WO2019148891A1 - 利用声学黑洞特征的宽频带振动抑制装置 - Google Patents

利用声学黑洞特征的宽频带振动抑制装置 Download PDF

Info

Publication number
WO2019148891A1
WO2019148891A1 PCT/CN2018/110628 CN2018110628W WO2019148891A1 WO 2019148891 A1 WO2019148891 A1 WO 2019148891A1 CN 2018110628 W CN2018110628 W CN 2018110628W WO 2019148891 A1 WO2019148891 A1 WO 2019148891A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
tapered portion
thickness
suppression device
vibration suppression
Prior art date
Application number
PCT/CN2018/110628
Other languages
English (en)
French (fr)
Inventor
成利
周桐
Original Assignee
香港理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港理工大学 filed Critical 香港理工大学
Priority to US16/965,851 priority Critical patent/US11946523B2/en
Publication of WO2019148891A1 publication Critical patent/WO2019148891A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/08Inertia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/04Assembly or fixing methods; methods to form or fashion parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/04Assembly or fixing methods; methods to form or fashion parts
    • F16F2226/042Gluing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/04Assembly or fixing methods; methods to form or fashion parts
    • F16F2226/048Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/001Specific functional characteristics in numerical form or in the form of equations
    • F16F2228/005Material properties, e.g. moduli
    • F16F2228/007Material properties, e.g. moduli of solids, e.g. hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/04Frequency effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/18Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/40Multi-layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2234/00Shape

Definitions

  • the present application relates to the field of vibration damping and, more particularly, to a broadband vibration suppression device that utilizes acoustic black hole features.
  • Vibration control is very important for many industrial products such as transportation vehicles, machines and electronics. Vibration of structures, equipment and machines directly affects product acceptance and competitiveness. Increasingly stringent regulations require that vibration be limited to acceptable levels to avoid potential problems such as fatigue, noise and discomfort. Efforts have been made to develop methods to reduce undesired structural or mechanical vibrations.
  • the Dynamic Vibration Absorber is one of the most commonly used vibration control devices. It usually consists of masses, springs and damping elements and can be constructed in various forms. However, in order to reduce the resonance peak of the structure, the DVA should be adjusted to an accurate frequency and connected to the main vibration structure. By doing so, due to the strong interaction between the structure and the DVA, the vibration level of the original structure can be effectively reduced.
  • Various absorber inventions based on this principle have been disclosed, for example, US 3,419,111 A and the like.
  • a waveguide absorber can increase the damping and energy dissipation of the main vibration structure, thereby making it possible to achieve multiple resonance control.
  • the coupling between the auxiliary absorption system such as the waveguide absorber and the main vibration structure is relatively weak, and in order to satisfy the impedance matching condition, the waveguide absorber should be appropriately designed.
  • the conventional dynamic vibration absorber can only provide vibration suppression in a narrow range, and the control performance is very sensitive to the physical parameters of the vibration absorber. Adjusting parameters is also cumbersome and difficult.
  • the waveguide absorber can be effective over a wide frequency band, the coupling between the auxiliary system and the main structure is relatively weak.
  • the design of the waveguide absorber should be appropriate, and attention should be paid to the impedance matching condition. In practice, multiple absorbers are usually required.
  • the present invention provides a broadband vibration suppression apparatus using an acoustic black hole feature, comprising: a vibration damping body including a uniform portion having a constant thickness and a tapered portion integrally connected to the uniform portion, the tapered portion Extending from the junction to gradually decrease from the thickness of the uniform portion to a predetermined thickness; and a damping layer attached to the tapered portion of the damping body.
  • the thickness reduction of the tapered portion follows the following formula:
  • x is a coordinate along a direction in which the thickness of the tapered portion decreases
  • is a coefficient
  • m is an integer greater than or equal to 2.
  • the vibration suppression device further includes: a connector attached to a bottom of the uniform portion of the vibration damping body for connecting the vibration damping body to a vibration damping device.
  • the connector is used to connect the damper body to the device to be damped by means of super glue, welding or bolting.
