WO2019150548A1 - Semiconductor impurity liquid source, method for manufacturing semiconductor impurity liquid source, and method for manufacturing semiconductor device - Google Patents

Semiconductor impurity liquid source, method for manufacturing semiconductor impurity liquid source, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2019150548A1
WO2019150548A1 PCT/JP2018/003557 JP2018003557W WO2019150548A1 WO 2019150548 A1 WO2019150548 A1 WO 2019150548A1 JP 2018003557 W JP2018003557 W JP 2018003557W WO 2019150548 A1 WO2019150548 A1 WO 2019150548A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
liquid source
impurity liquid
semiconductor impurity
impurity
Prior art date
Application number
PCT/JP2018/003557
Other languages
French (fr)
Japanese (ja)
Inventor
智也 齋藤
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to JP2018529327A priority Critical patent/JP6472936B1/en
Priority to CN201880000866.9A priority patent/CN110366771B/en
Priority to PCT/JP2018/003557 priority patent/WO2019150548A1/en
Priority to TW107126909A priority patent/TWI685022B/en
Publication of WO2019150548A1 publication Critical patent/WO2019150548A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/228Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/24Alloying of impurity materials, e.g. doping materials, electrode materials, with a semiconductor body

Definitions

  • the present invention relates to a semiconductor impurity liquid source, a method for manufacturing a semiconductor impurity liquid source, and a method for manufacturing a semiconductor device.
  • Japanese Patent Laid-Open No. 11-176664 discloses a diffusion film containing an impurity compound and an organic binder.
  • the organic binder contributes to the uniformity of impurity diffusion.
  • the production efficiency cannot be improved. Therefore, the technique described in JP-A-11-176664 is completely different from the present invention.
  • the present invention provides a semiconductor impurity liquid source and a method for manufacturing a semiconductor impurity liquid source, which can improve the manufacturing efficiency of a semiconductor device by shortening the time required for removing a semiconductor substrate while ensuring uniformity of impurity diffusion And it aims at providing a semiconductor manufacturing method.
  • a semiconductor impurity liquid source according to one embodiment of the present invention is provided.
  • a semiconductor impurity liquid source that diffuses impurities in the plurality of semiconductor substrates by being heated while being applied between the plurality of stacked semiconductor substrates, A compound containing the impurities;
  • a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source;
  • the impurities are deposited on the coated surface by depositing between the adjacent inorganic powders as the organic solvent evaporates.
  • the inorganic powder is When laminating the plurality of semiconductor substrates, the spacing between the inorganic powders adjacent to each other in the surface direction is adjusted by the thickener, whereby the distribution in the surface direction of the plurality of semiconductor substrates is distributed.
  • the spacing between the plurality of semiconductor substrates is maintained, so that the stripping solution penetrates between the plurality of semiconductor substrates.
  • the mass concentration of the inorganic powder with respect to the entire semiconductor impurity liquid source may be lower than the mass concentration of the thickener with respect to the entire semiconductor impurity liquid source.
  • a mass concentration of the inorganic powder with respect to the entire semiconductor impurity liquid source may be lower than a mass concentration of the organic solvent with respect to the entire semiconductor impurity liquid source.
  • the stripping solution may be hydrofluoric acid.
  • the inorganic powder may contain at least one substance selected from the group consisting of Si, SiO 2 , SiC, and Si 3 N 4 as a main component.
  • the thickener may contain cellulose or a derivative thereof as a main component.
  • the thickener may contain hydroxypropylcellulose as a main component.
  • the organic solvent may contain ethanol, acetone, or propanol as a main component.
  • the compound may be boric acid and aluminum lactate.
  • the compound may be pyrophosphoric acid.
  • a method for manufacturing a semiconductor impurity liquid source includes: Producing a mixed liquid comprising a compound containing the impurity, an organic solvent that dissolves the compound, and a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source; Holding the liquid mixture in a predetermined atmosphere for a predetermined time in order to stabilize the viscosity of the liquid mixture; After the holding, a step of mixing an inorganic powder having a diameter larger than the impurities into the mixed solution.
  • a method for manufacturing a semiconductor device includes: Applying the semiconductor impurity liquid source according to claim 1 to a plurality of semiconductor substrates; Drying the applied semiconductor impurity liquid source by heating the applied semiconductor impurity liquid source to a first temperature; Laminating the plurality of semiconductor substrates; Adjusting the distribution of the spacing between the plurality of semiconductor substrates by the inorganic powder when laminating the plurality of semiconductor substrates; and The impurity is heated to a second temperature to generate a diffusion source of the impurity, and the plurality of semiconductor substrates are immersed in a stripping solution and bonded by heating at the second temperature. Separating the plurality of semiconductor substrates.
  • a semiconductor impurity liquid source is a semiconductor impurity liquid source that diffuses impurities into a plurality of semiconductor substrates by being heated while being applied between a plurality of stacked semiconductor substrates, Contains a compound containing impurities, an organic solvent that dissolves the compound, a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source, and an inorganic powder having a diameter larger than the impurities.
  • the thickener adjusts the spacing between adjacent inorganic powders in the surface direction along the application surface by the viscosity applied to the semiconductor impurity liquid source.
  • the impurity distribution on the coated surface is adjusted, and the semiconductor impurity liquid source is heated to the first temperature for drying, so that the organic solvent is evaporated and adjoined. It has the property of precipitating between inorganic powders and maintaining the distribution of impurities on the coated surface.
  • Inorganic powders are adjacent to each other in the plane direction by a thickener when laminating a plurality of semiconductor substrates.
  • the distribution of the distance between the plurality of semiconductor substrates in the plane direction is adjusted, and a second impurity diffusion supply source having a temperature higher than the first temperature is generated.
  • the plurality of semiconductor substrates bonded by heating at the second temperature are exposed to the stripping solution after being heated to the temperature of the second temperature, the spacing between the plurality of semiconductor substrates is maintained. Has the property of allowing the stripping solution to penetrate.
  • the distribution of impurities on the coating surface is adjusted by the viscosity of the thickener, and the semiconductor impurity liquid source is dried at the first temperature.
  • the thickening agent is deposited between adjacent inorganic powders to maintain the distribution of impurities on the coated surface and stacking a plurality of semiconductor substrates
  • the viscosity of the thickening agent causes a gap in the plane direction.
  • the inorganic powder is adjusted to adjust the distribution in the surface direction of the intervals between the semiconductor substrates, and when exposing a plurality of semiconductor substrates to the release liquid, the separation is performed through the intervals between the semiconductor substrates maintained with the inorganic powder.
  • the liquid can be infiltrated.
  • FIG. 6 is a schematic cross-sectional view showing a coating step subsequent to FIG.
  • FIG. 7 is a schematic cross-sectional view showing a drying step subsequent to FIG. 6 in the method for manufacturing the semiconductor device according to the present embodiment.
  • FIG. 8 is a schematic cross-sectional view showing a stacking step following FIG. 7 in the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 9 is a schematic cross-sectional view showing a firing step following FIG. 8 in the method for manufacturing the semiconductor device according to the present embodiment.
  • 5 is a graph showing temperature transition in a diffusion process in the method for manufacturing a semiconductor device according to the embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a deposition step following FIG. 9 in the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 12 is a schematic cross-sectional view showing a diffusion step following FIG. 11 in the method for manufacturing the semiconductor device according to the present embodiment.
  • FIG. 13 is a schematic cross-sectional view showing an immersion step subsequent to FIG. 12 in the method for manufacturing the semiconductor device according to the present embodiment. It is a flowchart which shows the manufacturing method of the semiconductor impurity liquid source which concerns on the modification of this embodiment.
  • semiconductor impurity liquid source First, the semiconductor impurity liquid source according to the present embodiment will be described.
  • the semiconductor impurity liquid source according to the present embodiment diffuses impurities in a plurality of semiconductor substrates by being heated while being applied between the plurality of stacked semiconductor substrates. In this manner, by diffusing impurities into a plurality of stacked semiconductor substrates, the impurities can be simultaneously diffused into the plurality of semiconductor substrates, so that the impurities can be efficiently diffused.
  • the semiconductor impurity liquid source includes an impurity-containing compound, an organic solvent that dissolves the compound, a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source, and an inorganic powder having a diameter larger than that of the impurity. , Are mixed and contained.
  • the semiconductor impurity liquid source may further contain water.
  • boric acid, aluminum lactate or the like can be suitably used as the compound containing the impurity.
  • N-type semiconductor impurity liquid source in which an N-type impurity is diffused into a semiconductor substrate
  • pyrophosphoric acid or the like can be suitably used as the compound containing the impurity.
  • Organic solvent has the property of dissolving compounds containing impurities.
  • an organic solvent containing ethanol, acetone, propanol or the like as a main component can be preferably used.
  • Thickener dissolves in an organic solvent and has the property of imparting viscosity to the semiconductor impurity liquid source.
  • the thickener adjusts the spacing between adjacent inorganic powders in the surface direction along the coating surface by the viscosity applied to the semiconductor impurity liquid source when the semiconductor impurity liquid source is applied to the coating surface of the semiconductor substrate. And has a characteristic of adjusting the distribution of impurities on the coated surface.
  • the thickener is heated to the first temperature for drying the semiconductor impurity liquid source, so that the organic solvent precipitates between the adjacent inorganic powders as the organic solvent evaporates, and impurities are deposited on the coated surface. It has the characteristic of maintaining the distribution.
  • the thickener having such characteristics, for example, a thickener containing cellulose or a derivative thereof as a main component can be suitably used. More preferably, the thickener contains hydroxypropyl cellulose.
  • the inorganic powder adjusts the distribution of the spacing between the plurality of semiconductor substrates in the plane direction by adjusting the spacing between adjacent inorganic powders in the plane direction by the thickener. It has the characteristic to do.
  • the inorganic powder is a plurality of semiconductors bonded by heating at a second temperature after the impurity is heated to a second temperature at which an impurity diffusion source that is higher than the first temperature is generated.
  • the spacing between the plurality of semiconductor substrates is maintained, so that the stripping solution penetrates between the plurality of semiconductor substrates.
  • an inorganic powder containing at least one substance selected from the group consisting of Si, SiO 2 , SiC and Si 3 N 4 as a main component is preferably used. it can.
  • hydrofluoric acid or the like can be suitably used as a stripping solution having a property of stripping semiconductor substrates bonded via inorganic powder.
  • FIG. 1 is a flowchart showing a method for manufacturing a semiconductor impurity liquid source according to the present embodiment.
  • a mixed liquid is produced in which a compound containing impurities, an organic solvent that dissolves the compound, and a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source are generated. (Step S1).
  • FIG. 2 is an explanatory diagram for explaining a method for producing a P-type semiconductor impurity liquid source in the method for producing a semiconductor impurity liquid source according to the present embodiment.
  • a mixed liquid of a P-type semiconductor impurity liquid source for example, powdered aluminum lactate is mixed with water and then bathed until the aluminum lactate is dissolved in water, thereby producing an aluminum lactate liquid. Is generated.
  • the melting time of the aluminum lactate can be shortened by performing the water bath while stirring.
  • Aluminum lactate is more soluble in water than organic solvents. By mixing aluminum lactate in easily soluble water and then mixing with an organic solvent, a mixed solution can be generated appropriately.
  • boric acid powder is mixed with ethanol and boiled until the boric acid is dissolved in ethanol to produce a boric acid solution.
  • the dissolution time of boric acid can be shortened by boiling water with stirring.
  • a liquid mixture is produced
  • FIG. 3 is an explanatory diagram for explaining a method for producing an N-type semiconductor impurity liquid source in the method for producing a semiconductor impurity liquid source according to the present embodiment.
  • a mixed liquid of N-type semiconductor impurity liquid source when a mixed liquid of N-type semiconductor impurity liquid source is generated, for example, a mixed liquid is generated by mixing pyrophosphoric acid, an organic solvent, and a thickener.
