WO2019149849A1 - Induktionsladevorrichtung - Google Patents

Induktionsladevorrichtung Download PDF

Info

Publication number
WO2019149849A1
WO2019149849A1 PCT/EP2019/052433 EP2019052433W WO2019149849A1 WO 2019149849 A1 WO2019149849 A1 WO 2019149849A1 EP 2019052433 W EP2019052433 W EP 2019052433W WO 2019149849 A1 WO2019149849 A1 WO 2019149849A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
fluid
coil
charging coil
induction
Prior art date
Application number
PCT/EP2019/052433
Other languages
English (en)
French (fr)
Inventor
Christopher Lämmle
Timo LÄMMLE
Original Assignee
Mahle International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International Gmbh filed Critical Mahle International Gmbh
Priority to CN201980007721.6A priority Critical patent/CN111565963B/zh
Priority to US16/967,406 priority patent/US20210046836A1/en
Publication of WO2019149849A1 publication Critical patent/WO2019149849A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/0025Heating, cooling or ventilating [HVAC] devices the devices being independent of the vehicle
    • B60H1/00257Non-transportable devices, disposed outside the vehicle, e.g. on a parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • B60H1/00778Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed the input being a stationary vehicle position, e.g. parking or stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to an induction charging device for a partially or fully electrically operated motor vehicle according to the preamble of claim 1.
  • Induction charging devices are already known from the prior art and are used for non-contact charging of a battery in a motor vehicle.
  • an external primary coil is inductively coupled to a secondary coil in the motor vehicle.
  • Through the primary coil flows an alternating current, which generates an alternating electromagnetic field around the primary coil.
  • the electromagnetic alternating field induces an alternating current in the secondary coil, which is rectified by the power electronics and fed to the battery.
  • a cooling arrangement through which a cooling fluid can flow may be arranged on the secondary coil, as described, for example, in US Pat. No. 8,917,511 B2.
  • the cooling arrangement is arranged to transfer heat to the secondary coil, so that the waste heat generated in the secondary coil is transferred to the cooling fluid.
  • the heat stored in the cooling fluid can then be dissipated to the environment or used for heating a lubricant in the motor vehicle, as proposed for example in DE 10 2011 088 112 A1.
  • the motor vehicle is not in operation during charging, so that the generated waste heat is not usable and is dissipated to the environment.
  • the amount of waste heat generated during charging is relatively low due to small currents and high voltages.
  • the object of the invention is to provide for an induction charging device of the generic type an improved or at least alternative embodiment in which the waste heat of the induction charging device can be generated and used during and after charging during operation of the motor vehicle.
  • the present invention is based on the general idea to generate and use the waste heat of an induction charging device for a partially or fully electrically operated motor vehicle during and after charging.
  • the induction charging device has a tempering arrangement with at least one fluid pipe through which fluid can flow and a charging arrangement with a charging coil and with a battery.
  • the charging coil is arranged to transmit heat to the at least one fluid tube of the temperature control arrangement, so that the heat generated in the charging coil can be transmitted to the fluid in the at least one fluid tube of the temperature control arrangement.
  • the charging coil can be coupled inductively with an external primary coil. In the charging coil then flows an induction alternating current with which the battery of the charging arrangement is rechargeable.
  • the charging arrangement can be switched to a heating state, wherein in the heating state the charging coil is connected in an electrically conductive manner to the battery.
  • a DC heating current flows in the charging coil and the charging coil forms a resistance heating element.
  • the heat generated in the charging coil is transferable to the fluid in the at least one fluid tube of the tempering arrangement. Consequently, the induction charging device according to the invention can be used as a resistance heater in the heating state, and thus an additional heating element is unnecessary.
  • the fluid heated by the resistance heater can be used, for example, for heating a lubricating oil in an engine, for warming the engine during a cold start, for heating the battery or also for heating an interior of the motor vehicle.
  • the waste heat generated in the charging coil in the charging state can be used for preheating a lubricating oil in an engine, for preheating the engine, for preheating the battery, or for preheating an interior of the motor vehicle.
  • a control device may be provided to switch the charging arrangement in the state of charge and in the heating state.
  • the charging arrangement has a DC-DC converter.
  • the charging coil is then conductively connected to the battery via the DC-DC converter.
  • the strength of the heating direct current can be adapted to the desired heating power of the resistance heater or the charging coil.
  • the charging coil is electrically insulated from the at least one fluid tube of the temperature control arrangement.
  • the fluid idrohr may have an electrically insulating sheath.
  • the charging coil can also have an electrically insulating sheathing.
  • the at least one fluid tube of the tempering arrangement can be made of an electrical insulator and preferably of a plastic. The plastic is then suitably temperature-stable and diffuse sion tight.
  • the at least one fluid pipe can also have an electrically insulating or sealing coating.
  • the at least one fluid tube of the tempering arrangement is electrically conductive and is preferably formed from a metal, for example copper or aluminum.
  • the at least one fluid tube of the temperature control arrangement can be conductively connected to the battery, and the liquor direct current can flow in the at least one fluid tube of the temperature control arrangement.
  • the at least one fluid tube of the temperature control arrangement can be conductively connected to the battery and the induction alternating current can flow in the at least one fluid tube of the temperature control arrangement.
  • the at least one fluid tube of the induction charging device is a part of the induction charging device and the heating of the fluid as well as the charging of the battery can be additionally supported.
  • the charging coil has at least one stranded conductor having a plurality of stranded conductors, wherein the at least one stranded conductor is arranged heat-transmittingly on the at least one fluid pipe of the tempering arrangement.
  • the stranded-current cores may have a diameter in which a skin effect is minimized in the stranded-current cores in the state of charge at a charging frequency between 20 kHz and 140 kHz. In particular, energy losses in the stranded conductor can thereby be minimized.
  • the state of charge and the heating state in the charging coil can be achieved at the same time.
  • the induction AC over some of Litzstromadern and the heating direct current flow over the remaining Litzenstromadern.
  • the stranded current conductors through which the heating direct current flows can act as a resistance body.
  • the waste heat generated in the stranded cores through which the heating direct current flows and the waste heat generated in the strand cores through which the induction alternating current flows can be used to preheat a heat exchanger
  • Lubricating oil in an engine, to preheat the engine, to preheat the battery or to preheat an interior of the motor vehicle are used.
  • the at least one strand conductor is arranged to transmit heat to the at least one fluid tube of the temperature control arrangement.
  • the liter zenstromadern the at least one strand conductor for example, wrapped around the at least one fluid tube of Temper michsan für für nik or roped or woven.
  • the at least one strand conductor in the at least one fluid tube of the tempering arrangement can be fixed in a flow around it along the fluid.
  • the at least one stranded conductor can be centered in the at least one fluid tube of the thermal arrangement by a holding device, so that the at least one stranded conductor can flow around the fluid on all sides.
  • the at least one fluid tube then expediently reproduces the shape of the charging coil so that the stranded conductor arranged along the at least one fluid tube forms the charging coil.
  • the charge coil formed from the at least one strand current conductor can be fixed by the fluid in the at least one fluid tube of the tempering arrangement.
  • the already shaped charging coil is expediently arranged in the at least one fluid tube - which here forms a housing of the charging coil.
  • the stranded current conductors of the at least one stranded conductor have a different electrical conductivity.
  • some of the stranded conductors may consist of copper, aluminum, nickel or iron.
  • the strand current conductors of the at least one stranded conductor with a higher conductivity can be connected to the battery in an electrically conducting manner.
  • the induction alternating current then flows only or preferably via these Litzenstromadern the at least one Litzenstromleiter. Due to a high conductivity, energy losses in the charging coil are reduced in the state of charge.
  • the stranded crystals of the at least one stranded conductor with a lower conductivity or a resistance wire-for example made of nickel or iron-can be connected to the battery in an electrically conductive manner.
