WO2019149201A1 - 一种发条发动机的充能装置 - Google Patents

一种发条发动机的充能装置 Download PDF

Info

Publication number
WO2019149201A1
WO2019149201A1 PCT/CN2019/073805 CN2019073805W WO2019149201A1 WO 2019149201 A1 WO2019149201 A1 WO 2019149201A1 CN 2019073805 W CN2019073805 W CN 2019073805W WO 2019149201 A1 WO2019149201 A1 WO 2019149201A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
gear
barrel
platform
engine
Prior art date
Application number
PCT/CN2019/073805
Other languages
English (en)
French (fr)
Inventor
张智东
Original Assignee
张智东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张智东 filed Critical 张智东
Publication of WO2019149201A1 publication Critical patent/WO2019149201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • F03G1/02Spring motors characterised by shape or material of spring, e.g. helical, spiral, coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H33/00Gearings based on repeated accumulation and delivery of energy
    • F16H33/02Rotary transmissions with mechanical accumulators, e.g. weights, springs, intermittently-connected flywheels

Definitions

  • the invention belongs to the technical field of engines, and in particular relates to a charging device for a spring engine.
  • the atomic distance of the spring material is elongated or shortened, thereby converting the work done by the external force into the elastic energy of the spring; and when the spring is released, the inside of the spring material is The atomic spacing is restored to the original distance, releasing the elastic energy as work done to the outside world.
  • the conversion between mechanical energy and elastic energy can be almost lossless, the elastically deformable material can store relatively low density.
  • nanosprings which uses surface energy as a medium to efficiently store and release mechanical energy.
  • nanosprings are stored and released by the reconstruction of surface atoms.
  • the device behaves like an accordion during loading and unloading: during the loading process, the spheroidal grain boundary moves toward a high-crystal twinning orientation, thereby converting the work done by the external force into the surface energy of the nanodevice and storing it.
  • the twin boundary moves to a lower twin orientation, and the storage surface energy is converted into mechanical energy from the surface.
  • This nanospring has significantly better performance than a bulk spring.
  • a nanospring having a cross-sectional width of 2.3 nm has an energy density of more than 1000 J/cm 3 . (It is more than 1600 times that of the clockwork), and its energy conversion efficiency is as high as 98%. As the cross-sectional width of the spring increases, the energy conversion efficiency of the device decreases, but the cross-sectional width of the nanowire Under the condition of not more than 5 nm, the energy conversion efficiency can still be maintained above 95%.
  • nanosprings will play a huge role in the field of energy conversion, especially in the field of engine technology, which is expected to replace traditional engines (such as internal combustion engines, external combustion engines and electric motors) and batteries.
  • traditional engines such as internal combustion engines, external combustion engines and electric motors
  • batteries for a spring engine that uses a nanospring, a dedicated charging device needs to be designed.
  • a charging device for a spring engine includes a positioning platform for positioning with a spring engine and a lifting platform disposed below the positioning platform.
  • the lifting platform is provided with a positioning column and a charging motor, and a rotating shaft of the charging motor
  • the connecting rod is connected, and the positioning platform is provided with a perforation for the positioning column and the protruding rod, and the spring engine is provided with a positioning hole and a gear rod for storing the spring in the barrel, and the gear rod A recessed hole is formed in the end surface.
  • the positioning post and the protruding rod can pass through the positioning platform, the positioning post is inserted into the positioning hole of the spring engine, and the protruding rod is inserted into the concave hole on the gear rod of the spring engine.
  • the lifting platform is provided with a signal transmission plug
  • the signal transmission plug and the charging motor are electrically connected to the controller
  • the positioning platform is provided with a perforation for the signal transmission plug to pass through
  • the spring engine is provided with a spring A signal transmission socket electrically connected to the control unit of the engine.
  • the clockwork engine further includes a counting unit for detecting and recording the number of rotations of the barrel, and the counting unit is electrically connected to the control unit.
  • the positioning platform is provided with a camera and an infrared sensor.
  • the camera and the infrared sensor are electrically connected to the controller, and the controller is electrically connected to the positioning device for driving the positioning platform and the lifting device for driving the lifting platform.
  • the controller is electrically connected to the scan code unit and the card swipe unit.
  • the spring engine is provided with an electro-hydraulic clip opposite to the positioning hole.
  • the clockwork engine comprises a casing, a barrel and a transmission gear set disposed in the casing, and an outer wall of the barrel is sleeved with a first gear, and the first gear meshes with an input end of the transmission gear set;
  • the output end of the gear set is connected to the main power output shaft, the second power gear is provided with a second gear, and the second gear is meshed with the acceleration gear set;
  • the brake switch is used to engage with the acceleration gear set during braking.
  • the acceleration gear set includes a first output shaft and a second output shaft that are driven by a gear mesh, the first output shaft is connected to the electromagnetic eddy current brake, the second output shaft is connected to the generator, and the generator and the control unit are electrically connected. connection.
  • the housing is provided with a rotating shaft, and the barrel is sleeved on the rotating shaft, and one end of the spring in the barrel is connected to the rotating shaft, and the other end is connected to the inner wall of the barrel.
