WO2019149356A1 - Produits d'addition de peroxyde d'hydrogène et de siloxanes à fonctionnalité urée - Google Patents
Produits d'addition de peroxyde d'hydrogène et de siloxanes à fonctionnalité urée Download PDFInfo
- Publication number
- WO2019149356A1 WO2019149356A1 PCT/EP2018/052442 EP2018052442W WO2019149356A1 WO 2019149356 A1 WO2019149356 A1 WO 2019149356A1 EP 2018052442 W EP2018052442 W EP 2018052442W WO 2019149356 A1 WO2019149356 A1 WO 2019149356A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radical
- hydrogen peroxide
- formula
- urea
- adducts
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/22—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
- C08G77/26—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N55/00—Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/80—Polymers containing hetero atoms not provided for in groups A61K31/755 - A61K31/795
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/40—Peroxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/89—Polysiloxanes
- A61K8/896—Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
- A61K8/898—Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q11/00—Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/02—Preparations for care of the skin for chemically bleaching or whitening the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/08—Preparations for bleaching the hair
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/08—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
Definitions
- the invention relates to adducts of urea-functional siloxanes with hydrogen peroxide, their preparation and their use.
- Hydrogen peroxide is in demand as a disinfectant because, in contrast to many other antimicrobial substances such as e.g. Silver nanoparticle has no environmentally relevant disadvantages. It disintegrates - relatively slowly without catalysis - into the harmless substances oxygen and water and is therefore, especially in physiological environment, a preferred agent not only for disinfection purposes but also in cosmetic applications e.g. as a bleaching agent for bleaching hair, for bleaching teeth or for fixing perms or as
- aqueous preparations are used ver. This is useful in rinses (e.g., mouthwashes, ear drops), but may become more desirable upon prolonged contact with human or animal tissue, e.g. for wound disinfection or treatment or in technical applications e.g. Peroxide reactions (polymerizations, crosslinks) be a disadvantage.
- Hydrogen peroxide content and its homogeneous appearance can be varied within wide limits, which can be easily prepared, in which phase separation of a hydrogen peroxide-rich (aqueous) phase, for. is avoided during storage and with which a controllable effect can be achieved.
- the invention relates to hydrogen peroxide-containing silicone adducts
- R is a radical R 1 or a radical -OR 2 or a radical Q, where R 1 is a monovalent optionally halogenated
- Hydrocarbon radical having 1 to 18 carbon atoms Hydrocarbon radical having 1 to 18 carbon atoms
- R 2 denotes a hydrogen atom or a monovalent C 1 -C 6 -hydrocarbon radical
- R 6 is a divalent C 1 -C 6 -hydrocarbon radical
- it is hydrogen peroxide silicone adduct consisting of
- radical -OR 2 At most 3% of all radicals R is a radical -OR 2 ,
- Organopolysiloxanes are as constituents of creams,
- the urea-functional organopolysiloxanes of units of the formula (I) are preferably organopolysiloxanes of the formula (IV)
- R * is a radical R 1 or a radical -OR 2 ,
- R 1 and R 2 are as defined above,
- Q is a urea-functional radical of the formula (II)
- R 3 is a hydrogen atom or a monovalent C 1 -C 6 -hydrocarbon radical, preferably a hydrogen atom,
- R 4 is the same or different and is a radical R 4 'or a radical R u , where
- R 4 'de notes a hydrogen atom or a monovalent C 1 -C 6 -hydrocarbon radical
- R u is a radical of formula (III)
- R 5 is a divalent C 1 -C 6 -hydrocarbon radical
- R 6 is a divalent C 1 -C 6 -hydrocarbon radical
- k 0 or 1
- n is 0 or an integer from 1 to 1000
- p is 0 or an integer from 1 to 50
- x 0, 1 or 2
- hydrocarbon radicals R 1 are alkyl radicals such as the methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl, iso-butyl, tert. Butyl, n-pentyl, iso-pentyl, neo-pentyl, tert.
- -Pentyl radical hexyl radicals such as the n-hexyl radical, heptyl radicals such as the n-heptyl radical, octyl radicals such as the n-octyl radical and iso-octyl radicals such as the 2, 2, 4-trimethylpentyl radical, nonyl radicals such as the n-nonyl radical, and Decyl radicals, such as the n-decyl radical;
- Cycloalkyl radicals such as cyclopentyl, cyclohexyl,
- R 1 is a halogenated hydrocarbon radical
- the halo radicals on R 1 are preferably fluoro radicals.