  • the DC heating current then flows only or preferably via these Litzenstromadern the at least one Litzenstrom- conductor. Due to a low conductivity, energy losses occur in the charge coil which are transferred as waste heat to the fluid in the at least one fluid tube of the temperature control arrangement.
  • the state of charge and the heating state in the charging coil can be achieved simultaneously.
  • the induction ac current can flow via the stranded conductors with the higher electrical conductivity and the heating direct current via the stranded conductors with a lower conductivity or via the resistance wire.
  • the stranded wires with the lower conductivity of the charging coil can act as a resistance body.
  • the waste heat generated in the lower conductivity stranded wires as well as the waste heat generated in the higher conductivity stranded wires may preheat a lubricating oil in an engine, preheat the engine, preheat the battery or used for preheating an interior of the motor vehicle.
  • the stranded current conductors of the at least one stranded conductor can be connected in series or in series.
  • the length of the stranded cores flowing through the heating direct current is increased and the flow cross section is reduced.
  • the ohmic resistance and corresponding energy losses in the at least one Litzenstromleiter is increased, which are transferable as waste heat to the fluid in the at least one fluid tube of Temper michsan instrument.
  • only some of the strand current conductors of the at least one strand current conductor can be connected to the battery in an electrically conducting manner. The DC heating current then flows only via these Litzenstromadern the at least one Litzenstromleiter. With the number of Litzenstromadern flowing through the Schu SharePoint- current and the heating power of the charging coil is customizable.
  • the charging coil can be used as a resistance heater, whereby an additional radiator is omitted in the motor vehicle.
  • the charging coil and the tempering arrangement can furthermore be designed to be versatile, so that the maximum heating power can be adapted to the respective motor vehicle.
  • the heating power of the charging coil can be adjusted by the DC-DC converter and the charging coil can be used as needed for heating a lubricating oil in an engine, for heating the engine during cold start, for heating the battery or for heating an interior of the motor vehicle.
  • FIG. 1 shows a view of an induction charging device according to the invention in a state of charge
  • FIG. 2 shows a view of an induction charging device according to the invention in a heating state
  • FIG. 3 is a sectional view of a fluid tube with a stranded conductor disposed in the fluid tube;
  • FIG. 4 is a sectional view of a fluid tube having a stranded conductor whose stranded cores are braided around the fluid tube;
  • FIG. Fig. 5 is a sectional view of a fluid tube with a charging coil, which is formed from a Litzenstromleiter and arranged in the fluid tube.
  • FIG. 1 shows a view of an induction charging device 1 according to the invention in a charging state LZ.
  • FIG. 2 shows a view of the induction charging device 1 shown in FIG. 1 in a heating state HZ.
  • the induction charging device 1 is intended for a motor vehicle and has a tempering arrangement 2 and a charging arrangement 3.
  • the tempering arrangement 2 in this case comprises a fluid tube 4, which can be flowed through by a fluid 5.
  • the charging arrangement 3 comprises a charging coil 6 with a stranded conductor 7 and a battery 8.
  • the charging coil 6 is heat-transfer-fixed on the fluid pipe 4 so that the fluid 5 in the fluid pipe 4 and the stranded conductor 7 can exchange heat with one another.
  • Charging power electronics 9 and heating power electronics 10 can be electrically connected between charging coil 6 and battery 8.
  • the charging power electronics 9 in this case comprises a current rectifier 12 and capacitors 13, but may also comprise further elements.
  • the heating power electronics 10 comprises a DC converter 14 and a capacitor 13, but may also comprise other elements.
  • the charging coil 6 is formed by the stranded conductor 7, which is wound several times around the fluid pipe 4.
  • the charging coil 6- that is, the stranded conductor 7, which is wound around the fluid pipe 4 several times-is electrically insulated from the fluid pipe 4.
  • the fluid pipe 4 may have an electrically insulating sheath or be made of an electrical insulator.
  • the stranded conductor 7 can also have an electrically insulating sheath.
  • the fluid pipe 4 may also be a part of the charging device, for which purpose the fluid pipe 4 may be formed of metal - such as copper or aluminum - and in the charging LZ condition and the heating condition HZ with an induction alternating-current l L o is supplied with a Schutician l H.
  • the charging coil 6 is electrically connected to the battery 8 via the charging power electronics 9.
  • the battery 8 is inductively rechargeable and in the charging coil 6, the induction alternating current l L flows .
  • the waste heat generated in the charging coil 6 is released to the fluid 5 in the fluid pipe 4 and can be dissipated to the environment or for preheating a lubricating oil in an engine, for preheating the engine, for preheating the battery or for preheating an interior of the motor vehicle be used.
  • the charging coil 6 is connected to the battery 8 via the heating power electronics 10 in a power-conducting manner. In the charging coil 6, the heating direct current flows l H and the charging coil 6 acts as a resistance heater 11.
  • the high waste heat generated in the charging coil 6 is discharged to the fluid 5 in the fluid pipe 4 and can for heating a lubricating oil in a motor , be used for heating the engine during cold start, for heating the battery or for heating an interior of the motor vehicle.
  • the DC-DC converter 14 of the current flowing through the charging coil 6 DC heating current H and thereby also the heating power of the charging coil 6 may be adjusted.
  • the charging arrangement 3 can be switched to a heating state HZ.
  • a control device may be provided, which is not shown here.
  • FIG. 3 shows a sectional view of the fluid tube 4 with the stranded conductor 7, which is arranged in the fluid tube 4.
  • the stranded conductor 7 here has an electrically insulating jacket 15, the stranded electrical conductor 16 - here only one - electrically isolated from the fluid 5.
  • the fluid 5 may be electrically non-conductive, so that the electrically insulating jacket 15 of the Litzen- current conductor 7 may be omitted.
  • the Litzenstromadern 16 are dimensioned such that in the state of charge LZ at a charging frequency between 20 kHz and 140 kHz a skin effect is minimized.
  • the Litzenstromleiter 7 in the fluid pipe 4 is set at this along the fluid 5 umströmbar.
  • the fluid tube 4 then returns appropriately the shape of the charging coil 6, so that the Litzenstromleiter 7 arranged along the Flu idrohrs 4 can form the charging coil 6.
  • the waste heat generated in the strand conductor 7 is transferred here directly into the fluid 5.
  • the fluid tube 4 shows a sectional view of the fluid tube 4 with the stranded conductor 7, whose stranded current conductors 16 are braided around the fluid tube 4.
  • the waste heat generated in the stranded current cores 16 is transmitted via the fluid pipe 4.
  • the fluid tube 4 may be formed of a thermally conductive material.
  • the Litzenstromadern 16 are dimensioned such that in the state of charge LZ at a charging frequency between 20 kHz and 140 kHz, a skin effect is minimized.
  • FIG. 5 shows a sectional view of the fluid tube 4 with the charging coil 6, which is formed from the strand conductor 7 and arranged in the fluid tube 4.
  • the stranded electrical conductor 16 of the stranded electrical conductor (7) is dimensioned such that in the state of charge LZ at a charging frequency between 20 kHz and 140 kHz, a skin effect is minimized.
  • the charging coil 6 can be used as a resistance heater 11, so that an additional heating element in the motor vehicle is dispensed with.
  • the charging arrangement 3 can be switched over into the charging state LZ and into the heating state HZ, so that the charging coil 6 can be used when needed during and also after the charging of the battery 8 during operation of the motor vehicle.
  • the heating power of the charging coil 6 can also be adjusted by the DC converter 14 and the charging coil 6 as needed for heating a lubricating oil in an engine, for heating the motor. during cold start, for heating the battery or for heating a passenger compartment of the motor vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft eine Induktionsladevorrichtung (1) für ein teil- oder voll¬ elektrisch betriebenes Kraftfahrzeug. Die Induktionsladevorrichtung (1) weist eine Temperierungsanordnung (2) mit wenigstens einem mit Fluid (5) durchströmbaren Fluidrohr (4) und eine Ladeanordnung (3) auf, die eine Ladespule (6) und eine Batterie (8) umfasst. Die Ladespule (6) ist an dem wenigstens einen Fluidrohr (4) wärmeübertragend angeordnet, so dass die in der Ladespule (6) erzeugte Abwärme an das Fluid (5) in dem wenigstens einen Fluidrohr (4) übertragbar ist. In einem Ladezustand (LZ) der Ladeanordnung (3) ist die Ladespule (6) mit einer externen Primärspule induktiv koppelbar und in der Ladespule (6) fließt ein Induktionswechselstrom (lL), mit dem die Batterie (8) der Ladeanordnung (3) aufladbar ist. Erfindungsgemäß ist die Ladeanordnung (3) in einen Heizzustand (HZ) umschaltbar, wobei in dem Heizzustand (HZ) die Ladespule (6) an die Batterie (8) stromleitend angeschlossen ist. In dem Heizzustand (HZ) fließt in der Ladespule (6) ein Heizgleichstrom (lH) und die Ladespule (6) bildet einen Widerstandsheizkörper (11). Dabei ist die in der Ladespule (6) erzeugte Abwärme an das Fluid (5) in dem wenigstens einen Fluidrohr (4) übertragbar.