  • the mixed solution After generating the mixed solution, as shown in FIG. 1, the mixed solution is held in a predetermined atmosphere for a predetermined time in order to stabilize the viscosity of the mixed solution (step S2).
  • step S3 After holding the mixed solution, an inorganic powder having a diameter larger than the impurities is mixed into the mixed solution (step S3). As described above, a semiconductor impurity liquid source can be obtained.
  • FIG. 4 is a flowchart showing a method for manufacturing a semiconductor device according to the present embodiment.
  • FIG. 5 is a schematic cross-sectional view showing a dropping step in the method for manufacturing a semiconductor device according to the present embodiment.
  • a semiconductor impurity liquid source is dropped on a semiconductor substrate (step S11).
  • the semiconductor substrate 2 is placed on the coating coater head 3, and the P-type is placed on the coating surface 2 a of the semiconductor substrate 2 by the nozzle 4 from above with respect to the placed semiconductor substrate 2.
  • the semiconductor impurity liquid source 1-P is dropped.
  • the P-type semiconductor impurity liquid source 1-P contains a mixture of a P-type impurity 11-P, an organic solvent 12, a thickener 13, and an inorganic powder 14.
  • the P-type semiconductor impurity liquid source 1-P may further contain water or ethanol.
  • the semiconductor substrate 2 is, for example, a silicon single crystal substrate.
  • the semiconductor substrate 2 may be diffused with impurities.
  • FIG. 6 is a schematic cross-sectional view showing the coating process subsequent to FIG. 5 in the method for manufacturing the semiconductor device according to the present embodiment.
  • the semiconductor impurity liquid source for example, as shown in FIG. 6, by rotating the coating coater head 3 in the rotation direction r, the semiconductor substrate 2 placed on the coating coater head 3 and the semiconductor The P-type semiconductor impurity liquid source 1-P on the coating surface 2a of the substrate 2 is rotated.
  • the P-type semiconductor impurity liquid source 1-P flows from the center side to the peripheral side of the application surface 2a, and the application surface 2a. It is applied to the whole.
  • the moving speed of the inorganic powder 14 toward the peripheral side of the semiconductor substrate 2 can be adjusted by the viscosity imparted to the P-type semiconductor impurity liquid source 1-P by the thickener 13.
  • interval i of the inorganic powder 14 adjacent in the surface direction d along the application surface 2a can be adjusted.
  • the distribution of the P-type impurities 11-P on the coated surface 2a can be adjusted.
  • the distribution of the P-type impurities 11-P on the coating surface 2a can be adjusted uniformly.
  • FIG. 7 is a schematic cross-sectional view showing a drying step subsequent to FIG. 6 in the method for manufacturing the semiconductor device according to the present embodiment.
  • the semiconductor impurity liquid source is dried, for example, as shown in FIG. 7, the semiconductor substrate 2 coated with the P-type semiconductor impurity liquid source 1-P is placed on the baking plate 5 in which the heating element is built. Then, the baking plate 5 is heated to the drying temperature (first temperature). As a result, the organic solvent and water are generally evaporated.
  • the thickener 13 is precipitated (ie, solidified) and remains. By depositing the thickener 13, the interval i between the adjacent inorganic powders 14 can be stably maintained by the thickener 13. Thereby, the distribution of the P-type impurity 11-P on the coated surface 2a can be maintained.
  • step S11 to S13 are performed using the surface opposite to the coating surface 2a of the semiconductor substrate 2 as a new coating surface, and the semiconductor impurity liquid source having a different impurity conductivity type. To do.
  • FIG. 8 is a schematic cross-sectional view showing the stacking process continued from FIG. 7 in the method for manufacturing the semiconductor device according to the present embodiment.
  • a plurality of semiconductor substrates 2 are laminated so that the application surfaces of semiconductor impurity liquid sources of the same conductivity type face each other.
  • reference numeral 11-N is an N-type impurity.
  • the interval between the adjacent inorganic powders 14 is not adjusted, the distribution of the inorganic powders 14 is biased, and a portion where the inorganic powders 14 are not locally present between the semiconductor substrates 2 may be generated.
  • the distance between the semiconductor substrates 2 is narrowed by the gravity of the stacked semiconductor substrates 2.
  • the distance between the semiconductor substrates 2 becomes non-uniform in the plane direction, and the arrangement state of impurities between the semiconductor substrates 2 also becomes non-uniform in the plane direction. As a result, it becomes difficult to maintain the uniformity of impurity diffusion.
  • the inorganic powder 14 is the surface of the space
  • the distribution in the direction can be adjusted.
  • the inorganic powder 14 can be adjusted so that the distribution in the surface direction d of the interval between the semiconductor substrates 2 is uniform.
  • the uniformity in the surface direction of the interval between the semiconductor substrates 2 can be enhanced, the uniformity in the surface direction of the arrangement state of impurities between the semiconductor substrates 2 can be enhanced. As a result, the uniformity of impurity diffusion can be improved.
  • FIG. 9 is a schematic cross-sectional view showing a baking step subsequent to FIG. 8 in the method for manufacturing the semiconductor device according to the present embodiment.
  • FIG. 10 is a graph showing a temperature transition in the diffusion process in the method for manufacturing a semiconductor device according to the present embodiment.
  • the firing step for example, as shown in FIG. 9, the laminated semiconductor substrate 2 is heated at the firing temperature to remove the thickener 13. More specifically, as shown in FIG. 10, the laminated semiconductor substrate 2 is heated at a constant baking temperature Ta for a predetermined time t1 to remove the thickener 13.
  • the P-type impurities 11-P are formed on the surface of the semiconductor substrate 2. It can be arranged as uniformly as possible.
  • a deposition process is performed in which impurities are vitrified to generate a diffusion supply source (step S16).
  • FIG. 11 is a schematic cross-sectional view showing a deposition process subsequent to FIG. 9 in the method for manufacturing a semiconductor device according to the present embodiment.
  • the deposition step for example, as shown in FIG. 11, by heating the P-type impurity 11-P to the deposition temperature (second temperature), the P-type impurity 11-P is vitrified to form a diffusion supply source.
  • the P-type impurity 11-P is heated at a constant deposition temperature Tb higher than the firing temperature Ta for a time t2 longer than the firing time t1, so that the P-type impurity 11-P is heated.
  • 11-P is the diffusion source.
  • the P-type impurity 11-P is diffused to a shallow position.
  • the P-type impurities 11 are formed on the surface of the semiconductor substrate 2.
  • -P can be arranged as uniformly as possible.
  • the P-type impurity 11-P can be diffused as uniformly as possible.
  • N-type impurity 11-N the same applies to the N-type impurity 11-N.
  • the upper and lower semiconductor substrates 2 are joined in a block state.
  • FIG. 12 is a schematic cross-sectional view showing the diffusion step following FIG. 11 in the method for manufacturing the semiconductor device according to the present embodiment.
  • the P-type impurity 11-P is diffused to a desired depth by heating the P-type impurity 11-P to the diffusion temperature. More specifically, as shown in FIG. 10, the P-type impurity 11-P is heated at a constant diffusion temperature Tc higher than the deposition temperature Tb for a time t3 longer than the deposition time t2, thereby obtaining a P-type impurity.
  • Impurities 11-P are diffused to a desired depth.
  • N-type impurity 11-N is similarly diffused.
  • FIG. 13 is a schematic cross-sectional view showing the dipping process continued from FIG. 12 in the method for manufacturing the semiconductor device according to the present embodiment.
  • the spacing between the semiconductor substrates 2 is maintained by the inorganic powder 14, so the stripping solution 6 can be easily moved from the location of the outermost inorganic powder 14 toward the center side. Can penetrate.
  • the semiconductor substrate 2 is washed and dried, and stripped from the laminated state (step S19).
  • the semiconductor impurity liquid source includes a compound containing impurities, an organic solvent that dissolves the compound, a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source, An inorganic powder having a diameter larger than the impurities is mixed and contained.
  • the thickener adjusts the interval between the adjacent inorganic powders in the surface direction along the application surface by the viscosity applied to the semiconductor impurity liquid source.
  • the coated surface is deposited between adjacent inorganic powders as the organic solvent evaporates.
  • the inorganic powder adjusts the distribution of the spacing between the plurality of semiconductor substrates in the plane direction by adjusting the spacing between adjacent inorganic powders in the plane direction by the thickener. Then, after heating the impurity to a second temperature at which an impurity diffusion supply source that is higher than the first temperature is generated, a plurality of semiconductor substrates bonded by heating at the second temperature are removed from the stripping solution. When exposed to, the spacing between the plurality of semiconductor substrates is maintained, so that the stripping solution penetrates between the plurality of semiconductor substrates.
  • the distribution of impurities on the coating surface is adjusted by the viscosity of the thickener, and the semiconductor impurity liquid source is dried at the first temperature.
  • the thickening agent is deposited between adjacent inorganic powders to maintain the distribution of impurities on the coated surface and stacking a plurality of semiconductor substrates
  • the viscosity of the thickening agent causes a gap in the plane direction.
  • the inorganic powder is adjusted to adjust the distribution in the surface direction of the intervals between the semiconductor substrates, and when exposing a plurality of semiconductor substrates to the release liquid, the separation is performed through the intervals between the semiconductor substrates maintained with the inorganic powder.
  • the liquid can be infiltrated.
  • the dopant film it is necessary to pre-bake the dopant film at a constant temperature so that abnormal combustion does not occur due to abrupt generation of gas due to a large amount of organic binder, but abnormal combustion occurs in the semiconductor impurity liquid source. Since no organic solvent is used, pre-baking before firing is unnecessary. Thereby, the number of processes can be suppressed and the production efficiency can be further improved.
  • FIG. 14 is a flowchart showing a method for manufacturing a semiconductor impurity liquid source according to a modification of the present embodiment.
  • stirring may be performed before holding the mixed liquid (step S4).
  • the viscosity of the thickener can be further stabilized by stirring the mixed solution. By stabilizing the viscosity of the thickener, the uniformity of impurity diffusion can be more effectively ensured during the manufacture of the semiconductor device.
  • the mass concentration (wt%) of the inorganic powder with respect to the entire semiconductor impurity liquid source may be lower than the mass concentration (wt%) of the thickener with respect to the entire semiconductor impurity liquid source.
  • the mass concentration of the inorganic powder is higher than the mass concentration of the thickener, the thickener cannot exert its viscosity properly and the semiconductor impurity liquid source becomes difficult to extend. Even if the material of the agent is selected, it is difficult to accurately adjust the viscosity of the thickener.
  • the mass concentration of the inorganic powder is lower than the mass concentration of the thickener, the viscosity of the thickener can be appropriately exhibited. By doing so, the viscosity of the thickener can be accurately adjusted.
  • the mass concentration of the inorganic powder with respect to the entire semiconductor impurity liquid source may be lower than the mass concentration of the organic solvent with respect to the entire semiconductor impurity liquid source.
  • the mass concentration of the inorganic powder is higher than the mass concentration of the organic solvent, the fluidity of the semiconductor impurity liquid source is remarkably impaired, so that even if a thickener that imparts viscosity to the fluid is added , Since there are too few fluids (organic solvents) which should give viscosity, a thickener cannot exhibit viscosity appropriately. For this reason, even if the material of the thickener is selected to obtain a desired viscosity, it is difficult to accurately adjust the viscosity of the thickener.
  • the mass concentration of the inorganic powder is lower than the mass concentration of the organic solvent, a sufficient organic solvent that imparts viscosity can be secured, so that the thickener can appropriately exhibit the viscosity. For this reason, the viscosity of the thickener can be accurately adjusted by selecting the material of the thickener to obtain a desired viscosity.

Abstract

A semiconductor impurity liquid source includes: a compound that contains an impurity; an organic solvent that dissolves the compound; a thickening agent that is dissolved in the organic solvent and imparts viscosity to the liquid source; and an inorganic powder with a diameter larger than the impurity. The thickening agent adjusts the distribution of the impurity on an application surface of a semiconductor substrate by adjusting the gap between adjacent inorganic powder particles using viscosity when the liquid source is applied to the application surface, and maintains the distribution of the impurity by precipitating between adjacent inorganic powder particles as a result of being heated to a first temperature. The inorganic powder adjusts the distribution of gaps between semiconductor substrates, and when the joined semiconductor substrates are exposed to delamination liquid after heating the impurity to a second temperature, the delamination liquid permeates the space between the semiconductor substrates by the gap between the semiconductor substrates being maintained.

