に配置され、回転体6aと中空枠体6bとを有し、移動部である配置変更装置62の回転駆動装置62aに駆動されて例えば一定速度で回転軸RXの周りに回転する。 The optical path length changing element 416 is arranged immediately after a projection position or an imaging position by the imaging optical system (first projection optical system) 15, and has a rotating body 6a and a hollow frame body 6b, and is an arrangement that is a moving unit. It is driven by the rotation drive device 62a of the changing device 62 and rotates around the rotation axis RX at a constant speed, for example.
 図14Aは、光路長変化素子416を説明する一部破断側面図であり、図14Bは、光路長変化素子416を説明する一部破断正面図である。光路長変化素子416は、全体として円板に近い輪郭を有する螺旋状の回転体6aと、回転体6aを収納する円筒状の中空枠体6bとを有する。 14A is a partially broken side view for explaining the optical path length changing element 416, and FIG. 14B is a partially broken front view for explaining the optical path length changing element 416. FIG. The optical path length changing element 416 includes a spiral rotator 6a having a profile close to a disk as a whole, and a cylindrical hollow frame 6b that houses the rotator 6a.
 回転体6aは、中央部6cと外周光学部6pとを有する。回転体6aは、光透過性を有する螺旋状の部材であり、回転体6aの外周光学部6pは、立体形状部106として機能する。回転体6aの外周光学部6pに形成された一方の表面6f又は入射面16jは、回転軸RXに垂直な平面であるが、拡散機能を付したものとできる。中間像TIは、光路長変化素子416から光路前段にかけての表示領域に結像され、具体的には、光路長変化素子416すなわち入射面16jは、中間像TIの結像位置から±1mm以内に配置されている。回転体6aの外周光学部6pに形成された他方の表面6sは、回転軸RXを螺旋軸とする螺旋面である。一方の表面6sが平面で他方一方の表面6sが螺旋面であることから、回転体6aは、回転軸RX又は光軸AXの方向に関して変化する厚みtを有する。光路長変化素子416の周に沿った一箇所に段差部6jが形成されている。段差部6jは、螺旋端間の段差を繋ぐとともに、光路長変化素子416を回転させる回転軸RXを含む平面に対して傾斜した接続面6kを有する。 The rotating body 6a has a central portion 6c and an outer peripheral optical portion 6p. The rotating body 6a is a spiral member having light permeability, and the outer peripheral optical part 6p of the rotating body 6a functions as the three-dimensional shape part 106. One surface 6f or the incident surface 16j formed on the outer peripheral optical part 6p of the rotator 6a is a plane perpendicular to the rotation axis RX, but may have a diffusion function. The intermediate image TI is formed in a display region from the optical path length changing element 416 to the preceding stage of the optical path. Specifically, the optical path length changing element 416, that is, the incident surface 16j is within ± 1 mm from the imaging position of the intermediate image TI. Has been placed. The other surface 6s formed on the outer peripheral optical part 6p of the rotating body 6a is a spiral surface having the rotation axis RX as a spiral axis. Since one surface 6s is a flat surface and the other surface 6s is a spiral surface, the rotator 6a has a thickness t that changes in the direction of the rotation axis RX or the optical axis AX. A step portion 6j is formed at one place along the circumference of the optical path length changing element 416. The step portion 6j has a connecting surface 6k that connects the steps between the spiral ends and is inclined with respect to a plane including the rotation axis RX that rotates the optical path length changing element 416.
 回転体6aにおいて、周方向に沿った一箇所は、本体光学系13の光軸AXが通る機能領域FAとなっており、機能領域FAの像形成素子11側の近傍には中間像TIが形成される。この機能領域FAは、回転体6aの回転に伴って回転体6a上において一定速度で移動する。つまり、回転体6aを回転させつつその一部である機能領域FAに表示光(映像光)HKを入射させることで、機能領域FAにおける光軸AX方向の厚みが段階的でなく連続的に変化する。結果的に、虚像形成光学系17から見た中間像TIの見かけ上の位置を光軸AX方向に連続的に変化させることができる。なお、像形成素子11の表示が動作していなければ、必ずしも表示としての中間像は形成されないが、中間像が形成されるであろう見かけ上の位置も中間像の見かけ上の位置と呼ぶ。図示の例では、回転体6aの1回転で中間像TIの見かけ上の位置は、光軸AX方向に段差に相当する距離だけ1往復することになる。以下では、虚像形成光学系17から見た中間像TIの見かけ上の位置を、中間像TIの可動投影位置とも呼ぶ。 In the rotating body 6a, one place along the circumferential direction is a functional area FA through which the optical axis AX of the main body optical system 13 passes, and an intermediate image TI is formed in the vicinity of the functional area FA on the image forming element 11 side. Is done. This functional area FA moves at a constant speed on the rotating body 6a as the rotating body 6a rotates. That is, by rotating the rotating body 6a and causing the display light (image light) HK to enter the functional area FA that is a part of the rotating body 6a, the thickness of the functional area FA in the optical axis AX direction is continuously changed instead of stepwise. To do. As a result, the apparent position of the intermediate image TI viewed from the virtual image forming optical system 17 can be continuously changed in the optical axis AX direction. If the display of the image forming element 11 is not operating, an intermediate image as a display is not necessarily formed, but an apparent position where the intermediate image will be formed is also referred to as an apparent position of the intermediate image. In the illustrated example, the apparent position of the intermediate image TI is reciprocated once in the direction of the optical axis AX by one rotation of the rotating body 6a. Hereinafter, the apparent position of the intermediate image TI viewed from the virtual image forming optical system 17 is also referred to as a movable projection position of the intermediate image TI.
 中空枠体6bは、円柱状の外形輪郭を有し、側面部6eと一対の端面部6g,6hとで構成される。側面部6eと一対の端面部6g,6hとは、光透過性を有する同一の材料で形成されている。ただし、側面部6eは、光透過性を有していなくてもよい。中空枠体6b中の回転体6aは、一対の中心軸部65を介して中空枠体6bに固定されており、中空枠体6bと回転体6aとは回転軸RXの周りに一体的に回転する。このように、中間スクリーン19を設けた回転体6aを中空枠体6b中に配置することで、回転体6aに塵等が付着することを抑制でき、回転体6aの回転に伴う音の発生を抑制することができ、回転体6aの高速での回転を安定化させることが容易になる。 The hollow frame 6b has a cylindrical outer contour, and includes a side surface portion 6e and a pair of end surface portions 6g and 6h. The side surface portion 6e and the pair of end surface portions 6g and 6h are formed of the same material having optical transparency. However, the side part 6e does not need to have light transmittance. The rotating body 6a in the hollow frame body 6b is fixed to the hollow frame body 6b via a pair of central shaft portions 65, and the hollow frame body 6b and the rotating body 6a rotate integrally around the rotation axis RX. To do. Thus, by arranging the rotating body 6a provided with the intermediate screen 19 in the hollow frame body 6b, it is possible to suppress dust and the like from adhering to the rotating body 6a, and to generate sound accompanying the rotation of the rotating body 6a. Therefore, it is easy to stabilize the rotation of the rotating body 6a at a high speed.