Description

Induktionsladevorrichtung
Die Erfindung betrifft eine Induktionsladevorrichtung für ein teil- oder voll- elektrisch betriebenes Kraftfahrzeug gemäß dem Oberbegriff des Anspruchs 1.
Induktionsladevorrichtungen sind aus dem Stand der Technik bereits bekannt und werden zum berührungslosen Aufladen einer Batterie in einem Kraftfahrzeug eingesetzt. Dabei wird eine externe Primärspule mit einer Sekundärspule in dem Kraftfahrzeug induktiv gekoppelt. Durch die Primärspule fließt ein Wechselstrom, der ein elektromagnetisches Wechselfeld um die Primärspule erzeugt. Das elekt- romagnetische Wechselfeld induziert in der Sekundärspule einen Wechselstrom, der durch die Leistungselektronik gleichgerichtet und der Batterie zugeführt wird.
Beim Laden wird in der Primärspule und in der Sekundärspule durch Energiever- luste eine Abwärme erzeugt. Insbesondere kann die in der Sekundärspule er- zeugte Abwärme die Leistungselektronik in der Induktionsladevorrichtung be- schädigen und muss nach außen abgeleitet werden. Dazu kann an der Sekun- därspule eine durch ein Kühlfluid durchströmbare Kühlanordnung angeordnet sein, wie es beispielweise in US 8,917,511 B2 beschrieben ist. Die Kühlanord- nung ist dabei an der Sekundärspule wärmeübertragend angeordnet, so dass die in der Sekundärspule erzeugte Abwärme an das Kühlfluid übertragen wird.
Die in dem Kühlfluid gespeicherte Wärme kann dann an die Umgebung dissipiert oder zum Erwärmen eines Schmiermittels in dem Kraftfahrzeug genutzt werden, wie beispielweise in DE 10 2011 088 112 A1 vorgeschlagen ist. Nachteiliger- weise ist während des Ladens das Kraftfahrzeug nicht im Betrieb, so dass die erzeugte Abwärme nicht nutzbar ist und an die Umgebung dissipiert wird. Ferner ist die Menge der beim Laden erzeugten Abwärme aufgrund kleiner Ströme und hoher Spannungen relativ gering. Die Aufgabe der Erfindung ist es, für eine Induktionsladevorrichtung der gat- tungsgemäßen Art eine verbesserte oder zumindest alternative Ausführungsform anzugeben, bei der die Abwärme der Induktionsladevorrichtung während und auch nach dem Laden im Betrieb des Kraftfahrzeugs erzeugt und genutzt werden kann.
Diese Aufgabe wird erfindungsgemäß durch den Gegenstand des unabhängigen Anspruchs 1 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der ab- hängigen Ansprüche.
Die vorliegende Erfindung beruht auf dem allgemeinen Gedanken, die Abwärme einer Induktionsladevorrichtung für ein teil- oder vollelektrisch betriebenes Kraft- fahrzeug während und auch nach dem Laden zu erzeugen und zu nutzen. Die Induktionsladevorrichtung weist dabei eine Temperierungsanordnung mit wenigs- tens einem mit Fluid durchströmbaren Fluidrohr und eine Ladeanordnung mit ei- ner Ladespule und mit einer Batterie. Die Ladespule ist dabei an dem wenigstens einen Fluidrohr der Temperierungsanordnung wärmeübertragend angeordnet, so dass die in der Ladespule erzeugte Wärme an das Fluid in dem wenigstens einen Fluidrohr der Temperierungsanordnung übertragbar ist. In einem Ladezustand der Ladeanordnung ist die Ladespule mit einer externen Primärspule induktiv koppelbar. In der Ladespule fließt dann ein Induktionswechselstrom, mit dem die Batterie der Ladeanordnung aufladbar ist. Erfindungsgemäß ist die Ladeanord- nung in einen Heizzustand umschaltbar, wobei in dem Heizzustand die Ladespu- le an die Batterie stromleitend angeschlossen ist. In dem Heizzustand fließt in der Ladespule ein Heizgleichstrom und die Ladespule bildet einen Widerstandsheiz- körper. Die in der Ladespule erzeugte Wärme ist dabei an das Fluid in dem we- nigstens einen Fluidrohr der Temperierungsanordnung übertragbar. Die erfindungsgemäße Induktionsladevorrichtung kann folglich in dem Heizzu- stand als Widerstandsheizkörper verwendet werden und dadurch erübrigt sich ein zusätzlicher Heizkörper. Das durch den Widerstandsheizkörper geheizte Fluid kann beispielweise zum Erwärmen eines Schmieröls in einem Motor, zum Er- wärmen des Motors beim Kaltstart, zum Erwärmen der Batterie oder auch zum Heizen eines Innenraumes des Kraftfahrzeugs verwendet werden. Die in dem Ladezustand in der Ladespule erzeugte Abwärme kann zum Vorwärmen eines Schmieröls in einem Motor, zum Vorwärmen des Motors, zum Vorwärmen der Batterie oder auch zum Vorheizen eines Innenraumes des Kraftfahrzeugs ver- wendet werden. Zum Umschalten der Ladeanordnung in den Ladezustand und in den Heizzustand kann beispielsweise eine Steuerungsvorrichtung vorgesehen sein.
Vorteilhafterweise kann vorgesehen sein, dass die Ladeanordnung einen Gleich- stromwandler aufweist. In dem Heizzustand ist dann die Ladespule an die Batte- rie über den Gleichstromwandler stromleitend angeschlossen. Durch den Gleich- stromwandler kann die Stärke des Heizgleichstroms an die gewünschte Heizleis- tung des Widerstandsheizkörpers beziehungsweise der Ladespule angepasst werden.