  • the gear rod is rotatably coupled to the housing, and one end of the gear rod located in the housing is coupled to the energy storage gear, and the energy storage gear meshes with the transmission gear set.
  • the charging device for a clockwork engine provided by the present invention, when the lifting platform moves up, the positioning column and the protruding rod can pass through the positioning platform, and the positioning column is inserted into the positioning hole of the spring engine, the protruding rod The recessed hole on the end face of the gear rod of the spring engine is inserted, and the charging motor drives the head rod to rotate to charge the spring engine, and the charging time is short, safe and reliable.
  • the charging device and the clockwork engine cut off the power at the same time to ensure that the charging and agitation energy storage process is absolutely safe, and the whole time is about 3-7 minutes.
  • the reduction ratio of the energy device can be made into a mobile power charging stand or a toy charging stand, for example, the charging stand is designed as a box type, and the toy is designed to be embedded.
  • Figure 1 is a schematic view showing the overall structure of a spring engine of the present invention.
  • FIG. 2 is a schematic view showing the structure of a barrel, a transmission gear set and an acceleration gear set of the present invention.
  • Figure 3 is a cross-sectional view of the housing of the present invention.
  • Figure 4 is a front elevational view of the dragon skeleton of the present invention.
  • Figure 5 is a schematic view showing the structure of the ratchet clutch of the present invention.
  • FIG. 6 is a block diagram showing the structure of the control system of the present invention.
  • Figure 7 is a plan view of the charging device of the present invention.
  • Figure 8 is a side elevational view of the charging device of the present invention in an unoperated state.
  • Figure 9 is a side elevational view of the operation of the charging device of the present invention.
  • FIG. 10 is a block diagram showing the circuit connections of the charging device of the present invention.
  • Figure 11 is a side elevational view of the interior of the housing of the present invention.
  • a clockwork engine includes a housing 1.
  • the gears 4 are sleeved on the outer wall of the barrel 2, and the transmission gear set 4 is sequentially driven by a plurality of gears. The speed of the gears gradually increases along the direction of the power transmission.
  • the first gear 3 meshes with the gear of the input end of the transmission gear set 4.
  • the main power output shaft 5 is located inside the casing 1, and the other end is located outside the casing 1.
  • the main power output shaft 5 is located at one end of the housing 1 to be connected with a bevel gear, and the bevel gear meshes with the gear of the output end of the transmission gear set 4.
  • a rotating shaft 10 is disposed in the casing 1, and the barrel 2 is sleeved on the rotating shaft 10.
  • One end of the spring 11 in the barrel 2 is connected to the rotating shaft 10, and the other end of the spring 11 is connected to the inner wall of the barrel 2.
  • the transmission gear set 4 includes a slow gear set that meshes with the barrel 2 and a fast gear set that meshes with the slow gear set.
  • the barrel 2 and the slow gear set are in a vacuum environment to reduce oxidation of internal components. Extend the use time and reduce the friction noise of internal components.
  • the fast gear set is immersed in the coolant.
  • the middle fixed sleeve of the main power output shaft 5 is provided with a second gear 6, and the acceleration gear set 7 is meshed with the second gear 6.
  • the acceleration gear set 7 and the transmission gear set 4 have similar functions and structures, and are also driven by a plurality of gears and gears in sequence. The speed of the gears is gradually increased along the direction of the power transmission, and the acceleration gear set 7 is shown in FIG. The specific connection diagram. In the same way, the structure of the transmission gear set 4 can be obtained according to the combination of actual application requirements.
  • the acceleration gear set 7 includes a plurality of parallel rotating shafts, each of which has one large and one small gears, and the fastest rotating shaft is the first output shaft 703, and the large gear provided on the first output shaft 703 is braked.
  • the first output shaft 703 is connected to the electromagnetic eddy current brake 9, and the electromagnetic eddy current brake 9 can precisely control the rotational speed of the main power output shaft 5.
  • the brake gear 702 After the multi-stage acceleration of the brake gear 702, although the rotation speed is fast, the brake gear can be stopped with only a small force, so that the main power output shaft 5 stops rotating, and the clockwork engine is braked.
  • the movable switch 8 is used to engage with the brake gear 702 of the acceleration gear set 7 during braking.
  • the brake switch 8 can be a pneumatic brake device or a manual brake device, and the pneumatic brake device must be filled up before being used for the first time. After the spring engine is started, the brake cylinder inside the pneumatic brake device is always refilled. When the brake is required, the brake cylinder pushes the gear of the brake switch 8 to engage with the brake gear 702, so that the main power output shaft 5 Stop turning.
  • the manual brake device needs to manually push and pull out the brake switch 8, so that the gear of the brake switch 8 and the brake gear 702 are respectively engaged and disengaged.
  • the brake switch 8 can include both pneumatic brake and manual brake modes, making it safer to use.
  • the acceleration gear set 7 further includes a second output shaft 704 disposed between the first output shaft 703 and the main power output shaft 5, the second output shaft 704 is sleeved with an intermediate gear 701, and the second output shaft 704 is connected to the generator. 12.
  • the second output shaft 704 rotates and drives the generator 12 to generate electricity and delivers the electricity to the various components.
  • the housing 1 includes a dragon skeleton 101, a first metal layer 102, a first buffer layer 103, a second metal layer 104, and a second buffer layer 105 which are disposed in this order from the inside to the outside.
  • the dragon skeleton 101 is a mesh hollow tube dragon skeleton, which can be a dragon skeleton composed of a mesh-shaped cross hollow tube made of titanium alloy, and provides support for the entire casing 1.