Description

半導体不純物液体ソース、半導体不純物液体ソースの製造方法および半導体装置の製造方法Semiconductor impurity liquid source, method for manufacturing semiconductor impurity liquid source, and method for manufacturing semiconductor device
 本発明は、半導体不純物液体ソース、半導体不純物液体ソースの製造方法および半導体装置の製造方法に関する。 The present invention relates to a semiconductor impurity liquid source, a method for manufacturing a semiconductor impurity liquid source, and a method for manufacturing a semiconductor device.
 従来から、半導体プロセスでは、塗布コータヘッド上に載置されたSiウェーハを塗布コータヘッドで回転させながら、ノズルによって上方からSiウェーハに不純物の液体ソースを滴下することが行われていた。Siウェーハに滴下された液体ソースは、回転するSiウェーハの遠心力によってSiウェーハに全面的に塗布される。そして、液体ソースが塗布されたSiウェーハを加熱することで、Siウェーハに不純物を熱拡散することができる。また、一度に大量のSiウェーハを処理するため、不純物の熱拡散においては、液体ソースが塗布された複数枚のSiウェーハを積層し、積層されたSiウェーハをまとめて加熱することで、複数枚のSiウェーハに同時に熱拡散を行っていた。そして、熱拡散が完了した後は、フッ酸中にSiウェーハの積層体を浸漬することで、積層体から単体毎にSiウェーハを剥離する。 Conventionally, in a semiconductor process, while a Si wafer placed on a coating coater head is rotated by the coating coater head, a liquid source of impurities is dropped onto the Si wafer from above by a nozzle. The liquid source dripped onto the Si wafer is applied to the entire surface of the Si wafer by the centrifugal force of the rotating Si wafer. Then, by heating the Si wafer coated with the liquid source, impurities can be thermally diffused into the Si wafer. In addition, in order to process a large amount of Si wafers at a time, in thermal diffusion of impurities, a plurality of Si wafers coated with a liquid source are stacked, and the stacked Si wafers are heated together to form a plurality of sheets. At the same time, thermal diffusion was performed on the Si wafer. Then, after the thermal diffusion is completed, the Si wafer is peeled from the stacked body for each single body by immersing the stacked body of the Si wafer in hydrofluoric acid.
 しかしながら、従来は、不純物の拡散の均一性を確保しつつ半導体基板の剥離の所要時間を短縮して半導体装置の製造効率を向上させることについて、有効な提案がなされていなかった。 However, conventionally, there has been no effective proposal for improving the manufacturing efficiency of a semiconductor device by shortening the time required for peeling the semiconductor substrate while ensuring the uniformity of impurity diffusion.
 例えば、特開平11-176764号公報には、不純物の化合物および有機系バインダを含む拡散用フィルムが開示されているが、この技術では、有機系バインダが不純物の拡散の均一性に何ら寄与することができず、また、フィルムを溶融させる工程が必要であるため製造効率を向上させることもできない。したがって、特開平11-176764号公報に記載の技術は、本発明とは全く異なる技術である。 For example, Japanese Patent Laid-Open No. 11-176664 discloses a diffusion film containing an impurity compound and an organic binder. In this technique, the organic binder contributes to the uniformity of impurity diffusion. Moreover, since a process for melting the film is necessary, the production efficiency cannot be improved. Therefore, the technique described in JP-A-11-176664 is completely different from the present invention.
 そこで、本発明は、不純物の拡散の均一性を確保しつつ半導体基板の剥離の所要時間を短縮して半導体装置の製造効率を向上させることができる半導体不純物液体ソース、半導体不純物液体ソースの製造方法および半導体製造方法を提供することを目的とする。 Therefore, the present invention provides a semiconductor impurity liquid source and a method for manufacturing a semiconductor impurity liquid source, which can improve the manufacturing efficiency of a semiconductor device by shortening the time required for removing a semiconductor substrate while ensuring uniformity of impurity diffusion And it aims at providing a semiconductor manufacturing method.
 本発明の一態様に係る半導体不純物液体ソースは、
 積層された複数の半導体基板間に塗布された状態で加熱されることで、前記複数の半導体基板に不純物を拡散させる半導体不純物液体ソースであって、
 前記不純物を含む化合物と、
 前記化合物を溶解する有機溶剤と、
 前記有機溶剤に溶解し、前記半導体不純物液体ソースに粘性を付与する増粘剤と、
 前記不純物よりも大きい直径を有する無機粉末と、が混合して含有され、
 前記増粘剤は、
 前記半導体不純物液体ソースを前記半導体基板の塗布面に塗布する際に、前記半導体不純物液体ソースに付与する前記粘性によって、前記塗布面に沿った面方向において隣り合う前記無機粉末同士の間隔を調整して前記塗布面上への前記不純物の分布を調整し、
 前記半導体不純物液体ソースを乾燥させる第1の温度に加熱されることで、前記有機溶剤の蒸発にともなって前記隣り合う無機粉末同士の間に析出して前記塗布面上への前記不純物の分布を維持する特性を有し、
 前記無機粉末は、
 前記複数の半導体基板を積層する際に、前記増粘剤によって前記面方向において隣り合う無機粉末同士の間隔が調整されていることで、前記複数の半導体基板同士の間隔の前記面方向における分布を調整し、
 前記不純物を前記第1の温度よりも高い温度である前記不純物の拡散供給源が生成される第2の温度に加熱した後、前記第2の温度での加熱によって接合された前記複数の半導体基板を剥離液に晒す際に、前記複数の半導体基板同士の間隔を維持していることで、前記複数の半導体基板間に前記剥離液を浸透させる特性を有する。
A semiconductor impurity liquid source according to one embodiment of the present invention is provided.
A semiconductor impurity liquid source that diffuses impurities in the plurality of semiconductor substrates by being heated while being applied between the plurality of stacked semiconductor substrates,
A compound containing the impurities;
An organic solvent for dissolving the compound;
A thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source;
And an inorganic powder having a diameter larger than the impurities,
The thickener is
When the semiconductor impurity liquid source is applied to the application surface of the semiconductor substrate, the spacing between the inorganic powders adjacent in the surface direction along the application surface is adjusted by the viscosity applied to the semiconductor impurity liquid source. To adjust the distribution of the impurities on the coated surface,
By heating to the first temperature for drying the semiconductor impurity liquid source, the impurities are deposited on the coated surface by depositing between the adjacent inorganic powders as the organic solvent evaporates. Have the characteristics to maintain,
The inorganic powder is
When laminating the plurality of semiconductor substrates, the spacing between the inorganic powders adjacent to each other in the surface direction is adjusted by the thickener, whereby the distribution in the surface direction of the plurality of semiconductor substrates is distributed. Adjust
The plurality of semiconductor substrates bonded by heating at the second temperature after heating the impurity to a second temperature at which the impurity diffusion supply source is generated, which is higher than the first temperature When the substrate is exposed to the stripping solution, the spacing between the plurality of semiconductor substrates is maintained, so that the stripping solution penetrates between the plurality of semiconductor substrates.
 また、前記半導体不純物液体ソースにおいて、
 前記半導体不純物液体ソース全体に対する前記無機粉末の質量濃度は、前記半導体不純物液体ソース全体に対する前記増粘剤の質量濃度よりも低くてもよい。
In the semiconductor impurity liquid source,
The mass concentration of the inorganic powder with respect to the entire semiconductor impurity liquid source may be lower than the mass concentration of the thickener with respect to the entire semiconductor impurity liquid source.
 また、前記半導体不純物液体ソースにおいて、
 前記半導体不純物液体ソース全体に対する前記無機粉末の質量濃度は、前記半導体不純物液体ソース全体に対する前記有機溶剤の質量濃度よりも低くてもよい。
In the semiconductor impurity liquid source,
A mass concentration of the inorganic powder with respect to the entire semiconductor impurity liquid source may be lower than a mass concentration of the organic solvent with respect to the entire semiconductor impurity liquid source.
 また、前記半導体不純物液体ソースにおいて、
 前記剥離液は、フッ酸であってもよい。
In the semiconductor impurity liquid source,
The stripping solution may be hydrofluoric acid.
 また、前記半導体不純物液体ソースにおいて、
 前記無機粉末は、主成分として、Si、SiO、SiCおよびSiからなる群から選択される少なくとも1つの物質を含有してもよい。
In the semiconductor impurity liquid source,
The inorganic powder may contain at least one substance selected from the group consisting of Si, SiO 2 , SiC, and Si 3 N 4 as a main component.
 また、前記半導体不純物液体ソースにおいて、
 前記増粘剤は、主成分として、セルロースまたはその誘導体を含有してもよい。
In the semiconductor impurity liquid source,
The thickener may contain cellulose or a derivative thereof as a main component.
 また、前記半導体不純物液体ソースにおいて、
 前記増粘剤は、主成分として、ヒドロキシプロピルセルロースを含有してもよい。
In the semiconductor impurity liquid source,
The thickener may contain hydroxypropylcellulose as a main component.
 また、前記半導体不純物液体ソースにおいて、
 前記有機溶剤は、主成分として、エタノール、アセトン、又はプロパノールを含有してもよい。
In the semiconductor impurity liquid source,
The organic solvent may contain ethanol, acetone, or propanol as a main component.
 また、前記半導体不純物液体ソースにおいて、
 前記化合物は、ほう酸および乳酸アルミニウムであってもよい。
In the semiconductor impurity liquid source,
The compound may be boric acid and aluminum lactate.
 また、前記半導体不純物液体ソースにおいて、
 前記化合物は、ピロりん酸であってもよい。
In the semiconductor impurity liquid source,
The compound may be pyrophosphoric acid.
 また、前記半導体不純物液体ソースにおいて、
 更に、水を含有してもよい。
In the semiconductor impurity liquid source,
Furthermore, you may contain water.
 本発明の一態様に係る半導体不純物液体ソースの製造方法は、
 前記不純物を含む化合物と、前記化合物を溶解する有機溶剤と、前記有機溶剤に溶解し、前記半導体不純物液体ソースに粘性を付与する増粘剤と、を混合した混合液を生成する工程と、
 前記混合液の粘性を安定させるために前記混合液を予め決められた時間所定の雰囲気下で保持する工程と、
 前記保持の後に、前記混合液に、前記不純物よりも大きい直径を有する無機粉末を混合する工程と、を備える。
A method for manufacturing a semiconductor impurity liquid source according to an aspect of the present invention includes:
Producing a mixed liquid comprising a compound containing the impurity, an organic solvent that dissolves the compound, and a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source;
Holding the liquid mixture in a predetermined atmosphere for a predetermined time in order to stabilize the viscosity of the liquid mixture;
After the holding, a step of mixing an inorganic powder having a diameter larger than the impurities into the mixed solution.
 前記半導体不純物ソースの製造方法において、
 前記保持の前に前記混合液を撹拌する工程を更に備えてもよい。
In the method for manufacturing the semiconductor impurity source,
You may further provide the process of stirring the said liquid mixture before the said holding | maintenance.
 本発明の一態様に係る半導体装置の製造方法は、
 複数の半導体基板に、請求項1に記載の半導体不純物液体ソースを塗布する工程と、
 前記塗布された半導体不純物液体ソースを第1の温度に加熱することで、前記塗布された半導体不純物液体ソースを乾燥させる工程と、
 前記複数の半導体基板を積層させる工程と、
 前記複数の半導体基板を積層させる際に、前記無機粉末によって前記複数の半導体基板同士の間隔の分布を調整する工程と、
 前記不純物を第2の温度に加熱することで、前記不純物の拡散供給源を生成する工程と、 前記複数の半導体基板を剥離液に浸漬させて、前記第2の温度での加熱によって接合された前記複数の半導体基板同士を剥離する工程と、を備える。
A method for manufacturing a semiconductor device according to one embodiment of the present invention includes:
Applying the semiconductor impurity liquid source according to claim 1 to a plurality of semiconductor substrates;
Drying the applied semiconductor impurity liquid source by heating the applied semiconductor impurity liquid source to a first temperature;
Laminating the plurality of semiconductor substrates;
Adjusting the distribution of the spacing between the plurality of semiconductor substrates by the inorganic powder when laminating the plurality of semiconductor substrates; and
The impurity is heated to a second temperature to generate a diffusion source of the impurity, and the plurality of semiconductor substrates are immersed in a stripping solution and bonded by heating at the second temperature. Separating the plurality of semiconductor substrates.
 本発明の一態様に係る半導体不純物液体ソースは、積層された複数の半導体基板間に塗布された状態で加熱されることで、複数の半導体基板に不純物を拡散させる半導体不純物液体ソースであって、不純物を含む化合物と、化合物を溶解する有機溶剤と、有機溶剤に溶解し、半導体不純物液体ソースに粘性を付与する増粘剤と、不純物よりも大きい直径を有する無機粉末と、が混合して含有され、増粘剤は、半導体不純物液体ソースを半導体基板の塗布面に塗布する際に、半導体不純物液体ソースに付与する粘性によって、塗布面に沿った面方向において隣り合う無機粉末同士の間隔を調整して塗布面上への不純物の分布を調整し、半導体不純物液体ソースを乾燥させる第1の温度に加熱されることで、有機溶剤の蒸発にともなって隣り合う無機粉末同士の間に析出して塗布面上への不純物の分布を維持する特性を有し、無機粉末は、複数の半導体基板を積層する際に、増粘剤によって面方向において隣り合う無機粉末同士の間隔が調整されていることで、複数の半導体基板同士の間隔の面方向における分布を調整し、不純物を第1の温度よりも高い温度である不純物の拡散供給源が生成される第2の温度に加熱した後、第2の温度での加熱によって接合された複数の半導体基板を剥離液に晒す際に、複数の半導体基板同士の間隔を維持していることで、複数の半導体基板間に剥離液を浸透させる特性を有する。 A semiconductor impurity liquid source according to one embodiment of the present invention is a semiconductor impurity liquid source that diffuses impurities into a plurality of semiconductor substrates by being heated while being applied between a plurality of stacked semiconductor substrates, Contains a compound containing impurities, an organic solvent that dissolves the compound, a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source, and an inorganic powder having a diameter larger than the impurities. When the semiconductor impurity liquid source is applied to the application surface of the semiconductor substrate, the thickener adjusts the spacing between adjacent inorganic powders in the surface direction along the application surface by the viscosity applied to the semiconductor impurity liquid source. Then, the impurity distribution on the coated surface is adjusted, and the semiconductor impurity liquid source is heated to the first temperature for drying, so that the organic solvent is evaporated and adjoined. It has the property of precipitating between inorganic powders and maintaining the distribution of impurities on the coated surface. Inorganic powders are adjacent to each other in the plane direction by a thickener when laminating a plurality of semiconductor substrates. By adjusting the distance between the semiconductor substrates, the distribution of the distance between the plurality of semiconductor substrates in the plane direction is adjusted, and a second impurity diffusion supply source having a temperature higher than the first temperature is generated. When the plurality of semiconductor substrates bonded by heating at the second temperature are exposed to the stripping solution after being heated to the temperature of the second temperature, the spacing between the plurality of semiconductor substrates is maintained. Has the property of allowing the stripping solution to penetrate.