 図13に戻って、スクリーン駆動部である回転駆動装置62aによって光路長変化素子416を一定速度で回転軸RXの周りに回転させることで、回転体16a上での機能領域FAの配置が回転移動する。つまり、図15Aに示すように、回転体6aの回転に伴って、中間スクリーン19上の機能領域FAは、例えば等角度でずれた位置に設定された隣接する機能領域FA'に順次シフトする。このような機能領域FAの移動により、回転体6aを通過する光路の光路長が連続的に減少するように変化し、虚像形成光学系17から見た中間像TIの見かけ上の位置又は中間像TIの可動投影位置も光軸AX方向沿って像形成素子11の表示面11a側に移動させることができる。詳細は後述するが、例えば虚像形成光学系17から見た中間像TIの見かけ上の位置を像形成素子11の表示面11a側に移動させることにより、投影像IMまでの投影距離又は虚像距離を増加させることができる。また、虚像形成光学系17から見た中間像TIの見かけ上の位置を虚像形成光学系17側に移動させることにより、投影像IMまでの投影距離又は虚像距離を減少させることができる。 Returning to FIG. 13, the arrangement of the functional area FA on the rotating body 16a is rotated by rotating the optical path length changing element 416 around the rotation axis RX at a constant speed by the rotation driving device 62a which is a screen driving unit. To do. That is, as shown in FIG. 15A, as the rotating body 6a rotates, the functional area FA on the intermediate screen 19 is sequentially shifted to the adjacent functional area FA ′ set at a position shifted at an equal angle, for example. By such movement of the functional area FA, the optical path length of the optical path passing through the rotating body 6a changes so as to continuously decrease, and the apparent position or intermediate image of the intermediate image TI viewed from the virtual image forming optical system 17 The movable projection position of TI can also be moved to the display surface 11a side of the image forming element 11 along the optical axis AX direction. Although details will be described later, for example, by moving the apparent position of the intermediate image TI viewed from the virtual image forming optical system 17 to the display surface 11a side of the image forming element 11, the projection distance or virtual image distance to the projection image IM can be reduced. Can be increased. Further, by moving the apparent position of the intermediate image TI viewed from the virtual image forming optical system 17 to the virtual image forming optical system 17 side, the projection distance or the virtual image distance to the projection image IM can be reduced.
 虚像形成光学系(第2投影光学系)17は、結像光学系(第1投影光学系)15によって形成された中間像TIを光路長変化素子416越しに拡大し、観察者であるドライバーVDの前方に虚像としての投影像IMを形成する。虚像形成光学系17は、光路長変化素子416等による結像の歪みや光線の偏向を補償するような光学特性を有するものとできる。 The virtual image forming optical system (second projection optical system) 17 enlarges the intermediate image TI formed by the imaging optical system (first projection optical system) 15 through the optical path length changing element 416, and the driver VD as an observer. A projection image IM as a virtual image is formed in front of. The virtual image forming optical system 17 can have an optical characteristic that compensates for distortion of image formation and light beam deflection caused by the optical path length changing element 416 and the like.
 図13等に示す画像表示装置100において、表示制御部18の制御下で回転駆動装置62aを動作させることで、光路長変化素子416が回転軸RXの周りに回転して機能領域FAに対応する中間像TIの見かけ上の位置又は中間像TIの可動投影位置が光軸AX方向に繰り返し周期的に移動し、虚像形成光学系17によって表示スクリーン20の背後に形成される虚像としての投影像IMと観察者であるドライバーVDとの距離を大きく、又は小さくすることができる。このように、投影される投影像IMの位置を前後に変化させるとともに、表示制御部18の制御下で、像形成素子11を中間像TIの見かけ上の配置に同期させつつ、像形成素子(表示素子)11による表示内容をその位置に応じたものとすることで、投影像IMまでの投影距離又は虚像距離を変化させつつ投影像IMの表示内容を変化させることになり、一連の投影像としての投影像IMを3次元的なものとすることができる。 In the image display apparatus 100 shown in FIG. 13 and the like, the optical path length changing element 416 rotates around the rotation axis RX and corresponds to the functional area FA by operating the rotation driving device 62a under the control of the display control unit 18. The apparent position of the intermediate image TI or the movable projection position of the intermediate image TI repeatedly and periodically moves in the direction of the optical axis AX, and the projected image IM as a virtual image formed behind the display screen 20 by the virtual image forming optical system 17. And the driver VD as the observer can be made larger or smaller. As described above, the position of the projected image IM to be projected is changed back and forth, and the image forming element 11 is synchronized with the apparent arrangement of the intermediate image TI under the control of the display control unit 18. By making the display content of the display element 11 according to the position, the display content of the projection image IM is changed while changing the projection distance or virtual image distance to the projection image IM, and a series of projection images The projected image IM can be made three-dimensional.
 光路長変化素子416若しくは回転体6aの回転速度又は機能領域FAの移動速度は、虚像としての投影像IMが奥行き方向に関して複数個所又は複数投影距離に同時に表示されているかのように見せることができる速度であることが望ましい。ここで、各距離ゾーン(後述するサブゾーン)の投影像IMを30fps以上、望ましくは60fps以上で切り替えれば、表示される複数の画像が視覚的には連続的な画像として認識される。例えば、光路長変化素子416の動作に伴って投影像IMが近距離から遠距離までに5段階で順次投影されるものとして、像形成素子11に200fpsで表示を行わせると、各距離(例えば近距離)の投影像IMは、40fpsで表示の切替えが行われることになり、各距離の投影像IMが並列的に行われかつ切替えが略連続的なものとして認識される。 The rotational speed of the optical path length changing element 416 or the rotating body 6a or the moving speed of the functional area FA can be seen as if the projected image IM as a virtual image is simultaneously displayed at a plurality of locations or a plurality of projection distances in the depth direction. It is desirable to be speed. Here, if the projection image IM of each distance zone (sub zone described later) is switched at 30 fps or more, preferably 60 fps or more, a plurality of displayed images are visually recognized as continuous images. For example, assuming that the projection image IM is sequentially projected in five steps from a short distance to a long distance in accordance with the operation of the optical path length changing element 416, when the image forming element 11 performs display at 200 fps, each distance (for example, The display of the short-distance projection image IM is switched at 40 fps, and the projection image IM at each distance is performed in parallel and the switching is recognized as being substantially continuous.
