WO2020080007A1 - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
WO2020080007A1
WO2020080007A1 PCT/JP2019/036049 JP2019036049W WO2020080007A1 WO 2020080007 A1 WO2020080007 A1 WO 2020080007A1 JP 2019036049 W JP2019036049 W JP 2019036049W WO 2020080007 A1 WO2020080007 A1 WO 2020080007A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate screen
display
drawing device
image
light emission
Prior art date
Application number
PCT/JP2019/036049
Other languages
French (fr)
Japanese (ja)
Inventor
菅原和弘
山田範秀
関口瑛士
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020552968A priority Critical patent/JPWO2020080007A1/en
Publication of WO2020080007A1 publication Critical patent/WO2020080007A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/22Display screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/50Instruments characterised by their means of attachment to or integration in the vehicle
    • B60K35/53Movable instruments, e.g. slidable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/80Arrangements for controlling instruments
    • B60K35/81Arrangements for controlling instruments for controlling displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/211Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays producing three-dimensional [3D] effects, e.g. stereoscopic images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/65Instruments specially adapted for specific vehicle types or users, e.g. for left- or right-hand drive
    • B60K35/658Instruments specially adapted for specific vehicle types or users, e.g. for left- or right-hand drive the instruments being ergonomically adjustable to the user