 このように、本発明によれば、半導体不純物液体ソースを塗布する際に、増粘剤の粘性によって塗布面上への不純物の分布を調整し、半導体不純物液体ソースを第1の温度で乾燥させる際に、増粘剤が隣り合う無機粉末同士の間に析出して塗布面上への不純物の分布を維持し、複数の半導体基板を積層する際に、増粘剤の粘性で面方向の間隔が調整されている無機粉末によって、半導体基板同士の間隔の面方向における分布を調整し、複数の半導体基板を剥離液に晒す際に、無機粉末で維持された半導体基板同士の間隔を介して剥離液を浸透させることができる。 Thus, according to the present invention, when applying the semiconductor impurity liquid source, the distribution of impurities on the coating surface is adjusted by the viscosity of the thickener, and the semiconductor impurity liquid source is dried at the first temperature. When the thickening agent is deposited between adjacent inorganic powders to maintain the distribution of impurities on the coated surface and stacking a plurality of semiconductor substrates, the viscosity of the thickening agent causes a gap in the plane direction. The inorganic powder is adjusted to adjust the distribution in the surface direction of the intervals between the semiconductor substrates, and when exposing a plurality of semiconductor substrates to the release liquid, the separation is performed through the intervals between the semiconductor substrates maintained with the inorganic powder. The liquid can be infiltrated.
 これにより、不純物の拡散の均一性を確保しつつ半導体基板の剥離の所要時間を短縮して半導体装置の製造効率を向上させることができる。 Thereby, it is possible to improve the manufacturing efficiency of the semiconductor device by shortening the time required for removing the semiconductor substrate while ensuring the uniformity of impurity diffusion.
本実施形態に係る半導体不純物液体ソースの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the semiconductor impurity liquid source which concerns on this embodiment. 本実施形態に係る半導体不純物液体ソースの製造方法において、P型の半導体不純物液体ソースの製造方法を説明するための説明図である。In the manufacturing method of the semiconductor impurity liquid source which concerns on this embodiment, it is explanatory drawing for demonstrating the manufacturing method of a P-type semiconductor impurity liquid source. 本実施形態に係る半導体不純物液体ソースの製造方法において、N型の半導体不純物液体ソースの製造方法を説明するための説明図である。In the manufacturing method of the semiconductor impurity liquid source which concerns on this embodiment, it is explanatory drawing for demonstrating the manufacturing method of an N type semiconductor impurity liquid source. 本実施形態に係る半導体装置の製造方法を示すフローチャートである。3 is a flowchart showing a method for manufacturing a semiconductor device according to the present embodiment. 本実施形態に係る半導体装置の製造方法において、滴下工程を示す概略断面図である。It is a schematic sectional drawing which shows a dripping process in the manufacturing method of the semiconductor device which concerns on this embodiment. 本実施形態に係る半導体装置の製造方法において、図5に続く塗布工程を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a coating step subsequent to FIG. 5 in the method for manufacturing the semiconductor device according to the embodiment. 本実施形態に係る半導体装置の製造方法において、図6に続く乾燥工程を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing a drying step subsequent to FIG. 6 in the method for manufacturing the semiconductor device according to the present embodiment. 本実施形態に係る半導体装置の製造方法において、図7に続く積層工程を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing a stacking step following FIG. 7 in the method for manufacturing the semiconductor device according to the embodiment. 本実施形態に係る半導体装置の製造方法において、図8に続く焼成工程を示す概略断面図である。FIG. 9 is a schematic cross-sectional view showing a firing step following FIG. 8 in the method for manufacturing the semiconductor device according to the present embodiment. 本実施形態に係る半導体装置の製造方法において、拡散プロセスでの温度遷移を示すグラフである。5 is a graph showing temperature transition in a diffusion process in the method for manufacturing a semiconductor device according to the embodiment. 本実施形態に係る半導体装置の製造方法において、図9に続くデポジション工程を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing a deposition step following FIG. 9 in the method for manufacturing the semiconductor device according to the embodiment. 本実施形態に係る半導体装置の製造方法において、図11に続く拡散工程を示す概略断面図である。FIG. 12 is a schematic cross-sectional view showing a diffusion step following FIG. 11 in the method for manufacturing the semiconductor device according to the present embodiment. 本実施形態に係る半導体装置の製造方法において、図12に続く浸漬工程を示す概略断面図である。FIG. 13 is a schematic cross-sectional view showing an immersion step subsequent to FIG. 12 in the method for manufacturing the semiconductor device according to the present embodiment. 本実施形態の変形例に係る半導体不純物液体ソースの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the semiconductor impurity liquid source which concerns on the modification of this embodiment.
 以下、図面を参照して本発明に係る実施形態を説明する。なお、以下に示す実施形態は、本発明を限定するものではない。また、実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号を付し、その繰り返しの説明は省略する。 Embodiments according to the present invention will be described below with reference to the drawings. In addition, embodiment shown below does not limit this invention. In the drawings referred to in the embodiments, the same portions or portions having similar functions are denoted by the same or similar reference numerals, and the repeated description thereof is omitted.
(半導体不純物液体ソース)
 まず、本実施形態に係る半導体不純物液体ソースについて説明する。
(Semiconductor impurity liquid source)
First, the semiconductor impurity liquid source according to the present embodiment will be described.
 本実施形態に係る半導体不純物液体ソースは、積層された複数の半導体基板間に塗布された状態で加熱されることで、複数の半導体基板に不純物を拡散させるものである。このように、積層状態の複数の半導体基板に不純物を拡散させることで、複数の半導体基板に対して不純物を同時に拡散させることができるので、不純物の拡散を効率的に行うことができる。 The semiconductor impurity liquid source according to the present embodiment diffuses impurities in a plurality of semiconductor substrates by being heated while being applied between the plurality of stacked semiconductor substrates. In this manner, by diffusing impurities into a plurality of stacked semiconductor substrates, the impurities can be simultaneously diffused into the plurality of semiconductor substrates, so that the impurities can be efficiently diffused.
 半導体不純物液体ソースは、不純物を含む化合物と、化合物を溶解する有機溶剤と、有機溶剤に溶解し、半導体不純物液体ソースに粘性を付与する増粘剤と、不純物よりも大きい直径を有する無機粉末と、が混合して含有されている。半導体不純物液体ソースは、更に水を含有していてもよい。 The semiconductor impurity liquid source includes an impurity-containing compound, an organic solvent that dissolves the compound, a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source, and an inorganic powder having a diameter larger than that of the impurity. , Are mixed and contained. The semiconductor impurity liquid source may further contain water.
 半導体基板にP型の不純物を拡散させるP型の半導体不純物液体ソースの場合、不純物の含む化合物としては、例えば、ほう酸、乳酸アルミニウム等を好適に用いることができる。 In the case of a P-type semiconductor impurity liquid source in which a P-type impurity is diffused into a semiconductor substrate, for example, boric acid, aluminum lactate or the like can be suitably used as the compound containing the impurity.
 半導体基板にN型の不純物を拡散させるN型の半導体不純物液体ソースの場合、不純物の含む化合物としては、例えば、ピロりん酸等を好適に用いることができる。 In the case of an N-type semiconductor impurity liquid source in which an N-type impurity is diffused into a semiconductor substrate, for example, pyrophosphoric acid or the like can be suitably used as the compound containing the impurity.
 有機溶剤は、不純物を含む化合物を溶解する特性を有する。このような特性を有する有機溶剤としては、例えば、主成分として、エタノール、アセトン又はプロパノール等を含有する有機溶剤を好適に用いることができる。 Organic solvent has the property of dissolving compounds containing impurities. As the organic solvent having such characteristics, for example, an organic solvent containing ethanol, acetone, propanol or the like as a main component can be preferably used.
 増粘剤は、有機溶剤に溶解し、半導体不純物液体ソースに粘性を付与する特性を有する。また、増粘剤は、半導体不純物液体ソースを半導体基板の塗布面に塗布する際に、半導体不純物液体ソースに付与する粘性によって、塗布面に沿った面方向において隣り合う無機粉末同士の間隔を調整して塗布面上への不純物の分布を調整する特性を有する。さらに、増粘剤は、半導体不純物液体ソースを乾燥させる第1の温度に加熱されることで、有機溶剤の蒸発にともなって隣り合う無機粉末同士の間に析出して塗布面上への不純物の分布を維持する特性を有する。 Thickener dissolves in an organic solvent and has the property of imparting viscosity to the semiconductor impurity liquid source. In addition, the thickener adjusts the spacing between adjacent inorganic powders in the surface direction along the coating surface by the viscosity applied to the semiconductor impurity liquid source when the semiconductor impurity liquid source is applied to the coating surface of the semiconductor substrate. And has a characteristic of adjusting the distribution of impurities on the coated surface. Further, the thickener is heated to the first temperature for drying the semiconductor impurity liquid source, so that the organic solvent precipitates between the adjacent inorganic powders as the organic solvent evaporates, and impurities are deposited on the coated surface. It has the characteristic of maintaining the distribution.
 このような特性を有する増粘剤としては、例えば、主成分として、セルロースまたはその誘導体を含有する増粘剤を好適に用いることができる。増粘剤は、より好ましくは、ヒドロキシプロピルセルロースを含有する。 As the thickener having such characteristics, for example, a thickener containing cellulose or a derivative thereof as a main component can be suitably used. More preferably, the thickener contains hydroxypropyl cellulose.
 無機粉末は、複数の半導体基板を積層する際に、増粘剤によって面方向において隣り合う無機粉末同士の間隔が調整されていることで、複数の半導体基板同士の間隔の面方向における分布を調整する特性を有する。 When laminating a plurality of semiconductor substrates, the inorganic powder adjusts the distribution of the spacing between the plurality of semiconductor substrates in the plane direction by adjusting the spacing between adjacent inorganic powders in the plane direction by the thickener. It has the characteristic to do.
 また、無機粉末は、不純物を第1の温度よりも高い温度である不純物の拡散供給源が生成される第2の温度に加熱した後、第2の温度での加熱によって接合された複数の半導体基板を剥離液に晒す際に、複数の半導体基板同士の間隔を維持していることで、複数の半導体基板間に剥離液を浸透させる特性を有する。 In addition, the inorganic powder is a plurality of semiconductors bonded by heating at a second temperature after the impurity is heated to a second temperature at which an impurity diffusion source that is higher than the first temperature is generated. When the substrate is exposed to the stripping solution, the spacing between the plurality of semiconductor substrates is maintained, so that the stripping solution penetrates between the plurality of semiconductor substrates.
 このような特性を有する無機粉末としては、例えば、主成分として、Si、SiO、SiCおよびSiからなる群から選択される少なくとも1つの物質を含有する無機粉末を好適に用いることができる。 As the inorganic powder having such characteristics, for example, an inorganic powder containing at least one substance selected from the group consisting of Si, SiO 2 , SiC and Si 3 N 4 as a main component is preferably used. it can.
 また、無機粉末を介して接合された半導体基板同士を剥離する特性を有する剥離液としては、例えば、フッ酸等を好適に用いることができる。 Moreover, as a stripping solution having a property of stripping semiconductor substrates bonded via inorganic powder, for example, hydrofluoric acid or the like can be suitably used.
(半導体不純物液体ソースの製造方法)
 次に、既述した半導体不純物液体ソースを製造するための製造方法について説明する。図1は、本実施形態に係る半導体不純物液体ソースの製造方法を示すフローチャートである。
(Manufacturing method of semiconductor impurity liquid source)
Next, a manufacturing method for manufacturing the above-described semiconductor impurity liquid source will be described. FIG. 1 is a flowchart showing a method for manufacturing a semiconductor impurity liquid source according to the present embodiment.
 図1に示すように、先ず、不純物を含む化合物と、化合物を溶解する有機溶剤と、有機溶剤に溶解し、半導体不純物液体ソースに粘性を付与する増粘剤と、を混合した混合液を生成する(ステップS1)。 As shown in FIG. 1, first, a mixed liquid is produced in which a compound containing impurities, an organic solvent that dissolves the compound, and a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source are generated. (Step S1).
 図2は、本実施形態に係る半導体不純物液体ソースの製造方法において、P型の半導体不純物液体ソースの製造方法を説明するための説明図である。 FIG. 2 is an explanatory diagram for explaining a method for producing a P-type semiconductor impurity liquid source in the method for producing a semiconductor impurity liquid source according to the present embodiment.
 図2に示すように、P型の半導体不純物液体ソースの混合液を生成する場合、例えば、粉末の乳酸アルミニウムを水に混合させ、乳酸アルミニウムが水に溶解するまで湯煎することで、乳酸アルミニウム液を生成する。このとき、図2に示すように、撹拌しながら湯煎することで、乳酸アルミニウムの溶解時間を短縮させることができる。乳酸アルミニウムは、有機溶剤よりも水に溶解し易い。溶解し易い水に乳酸アルミニウムを溶解させた後に有機溶剤と混合することで、混合液を適切に生成することができる。 As shown in FIG. 2, when producing a mixed liquid of a P-type semiconductor impurity liquid source, for example, powdered aluminum lactate is mixed with water and then bathed until the aluminum lactate is dissolved in water, thereby producing an aluminum lactate liquid. Is generated. At this time, as shown in FIG. 2, the melting time of the aluminum lactate can be shortened by performing the water bath while stirring. Aluminum lactate is more soluble in water than organic solvents. By mixing aluminum lactate in easily soluble water and then mixing with an organic solvent, a mixed solution can be generated appropriately.
 また、図2に示すように、粉末のほう酸をエタノールに混合させ、ほう酸がエタノールに溶解するまで湯煎することで、ほう酸液を生成する。このとき、図2に示すように、撹拌しながら湯煎することで、ほう酸の溶解時間を短縮させることができる。 In addition, as shown in FIG. 2, boric acid powder is mixed with ethanol and boiled until the boric acid is dissolved in ethanol to produce a boric acid solution. At this time, as shown in FIG. 2, the dissolution time of boric acid can be shortened by boiling water with stirring.
