WO2019151199A1 - 表示システム、移動体、及び、設計方法 - Google Patents
表示システム、移動体、及び、設計方法 Download PDFInfo
- Publication number
- WO2019151199A1 WO2019151199A1 PCT/JP2019/002834 JP2019002834W WO2019151199A1 WO 2019151199 A1 WO2019151199 A1 WO 2019151199A1 JP 2019002834 W JP2019002834 W JP 2019002834W WO 2019151199 A1 WO2019151199 A1 WO 2019151199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- display
- virtual image
- distance
- display system
- target
- Prior art date
Links
- 238000000691 measurement method Methods 0.000 title abstract 2
- 238000000034 method Methods 0.000 claims description 54
- 230000035945 sensitivity Effects 0.000 claims description 27
- 238000013461 design Methods 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 18
- 230000003287 optical effect Effects 0.000 description 33
- 230000006870 function Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
Definitions
- the present disclosure generally relates to a display system, a moving body, and a design method, and more particularly, to a display system, a moving body, and a display system design method that project a virtual image onto a target space.
- Patent Document 1 discloses a head-up display device that projects a virtual image in front of a windshield with respect to a driver's eyes by projecting image light onto the windshield of a vehicle.
- the head-up display device includes a display element, a movable mirror, a movable part, a first mirror, and a second mirror.
- the movable mirror reflects the display light emitted from the display element toward the first mirror.
- the first mirror reflects the display light reflected by the movable mirror toward the second mirror.
- the second mirror reflects and collects the display light reflected by the first mirror and emits the light toward the windshield.
- Patent Document 1 it is possible to display a virtual image farther by moving the movable mirror from the first position close to the first mirror to the second position far from the first mirror. That is, when an attempt is made to increase the distance from the virtual image viewpoint position to the position where the virtual image is superimposed, the optical system including the mirror and the like used for the projection of the virtual image becomes large.
- An object of the present disclosure is to provide a display system, a moving body, and a design method that can be downsized while maintaining the distance from the viewpoint position of the virtual image to the position where the virtual image is superimposed, and that can reduce distortion of the virtual image. .
- the display system is a display system that displays a virtual image superimposed on a target position in a target space.
- a display distance that is a distance from the virtual image viewpoint position to the virtual image display position is L1 [m].
- the maximum value of the target distance, which is the distance from the viewpoint position to the target position, is L2max [m].
- is greater than 0 and equal to or less than 0.06.
- a moving body includes a moving body main body and the display system according to the above aspect that is mounted on the moving body main body.
- the design method is a display system design method that displays a virtual image superimposed on a target position in a target space, and includes a first step and a second step.
- the first step is a step of determining a display distance that is a distance from a viewpoint position of the virtual image to a display position of the virtual image.
- the second step is a step of determining a maximum value of a target distance that is a distance from the viewpoint position to the target position.
- the display distance is L1 [m].
- the maximum value is L2max [m].
- FIG. 1 is a conceptual diagram of a display system according to an embodiment.
- FIG. 2 is a conceptual diagram of a mobile body (automobile) provided with the display system.
- FIG. 3 is a conceptual diagram showing the field of view of the user when the display system is used.
- FIG. 4 is an explanatory diagram of the display system.
- FIG. 5 is a graph showing the evaluation results of virtual image display.
- FIG. 1 shows a display system 10.
- the display system 10 displays the virtual image 310 superimposed on the target position P410 in the target space 400.
- a display distance that is a distance from the viewpoint position P200 of the virtual image 310 to the display position P310 of the virtual image 310 is L1 [m].
- the maximum value of the target distance, which is the distance from the viewpoint position P200 to the target position P410, is L2max [m].
- is greater than 0 and equal to or less than 0.06.
- the display distance L1 and the maximum value L2max of the target distance satisfy the relationship 0 ⁇
- the enlargement of the optical members for displaying the virtual image 310 (in the present embodiment, the first optical member 121 and the second optical member 122) for extending the display distance L1 of the virtual image 310 can be suppressed.
- Such an increase in the size of the optical member or the like also causes distortion of the virtual image 310. Therefore, according to the present embodiment, the size can be reduced while maintaining the distance (maximum value L2max) from the viewpoint position P200 of the virtual image 310 to the position where the virtual image 310 is superimposed (target position P410), and distortion of the virtual image 310 is reduced. it can.
- FIGS. 1 and 2 show an automobile 100 as a moving body.
- the automobile 100 includes a vehicle body 100a as a mobile body and a display system 10 mounted on the vehicle body 100a.
- the display system 10 is used as a head-up display (HUD) in the automobile 100.
- the display system 10 is an augmented reality (AR) HUD. Therefore, the display system 10 uses the augmented reality (AR) technology to display the virtual image 310 superimposed on the scenery in front of the user 200's field of view.
- AR augmented reality
- the display system 10 is installed in the vehicle interior of the automobile 100 so as to project an image from below onto the windshield 101 of the vehicle body (movable body main body) 100a of the automobile 100.
- the display system 10 is disposed in the dashboard 102 below the windshield 101.
- the image reflected by the windshield 101 as a reflecting member is visually recognized by the user 200 (driver).
- the user 200 visually recognizes the virtual image 310 projected on the target space 400 set in front of the automobile 100 (outside the vehicle) through the windshield 101.
- the “virtual image” referred to here means an image that is connected so that an object is actually present by the divergent light when the light emitted from the display system 10 diverges by a reflector such as the windshield 101. Therefore, as shown in FIG. 3, the user 200 driving the automobile 100 can see a virtual image 310 projected by the display system 10 in a real space spreading in front of the automobile 100.
- various driving support information such as vehicle speed information, navigation information, pedestrian information, forward vehicle information, lane departure information, and vehicle condition information is displayed as a virtual image 310, and the user 200 can be visually recognized.
- the virtual image 310 is navigation information, and an arrow indicating a left turn is displayed as an example.
- the user 200 can visually acquire the driving support information by only a slight line-of-sight movement from a state where the line-of-sight is directed in front of the windshield 101.
- the virtual image 310 formed in the target space 400 is formed on a virtual plane 501 that intersects the optical axis 500 of the display system 10.
- the optical axis 500 is along the road surface 600 in front of the automobile 100 in the target space 400 in front of the automobile 100.
- the virtual surface 501 on which the virtual image 310 is formed is inclined with respect to the optical axis 500.
- the inclination angle of the virtual surface 501 with respect to the optical axis 500 is not particularly limited. Further, the virtual surface 501 does not need to be inclined with respect to the optical axis 500 and may be vertical.
- the display system 10 includes a display unit 110, a projection unit 120, and a control unit 130.
- the display unit 110 is used to display an image projected as a virtual image 310 in the target space 400.
- the display unit 110 has a display surface that displays an image projected as a virtual image 310 in the target space 400. That is, the image displayed on the display surface of the display unit 110 is an image that is the basis of the virtual image 310, and is hereinafter referred to as a basic image as necessary.
- the display surface is a rectangular region on one surface of the display unit 110.
- the display unit 110 is a liquid crystal display.
- the projection unit 120 is used to project a virtual image 310 corresponding to a basic image (an image displayed on the display surface of the display unit 110) onto the target space 400.
- the projection unit 120 includes a first optical member 121 and a second optical member 122.
- the projection unit 120 is an optical system including the first optical member 121 and the second optical member 122.
- the first optical member 121 reflects light from the display unit 110 (light constituting an image displayed on the display surface) toward the second optical member 122.
- the second optical member 122 reflects the light from the first optical member 121 toward the windshield 101 (see FIG. 2). That is, the projection unit 120 projects the virtual image 310 on the target space 400 by projecting the image formed on the display surface of the display unit 110 onto the windshield 101.
- the display distance L1 [m] which is the distance from the viewpoint position P200 of the virtual image 310 to the display position P310 of the virtual image 310, is determined by the design of the projection unit 120.
- the viewpoint position P200 is a center position of a range (so-called eyebox) where the virtual image 310 can be visually recognized.
- the positions of the first optical member 121 and the second optical member 122 of the projection unit 120 are fixed. That is, the projection unit 120 does not have a function of adjusting the display distance L1, and the display distance L1 is a fixed value.
- the displayable range 300 see FIG.
- the display distance L1 need not be set to the maximum value L2max of the target distance L2. Therefore, as compared with the case where the display distance L1 is set to the maximum value L2max of the target distance L2, the optical system (projection unit 120) for displaying the virtual image 310 can be downsized. Further, the closer the virtual image 310 is to the viewpoint position P200, the more the distortion is reduced. Therefore, distortion of the virtual image 310 due to the optical system can be reduced.
- the control unit 130 is an electric circuit that controls the operation of the display system 10.
- the control unit 130 is particularly configured to control the display unit 110.
- the control unit 130 gives an image signal to the display unit 110 to form an image on the display surface of the display unit 110.
- the control unit 130 can be realized by, for example, one or more processors (microprocessors) and one or more memories. That is, the one or more processors function as the control unit 130 by executing one or more programs stored in one or more memories.
- the one or more programs may be recorded in advance in a memory, or may be provided by being recorded through a telecommunication line such as the Internet or in a non-temporary recording medium such as a memory card.