Definitions

  • the present invention relates to a display device in which a virtual image is displayed in front of the line of sight and the projection position of the virtual image is variable.
  • HUD devices generally generate a virtual image at a position away from the driver by a certain distance, and the distance from the driver to the virtual image is constant.
  • the position of the eyes is displaced, the position of the object and the position of the danger signal (virtual image) are displaced, and there is a problem that the driver mistakenly recognizes the object.
  • the HUD device having such a configuration draws RGB color image data in a time-sequential manner by the drawing device, and when the intermediate screen is arranged at a predetermined position, pulse-projects the RGB image, resulting in A target color image (virtual image) is projected on a predetermined virtual image distance. At this time, it is necessary to synchronize the movement of the intermediate screen with the light emission timing of the drawing device.
  • Patent Document 1 As a method of providing a virtual image with depth, there is a method described in Patent Document 1 below.
  • scanning type image forming means such as a MEMS mirror, an intermediate screen, a projection means, and a movable means for changing the intermediate screen position are provided, and the position of the virtual image is changed by changing the intermediate screen position. It is changing.
  • the main purpose of Patent Document 1 is to reduce the line-of-sight of the driver by moving the virtual image position closer or further away in view of the fact that the distance the human gazes changes depending on the speed of the vehicle. There is no description about the synchronization between the movement of the light source and the light emission timing of the drawing device.
  • the present invention has been made in view of the background art described above, and an object of the present invention is to provide a display device capable of displaying virtual images at a plurality of distances by adjusting operations of a drawing device and an intermediate screen.
  • a display device that reflects one aspect of the present invention has a drawing device, a projection optical system that magnifies an image formed on the drawing device, and a diffusion function.
  • An intermediate screen arranged on the light exit side of the projection optical system, a magnifying projection optical system for converting an image on the intermediate screen into a virtual image, and a position changing device for changing the position of the intermediate screen along the optical axis direction, Based on the position detection element that detects the position of the intermediate screen, the position information of the intermediate screen obtained from the position detection element, and the information regarding the light emission timing of the drawing device, at least one of the operation of the intermediate screen and the operation of the drawing device is performed.
  • the rendering device includes a display control unit for controlling, and the drawing device configures R and G that form a color image at a timing when the intermediate screen is arranged at a predetermined position. And draws an image of B.
  • FIG. 1A is a side sectional view showing a state in which the image display device of the first embodiment is mounted on a vehicle body
  • FIG. 1B is a front view from the inside of the vehicle for explaining the image display device.
  • It is an expanded side sectional view explaining a concrete example of composition, such as a virtual image display optical system.
  • It is a conceptual diagram explaining the structure of a drawing device.
  • 4A and 4B are a plan view and a side sectional view for explaining the structure of a diffusion unit incorporating the intermediate screen
  • FIG. 4C is a diagram for explaining movement of the functional region and the like accompanying the rotation of the intermediate screen. It is a figure which illustrates the change of the position of an intermediate image concretely.
  • FIG. 8A is a diagram for explaining a rotation signal received by the position detection element
  • FIGS. 8B and 8C are diagrams for explaining a light emission timing of the drawing device.
  • FIG. 10A is a diagram corresponding to FIG. 5, and FIGS. 10B to 10D are diagrams corresponding to the display image or frame frame in FIG. 9.
  • FIG. 1A and 1B are a conceptual side sectional view and a front view illustrating an image display device 100 as a display device and a usage state thereof.
  • the image display device 100 is mounted in the vehicle body 2 as a head-up display (HUD) device, for example, and includes a drawing unit 10 and a display screen 20.
  • the image display device 100 displays image information displayed on a later-described drawing device 11 in the drawing unit 10 as a virtual image toward the driver UN via the display screen 20.
  • HUD head-up display
  • the drawing unit 10 of the image display device 100 is installed in the dashboard 4 of the vehicle body 2 so as to be embedded behind the display 50, and displays the display light HK corresponding to an image including driving-related information and the like on the display screen. Eject toward 20.
  • the display screen 20 is also called a combiner, and is a semi-transparent concave mirror or a plane mirror.
  • the display screen 20 is erected on the dashboard 4 by being supported at its lower end, and reflects the display light HK from the drawing unit 10 toward the rear of the vehicle body 2. That is, in the illustrated case, the display screen 20 is an independent type installed separately from the front window 8.
  • the display light HK reflected by the display screen 20 is guided to an eye box (not shown) corresponding to the pupil HT of the driver UN sitting in the driver's seat 3 and its peripheral position.
  • the driver UN can observe the display light HK reflected by the display screen 20, that is, the display image IM as a virtual image in front of the vehicle body 2.
  • the driver UN can observe external light transmitted through the display screen 20, that is, a front view, a real image of an automobile or the like.
  • the driver UN has a display image (virtual image) IM that includes driving-related information and the like formed by reflection of the display light HK on the display screen 20 so as to be superimposed on the outside image or the see-through image behind the display screen 20. Can be observed.
  • the display screen 20 is configured separately from the front window 8, the front window 8 is used as a display screen and projection is performed on the display range set in the front window 8 so that the driver UN displays a display image.
  • the IM may be observed.
  • the reflection area can be secured by changing the reflectance of a part of the glass of the front window 8 with a coat or the like.
  • the reflectance is secured at about 15%, and it can be used as a reflective surface having transmissivity without providing a coat.
  • the display screen 20 may be sandwiched between the windows of the front window 8.
  • the drawing unit 10 includes a main body optical system 13 which is a virtual image type magnifying and imaging system including a drawing device 11, a display controller 18 for operating the main body optical system 13, a main body optical system 13 and the like. And a housing 14 for housing the.
  • the display control unit 18 controls the emission timing of the drawing device 11, the emission colors of RGB, and the emission amount.
  • a combination of the main body optical system 13 and the display screen 20 constitutes a virtual image display optical system 30.
  • the main body optical system 13 includes, in addition to the drawing device 11, a projection optical system 15 for forming an intermediate image TI in which an image formed on the drawing device 11 is magnified, and a projected image forming position of the intermediate image TI or its vicinity (
  • an enlarged projection optical system 17 for enlarging the intermediate image TI ′.
  • the drawing device 11 has a two-dimensional display surface 11a.
  • the image formed on the display surface 11 a of the drawing device 11 is enlarged by the projection optical system 15 of the main body optical system 13 and projected on the diffusion unit 16.
  • the projection optical system 15 magnifies the image formed on the display surface 11a of the drawing device 11 by using the drawing device 11 capable of two-dimensional display, a display displayed as a virtual image through the display screen 20.
  • the image IM can be switched at a relatively high speed.
  • the operation of the drawing device 11 is controlled by the display control unit 18 described later so as to be synchronized with the operation of the rotation drive unit 64 attached to the diffusion unit 16.
  • the drawing device 11 includes, for example, a reflective display element.
  • a semiconductor light source for example, is used as the light emitting body that illuminates the display element.
  • the drawing device 11 operates at a frame rate of 30 fps or more, and more preferably 60 fps or more for each virtual image distance. Thereby, it becomes easy to make a plurality of display images (virtual images) IM at different virtual image distances appear to be displayed to the driver UN at the same time.
  • FIG. 3 is a diagram illustrating a specific configuration of the drawing device 11.
  • the drawing device 11 includes an illumination optical system 5 that emits illumination light, and a display device 6 that generates an image by two-dimensional spatial modulation of the illumination light.
  • the illumination optical system 5 includes three light sources 4a, 4b, 4c for emitting illumination light, a first dichroic mirror 5a, a second dichroic mirror 5b, collimators 5d, 5e, 5f, a relay lens 5h, and a fly.
  • An eye optical system 5j, condenser lenses 5m and 5n, a bending mirror 5p, a TIR (Total Internal Reflection) prism 5q, and a flat plate 5r are provided.
  • the three light sources 4a, 4b, 4c are light emitting elements such as LEDs (light emitting diodes), and emit the illumination light La, Lb, Lc of three colors of R, G, and B, respectively.
  • the light source 4a is an R light source
  • the light source 4b is a G light source
  • the light source 4c is a B light source.
  • the first dichroic mirror 5a combines the G illumination light Lb from the second light source (G light source) 4b and the B illumination light Lc from the third light source (B light source) 4c to form a second dichroic mirror.
  • the fifth dichroic mirror 5b synthesizes the R illumination light La from the first light source (R light source) 4a and the G and B illumination lights Lb and Lc synthesized by the first dichroic mirror 5a.
  • the collimators 5d, 5e, 5f bring the illumination lights La, Lb, Lc from the respective light sources 4a, 4b, 4c into a state close to parallel light flux.
  • the relay lens 5h has a role of compensating for the optical path difference on the illumination light Lb, Lc side.
  • the fly-eye optical system 5j is also called an optical integrator, and uniformizes the illumination light La, Lb, Lc from the light sources 4a, 4b, 4c.
  • the condenser lenses 5m and 5n cause the La, Lb, and Lc that have passed through the fly-eye optical system 5j to enter the display device 6 within an appropriate incident angle range.
  • the TIR prism 5q separates the optical paths of the illumination light La, Lb, and Lc from the optical path of the display light HK by utilizing the presence or absence of total reflection. Specifically, the illumination light can be guided to the display device 6 from a direction tilted with respect to the optical axis AX of the projection optical system 15 by totally reflecting the illumination light on the inclined surface 5w of one prism constituting the TIR prism 5q.
  • the flat plate 5r is a cover glass of the display device 6, but it may have a filter function.
  • the display device 6 is a digital mirror device (DMD), which turns on the illumination light incident from the TIR prism 5q toward the projection optical system 15 through the TIR prism 5q or diverts it from the projection optical system 15. ⁇ Off operation is possible.
  • the operation of the display device 6 is synchronized with the light sources 4a, 4b, and 4c that sequentially emit light, and the display lights HK of three colors of R, G, and B are sequentially or simultaneously formed.
  • the projection optical system 15 is a fixed focus lens system and has a plurality of lens elements.
  • the projection optical system 15 magnifies and projects the image formed on the display surface 11a of the drawing device 11 as an intermediate image TI or a forced intermediate image TI 'onto the diffusion unit 16 at an appropriate magnification.
  • the diffusing unit 16 is a member arranged at a projection position or an image forming position of the projection optical system 15 (that is, a planned image forming position of the intermediate image TI or in the vicinity thereof), and is driven by a rotation driving unit 64 which is an arrangement changing device. Then, for example, it rotates around the reference axis SX at a constant speed. That is, the rotation drive unit 64 causes the diffusion unit 16 (specifically, the intermediate screen 19 of the rotating body 16a described later) to perform periodic motion within the movable range along the optical axis AX direction. Further, the rotation driving unit 64 operates under the control of the display control unit 18, and based on the placement detection result of the intermediate screen 19 by the position detection element 65, the drawing device 11 with respect to the rotation position and the rotation speed of the intermediate screen 19. The projection timing of is adjusted.
  • the diffusing unit 16 incorporated in the image display device 100 includes a spiral rotating body 16a having a contour close to a disc as a whole, and a central shaft portion 16r supporting the rotating body 16a. Have.
  • the rotating body 16a has a central portion 16c and an outer peripheral optical portion 16p.
  • One surface 16f (in the present embodiment, the projection optical system 15 side or the + Y side surface) formed on the outer peripheral optical portion 16p of the rotating body 16a is formed as a smooth surface or an optical surface, and on the surface 16f. Has an intermediate screen 19 formed over the entire area.
  • the intermediate screen 19 is an annular diffusion plate whose light distribution angle is controlled to a desired angle.
  • the intermediate screen 19 may be a sheet attached to the rotating body 16a, but may be a fine concavo-convex pattern formed on the surface of the rotating body 16a. Further, the intermediate screen 19 may be formed so as to be embedded inside the rotating body 16a.
  • the intermediate screen 19 forms the intermediate image TI or the forced intermediate image TI ′ by diffusing the incident display light HK (see FIG. 2).
  • the other surface 16s (a surface on the side of the magnifying projection optical system 17 in this embodiment) formed on the outer peripheral optical part 16p of the rotating body 16a is formed as a smooth surface or an optical surface.
  • the rotator 16a is a light-transmissive spiral member, and the pair of surfaces 16f and 16s are spiral surfaces having the reference axis SX as the spiral axis.
  • the intermediate screen 19 formed on the one surface 16f is formed in the range of one pitch of the spiral.
  • a step-like boundary portion 16j is formed at one location along the circumference of the diffusion portion 16, and this boundary portion 16j has a distance step of, for example, 30 mm or less in the optical axis AX direction or the reference axis SX direction at a position corresponding to the spiral end. Or, it gives a pitch.
  • the boundary 16j of the diffusion unit 16 is also the boundary of the intermediate screen 19.
  • the boundary portion 16j connects a step between the spiral ends and has a strip-shaped connecting surface 16k that is inclined with respect to a plane including the reference axis SX that rotates the diffusion portion 16.
  • the rotating body 16a since the pair of surfaces 16f and 16s of the rotating body 16a are spiral surfaces having the reference axis SX as the spiral axis, the rotating body 16a has a substantially equal thickness t with respect to the reference axis SX or the optical axis AX direction. Have.
  • one location along the circumferential direction is a functional area FA through which the optical axis AX of the main body optical system 13 passes, and an intermediate screen 19 in the functional area FA provides an intermediate area.
  • An image TI is formed.
  • the functional area FA moves at a constant speed on the rotating body 16a as the rotating body 16a rotates, and orbits on the rotating body 16a (see FIG. 4C).
  • the intermediate screen 19 since the intermediate screen 19 is formed in the range corresponding to one cycle of the spiral, the intermediate screen 19 spatially moves by one rotation of the rotating body 16a, and the functional area FA or the intermediate area of the intermediate screen 19 is increased.
  • the image TI moves in the optical axis AX direction by a distance D corresponding to a step (see FIG. 4B).
  • the projection optical system 15 has a predetermined depth of focus that is equal to or larger than the moving range of the functional area FA so that defocusing does not occur depending on the position of the intermediate screen 19 provided in the diffusion unit 16.
  • the position detection element 65 detects the position of the intermediate screen 19, and is provided at the intermediate screen 19 or a detectable position of the intermediate screen 19.
  • the detectable position of the intermediate screen 19 means, for example, a region near the intermediate screen 19 in which the operation of the intermediate screen 19 can be recognized. Thereby, the position of the intermediate screen 19 can be detected more accurately.
  • the position detecting element 65 for example, a photo interrupter, a hall element, a rotary encoder, or the like is used.
  • FIG. 2 shows an example in which the position detection element 65 is a photo interrupter.
  • the photo interrupter includes a light emitting unit and a light receiving unit.
  • the position detecting element 65 is provided near the outer peripheral portion of the rotating body 16a, and the reflecting member 66 having a different reflectance is provided at one location on the outer peripheral portion of the rotating body 16a.
  • the reflecting member 66 reflects the light emitted from the light emitting portion of the position detecting element 65 toward the light receiving portion of the position detecting element 65 once per revolution of the rotating body 16 a.
  • the rotation speed of the rotating body 16a is measured by the timing of light emission from the light emitting portion and the timing of light reception at the light receiving portion of the position detection element 65, and as a result, the rotation angle and rotation position of the intermediate screen 19 are measured.
  • Position information such as (including the position of the functional area FA in the optical axis AX direction) can be obtained.
  • a plurality of reflecting members 66 may be provided on the rotating body 16a.
  • the magnifying projection optical system 17 magnifies the intermediate image TI formed on the diffusing section 16 in cooperation with the display screen 20, and displays it as a virtual image through the display screen 20 in front of the driver UN. Form the image IM.
  • the magnifying projection optical system 17 includes at least one mirror, but includes two mirrors 17a and 17b in the illustrated example.
  • the diffusing unit 16 rotates around the reference axis SX, and the rotating body 16a or the intermediate screen 19 moves.
  • the position intersecting the optical axis AX (that is, the functional area FA) also moves in the optical axis AX direction. That is, for example, as shown in FIG. 4C, the functional area FA on the intermediate screen 19 is adjacent to the functional area FA1 that is set at a position deviated from the original functional area FA1 by an equal angle as the rotary body 16a rotates.
  • FA2 and FA3 are sequentially shifted to move in the optical axis AX direction.
  • the position of the intermediate image TI can also be moved in the optical axis AX direction.
  • the position of the intermediate image TI corresponding to the functional area FA repeatedly and cyclically moves in the optical axis AX direction, and the magnifying projection optical system 17 is provided behind the display screen 20. It is possible to increase or decrease the distance between the display image IM as a virtual image formed in the above and the driver UN who is the observer.
  • the position of the projected display image IM is changed back and forth, and the display content by the drawing device 11 is adapted to the position, so that the display image IM is displayed. Since the display content of the display image IM is changed while changing the projection distance or the virtual image distance of the display image IM, the display image IM as a series of projection images can be three-dimensional.
  • the image display device 100 is capable of displaying the display image IM at a plurality of virtual image distances, and in the functional area FA of the rotator 16a, R forming each color image corresponding to the display image IM. , G, and B images are projected. Since the rotating body 16a is rotating when the image is projected, the R, G, and B images are sequentially projected onto the corresponding regions of the rotating body 16a. If the R, G, and B images corresponding to one color image are projected on the area where the positions of the intermediate screen 19 provided on the rotating body 16a in the optical axis AX direction are substantially the same, a predetermined virtual image distance is obtained. A corresponding color image that is the display image IM is displayed.
  • the functional area FA moves at a constant speed on the rotating body 16a as the rotating body 16a rotates.
  • images of R, G, and B forming a color image are sequentially projected onto the functional area FA within the area where the positions on the optical axis AX are substantially the same, as a result, R, G, and B Virtual composite functional areas corresponding to a color image in which images are composited are discretely provided, and a virtual image is displayed in discrete distance zones.