 そして、図2に示すように、乳酸アルミニウム液と、ほう酸液と、有機溶剤と、増粘剤とを混合することで、混合液を生成する。 And as shown in FIG. 2, a liquid mixture is produced | generated by mixing an aluminum lactate liquid, a boric acid liquid, an organic solvent, and a thickener.
 図3は、本実施形態に係る半導体不純物液体ソースの製造方法において、N型の半導体不純物液体ソースの製造方法を説明するための説明図である。 FIG. 3 is an explanatory diagram for explaining a method for producing an N-type semiconductor impurity liquid source in the method for producing a semiconductor impurity liquid source according to the present embodiment.
 図3に示すように、N型の半導体不純物液体ソースの混合液を生成する場合、例えば、ピロりん酸と、有機溶剤と、増粘剤とを混合することで、混合液を生成する。 As shown in FIG. 3, when a mixed liquid of N-type semiconductor impurity liquid source is generated, for example, a mixed liquid is generated by mixing pyrophosphoric acid, an organic solvent, and a thickener.
 混合液を生成した後、図1に示すように、混合液の粘性を安定させるために混合液を予め決められた時間所定の雰囲気下で保持する(ステップS2)。 After generating the mixed solution, as shown in FIG. 1, the mixed solution is held in a predetermined atmosphere for a predetermined time in order to stabilize the viscosity of the mixed solution (step S2).
 混合液を保持した後、混合液に、不純物よりも大きい直径を有する無機粉末を混合する(ステップS3)。以上のようにして、半導体不純物液体ソースを得ることができる。 After holding the mixed solution, an inorganic powder having a diameter larger than the impurities is mixed into the mixed solution (step S3). As described above, a semiconductor impurity liquid source can be obtained.
(半導体装置の製造方法)
 次に、既述した半導体不純物液体ソースを用いた半導体装置の製造方法について説明する。
(Method for manufacturing semiconductor device)
Next, a method for manufacturing a semiconductor device using the semiconductor impurity liquid source described above will be described.
 図4は、本実施形態に係る半導体装置の製造方法を示すフローチャートである。図5は、本実施形態に係る半導体装置の製造方法において、滴下工程を示す概略断面図である。 FIG. 4 is a flowchart showing a method for manufacturing a semiconductor device according to the present embodiment. FIG. 5 is a schematic cross-sectional view showing a dropping step in the method for manufacturing a semiconductor device according to the present embodiment.
 先ず、図4に示すように、半導体基板上に半導体不純物液体ソースを滴下する(ステップS11)。例えば、図5に示すように、塗布コータヘッド3上に半導体基板2を載置し、載置された半導体基板2に対して、上方からノズル4によって半導体基板2の塗布面2a上にP型半導体不純物液体ソース1-Pを滴下する。図5に示すように、P型半導体不純物液体ソース1-Pは、P型不純物11-Pと、有機溶剤12と、増粘剤13と、無機粉末14とが混合して含有されている。なお、P型半導体不純物液体ソース1-Pは、更に、水やエタノールも含有していてもよい。半導体基板2は、例えば、シリコン単結晶基板である。半導体基板2は、不純物が拡散されていてもよい。 First, as shown in FIG. 4, a semiconductor impurity liquid source is dropped on a semiconductor substrate (step S11). For example, as shown in FIG. 5, the semiconductor substrate 2 is placed on the coating coater head 3, and the P-type is placed on the coating surface 2 a of the semiconductor substrate 2 by the nozzle 4 from above with respect to the placed semiconductor substrate 2. The semiconductor impurity liquid source 1-P is dropped. As shown in FIG. 5, the P-type semiconductor impurity liquid source 1-P contains a mixture of a P-type impurity 11-P, an organic solvent 12, a thickener 13, and an inorganic powder 14. The P-type semiconductor impurity liquid source 1-P may further contain water or ethanol. The semiconductor substrate 2 is, for example, a silicon single crystal substrate. The semiconductor substrate 2 may be diffused with impurities.
 半導体不純物液体ソースを滴下した後、図4に示すように、滴下された半導体不純物液体ソースを半導体基板に塗布する(ステップS12)。これにより、半導体基板上に拡散源皮膜を形成する。図6は、本実施形態に係る半導体装置の製造方法において、図5に続く塗布工程を示す概略断面図である。半導体不純物液体ソースを塗布する際には、例えば、図6に示すように、塗布コータヘッド3を回転方向rに回転させることで、塗布コータヘッド3上に載置された半導体基板2とともに、半導体基板2の塗布面2a上のP型半導体不純物液体ソース1-Pを回転させる。回転によってP型半導体不純物液体ソース1-Pに遠心力が作用することで、P型半導体不純物液体ソース1-Pは、塗布面2aの中心側から周辺側に向かって流動して、塗布面2a全体に塗布される。 After dropping the semiconductor impurity liquid source, the dropped semiconductor impurity liquid source is applied to the semiconductor substrate as shown in FIG. 4 (step S12). Thereby, a diffusion source film is formed on the semiconductor substrate. FIG. 6 is a schematic cross-sectional view showing the coating process subsequent to FIG. 5 in the method for manufacturing the semiconductor device according to the present embodiment. When applying the semiconductor impurity liquid source, for example, as shown in FIG. 6, by rotating the coating coater head 3 in the rotation direction r, the semiconductor substrate 2 placed on the coating coater head 3 and the semiconductor The P-type semiconductor impurity liquid source 1-P on the coating surface 2a of the substrate 2 is rotated. When the centrifugal force acts on the P-type semiconductor impurity liquid source 1-P by the rotation, the P-type semiconductor impurity liquid source 1-P flows from the center side to the peripheral side of the application surface 2a, and the application surface 2a. It is applied to the whole.
 このとき、増粘剤13によってP型半導体不純物液体ソース1-Pに付与されている粘性によって、半導体基板2の周辺側への無機粉末14の移動速度を調整することができる。これにより、塗布面2aに沿った面方向dにおいて隣り合う無機粉末14同士の間隔iを調整することができる。無機粉末14同士の間隔iを調整することで、塗布面2a上へのP型不純物11-Pの分布を調整することができる。例えば、隣り合う無機粉末14同士の間隔iを均一に調整することで、塗布面2a上へのP型不純物11-Pの分布を均一に調整することができる。 At this time, the moving speed of the inorganic powder 14 toward the peripheral side of the semiconductor substrate 2 can be adjusted by the viscosity imparted to the P-type semiconductor impurity liquid source 1-P by the thickener 13. Thereby, the space | interval i of the inorganic powder 14 adjacent in the surface direction d along the application surface 2a can be adjusted. By adjusting the interval i between the inorganic powders 14, the distribution of the P-type impurities 11-P on the coated surface 2a can be adjusted. For example, by uniformly adjusting the interval i between the adjacent inorganic powders 14, the distribution of the P-type impurities 11-P on the coating surface 2a can be adjusted uniformly.
 半導体不純物液体ソースを塗布した後、図4に示すように、半導体基板に塗布された半導体不純物液体ソースを乾燥させる(ステップS13)。図7は、本実施形態に係る半導体装置の製造方法において、図6に続く乾燥工程を示す概略断面図である。半導体不純物液体ソースを乾燥する際には、例えば、図7に示すように、発熱体が内蔵されたベーク板5上に、P型半導体不純物液体ソース1-Pが塗布された半導体基板2を載置し、ベーク板5を乾燥温度(第1の温度)まで加熱する。これにより、有機溶剤および水は概ね蒸発する。一方、図7に示すように、増粘剤13は、析出(すなわち、固化)して残存している。増粘剤13が析出していることで、隣り合う無機粉末14間の間隔iを増粘剤13によって安定的に維持することができる。これにより、塗布面2a上へのP型不純物11-Pの分布を維持することができる。 After applying the semiconductor impurity liquid source, as shown in FIG. 4, the semiconductor impurity liquid source applied to the semiconductor substrate is dried (step S13). FIG. 7 is a schematic cross-sectional view showing a drying step subsequent to FIG. 6 in the method for manufacturing the semiconductor device according to the present embodiment. When the semiconductor impurity liquid source is dried, for example, as shown in FIG. 7, the semiconductor substrate 2 coated with the P-type semiconductor impurity liquid source 1-P is placed on the baking plate 5 in which the heating element is built. Then, the baking plate 5 is heated to the drying temperature (first temperature). As a result, the organic solvent and water are generally evaporated. On the other hand, as shown in FIG. 7, the thickener 13 is precipitated (ie, solidified) and remains. By depositing the thickener 13, the interval i between the adjacent inorganic powders 14 can be stably maintained by the thickener 13. Thereby, the distribution of the P-type impurity 11-P on the coated surface 2a can be maintained.
 半導体不純物液体ソースを乾燥させた後、同様の工程(ステップS11~S13)を、半導体基板2の塗布面2aの反対側の表面を新たな塗布面として、不純物の導電型が異なる半導体不純物液体ソースを用いて行う。 After the semiconductor impurity liquid source is dried, the same steps (steps S11 to S13) are performed using the surface opposite to the coating surface 2a of the semiconductor substrate 2 as a new coating surface, and the semiconductor impurity liquid source having a different impurity conductivity type. To do.
 半導体基板の表裏の塗布面の半導体不純物液体ソースを乾燥させた後、図4に示すように、複数の半導体基板を積層する(ステップS14)。図8は、本実施形態に係る半導体装置の製造方法において、図7に続く積層工程を示す概略断面図である。半導体基板を積層する際には、例えば、図8に示すように、複数の半導体基板2を、同じ導電型の半導体不純物液体ソースの塗布面同士を向かい合わせるように積層させる。なお、図8において、符号11-Nは、N型不純物である。 After drying the semiconductor impurity liquid source on the front and back coated surfaces of the semiconductor substrate, a plurality of semiconductor substrates are stacked as shown in FIG. 4 (step S14). FIG. 8 is a schematic cross-sectional view showing the stacking process continued from FIG. 7 in the method for manufacturing the semiconductor device according to the present embodiment. When laminating semiconductor substrates, for example, as shown in FIG. 8, a plurality of semiconductor substrates 2 are laminated so that the application surfaces of semiconductor impurity liquid sources of the same conductivity type face each other. In FIG. 8, reference numeral 11-N is an N-type impurity.
 ここで、もし、隣り合う無機粉末14同士の間隔が調整されていない場合、無機粉末14の分布が偏ることで、局所的に半導体基板2間に無機粉末14が存在しない箇所が生じ得る。この場合、無機粉末14が局所的に存在しない箇所では、積層される半導体基板2の重力によって半導体基板2間の間隔が狭められてしまう。これにより、半導体基板2同士の間隔が面方向において不均一となり、半導体基板2間の不純物の配置状態も面方向において不均一となる。この結果、不純物の拡散の均一性を維持することが困難となる。 これに対して、本実施形態では、増粘剤13によって面方向dにおいて隣り合う無機粉末14同士の間隔が調整されていることで、無機粉末14は、複数の半導体基板2同士の間隔の面方向における分布を調整することができる。例えば、無機粉末14は、半導体基板2同士の間隔の面方向dにおける分布を均一になるように調整することができる。 Here, if the interval between the adjacent inorganic powders 14 is not adjusted, the distribution of the inorganic powders 14 is biased, and a portion where the inorganic powders 14 are not locally present between the semiconductor substrates 2 may be generated. In this case, in the place where the inorganic powder 14 does not exist locally, the distance between the semiconductor substrates 2 is narrowed by the gravity of the stacked semiconductor substrates 2. As a result, the distance between the semiconductor substrates 2 becomes non-uniform in the plane direction, and the arrangement state of impurities between the semiconductor substrates 2 also becomes non-uniform in the plane direction. As a result, it becomes difficult to maintain the uniformity of impurity diffusion. On the other hand, in this embodiment, the inorganic powder 14 is the surface of the space | interval of several semiconductor substrates 2 because the space | interval of the inorganic powder 14 adjacent in the surface direction d is adjusted with the thickener 13. The distribution in the direction can be adjusted. For example, the inorganic powder 14 can be adjusted so that the distribution in the surface direction d of the interval between the semiconductor substrates 2 is uniform.
 このように、半導体基板2同士の間隔の面方向における均一性を高めることができるので、半導体基板2間の不純物の配置状態の面方向における均一性を高めることができる。この結果、不純物の拡散の均一性を高めることができる。 Thus, since the uniformity in the surface direction of the interval between the semiconductor substrates 2 can be enhanced, the uniformity in the surface direction of the arrangement state of impurities between the semiconductor substrates 2 can be enhanced. As a result, the uniformity of impurity diffusion can be improved.
 半導体基板を積層させた後、図4に示すように、不要な物質を除去する焼成工程を実施する(ステップS15)。図9は、本実施形態に係る半導体装置の製造方法において、図8に続く焼成工程を示す概略断面図である。図10は、本実施形態に係る半導体装置の製造方法において、拡散プロセスでの温度遷移を示すグラフである。焼成工程においては、例えば、図9に示すように、積層された半導体基板2を焼成温度で加熱して増粘剤13を除去する。より詳しくは、図10に示すように、積層された半導体基板2を、一定の焼成温度Taで一定時間t1加熱して増粘剤13を除去する。このとき、P型半導体不純物液体ソース1-Pの塗布の際に増粘剤13によって無機粉末14間の間隔iが調整されているので、半導体基板2の表面上にP型不純物11-Pをできるだけ均一に配置することができる。 After laminating the semiconductor substrates, as shown in FIG. 4, a firing process for removing unnecessary substances is performed (step S15). FIG. 9 is a schematic cross-sectional view showing a baking step subsequent to FIG. 8 in the method for manufacturing the semiconductor device according to the present embodiment. FIG. 10 is a graph showing a temperature transition in the diffusion process in the method for manufacturing a semiconductor device according to the present embodiment. In the firing step, for example, as shown in FIG. 9, the laminated semiconductor substrate 2 is heated at the firing temperature to remove the thickener 13. More specifically, as shown in FIG. 10, the laminated semiconductor substrate 2 is heated at a constant baking temperature Ta for a predetermined time t1 to remove the thickener 13. At this time, since the interval i between the inorganic powders 14 is adjusted by the thickener 13 when the P-type semiconductor impurity liquid source 1-P is applied, the P-type impurities 11-P are formed on the surface of the semiconductor substrate 2. It can be arranged as uniformly as possible.
 焼成の後、図4に示すように、不純物をガラス化して拡散供給源を生成するデポジション工程を実施する(ステップS16)。 After firing, as shown in FIG. 4, a deposition process is performed in which impurities are vitrified to generate a diffusion supply source (step S16).