  • the damping layer is attached to the top or bottom surface of the extended end of the tapered portion of the damping body.
  • the damper body further includes a platform extending from the extended end of the tapered portion to the predetermined thickness to extend a predetermined length.
  • the neutral axis of the tapered portion is linear or spiral.
  • the damping layer is a plurality of layers.
  • a plurality of vibration suppression devices are connected to the device to be damped.
  • the vibrational energy within the ABH feature is effectively captured and damped, and the ABH structural component has a rich modal distribution with a high system loss factor due to its unique dynamic characteristics, which is capable of providing energy over a wide frequency band. Dissipative and dynamic interactions.
  • the ABH tapered structural elements have a simple and easy to implement geometry. Due to the unique dynamic characteristics described above, the tuning process of the conventional dynamic vibration absorber can be avoided.
  • the vibration suppression device of the present invention can be used in any vibration system without affecting the structural integrity of the vibration system.
  • FIG. 1 shows a front view of a broadband vibration suppression device utilizing an acoustic black hole feature, in accordance with an exemplary embodiment of the present invention
  • FIG. 1A shows a front view of a variation of a broadband vibration suppression device utilizing an acoustic black hole feature, in accordance with an exemplary embodiment of the present invention
  • FIG. 2 is a schematic view showing the mounting of a vibration suppression device to a device to be vibration-damped according to an embodiment of the present invention
  • FIG. 2A is a plan view showing the vibration suppression device and the vibration damping device shown in FIG. 2;
  • Figure 2B shows a bottom view of the vibration suppression device shown in Figure 1A;
  • FIG. 3 illustrates a front view of a vibration suppression device according to another exemplary embodiment of the present invention
  • Figure 3A is a front elevational view showing a modification of the vibration suppression device shown in Figure 3;
  • FIG. 4A is a plan view showing the vibration suppression device shown in FIG. 3;
  • Figure 4B shows a bottom view of the vibration suppression device shown in Figure 3A;
  • FIG. 5 illustrates a plan view of a vibration suppression device according to still another exemplary embodiment of the present invention
  • Figure 6 shows experimental measurements of the frequency response of an arbitrarily selected device to be damped with and without a vibration suppression device with acoustic black hole features.
  • the present invention provides a broadband vibration suppression device utilizing an acoustic black hole feature in which a vibration suppression device utilizing an acoustic black hole feature is employed as an auxiliary attachment device to achieve wideband vibration suppression of a structure with minimal adjustment, that is, in a wide band Reduce the undesired vibration of the main structure.
  • the design process of such additional sub-devices is expected to be simple and easy to apply in a variety of applications.
  • the present application designs a broadband effective vibration absorber by utilizing the "Acoustic Black Hole” (ABH) phenomenon to reduce various types of undesired structural vibrations of the structure, particularly bending vibration, and to reduce noise.
  • ABS Acoustic Black Hole
  • the bending wave propagates in a tapered wedge whose thickness is reduced according to a power function (h(x) - ⁇ x m , m ⁇ 2), the wave velocity of the bending wave gradually decreases.
  • the wave amplitude is gradually increased, where x is the coordinate along the direction in which the thickness of the tapered wedge decreases, ⁇ is the coefficient, and m is an integer greater than or equal to 2.
  • the proposed vibration suppression device having the ABH characteristic has its inherent characteristics of a large operating band and effective control performance.
  • the ABH feature can be embedded in the original vibration structure in various forms by reducing the thickness of the original vibration structure, thereby degrading the static characteristics of the original vibration structure. While the present invention seeks to design an additional vibration suppression device without affecting the mechanical properties of the original vibration structure itself, that is, the present invention does not sacrifice the original vibration structure by attaching the ABH tapered structural member as a separate device to the original vibration structure. Integrity and rigidity.
  • FIG. 1 illustrates a front view of a broadband vibration suppression device utilizing an acoustic black hole feature, in accordance with an exemplary embodiment of the present invention.
