WO2019149586A1 - Procédé de formation de motif sur au moins une couche d'un dispositif à semi-conducteur - Google Patents

Procédé de formation de motif sur au moins une couche d'un dispositif à semi-conducteur Download PDF

Info

Publication number
WO2019149586A1
WO2019149586A1 PCT/EP2019/051576 EP2019051576W WO2019149586A1 WO 2019149586 A1 WO2019149586 A1 WO 2019149586A1 EP 2019051576 W EP2019051576 W EP 2019051576W WO 2019149586 A1 WO2019149586 A1 WO 2019149586A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
patterning
target
sensing light
Prior art date
Application number
PCT/EP2019/051576
Other languages
English (en)
Inventor
Reinder Teun Plug
Maurits Van Der Schaar
Original Assignee
Asml Netherlands B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml Netherlands B.V. filed Critical Asml Netherlands B.V.
Publication of WO2019149586A1 publication Critical patent/WO2019149586A1/fr

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/708Mark formation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7084Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps

Definitions

  • the present invention relates to a method of patterning for use in a lithographic process.
  • the present invention also relates to an apparatus for use in a method of patterning for use in a lithographic process.
  • a lithographic apparatus is a machine that applies a desired pattern onto a substrate, usually onto a target portion of the substrate.
  • a lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs).
  • a patterning device which is alternatively referred to as a mask or a reticle, may be used to generate a circuit pattern to be formed on an individual layer of the IC.
  • This pattern can be transferred onto a target portion (e.g. including part of, one, or several dies) on a substrate (e.g. a silicon wafer). Transfer of the pattern is typically via imaging onto a layer of radiation-sensitive material (resist) provided on the substrate.
  • resist radiation-sensitive material
  • a single substrate will contain a network of adjacent target portions that are successively patterned.
  • Conventional lithographic apparatus include so-called steppers, in which each target portion is irradiated by exposing an entire pattern onto the target portion at once, and so-called scanners, in which each target portion is irradiated by scanning the pattern through a radiation beam in a given direction (the“scanning”-direction) while synchronously scanning the substrate parallel or anti-parallel to this direction. It is also possible to transfer the pattern from the patterning device to the substrate by imprinting the pattern onto the substrate.
  • lithographic apparatus may use electromagnetic radiation.
  • the wavelength of this radiation determines the minimum size of features which are patterned on the substrate. Typical wavelengths currently in use are 365 nm (i-line), 248 nm, 193 nm and 13.5 nm.
  • a lithographic apparatus which uses extreme ultraviolet (EUV) radiation, having a wavelength within a range of 4 nm to 20 nm, for example 6.7 nm or 13.5 nm, may be used to form smaller features on a substrate than a lithographic apparatus which uses, for example, radiation with a wavelength of 193 nm.
  • EUV extreme ultraviolet
  • the manufacturing of ICs thus involves the creation of a plurality of overlaying patterned layers each having an individual pattern and each layer needs to be aligned as good as possible with respect to other layers.
  • layer-to-layer alignment i.e., alignment between a first layer and a second layer that overlays the previous layer
  • a measure for the alignment between layers, or, more generally, the alignment of an individual layer with respect to a reference may be obtained by a metrology tool, such as for example a wafer alignment sensor or an overlay metrology sensor as respectively disclosed in US6961116 and WO 2011/012624.
  • Such a sensor typically uses visible light reflected and / or scattered from metrology marks, for example alignment marks, overlay mark structures or product structures in the individual layers.
  • metrology marks for example alignment marks, overlay mark structures or product structures in the individual layers.
  • a plurality of metrology marks are formed during the lithographic manufacturing process of the individual patterned layers and are normally placed in an area surrounding the product structures, which area is also named a scribe lane.
  • sensors are usually provided to measure the position, orientation and/or deformation of a substrate in order to accurately transfer a pattern to a target portion on the substrate.
  • these sensors use sensor targets provided on the substrate, but when these sensor targets are covered by a layer with unfavourable properties for the sensor, e.g. the layer is opaque for an optically based sensor, the measurements are affected in a negative way, for example receiving a too low signal.
  • these sensor targets are revealed by clearing out, or removing, a part of the opaque layer using additional lithographic and etching processing steps. These additional processing steps take a lot of time and cost a lot of machine capacity and may result in yield loss .
  • sensing light may lead to a resist layer which is not uniform, which is not able to form, or which is not suitable to allow reliable overlay measurements.
  • an additional step may be needed such that the cleared area, as described in the process above, is filled with a material which is 1) transmissive to sensing light and 2) assures an uniform resist layer.
  • Such additional step while allowing appropriate metrology measurements in terms of accuracy and/or precision, may be prohibitively expensive.
  • Such a patterned layer allows a) sufficient light to illuminate any buried or underlying grating whilst allowing sufficient light to be reflected back such that a meaningful metrology measurement may be performed and b) a good support for the top layer of resist such that said resist layer does not bend or buckle or substantially deform, in which case also allowing meaningful metrology measurements. Meaningful metrology measurements are achieved when one determines accurately overlay or any other lithographic process parameter of interest, or wafer alignment information. Further advantages of the method may be in that the remaining patterned layer prevents further material stress release, stress which may affect negatively the overlay metrology measurement. As the pattern layer allows forming of uniform resist layer despite having its structure patterned, further re-working (stripping of resist, re -deposition of resist, re -pattern, and re-develop) is possible and without the loss of yield.
  • an apparatus adapted to execute the method of previous embodiment wherein the patterning means comprises a laser.
  • Figure 1 depicts a lithographic apparatus according to an embodiment of the invention
  • Figure 2 schematically depicts a clearing out device according to the invention
  • Figure 3A depicts a top view of a substrate covered with a layer of material
  • Figure 3B depicts a cross-sectional view of the substrate of Fig. 3A;