  • the first metal layer 102 is a stainless steel plate that wraps the entire dragon skeleton 101.
  • the first buffer layer 103 is a foam layer that wraps the entire first metal layer 102.
  • the second metal layer 104 is an alloy plate layer that wraps the entire first buffer layer 103.
  • the second buffer layer 105 is a foam layer that wraps the entire second metal layer 104.
  • the second buffer layer 105 is provided with a carrier iron outer casing, for example, an automobile casing, and the carrier iron casing encloses the entire second buffer layer 105.
  • the foam layers of the first buffer layer 103 and the second buffer layer 105 are each made of high density foam.
  • the housing 1 and the metal housing of the carrier are all integrated, and have the functions of waterproof, dustproof and shockproof.
  • the rotating shaft 10 is sleeved with a one-way clutch device, and the end of the rotating shaft 10 is connected with a speed reducing motor 26.
  • the one-way clutch device has the functions of overtaking, indexing and backstopping, and the one-way clutch device is a backstop, a one-way clutch or a ratchet clutch.
  • the reduction motor 26 can drive the rotating shaft 10 to slowly tighten the energy storage of the spring 11.
  • the one-way clutch device can rotate the rotating shaft 10 only by the geared motor 26. When the geared motor 26 stops, the rotating shaft 10 is in the reverse function. Locked under the effect.
  • the one-way clutch device is a structural schematic diagram of a ratchet clutch.
  • the ratchet clutch includes a ratchet 27, a pawl 28 and a spring.
  • the front end of the pawl 28 is always facing downward and is embedded in the tooth groove of the ratchet wheel 27.
  • the ratchet 27 also starts to rotate counterclockwise; when the reduction motor 26 is stopped, the pawl 28 is embedded in the slot of the ratchet 27 to hold the ratchet 27, even in the spring 11 Under the action, the rotating shaft 10 and the ratchet 27 cannot rotate clockwise.
  • the embodiment also provides an energy storage mode of the spring 11 .
  • the housing 1 is provided with a gear rod 25 .
  • the gear rod 25 is rotatably connected to the housing 1 through a bearing.
  • the gear rod 25 is connected at one end of the housing 1 .
  • An energy storage gear, the energy storage gear meshes with the transmission gear set 4.
  • the gear that the transmission gear set 4 meshes with the energy storage gear is adjacent to the first gear 3.
  • the gear rod 25 is located at the outer end of the casing 1 at the same end as the casing 1.
  • the end surface is recessed with a recessed hole for convenient connection with external power.
  • the external power drives the gear lever 25 to rotate, and the transmission gear set 4 rotates in the reverse direction, thereby driving the barrel 2 to rotate, and storing the spring 11 for energy.
  • the brake switch 8 When the gear bar 25 is rotated to store energy in the spring 11, the brake switch 8 is disengaged from the brake gear 702, that is, the air brake device and/or the manual brake device that controls the brake switch 8 are operated to make the gear of the brake switch 8 Engaged from the brake gear 702.
  • the motor 10 is driven by the lower power motor 26 to agitate the spring 11 for energy storage, and can be used even on existing electric vehicle charging posts.
  • the gear bar 25 can also be driven by the high-power geared motor to store the spring 11 , and the energy stored by the gear bar 25 is more efficient and saves time. It can be seen that these two methods of energy storage have their own strengths and should be used in combination.
  • the clockwork engine further includes a control system including a control unit 17, a counting unit 18, a communication unit 19, a temperature regulating unit 20, a display unit 21, a lighting unit 22, an imaging unit 23, and a GPS unit 24,
  • the control unit 17 is electrically connected to the counting unit 18, the communication unit 19, the temperature adjustment unit 20, the display unit 21, the illumination unit 22, the imaging unit 23, the GPS unit 24, the reduction motor 26, the electromagnetic eddy current brake 9, and the generator 12.
  • the generator 12 When the clockwork engine is started, the generator 12 is directly connected to the control unit 17 to supply power to the components, thereby eliminating the need to use the battery.
  • the counting unit 18 is configured to detect and record the number of rotations of the barrel 2, and send the number of rotations to the control unit 17, and when the spring 11 is stored, the energy that can be released can be converted into the number of rotations of the barrel 2. Therefore, it is possible to obtain the remaining number of rotations by counting the number of times the barrel 2 has been rotated, thereby converting to the corresponding remaining stroke number or the remaining energy storage percentage.
  • the temperature regulating unit 20 is used for heating and cooling the barrel 2 and the transmission gear set 4; the barrel 2 and the transmission gear set 4 can maintain an optimal motion state in the temperature range K 1 to K 2 when the barrel is in motion 2 and the transmission gear unit 4 is less than 1 K, temperature control unit 20 to heat up.
  • the temperature adjustment unit 20 is cooled, and when the barrel 2 and the transmission gear set 4 are within K 1 to K 2 , the temperature adjustment unit 20 is suspended.
  • the display unit 21 is for displaying the operating parameters of the clockwork engine.
  • the camera unit 23 is used to monitor the operation of various components in the housing 1 in real time.
  • the communication unit 19 is for data communication with the outside.
  • the illumination unit 22 is used to provide illumination inside the housing 1 for easy access.
  • the GPS unit 24 positions the clockwork engine through a global positioning system.
  • the main power output shaft 5 is connected to the first gearbox 14, and the output end of the first gearbox 14 is connected to the second gearbox 16.
  • the main power output shaft 5 is connected to the input end of the first gearbox 14 via a first clutch 13, and the output end of the first gearbox 14 is connected to the input end of the second gearbox 16 via a second clutch 15.
  • the first gearbox 14 is electrically connected to the control unit 17. When the gear bar 25 is rotated to store energy in the spring 11, the first clutch 1 is turned off.