 図15Bは、光路長変化素子416の回転に伴う虚像形成光学系17から見た中間像TIの見かけ上の位置又は中間像TIの可動投影位置の変化を具体的に例示する図である。光路長変化素子416の回転に伴って中間像TIの可動投影位置は、像形成素子(表示素子)11が連続表示を行っている場合、光軸AX方向に沿って鋸歯状の経時パターンPAで繰り返し周期的に移動する。つまり、中間像TIの位置は、段差部6jに対応する箇所で不連続的ながら、光路長変化素子416の回転に伴って連続的かつ周期的に変化する。この結果、図示を省略するが、投影像(虚像)IMの位置も、スケールは異なるが、中間像TIの可動投影位置と同様に光軸AX方向に沿って繰り返し周期的に移動し、投影距離を連続的に変化させることができる。ここで、像形成素子11は、連続表示を行うものでなく、表示内容を切り替りえつつ間欠的な表示を行うものであるから、中間像TIの可動投影位置も鋸歯状の経時パターン上における離散的な位置となる。経時パターンPAにおいて、最も近距離側又は虚像形成光学系17寄りの表示位置Pnと、最も遠距離側又は反虚像形成光学系17寄りの表示位置Pfとは、マージンを確保して、経時パターンPAの両端から所定量だけ離れた位置に設定される。また、経時パターンPAの途切れ目PDは、光路長変化素子416の回転体6aに設けた段差部6jに対応する。 FIG. 15B is a diagram specifically illustrating a change in the apparent position of the intermediate image TI as viewed from the virtual image forming optical system 17 or the movable projection position of the intermediate image TI as the optical path length changing element 416 rotates. As the optical path length changing element 416 rotates, the movable projection position of the intermediate image TI is a sawtooth shaped temporal pattern PA along the optical axis AX direction when the image forming element (display element) 11 performs continuous display. Repeatedly move periodically. That is, the position of the intermediate image TI changes continuously and periodically with the rotation of the optical path length changing element 416, while being discontinuous at the position corresponding to the step portion 6j. As a result, although not shown, the position of the projected image (virtual image) IM is also different in scale, but repeatedly moves periodically along the optical axis AX in the same manner as the movable projected position of the intermediate image TI, and the projection distance Can be changed continuously. Here, since the image forming element 11 does not perform continuous display but performs intermittent display while switching display contents, the movable projection position of the intermediate image TI is also discrete on the sawtooth-shaped temporal pattern. Position. In the temporal pattern PA, the display position Pn closest to the near distance side or the virtual image forming optical system 17 and the display position Pf closest to the far distance side or the anti-virtual image forming optical system 17 ensure a margin, and the temporal pattern PA It is set at a position away from the both ends by a predetermined amount. Further, the break PD in the temporal pattern PA corresponds to the step portion 6j provided in the rotating body 6a of the optical path length changing element 416.
 ここで、ある距離ゾーンの画像について表示を行う場合、図15Bに示すように表示している時間内で見かけ上の中間像の位置が変化することで、表示している奥行き方向の距離が変化する。この際、そのように奥行き方向の距離が変化する表示ゾーンで観察者(ドライバー)に見える表示距離は、その表示時間内で変化する奥行き方向の距離の略平均位置となる。 Here, when displaying an image in a certain distance zone, the displayed distance in the depth direction changes by changing the position of the apparent intermediate image within the displayed time as shown in FIG. 15B. To do. At this time, the display distance that can be seen by the observer (driver) in the display zone in which the distance in the depth direction changes is approximately the average position of the distance in the depth direction that changes within the display time.
 図16は、中間像の可動投影位置と投影距離との関係又は中間像の可動投影位置と表示ゾーンとの関係を説明する図である。一点鎖線で示す特性C1に従って、虚像形成光学系17から見た中間像TIの虚像を光軸AX方向に等しい速度で移動させた場合において、各距離ゾーンの切替時間の刻みδを一定値とすれば、投影距離の刻み幅は、近距離では短く、遠距離では長くなる。見かけ上の中間像又は中間像TIの虚像の移動の刻み幅Δは、表示する距離ゾーンの切替時間に相当する均等なものとなっている。 FIG. 16 is a diagram for explaining the relationship between the movable projection position of the intermediate image and the projection distance or the relationship between the movable projection position of the intermediate image and the display zone. When the virtual image of the intermediate image TI viewed from the virtual image forming optical system 17 is moved at the same speed in the direction of the optical axis AX according to the characteristic C1 indicated by the one-dot chain line, the switching time interval δ of each distance zone is set to a constant value. For example, the step size of the projection distance is short at a short distance and long at a long distance. The apparent step size Δ of the movement of the intermediate image or the virtual image of the intermediate image TI is equal to the switching time of the distance zone to be displayed.
 図15Bに示す中間像の可動投影位置の両端間を移動する時間を1周期と考えた場合、奥行きを持つ表示の単位を表示ゾーンとして、その1周期の時間が各表示ゾーンの表示時間と、表示ゾーン数nの積よりも短い時間であれば、表示ゾーンは複数の距離ゾーンに亘るものとなり、少なくとも隣り合う表示ゾーンで、各ゾーンで表示される投影距離範囲に、重なりが生じる(図16の表示ゾーンDZ1~DZn参照)。このように重ねた表示を行うことで、同一の投影像(虚像)を奥行方向に広がりを持たせて表示することができ、重なりを生じない表示に比較して各表示ゾーンの表示時間を長くすることが可能となり、投影像(虚像)IMの輝度が向上する。 When the time for moving between both ends of the movable projection position of the intermediate image shown in FIG. 15B is considered as one cycle, the display unit having the depth is set as a display zone, and the time of the one cycle is the display time of each display zone, If the time is shorter than the product of the number n of display zones, the display zone extends over a plurality of distance zones, and at least adjacent display zones overlap in the projection distance range displayed in each zone (FIG. 16). Display zones DZ1 to DZn). By performing overlapping display in this way, the same projected image (virtual image) can be displayed with a spread in the depth direction, and the display time of each display zone is made longer compared to a display that does not overlap. And the brightness of the projection image (virtual image) IM is improved.
 図16に例示するように、特性C1に沿ってn個の表示ゾーンを設定することができる。ここで、説明の便宜上、最も近距離の表示ゾーンを第1表示ゾーンDZ1と呼び、最も遠距離の表示ゾーンを第n表示ゾーンDZn(nは自然数)と呼ぶ。複数の表示ゾーンDZ1~DZnは、近距離から遠距離になるに従って表示する距離幅が広がっている。複数の表示ゾーンDZ1~DZnのうち隣り合う表示ゾーンは、投影距離が部分的に重複している。すなわち、第k表示ゾーンDZk(kはnより小さい自然数)と第k+1表示ゾーンDZk+1とは、投影距離が部分的に重複し、例えば第2表示ゾーンDZ2と第3表示ゾーンDZ3とは、投影距離が部分的に重複している。第k表示ゾーンDZkは、そこに表示すべき表示対象の投影距離の本来の表示像に対して、その前、後、又は前後の双方で設定される表示ゾーンで表示する像も合せて表示した複合的な投影像となっている。図示の例では、第k表示ゾーンを表示している間の全体又はある一定時間内では4区間分の距離ゾーン又はサブゾーンLZk-2~LZk+1に相当するそれぞれの像が重なった状態の表示がされている。この場合、それぞれの表示ゾーンDZ1~DZnで表示される像の表示時間は、表示時間の刻みδのピッチで隣り合う表示ゾーンDZ1~DZn間でズレがあるため、その分表示されている間の近側と遠側の両端の距離が変動してその平均距離も変動する。人の目又は脳は、その表示ゾーンDZ1~DZnの平均距離で表示像を捉えるので、同時に表示を行っている場合でも、それぞれの表示ゾーンDZ1~DZnの表示距離を異なる位置として表示している状態にできる。 As illustrated in FIG. 16, n display zones can be set along the characteristic C1. Here, for convenience of explanation, the shortest display zone is called a first display zone DZ1, and the farthest display zone is called an nth display zone DZn (n is a natural number). In the plurality of display zones DZ1 to DZn, the distance width of display increases as the distance increases from the short distance. Among the plurality of display zones DZ1 to DZn, adjacent display zones partially overlap in projection distance. That is, the projection distances of the kth display zone DZk (k is a natural number smaller than n) and the (k + 1) th display zone DZk + 1 partially overlap. For example, the second display zone DZ2 and the third display zone DZ3 are projected distances. Are partially overlapping. The k-th display zone DZk also displays an image displayed in the display zone set before, after, or before and after the original display image of the projection distance of the display target to be displayed there. It is a composite projection image. In the example shown in the figure, the entire zone or the corresponding zones corresponding to the sub-zones LZk-2 to LZk + 1 are displayed in a certain period of time while the k-th display zone is being displayed. ing. In this case, the display time of the image displayed in each of the display zones DZ1 to DZn is shifted between the adjacent display zones DZ1 to DZn at the pitch δ of the display time. The distance between both ends of the near side and the far side varies, and the average distance also varies. Since the human eye or the brain captures the display image at the average distance of the display zones DZ1 to DZn, even when displaying simultaneously, the display distances of the respective display zones DZ1 to DZn are displayed as different positions. Can be in a state.