- the control unit 130 has a function of controlling the display unit 110 to perform a process (virtual image display process) of displaying the virtual image 310 superimposed on the target position P410 in the target space 400. Displaying the virtual image 310 superimposed on the target position P410 in the target space 400 is to make the virtual image 310 appear to exist at the target position P410. In other words, the control unit 130 executes the virtual image display process to make the virtual image 310 at the display position P310 appear as if it exists at the target position P410 in real space. For example, the user 200 who views the target space 400 from the viewpoint position P200 is caused to see the virtual image 310 at the display position P310 as if it is the target object 410 existing at the target position P410 (see FIGS. 3 and 4).
- the control unit 130 starts virtual image display processing when an instruction to display the virtual image 310 is given from an external device.
- the display instruction includes the location and type of the virtual image 310.
- the location of the virtual image 310 may include information regarding the target position P410.
- the information related to the target position P410 may include information related to the three-dimensional position of the target position P410 in the target space 400.
- the type of the virtual image 310 is various driving support information such as vehicle speed information, navigation information, pedestrian information, forward vehicle information, lane departure information, and vehicle condition information.
- Examples of the external device include an engine control unit and a navigation system of the automobile 100.
- the maximum value L2max [m] of the target distance L2 [m], which is the distance from the viewpoint position P200 of the virtual image 310 to the target position P410, is set (see FIGS. 1 and 4).
- the maximum value L2max of the target distance L2 is the distance between the target position P400 farthest from the viewpoint position P200 and the viewpoint position P200.
- the control unit 130 does not overlap and display the virtual image 310 at the target position P410 where the target distance L2 exceeds the maximum value L2max.
- the maximum value L2max of the target distance L2 is determined based on the evaluation result of the virtual image display.
- the evaluation of the display of the virtual image is based on the number of people who feel uncomfortable when viewing the virtual image 310 and its vicinity from the viewpoint position P200 when the display position P310 of the virtual image 310 is closer to the viewpoint position P200 than the target position P410. Distance recognition was performed by the wrong number of people.
- FIG. 5 shows a part of the evaluation result of the virtual image display.
- the vertical axis represents the number of people
- the horizontal axis represents the parameter D determined by the display distance L1 and the target distance L2.
- the parameter D is given by
- the unit of L1 and L2 is [m]. Therefore, the unit of the parameter D is [1 / m].
- this parameter is referred to as “diopter”.
- a graph G11 shows the number of people who feel uncomfortable when viewing the virtual image 310 and its vicinity from the viewpoint position P200 when the virtual image 310 is displayed superimposed on the target position P210.
- the graph G12 indicates the number of persons who have mistakenly recognized the distance of the virtual image 310 when viewing the virtual image 310 and its vicinity from the viewpoint position P200 when the virtual image 310 is displayed superimposed on the target position P210.
- the diopter D is 0.06 or less, even if there is a difference between the display position P310 of the virtual image 310 and the target position P410, half of the people viewing the target space 400 from the viewpoint position P200.
- the virtual image 310 has the recognition that it exists in the object position P410.
- the diopter D is 0.03 or less, even if there is a difference between the display position P310 of the virtual image 310 and the target position P410, most people who view the target space 400 from the viewpoint position P200 will see the virtual image 310 as the target position. Recognize that it is in P410.
- the diopter D is 0.02 or less, even if there is a difference between the display position P310 of the virtual image 310 and the target position P410, more than half of the people who view the target space 400 from the viewpoint position P200 are the virtual image 310 and its The vicinity can be seen without a sense of incongruity. Furthermore, if the diopter D is 0.015 or less, even if there is a difference between the display position P310 of the virtual image 310 and the target position P410, most people who view the target space 400 from the viewpoint position P200 are the virtual image 310 and its vicinity. Can be seen without discomfort.
- the diopter D is 0.01 or less, even if there is a difference between the display position P310 of the virtual image 310 and the target position P410, almost all people who view the target space 400 from the viewpoint position P200 will recognize the virtual image 310 and its image. The vicinity can be seen without a sense of incongruity.
- the maximum value L2max of the display distance L1 and the target distance L2 is determined so that
- the display distance L1 is 15 [m]
- the maximum value L2max is 100 [m].
- the control unit 130 displays the basic image on the display surface of the display unit 110 so that the virtual image 310 appears to overlap the target position P410 in the target space 400.
- the control unit 130 determines a basic image according to the type of the virtual image 310 included in the display instruction.
- the control unit 130 determines the reference position of the basic image on the display surface of the display unit 110 according to the location of the virtual image 310 (information regarding the target position P410) included in the display instruction.
- control unit 130 changes the basic image based on the perspective method based on the display position P310 of the virtual image 310 and the target position P410. For example, in the example of FIG. 4, the control unit 130 adjusts the appearance of the virtual image 310 in order to make it appear that the target object 410 actually exists at the target position P410. In this case, the control unit 130 obtains the depression angle of the target position P410, the depth of the target position P410, and the positional relationship between the display position P310 and the target position P410 from the display position P310 and the target position P410. The depression angle of the target position P410 corresponds to the angle at which the user 200 views the target position P410.
- the depth of the target position P410 corresponds to a range where the virtual images 310 are overlapped at the target position P410.
- the positional relationship between the display position P310 and the target position P410 is, for example, a difference between the display distance L1 and the target distance L2, or an object between the target object 410 and the target object 410 and the viewpoint position P200 to be shown by the virtual image 310.
- the positional relationship may be included.
- the control unit 130 adjusts at least one of the shape and the size of the basic image based on the depression angle, the depth, and the positional relationship. For example, the control unit 130 adjusts the perspective (degree of inclination / degree of extension) of the basic image according to the depression angle and the depth.
- control part 130 adjusts the dimension of the depth direction of a basic image according to depth.
- control unit 130 enlarges or reduces the basic image according to the positional relationship between the display distance L1 and the target distance L2.
- the control unit 130 sets the basic image to a shape with a part missing.
- control unit 130 is configured to change the display method of the image (basic image) according to the parameter D determined by the display position P310 and the target position P410.
- the parameter D is the diopter described above and is given by
- the control unit 130 does not change the display method of the basic image if the diopter D is equal to or less than the threshold value.
- the control unit 130 changes the display method of the basic image.
- the threshold value is 0.03 in this embodiment.
- the threshold value is less than
- Stereoscopic sensitivity is an indicator of whether or not the context of two objects away from the observer can be distinguished (reference: James E. (Cutting, “Perception of Space and Motion”, Academic Press, 1995).
- Information sources that affect stereoscopic sensitivity include “relative density”, “relative size”, “shielding”, “focusing of the lens”, “convergence”, “binocular parallax”, “motion” There are “parallax”, “height in view”, and “air perspective”. “Shielding” means that one of the two objects is hidden behind the other.
- the stereoscopic sensitivity corresponding to “relative density”, “relative size”, and “shielding” is constant regardless of the average distance between two objects away from the observer,
- the stereoscopic sensitivity is good in the order of “relative density”, “relative size”, and “shielding”.
- Stereoscopic sensitivity to “focus adjustment of lens” and “convergence” is effective when the average distance is in the range of about 0 to 10 m, and decreases as the average distance increases.
- the stereoscopic sensitivity to “binocular parallax” and “motion parallax” is effective when the average distance is in the range of about 0 to 1000 m.
- the stereoscopic sensitivity to “binocular parallax” decreases as the average distance increases, but the stereoscopic sensitivity to “motion parallax” increases once as the average distance increases and then decreases to about 1 to 2 m. There is a peak in the range.
- the stereoscopic sensitivity to the “height in the field of view” is effective when the average distance is in the range of about 2 to 5000 m, and decreases as the average distance increases.
- the stereoscopic sensitivity to “air perspective” is effective when the average distance is in the range of about 50 to 5000 m, and once increases with the increase of the average distance, it decreases, and has a peak in a region close to about 5000 m.
- Examples of such a change in display method based on stereoscopic sensitivity include changes in the brightness, resolution, contrast, saturation, and texture density of the basic image. Furthermore, examples of changing the display method include emphasizing the depression angle of the basic image, emphasizing the perspective of the basic image, and emphasizing the change in the size of the basic image. In this way, by changing the display method of the basic image according to the diopter D, it is possible to further reduce the sense of discomfort that the person viewing from the viewpoint position P200 has in the virtual image 310. In particular, by changing the display method of the basic image based on the stereoscopic vision sensitivity, it is possible to further reduce the uncomfortable feeling that the person viewing from the viewpoint position P200 has on the virtual image 310.
- the display method is changed by increasing the brightness, resolution, contrast, and saturation of the basic image, and the texture density. It is effective to lower the angle, lower the depression angle of the basic image, and greatly enhance the basic image.
- the display position P310 is closer to the target position P410 when viewed from the viewpoint position P200, the brightness, resolution, contrast, and saturation of the basic image are decreased, the texture density is increased, and the depression angle of the basic image is increased. It is effective to emphasize the basic image small.
- the display position P310 when the display position P310 is in a far region (that is, the upper portion of the field of view of the user 200), parallel lines are drawn on the basic image by perspective projection, and the degree of convergence of the parallel lines is changed in the far region in the basic image.
- the parallel lines are lines arranged in the horizontal direction or the vertical direction of the basic image.
- the far region is a region corresponding to the upper part of the visual field of the user 200 in the basic image.
- the degree of convergence of the parallel lines in the far region may be larger than the convergence reference value.
- the degree of convergence of the parallel lines in the far region may be smaller than the convergence reference value.