  • Figure 4A depicts a top view of the substrate of Fig. 3A after clearing out features in the second areas;
  • Figure 4B depicts in more detail a first region of the substrate of Fig. 4A;
  • Figure 4C depicts in more detail a second region of the substrate of Fig. 4A;
  • Figure 5A depicts a top view of the substrate of Fig. 4A after clearing out a sensor target in the first areas;
  • Figure 5B depicts in more detail a third region of the substrate of Fig. 5A;
  • Figure 6 depicts a cross-sectional view of the third region of the substrate of Fig. 5A.
  • Figure 7 depicts a cross-sectional view of the third region of the substrate of Fig. 5A after being filled with another material.
  • Figure 8A and figure 8B depict an arrangement of the overlay metrology target according to an embodiment of the present invention wherein 8A is a top view and 8B is a cross section along the line AA ⁇
  • Figure 1 schematically depicts a lithographic apparatus according to one embodiment of the invention.
  • the apparatus comprises:
  • an illumination system (illuminator) IL configured to condition a radiation beam B (e.g. UV
  • a support structure e.g. a mask table
  • a patterning device e.g. a mask
  • a substrate table e.g. a wafer table
  • WTa or WTb constructed to hold a substrate
  • resist-coated wafer W and connected to a second positioner PW configured to accurately position the substrate in accordance with certain parameters;
  • a projection system e.g. a refractive projection lens system
  • PS configured to project a pattern imparted to the radiation beam B by patterning device MA onto a target portion C
  • a target portion C e.g.
  • the illumination system may include various types of optical components, such as refractive, reflective, magnetic, electromagnetic, electrostatic or other types of optical components, or any combination thereof, for directing, shaping, and/or controlling radiation.
  • optical components such as refractive, reflective, magnetic, electromagnetic, electrostatic or other types of optical components, or any combination thereof, for directing, shaping, and/or controlling radiation.
  • the support structure MT supports, i.e. bears the weight of, the patterning device MA.
  • the support structure MT can use mechanical, vacuum, electrostatic or other clamping techniques to hold the patterning device MA.
  • the support structure MT may be a frame or a table, for example, which may be fixed or movable as required.
  • the support structure MT may ensure that the patterning device MA is at a desired position, for example with respect to the projection system PS. Any use of the terms“reticle” or“mask” herein may be considered synonymous with the more general term“patterning device.”
  • patterning device used herein should be broadly interpreted as referring to any device that can be used to impart a radiation beam with a pattern in its cross- section such as to create a pattern in a target portion of the substrate W. It should be noted that the pattern imparted to the radiation beam may not exactly correspond to the desired pattern in the target portion of the substrate W, for example if the pattern includes phase-shifting features or so called assist features. Generally, the pattern imparted to the radiation beam will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit.
  • the patterning device MA may be transmissive or reflective.
  • Examples of patterning devices include masks, programmable mirror arrays, and programmable LCD panels.
  • Masks are well known in lithography, and include mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types.
  • An example of a programmable mirror array employs a matrix arrangement of small mirrors, each of which can be individually tilted so as to reflect an incoming radiation beam in different directions. The tilted mirrors impart a pattern in a radiation beam which is reflected by the mirror matrix.
  • UV radiation e.g. having a wavelength of or about 365, 248, 193, 157 or 126 nm
  • EUV radiation e.g. having a wavelength in the range of 5-20nm
  • particle beams such as ion beams or electron beams.
  • projection system should be broadly interpreted as encompassing any type of projection system, including refractive, reflective, catadioptric, magnetic, electromagnetic and electrostatic optical systems, or any combination thereof, as appropriate for the exposure radiation being used, or for other factors such as the use of an immersion liquid or the use of a vacuum. Any use of the term“projection lens’’ herein may be considered as synonymous with the more general term“projection system’’.
  • the apparatus is of a transmissive type (e.g. employing a transmissive mask).
  • the apparatus may be of a reflective type (e.g. employing a programmable mirror array of a type as referred to above, or employing a reflective mask).
  • the lithographic apparatus may be of a type having two (dual stage) or more substrate tables (and/or two or more mask tables). In such“multiple stage’’ machines the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposure.
  • the two substrate tables WTa and WTb in the example of Figure 1 are an illustration of this.
  • the invention disclosed herein can be used in a stand-alone fashion, but in particular it can provide additional functions in the pre-exposure measurement stage of either single- or multi-stage apparatuses.
  • the lithographic apparatus may also be of a type wherein at least a portion of the substrate W may be covered by a liquid having a relatively high refractive index, e.g. water, so as to fill a space between the projection system PS and the substrate W.
  • a liquid having a relatively high refractive index e.g. water
  • An immersion liquid may also be applied to other spaces in the lithographic apparatus, for example, between the patterning device MA and the projection system PS. Immersion techniques are well known in the art for increasing the numerical aperture of projection systems.
  • immersion as used herein does not mean that a structure, such as a substrate W, must be submerged in liquid, but rather only means that liquid is located between the projection system PS and the substrate W during exposure.
  • the illuminator IL receives a radiation beam from a radiation source SO.
  • the radiation source SO and the lithographic apparatus may be separate entities, for example when the radiation source SO is an excimer laser. In such cases, the radiation source SO is not considered to form part of the lithographic apparatus and the radiation beam is passed from the radiation source SO to the illuminator IL with the aid of a beam delivery system BD comprising, for example, suitable directing mirrors and/or a beam expander. In other cases the source may be an integral part of the lithographic apparatus, for example when the source is a mercury lamp.
  • the radiation source SO and the illuminator IL, together with the beam delivery system BD if required, may be referred to as a radiation system.
  • the illuminator IL may comprise an adjuster AD for adjusting the angular intensity distribution of the radiation beam.