 図11は、本実施形態に係る半導体装置の製造方法において、図9に続くデポジション工程を示す概略断面図である。デポジション工程においては、例えば、図11に示すように、P型不純物11-Pをデポジション温度(第2の温度)に加熱することで、P型不純物11-Pをガラス化して拡散供給源にする。より詳しくは、図10に示すように、P型不純物11-Pを、焼成温度Taよりも高温の一定のデポジション温度Tbで、焼成時間t1よりも長い時間t2加熱することで、P型不純物11-Pを拡散供給源にする。このとき、P型不純物11-Pは、浅い位置までは拡散される。 FIG. 11 is a schematic cross-sectional view showing a deposition process subsequent to FIG. 9 in the method for manufacturing a semiconductor device according to the present embodiment. In the deposition step, for example, as shown in FIG. 11, by heating the P-type impurity 11-P to the deposition temperature (second temperature), the P-type impurity 11-P is vitrified to form a diffusion supply source. To. More specifically, as shown in FIG. 10, the P-type impurity 11-P is heated at a constant deposition temperature Tb higher than the firing temperature Ta for a time t2 longer than the firing time t1, so that the P-type impurity 11-P is heated. 11-P is the diffusion source. At this time, the P-type impurity 11-P is diffused to a shallow position.
 ここで、P型半導体不純物液体ソース1-Pの塗布の際に、増粘剤13によって隣り合う無機粉末14間の間隔iが調整されているので、半導体基板2の表面上にP型不純物11-Pをできるだけ均一に配置することができる。これにより、P型不純物11-Pをできるだけ均一に拡散させることができる。このことは、N型不純物11-Nについても同様である。 Here, since the interval i between the adjacent inorganic powders 14 is adjusted by the thickener 13 when the P-type semiconductor impurity liquid source 1-P is applied, the P-type impurities 11 are formed on the surface of the semiconductor substrate 2. -P can be arranged as uniformly as possible. Thereby, the P-type impurity 11-P can be diffused as uniformly as possible. The same applies to the N-type impurity 11-N.
 また、このとき、上下の半導体基板2同士がブロック状態となって接合される。 At this time, the upper and lower semiconductor substrates 2 are joined in a block state.
 デポジション工程を実施した後、図4に示すように、所望の深さまで不純物を拡散させる拡散工程を実施する(ステップS17)。図12は、本実施形態に係る半導体装置の製造方法において、図11に続く拡散工程を示す概略断面図である。拡散工程においては、例えば、図12に示すように、P型不純物11-Pを拡散温度に加熱することで、P型不純物11-Pを所望の深さまで拡散させる。より詳しくは、図10に示すように、P型不純物11-Pを、デポジション温度Tbよりも高温の一定の拡散温度Tcで、デポジション時間t2よりも長い時間t3加熱することで、P型不純物11-Pを所望の深さまで拡散させる。N型不純物11-Nについても同様に拡散が行われる。 After performing the deposition process, as shown in FIG. 4, a diffusion process for diffusing impurities to a desired depth is performed (step S17). FIG. 12 is a schematic cross-sectional view showing the diffusion step following FIG. 11 in the method for manufacturing the semiconductor device according to the present embodiment. In the diffusion step, for example, as shown in FIG. 12, the P-type impurity 11-P is diffused to a desired depth by heating the P-type impurity 11-P to the diffusion temperature. More specifically, as shown in FIG. 10, the P-type impurity 11-P is heated at a constant diffusion temperature Tc higher than the deposition temperature Tb for a time t3 longer than the deposition time t2, thereby obtaining a P-type impurity. Impurities 11-P are diffused to a desired depth. N-type impurity 11-N is similarly diffused.
 拡散工程を実施した後、図4に示すように、積層された半導体基板2を剥離液6に浸漬させる(ステップS18)。図13は、本実施形態に係る半導体装置の製造方法において、図12に続く浸漬工程を示す概略断面図である。浸漬の際には、図13に示すように、無機粉末14によって半導体基板2同士の間隔が維持されているため、剥離液6は、最外周の無機粉末14の箇所から中心側に向かって容易に浸透することができる。 After performing the diffusion process, the laminated semiconductor substrate 2 is immersed in the stripping solution 6 as shown in FIG. 4 (step S18). FIG. 13 is a schematic cross-sectional view showing the dipping process continued from FIG. 12 in the method for manufacturing the semiconductor device according to the present embodiment. During the immersion, as shown in FIG. 13, the spacing between the semiconductor substrates 2 is maintained by the inorganic powder 14, so the stripping solution 6 can be easily moved from the location of the outermost inorganic powder 14 toward the center side. Can penetrate.
 これにより、半導体基板2同士の剥離が促進されて剥離時間を短縮することができる。 Thereby, the peeling between the semiconductor substrates 2 is promoted, and the peeling time can be shortened.
 剥離液への浸漬の後、図4に示すように、半導体基板2を洗浄、乾燥させて積層状態から剥離する(ステップS19)。 After immersion in the stripping solution, as shown in FIG. 4, the semiconductor substrate 2 is washed and dried, and stripped from the laminated state (step S19).
 以下、本実施形態によってもたらされる作用について説明する。 Hereinafter, the operation brought about by the present embodiment will be described.
 上述したように、本実施形態に係る半導体不純物液体ソースは、不純物を含む化合物と、化合物を溶解する有機溶剤と、有機溶剤に溶解し、半導体不純物液体ソースに粘性を付与する増粘剤と、不純物よりも大きい直径を有する無機粉末と、が混合して含有されている。増粘剤は、半導体不純物液体ソースを半導体基板の塗布面に塗布する際に、半導体不純物液体ソースに付与する粘性によって、塗布面に沿った面方向において隣り合う無機粉末同士の間隔を調整して塗布面上への不純物の分布を調整し、半導体不純物液体ソースを乾燥させる第1の温度に加熱されることで、有機溶剤の蒸発にともなって隣り合う無機粉末同士の間に析出して塗布面上への不純物の分布を維持する特性を有する。無機粉末は、複数の半導体基板を積層する際に、増粘剤によって面方向において隣り合う無機粉末同士の間隔が調整されていることで、複数の半導体基板同士の間隔の面方向における分布を調整し、不純物を第1の温度よりも高い温度である不純物の拡散供給源が生成される第2の温度に加熱した後、第2の温度での加熱によって接合された複数の半導体基板を剥離液に晒す際に、複数の半導体基板同士の間隔を維持していることで、複数の半導体基板間に剥離液を浸透させる特性を有する。 As described above, the semiconductor impurity liquid source according to this embodiment includes a compound containing impurities, an organic solvent that dissolves the compound, a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source, An inorganic powder having a diameter larger than the impurities is mixed and contained. When the semiconductor impurity liquid source is applied to the application surface of the semiconductor substrate, the thickener adjusts the interval between the adjacent inorganic powders in the surface direction along the application surface by the viscosity applied to the semiconductor impurity liquid source. By adjusting the distribution of impurities on the coated surface and heating to a first temperature for drying the semiconductor impurity liquid source, the coated surface is deposited between adjacent inorganic powders as the organic solvent evaporates. It has the characteristic of maintaining the distribution of impurities upward. When laminating a plurality of semiconductor substrates, the inorganic powder adjusts the distribution of the spacing between the plurality of semiconductor substrates in the plane direction by adjusting the spacing between adjacent inorganic powders in the plane direction by the thickener. Then, after heating the impurity to a second temperature at which an impurity diffusion supply source that is higher than the first temperature is generated, a plurality of semiconductor substrates bonded by heating at the second temperature are removed from the stripping solution. When exposed to, the spacing between the plurality of semiconductor substrates is maintained, so that the stripping solution penetrates between the plurality of semiconductor substrates.
 このように、本発明によれば、半導体不純物液体ソースを塗布する際に、増粘剤の粘性によって塗布面上への不純物の分布を調整し、半導体不純物液体ソースを第1の温度で乾燥させる際に、増粘剤が隣り合う無機粉末同士の間に析出して塗布面上への不純物の分布を維持し、複数の半導体基板を積層する際に、増粘剤の粘性で面方向の間隔が調整されている無機粉末によって、半導体基板同士の間隔の面方向における分布を調整し、複数の半導体基板を剥離液に晒す際に、無機粉末で維持された半導体基板同士の間隔を介して剥離液を浸透させることができる。 Thus, according to the present invention, when applying the semiconductor impurity liquid source, the distribution of impurities on the coating surface is adjusted by the viscosity of the thickener, and the semiconductor impurity liquid source is dried at the first temperature. When the thickening agent is deposited between adjacent inorganic powders to maintain the distribution of impurities on the coated surface and stacking a plurality of semiconductor substrates, the viscosity of the thickening agent causes a gap in the plane direction. The inorganic powder is adjusted to adjust the distribution in the surface direction of the intervals between the semiconductor substrates, and when exposing a plurality of semiconductor substrates to the release liquid, the separation is performed through the intervals between the semiconductor substrates maintained with the inorganic powder. The liquid can be infiltrated.
 これにより、不純物の拡散の均一性を確保しつつ半導体基板の剥離の所要時間を短縮して半導体装置の製造効率を向上させることができる。 Thereby, it is possible to improve the manufacturing efficiency of the semiconductor device by shortening the time required for removing the semiconductor substrate while ensuring the uniformity of impurity diffusion.
 また、ドーパントフィルムでは、大量の有機系バインダによるガスが急激に発生して異常燃焼が生じないように、一定温度でドーパントフィルムをプリベークする必要があるところ、半導体不純物液体ソースでは、異常燃焼が生じない有機溶剤を用いているため、焼成の前のプリベークは不要である。これにより、工程数を抑えて製造効率を更に向上させることができる。 In addition, in the dopant film, it is necessary to pre-bake the dopant film at a constant temperature so that abnormal combustion does not occur due to abrupt generation of gas due to a large amount of organic binder, but abnormal combustion occurs in the semiconductor impurity liquid source. Since no organic solvent is used, pre-baking before firing is unnecessary. Thereby, the number of processes can be suppressed and the production efficiency can be further improved.
(変形例)
 上述した以外にも、本発明には、種々の変形例を適用することができる。
(Modification)
In addition to the above, various modifications can be applied to the present invention.
 図14は、本実施形態の変形例に係る半導体不純物液体ソースの製造方法を示すフローチャートである。例えば、図14に示すように、半導体不純物液体ソースを製造する際に、混合液を保持する前に撹拌してもよい(ステップS4)。混合液を撹拌することで、増粘剤の粘度を更に安定させることができる。増粘剤の粘度を安定させることで、半導体装置の製造の際に、より効果的に不純物の拡散の均一性を確保することができる。 FIG. 14 is a flowchart showing a method for manufacturing a semiconductor impurity liquid source according to a modification of the present embodiment. For example, as shown in FIG. 14, when manufacturing a semiconductor impurity liquid source, stirring may be performed before holding the mixed liquid (step S4). The viscosity of the thickener can be further stabilized by stirring the mixed solution. By stabilizing the viscosity of the thickener, the uniformity of impurity diffusion can be more effectively ensured during the manufacture of the semiconductor device.
 また、半導体不純物液体ソース全体に対する無機粉末の質量濃度(wt%)は、半導体不純物液体ソース全体に対する増粘剤の質量濃度(wt%)よりも低くてもよい。ここで、無機粉末の質量濃度が増粘剤の質量濃度よりも高いと、増粘剤が粘性を適切に発揮できず半導体不純物液体ソースが伸びにくくなるため、所望の粘度を得ようとして増粘剤の材料の選定等を行ったとしても、増粘剤の粘度を正確に調整することが困難である。これに対して、無機粉末の質量濃度が増粘剤の質量濃度よりも低ければ、増粘剤が粘性を適切に発揮できるので、所望の粘度を得ようとして増粘剤の材料の選定等を行うことで、増粘剤の粘度を正確に調整することができる。 The mass concentration (wt%) of the inorganic powder with respect to the entire semiconductor impurity liquid source may be lower than the mass concentration (wt%) of the thickener with respect to the entire semiconductor impurity liquid source. Here, if the mass concentration of the inorganic powder is higher than the mass concentration of the thickener, the thickener cannot exert its viscosity properly and the semiconductor impurity liquid source becomes difficult to extend. Even if the material of the agent is selected, it is difficult to accurately adjust the viscosity of the thickener. On the other hand, if the mass concentration of the inorganic powder is lower than the mass concentration of the thickener, the viscosity of the thickener can be appropriately exhibited. By doing so, the viscosity of the thickener can be accurately adjusted.
 また、半導体不純物液体ソース全体に対する無機粉末の質量濃度は、半導体不純物液体ソース全体に対する有機溶剤の質量濃度よりも低くてもよい。ここで、無機粉末の質量濃度が有機溶剤の質量濃度よりも高いと、半導体不純物液体ソースの流動性が著しく損なわれた状態になるので、流動体に粘性を付与する増粘剤が加わっても、粘性を付与すべき流動体(有機溶剤)が少な過ぎるので、増粘剤が適切に粘性を発揮できない。このため、所望の粘度を得ようとして増粘剤の材料の選定等を行ったとしても、増粘剤の粘度を正確に調整することは困難である。これに対して、無機粉末の質量濃度が有機溶剤の質量濃度よりも低ければ、粘性を付与する十分な有機溶剤を確保することができるので、増粘剤が粘性を適切に発揮できる。このため、所望の粘度を得ようとして増粘剤の材料の選定等を行うことで、増粘剤の粘度を正確に調整することができる。 The mass concentration of the inorganic powder with respect to the entire semiconductor impurity liquid source may be lower than the mass concentration of the organic solvent with respect to the entire semiconductor impurity liquid source. Here, when the mass concentration of the inorganic powder is higher than the mass concentration of the organic solvent, the fluidity of the semiconductor impurity liquid source is remarkably impaired, so that even if a thickener that imparts viscosity to the fluid is added , Since there are too few fluids (organic solvents) which should give viscosity, a thickener cannot exhibit viscosity appropriately. For this reason, even if the material of the thickener is selected to obtain a desired viscosity, it is difficult to accurately adjust the viscosity of the thickener. On the other hand, if the mass concentration of the inorganic powder is lower than the mass concentration of the organic solvent, a sufficient organic solvent that imparts viscosity can be secured, so that the thickener can appropriately exhibit the viscosity. For this reason, the viscosity of the thickener can be accurately adjusted by selecting the material of the thickener to obtain a desired viscosity.
 上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した個々の実施形態に限定されるものではない。異なる実施形態にわたる構成要素を適宜組み合わせてもよい。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。 Based on the above description, those skilled in the art may be able to conceive additional effects and various modifications of the present invention, but the aspects of the present invention are not limited to the individual embodiments described above. . You may combine suitably the component covering different embodiment. Various additions, modifications, and partial deletions can be made without departing from the concept and spirit of the present invention derived from the contents defined in the claims and equivalents thereof.
1-P P型半導体不純物液体ソース
1-N N型半導体不純物液体ソース
11-P P型不純物
11-N N型不純物
12 有機溶剤
13 増粘剤
14 無機粉末
1-PP type semiconductor impurity liquid source 1-N N type semiconductor impurity liquid source 11-PP type impurity 11-N N type impurity 12 organic solvent 13 thickener 14 inorganic powder