 なお、第k表示ゾーンDZkを重なり合う距離ゾーンが切り替わるタイミングで分割して、基準サブゾーンLZkを含む一連のサブゾーンLZk-2~LZk+1として考えた場合、像形成素子(表示素子)11に適宜表示動作を行わせることにより同一の投影像(虚像)IMをそれぞれのサブゾーンで表示させていることになる。つまり、距離が段階的に変化する一連の複数のサブゾーンLZk-2~LZk+1の組合せによって表示ゾーンDZkが構成される。この際、投影距離の変化を考慮して、隣り合う距離ゾーンLZk-2~LZk+1において同一の投影像(虚像)IMを位置及び角度サイズが一致するように重ねて表示させる。これにより、投影距離が変化する投影像(虚像)IMをズレや滲みがない状態で表示することができる。また、この時の平均的な表示距離が、基準サブゾーンLZkに相当する距離となる。なお、図16では、表示の便宜上、各表示ゾーンDZ1~DZnが横方向に延びるように示されているが、縦軸を中間像の位置とした場合、各表示ゾーンDZ1~DZnは、特性C1に沿って延びるものとなる。 In addition, when the kth display zone DZk is divided at the timing when the overlapping distance zones are switched and considered as a series of subzones LZk-2 to LZk + 1 including the reference subzone LZk, a display operation is appropriately performed on the image forming element (display element) 11. By doing so, the same projected image (virtual image) IM is displayed in each subzone. That is, the display zone DZk is configured by a combination of a series of a plurality of subzones LZk−2 to LZk + 1 whose distance changes stepwise. At this time, in consideration of the change in the projection distance, the same projection image (virtual image) IM is displayed in an overlapping manner in the adjacent distance zones LZk−2 to LZk + 1 so that the positions and the angle sizes coincide with each other. Thereby, the projection image (virtual image) IM in which the projection distance changes can be displayed in a state where there is no deviation or blurring. In addition, the average display distance at this time is a distance corresponding to the reference subzone LZk. In FIG. 16, for convenience of display, the display zones DZ1 to DZn are shown to extend in the horizontal direction. However, when the vertical axis is the position of the intermediate image, the display zones DZ1 to DZn have characteristics C1. It will extend along.
 第1表示ゾーンDZ1~第n表示ゾーンDZnでの表示時間は、全て等しくなっている。各表示ゾーンDZ1~DZnでの表示時間を等しくすることで、各表示ゾーンDZ1~DZnの表示輝度を一致させることができ、観察者であるドライバーVDが意図せず特定距離の像に偏って着目する傾向が生じることを防止できる。なお、用途によっては、各表示ゾーンDZ1~DZnでの表示輝度に差を持たせることができる。例えば遠距離投影に対応する表示ゾーンについては、表示輝度を上げるといった処理が可能である。 The display times in the first display zone DZ1 to the nth display zone DZn are all equal. By equalizing the display time in each of the display zones DZ1 to DZn, the display brightness of each of the display zones DZ1 to DZn can be matched, and the driver VD who is an observer unintentionally focuses on an image at a specific distance. Can be prevented from occurring. Depending on the application, it is possible to provide a difference in display luminance in each of the display zones DZ1 to DZn. For example, for a display zone corresponding to long-distance projection, it is possible to increase the display brightness.
 画面内の特定の奥行き方向で異なる対象を表示する場合、距離の異なる表示対象が、奥行き方向以外の2次元平面内において重なる、または略重なるような近い位置にあり、それらに対する表示間の干渉が発生してしまうことが考えられ、これを回避する必要がある。例えば表示ゾーンDZkの表示対象に対して別の表示距離DZk'に存在する表示対象が2次元平面内で近傍に位置していてそれぞれの対象に対する表示に干渉が生ずる場合には、干渉領域ではそれらを合成するような表示を行うことが考えられる。具体的には、一対の表示対象が重なる共通領域又は交わり領域では、一対の表示対象が半透過重畳表示されるような画像とし、一対の表示対象が重ならない差分領域又は独立領域では、各部分で標準的な表示を行えば足る。または、色や大きさ(線の場合は太さも含む)、明るさ、明滅といった手法で違いを出した表示とする方法も考えられ、ドライバーに伝わるような工夫がされた各種表示方法を用いることができる。 When displaying different objects in a specific depth direction on the screen, display objects with different distances are close to each other in a two-dimensional plane other than the depth direction, or overlap each other, and there is interference between the displays. It is thought that it will occur, and it is necessary to avoid this. For example, when a display target existing at a different display distance DZk ′ with respect to a display target in the display zone DZk is located in the vicinity in the two-dimensional plane and interference occurs in the display for each target, these are displayed in the interference region. It is conceivable to display such that Specifically, in a common area or intersection area where a pair of display objects overlap, a pair of display objects are images that are displayed in a semi-transparent superimposed manner, and in a difference area or an independent area where a pair of display objects do not overlap, The standard display is sufficient. Alternatively, it is possible to make a display that makes a difference by using methods such as color and size (including thickness in the case of lines), brightness, and blinking, and use various display methods that are devised to communicate to the driver. Can do.