  • FIG. 5 is a diagram specifically illustrating a change in the position of the intermediate image TI due to the rotation of the diffusion unit 16.
  • the center of the functional area FA of the diffusing section 16 repeatedly moves cyclically along the optical axis AX in a sawtooth temporal pattern PA, and the drawing device 11 continuously displays the center position of the intermediate image TI.
  • the pattern moves repeatedly along the optical axis AX in a sawtooth pattern with time. That is, the position of the intermediate image TI is discontinuous at the location corresponding to the boundary portion 16j, but continuously and periodically changes with the rotation of the diffusion unit 16.
  • the position of the display image (virtual image) IM is also different in scale, but similarly to the position of the intermediate image TI, the position of the display image IM repeatedly moves periodically along the optical axis AX to continuously project the projection distance. Can be changed. Since the drawing device 11 does not perform continuous display but performs intermittent display while switching display contents, the display position of the intermediate image TI is also a discrete position on the sawtooth temporal pattern PA. Become. In the temporal pattern PA, the display position Pn closest to the close-up side or the magnifying projection optical system 17 and the display position Pf farthest away from the projection optical system 15 are set at both ends of the temporal pattern PA.
  • discontinuity PD of the temporal pattern PA corresponds to the boundary portion 16j provided on the rotating body 16a of the diffusion unit 16. Further, the centers of the functional areas FA1, FA2, FA3 shown in FIG. 4C correspond to the discrete display positions P1, P2, P3 on the temporal pattern PA.
  • FIG. 6 is a block diagram illustrating the mobile display system 200, and the mobile display system 200 includes the image display device 100 as a part thereof.
  • This image display device 100 has the structure shown in FIG. 2, and a description thereof will be omitted here.
  • the moving body display system 200 is incorporated in a moving body such as an automobile.
  • the mobile display system 200 includes an environment monitor 72 and a main controller 90 in addition to the image display device 100.
  • the display system 200 for a mobile body of the present embodiment includes a PID control unit 81 and the like to be described later, so that feedback control of the operation of the image display device 100 is possible.
  • the environment monitoring section 72 is a section for identifying a vehicle, a bicycle, a pedestrian, etc., which are in the vicinity of the front, and includes an external camera 72a, an external image processing section 72b, and a determination section 72c.
  • the external camera 72a is installed in a proper place inside and outside the vehicle body 2 and captures an external image of the front side or the side of the driver UN or the front window 8.
  • the external image processing unit 72b facilitates the processing in the determination unit 72c by performing various image processing such as brightness correction on the image captured by the external camera 72a.
  • the determination unit 72c detects the presence or absence of an object such as a car, a bicycle, or a pedestrian by extracting or cutting out an object from the external image that has passed through the external image processing unit 72b, and determines from the depth information that accompanies the external image. The spatial position of the object in front of the vehicle body 2 is calculated.
  • the external camera 72a is, for example, a compound eye type three-dimensional camera.
  • the external camera 72a is an array of camera elements each including a lens for image formation and a CMOS or other image pickup element arranged in a matrix, and each has a drive circuit for the image pickup element.
  • the plurality of camera elements that form the external camera 72a are configured to focus at different positions in the depth direction, or to detect relative parallax, for example. By analyzing the state (focus state, object position, etc.), the distance to each region or object in the image can be determined.
  • each part (area or object) in the captured screen is displayed in the depth direction.
  • Distance information can be obtained.
  • a stereo camera in which two two-dimensional cameras are separately arranged can obtain distance information in the depth direction with respect to each part (area or object) in the captured image.
  • a single two-dimensional camera to perform imaging while changing the focal length at high speed, it is possible to obtain distance information in the depth direction with respect to each part (region or object) in the captured screen.
  • the display control unit 18 operates the virtual image display optical system 30 under the control of the main controller 90 to display a three-dimensional display image IM with a virtual image distance changing behind the display screen 20.
  • the display image IM is a mark such as a frame frame HW (see FIG. 9) located in the periphery in the depth direction or the like of an object such as a car, a bicycle, a pedestrian or the like which exists behind the display screen 20. can do.
  • the display control unit 18 includes a PID (Proportional-Integral-Differential) control unit 81 that performs feedback control, and a servo mechanism 82.
  • the PID control unit 81 operates the servo mechanism 82 under the control of the main controller 90, and mainly performs feedback control of the operation of the drawing device 11 and the operation of the intermediate screen 19.
  • the feedback means that, with respect to the operation of the intermediate screen 19 and the operation of the drawing device 11, the output timing of the drive signal is corrected so as to cancel the deviation from the target value of these operations. .
  • the servo mechanism 82 controls the light emission timing of the drawing device 11, the rotation speed or the rotation speed of the rotating body 16a, and the like so that the light emission timing of the drawing device 11 reaches the set value via the PID control unit 81. .
  • the drawing device 11 emits light from the light source at a drawing speed of several thousand times per second, and the intermediate screen 19 of the diffusion unit 16 moves at a periodic speed of 40 rps to 60 rps. In order to draw an image corresponding to the drawing device 11 when the intermediate screen 19 is present at a predetermined position, it is necessary to perform the above feedback control and synchronize the two with high accuracy.
  • the display control unit 18 changes the arrangement so that the movement timing of the intermediate screen 19 and the light emission timing of the drawing device 11 have a predetermined synchronization relationship based on the position information of the intermediate screen 19 and the information about the light emission timing of the drawing device 11.
  • At least one of the rotation driving unit 64, which is a device, and the drawing device 11 is controlled. That is, the display control unit 18 determines the movement timing of the intermediate screen 19 and the light emission timing of the drawing device 11 based on the position information of the intermediate screen 19 obtained from the position detection element 65 and the information regarding the light emission timing of the drawing device 11. Control at least one. Further, the main controller 90 acquires the position information of the intermediate screen 19 from the position detection element 65 in real time, and acquires the light emission timing of the drawing device 11 in real time.
  • the light emission timing of the drawing device 11 may be set in advance or may be acquired by directly detecting the projection light of the drawing device 11.
  • the drawing device 11 draws R, G, and B images that form a color image at the timing when the intermediate screen 19 is arranged at a predetermined position.
  • the main control device 90 has a role of coordinating the operations of the image display device 100, the environment monitoring unit 72, and the like, and the virtual image display optical system so as to correspond to the spatial position of the object detected by the environment monitoring unit 72.
  • the spatial arrangement of the frame frame HW projected by 30 is adjusted.
  • the image display apparatus 100 controls the drawing device 11 by using the pulse of the rotation signal of the rotating body 16a as a trigger.
  • the drawing device 11 can be controlled according to the rotation of the rotating body 16a.
  • the rotating body 16a is operated at a predetermined rotation speed using the rotation drive unit 64, and the intermediate screen 19 is moved along the optical axis AX. Further, the drawing device 11 is operated at a predetermined light emission timing and light emission time under the control of the display control unit 18 (step S11).
  • step S12 the position of the intermediate screen 19 is detected (step S12).
  • a rotation signal accompanying the rotation of the rotating body 16a is obtained as a pulse signal of the position detection element 65.
  • 8A to 8C are diagrams for explaining the relationship between the rotation signal and the light emission timing of the drawing device 11.
  • symbols T1 and T2 respectively indicate rotation signals corresponding to the light detected by the position detection element 65 at the first rotation and the second rotation of the rotating body 16a.
  • the lighting signal of the drawing device 11 actually shows a plurality of R, G, and B emission pulses as one pulse for convenience.
  • the position information of the intermediate screen 19 can be obtained.
  • step S13 the light emission timing and light emission time of the drawing device 11 operated by the display control unit 18 are acquired (step S13).
  • Information such as the light emission timing of the drawing device 11 may be set in advance, or may be measured using a sensor or the like separately.
  • the drawing device 11 is operated at the predetermined light emission timing and light emission time which are fed back (step S14). Specifically, under the control of the display control unit 18, the PID control unit 81 and the servo mechanism 82 feed back the light emission timing of the drawing device 11 and the position information of the intermediate screen 19, and the light emission timing and the light emission time of the drawing device 11 are fed back. To adjust the operation of the drawing device 11 with respect to the operation of the intermediate screen 19. Thereby, the operation of the drawing device 11 can be adjusted in consideration of the operation that acts on the intermediate screen 19.
  • the display control unit 18 determines whether or not the light emission in the drawing device 11 corresponding to the lighting signal of the drawing device 11 is performed a predetermined number of times in one cycle of the rotating body 16a or the intermediate screen 19.
  • the delay of the rotation speed and the rotation position of the intermediate screen 19 is calculated from the deviation from the target value and corrected.
  • the rotation speed of the intermediate screen 19 is delayed from the target value
  • the light emission timing of the drawing device 11 is delayed by the delay time.
  • the delay of the light emission timing of the drawing device 11 is also calculated and corrected from the deviation from the target value.
  • the light emission timing of the drawing device 11 is advanced by the delay time.
  • the correction by feedback may be reflected in the first cycle or in the second and subsequent cycles.
  • the feedback is performed by taking into account, for example, the predicted delay time.
  • the pulse of the rotation signal can be used as a trigger to generate the light emission pulse (lighting signal) of the drawing device 11 at an appropriate timing.
  • the frame rate including the R, G, and B images of the drawing device 11 is adjusted, and the color image corresponding to the position of the intermediate screen 19 is displayed as a virtual image. This allows the driver UN to visually recognize the virtual images simultaneously displayed at different virtual image distances. Further, if the drawing device 11 is caused to emit light at a timing corresponding to only one virtual image distance, it is possible to allow the driver UN to visually recognize only the virtual image at the single virtual image distance.
  • the main controller 90 confirms whether or not the display is continued (step S15), and when the display is continued (Y in step S15), the process returns to step S11 and the processes of step S12 and the like are repeated. It is preferable that the feedback in step S14 is always performed. Further, steps S12 and S13 may be performed in reverse or simultaneously.
  • FIG. 9 is a perspective view illustrating a specific display state.
  • the detection area VF corresponding to the observation visual field is in front of the driver UN who is the observer. It is considered that objects OB1 and OB3 of people such as pedestrians and objects OB2 of moving bodies such as automobiles exist in the detection area VF, that is, in the road and its surroundings.
  • the main control device 90 causes the image display device 100 to project a three-dimensional display image (virtual image) IM, and frame frames HW1, HW2, HW3 as related information images for the respective objects OB1, OB2, OB3. Is added.
  • the virtual image distances of the display images IM1, IM2, IM3 are discrete, and it is not possible to always exactly match the actual distances to the objects OB1, OB2, OB3. However, unless the difference between the virtual image distances of the display images IM1, IM2, IM3 and the actual distances to the objects OB1, OB2, OB3 is large, parallax hardly occurs even if the viewpoint of the driver UN moves, and the object OB1, The arrangement relationship between the OB2, OB3 and the frame frames HW1, HW2, HW3 can be substantially maintained.
  • FIG. 10A corresponds to FIG. 5
  • FIG. 10B corresponds to the display image IM3 or the frame frame HW3 in FIG. 9
  • FIG. 10C corresponds to the display image IM2 or the frame frame HW2 in FIG. 9,
  • FIG. Corresponds to the display image IM1 or frame frame HW1 in FIG.
  • the display image IM1 is a projection image when the functional area FA of the rotating body 16a or the intermediate image TI is wholly or partially within a predetermined range centered on the display position PO1. Or, it corresponds to the displayed image.
  • the display image IM2 corresponds to a projection image or a display image when all or part of the functional area FA of the rotating body 16a or the intermediate image TI is in a position within a predetermined range with the display position PO2 as the center
  • the display image IM3 corresponds to the projection image or the display image when all or part of the functional area FA of the rotating body 16a or the intermediate image TI is in a position within a predetermined range around the display position PO3.
  • the display image IM1 or the frame frame HW1 corresponding to the display position PO1 is sequentially displayed, and the display image IM2 or the frame frame HW2 corresponding to the display position PO2 is displayed in order.
  • the display image IM3 or the frame HW3 corresponding to the display position PO3 is displayed. If the above 1 cycle is visually short, the switching of the display images IM1, IM2, IM3 becomes very fast, and the driver UN who is the observer simultaneously observes the frame frames HW1, HW2, HW3 as a deep image. Recognize that you are doing.
  • a color image is displayed by synchronously controlling the operation of the intermediate screen 19 and the operation of the drawing device 11 based on the position of the intermediate screen 19 and the light emission timing of the drawing device 11. It is possible to stabilize the operation of the image display device 100 for drawing.
  • the display device according to the second embodiment will be described below.
  • the display device of the second embodiment is a modification of the display device of the first embodiment, and matters not particularly described are the same as those of the first embodiment.
  • the display control unit 18 feeds back the light emission timing of the drawing device 11 and the position information of the intermediate screen 19 to control the drawing device 11 at a constant light emission timing, and is a rotation drive unit 64 that is an arrangement changing device.
  • the intermediate screen 19 With respect to the operation of the drawing device 11. Accordingly, the operation of the intermediate screen 19 can be controlled while keeping the operation of the drawing device 11 constant.
  • the rotating body 16a is operated at a predetermined rotation speed by using the rotation driving unit 64, and the intermediate screen 19 is moved along the optical axis AX. Further, the drawing device 11 is operated at a predetermined light emission timing and light emission time under the control of the display control unit 18 (step S11).
  • step S12 the position of the intermediate screen 19 is detected.
  • a rotation signal accompanying the rotation of the rotating body 16a is obtained as a pulse signal of the position detection element 65.
  • step S13 the light emission timing and light emission time of the drawing device 11 operated by the display control unit 18 are acquired.
  • the PID control unit 81 and the servo mechanism 82 feed back the light emission timing of the drawing device 11 and the position information of the intermediate screen 19, and the rotation drive unit 64 controls the drawing device 11 to rotate.
  • the movement timing of the intermediate screen 19 is adjusted with respect to the operation (step S114).
  • the display control unit 18 operates the drawing device 11 at a predetermined light emission timing and light emission time.
  • the frame rate including the R, G, and B images of the drawing device 11 is adjusted, and the color image corresponding to the position of the intermediate screen 19 is displayed as a virtual image.
  • the main controller 90 confirms whether or not the display is continued (step S15), and when the display is continued (Y in step S15), the process returns to step S11 and the processes of step S12 and the like are repeated.
  • the display device according to the third embodiment will be described below.
  • the image display device of the third embodiment is a modification of the display devices of the first and second embodiments, and matters not particularly described are the same as those of the first embodiment and the like.
  • the display control unit 18 feeds back the light emission timing of the drawing device 11 and the position information of the intermediate screen 19 to control the light emission timing and the light emission time of the drawing device 11 while being a rotation drive unit that is a layout changing device.
  • the drive timing of 64 is controlled, and the operation of the drawing device 11 and the operation of the intermediate screen 19 are mutually adjusted. Thereby, the operation of the drawing device 11 and the operation of the intermediate screen 19 can be adjusted more accurately.
  • the rotating body 16a is operated at a predetermined rotation speed by using the rotation driving unit 64, and the intermediate screen 19 is moved along the optical axis AX. Further, the drawing device 11 is operated at a predetermined light emission timing and light emission time under the control of the display control unit 18 (step S11).
  • step S12 the position of the intermediate screen 19 is detected.
  • a rotation signal accompanying the rotation of the rotating body 16a is obtained as a pulse signal of the position detection element 65.
  • step S13 the light emission timing and light emission time of the drawing device 11 operated by the display control unit 18 are acquired.
  • the light emission timing of the drawing device 11 and the position information of the intermediate screen 19 are fed back, and the drawing device 11 is operated at the predetermined light emission timing and light emission time fed back and rotated.
  • the movement timing of the intermediate screen 19 is adjusted via the drive unit 64 (step S214).
  • the frame rate including the R, G, and B images of the drawing device 11 is adjusted, and the color image corresponding to the position of the intermediate screen 19 is displayed as a virtual image.
  • the main controller 90 confirms whether or not the display is continued (step S15), and when the display is continued (Y in step S15), the process returns to step S11 and the processes of step S12 and the like are repeated.
  • the display device as a specific embodiment has been described above, but the display device according to the present invention is not limited to the above.
  • the projection optical system 15 and the magnifying projection optical system 17 shown in FIG. 2 and the like are merely examples, and the optical configurations of the projection optical system 15 and the magnifying projection optical system 17 can be appropriately changed.
  • the display device 6 that constitutes the drawing device 11 is not limited to the DMD, and devices based on various operating principles can be used.
  • a reflective element such as LCOS (Liquid crystal on silicon), a liquid crystal display (LCD), or another type of display device such as an organic EL may be used.
  • the intermediate screen 19 is not limited to the spiral screen, and may be a plate-like one that reciprocates in the optical axis direction, and has a plurality of regions having different thicknesses and the plurality of regions are sequentially arranged on the optical path. It may be replaced to change the optical path length.
  • the position detecting element 65 one that can detect the position of the intermediate screen 19 corresponding to the configuration of the intermediate screen 19 is used.
  • the arrangement of the image display device 100 may be turned upside down, and the display screen 20 may be placed above the front window 8 or at the sun visor position.
  • the display screen 20 is arranged diagonally below and in front of the drawing unit 10.
  • the display screen 20 is a flat surface or a concave surface in the above embodiment, it may be a free-form surface having no symmetry.
  • the contour of the display screen 20 is not limited to a rectangle, but can be various shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Instrument Panels (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