  • an adjuster AD for adjusting the angular intensity distribution of the radiation beam.
  • the illuminator IL may comprise various other components, such as an integrator IN and a condenser CO.
  • the illuminator may be used to condition the radiation beam, to have a desired uniformity and intensity distribution in its cross-section.
  • the radiation beam B is incident on the patterning device MA (e.g., mask), which is held on the support structure MT (e.g., mask table), and is patterned by the patterning device MA. Having traversed the patterning device MA, the radiation beam B passes through the projection system PS, which focuses the beam onto a target portion C of the substrate W.
  • the substrate table WTa/WTb can be moved accurately, e.g. so as to position different target portions C in the path of the radiation beam B.
  • the first positioner PM and another position sensor can be used to accurately position the patterning device MA with respect to the path of the radiation beam B, e.g. after mechanical retrieval from a mask library, or during a scan.
  • movement of the support structure MT may be realized with the aid of a long-stroke module (coarse positioning) and a short-stroke module (fine positioning), which form part of the first positioner PM.
  • movement of the substrate table WTa/WTb may be realized using a long-stroke module and a short-stroke module, which form part of the second positioner PW.
  • the support structure MT may be connected to a short-stroke actuator only, or may be fixed.
  • Patterning device MA and substrate W may be aligned using mask alignment marks Ml, M2 and substrate alignment marks Pl, P2.
  • the substrate alignment marks as illustrated occupy dedicated target portions, they may be located in spaces between target portions (these are known as scribe-lane alignment marks).
  • the mask alignment marks Ml, M2 may be located between the dies.
  • the depicted apparatus can at least be used in scan mode, in which the support structure MT and the substrate table WTa/WTb are scanned synchronously while a pattern imparted to the radiation beam is projected onto a target portion C (i.e. a single dynamic exposure).
  • the velocity and direction of the substrate table WTa/WTb relative to the support structure MT may be determined by the (de)-magnification and image reversal characteristics of the projection system PS.
  • the maximum size of the exposure field limits the width (in the non-scanning direction) of the target portion in a single dynamic exposure, whereas the length of the scanning motion determines the height (in the scanning direction) of the target portion.
  • the depicted apparatus could be used in at least one of the following modes:
  • step mode the support structure MT and the substrate table WTa/WTb are kept essentially stationary, while an entire pattern imparted to the radiation beam is projected onto a target portion C at one time (i.e. a single static exposure).
  • the substrate table WTa/WTb is then shifted in the X and/or Y direction so that a different target portion C can be exposed.
  • step mode the maximum size of the exposure field limits the size of the target portion C imaged in a single static exposure.
  • the support structure MT is kept essentially stationary holding a programmable patterning device, and the substrate table WTa/WTb is moved or scanned while a pattern imparted to the radiation beam is projected onto a target portion C.
  • a pulsed radiation source is employed and the programmable patterning device is updated as required after each movement of the substrate table WTa/WTb or in between successive radiation pulses during a scan.
  • This mode of operation can be readily applied to maskless lithography that utilizes programmable patterning device, such as a programmable mirror array of a type as referred to above.
  • Lithographic apparatus LA is of a so-called dual stage type which has two substrate tables WTa and WTb and two stations - an exposure station and a measurement station- between which the substrate tables can be exchanged. While one substrate on one substrate table is being exposed at the exposure station, another substrate can be loaded onto the other substrate table at the measurement station so that various preparatory steps may be carried out.
  • the preparatory steps may include mapping the surface of the substrate using a level sensor LS and measuring the position of alignment markers on the substrate using an alignment sensor AS. This enables a substantial increase in the throughput of the apparatus. If the position sensor IF is not capable of measuring the position of the substrate table while it is at the measurement station as well as at the exposure station, a second position sensor may be provided to enable the positions of the substrate table to be tracked at both stations.
  • the apparatus further includes a lithographic apparatus control unit LACU which controls all the movements and measurements of the various actuators and sensors described.
  • Control unit LACU also includes signal processing and data processing capacity to implement desired calculations relevant to the operation of the apparatus.
  • control unit LACU will be realized as a system of many sub-units, each handling the real-time data acquisition, processing and control of a subsystem or component within the apparatus.
  • one processing subsystem may be dedicated to servo control of the substrate positioner PW. Separate units may even handle coarse and fine actuators, or different axes.
  • Another unit might be dedicated to the readout of the position sensor IF.
  • Overall control of the apparatus may be controlled by a central processing unit, communicating with these sub-systems processing units, with operators and with other apparatuses involved in the lithographic manufacturing process.
  • metrology tools MT In lithographic processes, it is desirable to make frequently measurements of the structures created, e.g., for process control and verification. Tools to make such measurement are typically called metrology tools MT. Different types of metrology tools MT for making such measurements are known, including scanning electron microscopes or various forms of scatterometer metrology tools MT. Scatterometers are versatile instruments which allow measurements of the parameters of a lithographic process by having a sensor in the pupil or a conjugate plane with the pupil of the objective of the scatterometer, measurements usually referred as pupil based measurements, or by having the sensor in the image plane or a plane conjugate with the image plane, in which case the measurements are usually referred as image or field based measurements.
  • Aforementioned scatterometers may measure gratings using light from soft x-ray and visible to near-IR wavelength range.
  • the scatterometer MT is an angular resolved scatterometer.
  • reconstruction methods may be applied to the measured signal to reconstruct or calculate properties of the grating.