  • Each gear in the first gearbox 14 is controlled according to a corresponding displacement amount of torque, and controls the displacement conversion of the entire engine.
  • the spring 11 is used as the energy storage is reduced, and the final force will become smaller and smaller.
  • the control unit 17 automatically adjusts the electromagnetic eddy current brake 9 and the first gearbox 14, for example, from the original displacement 2.0.
  • the gradual weakening of the clockwork force is automatically adjusted to 3.0, 4.0, 5.0, 6.0... to accommodate the stable rotational torque requirements used.
  • the second gearbox 16 is then used for shifting.
  • the spring provided in the barrel 2 in this embodiment may also be replaced by a spring.
  • the number of the barrels 2 may also be one or more.
  • the embodiment provides a charging device for the above-mentioned spring engine.
  • the housing 1 of the spring engine is provided with a signal transmission socket 29,
  • the positioning hole 30 and the electro-hydraulic clip 31 are provided with a bayonet opening toward the positioning hole 30.
  • the signal transmission jack 29 is electrically connected to the control unit 17 of the clockwork engine, and the signal transmission jack 29 can be read by the control unit 17. The number of remaining strokes of the barrel 2 of the spring engine or the remaining energy storage percentage.
  • the charging device comprises a positioning platform 40, a positioning device 51, a lifting platform 41 and a lifting device 52.
  • the positioning platform 40 is connected to the bellows page 46.
  • the positioning device 51 can drive the positioning platform 40 to move in the horizontal direction
  • the lifting device 52 can drive the lifting
  • the platform 41 is moved in the vertical direction
  • the lifting platform 41 is mounted below the positioning platform 40 by the cooperation of the guide rail and the slider, and can be moved in the horizontal direction with the positioning platform 40.
  • a positioning post 42 , a charging motor 43 and a signal transmission plug 45 are mounted on the lifting platform 41 .
  • the rotating shaft of the charging motor 43 is connected to the protruding rod 44 .
  • the positioning post 42 , the protruding rod 44 and the signal transmission plug 45 are all oriented toward the positioning platform 40 .
  • the positioning platform 40 is respectively provided with a through hole for the positioning post 42, the protruding rod 44 and the signal transmission plug 45 to pass through.
  • the lifting device 52 drives the lifting platform 41 to move up the guide rail, the positioning post 42 and the protruding rod 44 are respectively provided. Both the signal transmission plug 45 and the signal transmission plug 45 can pass through the positioning platform 40.
  • the charging device further includes a controller 53, a camera 47, an infrared sensor 48, a scanning unit 49, and a card swiping unit 50.
  • the camera 47 and the infrared sensor 48 are both mounted on the positioning platform 40, and the signal transmission plug 45, the positioning device 51, the lifting device 52, the camera 47, the infrared sensor 48, the scanning code unit 49, the card swiping unit 50, and the charging motor 43 are all electrically
  • the controller 53 is connected.
  • the working process of the above charging device is:
  • the vehicle equipped with the clockwork engine After the vehicle equipped with the clockwork engine enters the energy station, the vehicle is first parked to a designated general area, so that one side of the clockwork engine is provided with the signal transmission socket 29, the positioning hole 30 and the electro-hydraulic clip 31 toward the charging device. Swipe or insert the card on the card swiping unit 50, or scan the corresponding two-dimensional code by the scanning code unit 49 to confirm that the clockwork engine is charged, and the controller 53 obtains the confirmation signal.
  • the charging device is activated, and the controller 53 controls the camera 47 and the infrared sensor 48 to operate, and determines whether the positioning platform 40 is aligned with the clockwork engine. If not, the positioning device 40 is driven by the positioning device 51 to move in the horizontal direction for alignment. Until the alignment, the charging device is shown in Figure 8.
  • the positioning device 51 is stopped, the controller 53 controls the operation of the lifting device 52, and the driving lifting platform 41 is slowly moved upward.
  • the positioning post 42 controls the operation of the lifting device 52, and the driving lifting platform 41 is slowly moved upward.
  • the positioning post 42 is inserted into the clockwork engine.
  • the positioning hole 30, the boss rod 44 is inserted into the concave hole on the end surface of the gear rod 25 of the spring engine, and the signal transmission plug 45 is inserted into the signal transmission socket 29 of the clockwork engine, at which time the controller 53 communicates with the control unit 17 for data communication.
  • control unit 17 drives the electro-hydraulic clip 31 to rotate, and the positioning post 42 is firmly locked in the positioning hole 30, and then the controller 53 reads the remaining stroke number of the barrel 2 of the spring engine through the control unit 17 or The remaining energy storage percentage is calculated, and the number of times the bump rod 44 should be rotated is calculated, and then the controller 53 drives the charging motor 43 to operate, so that the crown rod 44 is rotated a corresponding number of times and then the charging motor 43 is turned off.
  • the electro-hydraulic clip 31 is reversely rotated to release the positioning post 42.
  • the controller 53 controls the lifting device 52 to operate, and the driving lifting platform 41 is slowly lowered until the positioning post 42, the boss rod 44 and the signal transmission plug 45 are located below the positioning platform 40. As shown in Figure 8. At this point, the clockwork engine is fully charged and the vehicle is driven away from the energy station.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种发条发动机的充能装置,包括用于与发条发动机定位对准的定位平台(40)以及设于定位平台(40)下方的升降平台(41),升降平台(41)上安装有定位柱(42)和充能电机(43),充能电机(43)的转轴连接凸头杆(44),定位平台(40)上开设有用于定位柱(42)和凸头杆(44)通过的穿孔,发条发动机上设有定位孔(30)以及转动时可以使发条盒(2)内的发条(11)储能的齿轮杆(25),齿轮杆(25)的端面上设有凹孔。当升降平台(41)上移时,定位柱(42)和凸头杆(44)均可穿过定位平台(40),定位柱(42)插入发条发动机的定位孔(30),凸头杆(44)插入发条发动机的齿轮杆(25)端面上的凹孔,充能电机(43)带动凸头杆(44)转动对发条发动机进行充能,充能时间短,安全可靠。