- halogenated hydrocarbon radicals R 1 are the 3, 3, 3-trifluoropropyl and 5, 5, 5, 4, 4, 3, 3-heptafluoropentyl.
- the radicals R 1 preferably have 1 to 6 C atoms, preferably 1 to 4 C atoms.
- R 1 is particularly preferably a methyl radical. If R 1 is an unsaturated radical, the vinyl radical is
- Examples of the hydrocarbon radicals R 2 , R 3 or R 4 'having 1 to 6 C atoms are listed in the examples of R 1 .
- Preferred hydrocarbon radicals are each ethyl and
- radicals R 5 are radicals of the formula
- urea-functional organopolysiloxanes of units of the formula (I) according to the invention are preferably prepared by reacting amino-functional organopolysiloxanes of units of the formula (V)
- R ' n is SiO (4 -n ) / 2 (V)
- R ' is a radical R 1 or a radical -OR 2 or a radical A
- R 1 , R 2 and n have the meaning given above and A is an amino-functional radical of the formula (VI)
- R 3 , R 4 ', R 5 , R 6 and x have the meaning given above, with the proviso that in the organopolysiloxanes from units of the formula (V) at least one amino-functional radical A is contained per molecule,
- Ar is an optionally substituted aryl radical, preferably a phenyl radical or a substituted phenyl radical, and
- R 7 is a hydrogen atom or a substituent bonded to Ar, wherein R 7 is a Ci_C 6 alkyl radical, a Ci-C 6 ⁇
- Carboxalkylrest a Ci_C 6 alkoxy or a
- Ar contains a substituent R 7 , Ar may be next to
- Substituent R 7 contain further substituents in ortho ', meta or para position.
- R 7 -Ar-OH is cleaved, wherein Ar and R 7 have the meaning given above, preferably when using an ortho-substituted carbamic phenyl ester, an ortho-substituted phenol cleaved.
- radicals R 7 are the methyl, ethyl, propyl,
- organopolysiloxanes used from units of the formula (V) are preferably
- R is a C 1 -C 6 -alkyl radical R 1 ,
- R is a radical A of the formula (VI) and at most 3% of all radicals R is a radical -OR 2 ,
- the organopolysiloxanes of units of formula (V) may be linear, cyclic or branched and may be oligomeric or polymeric. Preferably, they contain at least 3 Si atoms and at most 2000 Si atoms, preferably at most 600 Si atoms.
- Preferred amino-functional radicals A of the formula (VI) are radicals of the formula
- R * and R 1 are as defined above,
- A is an amino-functional radical of the formula (VI) R 5 - [NR 4 '- R 6 -] X NR 4 ' R 3 (VI),
- R 3 , R 4 ', R 5 , R 6 and x are as defined above, 1 is 0 or 1,
- o is 0 or an integer from 1 to 1000
- q is 0 or an integer from 1 to 50
- organopolysiloxanes of the formula (VIII) at least one amino-functional radical A per molecule is contained.
- the ortho-substituted Carbamin Anlagenrearylester of formula (VII) used in the process according to the invention can be prepared by literature methods.
- their preparation is carried out by reacting the respective ortho-substituted phenol with chlorosulfonyl isocyanate and subsequent hydrolysis according to Singh, R. et al. , ACS Catalysis 6 (10), 6520-6524 (2016).
- the recovered from the inventive method according to the ortho-substituted phenols can thus be converted back into this process in the corresponding carbamate and recycled, which is a
- the adducts according to the invention have the advantage that they can be in liquid form. You have one
- the invention further relates to a method for
- the hydrogen peroxide can be in pure form or dissolved in water or dissolved in an organic solvent
- A urea-functional organopolysiloxane
- B hydrogen peroxide
- the reaction can be accelerated if the solvent is already removed during the mixing process. This is particularly preferably done by reducing the pressure.
- reaction temperature is just chosen so high that the desired adduct formation proceeds as quickly as possible
- the inventive method is preferably carried out at a temperature of at most 100 ° C, preferably at most 80 ° C, in particular at most 70 ° C, and at a temperature of preferably at least 20 ° C, preferably at least 50 ° C.