  • Such reconstruction may, for example, result from simulating interaction of scattered radiation with a mathematical model of the target structure and comparing the simulation results with those of a measurement. Parameters of the mathematical model are adjusted until the simulated interaction produces a diffraction pattern similar to that observed from the real target.
  • the scatterometer MT is a spectroscopic scatterometer MT.
  • the radiation emitted by a radiation source is directed onto the target and the reflected or scattered radiation from the target is directed to a spectrometer detector, which measures a spectrum (i.e. a measurement of intensity as a function of wavelength) of the specular reflected radiation. From this data, the structure or profile of the target giving rise to the detected spectrum may be reconstructed, e.g. by Rigorous Coupled Wave Analysis and non linear regression or by comparison with a library of simulated spectra.
  • the scatterometer MT is a ellipsometric scatterometer.
  • the ellipsometric scatterometer allows for determining parameters of a lithographic process by measuring scattered radiation for each polarization states.
  • Such metrology apparatus emits polarized light (such as linear, circular, or elliptic) by using, for example, appropriate polarization filters in the illumination section of the metrology apparatus.
  • a source suitable for the metrology apparatus may provide polarized radiation as well.
  • the scatterometer MT is adapted to measure the overlay of two misaligned gratings or periodic structures by measuring asymmetry in the reflected spectrum and/or the detection configuration, the asymmetry being related to the extent of the overlay.
  • the two (typically overlapping) grating structures may be applied in two different layers (not necessarily consecutive layers), and may be formed substantially at the same position on the wafer.
  • the scatterometer may have a symmetrical detection configuration as described e.g. in co-owned patent application EP1,628,164A, such that any asymmetry is clearly distinguishable. This provides a straightforward way to measure misalignment in gratings.
  • Focus and dose may be determined simultaneously by scatterometry (or alternatively by scanning electron microscopy) as described in US patent application US2011-0249244, incorporated herein by reference in its entirety.
  • a single structure may be used which has a unique combination of critical dimension and sidewall angle measurements for each point in a focus energy matrix (FEM - also referred to as Focus Exposure Matrix). If these unique combinations of critical dimension and sidewall angle are available, the focus and dose values may be uniquely determined from these measurements.
  • FEM focus energy matrix
  • a metrology target may be an ensemble of composite gratings, formed by a lithographic process, mostly in resist, but also after etch process for example.
  • the pitch and line -width of the structures in the gratings strongly depend on the measurement optics (in particular the NA of the optics) to be able to capture diffraction orders coming from the metrology targets.
  • the diffracted signal may be used to determine shifts between two layers (also referred to‘overlay’) or may be used to reconstruct at least part of the original grating as produced by the lithographic process. This reconstruction may be used to provide guidance of the quality of the lithographic process and may be used to control at least part of the lithographic process.
  • Targets may have smaller sub-segmentation which are configured to mimic dimensions of the functional part of the design layout in a target. Due to this sub-segmentation, the targets will behave more similar to the functional part of the design layout such that the overall process parameter measurements resembles the functional part of the design layout better.
  • the targets may be measured in an underfilled mode or in an overfilled mode. In the underfilled mode, the measurement beam generates a spot that is smaller than the overall target. In the overfilled mode, the measurement beam generates a spot that is larger than the overall target. In such overfilled mode, it may also be possible to measure different targets simultaneously, thus determining different processing parameters at the same time.
  • the term“substrate measurement recipe’’ may include one or more parameters of the measurement itself, one or more parameters of the one or more patterns measured, or both.
  • the measurement used in a substrate measurement recipe is a diffraction-based optical measurement
  • one or more of the parameters of the measurement may include the wavelength of the radiation, the polarization of the radiation, the incident angle of radiation relative to the substrate, the orientation of radiation relative to a pattern on the substrate, etc.
  • One of the criteria to select a measurement recipe may, for example, be a sensitivity of one of the measurement parameters to processing variations. More examples are described in US patent application US2016-0161863 and US patent application 15/181,126, incorporated herein by reference in their entirety.
  • Fig. 2 schematically depicts a clearing out device COD, as described, for example in WO 2019007590 Al, which is incorporate herein by reference in its entirety.
  • the clearing out device COD is in this embodiment part of the lithographic apparatus of Fig. 1 and reachable by at least one of the two substrate tables WTa/WTb to provide a substrate W to the clearing out device COD.
  • the clearing out device COD is configured to clear out sensor targets on a substrate covered with a layer of material.
  • Fig. 3 A schematically depicts a top view of a substrate W covered with a layer of material
  • Fig. 3B depicts a cross-sectional view of said substrate W.
  • the substrate W includes sensor targets, for instance a substrate alignment mark Pl or P2, e.g. a grating.
  • the substrate W is covered by a layer of material LOM, also covering the sensor target Pl, P2. This layer of material LOM may impede a sensor from accurately measuring its position, e.g. by being opaque to an optically based sensor, e.g.
  • a carbon layer as occurring in e.g. a 3D NAND process Clearing out removes the layer of material LOM at least partially such that the sensor targets can be used by a sensor apparatus.
  • At least partially removing the layer of material LOM thus also includes an embodiment in which a thickness of the layer of material is reduced without completely removing the layer of material. Hence, the thickness of the layer of material may be reduced to a value that the layer of material becomes sufficiently transparent for an optically based sensor apparatus.
  • At least partially removing the layer of material further also includes completely removing the layer, i.e. reducing the thickness to zero.
  • the clearing out device comprises a layer
  • the substrate W comprises first areas indicated by reference
  • Non-production target portions are target portions that are not useful to a manufacturer of e.g. integrated circuits, for instance because the target portion is at the edge of the substrate W and not complete, i.e. incomplete, as a result of which it is not possible to yield a working integrated circuit.