Description

一种发条发动机的充能装置 技术领域
本发明属于发动机技术领域,具体涉及一种发条发动机的充能装置。
背景技术
自然界中存在着各式各样的能量,大至我们身边流动的空气和水,小至生物体内分子的运动,但是这些能量往往需要转换成相应的势能才能实现存储。如果把风能或者流水转换成电能,进而利用蓄电池转化为化学能进行存储,在需要的时候,则把化学能转化为电能并进一步转换为机械能。显然这种多步能量存储与释放的效率是作常低的。在很多情况下,人们也可以把这些能量是对外界所做的功(机械能)转化为弹性能进而存储起来。例如各种弹簧装置、玩具以及钟表的发条等。这种机械能与弹性能之间的转换是通过弹簧材料内部原子间距的变化来实现的。也就是说,当外力作用到弹簧的时候,弹簧材料的原子间距被拉长或缩短,从而将外力所做的功转换成了弹簧的弹性能;而当弹簧被释放的时候,弹簧材料内部的原子间距则会恢复到原始距离,从而将弹性能释放为对外界所做的功。尽管机械能与弹性能之间的转换可以几乎没有损耗,但是弹性变形的材料所能存储的能是密度相对很低。
随着西安交通大学丁向东等关于纳米弹簧的研究,设计出了以表面能为媒介,高效存储和释放机械能的新装置——纳米弹簧。与块体弹簧不同,纳米弹簧是通过表面原子的重构来实现能量的存储与释放的。该装置在加载和卸载过程中的表现就像手风琴一样:在加载过程中,车孪晶界向表面能高的孪晶取向移动,从而把外力所做的功转换为纳米装置的表面能而存储起来;在卸载的时候,在存储的表面能的驱动下,孪晶界移向表面较低的孪晶取向,从面将存储表面能转换为机械能。这种纳米弹簧具有显著优于块体弹簧的性能,
以截面宽度为2.3nm的纳米弹簧为例,其存储的能量密度超过1000J/cm 3。 (是钟表发条的1600倍以上),而且其能量转换效率高达98%,随着弹簧的横截面宽度的增大,装置的能量转换效率虽然有所减小,但是在纳米线的横截面宽度不大于5nm的条件下,其能量转换效率仍然可以保持在95%以上。
因此我们可以展望在不久的将来,纳米弹簧将在能量转换领域发挥巨大的作用,特别是在发动机技术领域,有望取代传统的发动机(如:内燃机、外燃机和电动机等)以及蓄电池。而针对应用了纳米弹簧的发条发动机,需要设计专用的充能装置。
发明内容
为了解决现有技术存在的上述问题,本发明目的在于提供一种发条发动机的充能装置。
本发明所采用的技术方案为:
一种发条发动机的充能装置,包括用于与发条发动机定位对准的定位平台以及设于定位平台下方的升降平台,升降平台上安装有定位柱和充能电机,充能电机的转轴连接凸头杆,定位平台上开设有用于定位柱和凸头杆通过的穿孔,发条发动机上设有定位孔以及转动时可以使发条盒内的发条储能的齿轮杆,齿轮杆的端面上设有凹孔。
升降平台上移时,定位柱和凸头杆均可穿过定位平台,定位柱插入发条发动机的定位孔,凸头杆插入发条发动机的齿轮杆上的凹孔。
优选地,所述升降平台上设有信号传输插头,信号传输插头和充能电机均电性连接控制器,定位平台上开设有用于信号传输插头通过的穿孔,发条发动机上设有与发条发动机的控制单元电性连接的信号传输插口。
优选地,所述发条发动机还包括用于检测和记录发条盒的转动次数的计数单元,计数单元电性连接控制单元。
优选地,所述定位平台上设有摄像头和红外传感器,摄像头和红外传感器均电性连接控制器,控制器分别电性连接用于驱动定位平台的定位装置以及用于驱动升降平台的升降装置。
优选地,所述控制器电性连接扫码单元和刷卡单元。
优选地,所述发条发动机上设有定位孔相对的电动液压卡子。
优选地,所述发条发动机包括壳体、设于壳体内的发条盒和传动齿轮组,发条盒的外壁套设有第一齿轮,第一齿轮与传动齿轮组的输入端啮合;传动齿轮组的输出端连接设置主动力输出轴,主动力输出轴上设有第二齿轮,第二齿轮啮合连接加速齿轮组;制动开关用于制动时与加速齿轮组卡合。
优选地,所述加速齿轮组包括通过齿轮啮合传动的第一输出轴和第二输出轴,第一输出轴连接设置电磁涡流制动器,第二输出轴连接设置发电机,发电机与控制单元电性连接。
优选地,所述壳体内活动设有转轴,发条盒套设在转轴上,发条盒内发条的一端连接转轴,另一端连接发条盒内壁。
优选地,所述齿轮杆与壳体转动连接,齿轮杆位于壳体内的一端连接储能齿轮,储能齿轮与传动齿轮组啮合。
本发明的有益效果为:
1、本发明所提供的一种发条发动机的充能装置,当升降平台上移时,定位柱和凸头杆均可穿过定位平台,定位柱插入发条发动机的定位孔,凸头杆插入发条发动机的齿轮杆端面上的凹孔,充能电机带动凸头杆转动对发条发动机进行充能,充能时间短,安全可靠。
2、当发条收紧完成以后,充能装置和发条发动机同时切断电源,确保充电搅动储能过程绝对安全,整个时间约为3-7分钟。
3、该能装置缩小比例可制作为移动电源充电座或者玩具充电座,例如将充电座设计为盒式,玩具设计为嵌入式。
附图说明
图1是本发明发条发动机的整体结构示意图。
图2是本发明发条盒、传动齿轮组和加速齿轮组的结构示意图。
图3是本发明壳体的剖视图。
图4是本发明龙骨架的正视图。
图5是本发明的棘轮离合器的结构示意图。
图6是本发明控制系统的结构框图。
图7是本发明充能装置的俯视图。
图8是本发明充能装置未工作状态的侧视图。
图9是本发明充能装置工作状态的侧视图。
图10是本发明充能装置的电路连接框图。
图11是本发明壳体内部的侧视图。
图中:1-壳体;101-龙骨架;102-第一金属层;103-第一缓冲层;104-第二金属层;105-第二缓冲层;2-发条盒;3-第一齿轮;4-传动齿轮组;5-主动力输出轴;6-第二齿轮;7-加速齿轮组;701-中间齿轮;702-制动齿轮;703-第一输出轴;704-第二输出轴;8-制动开关;9-电磁涡流制动器;10-转轴;11-发条;12-发电机;13-第一离合器;14-第一变速箱;15-第二离合器;16-第二变速箱;17-控制单元;18-计数单元;19-通信单元;20-调温单元;21-显示单元;22-发光单元;23-摄像单元;24-GPS单元;25-齿轮杆;26-减速电机;27-棘轮;28- 棘爪;29-信号传输插口;30-定位孔;31-电动液压卡子;40-定位平台;41-升降平台;42-定位柱;43-充能电机;44-凸头杆;45-信号传输插头;46-风箱页;47-摄像头;48-红外传感器;49-扫码单元;50-刷卡单元;51-定位装置;52-升降装置;53-控制器。