An image display apparatus (100) as a display apparatus is provided with a drawing device (11), a projection optical system (15) for magnifying an image formed by the drawing device (11), an intermediate screen (19) which has a diffusing function and is disposed on the light emission side of the projection optical system (15), a magnifying projection optical system (17) for converting the image on the intermediate screen (19) to a virtual image, a rotary drive unit (64) as an arrangement changing device for varying the position of the intermediate screen (19) along the optical axis AX direction, a position detection element (65) for detecting the position of the intermediate screen (19), and a display control unit (18) for controlling at least one of the operation of the intermediate screen (19) and the operation of the drawing device (11) on the basis of position information of the intermediate screen (19) obtained from the position detection element (65) and information relating to the light emission timing of the drawing device (11), the drawing device (11) drawing R, G, and B images constituting a color image at the timing at which the intermediate screen (19) is disposed in a predetermined position.

Description

表示装置Display device
 本発明は、視線の先に虚像を表示し、かつ虚像の投影位置を可変とした表示装置に関するものである。 The present invention relates to a display device in which a virtual image is displayed in front of the line of sight and the projection position of the virtual image is variable.
 従来のヘッドアップディスプレイ(HUD:Head-Up Display)装置は、虚像を運転者からある一定の距離だけ離れた位置に生成するのが一般的であり、運転者から虚像までの距離が一定だと目の位置がずれた場合に対象物の位置と危険信号(虚像)の位置とがずれてしまい、運転者が対象物を誤認してしまうという問題がある。このような問題を解決する手法としては、対象物に対して虚像を奥行き方向も含めて重畳させることが考えられる。このような構成のHUD装置は、描画デバイスによってRGBのカラー画像データを時間順列的に描画し、中間スクリーンが所定の位置に配置された場合、RGBの画像をパルス投影することで、結果的に目的のカラー画像(虚像)を所定の虚像距離に投影する。この際、中間スクリーンの移動と描画デバイスの発光タイミングとの同期をとる必要がある。 Conventional head-up display (HUD) devices generally generate a virtual image at a position away from the driver by a certain distance, and the distance from the driver to the virtual image is constant. When the position of the eyes is displaced, the position of the object and the position of the danger signal (virtual image) are displaced, and there is a problem that the driver mistakenly recognizes the object. As a method for solving such a problem, it is conceivable to superimpose a virtual image on the object including the depth direction. The HUD device having such a configuration draws RGB color image data in a time-sequential manner by the drawing device, and when the intermediate screen is arranged at a predetermined position, pulse-projects the RGB image, resulting in A target color image (virtual image) is projected on a predetermined virtual image distance. At this time, it is necessary to synchronize the movement of the intermediate screen with the light emission timing of the drawing device.
 ここで、虚像に奥行きを持たせる手法として、下記特許文献1に記載の方法がある。この特許文献1では、MEMSミラーのような走査型の像形成手段と、中間スクリーンと、投影手段と、中間スクリーン位置を変える可動手段とを備え、中間スクリーン位置を変化させることで虚像の位置を変化させている。特許文献1の主たる目的としては、車の速度に伴って人間が注視する距離が変わることを鑑み、虚像位置を近づけたり遠ざけたりして、運転者の視線移動を少なくすることであり、中間スクリーンの移動と描画デバイスの発光タイミングとの同期について記載していない。 Here, as a method of providing a virtual image with depth, there is a method described in Patent Document 1 below. In Patent Document 1, scanning type image forming means such as a MEMS mirror, an intermediate screen, a projection means, and a movable means for changing the intermediate screen position are provided, and the position of the virtual image is changed by changing the intermediate screen position. It is changing. The main purpose of Patent Document 1 is to reduce the line-of-sight of the driver by moving the virtual image position closer or further away in view of the fact that the distance the human gazes changes depending on the speed of the vehicle. There is no description about the synchronization between the movement of the light source and the light emission timing of the drawing device.
特開2018-45103号公報Japanese Patent Laid-Open No. 2018-45103
 本発明は、上記背景技術に鑑みてなされたものであり、描画デバイス及び中間スクリーンの動作を調整し、複数の距離に虚像を表示させることができる表示装置を提供することを目的とする。 The present invention has been made in view of the background art described above, and an object of the present invention is to provide a display device capable of displaying virtual images at a plurality of distances by adjusting operations of a drawing device and an intermediate screen.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した表示装置は、描画デバイスと、描画デバイスに形成された像を拡大する投影光学系と、拡散機能を有し、投影光学系の光射出側に配置される中間スクリーンと、中間スクリーン上の像を虚像に変換する拡大投射光学系と、中間スクリーンの位置を光軸方向に沿って変化させる配置変更装置と、中間スクリーンの位置を検出する位置検出素子と、位置検出素子から得た中間スクリーンの位置情報と、描画デバイスの発光タイミングに関する情報とに基づいて、中間スクリーンの動作及び描画デバイスの動作の少なくとも一方を制御する表示制御部とを備え、描画デバイスは、中間スクリーンが所定の位置に配置されるタイミングでカラー画像を構成するR、G、及びBの画像を描画する。 In order to achieve at least one of the above-mentioned objects, a display device that reflects one aspect of the present invention has a drawing device, a projection optical system that magnifies an image formed on the drawing device, and a diffusion function. An intermediate screen arranged on the light exit side of the projection optical system, a magnifying projection optical system for converting an image on the intermediate screen into a virtual image, and a position changing device for changing the position of the intermediate screen along the optical axis direction, Based on the position detection element that detects the position of the intermediate screen, the position information of the intermediate screen obtained from the position detection element, and the information regarding the light emission timing of the drawing device, at least one of the operation of the intermediate screen and the operation of the drawing device is performed. The rendering device includes a display control unit for controlling, and the drawing device configures R and G that form a color image at a timing when the intermediate screen is arranged at a predetermined position. And draws an image of B.
図1Aは、第1実施形態の画像表示装置を車体に搭載した状態を示す側方断面図であり、図1Bは、画像表示装置を説明する車内側からの正面図である。FIG. 1A is a side sectional view showing a state in which the image display device of the first embodiment is mounted on a vehicle body, and FIG. 1B is a front view from the inside of the vehicle for explaining the image display device. 虚像表示光学系等の具体的な構成例を説明する拡大側方断面図である。It is an expanded side sectional view explaining a concrete example of composition, such as a virtual image display optical system. 描画デバイスの構造を説明する概念図である。It is a conceptual diagram explaining the structure of a drawing device. 図4A及び4Bは、中間スクリーンを組み込んだ拡散部の構造を説明する平面図及び側断面図であり、図4Cは、中間スクリーンの回転に伴う機能領域の移動等を説明する図である。4A and 4B are a plan view and a side sectional view for explaining the structure of a diffusion unit incorporating the intermediate screen, and FIG. 4C is a diagram for explaining movement of the functional region and the like accompanying the rotation of the intermediate screen. 中間像の位置の変化を具体的に例示する図である。It is a figure which illustrates the change of the position of an intermediate image concretely. 画像表示装置を含む移動体用表示システムを説明するブロック図である。It is a block diagram explaining the display system for mobiles containing an image display device. 画像表示装置の動作例を説明する図である。It is a figure explaining the operation example of an image display device. 図8Aは、位置検出素子で受光する回転信号を説明する図であり、図8B及び8Cは、描画デバイスの発光タイミングを説明する図である。FIG. 8A is a diagram for explaining a rotation signal received by the position detection element, and FIGS. 8B and 8C are diagrams for explaining a light emission timing of the drawing device. 具体的な表示状態を説明する斜視図である。It is a perspective view explaining a concrete display state. 図10Aは、図5に対応する図であり、図10B~10Dは、図9中の表示像又はフレーム枠に対応する図である。10A is a diagram corresponding to FIG. 5, and FIGS. 10B to 10D are diagrams corresponding to the display image or frame frame in FIG. 9. 第2実施形態の画像表示装置の動作例を説明する図である。It is a figure explaining the operation example of the image display device of a 2nd embodiment. 第3実施形態の画像表示装置の動作例を説明する図である。It is a figure explaining the operation example of the image display device of a 3rd embodiment.
 〔第1実施形態〕
 以下、本発明に係る表示装置の第1実施形態である画像表示装置について具体的に説明する。
[First Embodiment]
Hereinafter, the image display device which is the first embodiment of the display device according to the present invention will be specifically described.
 図1A及び1Bは、表示装置としての画像表示装置100及びその使用状態を説明する概念的な側方断面図及び正面図である。この画像表示装置100は、例えばヘッドアップディスプレイ(HUD)装置として車体2内に搭載されるものであり、描画ユニット10と表示スクリーン20とを備える。画像表示装置100は、描画ユニット10中の後述する描画デバイス11に表示されている画像情報を、表示スクリーン20を介して運転者UNに向けて虚像表示するものである。 1A and 1B are a conceptual side sectional view and a front view illustrating an image display device 100 as a display device and a usage state thereof. The image display device 100 is mounted in the vehicle body 2 as a head-up display (HUD) device, for example, and includes a drawing unit 10 and a display screen 20. The image display device 100 displays image information displayed on a later-described drawing device 11 in the drawing unit 10 as a virtual image toward the driver UN via the display screen 20.
 画像表示装置100のうち描画ユニット10は、車体2のダッシュボード4内であってディスプレイ50の背後に埋め込むように設置されており、運転関連情報等を含む画像に対応する表示光HKを表示スクリーン20に向けて射出する。表示スクリーン20は、コンバイナーとも呼ばれ、半透過性を有する凹面鏡又は平面鏡である。表示スクリーン20は、下端の支持によってダッシュボード4上に立設され、描画ユニット10からの表示光HKを車体2の後方に向けて反射する。つまり、図示の場合、表示スクリーン20は、フロントウインドウ8とは別体で設置される独立型のものとなっている。表示スクリーン20で反射された表示光HKは、運転席3に座った運転者UNの瞳HT及びその周辺位置に対応するアイボックス(不図示)に導かれる。運転者UNは、表示スクリーン20で反射された表示光HK、つまり車体2の前方にある虚像としての表示像IMを観察することができる。一方、運転者UNは、表示スクリーン20を透過した外界光、つまり前方景色、自動車等の実像を観察することができる。結果的に、運転者UNは、表示スクリーン20の背後の外界像又はシースルー像に重ねて、表示スクリーン20での表示光HKの反射によって形成される運転関連情報等を含む表示像(虚像)IMを観察することができる。 The drawing unit 10 of the image display device 100 is installed in the dashboard 4 of the vehicle body 2 so as to be embedded behind the display 50, and displays the display light HK corresponding to an image including driving-related information and the like on the display screen. Eject toward 20. The display screen 20 is also called a combiner, and is a semi-transparent concave mirror or a plane mirror. The display screen 20 is erected on the dashboard 4 by being supported at its lower end, and reflects the display light HK from the drawing unit 10 toward the rear of the vehicle body 2. That is, in the illustrated case, the display screen 20 is an independent type installed separately from the front window 8. The display light HK reflected by the display screen 20 is guided to an eye box (not shown) corresponding to the pupil HT of the driver UN sitting in the driver's seat 3 and its peripheral position. The driver UN can observe the display light HK reflected by the display screen 20, that is, the display image IM as a virtual image in front of the vehicle body 2. On the other hand, the driver UN can observe external light transmitted through the display screen 20, that is, a front view, a real image of an automobile or the like. As a result, the driver UN has a display image (virtual image) IM that includes driving-related information and the like formed by reflection of the display light HK on the display screen 20 so as to be superimposed on the outside image or the see-through image behind the display screen 20. Can be observed.
 ここで、表示スクリーン20をフロントウインドウ8と別体で構成しているが、フロントウインドウ8を表示スクリーンとして用い、フロントウインドウ8内に設定した表示範囲に投影を行って、運転者UNが表示像IMを観察できる構成としてもよい。この際、フロントウインドウ8のガラスの一部領域の反射率をコート等によって変更することで、反射領域を確保することができる。また、フロントウインドウ8での反射角度が例えば60度程度であれば、反射率が15%程度確保され、特にコートを設けなくても透過性を有する反射面として用いることができる。これら以外に、表示スクリーン20をフロントウインドウ8のガラス中に挟む構成とすることもできる。 Here, although the display screen 20 is configured separately from the front window 8, the front window 8 is used as a display screen and projection is performed on the display range set in the front window 8 so that the driver UN displays a display image. The IM may be observed. At this time, the reflection area can be secured by changing the reflectance of a part of the glass of the front window 8 with a coat or the like. Further, when the reflection angle at the front window 8 is, for example, about 60 degrees, the reflectance is secured at about 15%, and it can be used as a reflective surface having transmissivity without providing a coat. Alternatively, the display screen 20 may be sandwiched between the windows of the front window 8.
 図2に示すように、描画ユニット10は、描画デバイス11を含む虚像型の拡大結像系である本体光学系13と、本体光学系13を動作させる表示制御部18と、本体光学系13等を収納するハウジング14とを備える。表示制御部18は、描画デバイス11の発光タイミングと、RGBの発光色と、発光量とについて制御を行う。本体光学系13と表示スクリーン20とを組み合わせたものは、虚像表示光学系30を構成する。 As shown in FIG. 2, the drawing unit 10 includes a main body optical system 13 which is a virtual image type magnifying and imaging system including a drawing device 11, a display controller 18 for operating the main body optical system 13, a main body optical system 13 and the like. And a housing 14 for housing the. The display control unit 18 controls the emission timing of the drawing device 11, the emission colors of RGB, and the emission amount. A combination of the main body optical system 13 and the display screen 20 constitutes a virtual image display optical system 30.
 本体光学系13は、描画デバイス11のほかに、描画デバイス11に形成された画像を拡大した中間像TIを形成するための投影光学系15と、中間像TIの結像予定位置又はその近傍(以下では結像位置とも呼ぶ)に配置される拡散部16と、拡散部16上の像(中間像TIそのものの他、中間像TIから位置ズレして僅かにピントがボケたものも含み、強制中間像TI’とも呼ぶ)を拡大する拡大投射光学系17とを備える。 The main body optical system 13 includes, in addition to the drawing device 11, a projection optical system 15 for forming an intermediate image TI in which an image formed on the drawing device 11 is magnified, and a projected image forming position of the intermediate image TI or its vicinity ( In the following description, the diffusion unit 16 disposed at the image formation position) and the image on the diffusion unit 16 (the intermediate image TI itself, as well as the image that is slightly out of focus due to the positional deviation from the intermediate image TI) And an enlarged projection optical system 17 for enlarging the intermediate image TI ′.
 描画デバイス11は、2次元的な表示面11aを有する。描画デバイス11の表示面11aに形成された像は、本体光学系13のうち投影光学系15で拡大されて拡散部16へ投影される。この際、2次元表示が可能な描画デバイス11を用いることで、投影光学系15が描画デバイス11の表示面11aに形成された像を拡大するので、表示スクリーン20越しに虚像として表示される表示像IMの切り替えを比較的高速とできる。描画デバイス11の動作は、後述する表示制御部18によって拡散部16に付随する回転駆動部64の動作と同期するように制御されている。描画デバイス11は、例えば反射型の表示素子を含む。なお、表示素子を照明する発光体としては、例えば半導体光源が用いられる。なお、描画デバイス11は、虚像距離を変化させる場合には、それぞれの虚像距離に対して30fps以上、さらに望ましくは60fps以上のフレームレートで動作する。これにより、異なる虚像距離に複数の表示像(虚像)IMを運転者UNに対して同時に表示されているように見せることが容易になる。 The drawing device 11 has a two-dimensional display surface 11a. The image formed on the display surface 11 a of the drawing device 11 is enlarged by the projection optical system 15 of the main body optical system 13 and projected on the diffusion unit 16. At this time, since the projection optical system 15 magnifies the image formed on the display surface 11a of the drawing device 11 by using the drawing device 11 capable of two-dimensional display, a display displayed as a virtual image through the display screen 20. The image IM can be switched at a relatively high speed. The operation of the drawing device 11 is controlled by the display control unit 18 described later so as to be synchronized with the operation of the rotation drive unit 64 attached to the diffusion unit 16. The drawing device 11 includes, for example, a reflective display element. A semiconductor light source, for example, is used as the light emitting body that illuminates the display element. When changing the virtual image distance, the drawing device 11 operates at a frame rate of 30 fps or more, and more preferably 60 fps or more for each virtual image distance. Thereby, it becomes easy to make a plurality of display images (virtual images) IM at different virtual image distances appear to be displayed to the driver UN at the same time.