- 900 hPa particularly preferably less than or equal to 500 hPa, in particular less than or equal to 300 hPa.
- the chosen conditions depend on the particular solvent and can be easily determined by taking into account the known substance data or by preliminary experiments.
- aqueous hydrogen peroxide solutions are preferably those solvents are used which have a miscibility gap with water, so that they can be easily separated from the water phase and recycled.
- the solvents used are preferably linear, branched or cyclic alkanes or alkylaromatics and linear or branched alkyl, cycloalkyl or aryl esters of saturated carboxylic acids which have a total of not more than 10 carbon atoms and form an azeotrope with water. They are usually commercially available at low cost. It can too
- Examples of usable solvents are: cyclohexane, methylcyclohexane, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene, n-hexane, n-heptane, i-octane, Isopar® C (Exxon Mobil), Methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, t-butyl acetate, i-butyl acetate, phenyl acetate, methyl propionate, ethyl propionate, methyl butyrate and ethyl butyrate.
- a hydrogen peroxide molecule For each urea function, a hydrogen peroxide molecule can be bound. Accordingly, the maximum possible loading of hydrogen peroxide with knowledge of the urea group density in the organopolysiloxane can be easily determined.
- the adducts according to the invention have a content of hydrogen peroxide preferably in the range of 0.2 to 20 wt .-% H2O2, preferably the hydrogen peroxide content is less than 10 wt .-%, in particular less than 5 wt .-%, each based on the
- Hydrogen peroxide concentration, in the adduct according to the invention can be easily determined by determining the peroxide content
- Extract or by spectroscopic methods, eg IR or 1 H NMR spectroscopy, determine.
- Another possibility is to compare the amount of hydrogen peroxide weighed in Solution with the amount of distillate. However, since even small proportions of hydrogen peroxide pass into the distillate, the proportion removed from the mixture would therefore also have to be determined for the most exact possible content determination.
- the hydrogen peroxide-silicone adducts according to the invention can be prepared in a wide variety of variants.
- polymer molecular weight, polymer structure, urea functionality, hydrogen peroxide loading very different systems are available, e.g. differ in polarity or viscosity and which can each be optimized for the desired application.
- gelling agents such as silicic acids or other solids or liquids, can also be prepared.
- crosslinkable such as unsaturated, aliphatic radicals, e.g. Vinyl, 5-hexenyl, cyclohexenyl, acrylic or
- Methacryl radicals, or alkoxy or aryloxy radicals in the urea-functional organopolysiloxanes used as a component for the adducts according to the invention can also be used as a component for the adducts according to the invention.
- Solvent be reloaded again. Also blends with other polymers containing crosslinkable groups or
- Monomers can form crosslinked shaped bodies with the adducts according to the invention.
- these are moisture- or addition-crosslinkable polysiloxane mixtures, monomeric acrylates or methacrylates, epoxies, polyamides, polyurethanes and
- peroxide stabilizers such as phosphoric acid or phosphoric acid (partial) ester which is more preferably miscible with the organopolysiloxane.
- Paper towels and textiles the antimicrobial coating of surfaces or the preservation of emulsions, e.g. in cosmetics.
- non-aqueous peroxides are advantageous, e.g. in the peroxide crosslinking of silicone rubber or other peroxidically crosslinkable polymers, the use of the adducts according to the invention offers new possibilities.
- the content of hydrogen peroxide could be determined by the integral ratio of the signals at 0.5 ppm (CH 2 -Si group) and 8, 4-8, 6 ppm (H2O 2 ) of 1: 1.8 , It was 1 mmol H 2 O 2 / g.
- Harden vulcanizate plate with 2 mm thickness The plate theoretically had a urea concentration of 0.048 mmol
- the plate has a urea concentration of
- microtiter plate proliferation assays used in the present assays for silicone rubber samples were based on one for antimicrobial screening
- Biomaterials introduced test procedures (1 and 2).
- the pieces to be tested were transferred to a new microtiter plate, in each of which 300 m ⁇ PBS were presented per well.
- rinsing was done by pipetting the PBS 10 times up and down. Thereafter, the test pieces were transferred to a third sterile microtiter plate, again with 300 ml of sterile PBS, using sterile forceps for each piece. After 10 minutes, shake the plate vigorously
- the released bacteria were amplified by adding 50 m ⁇ TSB medium per wave for 48 h.