  • Production target portions are target portions that are useful to a manufacturer of e.g. integrated circuits and able to yield a working integrated circuit.
  • Information about the expected location of the first areas 1 and the second areas 2 is usually directly or indirectly provided by the manufacturer as it, amongst other things, depends on the target portion size and the distribution of target portions across the substrate, which are all chosen and/or set by the manufacturer.
  • the control unit CU of the clearing out device COD in Fig. 2 is configured to receive and/or store this information and to determine the location of the first and second areas 1,2 based on the information.
  • the substrate W comprises a reference plane RP or any other reference to allow the clearing out device COD to roughly determine the location of the target portions based on the information provided to and/or stored in the control unit CU.
  • RP reference plane
  • the substrate W may be deformed and the sensor targets Pl, P2 are covered by the layer of material LOM, it is not possible to determine the position of the sensor targets Pl, P2 accurately enough. This may result in a cleared out area which is not large enough to reveal the entire sensor targets Pl, P2, but only a part may be revealed.
  • regions in the second areas are cleared out first to reveal features in the second areas.
  • the area of these regions is large enough to reveal the entire sensor targets Pl, P2.
  • the control unit CU is therefore configured to control the layer removal device LRD to at least partially clear out the second areas by at least partially removing the layer covering the second areas to reveal features in the second areas.
  • the location of the features is for instance known from a database comprising a substrate layout and locations of the features, e.g. sensor targets or other types of features, in combination with a rough indication of the substrate position.
  • Fig. 4A depicts the substrate W of Fig. 3A, but after the layer removal device LRD has removed the layer of material at a first region RE1 and a second region RE2, which first and second regions are located in the second areas.
  • the layer removal device may for instance be a laser, e.g. an ablation laser, configured to remove the layer of material by laser ablation, e.g. the laser is an ultra short pulsed laser.
  • the layer removal device LRD is stationary and the substrate W is moved below the layer removal device LRD using the substrate table WTa/WTb and the corresponding positioner PW.
  • the layer removal device LRD may be moveable.
  • the layer may also be removed by an etching process, e.g. plasma etching.
  • Fig. 4B depicts the first region RE1 in more detail.
  • a first feature FE1 is revealed.
  • the first region RE1 is much larger than the feature FE1 as the location of the first feature FE1 can’t be determined accurately enough.
  • the size of the first region RE1 is such that within the error margin of the determination of the location of the first feature FE1, the first feature will always be revealed.
  • the first feature FE1 may be a sensor target like the sensor targets Pl, P2, but may also be another mark, target, grating or any other recognizable feature.
  • Fig. 4C depicts the second region RE2 in more detail.
  • a second feature FE2 is revealed.
  • the second region RE2 is much larger than the feature FE2 as the location of the second feature FE2 can’t be determined accurately enough.
  • the size of the second region RE2 is such that within the error margin of the determination of the location of the second feature FE2, the second feature will always be revealed.
  • the second feature may be a sensor target like the sensor targets Pl, P2, but may also be another mark, target, grating or any other recognizable feature as schematically indicated here.
  • the feature location determination device is controlled to measure a location of the revealed features with more accuracy than initially for the clearing out process. This measurement can be used to determine the exact orientation and deformation of the substrate to determine a location of sensor targets Pl, P2 in the first areas, e.g. again based on a database comprising a substrate layout and locations of the sensor targets Pl,P2.
  • Fig. 5A depicts the substrate W of Fig. 4A, but after determining a location of a sensor target Pl, P2 in the first areas based on the location of the measured first and second features, and controlling the layer removal device to clear out a third region RE3 and reveal the sensor target in the first areas by removing the layer of material covering the sensor target based on the determined location of the sensor target.
  • Fig. 5B depicts the third region RE3 in more detail.
  • the sensor target Pl, P2 is revealed.
  • the third region is only slightly larger than the sensor target Pl, P2 as the location of the sensor target can be determined more accurately based on the measured locations of the first and second features. As a result, clearing out the third region will not negatively affect any neighboring target portions, so that yield is not reduced while clearing out the sensor targets.
  • FIG. 5A and 5B only show the clearing out of the third region RE3, i.e. a single region in the first areas, it will be apparent to the skilled person that using this method, any number of sensor targets in the first areas can be cleared out.
  • Fig. 6 depicts a cross-sectional view of the third region RE3 of the substrate W of Fig. 5A. It can be clearly seen that the layer of material LOM is removed above the sensor target Pl,P2 so that the sensor of the lithographic apparatus is able to interact with the sensor target Pl, P2 to determine the position of the sensor target Pl, P2 accurately during subsequent processing. However, due to the clearing out process, there is a step-like structure surrounding the sensor target so that when a resist layer is spun on the substrate, a non-uniform thickness of the resist layer is obtained.
  • the third region RE3 may first be filled with another material ANO using the filling device FD as depicted in Fig. 7, which other material is preferably chosen such that it does not impede with the location measurement of the sensor target Pl,P2, but provides a flat upper surface of the substrate W to allow a resist layer to be spun on the substrate and obtain a substantially uniform thickness.
  • the substrate W may for instance be brought below the filling device FD as depicted in phantom in Fig. 2 by correspondingly positioning the substrate holder.
  • the material ANO may for instance be spin coated on the substrate W in a similar manner as resist is applied to a substrate.
  • It is an object of the invention to describe a method of patterning of at least a layer in a semiconductor device comprising a patterning step by a patterning means to create a patterned layer wherein the pattern layer comprises sensing light transmissive portions and sensing light blocking portions.