 図3は、描画デバイス11の具体的な構成を説明する図である。描画デバイス11は、照明光を射出する照明光学系5と、照明光の2次元的な空間変調によって画像を生成する表示デバイス6とを備える。照明光学系5は、照明光を射出する3つの光源4a,4b,4cと、第1ダイクロイックミラー5aと、第2ダイクロイックミラー5bと、コリメーター5d,5e,5fと、リレーレンズ5hと、フライアイ光学系5jと、コンデンサーレンズ5m,5nと、折曲げミラー5pと、TIR(Total Internal Reflection)プリズム5qと、平板5rとを備える。3つの光源4a,4b,4cは、LED(light emitting diode)その他の発光素子であり、R、G、及びBの3色の照明光La,Lb,Lcをそれぞれ射出する。光源4aは、R光源であり、光源4bは、G光源であり、光源4cは、B光源である。第1ダイクロイックミラー5aは、第2の光源(G光源)4bからのGの照明光Lbと、第3の光源(B光源)4cからのBの照明光Lcとを合成し、第2ダイクロイックミラー5bは、第1の光源(R光源)4aからのRの照明光Laと、第1ダイクロイックミラー5aで合成されたG及びBの照明光Lb,Lcとを合成する。各コリメーター5d,5e,5fは、各光源4a,4b,4cからの照明光La,Lb,Lcを平行光束に近い状態にする。リレーレンズ5hは、照明光Lb,Lc側の光路差を補償する役割を有する。フライアイ光学系5jは、オプティカルインテグレーターとも呼ばれ、各光源4a,4b,4cからの照明光La,Lb,Lcを均一化する。コンデンサーレンズ5m,5nは、フライアイ光学系5jを経たLa,Lb,Lcを適度の入射角範囲で表示デバイス6に入射させる。TIRプリズム5qは、全反射の有無を利用して照明光La,Lb,Lcの光路と表示光HKの光路とを分離する。具体的には、TIRプリズム5qを構成する一方のプリズムの斜面5wで照明光を全反射して投影光学系15の光軸AXに対して傾いた方向から照明光を表示デバイス6に導くことができ、表示デバイス6からの光を投影光学系15の光軸AXに沿った正面方向へは透過させて、表示光HKとして投影光学系15に入射させることができる。平板5rは、表示デバイス6のカバーガラスであるが、フィルター機能を持たせることもできる。 FIG. 3 is a diagram illustrating a specific configuration of the drawing device 11. The drawing device 11 includes an illumination optical system 5 that emits illumination light, and a display device 6 that generates an image by two-dimensional spatial modulation of the illumination light. The illumination optical system 5 includes three light sources 4a, 4b, 4c for emitting illumination light, a first dichroic mirror 5a, a second dichroic mirror 5b, collimators 5d, 5e, 5f, a relay lens 5h, and a fly. An eye optical system 5j, condenser lenses 5m and 5n, a bending mirror 5p, a TIR (Total Internal Reflection) prism 5q, and a flat plate 5r are provided. The three light sources 4a, 4b, 4c are light emitting elements such as LEDs (light emitting diodes), and emit the illumination light La, Lb, Lc of three colors of R, G, and B, respectively. The light source 4a is an R light source, the light source 4b is a G light source, and the light source 4c is a B light source. The first dichroic mirror 5a combines the G illumination light Lb from the second light source (G light source) 4b and the B illumination light Lc from the third light source (B light source) 4c to form a second dichroic mirror. 5b synthesizes the R illumination light La from the first light source (R light source) 4a and the G and B illumination lights Lb and Lc synthesized by the first dichroic mirror 5a. The collimators 5d, 5e, 5f bring the illumination lights La, Lb, Lc from the respective light sources 4a, 4b, 4c into a state close to parallel light flux. The relay lens 5h has a role of compensating for the optical path difference on the illumination light Lb, Lc side. The fly-eye optical system 5j is also called an optical integrator, and uniformizes the illumination light La, Lb, Lc from the light sources 4a, 4b, 4c. The condenser lenses 5m and 5n cause the La, Lb, and Lc that have passed through the fly-eye optical system 5j to enter the display device 6 within an appropriate incident angle range. The TIR prism 5q separates the optical paths of the illumination light La, Lb, and Lc from the optical path of the display light HK by utilizing the presence or absence of total reflection. Specifically, the illumination light can be guided to the display device 6 from a direction tilted with respect to the optical axis AX of the projection optical system 15 by totally reflecting the illumination light on the inclined surface 5w of one prism constituting the TIR prism 5q. Therefore, the light from the display device 6 can be transmitted in the front direction along the optical axis AX of the projection optical system 15 and incident on the projection optical system 15 as the display light HK. The flat plate 5r is a cover glass of the display device 6, but it may have a filter function.
 表示デバイス6は、デジタル・ミラー・デバイス(DMD:Digital Mirror Device)であり、TIRプリズム5qから入射した照明光をTIRプリズム5q越しに投影光学系15に向けたり投影光学系15から逸らしたりするオン・オフ動作が可能である。表示デバイス6の動作は、順次発光する光源4a,4b,4cと同期しており、R、G、及びBの3色の表示光HKを順次又は同時に形成する。 The display device 6 is a digital mirror device (DMD), which turns on the illumination light incident from the TIR prism 5q toward the projection optical system 15 through the TIR prism 5q or diverts it from the projection optical system 15.・ Off operation is possible. The operation of the display device 6 is synchronized with the light sources 4a, 4b, and 4c that sequentially emit light, and the display lights HK of three colors of R, G, and B are sequentially or simultaneously formed.
 図2に戻って、投影光学系15は、固定焦点のレンズ系であり、複数のレンズ要素を有する。投影光学系15は、描画デバイス11の表示面11aに形成された画像を中間像TI又は強制中間像TI’として拡散部16上に適当な倍率で拡大投影する。 Returning to FIG. 2, the projection optical system 15 is a fixed focus lens system and has a plurality of lens elements. The projection optical system 15 magnifies and projects the image formed on the display surface 11a of the drawing device 11 as an intermediate image TI or a forced intermediate image TI 'onto the diffusion unit 16 at an appropriate magnification.
 拡散部16は、投影光学系15による投影位置又は結像位置(つまり、中間像TIの結像予定位置又はその近傍)に配置される部材であり、配置変更装置である回転駆動部64に駆動されて例えば一定速度で基準軸SXの周りに回転する。つまり、回転駆動部64は、拡散部16(具体的には、後述する回転体16aの中間スクリーン19)に、光軸AX方向に沿った可動範囲内において周期運動を行わせる。また、回転駆動部64は、表示制御部18の制御下で動作しており、位置検出素子65による中間スクリーン19の配置検出結果に基づいて、中間スクリーン19の回転位置や回転速度に対する描画デバイス11の投影タイミングを調整している。 The diffusing unit 16 is a member arranged at a projection position or an image forming position of the projection optical system 15 (that is, a planned image forming position of the intermediate image TI or in the vicinity thereof), and is driven by a rotation driving unit 64 which is an arrangement changing device. Then, for example, it rotates around the reference axis SX at a constant speed. That is, the rotation drive unit 64 causes the diffusion unit 16 (specifically, the intermediate screen 19 of the rotating body 16a described later) to perform periodic motion within the movable range along the optical axis AX direction. Further, the rotation driving unit 64 operates under the control of the display control unit 18, and based on the placement detection result of the intermediate screen 19 by the position detection element 65, the drawing device 11 with respect to the rotation position and the rotation speed of the intermediate screen 19. The projection timing of is adjusted.
 図4A及び4Bに示すように、画像表示装置100に組み込まれる拡散部16は、全体として円板に近い輪郭を有する螺旋状の回転体16aと、回転体16aを支持する中心軸部16rとを有する。 As shown in FIGS. 4A and 4B, the diffusing unit 16 incorporated in the image display device 100 includes a spiral rotating body 16a having a contour close to a disc as a whole, and a central shaft portion 16r supporting the rotating body 16a. Have.
 回転体16aは、中央部16cと外周光学部16pとを有する。回転体16aの外周光学部16pに形成された一方の表面16f(本実施形態では、投影光学系15側又は+Y側の面)は、平滑面又は光学面に形成されており、表面16f上には、全域に亘って中間スクリーン19が形成されている。 The rotating body 16a has a central portion 16c and an outer peripheral optical portion 16p. One surface 16f (in the present embodiment, the projection optical system 15 side or the + Y side surface) formed on the outer peripheral optical portion 16p of the rotating body 16a is formed as a smooth surface or an optical surface, and on the surface 16f. Has an intermediate screen 19 formed over the entire area.
 中間スクリーン19は、配光角を所望の角度に制御した環状の拡散板である。中間スクリーン19は、回転体16aに貼り付けられるシートとできるが、回転体16aの表面に形成された微細な凹凸パターンであってもよい。さらに、中間スクリーン19は、回転体16aの内部に埋め込むように形成されたものであってもよい。中間スクリーン19は、入射した表示光HKを拡散させることによって中間像TI又は強制中間像TI’を形成する(図2参照)。 The intermediate screen 19 is an annular diffusion plate whose light distribution angle is controlled to a desired angle. The intermediate screen 19 may be a sheet attached to the rotating body 16a, but may be a fine concavo-convex pattern formed on the surface of the rotating body 16a. Further, the intermediate screen 19 may be formed so as to be embedded inside the rotating body 16a. The intermediate screen 19 forms the intermediate image TI or the forced intermediate image TI ′ by diffusing the incident display light HK (see FIG. 2).
 回転体16aの外周光学部16pに形成された他方の表面16s(本実施形態では、拡大投射光学系17側の面)は、平滑面又は光学面に形成されている。回転体16aは、光透過性を有する螺旋状の部材であり、一対の表面16f,16sは、基準軸SXを螺旋軸とする螺旋面となっている。結果的に、一方の表面16f上に形成された中間スクリーン19は、螺旋の1ピッチ分の範囲に形成されている。拡散部16の周に沿った1箇所に段差状の境界部16jが形成され、この境界部16jは、螺旋端に対応する位置で光軸AX方向又は基準軸SX方向に例えば30mm以下の距離段差又はピッチを与えるものとなっている。拡散部16の境界部16jは、中間スクリーン19の境界部でもある。境界部16jは、螺旋端間の段差を繋ぐとともに、拡散部16を回転させる基準軸SXを含む平面に対して傾斜した帯状の接続面16kを有する。上記のように、回転体16aの一対の表面16f,16sが基準軸SXを螺旋軸とする螺旋面であることから、回転体16aは、基準軸SX又は光軸AX方向に関して略等しい厚みtを有する。 The other surface 16s (a surface on the side of the magnifying projection optical system 17 in this embodiment) formed on the outer peripheral optical part 16p of the rotating body 16a is formed as a smooth surface or an optical surface. The rotator 16a is a light-transmissive spiral member, and the pair of surfaces 16f and 16s are spiral surfaces having the reference axis SX as the spiral axis. As a result, the intermediate screen 19 formed on the one surface 16f is formed in the range of one pitch of the spiral. A step-like boundary portion 16j is formed at one location along the circumference of the diffusion portion 16, and this boundary portion 16j has a distance step of, for example, 30 mm or less in the optical axis AX direction or the reference axis SX direction at a position corresponding to the spiral end. Or, it gives a pitch. The boundary 16j of the diffusion unit 16 is also the boundary of the intermediate screen 19. The boundary portion 16j connects a step between the spiral ends and has a strip-shaped connecting surface 16k that is inclined with respect to a plane including the reference axis SX that rotates the diffusion portion 16. As described above, since the pair of surfaces 16f and 16s of the rotating body 16a are spiral surfaces having the reference axis SX as the spiral axis, the rotating body 16a has a substantially equal thickness t with respect to the reference axis SX or the optical axis AX direction. Have.
 図4Aに示すように、回転体16aにおいて、周方向に沿った1箇所は、本体光学系13の光軸AXが通る機能領域FAとなっており、機能領域FAにおける中間スクリーン19の部分によって中間像TIが形成される。この機能領域FAは、回転体16aの回転に伴って回転体16a上において一定速度で移動し回転体16a上で周回する(図4C参照)。図示の例では、中間スクリーン19が螺旋の1周期に対応する範囲に形成されているため、回転体16aの1回転で中間スクリーン19が空間的に移動し、中間スクリーン19の機能領域FA又は中間像TIは、光軸AX方向に段差に相当する距離Dだけ移動することになる(図4B参照)。 As shown in FIG. 4A, in the rotating body 16a, one location along the circumferential direction is a functional area FA through which the optical axis AX of the main body optical system 13 passes, and an intermediate screen 19 in the functional area FA provides an intermediate area. An image TI is formed. The functional area FA moves at a constant speed on the rotating body 16a as the rotating body 16a rotates, and orbits on the rotating body 16a (see FIG. 4C). In the illustrated example, since the intermediate screen 19 is formed in the range corresponding to one cycle of the spiral, the intermediate screen 19 spatially moves by one rotation of the rotating body 16a, and the functional area FA or the intermediate area of the intermediate screen 19 is increased. The image TI moves in the optical axis AX direction by a distance D corresponding to a step (see FIG. 4B).
 なお、投影光学系15は、拡散部16に設けた中間スクリーン19の位置によってピントぼけが生じないように、機能領域FAの移動範囲以上の所定の焦点深度を有する。 Note that the projection optical system 15 has a predetermined depth of focus that is equal to or larger than the moving range of the functional area FA so that defocusing does not occur depending on the position of the intermediate screen 19 provided in the diffusion unit 16.
 位置検出素子65は、中間スクリーン19の位置を検出するものであり、中間スクリーン19又は中間スクリーン19の検出可能位置に設けられる。ここで、中間スクリーン19の検出可能位置とは、例えば中間スクリーン19の動作を認識可能な中間スクリーン19付近の領域を意味する。これにより、中間スクリーン19の位置をより正確に検出することができる。位置検出素子65としては、例えばフォトインタラプター、ホール素子、ロータリーエンコーダー等が用いられる。図2では、位置検出素子65がフォトインタラプターの例を示している。図示は省略するが、フォトインタラプターは、発光部と受光部とで構成されている。図示の例では、回転体16aの外周部付近に位置検出素子65が設けられており、回転体16aの外周部上の1か所に反射率が異なる反射部材66が設けられている。反射部材66は、回転体16aの1周に1度、位置検出素子65の発光部から射出された光を位置検出素子65の受光部に向けて反射する。位置検出素子65での発光部での光射出のタイミングと受光部での光受光のタイミングとによって回転体16aの回転速度を計測することで、結果的に、中間スクリーン19の回転角度や回転位置(機能領域FAの光軸AX方向の位置を含む)といった位置情報を求めることができる。なお、位置検出の精度を上げるため、回転体16aに反射部材66を複数設けてもよい。 The position detection element 65 detects the position of the intermediate screen 19, and is provided at the intermediate screen 19 or a detectable position of the intermediate screen 19. Here, the detectable position of the intermediate screen 19 means, for example, a region near the intermediate screen 19 in which the operation of the intermediate screen 19 can be recognized. Thereby, the position of the intermediate screen 19 can be detected more accurately. As the position detecting element 65, for example, a photo interrupter, a hall element, a rotary encoder, or the like is used. FIG. 2 shows an example in which the position detection element 65 is a photo interrupter. Although not shown, the photo interrupter includes a light emitting unit and a light receiving unit. In the illustrated example, the position detecting element 65 is provided near the outer peripheral portion of the rotating body 16a, and the reflecting member 66 having a different reflectance is provided at one location on the outer peripheral portion of the rotating body 16a. The reflecting member 66 reflects the light emitted from the light emitting portion of the position detecting element 65 toward the light receiving portion of the position detecting element 65 once per revolution of the rotating body 16 a. The rotation speed of the rotating body 16a is measured by the timing of light emission from the light emitting portion and the timing of light reception at the light receiving portion of the position detection element 65, and as a result, the rotation angle and rotation position of the intermediate screen 19 are measured. Position information such as (including the position of the functional area FA in the optical axis AX direction) can be obtained. In addition, in order to improve the accuracy of position detection, a plurality of reflecting members 66 may be provided on the rotating body 16a.
 図2に戻って、拡大投射光学系17は、拡散部16に形成された中間像TIを表示スクリーン20と協働して拡大し、運転者UNの前方の表示スクリーン20越しに虚像としての表示像IMを形成する。拡大投射光学系17は、少なくとも1枚のミラーで構成されるが、図示の例では2枚のミラー17a,17bを含む。 Returning to FIG. 2, the magnifying projection optical system 17 magnifies the intermediate image TI formed on the diffusing section 16 in cooperation with the display screen 20, and displays it as a virtual image through the display screen 20 in front of the driver UN. Form the image IM. The magnifying projection optical system 17 includes at least one mirror, but includes two mirrors 17a and 17b in the illustrated example.
 図2等に示す画像表示装置100において、表示制御部18の制御下で回転駆動部64を動作させることで、拡散部16が基準軸SXの周りに回転し、回転体16a又は中間スクリーン19が光軸AXと交差する位置(つまり機能領域FA)も光軸AX方向に移動する。つまり、例えば図4Cに示すように、回転体16aの回転に伴って、中間スクリーン19上の機能領域FAは、例えば元の機能領域FA1から等角度でずれた位置に設定された隣接する機能領域FA2,FA3に順次シフトし、光軸AX方向に移動する。このような機能領域FAの光軸AX方向への移動により、中間像TIの位置も光軸AX方向に移動させることができる。拡散部16が基準軸SXの周りに回転することで、機能領域FAに対応する中間像TIの位置が光軸AX方向に繰り返し周期的に移動し、拡大投射光学系17によって表示スクリーン20の背後に形成される虚像としての表示像IMと観察者である運転者UNとの距離を大きく、又は小さくすることができる。このように、表示制御部18の制御下で、投影される表示像IMの位置を前後に変化させるとともに、描画デバイス11による表示内容をその位置に応じたものとすることで、表示像IMまでの投影距離又は虚像距離を変化させつつ表示像IMの表示内容を変化させることになり、一連の投影像としての表示像IMを3次元的なものとすることができる。 In the image display device 100 shown in FIG. 2 and the like, by operating the rotation driving unit 64 under the control of the display control unit 18, the diffusing unit 16 rotates around the reference axis SX, and the rotating body 16a or the intermediate screen 19 moves. The position intersecting the optical axis AX (that is, the functional area FA) also moves in the optical axis AX direction. That is, for example, as shown in FIG. 4C, the functional area FA on the intermediate screen 19 is adjacent to the functional area FA1 that is set at a position deviated from the original functional area FA1 by an equal angle as the rotary body 16a rotates. FA2 and FA3 are sequentially shifted to move in the optical axis AX direction. By moving the functional area FA in the optical axis AX direction, the position of the intermediate image TI can also be moved in the optical axis AX direction. By rotating the diffusing section 16 around the reference axis SX, the position of the intermediate image TI corresponding to the functional area FA repeatedly and cyclically moves in the optical axis AX direction, and the magnifying projection optical system 17 is provided behind the display screen 20. It is possible to increase or decrease the distance between the display image IM as a virtual image formed in the above and the driver UN who is the observer. In this way, under the control of the display control unit 18, the position of the projected display image IM is changed back and forth, and the display content by the drawing device 11 is adapted to the position, so that the display image IM is displayed. Since the display content of the display image IM is changed while changing the projection distance or the virtual image distance of the display image IM, the display image IM as a series of projection images can be three-dimensional.
 本実施形態において、画像表示装置100は、複数の虚像距離に表示像IMを表示可能となっており、回転体16aの機能領域FAには、表示像IMに対応する各カラー画像を構成するR、G、及びBの画像が投影される。画像投影時に回転体16aは回転しているため、R、G、及びBの画像は、回転体16aの対応する領域に順に投影されることとなる。回転体16a上に設けられた中間スクリーン19の光軸AX方向の位置が略同じになる領域に1つのカラー画像に対応するR、G、及びBの画像を投影すれば、所定の虚像距離に表示像IMである該当するカラー画像が表示される。機能領域FAは、回転体16aの回転に伴って回転体16a上において一定速度で移動する。図示の例では、光軸AX上の位置が略同じ領域内の機能領域FAにカラー画像を構成するR、G、及びBの画像を順に投影すれば、結果的にR、G、及びBの画像を複合させたカラー画像に対応する仮想的な複合機能領域が離散的に設けられていることとなり、離散的な距離ゾーンで虚像が表示される。 In the present embodiment, the image display device 100 is capable of displaying the display image IM at a plurality of virtual image distances, and in the functional area FA of the rotator 16a, R forming each color image corresponding to the display image IM. , G, and B images are projected. Since the rotating body 16a is rotating when the image is projected, the R, G, and B images are sequentially projected onto the corresponding regions of the rotating body 16a. If the R, G, and B images corresponding to one color image are projected on the area where the positions of the intermediate screen 19 provided on the rotating body 16a in the optical axis AX direction are substantially the same, a predetermined virtual image distance is obtained. A corresponding color image that is the display image IM is displayed. The functional area FA moves at a constant speed on the rotating body 16a as the rotating body 16a rotates. In the illustrated example, if images of R, G, and B forming a color image are sequentially projected onto the functional area FA within the area where the positions on the optical axis AX are substantially the same, as a result, R, G, and B Virtual composite functional areas corresponding to a color image in which images are composited are discretely provided, and a virtual image is displayed in discrete distance zones.