 図17は、第6実施形態における主制御部90の動作を説明する概念図である。まず、主制御部90は、環境監視部72を利用してオブジェクトを検出した場合、オブジェクトに対応する対象物KT(図4A等参照)を囲む表示枠HWに対応する表示データを生成し、不図示の記憶部に保管する(ステップS11)。その後、主制御部90は、ステップS11で得た表示データを、対応する表示ゾーンDZ1~DZnに振り分けるようなデータの変換を行う(ステップS12)。具体的には、1つ以上の対象物KTの位置に応じて、対応する1つ以上の表示枠HWを表示ゾーンDZ1~DZnのいずれか1つ(図11の例では表示ゾーンDZa~DZc)に割り当てる。次に、主制御部90は、1つ以上の表示枠HWに対応する表示データを割り当てた表示ゾーンDZ1~DZnに適合するように加工し、不図示の記憶部に保管する(ステップS13)。この適合化は、距離ゾーンLZk-2~LZk+1ごとに枠画像の輪郭や配置を補正するといった画像処理を含む。その後、主制御部90は、ステップS13で適合化させた表示データを既存データと合成する(ステップS14)。表示ゾーンDZ1~DZnによる表示は、時間差があるものの同時並行して行われ、短時間であるが残像を残すような表示が行われるので、新たな対象物KTが出現した場合、既存の対象物と新たな対象物とを併存させるように表示内容を組み直す必要があることを考慮したものである。最後に、主制御部90は、ステップS15で得た表示データを、回転駆動装置62aの動作に同期して表示制御部18に出力し、像形成素子(表示素子)11に回転体6aの機能領域FA又は中間像TIの可動投影位置に応じた表示動作を行わせる。 FIG. 17 is a conceptual diagram illustrating the operation of the main control unit 90 in the sixth embodiment. First, when the main control unit 90 detects an object using the environment monitoring unit 72, the main control unit 90 generates display data corresponding to the display frame HW surrounding the target object KT (see FIG. 4A and the like) corresponding to the object. It is stored in the illustrated storage unit (step S11). Thereafter, the main control unit 90 performs data conversion such that the display data obtained in step S11 is distributed to the corresponding display zones DZ1 to DZn (step S12). Specifically, according to the position of one or more objects KT, one or more corresponding display frames HW are displayed in any one of the display zones DZ1 to DZn (in the example of FIG. 11, display zones DZa to DZc). Assign to. Next, the main control unit 90 processes the display data corresponding to one or more display frames HW so as to match the assigned display zones DZ1 to DZn, and stores them in a storage unit (not shown) (step S13). This adaptation includes image processing such as correcting the outline and arrangement of the frame image for each of the distance zones LZk−2 to LZk + 1. Thereafter, the main control unit 90 synthesizes the display data adapted in step S13 with the existing data (step S14). Although the display by the display zones DZ1 to DZn is performed in parallel at the same time, although there is a time difference, the display is performed so as to leave an afterimage for a short time, so when a new target KT appears, the existing target In view of this, it is necessary to reorganize the display contents so that the new object and the new object coexist. Finally, the main control unit 90 outputs the display data obtained in step S15 to the display control unit 18 in synchronization with the operation of the rotation driving device 62a, and the image forming element (display element) 11 has the function of the rotating body 6a. A display operation corresponding to the movable projection position of the area FA or the intermediate image TI is performed.
 図18は、像形成素子11動作を説明する図である。この場合、縦方向に並ぶ第1表示領域~第n表示領域は、図16等に示す第1~第n表示ゾーンDZ1~DZnに対応している。回転体6aの1回転に対応する1サイクルで、第1~第n表示ゾーンDZ1~DZnに対応して、像形成素子(表示素子)11の表示面11aにおいて、第1表示領域~第n表示領域での表示が繰り返される。各表示領域において、信号F1~F4は、同一の表示像が4つのサブゾーンで繰り返されることを意味し、信号F1~F4のそれぞれにカラー表示用のR,G、及びBの信号成分が含まれている。 FIG. 18 is a diagram for explaining the operation of the image forming element 11. In this case, the first to nth display areas arranged in the vertical direction correspond to the first to nth display zones DZ1 to DZn shown in FIG. In one cycle corresponding to one rotation of the rotator 6a, the first display area to the nth display on the display surface 11a of the image forming element (display element) 11 corresponding to the first to nth display zones DZ1 to DZn. The display in the area is repeated. In each display area, the signals F1 to F4 mean that the same display image is repeated in four subzones, and each of the signals F1 to F4 includes R, G, and B signal components for color display. ing.
 以上の第6実施形態において、回転体6aに形成する立体形状としての螺旋形状は、一周期に限らず、方位領域を複数に分割して複数周期とすることができる。また、回転体6aの螺旋形状は、厚みを線形的に増減させるものに限らず、厚みを非線形的に増減させるものであってもよい。 In the above sixth embodiment, the spiral shape as a three-dimensional shape formed on the rotating body 6a is not limited to one cycle, and the azimuth region can be divided into a plurality of cycles. Further, the spiral shape of the rotating body 6a is not limited to linearly increasing / decreasing the thickness, but may be one that increases / decreases the thickness nonlinearly.
 本実施形態の虚像表示装置又は方法によれば、光路長変化素子416を回転軸RXの周りに回転させることで、中間像の可動投影位置を連続的に変化させており、簡素な構成で信頼性を確保しつつ奥行き方向を含めて高速で虚像の表示位置を変化させながら表示することが可能となる。 According to the virtual image display apparatus or method of the present embodiment, the movable projection position of the intermediate image is continuously changed by rotating the optical path length changing element 416 around the rotation axis RX, and the simple configuration is reliable. It is possible to display while changing the display position of the virtual image at a high speed including the depth direction while securing the property.
 また、本実施形態の虚像表示装置又は方法によれば、投影距離を変化させる光路長変化素子416の回転に同期させて像形成素子(表示素子)11に表示を行わせるので、奥行き方向を含めて表示位置が異なる虚像を高速で変化させながら表示することでき、複数の距離位置に各種画像を同時に投影することができる。この際、制御部90,18が投影距離を変化させる複数の表示ゾーンDZ1~DZnのうち隣り合う表示ゾーンにおいて投影距離が部分的に重複するように設定するので、例えば表示距離を近側の端から遠側の端、または遠側の端から近側の端に変えて表示する1周期内で設定した距離分割数の表示ゾーンで表示することを考えた場合、隣り合う表示ゾーンにおいて投影距離の重なりがない表示に比べて、同じ分割数でも重なりを持たせることで各表示ゾーンによる投影時間又は表示時間を長くすることができ、高輝度の画像を同時に投影することが容易になる。 Further, according to the virtual image display apparatus or method of the present embodiment, since the image forming element (display element) 11 performs display in synchronization with the rotation of the optical path length changing element 416 that changes the projection distance, the depth direction is included. Thus, virtual images with different display positions can be displayed while changing at high speed, and various images can be simultaneously projected at a plurality of distance positions. At this time, the control units 90 and 18 set the projection distance so as to partially overlap in adjacent display zones among the plurality of display zones DZ1 to DZn that change the projection distance. When displaying in the display zone with the number of distance divisions set within one period, changing from the far end to the far end or displaying from the far end to the near end, the projection distance of the adjacent display zone Compared to a display without overlapping, by providing overlapping even with the same number of divisions, it is possible to lengthen the projection time or display time by each display zone, and it becomes easy to simultaneously project a high-luminance image.