- the convergence reference value is the degree of convergence of parallel lines when the display position P310 and the target position P410 are at the same position when viewed from the viewpoint position P200.
- the display position P310 is in a close region (that is, the lower portion of the field of view of the user 200)
- parallel lines are drawn on the basic image by perspective projection, and the degree of divergence of the parallel lines is determined in the near region in the basic image. It is effective to change.
- the near region is a region corresponding to the lower part of the visual field of the user 200 in the basic image.
- the degree of divergence of parallel lines in the near region may be set smaller than the reference value of divergence.
- the degree of divergence of parallel lines in the near region may be larger than the reference value of divergence.
- the divergence reference value is, for example, the degree of divergence of parallel lines when the display position P310 and the target position P410 are at the same position when viewed from the viewpoint position P200.
- the display system 10 can be downsized while maintaining the distance (maximum value L2max) from the viewpoint position P200 of the virtual image 310 to the position where the virtual image 310 is superimposed (target position P410). In addition, distortion of the virtual image 310 can be reduced.
- the display system 10 can be manufactured by a manufacturing method including the following design method. In other words, the display system 10 is designed by the following design method. This design method is a design method of the display system 10 that displays the virtual image 310 superimposed on the target position P410 in the target space 400, and includes a first step and a second step.
- the first step is a step of determining a display distance that is a distance from the viewpoint position P200 of the virtual image 310 to the display position P310 of the virtual image 310.
- the second step is a step of determining the maximum value of the target distance that is the distance from the viewpoint position P200 to the target position P410.
- the display distance is L1 [m] and the maximum value of the target distance is L2max [m]
- is greater than 0 and equal to or less than 0.06.
- the size can be reduced while maintaining the distance (maximum value L2max) from the viewpoint position P200 of the virtual image 310 to the position (target position P410) where the virtual image 310 is overlapped, and the distortion of the virtual image 310 can be reduced.
- the system 10 can be designed.
- the order of the first step and the second step is not particularly limited. That is, the display distance L1 may be determined after the maximum value L2max is determined first, or vice versa.
- Embodiments of the present disclosure are not limited to the above-described embodiments.
- the above embodiment can be variously modified according to the design and the like as long as the object of the present disclosure can be achieved.
- the modification of the said embodiment is enumerated.
- is greater than 0 and 0.06 or less, but the upper limit value of
- is greater than 0 and less than 0.06.
- the display distance L1 may be 25 [m]
- the maximum value L2max may be 100 [m].
- may be 0.02 or less. In this case, the display distance L1 may be 33 [m], and the maximum value L2max may be 100 [m].
- may be 0.015 or less.
- the display distance L1 may be 40 [m], and the maximum value L2max may be 100 [m]. Further,
- the threshold value is 0.03, but the threshold value may be greater than 0 and less than
- the threshold value may be 0.02.
- the threshold may be 0.015.
- the threshold value may be 0.01.
- the display method may be changed based on which threshold value
- the threshold value may be three, 0.01, 0.02, and 0.03. Further, the threshold value may be two of a first threshold value (for example, 0.01) and a second threshold value (for example, 0.03) that is larger than the first threshold value.
- the control unit 130 may not change the display method based on the stereoscopic sensitivity while the parameter (
- the display method may be different.
- the control unit 130 causes the person viewing the target space 400 from the viewpoint position P200 to display the virtual image 310 and
- the display method based on the stereoscopic vision sensitivity may be changed so that the possibility of having a sense of incongruity in the vicinity is reduced.
- the control unit 130 causes the person viewing the target space 400 from the viewpoint position P200 to change the virtual image 310 to the target position P410.
- the display method based on the stereoscopic sensitivity may be changed so that there is a high possibility of having the recognition that the image is present.
- the control unit 130 does not necessarily need to change the display method of the basic image. For example, when
- control unit 130 adjusts at least one of the shape and size of the basic image according to the target distance L2 obtained from the information regarding the target position P410.
- this configuration is not essential.
- the display unit 110 is not limited to a liquid crystal display.
- the display unit 110 may be an image display device other than a liquid crystal display, for example, an organic EL display. Further, the display unit 110 may not be the image display device itself.
- the display unit 110 may be a system that includes a projector and a screen that displays an image of the projector, or a system that includes a laser scanning device and a screen for capturing an image obtained by laser scanning of the laser scanning device. It may be.
- the display unit 110 may be a screen itself or a plane mirror that captures an image from the image display device. That is, the display unit 110 may display an intermediate image.
- the projection unit 120 may have a function of adjusting the display distance L1. That is, the projection unit 120 may have a function of moving the virtual plane 501 along the optical axis 500. As an example, such a function can be realized by making the positions of the first optical member 121 and the second optical member 122 of the projection unit 120 variable, and various techniques have been conventionally provided (Patent Literature). 1). Further, regarding the projection unit 120, the shapes of the first optical member 121 and the second optical member 122 can be changed. The display distance L1 can also be adjusted by changing the optical path length from the display unit 110 to the viewpoint position P200.
- the display system 10 is not limited to the configuration in which the virtual image 310 is projected onto the target space 400 set in front of the traveling direction of the automobile 100.
- the virtual image 310 is displayed laterally, backward, or upward in the traveling direction of the automobile 100. You may project.
- the projection unit 120 may include a relay optical system for forming an intermediate image, or may not include a relay optical system.
- the display system 10 is not limited to the head-up display used in the automobile 100, and can be applied to a mobile body other than the automobile 100, such as a motorcycle, a train, an aircraft, a construction machine, and a ship. Furthermore, the display system 10 is not limited to a mobile object, and may be used in an amusement facility, for example.
- the display system (10) of the first aspect is a display system that displays a virtual image (310) superimposed on a target position (P410) in the target space (400).
- a display distance that is a distance from the viewpoint position (P200) of the virtual image (310) to the display position (P310) of the virtual image (310) is L1 [m].
- the maximum value of the target distance, which is the distance from the viewpoint position (P200) to the target position (P410), is L2max [m].
- is greater than 0 and equal to or less than 0.06.
- the first aspect it is possible to reduce the size while maintaining the distance (maximum value L2max) from the viewpoint position (P200) of the virtual image (310) to the position (target position P410) where the virtual image (310) is overlapped, and the virtual image (310).
- the distortion of (310) can be reduced.
- the display system (10) of the second aspect can be realized by a combination with the first aspect.
- is 0.03 or less.
- the size can be further reduced while maintaining the distance (maximum value L2max) from the viewpoint position (P200) of the virtual image (310) to the position (target position P410) where the virtual image (310) is superimposed.
- the distortion of the virtual image (310) can be reduced.
- the display system (10) of the third aspect can be realized by a combination with the first or second aspect.
- is 0.02 or less.
- the size can be further reduced while maintaining the distance (maximum value L2max) from the viewpoint position (P200) of the virtual image (310) to the position (target position P410) where the virtual image (310) is superimposed.
- the distortion of the virtual image (310) can be reduced.
- the display system (10) of the fourth aspect can be realized by a combination with any one of the first to third aspects.
- is 0.015 or less. According to the fourth aspect, it is possible to further reduce the size while maintaining the distance (maximum value L2max) from the viewpoint position (P200) of the virtual image (310) to the position (target position P410) where the virtual image (310) is superimposed. The distortion of the virtual image (310) can be reduced.
- the display system (10) of the fifth aspect can be realized by a combination with any one of the first to fourth aspects.
- is 0.01 or less.
- the size can be further reduced while maintaining the distance (maximum value L2max) from the viewpoint position (P200) of the virtual image (310) to the position (target position P410) where the virtual image (310) is superimposed.
- the distortion of the virtual image (310) can be reduced.
- the display system (10) of the sixth aspect can be realized by a combination with any one of the first to fifth aspects.
- L2max is 100 [m].
- the size can be reduced while maintaining the distance (maximum value L2max) from the viewpoint position (P200) of the virtual image (310) to the position (target position P410) where the virtual image (310) is superimposed, and the virtual image can be reduced.
- the distortion of (310) can be reduced.
- the display system (10) of the seventh aspect can be realized by a combination with the sixth aspect.
- L1 is 25 to 50 [m]. According to the seventh aspect, it is possible to reduce the size while maintaining the distance (maximum value L2max) from the viewpoint position (P200) of the virtual image (310) to the position (target position P410) where the virtual image (310) is superimposed. The distortion of (310) can be reduced.
- the display system (10) of the eighth aspect can be realized by a combination with any one of the first to seventh aspects.
- the display system (10) includes a display unit (110) that displays an image, and a projection unit (120) that projects the virtual image (310) corresponding to the image onto the target space (400). And a control unit (130) for controlling the display unit (110).
- the control unit (130) is configured to change the display method of the image according to a parameter determined by the display position (P310) and the target position (P410).
- the parameter is given by
- the display system (10) of the ninth aspect can be realized by a combination with the eighth aspect.
- the control unit (130) is configured to change the display method of the image based on stereoscopic sensitivity when the parameter is equal to or greater than a threshold value. According to the 9th aspect, the discomfort which the person who sees from a viewpoint position (P200) has in a virtual image (310) can be reduced more.
- the display system (10) of the tenth aspect can be realized by a combination with the ninth aspect.