 図5は、拡散部16の回転に伴う中間像TIの位置の変化を具体的に例示する図である。拡散部16の機能領域FAの中心は、光軸AX方向に沿って鋸歯状の経時パターンPAで繰り返し周期的に移動しており、中間像TIの中心位置も、描画デバイス11が連続表示を行っている場合、図示のように光軸AX方向に沿って鋸歯状の経時パターンPAで繰り返し周期的に移動する。つまり、中間像TIの位置は、境界部16jに対応する箇所で不連続的ながら、拡散部16の回転に伴って連続的かつ周期的に変化する。この結果、図示を省略するが、表示像(虚像)IMの位置も、スケールは異なるが、中間像TIの位置と同様に光軸AX方向に沿って繰り返し周期的に移動し、投影距離を連続的に変化させることができる。描画デバイス11は、連続表示を行うものでなく、表示内容を切り替りえつつ間欠的な表示を行うものであるから、中間像TIの表示位置も鋸歯状の経時パターンPA上における離散的な位置となる。経時パターンPAにおいて、最も近距離側又は拡大投射光学系17寄りの表示位置Pnと、最も遠距離側又は投影光学系15寄りの表示位置Pfとは、経時パターンPAの両端に設定される。また、経時パターンPAの途切れ目PDは、拡散部16の回転体16aに設けた境界部16jに対応する。さらに、図4Cに示す機能領域FA1,FA2,FA3の中心は、経時パターンPA上の離散的な表示位置P1,P2,P3に対応する。 FIG. 5 is a diagram specifically illustrating a change in the position of the intermediate image TI due to the rotation of the diffusion unit 16. The center of the functional area FA of the diffusing section 16 repeatedly moves cyclically along the optical axis AX in a sawtooth temporal pattern PA, and the drawing device 11 continuously displays the center position of the intermediate image TI. In this case, as shown in the drawing, the pattern moves repeatedly along the optical axis AX in a sawtooth pattern with time. That is, the position of the intermediate image TI is discontinuous at the location corresponding to the boundary portion 16j, but continuously and periodically changes with the rotation of the diffusion unit 16. As a result, although not shown, the position of the display image (virtual image) IM is also different in scale, but similarly to the position of the intermediate image TI, the position of the display image IM repeatedly moves periodically along the optical axis AX to continuously project the projection distance. Can be changed. Since the drawing device 11 does not perform continuous display but performs intermittent display while switching display contents, the display position of the intermediate image TI is also a discrete position on the sawtooth temporal pattern PA. Become. In the temporal pattern PA, the display position Pn closest to the close-up side or the magnifying projection optical system 17 and the display position Pf farthest away from the projection optical system 15 are set at both ends of the temporal pattern PA. Further, the discontinuity PD of the temporal pattern PA corresponds to the boundary portion 16j provided on the rotating body 16a of the diffusion unit 16. Further, the centers of the functional areas FA1, FA2, FA3 shown in FIG. 4C correspond to the discrete display positions P1, P2, P3 on the temporal pattern PA.
 図6は、移動体用表示システム200を説明するブロック図であり、移動体用表示システム200は、その一部として画像表示装置100を含む。この画像表示装置100は、図2に示す構造を有するものであり、ここでは説明を省略する。移動体用表示システム200は、移動体である自動車等に組み込まれるものである。 FIG. 6 is a block diagram illustrating the mobile display system 200, and the mobile display system 200 includes the image display device 100 as a part thereof. This image display device 100 has the structure shown in FIG. 2, and a description thereof will be omitted here. The moving body display system 200 is incorporated in a moving body such as an automobile.
 移動体用表示システム200は、画像表示装置100のほかに、環境監視部72と、主制御装置90とを備える。本実施形態の移動体用表示システム200は、後述するPID制御部81等を備えることにより、画像表示装置100の動作のフィードバック制御が可能な構成となっている。 The mobile display system 200 includes an environment monitor 72 and a main controller 90 in addition to the image display device 100. The display system 200 for a mobile body of the present embodiment includes a PID control unit 81 and the like to be described later, so that feedback control of the operation of the image display device 100 is possible.
 環境監視部72は、前方に近接する自動車、自転車、歩行者等を識別する部分であり、外部用カメラ72aと、外部用画像処理部72bと、判断部72cとを備える。外部用カメラ72aは、車体2内外の適所に設置されており、運転者UN又はフロントウインドウ8の前方、側方等の外部画像を撮影する。外部用画像処理部72bは、外部用カメラ72aで撮影した画像に対して明るさ補正等の各種画像処理を行って判断部72cでの処理を容易にする。判断部72cは、外部用画像処理部72bを経た外部画像からオブジェクトの抽出又は切り出しを行うことによって自動車、自転車、歩行者等の対象物の存否を検出するとともに、外部画像に付随する奥行情報から車体2前方における対象物の空間的な位置を算出する。 The environment monitoring section 72 is a section for identifying a vehicle, a bicycle, a pedestrian, etc., which are in the vicinity of the front, and includes an external camera 72a, an external image processing section 72b, and a determination section 72c. The external camera 72a is installed in a proper place inside and outside the vehicle body 2 and captures an external image of the front side or the side of the driver UN or the front window 8. The external image processing unit 72b facilitates the processing in the determination unit 72c by performing various image processing such as brightness correction on the image captured by the external camera 72a. The determination unit 72c detects the presence or absence of an object such as a car, a bicycle, or a pedestrian by extracting or cutting out an object from the external image that has passed through the external image processing unit 72b, and determines from the depth information that accompanies the external image. The spatial position of the object in front of the vehicle body 2 is calculated.
 なお、外部用カメラ72aは、図示を省略しているが、例えば複眼型の3次元カメラである。つまり、外部用カメラ72aは、結像用のレンズと、CMOSその他の撮像素子とを一組とするカメラ素子をマトリックス状に配列したものであり、撮像素子用の駆動回路をそれぞれ有する。外部用カメラ72aを構成する複数のカメラ素子は、例えば奥行方向の異なる位置にピントを合わせるようになっており、或いは相対的な視差を検出できるようになっており、カメラ素子から得た画像の状態(フォーカス状態、オブジェクトの位置等)を解析することで、画像内の各領域又はオブジェクトまでの距離を判定できる。 Although not shown, the external camera 72a is, for example, a compound eye type three-dimensional camera. In other words, the external camera 72a is an array of camera elements each including a lens for image formation and a CMOS or other image pickup element arranged in a matrix, and each has a drive circuit for the image pickup element. The plurality of camera elements that form the external camera 72a are configured to focus at different positions in the depth direction, or to detect relative parallax, for example. By analyzing the state (focus state, object position, etc.), the distance to each region or object in the image can be determined.
 なお、上記のような複眼型の外部用カメラ72aに代えて、2次元カメラと赤外距離センサーとを組み合わせたものを用いても、撮影した画面内の各部(領域又はオブジェクト)に関して奥行方向の距離情報を得ることができる。また、複眼型の外部用カメラ72aに代えて、2つの2次元カメラを分離配置したステレオカメラによって、撮影した画面内の各部(領域又はオブジェクト)に関して奥行方向の距離情報を得ることができる。その他、単一の2次元カメラにおいて、焦点距離を高速で変化させながら撮像を行うことによっても、撮影した画面内の各部(領域又はオブジェクト)に関して奥行方向の距離情報を得ることができる。 Even when a combination of a two-dimensional camera and an infrared distance sensor is used instead of the compound-eye type external camera 72a as described above, each part (area or object) in the captured screen is displayed in the depth direction. Distance information can be obtained. Further, instead of the compound-eye type external camera 72a, a stereo camera in which two two-dimensional cameras are separately arranged can obtain distance information in the depth direction with respect to each part (area or object) in the captured image. In addition, by using a single two-dimensional camera to perform imaging while changing the focal length at high speed, it is possible to obtain distance information in the depth direction with respect to each part (region or object) in the captured screen.
 表示制御部18は、主制御装置90の制御下で虚像表示光学系30を動作させて、表示スクリーン20の背後に虚像距離が変化する3次元的な表示像IMを表示させる。表示像IMは、例えば表示スクリーン20の背後に存在する自動車、自転車、歩行者その他の対象物に対して、その奥行き方向等に関して周辺に位置するフレーム枠HW(図9参照)のような標識とすることができる。 The display control unit 18 operates the virtual image display optical system 30 under the control of the main controller 90 to display a three-dimensional display image IM with a virtual image distance changing behind the display screen 20. The display image IM is a mark such as a frame frame HW (see FIG. 9) located in the periphery in the depth direction or the like of an object such as a car, a bicycle, a pedestrian or the like which exists behind the display screen 20. can do.
 表示制御部18は、フィードバック制御を行うPID(Proportional-Integral-Differential)制御部81と、サーボ機構82とを有する。PID制御部81は、主制御装置90の制御下でサーボ機構82を動作させ、主に描画デバイス11の動作、及び中間スクリーン19の動作のフィードバック制御を行う。ここで、フィードバックとは、中間スクリーン19の動作や描画デバイス11の動作に対して、これらの動作の目標値とのずれを相殺するように駆動信号の出力タイミング等に補正をかけることを意味する。サーボ機構82は、PID制御部81を介して、描画デバイス11の発光タイミングや、回転体16aの回転数又は回転速度等が設定値から外れた場合に、設定値になるようにこれらを制御する。描画デバイス11は1秒間に数千回の描画速度で光源発光を行い、拡散部16の中間スクリーン19は40rps~60rpsの周期速度で移動する。中間スクリーン19が所定の位置に存在する際に、描画デバイス11に対応する画像を描画させるためには、上記フィードバック制御を行い、両者の同期を高精度にする必要がある。 The display control unit 18 includes a PID (Proportional-Integral-Differential) control unit 81 that performs feedback control, and a servo mechanism 82. The PID control unit 81 operates the servo mechanism 82 under the control of the main controller 90, and mainly performs feedback control of the operation of the drawing device 11 and the operation of the intermediate screen 19. Here, the feedback means that, with respect to the operation of the intermediate screen 19 and the operation of the drawing device 11, the output timing of the drive signal is corrected so as to cancel the deviation from the target value of these operations. . The servo mechanism 82 controls the light emission timing of the drawing device 11, the rotation speed or the rotation speed of the rotating body 16a, and the like so that the light emission timing of the drawing device 11 reaches the set value via the PID control unit 81. . The drawing device 11 emits light from the light source at a drawing speed of several thousand times per second, and the intermediate screen 19 of the diffusion unit 16 moves at a periodic speed of 40 rps to 60 rps. In order to draw an image corresponding to the drawing device 11 when the intermediate screen 19 is present at a predetermined position, it is necessary to perform the above feedback control and synchronize the two with high accuracy.
 表示制御部18は、中間スクリーン19の位置情報及び描画デバイス11の発光タイミングに関する情報に基づいて、中間スクリーン19の移動タイミングと描画デバイス11の発光タイミングとが所定の同期関係になるように配置変更装置である回転駆動部64及び描画デバイス11の少なくとも一方を制御する。つまり、表示制御部18は、位置検出素子65から得た中間スクリーン19の位置情報と、描画デバイス11の発光タイミングに関する情報とに基づいて、中間スクリーン19の移動タイミング及び描画デバイス11の発光タイミングの少なくとも一方を制御する。また、主制御装置90は、位置検出素子65から中間スクリーン19の位置情報をリアルタイムで取得し、描画デバイス11の発光タイミングをリアルタイムで取得する。描画デバイス11の発光タイミングは、予め設定されたものを取得してもよいし、描画デバイス11の投射光を直接検出して取得してもよい。描画デバイス11は、中間スクリーン19が所定の位置に配置されるタイミングでカラー画像を構成するR、G、及びBの画像を描画する。 The display control unit 18 changes the arrangement so that the movement timing of the intermediate screen 19 and the light emission timing of the drawing device 11 have a predetermined synchronization relationship based on the position information of the intermediate screen 19 and the information about the light emission timing of the drawing device 11. At least one of the rotation driving unit 64, which is a device, and the drawing device 11 is controlled. That is, the display control unit 18 determines the movement timing of the intermediate screen 19 and the light emission timing of the drawing device 11 based on the position information of the intermediate screen 19 obtained from the position detection element 65 and the information regarding the light emission timing of the drawing device 11. Control at least one. Further, the main controller 90 acquires the position information of the intermediate screen 19 from the position detection element 65 in real time, and acquires the light emission timing of the drawing device 11 in real time. The light emission timing of the drawing device 11 may be set in advance or may be acquired by directly detecting the projection light of the drawing device 11. The drawing device 11 draws R, G, and B images that form a color image at the timing when the intermediate screen 19 is arranged at a predetermined position.
 主制御装置90は、画像表示装置100、環境監視部72等の動作を調和させる役割を有し、環境監視部72によって検出した対象物の空間的な位置に対応するように、虚像表示光学系30によって投影されるフレーム枠HWの空間的な配置を調整する。 The main control device 90 has a role of coordinating the operations of the image display device 100, the environment monitoring unit 72, and the like, and the virtual image display optical system so as to correspond to the spatial position of the object detected by the environment monitoring unit 72. The spatial arrangement of the frame frame HW projected by 30 is adjusted.
 以下、中間スクリーン19の動作と描画デバイス11の動作との同期方法について説明する。画像表示装置100は、回転体16aの回転信号のパルスをトリガーにして描画デバイス11を制御する。これにより、回転体16aの回転に応じて描画デバイス11を制御することができる。 Hereinafter, a method of synchronizing the operation of the intermediate screen 19 and the operation of the drawing device 11 will be described. The image display apparatus 100 controls the drawing device 11 by using the pulse of the rotation signal of the rotating body 16a as a trigger. Thus, the drawing device 11 can be controlled according to the rotation of the rotating body 16a.
 図7に示すように、まず、表示制御部18の制御下で回転体16aを回転駆動部64を用いて所定の回転速度で動作させ、中間スクリーン19を光軸AXに沿って移動させる。また、表示制御部18の制御下で描画デバイス11を所定の発光タイミング及び発光時間で動作させる(ステップS11)。 As shown in FIG. 7, first, under the control of the display control unit 18, the rotating body 16a is operated at a predetermined rotation speed using the rotation drive unit 64, and the intermediate screen 19 is moved along the optical axis AX. Further, the drawing device 11 is operated at a predetermined light emission timing and light emission time under the control of the display control unit 18 (step S11).
 次に、中間スクリーン19の位置を検出する(ステップS12)。回転体16aの回転に伴う回転信号は、位置検出素子65のパルス信号として得られる。図8A~8Cは、回転信号と描画デバイス11の発光タイミングとの関係を説明する図である。図8Aにおいて、符号T1,T2は、回転体16aの1回転目及び2回転目における、位置検出素子65で検出された光に対応する回転信号をそれぞれ示している。また、図8B及び8Cにおいて、描画デバイス11の点灯信号は、実際にはR、G、Bの複数の発光パルスを便宜上1つのパルスとして示している。ここで、回転体16aの回転速度を一定とし、位置検出素子65によって回転体16aの回転速度又は回転角度を計測すれば、中間スクリーン19の位置情報を得ることができる。 Next, the position of the intermediate screen 19 is detected (step S12). A rotation signal accompanying the rotation of the rotating body 16a is obtained as a pulse signal of the position detection element 65. 8A to 8C are diagrams for explaining the relationship between the rotation signal and the light emission timing of the drawing device 11. In FIG. 8A, symbols T1 and T2 respectively indicate rotation signals corresponding to the light detected by the position detection element 65 at the first rotation and the second rotation of the rotating body 16a. Further, in FIGS. 8B and 8C, the lighting signal of the drawing device 11 actually shows a plurality of R, G, and B emission pulses as one pulse for convenience. Here, if the rotation speed of the rotating body 16a is fixed and the rotation speed or the rotation angle of the rotating body 16a is measured by the position detecting element 65, the position information of the intermediate screen 19 can be obtained.
 次に、表示制御部18によって動作する描画デバイス11の発光タイミング及び発光時間を取得する(ステップS13)。描画デバイス11の発光タイミング等の情報は、予め設定されたものを用いてもよいし、別途センサー等を用いて計測してもよい。 Next, the light emission timing and light emission time of the drawing device 11 operated by the display control unit 18 are acquired (step S13). Information such as the light emission timing of the drawing device 11 may be set in advance, or may be measured using a sensor or the like separately.
 次に、表示制御部18の制御下で、描画デバイス11をフィードバックした所定の発光タイミング及び発光時間で動作させる(ステップS14)。具体的には、表示制御部18の制御下で、PID制御部81及びサーボ機構82によって描画デバイス11の発光タイミングと中間スクリーン19の位置情報とをフィードバックし、描画デバイス11の発光タイミング及び発光時間を制御し、中間スクリーン19の動作に対して描画デバイス11の動作を調整する。これにより、中間スクリーン19に作用する動作を加味して描画デバイス11の動作を調整することができる。表示制御部18は、フィードバックにおいて、回転体16a又は中間スクリーン19の1周期において、描画デバイス11の点灯信号に対応する描画デバイス11における発光が所定回数行われているか否かを判断する。中間スクリーン19の回転速度及び回転位置の遅れについては、目標値とのずれから計算して補正する。中間スクリーン19の回転速度等が目標値から遅れた場合、その遅延時間分だけ描画デバイス11の発光タイミングを遅くする。また、描画デバイス11の発光タイミングの遅れについても、目標値とのずれから計算して補正する。描画デバイスの発光タイミングが目標値から遅れた場合、その遅延時間分だけ描画デバイス11の発光タイミングを速くする。フィードバックによる補正は、1周期目に反映されてもよいし、2周期目以降に反映されてもよい。なお、描画デバイス11において、描画デバイス11を駆動するドライバー回路における駆動信号と表示デバイス6での発光とに時間のずれがあれば、例えば予測した遅延時間等を加味してフィードバックする。 Next, under the control of the display control unit 18, the drawing device 11 is operated at the predetermined light emission timing and light emission time which are fed back (step S14). Specifically, under the control of the display control unit 18, the PID control unit 81 and the servo mechanism 82 feed back the light emission timing of the drawing device 11 and the position information of the intermediate screen 19, and the light emission timing and the light emission time of the drawing device 11 are fed back. To adjust the operation of the drawing device 11 with respect to the operation of the intermediate screen 19. Thereby, the operation of the drawing device 11 can be adjusted in consideration of the operation that acts on the intermediate screen 19. In the feedback, the display control unit 18 determines whether or not the light emission in the drawing device 11 corresponding to the lighting signal of the drawing device 11 is performed a predetermined number of times in one cycle of the rotating body 16a or the intermediate screen 19. The delay of the rotation speed and the rotation position of the intermediate screen 19 is calculated from the deviation from the target value and corrected. When the rotation speed of the intermediate screen 19 is delayed from the target value, the light emission timing of the drawing device 11 is delayed by the delay time. Further, the delay of the light emission timing of the drawing device 11 is also calculated and corrected from the deviation from the target value. When the light emission timing of the drawing device is delayed from the target value, the light emission timing of the drawing device 11 is advanced by the delay time. The correction by feedback may be reflected in the first cycle or in the second and subsequent cycles. In the drawing device 11, if there is a time lag between the drive signal in the driver circuit that drives the drawing device 11 and the light emission in the display device 6, the feedback is performed by taking into account, for example, the predicted delay time.