  • the patterning means is a laser or an LED based light source or a process such as etching. In the situation when the patterning means is a laser or an LED based light source, the patterning is achieved by ablating the material.
  • Sensing light is the radiation used in a metrology process, such as an overlay metrology or a position metrology.
  • FIG 8A depicts patterned resist lines, such as elements 701, on top of a elements 702.
  • Elements 702 are formed by a patterning means in a material which is opaque to sensing light of the metrology tool.
  • Elements 701 are formed in resist by a lithographic process, and may form part of a metrology overlay target. It is an aim of the current invention that the patterning means used in the patterning step may form sensing light transmissive areas 702x.
  • an 1D arrangement comprising elements 702, which are formed from the material of the opaque layer, and elements 702x which is the distance between the elements 702, and which may allow the transmission of the sensing light.
  • the patterning means for example the patterned spot of a laser beam, may ablate the material of the opaque layer, creating the spacings 702x.
  • elements 702 may be sensing light blocking portions and elements 702x may be sensing light transmissive portions.
  • Element 703 may be the bottom grating in a diffraction based target.
  • the ratio between the sensing light transmissive portions 702x and sensing light blocking portions 702 is 30%.
  • the ratio is defined as the area of the sensing light transmissive portion divided by the total patterned area.
  • the ratio may also be defined as the area of a single element of the sensing light transmissive portion such as 702x and the area formed by a single element of the sensing light transmissive portion 702x and a single element of the sensing light blocking portion 702.
  • the dimension of the one of the sensing light transmission portion elements is 100 nm and the dimension of the sensing light blocking portion elements is 200nm.
  • element 702x is 200nm and element 702 is lOOnm, in which case the ratio between the sensing light transmissive portions and sensing light blocking portions is 67%.
  • the dimension of the one of the sensing light transmission portion elements is 100 nm and the dimension of the sensing light blocking portion elements is lOOnm.
  • the ratio between the sensing light transmissive portions and sensing light blocking portions is 70%.
  • the dimension of the one of the sensing light transmission portion elements is 70 nm and the dimension of the sensing light blocking portion elements is 30nm.
  • the dimension of one of the sensing light transmission portion elements is l40nm and the dimension of the sensing light blocking portion elements is 60nm.
  • element 702x is 200nm and element 702 is lOOnm.
  • the ratio is 50%, with the dimension of element 702x of 300nm and the dimension of element 702 of 300nm.
  • the ratio between the sensing light transmissive portions and sensing light blocking portions is 50%.
  • the ration between the sensing light transmissive portions and sensing light blocking portions is 33%.
  • the sensing light transmissive portions have a geometrical symmetry, such as point symmetry (circular, ellipsoid, etc) or axis symmetry (rectangular, etc.) and may be part of a 2D (2 dimensional) pattern.
  • the sensing light transmissive portions have random symmetry.
  • the arrangement of the sensing light transmissive portions and sensing light blocking portions is random.
  • the pattern in the hard mask is a 3D pattern.
  • the patterning step comprises 1) creating a clear area by for example chemical etching or laser ablation, such that said clear area clears the underlying target and 2) the deposition of a material which is porous or comprising openings such that it allows the transmission of the sensing light.
  • the advantage of the 3D pattern is that it is intrinsically beneficial to the uniformity of the resist layer which is deposited on top.
  • the patterning means is a laser having a fluency of 0.5J/cm2. In an embodiment, the patterning means is a laser having a fluency of 0.1 J/cm2.
  • the laser beam is adapted, by interferometry or holography methods, which are currently known in the art, to create a pattern similar to the resulting pattern after the patterning step.
  • the patterning step creates a ID pattern
  • the laser beam profile may comprise a ID profile of the intensity.
  • the laser beam profile may comprise a 2D profile of the beam intensity.
  • the laser spot has a diameter of 5 microns.
  • the profile of the laser sport has, in an embodiment, a sinusoidal profile of the fluency with a period of 300nm?.
  • Known methods to create a pattern illumination profile having sufficient light fluency such that the beam may pattern the hard mask are, for example, laser ablation comprising Lloyd’ s mirrors, Diffractive Optical Elements, holographic optical elements, Spatial light modulator, LEDs, semiconductor lasers.
  • the patterning means comprises a nanoimprint step followed by chemical etching of the hard mask.
  • the patterning means is an etching process preceded by a
  • patterning process patterning which may comprise a lithographic step, a nanoimprint step.
  • lithographic apparatus in the manufacture of ICs
  • the lithographic apparatus described herein may have other applications, such as the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, flat-panel displays, liquid-crystal displays (LCDs), thin-film magnetic heads, etc.
  • LCDs liquid-crystal displays
  • any use of the terms“wafer” or“die” herein may be considered as synonymous with the more general terms“substrate” or“target portion”, respectively.
  • the substrate referred to herein may be processed, before or after exposure, in for example a track (a tool that typically applies a layer of resist to a substrate and develops the exposed resist), a metrology tool and/or an inspection tool. Where applicable, the disclosure herein may be applied to such and other substrate processing tools. Further, the substrate may be processed more than once, for example in order to create a multi-layer IC, so that the term substrate used herein may also refer to a substrate that already contains multiple processed layers.
  • imprint lithography a topography in a patterning device defines the pattern created on a substrate.
  • the topography of the patterning device may be pressed into a layer of resist supplied to the substrate whereupon the resist is cured by applying electromagnetic radiation, heat, pressure or a combination thereof.
  • the patterning device is moved out of the resist leaving a pattern in it after the resist is cured.
  • the invention may be practiced otherwise than as described.
  • the invention may take the form of a computer program containing one or more sequences of machine-readable instructions describing a method as disclosed above, or a data storage medium (e.g. semiconductor memory, magnetic or optical disk) having such a computer program stored therein.
  • a data storage medium e.g. semiconductor memory, magnetic or optical disk