- the control unit (130) is configured not to change the display method of the image when the parameter is equal to or less than the threshold value. According to the tenth aspect, it is possible to further reduce the uncomfortable feeling that the person viewing from the viewpoint position (P200) has in the virtual image (310).
- the display system (10) of the eleventh aspect can be realized by a combination with the ninth or tenth aspect.
- the threshold value is a first threshold value.
- the controller (130) is based on stereoscopic sensitivity when the parameter exceeds the first threshold but is equal to or less than a second threshold that is greater than the first threshold and when the parameter exceeds the second threshold.
- the display method is configured to be different. According to the eleventh aspect, it is possible to further reduce the uncomfortable feeling that the person viewing from the viewpoint position (P200) has in the virtual image (310).
- the display system (10) of the twelfth aspect can be realized by a combination with the eleventh aspect.
- the control unit (130) when the parameter exceeds the first threshold value but is equal to or less than the second threshold value, a person viewing the target space (400) from the viewpoint position (P200),
- the display method is changed based on the stereoscopic sensitivity so that the possibility that the virtual image (310) and the vicinity thereof have a sense of incongruity is reduced.
- the display system (10) of the thirteenth aspect can be realized by a combination with the eleventh or twelfth aspect.
- the control unit (130) when the parameter exceeds the second threshold, indicates that the person viewing the target space (400) from the viewpoint position (P200) has the virtual image (310) It is configured to change the display method based on the stereoscopic sensitivity so that the possibility of having the target position (P410) is high. According to the thirteenth aspect, it is possible to further reduce the sense of discomfort that the person viewing from the viewpoint position (P200) has in the virtual image (310).
- the movable body (100) of the fourteenth aspect includes a movable body main body (100a), the display system (10) of any one of the first to thirteenth aspects mounted on the movable body main body (100a), Is provided. According to the fourteenth aspect, it is possible to reduce the size while maintaining the distance (maximum value L2max) from the viewpoint position (P200) of the virtual image (310) to the position (target position P410) where the virtual image (310) is overlapped, and the virtual image (310). The distortion of (310) can be reduced.
- the design method of the fifteenth aspect is a design method of the display system (10) that displays a virtual image (310) superimposed on the target position (P410) in the target space (400), and includes a first step and a second step.
- the first step is a step of determining a display distance that is a distance from a viewpoint position (P200) of the virtual image (310) to a display position (P310) of the virtual image (310).
- the second step is a step of determining a maximum value of a target distance that is a distance from the viewpoint position (P200) to the target position (P410).
- the virtual image (310) can be reduced in size while maintaining the distance (maximum value L2max) from the viewpoint position (P200) of the virtual image (310) to the position (target position P410) where the virtual image (310) is superimposed.
- the distortion of (310) can be reduced.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Instrument Panels (AREA)
Abstract
課題は、虚像の視点位置から虚像を重ねる位置までの距離を維持しながら小型化が図れ、しかも虚像の歪みを低減できる表示システム、移動体、及び、設計方法を提供することである。表示システム(10)は、対象空間(400)中の対象位置(P410)に虚像(310)があるように表示する。虚像(310)の視点位置(P200)から虚像(310)の表示位置(P310)までの距離である表示距離をL1[m]とする。視点位置(P200)から対象位置(P410)までの距離である対象距離の最大値をL2max[m]とする。|1/L1-1/L2max|は、0より大きく0.06以下である。
Description
本開示は、一般に表示システム、移動体、及び、設計方法に関し、特に対象空間に虚像を投影する表示システム、移動体、及び、表示システムの設計方法に関する。
特許文献1は、車両のフロントガラスに映像光を投影することにより、運転者の目に対してフロントガラスの前方に虚像を投影するヘッドアップディスプレイ装置を開示する。ヘッドアップディスプレイ装置は、表示素子と、可動ミラーと、可動部と、第1のミラーと、第2のミラーと、を備える。可動ミラーは、表示素子が射出した表示光を第1のミラーに向けて反射する。第1のミラーは、可動ミラーが反射した表示光を第2のミラーに向けて反射する。第2のミラーは、第1のミラーが反射した表示光を反射、および、集光させ、フロントガラスに向けて射出させる。
特許文献1では、可動ミラーを第1のミラーに近い第1位置から第1のミラーから遠い第2位置に移動させることで、虚像をより遠くに表示することが可能である。つまり、虚像の視点位置から虚像を重ねる位置までの距離を長くしようとした場合には、虚像の投影に用いるミラー等を含む光学系が大型化してしまう。
本開示の課題は、虚像の視点位置から虚像を重ねる位置までの距離を維持しながら小型化が図れ、しかも虚像の歪みを低減できる表示システム、移動体、及び、設計方法を提供することである。
本開示の一態様の表示システムは、対象空間中の対象位置に虚像を重ねて表示する表示システムである。前記虚像の視点位置から前記虚像の表示位置までの距離である表示距離をL1[m]とする。前記視点位置から前記対象位置までの距離である対象距離の最大値をL2max[m]とする。|1/L1-1/L2max|は、0より大きく0.06以下である。
本開示の一態様の移動体は、移動体本体と、前記移動体本体に搭載される上記態様の表示システムと、を備える。
本開示の一態様の設計方法は、対象空間中の対象位置に虚像を重ねて表示する表示システムの設計方法であって、第1ステップと、第2ステップと、を含む。前記第1ステップは、前記虚像の視点位置から前記虚像の表示位置までの距離である表示距離を決定するステップである。前記第2ステップは、前記視点位置から前記対象位置までの距離である対象距離の最大値を決定するステップである。前記表示距離をL1[m]とする。前記最大値をL2max[m]とする。|1/L1-1/L2max|は、0より大きく0.06以下である。
1.実施形態
1.1 概要
図1は、表示システム10を示す。表示システム10は、対象空間400中の対象位置P410に虚像310を重ねて表示する。虚像310の視点位置P200から虚像310の表示位置P310までの距離である表示距離をL1[m]とする。視点位置P200から対象位置P410までの距離である対象距離の最大値をL2max[m]とする。|1/L1-1/L2max|は、0より大きく0.06以下である。
1.1 概要