Um einen Kurzschluss in der Induktionsladevorrichtung zu vermeiden, kann vor- teilhafterweise vorgesehen sein, dass die Ladespule von dem wenigstens einen Fluidrohr der Temperierungsanordnung elektrisch isoliert ist. Dazu kann das Flu- idrohr eine elektrisch isolierende Ummantelung aufweisen. Alternativ oder zusätz- lich kann auch die Ladespule eine elektrisch isolierende Ummantelung aufwei- sen. Vorteilhafterweise kann das wenigstens eine Fluidrohr der Temperierungs- anordnung aus einem elektrischen Isolator und bevorzugt aus einem Kunststoff hergestellt sein. Der Kunststoff ist dann zweckgemäß temperaturstabil und diffu- sionsdicht. Zusätzlich kann das wenigstens eine Fluidrohr auch eine elektrisch isolierende oder abdichtende Beschichtung aufweisen.
Bei einer Weiterbildung der erfindungsgemäßen Induktionsladevorrichtung ist vorgesehen, dass das wenigstens eine Fluidrohr der Temperierungsanordnung elektrisch leitend ist und bevorzugt aus einem Metall - beispielsweise Kupfer o- der Aluminium - geformt ist. In dem Fleizzustand kann das wenigstens eine Flu- idrohr der Temperierungsanordnung an die Batterie stromleitend angeschlossen sein und in dem wenigstens einen Fluidrohr der Temperierungsanordnung kann der Fleizgleichstrom fließen. Alternativ oder zusätzlich kann in dem Ladezustand das wenigstens eine Fluidrohr der Temperierungsanordnung an die Batterie stromleitend angeschlossen sein und in dem wenigstens einen Fluidrohr der Temperierungsanordnung kann der Induktionswechselstrom fließen. Auf diese Weise ist das wenigstens eine Fluidrohr der Induktionsladevorrichtung ein Teil der Induktionsladevorrichtung und das Heizen des Fluids sowie das Laden der Batterie können zusätzlich unterstützt werden.
Vorteilhafterweise kann vorgesehen sein, dass die Ladespule wenigstens einen Litzenstromleiter mit mehreren Litzenstromadern aufweist, wobei der wenigstens eine Litzenstromleiter an dem wenigstens einen Fluidrohr der Temperierungsan- ordnung wärmeübertragend angeordnet ist. Die Litzenstromadern können dabei einen Durchmesser aufweisen, bei dem in den Litzenstromadern in dem Ladezu- stand bei einer Ladefrequenz zwischen 20 kHz und 140 kHz ein Skin-Effekt mi- nimiert ist. Insbesondere können dadurch Energieverluste in dem Litzenstromlei- ter minimiert werden.
Vorteilhafterweise können bei dieser Ausgestaltung des Litzenstromleiters wäh- rend des Ladens der Ladezustand und der Heizzustand in der Ladespule gleich- zeitig erreicht werden. Dabei können der Induktionswechselstrom über einige der Litzenstromadern und der Heizgleichstrom über die restlichen Litzenstromadern fließen. Auf diese Weise können auch während des Ladens die durch den Heizgleichstrom durchströmten Litzenstromadern als ein Widerstandskörper wir- ken. Die in den durch den Heizgleichstrom durchströmten Litzenstromadern er- zeugte Abwärme und die in den durch den Induktionswechselstrom durchström- ten Litzenstromadern erzeugte Abwärme können zum Vorwärmen eines
Schmieröls in einem Motor, zum Vorwärmen des Motors, zum Vorwärmen der Batterie oder auch zum Vorheizen eines Innenraumes des Kraftfahrzeugs ver- wendet werden.
Der wenigstens eine Litzenstromleiter ist an dem wenigstens einen Fluidrohr der Temperierungsanordnung wärmeübertragend angeordnet. Dazu können die Lit zenstromadern des wenigstens einen Litzenstromleiters beispielweise um das wenigstens eine Fluidrohr der Temperierungsanordnung gewickelt oder gefloch- ten oder geseilt oder gewoben sein. Alternativ dazu kann der wenigstens eine Litzenstromleiter in dem wenigstens einen Fluidrohr der Temperierungsanord- nung an diesem entlang von dem Fluid umströmbar festgelegt sein. Der wenigs- tens eine Litzenstromleiter kann in dem wenigstens einen Fluidrohr der Tempe- rierungsanordnung durch eine Haltevorrichtung zentriert sein, so dass der we- nigstens eine Litzenstromleiter von dem Fluid allseitig umströmbar ist. Das we- nigstens eine Fluidrohr wiedergibt dann zweckgemäß die Form der Ladespule, so dass der entlang des wenigstens einen Fluidrohrs angeordnete Litzenstromleiter die Ladespule formt. Alternativ kann die aus dem wenigstens einen Litzenstrom- leiter geformte Ladespule in dem wenigstens einen Fluidrohr der Temperierungs- anordnung von dem Fluid umströmbar festgelegt sein. Dazu ist zweckgemäß die bereits geformte Ladespule in dem wenigstens einen Fluidrohr - das hier ein Ge- häuse der Ladespule bildet - angeordnet. Vorteilhafterweise kann vorgesehen sein, dass die Litzenstromadern des wenigs- tens einen Litzenstromleiters eine voneinander abweichende elektrische Leitfä- higkeit aufweisen. So können einige der Litzenstromadern aus Kupfer, Alumini- um, Nickel oder Eisen bestehen. In dem Ladezustand können die Litzenstroma- dern des wenigstens einen Litzenstromleiters mit einer höheren Leitfähigkeit— beispielsweise aus Kupfer oder Aluminium - an die Batterie stromleitend ange- schlossen sein. Der Induktionswechselstrom fließt dann nur oder bevorzugt über diese Litzenstromadern des wenigstens einen Litzenstromleiter. Aufgrund einer hohen Leitfähigkeit sind Energieverluste in der Ladespule in dem Ladezustand reduziert. Alternativ oder zusätzlich können in dem Heizzustand die Litzenstro- madern des wenigstens einen Litzenstromleiter mit einer niedrigeren Leitfähigkeit oder einem Widerstandsdraht - beispielsweise aus Nickel oder Eisen - an die Batterie stromleitend angeschlossen sein. Der Heizgleichstrom fließt dann nur oder bevorzugt über diese Litzenstromadern des wenigstens einen Litzenstrom- leiter. Aufgrund einer niedrigen Leitfähigkeit entstehen in der Ladespule Energie- verluste, die als Abwärme an das Fluid in dem wenigstens einen Fluidrohr der Temperierungsanordnung übertragen werden.