- the proliferation of the released daughter cells became online at a wavelength of 578 nm
- Microtiter plate was obtained.
- OD Density
- Bacterial effect was achieved when the P-value of a non-parametric Mann-Whitney test comparing the median values of the onset OD time distributions of negative controls and samples was calculated to be less than or equal to 5%.
- the difference between the mean onset OD times of the samples and the controls is calculated as Atonset OD.
- At on set OD values from 5 hours are considered by medical device manufacturers as characteristic of good antibacterial materials.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Plant Pathology (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Environmental Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dentistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Birds (AREA)
- Silicon Polymers (AREA)
Abstract
L'invention concerne de nouveaux produits d'addition peroxyde d'hydrogène-silicone contenant (A) des organopolysiloxanes à fonctionnalité urée, constitués de motifs de formule (I) RnSiO(4-n
)
/2, dans laquelle R représente un radical R1 ou un radical -OR2 ou un radical Q, R représentant un radical hydrocarboné monovalent en C1-C18 éventuellement halogéné, R2 représente un atome d'hydrogène ou un radical hydrocarboné monovalent en C1-C6 et Q représente un radical à fonctionnalité urée de formule (II) -R5-[NR4-R6-]xNR4R3 (II), dans laquelle R3 représente un atome d'hydrogène ou un radical hydrocarboné monovalent en C1-C6, R4 est identique ou différent et représente un radical R4' ou un radical Ru, R4' représentant un atome d'hydrogène ou un radical hydrocarboné monovalent en C1-C6, Ru représente un radical de formule (III) -C(=O)-NH2 (III), R5 représente un radical hydrocarboné divalent en C1-C18, R6 représente un radical hydrocarboné divalent en C1-C18, x représente 0, 1 ou 2 et n représente 0, 1, 2 ou 3 et de préférence en moyenne 2,00 à 2,66, à la condition que les organopolysiloxanes constitués de motifs de formule (I) contiennent au moins un radical Q à fonctionnalité urée, qui présente un radical Ru, par molécule, et (B) du peroxyde d'hydrogène.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2018/052442 WO2019149356A1 (fr) | 2018-01-31 | 2018-01-31 | Produits d'addition de peroxyde d'hydrogène et de siloxanes à fonctionnalité urée |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2018/052442 WO2019149356A1 (fr) | 2018-01-31 | 2018-01-31 | Produits d'addition de peroxyde d'hydrogène et de siloxanes à fonctionnalité urée |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019149356A1 true WO2019149356A1 (fr) | 2019-08-08 |
Family
ID=61189431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/052442 WO2019149356A1 (fr) | 2018-01-31 | 2018-01-31 | Produits d'addition de peroxyde d'hydrogène et de siloxanes à fonctionnalité urée |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019149356A1 (fr) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3772351A (en) | 1970-10-12 | 1973-11-13 | Dow Corning | Urea-functional organosilicon compounds |
US4046794A (en) | 1972-04-14 | 1977-09-06 | Union Carbide Corporation | Urea silicon product and uses thereof |
EP0098427A1 (fr) | 1982-07-07 | 1984-01-18 | Degussa Aktiengesellschaft | Procédé pour la préparation de solutions organiques exemptes d'eau de péroxyde d'hydrogène |
US5945032A (en) | 1996-09-30 | 1999-08-31 | Basf Aktiengesellschaft | Polymer/hydrogen peroxide complexes |
WO2016142290A1 (fr) * | 2015-03-06 | 2016-09-15 | Koninklijke Philips N.V. | Administration de substances pour soins buccaux |
DE102015215714A1 (de) * | 2015-08-18 | 2017-02-23 | Henkel Ag & Co. Kgaa | Oxidationsfärbemittel mit speziellen hydroxyterminierten, aminfunktionalisierten Siliconpolymeren |
-
2018
- 2018-01-31 WO PCT/EP2018/052442 patent/WO2019149356A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3772351A (en) | 1970-10-12 | 1973-11-13 | Dow Corning | Urea-functional organosilicon compounds |