図1は、表示システム10を示す。表示システム10は、対象空間400中の対象位置P410に虚像310を重ねて表示する。虚像310の視点位置P200から虚像310の表示位置P310までの距離である表示距離をL1[m]とする。視点位置P200から対象位置P410までの距離である対象距離の最大値をL2max[m]とする。|1/L1-1/L2max|は、0より大きく0.06以下である。
表示システム10では、表示距離L1と対象距離の最大値L2maxとが、0<|1/L1-1/L2max|≦0.06の関係を満たす。そのため、虚像310の表示位置P310を対象位置P410よりも視点位置P200に近付けても、視点位置P200から対象空間400を見る人が、虚像310が対象位置P410にあるとの認識を持ちやすい。よって、対象距離の最大値を延ばすために、虚像310の表示距離L1を延ばさなくて済む。そのため、虚像310の表示距離L1を延ばすための、虚像310の表示のための光学部材(本実施形態では、第1光学部材121及び第2光学部材122)等の大型化を抑制できる。このような光学部材等の大型化は、虚像310の歪みの原因にもなる。よって、本実施形態によれば、虚像310の視点位置P200から虚像310を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながら小型化が図れ、しかも虚像310の歪みを低減できる。
1.2 構成
図1及び図2は、移動体としての自動車100を示す。自動車100は、移動体本体としての車体100aと、車体100aに搭載される表示システム10とを備えている。表示システム10は、自動車100において、ヘッドアップディスプレイ(HUD:Head-Up Display)として用いられる。特に、表示システム10は、拡張現実(Augmented Reality:AR)HUDである。したがって、表示システム10は、拡張現実(AR)技術を利用して、ユーザ200の視界の前方の風景に虚像310を重ねて表示する。
図1及び図2は、移動体としての自動車100を示す。自動車100は、移動体本体としての車体100aと、車体100aに搭載される表示システム10とを備えている。表示システム10は、自動車100において、ヘッドアップディスプレイ(HUD:Head-Up Display)として用いられる。特に、表示システム10は、拡張現実(Augmented Reality:AR)HUDである。したがって、表示システム10は、拡張現実(AR)技術を利用して、ユーザ200の視界の前方の風景に虚像310を重ねて表示する。
表示システム10は、自動車100の車体(移動体本体)100aのウインドシールド101に下方から画像を投影するように、自動車100の車室内に設置されている。図2の例では、ウインドシールド101の下方のダッシュボード102内に、表示システム10が配置されている。表示システム10からウインドシールド101に画像が投影されると、反射部材としてのウインドシールド101で反射された画像がユーザ200(運転者)に視認される。
表示システム10によれば、ユーザ200は、自動車100の前方(車外)に設定された対象空間400に投影された虚像310を、ウインドシールド101越しに視認する。ここでいう「虚像」は、表示システム10から出射される光がウインドシールド101等の反射物にて発散するとき、その発散光線によって、実際に物体があるように結ばれる像を意味する。そのため、自動車100を運転しているユーザ200は、図3に示すように、自動車100の前方に広がる実空間に重ねて、表示システム10にて投影される虚像310を見ることができる。したがって、表示システム10によれば、例えば、車速情報、ナビゲーション情報、歩行者情報、前方車両情報、車線逸脱情報、及び車両コンディション情報等の、種々の運転支援情報を、虚像310として表示し、ユーザ200に視認させることができる。図3では、虚像310は、ナビゲーション情報であり、一例として、左折を示す矢印を表示している。これにより、ユーザ200は、ウインドシールド101の前方に視線を向けた状態から僅かな視線移動だけで、運転支援情報を視覚的に取得することができる。
表示システム10では、対象空間400に形成される虚像310は、表示システム10の光軸500に交差する仮想面501上に形成される。本実施形態では、光軸500は、自動車100の前方の対象空間400において、自動車100の前方の路面600に沿っている。そして、虚像310が形成される仮想面501は、光軸500に対して傾いている。光軸500に対する仮想面501の傾きの角度は、特に限定されない。また、仮想面501は、光軸500に対して傾いている必要はなく垂直であってもよい。
以下、表示システム10について更に詳細に説明する。表示システム10は、図2に示すように、表示部110と、投影部120と、制御部130と、を備える。
表示部110は、対象空間400に虚像310として投影される画像を表示するために用いられる。表示部110は、対象空間400に虚像310として投影される画像を表示する表示面を有する。つまり、表示部110の表示面に表示される画像は、虚像310のもとになる画像であり、以下、必要に応じて、基礎画像という。本実施形態では、表示面は、表示部110の一面における長方形の領域である。本実施形態では、表示部110は、液晶ディスプレイである。
投影部120は、対象空間400に基礎画像(表示部110の表示面に表示される画像)に対応する虚像310を投影するために用いられる。投影部120は、図2に示すように、第1光学部材121と、第2光学部材122と、を備える。言い換えれば、投影部120は、第1光学部材121と第2光学部材122とからなる光学系である。第1光学部材121は、表示部110からの光(表示面に表示される画像を構成する光)を第2光学部材122に向けて反射する。第2光学部材122は、第1光学部材121からの光を、ウインドシールド101(図2参照)に向けて反射する。すなわち、投影部120は、表示部110の表示面に形成される画像を、ウインドシールド101に投影することで、対象空間400に虚像310を投影する。
表示システム10において、虚像310の視点位置P200から虚像310の表示位置P310までの距離である表示距離L1[m]は、投影部120の設計によって定まる。視点位置P200は、虚像310が視認できる範囲(いわゆるアイボックス)の中心の位置である。なお、本実施形態では、投影部120の第1光学部材121及び第2光学部材122の位置は固定である。つまり、投影部120は、表示距離L1を調節する機能を有しておらず、表示距離L1は、固定値である。また、表示システム10において、虚像310の表示可能範囲300(図4参照)は、表示部110の表示面の大きさと投影部120の第1光学部材121及び第2光学部材122の設計によって決まる。本実施形態では、表示距離L1を対象距離L2の最大値L2maxに設定しなくて済む。よって、表示距離L1を対象距離L2の最大値L2maxに設定する場合に比べれば、虚像310の表示のための光学系(投影部120)の小型化が図れる。更に、虚像310は視点位置P200に近いほど歪みが低減される。よって、光学系に起因する、虚像310の歪みを低減できる。
制御部130は、表示システム10の動作を制御する電気回路である。制御部130は、特に、表示部110を制御するように構成される。制御部130は、表示部110に画像信号を与えて、表示部110の表示面に画像を形成する。制御部130は、例えば、1以上のプロセッサ(マイクロプロセッサ)と1以上のメモリとにより実現され得る。つまり、1以上のプロセッサが1以上のメモリに記憶された1以上のプログラムを実行することで、制御部130として機能する。1以上のプログラムは、メモリに予め記録されていてもよいし、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的な記録媒体に記録されて提供されてもよい。
制御部130は、表示部110を制御して、対象空間400中の対象位置P410に虚像310を重ねて表示する処理(虚像表示処理)を行う機能を有する。対象空間400中の対象位置P410に虚像310を重ねて表示するとは、対象位置P410に虚像310が存在するように見せることである。つまり、制御部130は、虚像表示処理を実行することで、表示位置P310にある虚像310をあたかも実空間において対象位置P410に存在するように見せる。例えば、視点位置P200から対象空間400を見るユーザ200に、表示位置P310にある虚像310を、対象位置P410に存在する対象物410であるかのように見せる(図3及び図4参照)。
制御部130は、外部装置から、虚像310の表示指示が与えられた場合に、虚像表示処理を開始する。表示指示は、虚像310の場所と種類とを含む。虚像310の場所は、対象位置P410に関する情報を含み得る。対象位置P410に関する情報は、対象空間400における対象位置P410の三次元の位置に関する情報を含み得る。虚像310の種類は、例えば、車速情報、ナビゲーション情報、歩行者情報、前方車両情報、車線逸脱情報、及び車両コンディション情報等の、種々の運転支援情報である。なお、外部装置の例としては、自動車100のエンジンコントロールユニット及びナビゲーションシステムが挙げられる。
表示システム10では、虚像310の視点位置P200から対象位置P410までの距離である対象距離L2[m]の最大値L2max[m]が設定されている(図1及び図4参照)。言い換えれば、対象距離L2の最大値L2maxは、視点位置P200から最も遠い対象位置P400と視点位置P200との間の距離である。本実施形態において、制御部130は、対象距離L2が最大値L2maxを超える対象位置P410には、虚像310を重ねて表示しない。
対象距離L2の最大値L2maxは、虚像の表示の評価の結果に基づいて決定されている。虚像の表示の評価は、虚像310の表示位置P310を対象位置P410よりも視点位置P200に近付けた場合に視点位置P200から虚像310及びその近傍を見て違和感を持った人数、及び、虚像310の距離認識を誤った人数により行った。
図5は、虚像の表示の評価の結果の一部を示す。図5において、縦軸は、人数であり、横軸は、表示距離L1と対象距離L2とで定まるパラメータDを示す。パラメータDは、|1/L1-1/L2|で与えられる。L1及びL2の単位は[m]である。よって、パラメータDの単位は[1/m]である。以下、このパラメータを、「ディオプタ」と呼ぶ。図5において、グラフG11は、対象位置P210に虚像310を重ねて表示した際に、視点位置P200から虚像310及びその近傍を見て違和感を持った人数を示す。グラフG12は、対象位置P210に虚像310を重ねて表示した際に、視点位置P200から虚像310及びその近傍を見て虚像310の距離認識を誤った人数を示す。
虚像の表示の評価の結果から、ディオプタDが0.06以下であれば、虚像310の表示位置P310と対象位置P410とに差があっても、視点位置P200から対象空間400を見る人の半数以上が、虚像310が対象位置P410にあるとの認識を持つことが確認された。更に、ディオプタDが0.03以下であれば、虚像310の表示位置P310と対象位置P410との差があっても、視点位置P200から対象空間400を見る人のほとんどが、虚像310が対象位置P410にあるとの認識を持つ。更に、ディオプタDが0.02以下であれば、虚像310の表示位置P310と対象位置P410との差があっても、視点位置P200から対象空間400を見る人の半数以上が、虚像310及びその近傍を違和感なく視認できる。更に、ディオプタDが0.015以下であれば、虚像310の表示位置P310と対象位置P410との差があっても、視点位置P200から対象空間400を見る人のほとんどが、虚像310及びその近傍を違和感なく視認できる。更に、ディオプタDが0.01以下であれば、虚像310の表示位置P310と対象位置P410との差があっても、視点位置P200から対象空間400を見るほぼすべての人が、虚像310及びその近傍を違和感なく視認できる。