 回転信号と点灯信号とのタイミングとを同期させることで、正確な位置に虚像と対象物とが重畳した表示を時間遅延なく行うことができる。中間スクリーン19の位置を判別できるようにしておけば、回転信号のパルスをトリガーにして、適切なタイミングで描画デバイス11の発光パルス(点灯信号)を発生させることができる。結果的に、描画デバイス11のR、G、Bの画像を含むフレームレートが調整され、中間スクリーン19の位置に応じたカラー画像が虚像表示される。これにより、異なる複数の虚像距離で虚像が同時に表示されるように運転者UNに視認させることができる。また、1つの虚像距離のみに対応するタイミングで描画デバイス11を発光させれば、単一虚像距離での虚像だけ運転者UNに視認させることもできる。 By synchronizing the timing of the rotation signal and the lighting signal, it is possible to display the virtual image and the object superimposed at the correct position without time delay. If the position of the intermediate screen 19 can be discriminated, the pulse of the rotation signal can be used as a trigger to generate the light emission pulse (lighting signal) of the drawing device 11 at an appropriate timing. As a result, the frame rate including the R, G, and B images of the drawing device 11 is adjusted, and the color image corresponding to the position of the intermediate screen 19 is displayed as a virtual image. This allows the driver UN to visually recognize the virtual images simultaneously displayed at different virtual image distances. Further, if the drawing device 11 is caused to emit light at a timing corresponding to only one virtual image distance, it is possible to allow the driver UN to visually recognize only the virtual image at the single virtual image distance.
 主制御装置90は、表示が継続されるか否かを確認し(ステップS15)、表示が継続される場合(ステップS15でY)、ステップS11に戻りステップS12等の処理を繰り返す。なお、ステップS14のフィードバックは常時行うことが好ましい。また、ステップS12,S13は逆に行ってもよいし、同時に行ってもよい。 The main controller 90 confirms whether or not the display is continued (step S15), and when the display is continued (Y in step S15), the process returns to step S11 and the processes of step S12 and the like are repeated. It is preferable that the feedback in step S14 is always performed. Further, steps S12 and S13 may be performed in reverse or simultaneously.
 図9は、具体的な表示状態を説明する斜視図である。観察者である運転者UNの前方は観察視野に相当する検出領域VFとなっている。検出領域VF内、つまり道路及びその周辺に、歩行者等である人のオブジェクトOB1,OB3や、自動車等である移動体のオブジェクトOB2が存在すると考える。この場合、主制御装置90は、画像表示装置100によって3次元的な表示像(虚像)IMを投影させ、各オブジェクトOB1,OB2,OB3に対して関連情報像としてのフレーム枠HW1,HW2,HW3を付加する。この際、運転者UNから各オブジェクトOB1,OB2,OB3までの距離が異なるので、フレーム枠HW1,HW2,HW3を表示させる表示像IM1,IM2,IM3までの虚像距離は、運転者UNから各オブジェクトOB1,OB2,OB3までの距離に相当するものとなっている。 FIG. 9 is a perspective view illustrating a specific display state. The detection area VF corresponding to the observation visual field is in front of the driver UN who is the observer. It is considered that objects OB1 and OB3 of people such as pedestrians and objects OB2 of moving bodies such as automobiles exist in the detection area VF, that is, in the road and its surroundings. In this case, the main control device 90 causes the image display device 100 to project a three-dimensional display image (virtual image) IM, and frame frames HW1, HW2, HW3 as related information images for the respective objects OB1, OB2, OB3. Is added. At this time, since the distances from the driver UN to the respective objects OB1, OB2, OB3 are different, the virtual image distance from the driver UN to the respective object OB1, OB2, OB3 to the display images IM1, IM2, IM3 for displaying the frame frames HW1, HW2, HW3. It corresponds to the distance to OB1, OB2, and OB3.
 なお、表示像IM1,IM2,IM3の虚像距離は、離散的であり、オブジェクトOB1,OB2,OB3までの現実の距離に対して常に正確に一致させるということはできない。ただし、表示像IM1,IM2,IM3の虚像距離と、オブジェクトOB1,OB2,OB3までの現実の距離との差が大きくなければ、運転者UNの視点が動いても視差が生じにくく、オブジェクトOB1,OB2,OB3とフレーム枠HW1,HW2,HW3との配置関係を略維持することができる。 The virtual image distances of the display images IM1, IM2, IM3 are discrete, and it is not possible to always exactly match the actual distances to the objects OB1, OB2, OB3. However, unless the difference between the virtual image distances of the display images IM1, IM2, IM3 and the actual distances to the objects OB1, OB2, OB3 is large, parallax hardly occurs even if the viewpoint of the driver UN moves, and the object OB1, The arrangement relationship between the OB2, OB3 and the frame frames HW1, HW2, HW3 can be substantially maintained.
 図10Aは、図5に対応し、図10Bは、図9中の表示像IM3又はフレーム枠HW3に対応し、図10Cは、図9中の表示像IM2又はフレーム枠HW2に対応し、図10Dは、図9中の表示像IM1又はフレーム枠HW1に対応している。図10A~10Dより明らかなように、表示像IM1は、回転体16aの機能領域FA又は中間像TIの全部又は一部が表示位置PO1を中心とする所定範囲内の位置にあるときの投影像又は表示像に対応する。同様に、表示像IM2は、回転体16aの機能領域FA又は中間像TIの全部又は一部が表示位置PO2を中心とする所定範囲内の位置にあるときの投影像又は表示像に対応し、表示像IM3は、回転体16aの機能領域FA又は中間像TIの全部又は一部が表示位置PO3を中心とする所定範囲内の位置にあるときの投影像又は表示像に対応する。中間像TIの移動を基準とする1周期でみた場合、順に、表示位置PO1に対応する表示像IM1又はフレーム枠HW1が表示され、表示位置PO2に対応する表示像IM2又はフレーム枠HW2が表示され、表示位置PO3に対応する表示像IM3又はフレーム枠HW3が表示される。以上の1周期が視覚的に短ければ、表示像IM1,IM2,IM3の切替えが非常に速くなり、観察者である運転者UNは、フレーム枠HW1,HW2,HW3を奥行きがある画像として同時に観察していると認識する。 10A corresponds to FIG. 5, FIG. 10B corresponds to the display image IM3 or the frame frame HW3 in FIG. 9, FIG. 10C corresponds to the display image IM2 or the frame frame HW2 in FIG. 9, and FIG. Corresponds to the display image IM1 or frame frame HW1 in FIG. As is clear from FIGS. 10A to 10D, the display image IM1 is a projection image when the functional area FA of the rotating body 16a or the intermediate image TI is wholly or partially within a predetermined range centered on the display position PO1. Or, it corresponds to the displayed image. Similarly, the display image IM2 corresponds to a projection image or a display image when all or part of the functional area FA of the rotating body 16a or the intermediate image TI is in a position within a predetermined range with the display position PO2 as the center, The display image IM3 corresponds to the projection image or the display image when all or part of the functional area FA of the rotating body 16a or the intermediate image TI is in a position within a predetermined range around the display position PO3. When viewed in one cycle based on the movement of the intermediate image TI, the display image IM1 or the frame frame HW1 corresponding to the display position PO1 is sequentially displayed, and the display image IM2 or the frame frame HW2 corresponding to the display position PO2 is displayed in order. , The display image IM3 or the frame HW3 corresponding to the display position PO3 is displayed. If the above 1 cycle is visually short, the switching of the display images IM1, IM2, IM3 becomes very fast, and the driver UN who is the observer simultaneously observes the frame frames HW1, HW2, HW3 as a deep image. Recognize that you are doing.
 以上で説明した画像表示装置100によれば、中間スクリーン19の位置と描画デバイス11の発光タイミングとに基づいて、中間スクリーン19の動作及び描画デバイス11の動作を同期制御することにより、カラー画像を描画する画像表示装置100の動作を安定化させることができる。 According to the image display device 100 described above, a color image is displayed by synchronously controlling the operation of the intermediate screen 19 and the operation of the drawing device 11 based on the position of the intermediate screen 19 and the light emission timing of the drawing device 11. It is possible to stabilize the operation of the image display device 100 for drawing.
〔第2実施形態〕
 以下、第2実施形態に係る表示装置について説明する。なお、第2実施形態の表示装置は第1実施形態の表示装置を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Second Embodiment]
The display device according to the second embodiment will be described below. The display device of the second embodiment is a modification of the display device of the first embodiment, and matters not particularly described are the same as those of the first embodiment.
 本実施形態において、表示制御部18は、描画デバイス11の発光タイミングと中間スクリーン19の位置情報とをフィードバックし、描画デバイス11を一定の発光タイミングで制御しつつ配置変更装置である回転駆動部64の駆動タイミングを制御し、描画デバイス11の動作に対して中間スクリーン19の動作を調整する。これにより、描画デバイス11の動作を一定にして中間スクリーン19の動作を制御することができる。 In the present embodiment, the display control unit 18 feeds back the light emission timing of the drawing device 11 and the position information of the intermediate screen 19 to control the drawing device 11 at a constant light emission timing, and is a rotation drive unit 64 that is an arrangement changing device. Of the intermediate screen 19 with respect to the operation of the drawing device 11. Accordingly, the operation of the intermediate screen 19 can be controlled while keeping the operation of the drawing device 11 constant.
 以下、本実施形態の中間スクリーン19の動作と描画デバイス11の動作との同期方法について説明する。まず、図11に示すように、表示制御部18の制御下で回転体16aを回転駆動部64を用いて所定の回転速度で動作させ、中間スクリーン19を光軸AXに沿って移動させる。また、表示制御部18の制御下で描画デバイス11を所定の発光タイミング及び発光時間で動作させる(ステップS11)。 Hereinafter, a method of synchronizing the operation of the intermediate screen 19 and the operation of the drawing device 11 of this embodiment will be described. First, as shown in FIG. 11, under the control of the display control unit 18, the rotating body 16a is operated at a predetermined rotation speed by using the rotation driving unit 64, and the intermediate screen 19 is moved along the optical axis AX. Further, the drawing device 11 is operated at a predetermined light emission timing and light emission time under the control of the display control unit 18 (step S11).
 次に、中間スクリーン19の位置を検出する(ステップS12)。回転体16aの回転に伴う回転信号は、位置検出素子65のパルス信号として得られる。 Next, the position of the intermediate screen 19 is detected (step S12). A rotation signal accompanying the rotation of the rotating body 16a is obtained as a pulse signal of the position detection element 65.
 次に、表示制御部18によって動作する描画デバイス11の発光タイミング及び発光時間を取得する(ステップS13)。 Next, the light emission timing and light emission time of the drawing device 11 operated by the display control unit 18 are acquired (step S13).
 次に、表示制御部18の制御下で、PID制御部81及びサーボ機構82によって描画デバイス11の発光タイミングと中間スクリーン19の位置情報とをフィードバックし、回転駆動部64を介して描画デバイス11の動作に対して中間スクリーン19の移動タイミングを調整する(ステップS114)。この際、表示制御部18は、描画デバイス11を所定の発光タイミング及び発光時間で動作させる。結果的に、描画デバイス11のR、G、Bの画像を含むフレームレートが調整され、中間スクリーン19の位置に応じたカラー画像が虚像表示される。 Next, under the control of the display control unit 18, the PID control unit 81 and the servo mechanism 82 feed back the light emission timing of the drawing device 11 and the position information of the intermediate screen 19, and the rotation drive unit 64 controls the drawing device 11 to rotate. The movement timing of the intermediate screen 19 is adjusted with respect to the operation (step S114). At this time, the display control unit 18 operates the drawing device 11 at a predetermined light emission timing and light emission time. As a result, the frame rate including the R, G, and B images of the drawing device 11 is adjusted, and the color image corresponding to the position of the intermediate screen 19 is displayed as a virtual image.
 主制御装置90は、表示が継続されるか否かを確認し(ステップS15)、表示が継続される場合(ステップS15でY)、ステップS11に戻りステップS12等の処理を繰り返す。 The main controller 90 confirms whether or not the display is continued (step S15), and when the display is continued (Y in step S15), the process returns to step S11 and the processes of step S12 and the like are repeated.
〔第3実施形態〕
 以下、第3実施形態に係る表示装置について説明する。なお、第3実施形態の画像表示装置は第1及び第2実施形態の表示装置を変形したものであり、特に説明しない事項は第1実施形態等と同様である。
[Third Embodiment]
The display device according to the third embodiment will be described below. The image display device of the third embodiment is a modification of the display devices of the first and second embodiments, and matters not particularly described are the same as those of the first embodiment and the like.
 本実施形態において、表示制御部18は、描画デバイス11の発光タイミングと中間スクリーン19の位置情報とをフィードバックし、描画デバイス11の発光タイミング及び発光時間を制御しつつ配置変更装置である回転駆動部64の駆動タイミングを制御し、描画デバイス11の動作と中間スクリーン19の動作とを相互に調整する。これにより、描画デバイス11の動作と中間スクリーン19の動作とをより正確に調整することができる。 In the present embodiment, the display control unit 18 feeds back the light emission timing of the drawing device 11 and the position information of the intermediate screen 19 to control the light emission timing and the light emission time of the drawing device 11 while being a rotation drive unit that is a layout changing device. The drive timing of 64 is controlled, and the operation of the drawing device 11 and the operation of the intermediate screen 19 are mutually adjusted. Thereby, the operation of the drawing device 11 and the operation of the intermediate screen 19 can be adjusted more accurately.
 以下、本実施形態の中間スクリーン19の動作と描画デバイス11の動作との同期方法について説明する。まず、図12に示すように、表示制御部18の制御下で回転体16aを回転駆動部64を用いて所定の回転速度で動作させ、中間スクリーン19を光軸AXに沿って移動させる。また、表示制御部18の制御下で描画デバイス11を所定の発光タイミング及び発光時間で動作させる(ステップS11)。 Hereinafter, a method of synchronizing the operation of the intermediate screen 19 and the operation of the drawing device 11 of this embodiment will be described. First, as shown in FIG. 12, under the control of the display control unit 18, the rotating body 16a is operated at a predetermined rotation speed by using the rotation driving unit 64, and the intermediate screen 19 is moved along the optical axis AX. Further, the drawing device 11 is operated at a predetermined light emission timing and light emission time under the control of the display control unit 18 (step S11).
 次に、中間スクリーン19の位置を検出する(ステップS12)。回転体16aの回転に伴う回転信号は、位置検出素子65のパルス信号として得られる。 Next, the position of the intermediate screen 19 is detected (step S12). A rotation signal accompanying the rotation of the rotating body 16a is obtained as a pulse signal of the position detection element 65.
 次に、表示制御部18によって動作する描画デバイス11の発光タイミング及び発光時間を取得する(ステップS13)。 Next, the light emission timing and light emission time of the drawing device 11 operated by the display control unit 18 are acquired (step S13).
 次に、表示制御部18の制御下で、描画デバイス11の発光タイミングと中間スクリーン19の位置情報とをフィードバックし、描画デバイス11をフィードバックした所定の発光タイミング及び発光時間で動作させ、かつ、回転駆動部64を介して中間スクリーン19の移動タイミングを調整する(ステップS214)。結果的に、描画デバイス11のR、G、Bの画像を含むフレームレートが調整され、中間スクリーン19の位置に応じたカラー画像が虚像表示される。 Next, under the control of the display controller 18, the light emission timing of the drawing device 11 and the position information of the intermediate screen 19 are fed back, and the drawing device 11 is operated at the predetermined light emission timing and light emission time fed back and rotated. The movement timing of the intermediate screen 19 is adjusted via the drive unit 64 (step S214). As a result, the frame rate including the R, G, and B images of the drawing device 11 is adjusted, and the color image corresponding to the position of the intermediate screen 19 is displayed as a virtual image.
 主制御装置90は、表示が継続されるか否かを確認し(ステップS15)、表示が継続される場合(ステップS15でY)、ステップS11に戻りステップS12等の処理を繰り返す。 The main controller 90 confirms whether or not the display is continued (step S15), and when the display is continued (Y in step S15), the process returns to step S11 and the processes of step S12 and the like are repeated.
 以上では、具体的な実施形態としての表示装置について説明したが、本発明に係る表示装置は、上記のものには限られない。例えば、図2等に示す投影光学系15や拡大投射光学系17は、単なる例示であり、これら投影光学系15及び拡大投射光学系17の光学的構成については適宜変更することができる。 The display device as a specific embodiment has been described above, but the display device according to the present invention is not limited to the above. For example, the projection optical system 15 and the magnifying projection optical system 17 shown in FIG. 2 and the like are merely examples, and the optical configurations of the projection optical system 15 and the magnifying projection optical system 17 can be appropriately changed.
 上記実施形態において、描画デバイス11を構成する表示デバイス6としては、DMDに限らず、様々な動作原理に基づくものを用いることができる。例えば、LCOS(Liquid crystal on silicon)等の反射型の素子、液晶ディスプレイ(LCD:liquid crystal display)や、他の種類の表示デバイス、例えば有機ELを用いてもよい。 In the above embodiment, the display device 6 that constitutes the drawing device 11 is not limited to the DMD, and devices based on various operating principles can be used. For example, a reflective element such as LCOS (Liquid crystal on silicon), a liquid crystal display (LCD), or another type of display device such as an organic EL may be used.
 上記実施形態において、中間スクリーン19は、螺旋状のものに限らず、板状で光軸方向に往復移動するものであってもよく、厚みが異なる複数領域を有し複数領域を光路上に順次置き換えて光路長を変化させるようなものであってもよい。この場合、位置検出素子65は、中間スクリーン19の構成に対応した中間スクリーン19の位置検出が可能なものを用いる。 In the above-described embodiment, the intermediate screen 19 is not limited to the spiral screen, and may be a plate-like one that reciprocates in the optical axis direction, and has a plurality of regions having different thicknesses and the plurality of regions are sequentially arranged on the optical path. It may be replaced to change the optical path length. In this case, as the position detecting element 65, one that can detect the position of the intermediate screen 19 corresponding to the configuration of the intermediate screen 19 is used.
 上記実施形態において、画像表示装置100の配置を上下反転させて、フロントウインドウ8の上部又はサンバイザー位置に表示スクリーン20を配置することもできる。この場合、描画ユニット10の斜め下方前方に表示スクリーン20が配置される。上記実施形態では表示スクリーン20を平面又は凹面としたが、対称性をもたない自由曲面であってもよい。 In the above embodiment, the arrangement of the image display device 100 may be turned upside down, and the display screen 20 may be placed above the front window 8 or at the sun visor position. In this case, the display screen 20 is arranged diagonally below and in front of the drawing unit 10. Although the display screen 20 is a flat surface or a concave surface in the above embodiment, it may be a free-form surface having no symmetry.
 上記実施形態において、表示スクリーン20の輪郭は、矩形に限らず、様々な形状とすることができる。 In the above embodiment, the contour of the display screen 20 is not limited to a rectangle, but can be various shapes.