具体实施方式
下面结合附图及具体实施例对本发明做进一步阐释。
为了更便于了解本实施例的充能装置的工作原理和过程,首先对发条发动机的结构进行介绍,如图1、图2和图11所示,一种发条发动机,包括壳体1、发条盒2、第一齿轮3、传动齿轮组4、主动力输出轴5、第二齿轮6、加速齿轮组7和制动开关8,发条盒2、第一齿轮3和传动齿轮组4均设于壳体1内,第一齿轮3套设在发条盒2的外壁上,传动齿轮组4由多个齿轮依次啮合传动而成,顺着动力传动的方向,齿轮的转速逐渐增加,第一齿轮3与传动齿轮组4输入端的齿轮啮合。
主动力输出轴5的一端位于壳体1内,另一端位于壳体1外。主动力输出轴5位于壳体1内的一端连接设置锥齿轮,锥齿轮与传动齿轮组4输出端的齿轮啮合。
壳体1内活动设有转轴10,发条盒2套设在转轴10上,发条盒2内发条11的一端连接转轴10,发条11的另一端连接发条盒2内壁。发条11储能后,当转轴10固定时,发条盒2在发条11的作用下转动,从而动力通过传动齿轮组4传递至主动力输出轴5,主动力输出轴5将动力输出。
传动齿轮组4包括与发条盒2啮合传动的慢速齿轮组以及与慢速齿轮组啮合传动的快速齿轮组,发条盒2和慢速齿轮组处于真空环境中,可以减少内部部件氧化,延长使用时间,降低内部部件摩擦噪音。快速齿轮组浸泡在冷却液中。
主动力输出轴5的中部固定套设有第二齿轮6,加速齿轮组7与第二齿轮6 啮合传动。加速齿轮组7与传动齿轮组4的功能和结构类似,也是由多个齿轮齿轮依次啮合传动而成,顺着动力传动的方向,齿轮的转速逐渐增加,如图2给出了加速齿轮组7的具体连接关系图。同理,可根据实际应用的需求组合得到传动齿轮组4的结构。
加速齿轮组7包括多根平行的转轴,每根转轴上均设有一大一小两个齿轮,转速最快的转轴为第一输出轴703,第一输出轴703上设置的大齿轮为制动齿轮702。
第一输出轴703连接设置电磁涡流制动器9,电磁涡流制动器9可以精确控制主动力输出轴5的转速。
制动齿轮702经过多级加速后,虽然转速很快,但是仅用很小的力便能使制动齿轮停下来,从而使得主动力输出轴5停止转动,对发条发动机进行制动,制动开关8用于制动时与加速齿轮组7的制动齿轮702卡合。
制动开关8可以为气压制动装置或者手动制动装置,气压制动装置在第一次使用前需先加满制动气罐才能使用。发条发动机启动后就一直给气压制动装置里面的制动气罐加气,需要制动时,制动气罐推动制动开关8的齿轮与制动齿轮702卡合,使主动力输出轴5停止转动。手动制动装置则需要人为的推动和拔出制动开关8,使制动开关8的齿轮与制动齿轮702分别卡合和脱离。
在实际使用中,制动开关8可以同时包括气压制动和手动制动两种模式,使得使用时更为安全。
加速齿轮组7还包括设于第一输出轴703和主动力输出轴5之间的第二输出轴704,第二输出轴704上套设有中间齿轮701,第二输出轴704连接设置发电机12,当发条发动机启动后,第二输出轴704转动并带动发电机12发电,并将电输送至各部件。
如图3所示,壳体1包括从内向外依次设置的龙骨架101、第一金属层102、第一缓冲层103、第二金属层104和第二缓冲层105。
如图4所示,龙骨架101为网状空心管龙骨架,可以为钛合金制作的网状交叉的空心管组成的龙骨架,为整个壳体1提供支撑。第一金属层102为不锈钢钢板,包裹整个龙骨架101。第一缓冲层103为泡沫层,包裹整个第一金属层102。第二金属层104为合金板层,包裹整个第一缓冲层103。第二缓冲层105为泡沫层,包裹整个第二金属层104。第二缓冲层105外设有载具铁皮外壳,例如:汽车壳,载具铁皮外壳包裹整个第二缓冲层105。
第一缓冲层103和第二缓冲层105的泡沫层均由高密泡沫制成。壳体1与载具铁皮外壳全部连为一体,具备防水防尘和防震的功能。
转轴10上套设有单向离合装置,转轴10的端部连接设置减速电机26。单向离合装置具有超越、分度和逆止的功能,单向离合装置为逆止器、单向离合器或棘轮离合器。减速电机26可带动转轴10从而慢慢收紧发条11储能,单向离合装置可使得转轴10仅能在减速电机26的带动下转动,当减速电机26停止后,转轴10在逆止功能的作用下锁死。
如图5所示为单向离合装置为棘轮离合器的结构示意图,棘轮离合器包括棘轮27、棘爪28和弹簧。如图5所示,在弹簧的作用下,棘爪28前端始终朝下,嵌在棘轮27的齿槽中。当减速电机26带动转轴10逆时针转动时,棘轮27也开始逆时针转动;当减速电机26停止时,棘爪28嵌在棘轮27的齿槽中将棘轮27顶住,即使在发条11的作用下,转轴10和棘轮27也不能顺时针转动。
本实施例还提供一种发条11的储能方式,在壳体1上穿设有齿轮杆25,齿轮杆25与壳体1通过轴承转动连接,齿轮杆25位于壳体1内的一端连接一储能齿轮,储能齿轮与传动齿轮组4啮合,具体的,传动齿轮组4与储能齿轮啮合的齿轮临近第一齿轮3。齿轮杆25位于壳体1外的一端与壳体1平齐,端面上凹设有凹孔,便于与外部动力连接。外部动力带动齿轮杆25转动,让传动齿轮组4反向转动,从而带动发条盒2转动,给发条11储能。利用齿轮杆25转动给发条11储能时,制动开关8与制动齿轮702脱离,即控制制动开关8的气压制动装置和/或手动制动装置运行使制动开关8的齿轮与制动齿轮702卡合脱 离。