本実施形態では、|1/L1-1/L2max|が0より大きく0.06以下であるように、表示距離L1と対象距離L2の最大値L2maxが決定されている。一例として、表示距離L1は15[m]であり、最大値L2maxは100[m]である。
制御部130は、虚像表示処理において、対象空間400中の対象位置P410に虚像310が重なって見えるように、基礎画像を表示部110の表示面に表示させる。制御部130は、表示指示に含まれる虚像310の種類に応じて、基礎画像を決定する。また、制御部130は、表示指示に含まれる虚像310の場所(対象位置P410に関する情報)に応じて、表示部110の表示面における基礎画像の基準位置を決定する。
更に、制御部130は、虚像310の表示位置P310と対象位置P410とに基づいて、基礎画像を遠近法に基づいて変化させる。例えば、図4の例では、制御部130は、対象位置P410に実際に対象物410があるように見せるために、虚像310の見え方を調節する。この場合、制御部130は、表示位置P310と対象位置P410とから、対象位置P410の俯角、対象位置P410の奥行、及び、表示位置P310と対象位置P410との位置関係とを求める。対象位置P410の俯角は、ユーザ200が対象位置P410を見る角度に対応する。対象位置P410の奥行は、対象位置P410において虚像310を重ねる範囲に対応する。表示位置P310と対象位置P410との位置関係は、例えば、表示距離L1と対象距離L2との差や、虚像310により見せようとする対象物410と対象物410と視点位置P200との間の物体の位置関係とを含み得る。制御部130は、俯角、奥行、及び位置関係に基づき、基礎画像の形状と大きさとの少なくとも一方を調整する。例えば、制御部130は、俯角と奥行に応じて、基礎画像のパース(傾き度合い・伸長度合い)を調整する。また、制御部130は、奥行に応じて、基礎画像の奥行方向の寸法を調整する。また、制御部130は、表示距離L1と対象距離L2との位置関係に応じて、基礎画像の拡大又は縮小を行う。また、制御部130は、対象物410の一部が視点位置P200から隠れて見える場合、基礎画像を一部が欠けた形状とする。
更に、制御部130は、表示位置P310と対象位置P410とで決まるパラメータDに応じて、画像(基礎画像)の表示方法を変更するように構成される。パラメータDは、上述したディオプタであって、|1/L1-1/L2|で与えられる。本実施形態において、制御部130は、ディオプタDが閾値以下であれば、基礎画像の表示方法を変更しない。一方、制御部130は、ディオプタDが閾値を超えていれば、基礎画像の表示方法を変更する。閾値は、本実施形態では、0.03である。なお、閾値は、|1/L1-1/L2max|未満である。
表示方法の変更は、立体視感度に基づいて行われる。立体視感度は、観測者から離れた2つの対象物の前後関係が判別できるかどうかの指標である(参考:James E. Cutting, “Perception of Space and Motion”,Academic Press, 1995)。立体視感度に影響を及ぼす情報源には、「相対的な密度」、「相対的な大きさ」、「遮蔽」、「水晶体の焦点調節」、「輻輳」、「両眼視差」、「運動視差」、「視界における高さ」、及び「空気遠近」がある。「遮蔽」は2つの対象物の一方が他方に隠れていることである。ここで、「相対的な密度」、「相対的な大きさ」、及び「遮蔽」に対応する立体視感度は、観測者から離れた2つの対象物の平均距離に関係なく、一定であり、「相対的な密度」、「相対的な大きさ」、及び「遮蔽」の順に、立体視感度が良い。「水晶体の焦点調節」及び「輻輳」に対する立体視感度は、前記平均距離が約0~10mの範囲で有効であり、前記平均距離の増加に伴い減少する。「両眼視差」及び「運動視差」に対する立体視感度は、前記平均距離が約0~1000mの範囲で有効である。「両眼視差」に対する立体視感度は、前記平均距離の増加に伴い減少するが、「運動視差」に対する立体視感度は、前記平均距離の増加に伴い一旦増加した後に減少し、約1~2mの範囲にピークがある。「視界における高さ」に対する立体視感度は、前記平均距離が約2~5000mの範囲で有効であり、前記平均距離の増加に伴い減少する。「空気遠近」に対する立体視感度は、前記平均距離が約50~5000mの範囲で有効であり、前記平均距離の増加に伴い一旦増加した後に減少し、約5000mに近い領域にピークがある。このような立体視感度に基づく表示方法の変更の例としては、基礎画像の輝度、解像度、コントラスト、彩度、及びテクスチャ密度の変更が挙げられる。更に、表示方法の変更の例としては、基礎画像の俯角の強調、基礎画像のパースの強調、及び、基礎画像の大きさの変化の強調が挙げられる。このように、ディオプタDに応じて基礎画像の表示方法を変更することで、視点位置P200から見る人が虚像310に持つ違和感をより低減できる。特に、基礎画像の表示方法の変更を立体視感度に基づいて行うことによって、視点位置P200から見る人が虚像310に持つ違和感をより低減できる。具体的な表示方法の変更の方法は、例えば、視点位置P200から見て表示位置P310が対象位置P410よりも遠い場合には、基礎画像の輝度、解像度、コントラスト、彩度を上げること、テクスチャ密度を下げ、基礎画像の俯角を下げ、基礎画像を大きく強調することが効果的である。逆に、視点位置P200から見て表示位置P310が対象位置P410よりも近い場合には、基礎画像の輝度、解像度、コントラスト、彩度を下げること、テクスチャ密度を上げ、基礎画像の俯角を上げ、基礎画像を小さく強調することが効果的である。また、表示位置P310が遠い領域(すなわち、ユーザ200の視野の上側部分)にある場合、基礎画像に平行線を透視図法で描画し、平行線の収束の度合いを基礎画像における遠方領域で変えることが効果的である。平行線は、一例としては、基礎画像の水平方向又は垂直方向に並ぶ線である。遠方領域は、基礎画像においてユーザ200の視野の上側部分に対応する領域である。具体的には、視点位置P200から見て表示位置P310が対象位置P410よりも近い場合、遠方領域において平行線の収束の度合を収束の基準値より大きくするとよい。逆に、視点位置P200から見て表示位置P310が対象位置P410よりも遠い場合には、遠方領域において平行線の収束の度合いを収束の基準値より小さくするとよい。収束の基準値は、一例としては、視点位置P200から見て表示位置P310と対象位置P410が同じ位置にある際の平行線の収束の度合いである。一方、表示位置P310が近い領域(すなわち、ユーザ200の視野の下側部分)にある場合、基礎画像に平行線を透視図法で描画し、平行線の発散の度合いを基礎画像における近方領域で変えることが効果的である。近方領域は、基礎画像においてユーザ200の視野の下側部分に対応する領域である。具体的には、視点位置P200から見て表示位置P310が対象位置P410よりも近い場合、近方領域において平行線の発散の度合を発散の基準値よりも小さくするとよい。逆に、視点位置P200から見て表示位置P310が対象位置P410よりも遠い場合には、近方領域において平行線の発散の度合いを発散の基準値よりも大きくするとよい。発散の基準値は、一例としては、視点位置P200から見て表示位置P310と対象位置P410が同じ位置にある際の平行線の発散の度合いである。これらの表示方法の変更或いは強調は、より立体視感度の高い情報源に関連した表示方法を優先的に用いるのがよい。また、それぞれの表示方法に関連した情報源の感度の高さに応じて段階的に表示方法を変更するのがよい。
1.3 設計方法
本実施形態の表示システム10によれば、虚像310の視点位置P200から虚像310を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながら小型化が図れ、しかも虚像310の歪みを低減できる。そして、表示システム10は、下記の設計方法を含む製造方法により製造され得る。言い換えれば、表示システム10は、下記の設計方法により設計されている。この設計方法は、対象空間400中の対象位置P410に虚像310を重ねて表示する表示システム10の設計方法であって、第1ステップと第2ステップとを含む。第1ステップは、虚像310の視点位置P200から虚像310の表示位置P310までの距離である表示距離を決定するステップである。第2ステップは、視点位置P200から対象位置P410までの距離である対象距離の最大値を決定するステップである。ここで、表示距離をL1[m]、対象距離の最大値をL2max[m]とすると、|1/L1-1/L2max|は、0より大きく0.06以下である。この設計方法によれば、虚像310の視点位置P200から虚像310を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながら小型化が図れ、しかも虚像310の歪みを低減できる表示システム10の設計が可能である。なお、上記設計方法において、第1ステップと第2ステップとの順番は、特に限定されない。つまり、最大値L2maxを先に決めてから表示距離L1を決めてもよいし、その逆でもよい。
本実施形態の表示システム10によれば、虚像310の視点位置P200から虚像310を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながら小型化が図れ、しかも虚像310の歪みを低減できる。そして、表示システム10は、下記の設計方法を含む製造方法により製造され得る。言い換えれば、表示システム10は、下記の設計方法により設計されている。この設計方法は、対象空間400中の対象位置P410に虚像310を重ねて表示する表示システム10の設計方法であって、第1ステップと第2ステップとを含む。第1ステップは、虚像310の視点位置P200から虚像310の表示位置P310までの距離である表示距離を決定するステップである。第2ステップは、視点位置P200から対象位置P410までの距離である対象距離の最大値を決定するステップである。ここで、表示距離をL1[m]、対象距離の最大値をL2max[m]とすると、|1/L1-1/L2max|は、0より大きく0.06以下である。この設計方法によれば、虚像310の視点位置P200から虚像310を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながら小型化が図れ、しかも虚像310の歪みを低減できる表示システム10の設計が可能である。なお、上記設計方法において、第1ステップと第2ステップとの順番は、特に限定されない。つまり、最大値L2maxを先に決めてから表示距離L1を決めてもよいし、その逆でもよい。
2.変形例
本開示の実施形態は、上記実施形態に限定されない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下に、上記実施形態の変形例を列挙する。
本開示の実施形態は、上記実施形態に限定されない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下に、上記実施形態の変形例を列挙する。
上記実施形態では、|1/L1-1/L2max|は、0より大きく0.06以下であるが、|1/L1-1/L2max|の上限値は0より大きく0.06未満であってよい。例えば、|1/L1-1/L2max|は、0.03以下であってもよい。この場合、表示距離L1は25[m]であり、最大値L2maxは100[m]であってよい。また、|1/L1-1/L2max|は、0.02以下であってもよい。この場合、表示距離L1は33[m]であり、最大値L2maxは100[m]であってよい。また、|1/L1-1/L2max|は、0.015以下であってもよい。この場合、表示距離L1は40[m]であり、最大値L2maxは100[m]であってよい。また、|1/L1-1/L2max|は、0.01以下であってもよい。この場合、表示距離L1は50[m]であり、最大値L2maxは100[m]であってよい。