Claims (14)

  1.  積層された複数の半導体基板間に塗布された状態で加熱されることで、前記複数の半導体基板に不純物を拡散させる半導体不純物液体ソースであって、
     前記不純物を含む化合物と、
     前記化合物を溶解する有機溶剤と、
     前記有機溶剤に溶解し、前記半導体不純物液体ソースに粘性を付与する増粘剤と、
     前記不純物よりも大きい直径を有する無機粉末と、が混合して含有され、
     前記増粘剤は、
     前記半導体不純物液体ソースを前記半導体基板の塗布面に塗布する際に、前記半導体不純物液体ソースに付与する前記粘性によって、前記塗布面に沿った面方向において隣り合う前記無機粉末同士の間隔を調整して前記塗布面上への前記不純物の分布を調整し、
     前記半導体不純物液体ソースを乾燥させる第1の温度に加熱されることで、前記有機溶剤の蒸発にともなって前記隣り合う無機粉末同士の間に析出して前記塗布面上への前記不純物の分布を維持する特性を有し、
     前記無機粉末は、
     前記複数の半導体基板を積層させる際に、前記増粘剤によって前記面方向において隣り合う無機粉末同士の間隔が調整されていることで、前記複数の半導体基板同士の間隔の前記面方向における分布を調整し、
     前記不純物を前記第1の温度よりも高い温度である前記不純物の拡散供給源が生成される第2の温度に加熱した後、前記第2の温度での加熱によって接合された前記複数の半導体基板を剥離液に晒す際に、前記複数の半導体基板同士の間隔を維持していることで、前記複数の半導体基板間に前記剥離液を浸透させる特性を有することを特徴とする半導体不純物液体ソース。
    A semiconductor impurity liquid source that diffuses impurities in the plurality of semiconductor substrates by being heated while being applied between the plurality of stacked semiconductor substrates,
    A compound containing the impurities;
    An organic solvent for dissolving the compound;
    A thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source;
    And an inorganic powder having a diameter larger than the impurities,
    The thickener is
    When the semiconductor impurity liquid source is applied to the application surface of the semiconductor substrate, the spacing between the inorganic powders adjacent in the surface direction along the application surface is adjusted by the viscosity applied to the semiconductor impurity liquid source. To adjust the distribution of the impurities on the coated surface,
    By heating to the first temperature for drying the semiconductor impurity liquid source, the impurities are deposited on the coated surface by depositing between the adjacent inorganic powders as the organic solvent evaporates. Have the characteristics to maintain,
    The inorganic powder is
    When laminating the plurality of semiconductor substrates, the spacing between the inorganic powders adjacent to each other in the surface direction is adjusted by the thickener, whereby the distribution in the surface direction of the plurality of semiconductor substrates is distributed. Adjust
    The plurality of semiconductor substrates bonded by heating at the second temperature after heating the impurity to a second temperature at which the impurity diffusion supply source is generated, which is higher than the first temperature A semiconductor impurity liquid source characterized by maintaining the spacing between the plurality of semiconductor substrates when the substrate is exposed to a stripping solution, thereby allowing the stripping solution to penetrate between the plurality of semiconductor substrates.
  2.  前記半導体不純物液体ソース全体に対する前記無機粉末の質量濃度は、前記半導体不純物液体ソース全体に対する前記増粘剤の質量濃度よりも低いことを特徴とする請求項1に記載の半導体不純物液体ソース。 2. The semiconductor impurity liquid source according to claim 1, wherein a mass concentration of the inorganic powder with respect to the entire semiconductor impurity liquid source is lower than a mass concentration of the thickener with respect to the entire semiconductor impurity liquid source.
  3.  前記半導体不純物液体ソース全体に対する前記無機粉末の質量濃度は、前記半導体不純物液体ソース全体に対する前記有機溶剤の質量濃度よりも低いことを特徴とする請求項1に記載の半導体不純物液体ソース。 2. The semiconductor impurity liquid source according to claim 1, wherein a mass concentration of the inorganic powder with respect to the entire semiconductor impurity liquid source is lower than a mass concentration of the organic solvent with respect to the entire semiconductor impurity liquid source.
  4.  前記剥離液は、フッ酸であることを特徴とする請求項1に記載の半導体不純物液体ソース。 2. The semiconductor impurity liquid source according to claim 1, wherein the stripping solution is hydrofluoric acid.
  5.  前記無機粉末は、主成分として、Si、SiO、SiCおよびSiからなる群から選択される少なくとも1つの物質を含有することを特徴とする請求項1に記載の半導体不純物液体ソース。 2. The semiconductor impurity liquid source according to claim 1, wherein the inorganic powder contains at least one substance selected from the group consisting of Si, SiO 2 , SiC, and Si 3 N 4 as a main component.
  6.  前記増粘剤は、主成分として、セルロースまたはその誘導体を含有することを特徴とする請求項1に記載の半導体不純物液体ソース。 2. The semiconductor impurity liquid source according to claim 1, wherein the thickener contains cellulose or a derivative thereof as a main component.
  7.  前記増粘剤は、主成分として、ヒドロキシプロピルセルロースを含有することを特徴とする請求項6に記載の半導体不純物液体ソース。 The semiconductor impurity liquid source according to claim 6, wherein the thickener contains hydroxypropylcellulose as a main component.
  8.  前記有機溶剤は、主成分として、エタノール、アセトン、又はプロパノールを含有することを特徴とする請求項1に記載の半導体不純物液体ソース。 2. The semiconductor impurity liquid source according to claim 1, wherein the organic solvent contains ethanol, acetone, or propanol as a main component.
  9.  前記化合物は、ほう酸および乳酸アルミニウムであることを特徴とする請求項1に記載の半導体不純物液体ソース。 2. The semiconductor impurity liquid source according to claim 1, wherein the compounds are boric acid and aluminum lactate.
  10.  前記化合物は、ピロりん酸であることを特徴とする請求項1に記載の半導体不純物液体ソース。 The semiconductor impurity liquid source according to claim 1, wherein the compound is pyrophosphoric acid.
  11.  更に、水を含有することを特徴とする請求項1に記載の半導体不純物液体ソース。 The semiconductor impurity liquid source according to claim 1, further comprising water.
  12.  請求項1に記載の半導体不純物液体ソースの製造方法であって、
     前記不純物を含む化合物と、前記化合物を溶解する有機溶剤と、前記有機溶剤に溶解し、前記半導体不純物液体ソースに粘性を付与する増粘剤と、を混合した混合液を生成する工程と、
     前記混合液の粘性を安定させるために前記混合液を予め決められた時間所定の雰囲気下で保持する工程と、
     前記保持の後に、前記混合液に、前記不純物よりも大きい直径を有する無機粉末を混合する工程と、を備えることを特徴とする半導体不純物液体ソースの製造方法。
    A method for producing a semiconductor impurity liquid source according to claim 1,
    Producing a mixed liquid comprising a compound containing the impurity, an organic solvent that dissolves the compound, and a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source;
    Holding the liquid mixture in a predetermined atmosphere for a predetermined time in order to stabilize the viscosity of the liquid mixture;
    After the holding, a step of mixing an inorganic powder having a diameter larger than the impurities into the mixed liquid, and a method for producing a semiconductor impurity liquid source.
  13.  前記保持の前に前記混合液を撹拌する工程を更に備えることを特徴とする請求項12に記載の半導体不純物ソースの製造方法。 The method for producing a semiconductor impurity source according to claim 12, further comprising a step of stirring the mixed solution before the holding.
  14.  複数の半導体基板に、請求項1に記載の半導体不純物液体ソースを塗布する工程と、
     前記塗布された半導体不純物液体ソースを第1の温度に加熱することで、前記塗布された半導体不純物液体ソースを乾燥させる工程と、
     前記複数の半導体基板を積層させる工程と、
     前記前記複数の半導体基板を積層させる際に、前記無機粉末によって前記複数の半導体基板同士の間隔の分布を調整する工程と、
     前記不純物を第2の温度に加熱することで、前記不純物の拡散供給源を生成する工程と、
     前記複数の半導体基板を剥離液に浸漬させて、前記第2の温度での加熱によって接合された前記複数の半導体基板同士を剥離する工程と、を備えることを特徴とする半導体装置の製造方法。
    Applying the semiconductor impurity liquid source according to claim 1 to a plurality of semiconductor substrates;
    Drying the applied semiconductor impurity liquid source by heating the applied semiconductor impurity liquid source to a first temperature;
    Laminating the plurality of semiconductor substrates;
    Adjusting the distribution of intervals between the plurality of semiconductor substrates with the inorganic powder when laminating the plurality of semiconductor substrates; and
    Generating a diffusion source of the impurities by heating the impurities to a second temperature;
    A step of immersing the plurality of semiconductor substrates in a stripping solution and peeling the plurality of semiconductor substrates bonded together by heating at the second temperature.
PCT/JP2018/003557 2018-02-02 2018-02-02 Semiconductor impurity liquid source, method for manufacturing semiconductor impurity liquid source, and method for manufacturing semiconductor device WO2019150548A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018529327A JP6472936B1 (en) 2018-02-02 2018-02-02 Semiconductor impurity liquid source, method for manufacturing semiconductor impurity liquid source, and method for manufacturing semiconductor device
CN201880000866.9A CN110366771B (en) 2018-02-02 2018-02-02 Semiconductor dopant liquid source, method for manufacturing semiconductor dopant liquid source, and method for manufacturing semiconductor device
PCT/JP2018/003557 WO2019150548A1 (en) 2018-02-02 2018-02-02 Semiconductor impurity liquid source, method for manufacturing semiconductor impurity liquid source, and method for manufacturing semiconductor device
TW107126909A TWI685022B (en) 2018-02-02 2018-08-02 Semiconductor dopant liquid source, method for manufacturing semiconductor dopant liquid source, and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003557 WO2019150548A1 (en) 2018-02-02 2018-02-02 Semiconductor impurity liquid source, method for manufacturing semiconductor impurity liquid source, and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2019150548A1 true WO2019150548A1 (en) 2019-08-08