通过较小功率的减速电机26带动转轴10搅动发条11储能是为了方便灵活,即使是在现有的电动汽车充电桩上也能使用。也可以通过大功率减速电机带动齿轮杆25使发条11储能,通过齿轮杆25储能的方式效率更高,更加的节约时间。可以看出这两种储能方式各有所长,应结合使用。
如图6所示,发条发动机还包括控制系统,控制系统包括控制单元17、计数单元18、通信单元19、调温单元20、显示单元21、发光单元22、摄像单元23、GPS单元24,控制单元17分别与计数单元18、通信单元19、调温单元20、显示单元21、发光单元22、摄像单元23、GPS单元24、减速电机26、电磁涡流制动器9和发电机12电性连接。
当发条发动机启动时发电机12直接连接控制单元17对各部件进行供电,从而不需要使用蓄电池。
计数单元18用于检测和记录发条盒2的转动次数,并将转动次数发送到控制单元17,当发条11储能后,其能释放的能量可以转换为发条盒2的转动次数,因此可以通过统计发条盒2已经转动的次数得到剩余的转动次数,从而转化为相应的剩余行程数或者剩余储能百分比。
调温单元20用于对发条盒2和传动齿轮组4进行升温和降温;发条盒2和传动齿轮组4在温度范围K 1到K 2内能保持最佳运动状态,当发条盒2和传动齿轮组4低于K 1时,调温单元20升温。当发条盒2和传动齿轮组4高于K 2时,调温单元20降温,当发条盒2和传动齿轮组4在K 1到K 2内时,调温单元20暂停工作。
显示单元21用于显示发条发动机的工作参数。摄像单元23用于实时监测壳体1内各部件的工作情况。通信单元19用于与外部进行数据通信。发光单元22用于对壳体1内提供照明,便于检修。GPS单元24通过全球定位系统对发条发动机进行定位。
主动力输出轴5连接设置第一变速箱14,第一变速箱14的输出端连接设置第二变速箱16。主动力输出轴5通过第一离合器13与第一变速箱14的输入端相连,第一变速箱14的输出端通过第二离合器15与第二变速箱16的输入端相连。第一变速箱14与控制单元17电性连接。利用齿轮杆25转动给发条11储能时,第一离合器1断开。
第一变速箱14内每个齿轮对应相应的排量大小扭力而定,控制整个发动机的排量转换。发条11用到随着储能的减少,最后力量也会越来越小,这个时候控制单元17就会自动调节电磁涡流制动器9和第一变速箱14,比方从原有的排量2.0随着发条力量的逐步减弱就会自动调节成3.0,4.0,5.0,6.0……来适应所使用的稳定转数扭力需求。第二变速箱16则用于换挡。
需要说明的是,本实施例中发条盒2内设置的发条也可以用弹簧代替。发条盒2的数量也可以为一个或多个。
如图7-图10所示,本实施例提供一种上述发条发动机的充能装置,为了和充能装置能够更好的配合,发条发动机的壳体1上设有信号传输插口29、定位孔30和电动液压卡子31,电动液压卡子31上设有朝向定位孔30的卡口,信号传输插口29与发条发动机的控制单元17电性连接,信号传输插口29可以通过控制单元17读取发条发动机的发条盒2的剩余行程数或者剩余储能百分比。
充能装置包括定位平台40、定位装置51、升降平台41和升降装置52,定位平台40的四周连接设置风箱页46,定位装置51可以驱动定位平台40在水平方向移动,升降装置52可以驱动升降平台41在竖直方向移动,升降平台41通过导轨和滑块的配合安装在定位平台40下方,可以随着定位平台40在水平方向移动。
升降平台41上安装有定位柱42、充能电机43和信号传输插头45,充能电机43的转轴连接凸头杆44,定位柱42、凸头杆44和信号传输插头45均朝向定位平台40设置,定位平台40上分别开设有用于定位柱42、凸头杆44和信号传输插头45通过的穿孔,当升降装置52驱动升降平台41顺着导轨上移时, 定位柱42、凸头杆44和信号传输插头45均可穿过定位平台40。
充能装置还包括控制器53、摄像头47、红外传感器48、扫码单元49和刷卡单元50。摄像头47和红外传感器48均安装在定位平台40上,信号传输插头45、定位装置51、升降装置52、摄像头47、红外传感器48、扫码单元49、刷卡单元50和充能电机43均电性连接控制器53。
上述充能装置的工作过程为:
当装配了发条发动机的载具进入能源站后,先将载具停放到指定大致区域,使得发条发动机上设有信号传输插口29、定位孔30和电动液压卡子31的一面朝向充能装置,在刷卡单元50上刷卡或者插卡,或者通过扫码单元49扫描对应的二维码,确认给发条发动机充能,控制器53得到确认信号,
然后充能装置启动,控制器53控制摄像头47和红外传感器48工作,判定定位平台40是否和发条发动机对齐,如果没对齐,则通过定位装置51驱动定位平台40在水平方向移动进行对位,直到对齐,此时充能装置如图8所示。
定位装置51停止,控制器53控制升降装置52运行,驱动升降平台41缓慢上移,定位柱42、凸头杆44和信号传输插头45穿过定位平台40后,定位柱42插入发条发动机的定位孔30,凸头杆44插入发条发动机的齿轮杆25端面上的凹孔,信号传输插头45插入发条发动机的信号传输插口29,此时控制器53与控制单元17连通,进行数据通信,首先控制单元17驱动电动液压卡子31转动,将定位柱42牢牢的锁死在定位孔30内,然后控制器53通过控制单元17读取发条发动机的发条盒2的剩余行程数或者剩余储能百分比,并计算得到凸头杆44应该转动的次数,接着控制器53驱动充能电机43工作,使得凸头杆44转动相应次数后关闭充能电机43。
最后电动液压卡子31反向转动松开定位柱42,控制器53控制升降装置52运行,驱动升降平台41缓慢下降,直到定位柱42、凸头杆44和信号传输插头45均位于定位平台40下方,如图8所示。此时发条发动机充能完毕,载具驶 离能源站。
本发明不局限于上述可选的实施方式,任何人在本发明的启示下都可得出其他各种形式的产品。上述具体实施方式不应理解成对本发明的保护范围的限制,本发明的保护范围应当以权利要求书中界定的为准,并且说明书可以用于解释权利要求书。