上記実施形態では、表示位置P310が対象位置P410よりも視点位置P200に近い場合を例示している。しかしながら、表示位置P310よりも対象位置P410が視点位置P200に近い場合であっても上記実施形態と同様の効果が得られ得る。
上記実施形態では、閾値は、0.03であったが、閾値は、0より大きく|1/L1-1/L2max|未満であってよい。例えば、閾値は、0.02であってよい。また、閾値は、0.015であってよい。更に、閾値は、0.01であってもよい。また、2以上の閾値があってもよい。|1/L1-1/L2|がどの閾値を超えているかに基づいて表示方法を変更してよい。例えば、閾値は、0.01、0.02、0.03の3つであってよい。また、閾値は、第1閾値(例えば、0.01)と、第1閾値より大きい第2閾値(例えば、0.03)との2つであってもよい。制御部130は、パラメータ(|1/L1-1/L2|)が第1閾値(0.01)以下である間は、立体視感度に基づく表示方法の変更をしなくてもよい。また、制御部130は、パラメータ(|1/L1-1/L2|)が第1閾値を超えるが第2閾値以下の場合と、パラメータが第2閾値を超える場合とで、立体視感度に基づく表示方法を異ならせてよい。より詳細には、制御部130は、パラメータ(|1/L1-1/L2|)が第1閾値(0.01)を超えると、視点位置P200から対象空間400を見る人が、虚像310及びその近傍に違和感を持つ可能性が低くなるように、立体視感度に基づく表示方法の変更をしてよい。更に、制御部130は、パラメータ(|1/L1-1/L2|)が第2閾値(0.03)を超えると、視点位置P200から対象空間400を見る人が、虚像310が対象位置P410にあるとの認識を持つ可能性が高くなるように、立体視感度に基づく表示方法の変更をしてよい。
制御部130は、必ずしも、基礎画像の表示方法の変更を行う必要はない。例えば、|1/L1-1/L2max|が0.015以下であるような場合には、立体視感度に基づく表示方法の変更をしなくても、問題がないことが多い。
上記実施形態では、制御部130は、基礎画像の形状と大きさとの少なくとも一方を、対象位置P410に関する情報から得られる対象距離L2に応じて調整する。しかしながら、この構成は必須ではない。
表示部110は、液晶ディスプレイに限定されない。例えば、表示部110は、液晶ディスプレイ以外の画像表示装置、例えば、有機ELディスプレイであってもよい。また、表示部110は、画像表示装置そのものでなくてもよい。例えば、表示部110は、プロジェクタと、プロジェクタの画像を写すスクリーンとを備えるシステムであってもよいし、レーザ走査装置と、レーザ走査装置のレーザの走査による画像を写すためのスクリーンとを備えるシステムであってもよい。また、表示部110は、スクリーンそのものであってもよいし、画像表示装置からの画像を写す平面鏡であってもよい。つまり、表示部110は、中間画像を表示してもよい。
投影部120は、表示距離L1を調節する機能を有していてもよい。つまり、投影部120は、仮想面501を光軸500に沿って移動させる機能を有していてもよい。このような機能は、一例として、投影部120の第1光学部材121及び第2光学部材122の位置を可変とすることで実現可能であり、従来から様々な技術が提供されている(特許文献1参照)。また、投影部120に関し、第1光学部材121及び第2光学部材122の形状は、変更可能である。また、表示距離L1は、表示部110から視点位置P200までの光路長を変えることによっても調整可能である。
表示システム10は、自動車100の進行方向の前方に設定された対象空間400に虚像310を投影する構成に限らず、例えば、自動車100の進行方向の側方、後方、又は上方等に虚像310を投影してもよい。また、投影部120は、中間像を形成するためのリレー光学系を含んでいてもよいし、リレー光学系を含んでいなくてもよい。
表示システム10は、自動車100に用いられるヘッドアップディスプレイに限らず、例えば、二輪車、電車、航空機、建設機械、及び船舶等、自動車100以外の移動体にも適用可能である。さらに、表示システム10は、移動体に限らず、例えば、アミューズメント施設で用いられてもよい。
3.態様
上記実施形態及び変形例から明らかなように、本開示は、下記の第1~第9の態様を含む。以下では、実施形態との対応関係を明示するためだけに、符号を括弧付きで付している。
上記実施形態及び変形例から明らかなように、本開示は、下記の第1~第9の態様を含む。以下では、実施形態との対応関係を明示するためだけに、符号を括弧付きで付している。
第1の態様の表示システム(10)は、対象空間(400)中の対象位置(P410)に虚像(310)を重ねて表示する表示システムである。前記虚像(310)の視点位置(P200)から前記虚像(310)の表示位置(P310)までの距離である表示距離をL1[m]とする。前記視点位置(P200)から前記対象位置(P410)までの距離である対象距離の最大値をL2max[m]とする。|1/L1-1/L2max|は、0より大きく0.06以下である。第1の態様によれば、虚像(310)の視点位置(P200)から虚像(310)を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながら小型化が図れ、しかも虚像(310)の歪みを低減できる。
第2の態様の表示システム(10)は、第1の態様との組み合わせにより実現され得る。第2の態様では、|1/L1-1/L2max|は、0.03以下である。第2の態様によれば、虚像(310)の視点位置(P200)から虚像(310)を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながらより小型化が図れ、しかも虚像(310)の歪みを低減できる。
第3の態様の表示システム(10)は、第1又は第2の態様との組み合わせにより実現され得る。第3の態様では、|1/L1-1/L2max|は、0.02以下である。第3の態様によれば、虚像(310)の視点位置(P200)から虚像(310)を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながらより小型化が図れ、しかも虚像(310)の歪みを低減できる。
第4の態様の表示システム(10)は、第1~第3の態様のいずれか一つとの組み合わせにより実現され得る。第4の態様では、|1/L1-1/L2max|は、0.015以下である。第4の態様によれば、虚像(310)の視点位置(P200)から虚像(310)を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながらより小型化が図れ、しかも虚像(310)の歪みを低減できる。
第5の態様の表示システム(10)は、第1~第4の態様のいずれか一つとの組み合わせにより実現され得る。第5の態様では、|1/L1-1/L2max|は、0.01以下である。第5の態様によれば、虚像(310)の視点位置(P200)から虚像(310)を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながらより小型化が図れ、しかも虚像(310)の歪みを低減できる。
第6の態様の表示システム(10)は、第1~第5の態様のいずれか一つとの組み合わせにより実現され得る。第6の態様では、L2maxは、100[m]である。第6の態様によれば、虚像(310)の視点位置(P200)から虚像(310)を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながら小型化が図れ、しかも虚像(310)の歪みを低減できる。
第7の態様の表示システム(10)は、第6の態様との組み合わせにより実現され得る。第7の態様では、L1は、25~50[m]である。第7の態様によれば、虚像(310)の視点位置(P200)から虚像(310)を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながら小型化が図れ、しかも虚像(310)の歪みを低減できる。
第8の態様の表示システム(10)は、第1~第7の態様のいずれか一つとの組み合わせにより実現され得る。第8の態様では、前記表示システム(10)は、画像を表示する表示部(110)と、前記対象空間(400)に前記画像に対応する前記虚像(310)を投影する投影部(120)と、前記表示部(110)を制御する制御部(130)と、を備える。前記制御部(130)は、前記表示位置(P310)と前記対象位置(P410)とで決まるパラメータに応じて、前記画像の表示方法を変更するように構成される。前記パラメータは、前記対象距離をL2[m]とした場合に、|1/L1-1/L2|で与えられる。第8の態様によれば、視点位置(P200)から見る人が虚像(310)に持つ違和感を低減できる。
第9の態様の表示システム(10)は、第8の態様との組み合わせにより実現され得る。第9の態様では、前記制御部(130)は、前記パラメータが閾値以上である場合、前記画像の表示方法を、立体視感度に基づいて変更するように構成される。第9の態様によれば、視点位置(P200)から見る人が虚像(310)に持つ違和感をより低減できる。
第10の態様の表示システム(10)は、第9の態様との組み合わせにより実現され得る。第10の態様では、前記制御部(130)は、前記パラメータが前記閾値以下の場合、前記画像の表示方法を変更しないように構成される。第10の態様によれば、視点位置(P200)から見る人が虚像(310)に持つ違和感をより低減できる。
第11の態様の表示システム(10)は、第9又は第10の態様との組み合わせにより実現され得る。第11の態様では、前記閾値は、第1閾値である。前記制御部(130)は、前記パラメータが前記第1閾値を超えるが前記第1閾値より大きい第2閾値以下の場合と、前記パラメータが前記第2閾値を超える場合とで、立体視感度に基づく表示方法を異ならせるように構成される。第11の態様によれば、視点位置(P200)から見る人が虚像(310)に持つ違和感をより低減できる。
第12の態様の表示システム(10)は、第11の態様との組み合わせにより実現され得る。第12の態様では、前記制御部(130)は、前記パラメータが前記第1閾値を超えるが前記第2閾値以下の場合、前記視点位置(P200)から前記対象空間(400)を見る人が、前記虚像(310)及びその近傍に違和感を持つ可能性が低くなるように、立体視感度に基づく表示方法の変更をするように構成される。第12の態様によれば、視点位置(P200)から見る人が虚像(310)に持つ違和感をより低減できる。
第13の態様の表示システム(10)は、第11又は第12の態様との組み合わせにより実現され得る。第13の態様では、前記制御部(130)は、前記パラメータが前記第2閾値を超える場合、前記視点位置(P200)から前記対象空間(400)を見る人が、前記虚像(310)が前記対象位置(P410)にあるとの認識を持つ可能性が高くなるように、立体視感度に基づく表示方法の変更をするように構成される。第13の態様によれば、視点位置(P200)から見る人が虚像(310)に持つ違和感をより低減できる。
第14の態様の移動体(100)は、移動体本体(100a)と、前記移動体本体(100a)に搭載される第1~第13の態様のいずれか一つの表示システム(10)と、を備える。第14の態様によれば、虚像(310)の視点位置(P200)から虚像(310)を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながら小型化が図れ、しかも虚像(310)の歪みを低減できる。