〔第7実施形態〕
 以下、第7実施形態に係る虚像表示装置及び方法について説明する。なお、第7実施形態の虚像表示装置は第2実施形態又は第6実施形態の虚像表示装置を変形したものであり、特に説明しない事項は第2又は第6実施形態と同様である。
[Seventh Embodiment]
The virtual image display device and method according to the seventh embodiment will be described below. The virtual image display device according to the seventh embodiment is a modification of the virtual image display device according to the second embodiment or the sixth embodiment, and matters not specifically described are the same as those in the second or sixth embodiment.
 図19に示すように、本体光学系13は、結像光学系15と虚像形成光学系17との間に配置される光路長変化素子516を備える。この光路長変化素子516は、楔状に形成された立体形状部であり、先端側で薄く根元側で厚くなっている。 As shown in FIG. 19, the main body optical system 13 includes an optical path length changing element 516 disposed between the imaging optical system 15 and the virtual image forming optical system 17. The optical path length changing element 516 is a three-dimensionally shaped portion formed in a wedge shape, and is thin on the tip side and thick on the root side.
 配置変更装置62によって光路長変化素子516を光軸AXに垂直な方向に移動させることで、光路長変化素子516において光軸AXが横切る箇所が順次移動し、虚像形成光学系17から見た中間像TIの見かけ上の位置又は中間像TIの可動投影位置が移動する。結果的に、虚像形成光学系17によって表示スクリーン20の背後に形成される虚像としての表示像IMと観察者であるドライバーUNとの距離を大きく、または小さくすることができる。 By moving the optical path length changing element 516 in the direction perpendicular to the optical axis AX by the arrangement changing device 62, the location where the optical axis AX crosses in the optical path length changing element 516 sequentially moves, and the intermediate position viewed from the virtual image forming optical system 17 The apparent position of the image TI or the movable projection position of the intermediate image TI moves. As a result, the distance between the display image IM as a virtual image formed behind the display screen 20 by the virtual image forming optical system 17 and the driver UN as an observer can be increased or decreased.
 第7実施形態の虚像表示装置でも、第6実施形態と同様に虚像形成光学系17から見た中間像TIの見かけ上の位置を連続的に変化させるので、第6実施形態と同様の表示制御を行う。この際、中間像TIの可動投影位置を図15Bに示すように一定速度で移動させることもできるが、正弦波のような周期的に変化する速度で移動させることもできる。この場合、表示ゾーンDZ1~DZnの設定を光路長変化素子516の移動速度も加味したものとすれば、表示枠HW等の輝度を投影位置に関わらず一様なものとすることができる。 Also in the virtual image display device of the seventh embodiment, the apparent position of the intermediate image TI viewed from the virtual image forming optical system 17 is continuously changed as in the sixth embodiment. Therefore, display control similar to that in the sixth embodiment is performed. I do. At this time, the movable projection position of the intermediate image TI can be moved at a constant speed as shown in FIG. 15B, but can also be moved at a periodically changing speed such as a sine wave. In this case, if the display zones DZ1 to DZn are set in consideration of the moving speed of the optical path length changing element 516, the luminance of the display frame HW and the like can be made uniform regardless of the projection position.
 なお、光路長変化素子516によって色分散が顕著となる場合、像形成素子11において予め色ズレのある表示を行うこともできる。 In addition, when color dispersion becomes remarkable by the optical path length changing element 516, the image forming element 11 can perform display with a color shift in advance.
〔第8実施形態〕
 以下、第8実施形態に係る虚像表示装置について説明する。なお、第8実施形態の虚像表示装置は第1~第7実施形態の虚像表示装置を変形したものであり、特に説明しない事項は第1実施形態等と同様である。
[Eighth Embodiment]
The virtual image display device according to the eighth embodiment will be described below. The virtual image display device according to the eighth embodiment is a modification of the virtual image display device according to the first to seventh embodiments, and items not specifically described are the same as those in the first embodiment.
 図20に示すように、第8実施形態に係る虚像表示装置100の場合、フロントウインドウを形成するフロントガラス8の運転席正面に設けた矩形の反射領域8dの内側に表示スクリーン220が貼り付けられている。つまり、ハーフミラーがフロントガラス8に形成される。なお、表示スクリーン220は、フロントガラス8内に埋め込むこともできる。 As shown in FIG. 20, in the case of the virtual image display device 100 according to the eighth embodiment, a display screen 220 is pasted inside a rectangular reflection region 8d provided in front of the driver's seat of the windshield 8 forming the front window. ing. That is, a half mirror is formed on the windshield 8. The display screen 220 can also be embedded in the windshield 8.
 以上では、具体的な実施形態としての虚像表示装置100について説明したが、本発明に係る虚像表示装置は、上記のものには限られない。例えば、第1~5実施形態における光路長変化素子16は、階段状構造体に限らず、互いに分離された区分領域又は部分領域16a~16dを含むものであってもよい。この場合、区分領域又は部分領域は、枠等の連結部材によって互いに連結することができる。 Although the virtual image display device 100 as a specific embodiment has been described above, the virtual image display device according to the present invention is not limited to the above. For example, the optical path length changing element 16 in the first to fifth embodiments is not limited to the staircase structure, and may include divided regions or partial regions 16a to 16d separated from each other. In this case, the divided area or the partial area can be connected to each other by a connecting member such as a frame.
 光路長変化素子16を構成する各部分領域16a~16dは、全て異なる厚みとする場合、回転をスムースにするためのバランサーを組み込むことが望ましい。ただし、光路長変化素子16を構成する部分領域が虚像表示距離の2倍の数だけあれば、同じ虚像表示距離に対応する部分領域を対向配置する等して、光路長変化素子16の回転バランスを高めることができる。 When each of the partial regions 16a to 16d constituting the optical path length changing element 16 has a different thickness, it is desirable to incorporate a balancer for smooth rotation. However, if the number of partial regions constituting the optical path length changing element 16 is twice as many as the virtual image display distance, the rotational balance of the optical path length changing element 16 is arranged by arranging the partial areas corresponding to the same virtual image display distance to face each other. Can be increased.
 第1実施形態において、虚像表示装置100の配置を上下反転させて、フロントガラス8の上部又はサンバイザー位置に表示スクリーン20を配置することものでき、この場合、描画ユニット10の斜め下方前方に表示スクリーン20が配置される。また、表示スクリーン20は、自動車の従来のミラーに対応する位置に配置してもよい。 In the first embodiment, the arrangement of the virtual image display device 100 can be turned upside down, and the display screen 20 can be arranged at the upper part of the windshield 8 or at the sun visor position. A screen 20 is arranged. Further, the display screen 20 may be disposed at a position corresponding to a conventional mirror of an automobile.
 上記実施形態において、表示スクリーン20の輪郭は、矩形に限らず、様々な形状とすることができる。 In the above-described embodiment, the outline of the display screen 20 is not limited to a rectangle, but may be various shapes.