Vorteilhafterweise können während des Ladens der Ladezustand und der Heiz- zustand in der Ladespule gleichzeitig erreicht werden. Dabei können der Indukti- onswechselstrom über die Litzenstromadern mit der höheren elektrischen Leitfä- higkeit und der Heizgleichstrom über die Litzenstromadern mit einer niedrigeren Leitfähigkeit oder über den Widerstandsdraht fließen. Auf diese Weise können auch während des Ladens die Litzenstromadern mit der niedrigeren Leitfähigkeit der Ladespule als ein Widerstandskörper wirken. Die in den Litzenstromadern mit der niedrigeren Leitfähigkeit erzeugte Abwärme als auch die in den Litzenstro- madern mit der höheren Leitfähigkeit erzeugte Abwärme können zum Vorwärmen eines Schmieröls in einem Motor, zum Vorwärmen des Motors, zum Vorwärmen der Batterie oder auch zum Vorheizen eines Innenraumes des Kraftfahrzeugs verwendet werden.
Um den ohmschen Widerstand der Ladespule in dem Heizzustand und dadurch auch die Energieverluste zu erhöhen, können in dem Heizzustand die Litzen- stromadern des wenigstens einen Litzenstromleiters seriell bzw. in Reihe zuei- nander geschaltet sein. Dabei wird die Länge der mit dem Heizgleichstrom durch- fließenden Litzenstromadern erhöht und der Strömungsquerschnitt reduziert. Dadurch wird der ohmsche Widerstand und entsprechend Energieverluste in dem wenigstens einen Litzenstromleiter erhöht, die als Abwärme an das Fluid in dem wenigstens einen Fluidrohr der Temperierungsanordnung übertragbar sind. Al- ternativ oder zusätzlich können in dem Heizzustand nur einige der Litzenstroma- dern des wenigstens einen Litzenstromleiter an die Batterie stromleitend ange- schlossen sein. Der Heizgleichstrom fließt dann nur über diese Litzenstromadern des wenigstens einen Litzenstromleiter. Mit der Anzahl der von dem Heizgleich- strom durchfließenden Litzenstromadern ist auch die Heizleistung der Ladespule anpassbar.
Zusammenfassend kann in der erfindungsgemäßen Induktionsladevorrichtung die Ladespule als Widerstandsheizkörper verwendet werden, wodurch ein zu- sätzlicher Heizkörper in dem Kraftfahrzeug entfällt. Die Ladespule und die Tem- perierungsanordnung können ferner vielseitig ausgestaltet sein, so dass die ma- ximale Heizleistung an das jeweilige Kraftfahrzeug anpassbar ist. Zudem kann die Heizleistung der Ladespule durch den Gleichstromwandler angepasst und die Ladespule nach Bedarf zum Erwärmen eines Schmieröls in einem Motor, zum Erwärmen des Motors beim Kaltstart, zum Erwärmen der Batterie oder auch zum Heizen eines Innenraumes des Kraftfahrzeugs verwendet werden. Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Un- teransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschrei- bung anhand der Zeichnungen.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, son- dern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, oh- ne den Rahmen der vorliegenden Erfindung zu verlassen.
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen darge- stellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Kompo- nenten beziehen.
Es zeigen, jeweils schematisch
Fig. 1 eine Ansicht einer erfindungsgemäßen Induktionsladevorrichtung in einem Ladezustand;
Fig. 2 eine Ansicht einer erfindungsgemäßen Induktionsladevorrichtung in einem Heizzustand;
Fig. 3 eine Schnittansicht eines Fluidrohrs mit einem Litzenstromleiter, der in dem Fluidrohr angeordnet ist;
Fig. 4 eine Schnittansicht eines Fluidrohrs mit einem Litzenstromleiter, dessen Litzenstromadern um das Fluidrohr geflochten sind; Fig. 5 eine Schnittansicht eines Fluidrohrs mit einer Ladespule, die aus einem Litzenstromleiter geformt und in dem Fluidrohr angeordnet ist.
Fig. 1 zeigt eine Ansicht einer erfindungsgemäßen Induktionsladevorrichtungl in einem Ladezustand LZ. Fig. 2 zeigt eine Ansicht der in Fig. 1 gezeigten Indukti- onsladevorrichtung 1 in einem Heizzustand HZ. Die Induktionsladevorrichtung 1 ist für ein Kraftfahrzeug vorgesehen und weist eine Temperierungsanordnung 2 und eine Ladeanordnung 3 auf. Die Temperierungsanordnung 2 umfasst dabei ein Fluidrohr 4, das mit einem Fluid 5 durchströmbar ist. Die Ladeanordnung 3 umfasst eine Ladespule 6 mit einem Litzenstromleiter 7 und eine Batterie 8. Die Ladespule 6 ist an dem Fluidrohr 4 wärmeübertragend festgelegt, so dass das Fluid 5 in dem Fluidrohr 4 und der Litzenstromleiter 7 untereinander Wärme aus- tauschen können. Zwischen der Ladespule 6 und der Batterie 8 ist eine Ladeleis- tungselektronik 9 und eine Heizleistungselektronik 10 stromleitend anschließbar. Die Ladeleistungselektronik 9 umfasst dabei einen Stromgleichrichter 12 und Kondensatoren 13, kann jedoch auch weitere Elemente umfassen. Die Heizleis- tungselektronik 10 umfasst einen Gleichstromwandler 14 und einen Kondensator 13, kann jedoch auch andere Elemente umfassen.