  • the vibration suppression device 100 may include a vibration damping body (conical additional beam) 101 including a uniform portion 1011 of constant thickness and a tapered portion 1012 integrally connected to the uniform portion 1011, the tapered portion 1012 extends from the junction to gradually decrease from the thickness d1 of the uniform portion 1011 to a predetermined thickness d2; and the damping layer 102 is attached to the tapered portion 1012 of the damping body 101.
  • a vibration damping body (conical additional beam) 101 including a uniform portion 1011 of constant thickness and a tapered portion 1012 integrally connected to the uniform portion 1011, the tapered portion 1012 extends from the junction to gradually decrease from the thickness d1 of the uniform portion 1011 to a predetermined thickness d2; and the damping layer 102 is attached to the tapered portion 1012 of the damping body 101.
  • the thickness variation of the tapered portion 1012 can also follow other similar formulas as long as the thickness of the tapered portion 1012 is gradually reduced to satisfy a so-called “smoothness criterion", that is, the variation of the local wave number is at the wavelength. The distance is small, and an effect similar to the present invention can be obtained.
  • the thickness of the tapered portion 1012 is gradually reduced to the predetermined thickness d2 to be cut off, whereby a strong wave reflection is generated at the cut.
  • the present invention covers the end of the tapered portion 1012 by using the damping layer 102, so that the wave reflection caused by the cut can be significantly reduced.
  • the combination of tapered portion 1012 and damping layer 102 having varying thicknesses creates an effective wedge absorber that absorbs vibration more effectively and reduces noise.
  • the additional damping layer 102 reduces the reflection of incident waves and provides energy dissipation to the damping body 101.
  • a viscoelastic material having a high loss factor can generally be selected as the additional damping layer 102.
  • the damping layer 102 is attached (e.g., bonded) to the end bottom surface of the tapered portion 1012 of the vibration damping body 101.
  • the damping layer 102 may also be disposed on the top surface of the end of the tapered portion 1012, in which case the damping layer 102 has a curved surface that coincides with the change in the top surface of the tapered portion 1012 to the top of the tapered portion 1012. Face fit.
  • the damping layer 102 may also be attached to the intermediate portion of the top or bottom surface of the damping body 101, or to the left portion, without being flush with the end of the tapered portion 1012 as shown in FIG.
  • the damping layer 102 can be multiple layers. That is, on the basis of the damping layer 102 shown in FIG. 1, a damping layer having the same shape or different shape may be additionally disposed.
  • a damping layer may be further disposed on the damping layer 102, or may further be in the tapered portion 1012.
  • a further layer of damping is placed on the top surface of the tip to further reduce the reflection of incident waves and provide further energy dissipation to the damping body 101.
  • the uniform portion 1011 and the tapered portion 1012 are formed integrally (i.e., integrally formed), and the materials of the two are the same.
  • the uniform portion 1011 and the tapered portion 1012 may be formed by, for example, numerically controlled milling, or may be formed by one-time using 3D printing, or may also utilize electrical discharge machining.
  • FIG. 1A shows a front view of a variation of a broadband vibration suppression device utilizing an acoustic black hole feature, in accordance with an exemplary embodiment of the present invention.
  • the vibration suppression device 100 may further include a connector 103 attached to the bottom of the uniform portion 1011 of the vibration damping body 101, It is used to connect the vibration damping body 101 to a vibration damping device (ie, a primary vibration structure).
  • a vibration damping device ie, a primary vibration structure
  • FIG. 2 shows a schematic view of mounting a vibration suppression device to a device to be damped in accordance with an embodiment of the present invention.
  • the connector 103 is attached to the bottom of the uniform portion 1011 of the vibration damping body 101 of the vibration suppression device 100 for connecting the vibration suppression device 100 to a to-be-damped device A.
  • the connector 103 is used to connect the main vibration system (ie, the vibration damping device A) and the auxiliary vibration system (ie, the vibration damping body 101) so that the vibration energy can be locally displaced and rotated in the vibration damping device A and the vibration damping body. Transfer between 101 (and thus the vibration suppression device 100).
  • the connector 103 can connect the vibration damping body 101 to the vibration-damping device A by means of super glue, welding or bolting.