第15の態様の設計方法は、対象空間(400)中の対象位置(P410)に虚像(310)を重ねて表示する表示システム(10)の設計方法であって、第1ステップと第2ステップとを含む。前記第1ステップは、前記虚像(310)の視点位置(P200)から前記虚像(310)の表示位置(P310)までの距離である表示距離を決定するステップである。前記第2ステップは、前記視点位置(P200)から前記対象位置(P410)までの距離である対象距離の最大値を決定するステップである。前記表示距離をL1[m]、前記最大値をL2max[m]とすると、|1/L1-1/L2max|は、0より大きく0.06以下である。第15の態様によれば、虚像(310)の視点位置(P200)から虚像(310)を重ねる位置(対象位置P410)までの距離(最大値L2max)を維持しながら小型化が図れ、しかも虚像(310)の歪みを低減できる。
10 表示システム
110 表示部
120 投影部
130 制御部
310 虚像
400 対象空間
P200 視点位置
P310 表示位置
P410 対象位置
L1 表示距離
L2 対象距離
L2max 最大値
100 自動車(移動体)
100a 車体(移動体本体)
110 表示部
120 投影部
130 制御部
310 虚像
400 対象空間
P200 視点位置
P310 表示位置
P410 対象位置
L1 表示距離
L2 対象距離
L2max 最大値
100 自動車(移動体)
100a 車体(移動体本体)
Claims (15)
- 対象空間中の対象位置に虚像を重ねて表示する表示システムであって、
前記虚像の視点位置から前記虚像の表示位置までの距離である表示距離をL1[m]、前記視点位置から前記対象位置までの距離である対象距離の最大値をL2max[m]とすると、
|1/L1-1/L2max|は、0より大きく0.06以下である、
表示システム。 - |1/L1-1/L2max|は、0.03以下である、
請求項1の表示システム。 - |1/L1-1/L2max|は、0.02以下である、
請求項1又は2の表示システム。 - |1/L1-1/L2max|は、0.015以下である、
請求項1~3のいずれか一つの表示システム。 - |1/L1-1/L2max|は、0.01以下である、
請求項1~4のいずれか一つの表示システム。 - L2maxは、100[m]である、
請求項1~5のいずれか一つの表示システム。 - L1は、25~50[m]である、
請求項6の表示システム。 - 画像を表示する表示部と、
前記対象空間に前記画像に対応する前記虚像を投影する投影部と、
前記表示部を制御する制御部と、
を備え、
前記制御部は、前記表示位置と前記対象位置とで決まるパラメータに応じて、前記画像の表示方法を変更するように構成され、
前記パラメータは、前記対象距離をL2[m]とした場合に、|1/L1-1/L2|で与えられる、
請求項1~7のいずれか一つの表示システム。 - 前記制御部は、前記パラメータが閾値を超える場合、前記画像の表示方法を、立体視感度に基づいて変更するように構成される、
請求項8の表示システム。 - 前記制御部は、前記パラメータが前記閾値以下の場合、前記画像の表示方法を変更しないように構成される、
請求項9の表示システム。 - 前記閾値は、第1閾値であり、
前記制御部は、前記パラメータが前記第1閾値を超えるが前記第1閾値より大きい第2閾値以下の場合と、前記パラメータが前記第2閾値を超える場合とで、立体視感度に基づく表示方法を異ならせる、
請求項9又は10の表示システム。 - 前記制御部は、前記パラメータが前記第1閾値を超えるが前記第2閾値以下の場合、前記視点位置から前記対象空間を見る人が、前記虚像及びその近傍に違和感を持つ可能性が低くなるように、立体視感度に基づく表示方法の変更をするように構成される、
請求項11の表示システム。 - 前記制御部は、前記パラメータが前記第2閾値を超える場合、前記視点位置から前記対象空間を見る人が、前記虚像が前記対象位置にあるとの認識を持つ可能性が高くなるように、立体視感度に基づく表示方法の変更をするように構成される、
請求項11又は12の表示システム。 - 移動体本体と、
前記移動体本体に搭載される請求項1~13のいずれか一つの表示システムと、
を備える、
移動体。 - 対象空間中の対象位置に虚像を重ねて表示する表示システムの設計方法であって、
前記虚像の視点位置から前記虚像の表示位置までの距離である表示距離を決定する第1ステップと、
前記視点位置から前記対象位置までの距離である対象距離の最大値を決定する第2ステップと、
を含み、
前記表示距離をL1[m]、前記最大値をL2max[m]とすると、
|1/L1-1/L2max|は、0より大きく0.06以下である、
設計方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980011017.8A CN111727399B (zh) | 2018-01-31 | 2019-01-29 | 显示系统、移动体以及设计方法 |
DE112019000329.1T DE112019000329B4 (de) | 2018-01-31 | 2019-01-29 | Anzeigesystem, bewegliches objekt und gestaltungsverfahren |
US16/941,136 US11106045B2 (en) | 2018-01-31 | 2020-07-28 | Display system, movable object, and design method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-015926 | 2018-01-31 | ||
JP2018015926 | 2018-01-31 | ||
JP2018069723A JP7126115B2 (ja) | 2018-01-31 | 2018-03-30 | 表示システム、移動体、及び、設計方法 |
JP2018-069723 | 2018-03-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/941,136 Continuation US11106045B2 (en) | 2018-01-31 | 2020-07-28 | Display system, movable object, and design method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151199A1 true WO2019151199A1 (ja) | 2019-08-08 |
Family
ID=67479219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002834 WO2019151199A1 (ja) | 2018-01-31 | 2019-01-29 | 表示システム、移動体、及び、設計方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019151199A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016215720A (ja) * | 2015-05-15 | 2016-12-22 | カルソニックカンセイ株式会社 | 車両用ヘッドアップディスプレイ装置 |
WO2017010333A1 (ja) * | 2015-07-10 | 2017-01-19 | 田山 修一 | 車輌用画像表示システム及び方法 |
WO2017163288A1 (ja) * | 2016-03-24 | 2017-09-28 | パナソニックIpマネジメント株式会社 | ヘッドアップディスプレイ装置、及び車両 |
-
2019
- 2019-01-29 WO PCT/JP2019/002834 patent/WO2019151199A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016215720A (ja) * | 2015-05-15 | 2016-12-22 | カルソニックカンセイ株式会社 | 車両用ヘッドアップディスプレイ装置 |
WO2017010333A1 (ja) * | 2015-07-10 | 2017-01-19 | 田山 修一 | 車輌用画像表示システム及び方法 |
WO2017163288A1 (ja) * | 2016-03-24 | 2017-09-28 | パナソニックIpマネジメント株式会社 | ヘッドアップディスプレイ装置、及び車両 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10754154B2 (en) | Display device and moving body having display device | |
JP7126115B2 (ja) | 表示システム、移動体、及び、設計方法 | |
JP4686586B2 (ja) | 車載用表示装置及び表示方法 | |
US11999234B2 (en) | Method for operating a field-of-vision display device for a motor vehicle | |
US10621776B2 (en) | Information display apparatus that changes a virtual image differently from a degree of the change depth | |
JP2010070066A (ja) | ヘッドアップディスプレイ | |
JP7240208B2 (ja) | 車載表示装置、車載表示方法、および、コンピュータプログラム | |
JP7005115B2 (ja) | 車両用表示装置 | |
CN114489332B (zh) | Ar-hud输出信息的显示方法及系统 | |
US20210260998A1 (en) | Method for Operating a Visual Field Display Device for a Motor Vehicle | |
JP2018120135A (ja) | ヘッドアップディスプレイ | |
JP7358909B2 (ja) | 立体表示装置及びヘッドアップディスプレイ装置 | |
JP2018203245A (ja) | 表示システム、電子ミラーシステム及び移動体 | |
CN113924518A (zh) | 控制机动车的增强现实平视显示器装置的显示内容 | |
JP4929768B2 (ja) | 視覚情報呈示装置及び視覚情報呈示方法 | |
JP6105531B2 (ja) | 車両用投影表示装置 | |
JP7354846B2 (ja) | ヘッドアップディスプレイ装置 | |
JP2022084266A (ja) | 表示制御装置、表示装置、及び画像の表示制御方法 | |
JP7223283B2 (ja) | 画像処理ユニット及びそれを備えるヘッドアップディスプレイ装置 | |
WO2019151199A1 (ja) | 表示システム、移動体、及び、設計方法 | |
JP7503239B2 (ja) | ヘッドアップディスプレイ装置 | |
JPWO2018185956A1 (ja) | 虚像表示装置 | |
WO2020171045A1 (ja) | ヘッドアップディスプレイ装置、表示制御装置、及び表示制御プログラム | |
JP7377740B2 (ja) | 車載表示装置、車載表示装置を制御する方法、及びコンピュータプログラム | |
JP2020158014A (ja) | ヘッドアップディスプレイ装置、表示制御装置、及び表示制御プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19747053 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19747053 Country of ref document: EP Kind code of ref document: A1 |