 図2等に示す結像光学系15や虚像形成光学系17は、単なる例示であり、これら結像光学系15及び虚像形成光学系17の光学的構成については適宜変更することができる。例えば、結像光学系15中に中間像TIの前段としての中間像を追加で形成することができる。また、結像光学系15や虚像形成光学系17の光路中において、光学的なパワーを持たない1つ以上のミラーを配置していてもよい。この場合、折り返しによる描画ユニット10等の小型化に有利になる場合もある。 The image forming optical system 15 and the virtual image forming optical system 17 shown in FIG. 2 and the like are merely examples, and the optical configurations of the image forming optical system 15 and the virtual image forming optical system 17 can be changed as appropriate. For example, an intermediate image as a preceding stage of the intermediate image TI can be additionally formed in the imaging optical system 15. One or more mirrors having no optical power may be disposed in the optical path of the imaging optical system 15 and the virtual image forming optical system 17. In this case, it may be advantageous for downsizing the drawing unit 10 and the like by folding.
 上記実施形態において、表示スクリーン(コンバイナー)20が平板状であるとしたが、本体光学系13の光学的仕様を考慮しつつ表示スクリーン20を自由曲面その他の曲面とすることもできる。 In the above embodiment, the display screen (combiner) 20 is a flat plate, but the display screen 20 can be a free curved surface or other curved surface while taking into consideration the optical specifications of the main body optical system 13.
 第1~5実施形態において、表示像(虚像)IMの表示位置は、上記実施形態で例示した3か所又は4か所に限らず、5か所以上の適当数に設定することができる。また、表示像IMの表示は、位置を変化させて連続的又は断続的に行うことができる。 In the first to fifth embodiments, the display position of the display image (virtual image) IM is not limited to the three or four illustrated in the above embodiment, and can be set to an appropriate number of five or more. The display of the display image IM can be performed continuously or intermittently by changing the position.
 第1~5実施形態において、光路長変化素子16の拡散領域16a~16dを長方形で例示したが、光路長変化素子16の拡散領域は、台形や扇形、その他の形状とすることもできる。より好ましい実施形態としては、拡散スクリーンの領域数、回転軸RXと光軸AXの関係性、回転速度等を考慮した形状とすることである。 In the first to fifth embodiments, the diffusion regions 16a to 16d of the optical path length changing element 16 are illustrated as rectangles. However, the diffusion region of the optical path length changing element 16 may be trapezoidal, fan-shaped, or other shapes. In a more preferred embodiment, the shape is in consideration of the number of regions of the diffusion screen, the relationship between the rotation axis RX and the optical axis AX, the rotation speed, and the like.
 以上で説明した虚像表示装置100は、自動車やその他移動体に搭載される投影装置に限らず、デジタルサイネージ等に組み込むことができるが、これら以外の用途に適用することもできる。 The virtual image display device 100 described above is not limited to a projection device mounted on an automobile or other moving body, but can be incorporated in a digital signage or the like, but can also be applied to other uses.

Claims (17)

  1.  表示部と、前記表示部によって表示領域に形成された像を拡大する虚像表示光学系とを備え、
     前記表示領域から第1の反射体までの光路中に、光軸方向に厚みの異なる構造を有する光路長変化素子が配置されている虚像表示装置。
    A display unit, and a virtual image display optical system for enlarging an image formed in a display region by the display unit,
    A virtual image display device in which optical path length changing elements having structures having different thicknesses in the optical axis direction are arranged in an optical path from the display region to the first reflector.
  2.  前記光路長変化素子は、光軸方向に厚みが異なる所定の区分領域を有する、請求項1に記載の虚像表示装置。 The virtual image display device according to claim 1, wherein the optical path length changing element has a predetermined segmented region having a thickness different in an optical axis direction.
  3.  前記光路長変化素子は、前記表示部の表示領域に対応するサイズをそれぞれ有するとともに前記所定の区分領域として光軸方向に厚みが異なる複数の部分領域を含む階段状構造体である、請求項2に記載の虚像表示装置。 The optical path length changing element is a stepped structure including a plurality of partial regions each having a size corresponding to a display region of the display unit and having different thicknesses in the optical axis direction as the predetermined segmented region. The virtual image display device described in 1.
  4.  前記光路長変化素子は、光軸方向に厚みが異なる前記複数の部分領域を中心の周りに設けた円盤状構造体である、請求項3に記載の虚像表示装置。 4. The virtual image display device according to claim 3, wherein the optical path length changing element is a disk-like structure provided around the center with the plurality of partial regions having different thicknesses in the optical axis direction.
  5.  前記光路長変化素子は、全体として前記表示部の表示領域に対応するサイズを有し、前記所定の区分領域として光軸方向に厚みが異なる複数の部分領域を含む階段状構造体である、請求項2に記載の虚像表示装置。 The optical path length changing element is a stepped structure having a size corresponding to a display area of the display section as a whole and including a plurality of partial areas having different thicknesses in an optical axis direction as the predetermined segmented area. Item 3. The virtual image display device according to Item 2.
  6.  前記光路長変化素子は、入射面及び射出面が平面で構成される、請求項1~5のいずれか一項に記載の虚像表示装置。 The virtual image display device according to any one of claims 1 to 5, wherein the optical path length changing element has a plane of incidence and emission.
  7.  前記光路長変化素子は、前記表示領域の反対側に配置される前記射出面が複数の平面を含む階段状となっている、請求項6に記載の虚像表示装置。 The virtual image display device according to claim 6, wherein the optical path length changing element has a stepped shape in which the exit surface disposed on the opposite side of the display region includes a plurality of planes.
  8.  前記表示部は、像形成素子の表示面に対応する中間像を前記光路長変化素子から光路前段にかけての前記表示領域に結像し、
     前記光路長変化素子は、中間像の結像位置から±1mm以内に配置され、前記表示領域側の入射面が拡散機能を有する、請求項1~7のいずれか一項に記載の虚像表示装置。
    The display unit forms an intermediate image corresponding to the display surface of the image forming element on the display region from the optical path length changing element to the front stage of the optical path,
    The virtual image display device according to any one of claims 1 to 7, wherein the optical path length changing element is disposed within ± 1 mm from an imaging position of an intermediate image, and an incident surface on the display region side has a diffusion function. .
  9.  前記表示部は、像形成素子であり、
     前記光路長変化素子のうち前記像形成素子に対向する側に配置される前記入射面は、前記表示素子の表示面から1cm以内に配置される、請求項1~7のいずれか一項に記載の虚像表示装置。
    The display unit is an image forming element,
    The incident surface arranged on the side of the optical path length changing element facing the image forming element is arranged within 1 cm from the display surface of the display element. Virtual image display device.
  10.  前記光路長変化素子は、回転により機能領域の光軸方向の厚みが連続的に変化する立体形状を有する、請求項1に記載の虚像表示装置。 The virtual image display device according to claim 1, wherein the optical path length changing element has a three-dimensional shape in which the thickness of the functional region in the optical axis direction changes continuously by rotation.
  11.  投影距離を変化させる前記光路長変化素子の移動に同期させて前記表示部に表示を行わせるとともに、投影距離を変化させる複数の表示ゾーンのうち隣り合う表示ゾーンにおいて投影距離が部分的に重複するように設定する制御部をさらに備える、請求項10に記載の虚像表示装置。 The display unit performs display in synchronization with the movement of the optical path length changing element that changes the projection distance, and the projection distances partially overlap in adjacent display zones among the plurality of display zones that change the projection distance. The virtual image display device according to claim 10, further comprising a control unit configured to make the setting as described above.