  • the connector 103 (as shown in FIG. 1) may be omitted, and the damper body 101 may be directly passed through a super glue, a weld or a bolt, etc. The method is connected to the device A to be damped.
  • the thickness of the connector 103 is d4
  • the thickness of the damping layer 102 is d3, and d4 is greater than d3.
  • the vibration of the vibration damping device A causes the propagation of bending waves in the vibration suppression device 100.
  • the thickness of the vibration damping body 101 of the vibration suppression device 100 is adjusted from the original large value d1 to the small value d2. Then, due to the specific "acoustic black hole” effect, the vibration energy moves from the thicker portion of the vibration damping body 101 to the thinner portion and is concentrated around the extended end of the tapered portion 1012 of the vibration damping body 101.
  • the thickness d2 of the extended end of the tapered portion 1012 of the damper body 101 should be as small as possible as long as the damper body 101 can hold the damper layer 102 without rupturing the damper body 101, and ensure that the damper layer 102 does not contact the device to be damped. A can be.
  • the residual thickness d2 of the end (ie, the cut) of the tapered portion 1012 of the vibration damping body 101 may be several tens of times smaller than the thickness d1 of the uniform portion of the vibration damping body 101.
  • the additional vibration suppression device 100 with acoustic black hole features has a rich dynamic (distributed form), i.e., has a rich modal distribution over the spectrum and a high system loss factor over a wide frequency band.
  • the interaction between the vibration suppression device 100 and the device to be damped A also occurs at the same time, and the vibration of the device A to be damped near the matching frequency is reduced by the DVA principle.
  • the vibration suppression device 100 can be attached as an auxiliary system to the device to be damped to reduce its vibration over a wide frequency band.
  • a plurality of vibration suppression devices 100 may be coupled to the to-be-damped device A to further effectively reduce vibration of the device A to be damped and reduce noise.
  • Fig. 2A shows a plan view of the vibration suppression device and the vibration damping device shown in Fig. 2.
  • the length of the vibration damping body 101 is L1
  • the length of the uniform portion 1011 is L11
  • Fig. 2B shows a bottom view of the vibration suppression device shown in Fig. 1A.
  • the length of the connector 103 is L2, the length of the damping layer 102 is L3, and both L2 and L3 are smaller than L1.
  • L2 is less than L11 and L3 is less than L12.
  • L3 can also be larger than L12.
  • the connector 103 has a width w2 and the damping layer has a width w3.
  • the invention is not limited thereto.
  • w2 and w3 can also be smaller than w1.
  • the connector 103 can be a rectangular parallelepiped. However, the invention is not limited thereto, and the connector 103 may have other shapes such as a cube, an ellipsoid or the like.
  • the neutral axis of the tapered portion 1012 is linear, that is, the neutral axis of the tapered portion 1012 extends in a straight line from the uniform portion 1011, and its thickness gradually decreases from d1 to d2. .
  • the present invention is not limited thereto, and the tapered portion 1012 may also extend in other forms.
  • the tapered portion 1012 may extend in a spiral shape, which will be specifically described later with reference to FIG.
  • the design of the vibration suppression device according to an exemplary embodiment of the present invention is relatively simple.
  • the vibration suppression device of the present invention can unify the principles of the dynamic vibration absorber and the waveguide absorber to form a single device, so that the vibration suppression device of the present invention can simultaneously have power Advantages of both the vibration absorber and the waveguide absorber.
  • ABS acoustic black hole
  • FIG. 3 illustrates a front view of a vibration suppression device 300 in accordance with another exemplary embodiment of the present invention.
  • the vibration suppression device 300 Similar to the vibration suppression device 100 shown in Fig. 1, the vibration suppression device 300 according to the present embodiment also includes a vibration damping body 301 including a uniform portion 3011 of constant thickness and a tapered portion 3012 integrally connected with the uniform portion 3011.
  • the tapered portion 3012 extends from the joint to gradually decrease from the thickness d31 of the uniform portion 3011 to a predetermined thickness d32; and the damping layer 302 is attached to the tapered portion 3012 of the damping body 301.