Claims (10)

  1. 一种发条发动机的充能装置,其特征在于:包括用于与发条发动机定位对准的定位平台(40)以及设于定位平台(40)下方的升降平台(41),升降平台(41)上安装有定位柱(42)和充能电机(43),充能电机(43)的转轴连接凸头杆(44),定位平台(40)上开设有用于定位柱(42)和凸头杆(44)通过的穿孔,发条发动机上设有定位孔(30)以及转动时可以使发条盒(2)内的发条(11)储能的齿轮杆(25),齿轮杆(25)的端面上设有凹孔。
  2. 根据权利要求1所述的充能装置,其特征在于:所述升降平台(41)上设有信号传输插头(45),信号传输插头(45)和充能电机(43)均电性连接控制器(53),定位平台(40)上开设有用于信号传输插头(45)通过的穿孔,发条发动机上设有与发条发动机的控制单元(17)电性连接的信号传输插口(29)。
  3. 根据权利要求2所述的充能装置,其特征在于:所述发条发动机还包括用于检测和记录发条盒(2)的转动次数的计数单元(18),计数单元(18)电性连接控制单元(17)。
  4. 根据权利要求1所述的充能装置,其特征在于:所述定位平台(40)上设有摄像头(47)和红外传感器(48),摄像头(47)和红外传感器(48)均电性连接控制器(53),控制器(53)分别电性连接用于驱动定位平台(40)的定位装置(51)以及用于驱动升降平台(41)的升降装置(52)。
  5. 根据权利要求2-4任一所述的充能装置,其特征在于:所述控制器(53)电性连接扫码单元(49)和刷卡单元(50)。
  6. 根据权利要求1所述的充能装置,其特征在于:所述发条发动机上设有定位孔(30)相对的电动液压卡子(31)。
  7. 根据权利要求1-3任一所述的充能装置,其特征在于:所述发条发动机包括壳体(1)、设于壳体(1)内的发条盒(2)和传动齿轮组(4),发条盒(2)的外壁套设有第一齿轮(3),第一齿轮(3)与传动齿轮组(4)的输入端啮合;传动齿轮组(4)的输出端连接设置主动力输出轴(5),主动力输出轴(5)上 设有第二齿轮(6),第二齿轮(6)啮合连接加速齿轮组(7);制动开关(8)用于制动时与加速齿轮组(7)卡合。
  8. 根据权利要求7所述的充能装置,其特征在于:所述加速齿轮组(7)包括通过齿轮啮合传动的第一输出轴(703)和第二输出轴(704),第一输出轴(703)连接设置电磁涡流制动器(9),第二输出轴(704)连接设置发电机(12),发电机(12)与控制单元(17)电性连接。
  9. 根据权利要求7所述的充能装置,其特征在于:所述壳体(1)内活动设有转轴(10),发条盒(2)套设在转轴(10)上,发条盒(2)内发条(11)的一端连接转轴(10),另一端连接发条盒(2)内壁。
  10. 根据权利要求7所述的充能装置,其特征在于:所述齿轮杆(25)与壳体(1)转动连接,齿轮杆(25)位于壳体(1)内的一端连接储能齿轮,储能齿轮与传动齿轮组(4)啮合。
PCT/CN2019/073805 2018-01-31 2019-01-30 一种发条发动机的充能装置 WO2019149201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810096600.0 2018-01-31
CN201810096600.0A CN108301993B (zh) 2018-01-31 2018-01-31 一种发条发动机的充能装置

Publications (1)

Publication Number Publication Date
WO2019149201A1 true WO2019149201A1 (zh) 2019-08-08

Family

ID=62850738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073805 WO2019149201A1 (zh) 2018-01-31 2019-01-30 一种发条发动机的充能装置

Country Status (2)

Country Link
CN (1) CN108301993B (zh)
WO (1) WO2019149201A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108301993B (zh) * 2018-01-31 2019-08-13 张智东 一种发条发动机的充能装置
CN111092326B (zh) * 2018-10-24 2021-07-23 Oppo广东移动通信有限公司 充电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612606A (en) * 1994-09-15 1997-03-18 David C. Guimarin Battery exchange system for electric vehicles
JP2000092621A (ja) * 1998-09-09 2000-03-31 Harness Syst Tech Res Ltd 電気自動車用充電装置
CN102943738A (zh) * 2011-08-14 2013-02-27 北京银万特科技有限公司 潮汐能景观系统
CN204126824U (zh) * 2014-10-09 2015-01-28 华中科技大学 一种基于恒力弹簧的能量收集装置
CN106838184A (zh) * 2017-01-24 2017-06-13 廖红继 一种储能动力车
CN108301993A (zh) * 2018-01-31 2018-07-20 张智东 一种发条发动机的充能装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100963023B1 (ko) * 2009-11-23 2010-06-10 신남수 태엽을 동력원으로 하는 발전기
CN106224184B (zh) * 2014-04-07 2018-11-16 长乐市丽智产品设计有限公司 一种手动发电器
JP6494104B2 (ja) * 2014-07-09 2019-04-03 東洋ゼンマイ株式会社 多重接触型ゼンマイ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612606A (en) * 1994-09-15 1997-03-18 David C. Guimarin Battery exchange system for electric vehicles
JP2000092621A (ja) * 1998-09-09 2000-03-31 Harness Syst Tech Res Ltd 電気自動車用充電装置
CN102943738A (zh) * 2011-08-14 2013-02-27 北京银万特科技有限公司 潮汐能景观系统
CN204126824U (zh) * 2014-10-09 2015-01-28 华中科技大学 一种基于恒力弹簧的能量收集装置
CN106838184A (zh) * 2017-01-24 2017-06-13 廖红继 一种储能动力车
CN108301993A (zh) * 2018-01-31 2018-07-20 张智东 一种发条发动机的充能装置

Also Published As

Publication number Publication date
CN108301993B (zh) 2019-08-13
CN108301993A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
WO2019149201A1 (zh) 一种发条发动机的充能装置
CN201685709U (zh) 震动式发电装置
US5432382A (en) Permanent magnet energy storage apparatus
CN103591941A (zh) 节能型海洋次表层垂直剖面测量系统
CN208789909U (zh) 一种抛射距离可调的救生绳索抛射器
US20110031908A1 (en) Kinetic energy collection device
CN207030650U (zh) 充电桩自动收卷装置及充电桩
CN101766873A (zh) 一种绳索传动的自动制动装置
WO2019149202A1 (zh) 发条发动机
WO2022062219A1 (zh) 一种船载冲击式颠簸驱动波浪发电机
WO2019149199A1 (zh) 一种发条发动机的换能系统
GB2412697A (en) Wind turbine
CN200997547Y (zh) 一种可手动发电的供电电源
CN114476994B (zh) 一种新型海上自主收放绞车系统
CN202176466U (zh) 压力发电机
CN215409017U (zh) 一种带有备用发条盒的发条发动机
CN112398441B (zh) 一种基于无线信号传输的太阳能检测器及其使用方法
CN114362441A (zh) 基于机械传动的道路压力发电装置
CN109204892B (zh) 一种弹簧蓄能式飞网收口装置
CN201485205U (zh) 门座起重机旋转机构
CN206261005U (zh) 一种具有风扇装置的太阳能伞
CN110920846A (zh) 一种基于电机的帆船驱动装置
CN203640368U (zh) 太阳能遥控地锁
CN107588224A (zh) 一种全海深电动旋转执行器
CN2374716Y (zh) 燃气卡式收费系统专用机电阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747791

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19747791

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19747791

Country of ref document: EP

Kind code of ref document: A1