  12.  光路長変化素子を移動させる移動部をさらに備える、請求項1~11のいずれか一項に記載の虚像表示装置。 The virtual image display device according to any one of claims 1 to 11, further comprising a moving unit that moves the optical path length changing element.
  13.  前記虚像表示光学系は、前記第1の反射体に対応し光学的なパワーを有する第1のミラーと、前記第1のミラーの光路後段に配置されて光学的なパワーを有するハーフミラーとを有する、請求項1~12のいずれか一項に記載の虚像表示装置。 The virtual image display optical system includes a first mirror corresponding to the first reflector and having an optical power, and a half mirror having an optical power that is disposed in the latter stage of the optical path of the first mirror. The virtual image display device according to any one of claims 1 to 12, further comprising:
  14.  前記虚像表示光学系は、前記第1の反射体に対応し光学的なパワーを有する第1のミラーと、前記第1のミラーの光路後段に配置されて光学的なパワーを有する第2のミラーと、前記第2のミラーの光路後段に配置されて光学的なパワーを有するハーフミラーとを有する、請求項1~12のいずれか一項に記載の虚像表示装置。 The virtual image display optical system includes a first mirror corresponding to the first reflector and having an optical power, and a second mirror having an optical power that is disposed downstream of the optical path of the first mirror. The virtual image display device according to any one of claims 1 to 12, further comprising: a half mirror that is disposed downstream of the optical path of the second mirror and has optical power.
  15.  前記ハーフミラーは、コンバイナーである、請求項13及び14のいずれか一項に記載の虚像表示装置。 The virtual image display device according to any one of claims 13 and 14, wherein the half mirror is a combiner.
  16.  前記ハーフミラーは、フロントガラスである、請求項13及び14のいずれか一項に記載の虚像表示装置。 The virtual image display device according to any one of claims 13 and 14, wherein the half mirror is a windshield.
  17.  表示部と、前記表示部によって表示領域に形成された像を拡大する虚像表示光学系とを用いた虚像表示方法であって、
     光軸方向に厚みの異なる構造を有する光路長変化素子を前記表示領域から第1の反射体までの光路中に配置し、光路長変化素子の配置によって投影距離を変化させる、虚像表示方法。
    A virtual image display method using a display unit and a virtual image display optical system for enlarging an image formed in a display region by the display unit,
    A virtual image display method in which optical path length changing elements having structures having different thicknesses in the optical axis direction are arranged in an optical path from the display region to the first reflector, and the projection distance is changed by the arrangement of the optical path length changing elements.
PCT/JP2017/047352 2016-12-30 2017-12-28 Virtual image display device and method WO2018124299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018559647A JPWO2018124299A1 (en) 2016-12-30 2017-12-28 Virtual image display apparatus and method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016257486 2016-12-30
JP2016-257486 2016-12-30
JP2017195301 2017-10-05
JP2017-195300 2017-10-05
JP2017195300 2017-10-05
JP2017-195301 2017-10-05

Publications (1)

Publication Number Publication Date
WO2018124299A1 true WO2018124299A1 (en) 2018-07-05

Family

ID=62709476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047352 WO2018124299A1 (en) 2016-12-30 2017-12-28 Virtual image display device and method

Country Status (2)

Country Link
JP (1) JPWO2018124299A1 (en)
WO (1) WO2018124299A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020065125A (en) * 2018-10-15 2020-04-23 コニカミノルタ株式会社 Display device
US11137597B2 (en) 2019-03-28 2021-10-05 Samsung Electronics Co., Ltd. Image display apparatus
WO2022176208A1 (en) * 2021-02-22 2022-08-25 株式会社 ジャパンセル Predetermined light generation method, predetermined light utilization method, service provision method using predetermined light, measurement/imaging method, optical characteristic conversion element, light source unit, measurement unit, observation device, predetermined light utilization device and service provision system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043407A (en) * 2001-07-31 2003-02-13 Olympus Optical Co Ltd Portable image observation device
JP2007523364A (en) * 2004-01-09 2007-08-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Space display
JP2014028593A (en) * 2012-07-31 2014-02-13 Jvc Kenwood Corp Display device for vehicle
JP2016024420A (en) * 2014-07-24 2016-02-08 トヨタ自動車株式会社 In-vehicle display device
WO2016208194A1 (en) * 2015-06-26 2016-12-29 パナソニックIpマネジメント株式会社 Head-up display and moving body equipped with head-up display

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268625B2 (en) * 1995-08-11 2002-03-25 シャープ株式会社 3D image display device
JP2013073229A (en) * 2011-09-29 2013-04-22 Seiko Epson Corp Display device, and method of driving the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043407A (en) * 2001-07-31 2003-02-13 Olympus Optical Co Ltd Portable image observation device
JP2007523364A (en) * 2004-01-09 2007-08-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Space display
JP2014028593A (en) * 2012-07-31 2014-02-13 Jvc Kenwood Corp Display device for vehicle
JP2016024420A (en) * 2014-07-24 2016-02-08 トヨタ自動車株式会社 In-vehicle display device
WO2016208194A1 (en) * 2015-06-26 2016-12-29 パナソニックIpマネジメント株式会社 Head-up display and moving body equipped with head-up display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020065125A (en) * 2018-10-15 2020-04-23 コニカミノルタ株式会社 Display device
US11137597B2 (en) 2019-03-28 2021-10-05 Samsung Electronics Co., Ltd. Image display apparatus
WO2022176208A1 (en) * 2021-02-22 2022-08-25 株式会社 ジャパンセル Predetermined light generation method, predetermined light utilization method, service provision method using predetermined light, measurement/imaging method, optical characteristic conversion element, light source unit, measurement unit, observation device, predetermined light utilization device and service provision system

Also Published As

Publication number Publication date
JPWO2018124299A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP7078904B2 (en) Virtual image display optical system and image display device
JP6187329B2 (en) Virtual image display system
WO2017056953A1 (en) Display device
WO2018124299A1 (en) Virtual image display device and method
WO2020261830A1 (en) Head-up display device
WO2018180856A1 (en) Head-up display apparatus
WO2018199245A1 (en) Virtual image display device, and display system for moving body
WO2019151314A1 (en) Display apparatus
JP2019191368A (en) Virtual image display device and head-up display device
JPWO2019124323A1 (en) Virtual image display device and head-up display device
JP7280557B2 (en) Display device and display method
JP7121349B2 (en) Display method and display device
EP3693783B1 (en) Display device
JP7111071B2 (en) head-up display device
JP7111070B2 (en) head-up display device
WO2019093500A1 (en) Display device
WO2024090297A1 (en) Head-up display system
WO2020189258A1 (en) Display device, head-up display device, and head-mounted display device
WO2019220767A1 (en) Virtual image projection optical system and display device
WO2019177113A1 (en) Virtual image display optical system and display device
WO2020080007A1 (en) Display apparatus
JP2020065125A (en) Display device
WO2019107225A1 (en) Virtual-image display device and head-up display device
JP2020071441A (en) Display unit
JP2020027209A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887090

Country of ref document: EP

Kind code of ref document: A1