Die Ladespule 6 ist durch den Litzenstromleiter 7 geformt, der mehrmals um das Fluidrohr 4 gewickelt ist. Um einen Kurzschluss in der Induktionsladevorrichtung 1 zu vermeiden, ist die Ladespule 6 - also der um das Fluidrohr 4 mehrmals ge- wickelte Litzenstromleiter 7 - von dem Fluidrohr 4 elektrisch isoliert. Dazu kann das Fluidrohr 4 eine elektrisch isolierende Ummantelung aufweisen oder auch aus einem elektrischen Isolator hergestellt sein. Zusätzlich kann auch der Litzen- stromleiter 7 eine elektrisch isolierende Ummantelung aufweisen. Das Fluidrohr 4 kann auch ein Teil der Ladevorrichtung sein, wozu das Fluidrohr 4 aus Metall - wie beispielsweise Kupfer oder Aluminium - geformt sein kann und in dem Lade- zustand LZ und in dem Heizzustand HZ mit einem Induktionswechselstrom lL o- der mit einem Heizgleichstrom lH beaufschlagt wird.
In Fig. 1 ist die Ladespule 6 an der Batterie 8 über die Ladeleistungselektronik 9 stromleitend angeschlossen. Die Batterie 8 ist induktiv aufladbar und in der Lade- spule 6 fließt der Induktionswechselstrom lL. Die in der Ladespule 6 erzeugte Abwärme wird an das Fluid 5 in dem Fluidrohr 4 abgegeben und kann an die Umgebung dissipiert oder jedoch zum Vorwärmen eines Schmieröls in einem Motor, zum Vorwärmen des Motors, zum Vorwärmen der Batterie oder auch zum Vorheizen eines Innenraumes des Kraftfahrzeugs verwendet werden. In Fig. 2 ist die Ladespule 6 an der Batterie 8 über die Heizleistungselektronik 10 stromlei- tend angeschlossen. In der Ladespule 6 fließt der Heizgleichstrom lH und die La- despule 6 wirkt als ein Widerstandsheizkörper 11. Die in der Ladespule 6 erzeug- te hohe Abwärme wird an das Fluid 5 in dem Fluidrohr 4 abgegeben und kann zum Erwärmen eines Schmieröls in einem Motor, zum Erwärmen des Motors beim Kaltstart, zum Erwärmen der Batterie oder auch zum Heizen eines Innen- raumes des Kraftfahrzeugs verwendet werden. Durch den Gleichstromwandler 14 kann der durch die Ladespule 6 fließende Heizgleichstrom lH und dadurch auch die Heizleistung der Ladespule 6 angepasst sein. Erfindungsgemäß ist die Lade- anordnung 3 in einen Heizzustand HZ umschaltbar. Dazu kann eine Steuerungs- Vorrichtung vorgesehen sein, die hier jedoch nicht gezeigt ist.
Fig. 3 zeigt eine Schnittansicht des Fluidrohrs 4 mit dem Litzenstromleiter 7, der in dem Fluidrohr 4 angeordnet ist. Der Litzenstromleiter 7 weist hier eine elektrisch isolierende Ummantelung 15 auf, die Litzenstromader 16 - hier nur eine - von dem Fluid 5 elektrisch isoliert. Alternativ kann das Fluid 5 elektrisch nichtleitend sein, so dass die elektrisch isolierende Ummantelung 15 des Litzen- stromleiters 7 entfallen kann. Die Litzenstromadern 16 sind derart abgemessen, dass in dem Ladezustand LZ bei einer Ladefrequenz zwischen 20 kHz und 140 kHz ein Skin-Effekt minimiert ist. Der Litzenstromleiter 7 in dem Fluidrohr 4 ist an diesem entlang von dem Fluid 5 umströmbar festgelegt. Das Fluidrohr 4 wieder- gibt dann zweckgemäß die Form der Ladespule 6, so dass der entlang des Flu idrohrs 4 angeordnete Litzenstromleiter 7 die Ladespule 6 formen kann. Die in dem Litzenstromleiter 7 erzeugte Abwärme wird hier direkt in das Fluid 5 übertra- gen.
Fig. 4 zeigt eine Schnittansicht des Fluidrohrs 4 mit dem Litzenstromleiter 7, des- sen Litzenstromadern 16 um das Fluidrohr 4 geflochten sind. Die in den Litzen- stromadern 16 erzeugte Abwärme über das Fluidrohr 4 übertragen. Um Verluste der Abwärme zu reduzieren, kann das Fluidrohr 4 aus einem wärmeleitenden Material geformt sein. Die Litzenstromadern 16 sind derart abgemessen, dass in dem Ladezustand LZ bei einer Ladefrequenz zwischen 20 kHz und 140 kHz ein Skin-Effekt minimiert ist.
Fig. 5 zeigt eine Schnittansicht des Fluidrohrs 4 mit der Ladespule 6, die aus dem Litzenstromleiter 7 geformt und in dem Fluidrohr 4 angeordnet ist. Das Fluidrohr 4 bildet hier ein Gehäuse für die Ladespule 6. Auch hier ist die Litzenstromader 16 des Litzenstromleiters (7) derart abgemessen, dass in dem Ladezustand LZ bei einer Ladefrequenz zwischen 20 kHz und 140 kHz ein Skin-Effekt minimiert ist.
Zusammenfassend kann in der erfindungsgemäßen Induktionsladevorrichtung 1 die Ladespule 6 als ein Widerstandsheizkörper 11 verwendet werden, so dass ein zusätzlicher Heizkörper in dem Kraftfahrzeug entfällt. Die Ladeanordnung 3 ist in den Ladezustand LZ und in den Heizzustand HZ umschaltbar, so dass die Ladespule 6 bei Bedarf während und auch nach dem Laden der Batterie 8 im Betrieb des Kraftfahrzeugs nutzbar ist. Die Heizleistung der Ladespule 6 kann zudem durch den Gleichstromwandler 14 angepasst und die Ladespule 6 nach Bedarf zum Erwärmen eines Schmieröls in einem Motor, zum Erwärmen des Mo- tors beim Kaltstart, zum Erwärmen der Batterie oder auch zum Heizen eines In- nenraumes des Kraftfahrzeugs verwendet werden.
*****