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Multimedia (AREA)

Abstract

L'invention concerne un procédé de formation de motif d'au moins une couche dans un dispositif à semi-conducteur, comprenant une étape de formation de motif par des moyens de formation de motif, la couche à motif comprenant des parties de transmission de lumière de détection (702x) et des parties de blocage de lumière de détection (702).
PCT/EP2019/051576 2018-01-30 2019-01-23 Procédé de formation de motif sur au moins une couche d'un dispositif à semi-conducteur WO2019149586A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18154231.7 2018-01-30
EP18154231 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019149586A1 true WO2019149586A1 (fr) 2019-08-08

Family

ID=61132048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/051576 WO2019149586A1 (fr) 2018-01-30 2019-01-23 Procédé de formation de motif sur au moins une couche d'un dispositif à semi-conducteur

Country Status (3)

Country Link
US (1) US20190235394A1 (fr)
TW (1) TW201937306A (fr)
WO (1) WO2019149586A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165677A1 (en) * 2020-11-25 2022-05-26 Intel Corporation Frame reveals with maskless lithography in the manufacture of integrated circuits

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943588A (en) * 1996-12-31 1999-08-24 Intel Corporation Method of manufacturing and using alignment marks
US6420791B1 (en) * 1999-11-23 2002-07-16 United Microelectronics Corp. Alignment mark design
US6961116B2 (en) 2002-06-11 2005-11-01 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
EP1628164A2 (fr) 2004-08-16 2006-02-22 ASML Netherlands B.V. Procédé et dispositif pour caractérisation de la lithographie par spectrométrie à résolution angulaire
US20080138623A1 (en) * 2006-12-12 2008-06-12 Asml Netherlands B.V. Substrate comprising a mark
US20100328655A1 (en) 2007-12-17 2010-12-30 Asml, Netherlands B.V. Diffraction Based Overlay Metrology Tool and Method
WO2011012624A1 (fr) 2009-07-31 2011-02-03 Asml Netherlands B.V. Procédé et appareil de métrologie, système lithographique et cellule de traitement lithographique
US20110026032A1 (en) 2008-04-09 2011-02-03 Asml Netherland B.V. Method of Assessing a Model of a Substrate, an Inspection Apparatus and a Lithographic Apparatus
US20110102753A1 (en) 2008-04-21 2011-05-05 Asml Netherlands B.V. Apparatus and Method of Measuring a Property of a Substrate
US20110249244A1 (en) 2008-10-06 2011-10-13 Asml Netherlands B.V. Lithographic Focus and Dose Measurement Using A 2-D Target
US20120044470A1 (en) 2010-08-18 2012-02-23 Asml Netherlands B.V. Substrate for Use in Metrology, Metrology Method and Device Manufacturing Method
US20160161863A1 (en) 2014-11-26 2016-06-09 Asml Netherlands B.V. Metrology method, computer product and system
WO2017215924A1 (fr) * 2016-06-13 2017-12-21 Asml Netherlands B.V. Procédés et appareil permettant de déterminer la position d'une structure cible sur un substrat, procédés et appareil permettant de déterminer la position d'un substrat
WO2019007590A1 (fr) 2017-07-05 2019-01-10 Asml Netherlands B.V. Procédé d'élimination, dispositif de dévoilement, appareil lithographique et procédé de fabrication de l'appareil