  • Fig. 3A is a front elevational view showing a modification of the vibration suppression device shown in Fig. 3.
  • the vibration suppression device 300 may further include: a connector 303 attached to the bottom of the uniform portion 3011 of the vibration damping body 301 for The vibration damping body 301 is connected to a vibration damping device (not shown).
  • the thickness reduction of the tapered portion 3012 can follow the following formula:
  • x is a coordinate along a direction in which the thickness of the tapered portion decreases
  • is a coefficient
  • m is an integer greater than or equal to 2.
  • the thickness variation of the tapered portion 3012 can also follow other similar formulas, and as long as the thickness of the tapered portion 3012 is gradually reduced to satisfy the so-called “smoothness criterion", effects similar to those of the present invention can be obtained.
  • the thickness of the tapered portion 3012 is gradually reduced to the predetermined thickness d32 to be cut off, whereby a strong wave reflection is generated at the cut.
  • the present invention covers the end of the tapered portion 3012 by using the damping layer 302, so that the wave reflection caused by the cut can be significantly reduced.
  • the combination of tapered portion 3012 and damping layer 302 having varying thicknesses creates an effective wedge absorber that absorbs vibration more effectively and reduces noise.
  • the damping layer 302 can be attached to the top or bottom surface of the extended end of the tapered portion 3012 of the damping body 301. This can significantly reduce the wave reflection caused by the extension of the tapered portion 3012. Thus, the combination of tapered portion 3012 and damping layer 302 having varying thicknesses creates an effective wedge absorber that absorbs vibration more effectively and reduces noise.
  • the additional damping layer 302 reduces the reflection of incident waves and provides energy dissipation to the damping body 301.
  • a viscoelastic material having a high loss factor can generally be selected as the additional damping layer 302.
  • the connector 303 is used to connect the main vibration system (ie, the vibration damping device) and the auxiliary vibration system (ie, the vibration damping body 301) so that the vibration energy can be locally displaced and rotated in the vibration damping device and the vibration damping body 301 ( Further, the vibration suppression device 300) is transferred between.
  • the connector 303 can be used to connect the vibration damping body 301 to the vibration-damping device by means of strong glue, welding or bolting.
  • the connector 303 may be omitted, and the damper body 301 is directly connected to the device to be damped by means of super glue, welding or bolting. connection.
  • the neutral axis of the tapered portion 3012 can be linear or spiral.
  • the vibration suppression device 300 according to the present embodiment is different from the vibration suppression device 100 shown in FIG. 1 in that the vibration damping body 301 of the vibration suppression device 300 according to the present embodiment further includes a taper from the vibration damping body 301.
  • the extended end of portion 3012 continues to extend a predetermined length of platform 3013 at the predetermined thickness d32.
  • the platform 3013 extends a certain length L4 from the end of the tapered portion 3012 at a constant thickness d32, so that the ABH effect can be enhanced.
  • the portion of the tapered portion 3012 having a relatively thin thickness and having a large amplitude of the wave here is elongated, whereby the bending wave is more attenuated by the extended portion, and the low frequency performance of the vibration suppressing device is also Improved.
  • the uniform portion 3011, the tapered portion 3012, and the platform 3013 are formed integrally (ie, integrally formed), and the materials of the three are the same.
  • the uniform portion 3011, the tapered portion 3012, and the platform 3013 may be formed by, for example, numerically controlled milling, or may be formed by one-time using 3D printing, or may be processed by electrical discharge.
  • the damping layer 302 is attached to the end bottom surface of the tapered portion 3012 of the vibration damping body 301.
  • the damping layer 302 may also be disposed on the top surface of the end of the tapered portion 3012, in which case the damping layer 302 has a curved surface that coincides with the change in the top surface of the tapered portion 3012 to the top of the tapered portion 3012. Face fit.
  • the damping layer 302 can also be attached to the intermediate portion of the top or bottom surface of the damping body 301, or to the left portion, without having to be flush with the extended end of the platform 3012 as shown in FIG.