Claims

Ansprüche
1. Induktionsladevorrichtung (1 ) für ein teil- oder vollelektrisch betriebenes Kraft- fahrzeug,
- wobei die Induktionsladevorrichtung (1 ) eine Temperierungsanordnung (2) mit wenigstens einem mit Fluid (5) durchströmbaren Fluidrohr (4) und eine Lade- anordnung (3) aufweist, die eine Ladespule (6) und eine Batterie (8) umfasst,
- wobei die Ladespule (6) an dem wenigstens einen Fluidrohr (4) der Temperie- rungsanordnung (2) wärmeübertragend angeordnet ist, so dass die in der La- despule (6) erzeugte Abwärme an das Fluid (5) in dem wenigstens einen Flu- idrohr (4) der Temperierungsanordnung (2) übertragbar ist, und
- wobei in einem Ladezustand (LZ) der Ladeanordnung (3) die Ladespule (6) mit einer externen Primärspule induktiv koppelbar ist und in der Ladespule (6) ein Induktionswechselstrom (lL) fließt, mit dem die Batterie (8) der Ladeanordnung (3) aufladbar ist,
dadurch gekennzeichnet,
- dass die Ladeanordnung (3) in einen Heizzustand (HZ) umschaltbar ist, wobei in dem Heizzustand (HZ) die Ladespule (6) an die Batterie (8) stromleitend an- geschlossen ist, und
- dass in dem Heizzustand (HZ) in der Ladespule (6) ein Heizgleichstrom (lH) fließt und die Ladespule (6) einen Widerstandsheizkörper (11 ) bildet, wobei die in der Ladespule (6) erzeugte Abwärme an das Fluid (5) in dem wenigstens einen Fluidrohr (4) der Temperierungsanordnung (2) übertragbar ist.
2. Induktionsladevorrichtung nach Anspruch 1 dadurch gekennzeichnet,
- dass die Ladeanordnung (3) einen Gleichstromwandler (14) aufweist, und
- dass in dem Heizzustand (HZ) die Ladespule (6) an die Batterie (8) über den Gleichstromwandler (14) stromleitend angeschlossen ist.
3. Induktionsladevorrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die Ladespule (6) von dem wenigstens einen Fluidrohr (4) der Temperie- rungsanordnung (2) elektrisch isoliert ist.
4. Induktionsladevorrichtung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass das wenigstens eine Fluidrohr (4) der Temperierungsanordnung (2) aus ei- nem elektrischen Isolator und bevorzugt aus einem Kunststoff hergestellt ist.
5. Induktionsladevorrichtung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
- dass das wenigstens eine Fluidrohr (4) der Temperierungsanordnung (2) elektrisch leitend ist und bevorzugt aus einem Metall geformt ist, und
- dass in dem Heizzustand (HZ) und/oder in dem Ladezustand (LZ) das wenigs- tens eine Fluidrohr (4) der Temperierungsanordnung (2) an die Batterie (8) stromleitend angeschlossen ist und in dem wenigstens einen Fluidrohr (4) der Temperierungsanordnung (2) der Heizgleichstrom (lH) und/oder der Indukti- onswechselstrom (lL) fließt.
6. Induktionsladevorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet,
dass die Ladespule (6) wenigstens einen Litzenstromleiter (7) mit mehreren Lit zenstromadern (16) aufweist, wobei der wenigstens eine Litzenstromleiter (7) an dem wenigstens einen Fluidrohr (4) der Temperierungsanordnung (2) wärme- übertragend angeordnet ist.
7. Induktionsladevorrichtung nach Anspruch 6,
dadurch gekennzeichnet,
dass die Litzenstromadern (16) einen Durchmesser aufweisen, bei dem in den Litzenstromadern (16) in dem Ladezustand (LZ) bei einer Ladefrequenz zwischen 20 kHz und 140 kHz ein Skin-Effekt minimiert ist.
8. Induktionsladevorrichtung nach Anspruch 6 oder 7,
dadurch gekennzeichnet,
- dass die Litzenstromadern (16) des wenigstens einen Litzenstromleiters (7) um das wenigstens eine Fluidrohr (4) der Temperierungsanordnung (2) gewickelt oder geflochten oder geseilt oder gewoben ist, oder
- dass der wenigstens eine Litzenstromleiter (7) in dem wenigstens einen Flu idrohr (4) der Temperierungsanordnung (2) an diesem entlang von dem Fluid
(5) umströmbar festgelegt ist, oder
- dass die aus dem wenigstens einen Litzenstromleiter (7) geformte Ladespule
(6) in dem wenigstens einen Fluidrohr (4) der Temperierungsanordnung (2) von dem Fluid (5) umströmbar festgelegt ist.
9. Induktionsladevorrichtung nach einem der Ansprüche 6 bis 8,
dadurch gekennzeichnet,
dass die Litzenstromadern (16) des wenigstens einen Litzenstromleiter (7) eine voneinander abweichende elektrische Leitfähigkeit aufweisen.
10. Induktionsladevorrichtung nach Anspruch 9,
dadurch gekennzeichnet, - dass in dem Ladezustand (LZ) die Litzenstromadern (16) des wenigstens ei- nen Litzenstromleiters (7) mit einer höheren Leitfähigkeit an die Batterie (8) stromleitend angeschlossen sind und der Induktionswechselstrom (lL) nur oder bevorzugt über diese Litzenstromadern (16) des wenigstens einen Litzen- stromleiter (7) fließt, und/oder
- dass in dem Heizzustand (HZ) die Litzenstromadern (16) des wenigstens ei- nen Litzenstromleiter (7) mit einer niedrigeren Leitfähigkeit an die Batterie (8) stromleitend angeschlossen sind und der Heizgleichstrom (lH) nur oder bevor- zugt über diese Litzenstromadern (16) des wenigstens einen Litzenstromleiter (7) fließt.
11. Induktionsladevorrichtung nach einem der Ansprüche 6 bis 10,
dadurch gekennzeichnet,
- dass in dem Heizzustand (HZ) die Litzenstromadern (16) des wenigstens ei- nen Litzenstromleiter (7) seriell zueinander geschaltet sind, und/oder
- dass in dem Heizzustand (HZ) nur einige der Litzenstromadern (16) des we- nigstens einen Litzenstromleiter (7) an die Batterie (8) stromleitend ange- schlossen sind und der Heizgleichstrom (lH) nur über diese Litzenstromadern (16) des wenigstens einen Litzenstromleiter (7) fließt.
*****
PCT/EP2019/052433 2018-02-05 2019-01-31 Induktionsladevorrichtung WO2019149849A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980007721.6A CN111565963B (zh) 2018-02-05 2019-01-31 感应充电装置
US16/967,406 US20210046836A1 (en) 2018-02-05 2019-01-31 Inductive charging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018201704.2 2018-02-05
DE102018201704.2A DE102018201704A1 (de) 2018-02-05 2018-02-05 Induktionsladevorrichtung