US4046794A (en) | 1972-04-14 | 1977-09-06 | Union Carbide Corporation | Urea silicon product and uses thereof |
EP0098427A1 (fr) | 1982-07-07 | 1984-01-18 | Degussa Aktiengesellschaft | Procédé pour la préparation de solutions organiques exemptes d'eau de péroxyde d'hydrogène |
US5945032A (en) | 1996-09-30 | 1999-08-31 | Basf Aktiengesellschaft | Polymer/hydrogen peroxide complexes |
WO2016142290A1 (fr) * | 2015-03-06 | 2016-09-15 | Koninklijke Philips N.V. | Administration de substances pour soins buccaux |
DE102015215714A1 (de) * | 2015-08-18 | 2017-02-23 | Henkel Ag & Co. Kgaa | Oxidationsfärbemittel mit speziellen hydroxyterminierten, aminfunktionalisierten Siliconpolymeren |
Non-Patent Citations (3)
Title |
---|
SINGH, R. ET AL., ACS CATALYSIS, vol. 6, no. 10, 2016, pages 6520 - 6524 |
T. BECHERT; P. STEINBRÜCKE; J-P GUGGENBICHLER: "A new method for screening anti-infective biomaterials", NATURE MEDICINE, vol. 6, 2000, pages 1053 - 1056 |
V. ALT; P. STEINBRÜCKE; M. WAGENER; P. SEIDEL; E. DINGELDEIN; E.DOMANN; R. SCHETTLER: "In Vitro Testing of Antimicrobial Activity of Bone Cement", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 48, 2004, pages 4084 - 4088, XP003015913, DOI: doi:10.1128/AAC.48.11.4084-4088.2004 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69525444T2 (de) | Verfahren zur herstellung von biologisch aktiven siliziumverbindungen in konzentrierter form | |
CA2253223C (fr) | Particules de dioxyde de titane | |
CA2200771C (fr) | Nouveaux derives silicies de l'acide salicylique a proprietes desquamantes | |
DE60301345T2 (de) | Stabilisierte askorbinsäurederivate | |
DE102010031087A1 (de) | Neuartige polyestermodifizierte Organopolysiloxane | |
EP1635782A1 (fr) | Milieux de culture de tissus utilises comme composants de cosmetiques | |
EP0721478A1 (fr) | Polyesters et polyamides contenant des groupes pyrrolidone | |
DE60100326T2 (de) | Silicon-Zusammensetzungen für die Körperpflege und Verfahren zur Herstellung | |
DE102007035139A1 (de) | 3-(4-Hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)-1-propanon und dessen Verwendung als antimikrobieller Wirkstoff | |
EP1427689B1 (fr) | 4-methyl-4-aryl-2-pentanols a action antimicrobienne, production et utilisation desdits composes | |
DE10392191T5 (de) | Desodorierte Polyether-modifizierte Polysiloxanzusammensetzung, Verfahren zur Herstellung derselben und diese enthaltendes Kosmetikprodukt | |
WO2019120484A1 (fr) | Procédé de production de siloxanes présentant des groupes oxamidoester | |
DE69119246T2 (de) | Lösemittel und Lösevermittler für Silikone | |
WO2015090374A1 (fr) | Composition de silicone réticulable | |
KR102334486B1 (ko) | 피부 보습 증진용 및 피부 장벽 개선용 화장료 조성물 | |
WO2002064666A2 (fr) | Substrats contenant des polyphosphazenes servant de matrice, et substrats contenant des polyphosphazenes presentant une surface microstructuree | |
WO2015197778A1 (fr) | Copolymère phosphonique et son utilisation en cosmétique | |
WO2019149356A1 (fr) | Produits d'addition de peroxyde d'hydrogène et de siloxanes à fonctionnalité urée | |
DE60001471T2 (de) | 4-Hydroxyisothiazolverbindungen | |
DE1108917B (de) | Organosiloxymethylalkane | |
WO2020174340A1 (fr) | Combinaisons eutectiques de menthol-acide gras pour la cicatrisation de plaies | |
DE69018258T2 (de) | Aktive Bestandteile enthaltende phospholipidische Liposome und Verfahren zu ihrer Herstellung. | |
DE3018114A1 (de) | Hautpflegemittel | |
WO2015007961A1 (fr) | Nanoparticules de cerine polymerisees en reseau actif ou bioactif, topiques protecteurs, leurs procedes de preparation et leurs utilisations | |
KR100976850B1 (ko) | 세라미드 히아루론산 복합체 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18704185 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18704185 Country of ref document: EP Kind code of ref document: A1 |