  • the damping layer 302 can be multiple layers. That is, on the basis of the damping layer 302 shown in FIG. 3, a damping layer having the same shape or different shapes may be additionally provided, for example, a damping layer may be further disposed on the damping layer 302, or may further be in the tapered portion 3012. A further layer of damping is placed on the top surface of the tip to further reduce the reflection of incident waves and provide further energy dissipation to the damping body 301.
  • Fig. 4A shows a plan view of the vibration suppression device shown in Fig. 3.
  • the length of the vibration damping body 301 is equal to the sum of the length of the uniform portion 3011 and the length of the tapered portion 3012 and the length L4 of the platform 3013.
  • the width of the uniform portion 3011, the tapered portion 3012, and the platform 3013 may be the same.
  • Fig. 4B shows a bottom view of the vibration suppression device shown in Fig. 3A.
  • the length of the connector 303 and the length of the damping layer 302 are both smaller than the length of the vibration damping body 301.
  • the length of the connector 303 is less than the length of the uniform portion 3011, and the length of the damping layer 302 is less than the length of the tapered portion 3012.
  • the invention is not limited thereto.
  • the length of the damping layer 302 can also be greater than the length of the tapered portion 3012.
  • the length of the damping layer 302 is shown in FIG. 4B to be greater than the length of the platform 3013, but the length of the damping layer 302 may also be equal to the length of the platform 3013 or less than the length of the platform 3013.
  • the uniform portion 3011, the tapered portion 3012, the platform 3013, the connector 303, and the damping layer 302 have the same width.
  • the invention is not limited thereto.
  • the width of the uniform portion 3011, the tapered portion 3012, and the platform 3013 are equal, and the width of the connector 303 and the width of the damping layer 302 are smaller than the width of the uniform portion 3011.
  • the vibration of the vibration damping device causes the propagation of the bending wave in the vibration suppression device 300.
  • the thickness of the vibration damping body 301 of the vibration suppression device 300 is adjusted from the original large value d31 to a small value d32. Then, due to the specific "acoustic black hole" effect, the vibration energy moves from the thicker portion of the vibration damping body 301 to the thinner portion and concentrates on the platform 3012 of the vibration damping body 301.
  • the thickness d32 of the platform 3013 of the vibration damping body 301 should be as small as possible, and the extension length should be as long as possible, as long as the damping body 301 can hold the damping layer 302 without breaking the vibration damping body 301, and ensure that the damping layer 302 is not in contact with the damping layer 302.
  • the vibration device can be used. The smaller the thickness d32 of the platform 1013 of the vibration damping body 301, the better the control effect.
  • the residual thickness d32 of the end (ie, the cut) of the tapered portion 3012 of the vibration damping body 301 may be several times smaller than the thickness d31 of the uniform portion of the vibration damping body 301.
  • the connector 303 can be a rectangular parallelepiped. However, the invention is not limited thereto, and the connector 303 may have other shapes such as a cube, an ellipsoid or the like.
  • the neutral axis of the tapered portion 3012 is linear, that is, the neutral axis of the tapered portion 3012 extends in a straight line from the uniform portion 3011, and its thickness gradually decreases from d31 to D32.
  • the present invention is not limited thereto, and the tapered portion 3012 may also extend in other forms.
  • the tapered portion 3012 may extend in a spiral shape, which will be specifically described later with reference to FIG.
  • the additional vibration suppression device 300 with acoustic black hole features has a rich modal distribution with a high system loss factor over a wide frequency band.
  • the interaction between the vibration suppression device 300 and the device to be damped also occurs at the same time, and the vibration of the device to be damped near the matching frequency is reduced by the DVA principle.
  • the vibration suppression device 300 can be attached as an auxiliary system to the device to be damped to reduce its vibration over a wide frequency band.
  • a plurality of vibration suppression devices 300 may be coupled to the vibration-damping device to further effectively reduce vibration of the device to be damped and reduce noise.
  • the design of the vibration suppression device according to an exemplary embodiment of the present invention is relatively simple.