Publications (1)

Publication Number Publication Date
WO2019149849A1 true WO2019149849A1 (de) 2019-08-08

Family

ID=65276184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/052433 WO2019149849A1 (de) 2018-02-05 2019-01-31 Induktionsladevorrichtung

Country Status (4)

Country Link
US (1) US20210046836A1 (de)
CN (1) CN111565963B (de)
DE (1) DE102018201704A1 (de)
WO (1) WO2019149849A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3588686B1 (de) * 2018-06-27 2021-02-24 ABB Schweiz AG Elektrofahrzeugladeausrüstung
DE102019206514A1 (de) * 2019-05-07 2020-11-12 Vitesco Technologies GmbH Anordnung zum induktiven Laden einer Fahrzeugbatterie
EP4054057A1 (de) * 2021-03-04 2022-09-07 ElectDis AB Spuleneinheit und zugehörige verfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044999A1 (de) * 2010-09-10 2012-03-15 Li-Tec Battery Gmbh Anordnung und Verfahren zum Laden einer Fahrzeugbatterie
DE102011088112A1 (de) 2011-12-09 2013-06-13 Bayerische Motoren Werke Aktiengesellschaft Kraftwagen
US20130313249A1 (en) * 2011-01-07 2013-11-28 Renault S.A.S. Method for regulating the temperature of an automotive vehicle component and system for regulating the temperature of this component
US8917511B2 (en) 2010-06-30 2014-12-23 Panasonic Corporation Wireless power transfer system and power transmitting/receiving device with heat dissipation structure
DE102017200465A1 (de) * 2016-05-20 2017-11-23 Lear Corporation Drahtlose Aufladekontaktstelle mit Kühlmittelanordnung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864442A (ja) * 1994-04-29 1996-03-08 Hughes Aircraft Co 内部に液体冷却巻線を有する高周波数変成器
DE102009042581A1 (de) * 2009-09-24 2011-03-31 Daimler Ag Wärmetauscher für ein Fahrzeug
FI9342U1 (fi) * 2011-04-28 2011-08-17 Abb Oy Jäähdytysjärjestelmä
DE102012217607A1 (de) * 2012-09-27 2014-03-27 Siemens Aktiengesellschaft Vorrichtung zum Kühlen
KR102063644B1 (ko) * 2012-12-14 2020-02-11 엘지이노텍 주식회사 무선전력 송신장치
DE112014000735T5 (de) * 2013-02-08 2015-10-22 Ihi Corporation Wärmeübertragungsvorrichtung, Energie zuführende Vorrichtung und drahtlos Energie zuführendes System
JP2017045792A (ja) * 2015-08-25 2017-03-02 株式会社Ihi コイル装置
DE102017207416A1 (de) * 2017-05-03 2018-11-08 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung, system und verfahren zum laden eines energiespeichers sowie fahrzeug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8917511B2 (en) 2010-06-30 2014-12-23 Panasonic Corporation Wireless power transfer system and power transmitting/receiving device with heat dissipation structure
DE102010044999A1 (de) * 2010-09-10 2012-03-15 Li-Tec Battery Gmbh Anordnung und Verfahren zum Laden einer Fahrzeugbatterie
US20130313249A1 (en) * 2011-01-07 2013-11-28 Renault S.A.S. Method for regulating the temperature of an automotive vehicle component and system for regulating the temperature of this component
DE102011088112A1 (de) 2011-12-09 2013-06-13 Bayerische Motoren Werke Aktiengesellschaft Kraftwagen
DE102017200465A1 (de) * 2016-05-20 2017-11-23 Lear Corporation Drahtlose Aufladekontaktstelle mit Kühlmittelanordnung

Also Published As

Publication number Publication date
DE102018201704A1 (de) 2019-08-08
CN111565963B (zh) 2021-05-28
US20210046836A1 (en) 2021-02-18
CN111565963A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2019149849A1 (de) Induktionsladevorrichtung
DE102016204895B4 (de) Ladestecker mit einem Leistungskontaktsystem und Ladestation zur Abgabe elektrischer Energie an einen Empfänger elektrischer Energie
EP3443566B1 (de) Ladekabel zur übertragung elektrischer energie, ladestecker und ladestation zur abgabe elektrischer energie an einen empfänger elektrischer energie
WO2019170594A1 (de) Induktionsladevorrichtung
DE102016105347A1 (de) Steckverbinderteil mit einem gekühlten Kontaktelement
DE102017105985A1 (de) Ladekabelanordnung
DE102016209607A1 (de) Ladekabel zur Übertragung elektrischer Energie, Ladestecker und Ladestation zur Abgabe elektrischer Energie an einen Empfänger elektrischer Energie
WO2017076545A1 (de) Vorrichtung zum kühlen einer elektrischen steckverbindung
DE102016224106A1 (de) Hochstromkabel und Stromversorgungssystem mit Hochstromkabel
DE102016206300B4 (de) Ladestecker und ladestation zur abgabe elektrischer energie an einen empfänger elektrischer energie
DE102017218899A1 (de) Elektrische Heizvorrichtung für ein Kraftfahrzeug
DE102016204894A1 (de) Ladestecker und Ladestation zur Abgabe elektrischer Energie an einen Empfänger elektrischer Energie
EP3511191A1 (de) Temperieren eines ladekabels für eine schnelladestation für fahrzeuge mit elektrischem antrieb sowie schnellladestation
WO2019170600A1 (de) Induktionsladevorrichtung
DE102018218388A1 (de) Leistungselektronikeinrichtung für ein Fahrzeug
DE202009001136U1 (de) Vorrichtung zum Anwärmen metallischer Bauteile
DE2315192B2 (de) Elektromotor fuer den einsatz bei hohen betriebstemperaturen
WO2022028959A1 (de) Gekühltes ladekabel
DE1111311B (de) Vorrichtung zum Erwaermen von stroemenden Medien, vorzugsweise aktiven Gasen oder Fluessigkeiten, bei der ein elektrisch beheizbarer, gedichteter Graphitkoerper Bohrungen oder Kanaele zum Durchleiten der Gase oder Fluessigkeiten aufweist
DE102019106454A1 (de) Ladeanordnung zum induktiven Laden von Kraftfahrzeugen
DE102017214040A1 (de) Elektrisches Verbindungskabel
DE102018202630B4 (de) Kontaktanordnung und Verfahren zur Verbindung zweier Leiter
DE102021208427A1 (de) Elektrische Leitung, insbesondere Hochstrom-Leitung sowie Vorrichtung mit einer solchen elektrischen Leitung
DE102023113653A1 (de) Vorrichtung zum Kühlen von elektrischen Komponenten und deren Verbindungselementen
DE1062804B (de) Fluessigkeitsgekuehlte Staenderwicklung fuer elektrische Maschinen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19702891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19702891

Country of ref document: EP

Kind code of ref document: A1