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943588A (en) * 1996-12-31 1999-08-24 Intel Corporation Method of manufacturing and using alignment marks
US6420791B1 (en) * 1999-11-23 2002-07-16 United Microelectronics Corp. Alignment mark design
US6961116B2 (en) 2002-06-11 2005-11-01 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
EP1628164A2 (fr) 2004-08-16 2006-02-22 ASML Netherlands B.V. Procédé et dispositif pour caractérisation de la lithographie par spectrométrie à résolution angulaire
US20080138623A1 (en) * 2006-12-12 2008-06-12 Asml Netherlands B.V. Substrate comprising a mark
US20100328655A1 (en) 2007-12-17 2010-12-30 Asml, Netherlands B.V. Diffraction Based Overlay Metrology Tool and Method
US20110026032A1 (en) 2008-04-09 2011-02-03 Asml Netherland B.V. Method of Assessing a Model of a Substrate, an Inspection Apparatus and a Lithographic Apparatus
US20110102753A1 (en) 2008-04-21 2011-05-05 Asml Netherlands B.V. Apparatus and Method of Measuring a Property of a Substrate
US20110249244A1 (en) 2008-10-06 2011-10-13 Asml Netherlands B.V. Lithographic Focus and Dose Measurement Using A 2-D Target
WO2011012624A1 (fr) 2009-07-31 2011-02-03 Asml Netherlands B.V. Procédé et appareil de métrologie, système lithographique et cellule de traitement lithographique
US20120044470A1 (en) 2010-08-18 2012-02-23 Asml Netherlands B.V. Substrate for Use in Metrology, Metrology Method and Device Manufacturing Method
US20160161863A1 (en) 2014-11-26 2016-06-09 Asml Netherlands B.V. Metrology method, computer product and system
WO2017215924A1 (fr) * 2016-06-13 2017-12-21 Asml Netherlands B.V. Procédés et appareil permettant de déterminer la position d'une structure cible sur un substrat, procédés et appareil permettant de déterminer la position d'un substrat
WO2019007590A1 (fr) 2017-07-05 2019-01-10 Asml Netherlands B.V. Procédé d'élimination, dispositif de dévoilement, appareil lithographique et procédé de fabrication de l'appareil

Also Published As

Publication number Publication date
TW201937306A (zh) 2019-09-16
US20190235394A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
CN107924119B (zh) 检查设备、检查方法及制造方法
CN108700819B (zh) 光刻设备和用于执行测量的方法
JP6412163B2 (ja) メトロロジーに用いられる基板及びパターニングデバイス、メトロロジー方法、及びデバイス製造方法
JP5908045B2 (ja) メトロロジ装置、リソグラフィ装置、リソグラフィセル及びメトロロジ方法
JP5412528B2 (ja) 検査方法、検査システム、基板、およびマスク
KR101429629B1 (ko) 계측 방법 및 장치, 리소그래피 시스템, 및 리소그래피 처리 셀
US7589832B2 (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device method
JP4701209B2 (ja) 角度分解したスペクトロスコピーリソグラフィの特性解析方法および装置
US7391513B2 (en) Lithographic apparatus and device manufacturing method using overlay measurement quality indication
US20170031246A1 (en) Inspection Apparatus, Inspection Method and Manufacturing Method
KR20180042402A (ko) 리소그래피 프로세스의 파라미터를 측정하는 방법 및 장치, 이러한 방법에서 사용하기 위한 기판 및 패터닝 디바이스
US7880889B2 (en) Angularly resolved scatterometer and inspection method
KR20180014098A (ko) 계측 방법, 검사 장치, 리소그래피 시스템 및 디바이스 제조 방법
CN110832398A (zh) 用于测量光刻设备的聚焦性能的方法、图案形成装置和设备、以及器件制造方法
NL2017346A (en) A method and apparatus for determining at least one property of patterning device marker features
CN113196175A (zh) 测量图案化过程的参数的方法、量测设备、目标
TWI666713B (zh) 量測關注參數的方法、檢測設備、微影系統及器件製造方法
US7821650B2 (en) Lithographic apparatus and device manufacturing method with reduced scribe lane usage for substrate measurement
US20190235394A1 (en) Method of patterning at least a layer of a semiconductor device
US20200152527A1 (en) Clearing out method, revealing device, lithographic apparatus, and device manufacturing method
NL2018564A (en) Substrate edge detection
CN108292111B (zh) 用于在光刻设备中处理衬底的方法和设备
CN117970750A (zh) 量测方法和光刻方法、光刻单元和计算机程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19700831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19700831

Country of ref document: EP

Kind code of ref document: A1