Family

ID=65442994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003557 WO2019150548A1 (en) 2018-02-02 2018-02-02 Semiconductor impurity liquid source, method for manufacturing semiconductor impurity liquid source, and method for manufacturing semiconductor device

Country Status (4)

Country Link
JP (1) JP6472936B1 (en)
CN (1) CN110366771B (en)
TW (1) TWI685022B (en)
WO (1) WO2019150548A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484474A (en) * 1977-12-17 1979-07-05 Tokyo Ouka Kougiyou Kk Doping film and method of using same
JPS5618417A (en) * 1979-07-25 1981-02-21 Toshiba Corp Method for diffusing impurity into semiconductor substrate
JPH11176764A (en) * 1997-12-05 1999-07-02 Toshiba Corp Film for diffusion, manufacture thereof and method of diffusion impurity in semiconductor substrate
JP2009194012A (en) * 2008-02-12 2009-08-27 Naoetsu Electronics Co Ltd Method of diffusing impurity of semiconductor wafer
WO2012067118A1 (en) * 2010-11-17 2012-05-24 日立化成工業株式会社 Method for producing solar cell
JP2014509076A (en) * 2011-01-31 2014-04-10 ナノグラム・コーポレイション Silicon substrate with doped surface contacts formed from doped silicon ink and corresponding method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186182A (en) * 1997-12-24 1999-07-09 Toshiba Corp P-type diffusion source and manufacture of semiconductor device using it
US20090239363A1 (en) * 2008-03-24 2009-09-24 Honeywell International, Inc. Methods for forming doped regions in semiconductor substrates using non-contact printing processes and dopant-comprising inks for forming such doped regions using non-contact printing processes
JP5815215B2 (en) * 2009-08-27 2015-11-17 東京応化工業株式会社 Diffusion agent composition and method for forming impurity diffusion layer
KR20140009984A (en) * 2010-11-17 2014-01-23 히타치가세이가부시끼가이샤 Method for producing solar cell
CN105161404A (en) * 2011-01-13 2015-12-16 日立化成株式会社 Composition for forming p-type diffusion layer, method of producing silicon substrate having p-type diffusion layer, method for producing photovoltaic cell , and photovoltaic cell
JP6809220B2 (en) * 2015-03-27 2021-01-06 東レ株式会社 Adhesive composition sheet and its manufacturing method and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484474A (en) * 1977-12-17 1979-07-05 Tokyo Ouka Kougiyou Kk Doping film and method of using same
JPS5618417A (en) * 1979-07-25 1981-02-21 Toshiba Corp Method for diffusing impurity into semiconductor substrate
JPH11176764A (en) * 1997-12-05 1999-07-02 Toshiba Corp Film for diffusion, manufacture thereof and method of diffusion impurity in semiconductor substrate
JP2009194012A (en) * 2008-02-12 2009-08-27 Naoetsu Electronics Co Ltd Method of diffusing impurity of semiconductor wafer
WO2012067118A1 (en) * 2010-11-17 2012-05-24 日立化成工業株式会社 Method for producing solar cell
JP2014509076A (en) * 2011-01-31 2014-04-10 ナノグラム・コーポレイション Silicon substrate with doped surface contacts formed from doped silicon ink and corresponding method

Also Published As

Publication number Publication date
JP6472936B1 (en) 2019-02-20
TW201935531A (en) 2019-09-01
CN110366771A (en) 2019-10-22
TWI685022B (en) 2020-02-11
JPWO2019150548A1 (en) 2020-02-06
CN110366771B (en) 2023-01-03

Similar Documents

Publication Publication Date Title
RU2018113434A (en) METHOD FOR PRODUCING COMPOSITE SUBSTRATE FROM SIC
TWM531052U (en) Wafer carrier with a 31-pocket configuration
Poodt et al. Ultrafast atomic layer deposition of alumina layers for solar cell passivation
TWM531053U (en) Wafer carrier with a 14-pocket configuration
JP2017112220A (en) Substrate processing device and substrate processing method
JP6480087B1 (en) Manufacturing method of semiconductor device
JP6472936B1 (en) Semiconductor impurity liquid source, method for manufacturing semiconductor impurity liquid source, and method for manufacturing semiconductor device
JPH0437140A (en) Getter ring device and device therefor
JP2013237592A (en) Method for producing silicon carbide single crystal
KR100966832B1 (en) Manufacturing method for semiconductor wafer supporting device
JPS5932054B2 (en) Dopant film and its usage
TW201842092A (en) Removable temporary protective layers for use in semiconductor manufacturing
JP2011171600A (en) Diffusion method of impurity diffusing component, and method of manufacturing solar cell
JPH11186182A (en) P-type diffusion source and manufacture of semiconductor device using it
JP3019011B2 (en) Method for manufacturing semiconductor device
TW201804519A (en) Quartz glass member having enlarged exposing area, manufacturing method thereof and multi-outer diameter blade
McCutcheon et al. Advanced processes and materials for temporary wafer bonding
JPH04230016A (en) Coating method and coating device
JP5087375B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2020027885A (en) Method of manufacturing semiconductor element
SE456626B (en) SET TO MANUFACTURE SEMICONDUCTOR CELLS
CN116497451A (en) Ultrathin organic-inorganic hybrid perovskite single crystal film and preparation method thereof
Sobhian et al. The role of mass transfer in removal of cross-linked sacrificial layers in 3DI applications
JPH02229426A (en) Dopant film
JP2013105924A (en) Manufacturing method of silicon epitaxial wafer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529327

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903927

Country of ref document: EP

Kind code of ref document: A1