Claims (8)

  1.  描画デバイスと、
     前記描画デバイスに形成された像を拡大する投影光学系と、
     拡散機能を有し、前記投影光学系の光射出側に配置される中間スクリーンと、
     前記中間スクリーン上の像を虚像に変換する拡大投射光学系と、
     前記中間スクリーンの位置を光軸方向に沿って変化させる配置変更装置と、
     前記中間スクリーンの位置を検出する位置検出素子と、
     前記位置検出素子から得た前記中間スクリーンの位置情報と、前記描画デバイスの発光タイミングに関する情報とに基づいて、前記中間スクリーンの動作及び前記描画デバイスの動作の少なくとも一方を制御する表示制御部と、
    を備え、
     前記描画デバイスは、前記中間スクリーンが所定の位置に配置されるタイミングでカラー画像を構成するR、G、及びBの画像を描画する表示装置。
    Drawing device,
    A projection optical system for magnifying an image formed on the drawing device,
    An intermediate screen having a diffusing function and arranged on the light exit side of the projection optical system,
    An enlarged projection optical system for converting the image on the intermediate screen into a virtual image,
    An arrangement changing device for changing the position of the intermediate screen along the optical axis direction,
    A position detecting element for detecting the position of the intermediate screen,
    A display control unit that controls at least one of the operation of the intermediate screen and the operation of the drawing device, based on position information of the intermediate screen obtained from the position detection element and information regarding light emission timing of the drawing device,
    Equipped with
    The drawing device is a display device that draws R, G, and B images that form a color image at a timing when the intermediate screen is arranged at a predetermined position.
  2.  前記位置検出素子は、前記中間スクリーン又は前記中間スクリーンの検出可能位置に設けられる、請求項1に記載の表示装置。 The display device according to claim 1, wherein the position detection element is provided at the intermediate screen or a detectable position of the intermediate screen.
  3.  前記表示制御部は、前記位置検出素子から前記中間スクリーンの位置情報をリアルタイムで取得する、請求項1及び2のいずれか一項に記載の表示装置。 The display device according to any one of claims 1 and 2, wherein the display control unit acquires position information of the intermediate screen from the position detection element in real time.
  4.  前記表示制御部は、前記描画デバイスの発光タイミングに関する情報をリアルタイムで取得する、請求項1~3のいずれか一項に記載の表示装置。 The display device according to any one of claims 1 to 3, wherein the display control unit acquires information regarding a light emission timing of the drawing device in real time.
  5.  前記表示制御部は、前記中間スクリーンの位置情報及び前記描画デバイスの発光タイミングに基づいて、前記中間スクリーンの移動タイミングと前記描画デバイスの発光タイミングとが所定の同期関係になるように前記配置変更装置及び前記描画デバイスの少なくとも一方を制御する、請求項3及び4のいずれか一項に記載の表示装置。 The display control unit, based on the position information of the intermediate screen and the light emission timing of the drawing device, the arrangement changing device so that the movement timing of the intermediate screen and the light emission timing of the drawing device have a predetermined synchronization relationship. The display device according to claim 3, wherein at least one of the drawing device and the drawing device is controlled.
  6.  前記表示制御部は、前記描画デバイスの発光タイミングと前記中間スクリーンの位置情報とをフィードバックし、前記描画デバイスの発光タイミング及び発光時間を制御し、前記中間スクリーンの動作に対して前記描画デバイスの動作を調整する、請求項5に記載の表示装置。 The display control unit feeds back the light emission timing of the drawing device and the position information of the intermediate screen, controls the light emission timing and the light emission time of the drawing device, and operates the drawing device with respect to the operation of the intermediate screen. The display device according to claim 5, wherein the display device is adjusted.
  7.  前記表示制御部は、前記描画デバイスの発光タイミングと前記中間スクリーンの位置情報とをフィードバックし、前記描画デバイスを一定の発光タイミングで制御しつつ前記配置変更装置の駆動タイミングを制御し、前記描画デバイスの動作に対して前記中間スクリーンの動作を調整する、請求項5に記載の表示装置。 The display control unit feeds back the light emission timing of the drawing device and the position information of the intermediate screen, and controls the drive timing of the arrangement changing device while controlling the drawing device at a constant light emission timing. The display device according to claim 5, wherein the operation of the intermediate screen is adjusted with respect to the operation of.
  8.  前記表示制御部は、前記描画デバイスの発光タイミングと前記中間スクリーンの位置情報とをフィードバックし、前記描画デバイスの発光タイミング及び発光時間を制御しつつ前記配置変更装置の駆動タイミングを制御し、前記描画デバイスの動作と前記中間スクリーンの動作とを相互に調整する、請求項5に記載の表示装置。 The display control unit feeds back the light emission timing of the drawing device and the position information of the intermediate screen, controls the light emission timing and the light emission time of the drawing device, controls the drive timing of the arrangement changing device, and performs the drawing. The display device according to claim 5, wherein the operation of a device and the operation of the intermediate screen are mutually coordinated.
PCT/JP2019/036049 2018-10-15 2019-09-13 Display apparatus WO2020080007A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020552968A JPWO2020080007A1 (en) 2018-10-15 2019-09-13 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-194675 2018-10-15
JP2018194675 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020080007A1 true WO2020080007A1 (en) 2020-04-23

Family

ID=70283883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036049 WO2020080007A1 (en) 2018-10-15 2019-09-13 Display apparatus

Country Status (2)

Country Link
JP (1) JPWO2020080007A1 (en)
WO (1) WO2020080007A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079794A1 (en) * 2016-10-31 2018-05-03 コニカミノルタ株式会社 Virtual image display optical system and image display device
JP2018141935A (en) * 2017-02-28 2018-09-13 パナソニックIpマネジメント株式会社 Display unit, method for controlling display unit, program, and movable body including display unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079794A1 (en) * 2016-10-31 2018-05-03 コニカミノルタ株式会社 Virtual image display optical system and image display device
JP2018141935A (en) * 2017-02-28 2018-09-13 パナソニックIpマネジメント株式会社 Display unit, method for controlling display unit, program, and movable body including display unit

Also Published As

Publication number Publication date
JPWO2020080007A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7078904B2 (en) Virtual image display optical system and image display device
JP5392276B2 (en) Virtual image display device
WO2015190311A1 (en) Heads-up display device
WO2018180856A1 (en) Head-up display apparatus
WO2018124299A1 (en) Virtual image display device and method
WO2019138970A1 (en) Projection distance measurement method and device
WO2018199245A1 (en) Virtual image display device, and display system for moving body
WO2020080007A1 (en) Display apparatus
JP7205704B2 (en) head-up display device
JP2020071441A (en) Display unit
JP2020148950A (en) Head-up display device
EP3693783B1 (en) Display device
WO2019151314A1 (en) Display apparatus
JP2020071402A (en) Display device
JP2020064126A (en) Display device
WO2018180857A1 (en) Head-up display apparatus
JP2020056901A (en) Virtual image display device and head-up display device
JP2019191368A (en) Virtual image display device and head-up display device
JP2020042155A (en) Head-up display device
WO2020031415A1 (en) Display device
JP2020065125A (en) Display device
JP2020042154A (en) Head-up display device
JP7280557B2 (en) Display device and display method
WO2020184506A1 (en) Head-up display device
WO2019220767A1 (en) Virtual image projection optical system and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552968

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874145

Country of ref document: EP

Kind code of ref document: A1