  • the vibration suppression device of the present invention can unify the principles of the dynamic vibration absorber and the waveguide absorber to form a single device, so that the vibration suppression device of the present invention can simultaneously have power Advantages of both the vibration absorber and the waveguide absorber.
  • ABS acoustic black hole
  • FIG. 5 shows a plan view of a vibration suppression device according to still another exemplary embodiment of the present invention.
  • the vibration suppression device 500 may include a vibration damping body 501 including a uniform portion 5011 of constant thickness and a tapered portion 5012 integrally connected to the uniform portion 5011, the tapered portion 5012 being connected from the joint Extending from the thickness of the uniform portion 5011 to a predetermined thickness; and a damping layer (not shown) attached to the tapered portion 5012 of the damping body 501.
  • the vibration suppression device 500 may further include a connector (not shown) attached to the bottom of the uniform portion 5011 of the vibration damping body 501 for connecting the vibration damping body 501 to a vibration damping device (not shown) Out).
  • the vibration suppressing device 500 according to the present embodiment is similar to the vibration suppressing device 100 shown in Fig. 1, and the difference between them is that the tapered portion 5012 of the vibration suppressing device 500 according to the present embodiment is in the middle.
  • the sex axis is rotated into a curved shape, that is, the neutral axis of the tapered portion 5012 is formed in a spiral shape.
  • the attached vibration suppression device 500 can be packaged into the case 504 by being rotated into a curved shape to make the structure more compact.
  • a curved black hole design can be introduced instead of the linear acoustic black hole.
  • the overall length of the vibration suppression device 500 can be reduced, so that the vibration suppression device 500 can be placed in a case to save space and improve ABH efficiency.
  • a damping layer and a damping fluid can be used to dissipate the vibrational energy within the box.
  • the acoustic black hole feature is embedded in the vibration suppression device (i.e., the vibration control device).
  • the vibration suppression device comprises a tapered additional element (which may be a beam, which may be straight or curved) with an ABH thickness profile, an additional damping layer and a connector.
  • the damping layer is bonded to the surface of the thin portion of the tapered additional beam, and the damping layer has a small cross-sectional thickness.
  • the invention can realize the combined control effect of the dynamic vibration absorber and the waveguide absorber, and reduce the vibration level of the main vibration structure in a wide frequency band.
  • the design process of the invention is simple and easy to apply to various occasions.
  • Figure 6 shows experimental measurements of the frequency response of an arbitrarily selected device to be damped with and without a vibration suppression device with acoustic black hole features.
  • Fig. 6 shows the vibration control effect of the vibration suppression device having the acoustic black hole feature displayed by performing experimental measurements.
  • the vibration suppression device is linear and has no additional platform.
  • the vibration suppression device is connected to an arbitrarily selected device to be damped (uniform main beam) via a connector using a super glue.
  • a plurality of damping layers are connected to the tapered portion.
  • a free end of the vibration damping device is clamped and a point excitation is applied.
  • Fig. 6 shows the driving point response of the device to be damped in the case where the vibration suppressing means (dashed line: "--”) and the vibration suppressing means (solid line: "-”) are connected.
  • Fig. 6 The horizontal axis of Fig. 6 represents the frequency, and the vertical axis represents the resonance peak. As can be seen from Fig. 6, the resonance peaks on the wide band are effectively suppressed except for some specific frequencies, and the majority of the peaks are reduced by about 15 dB. Note that the same vibration suppression device was tested on other vibration-damping devices of different nature, and the results showed similar broadband vibration reduction.
  • the vibrational energy within the ABH feature is effectively captured and damped, and the ABH structural component has a rich modal distribution with a high system loss factor due to its unique dynamic characteristics, which is capable of providing energy over a wide frequency band. Dissipative and dynamic interactions.
  • the ABH tapered structural elements have a simple and easy to implement geometry. Due to the unique dynamic characteristics described above, the tuning process of the conventional dynamic vibration absorber can be avoided.
  • the vibration suppression device of the present invention can be used in any vibration system without affecting the structural integrity of the vibration system.
  • the vibration suppression device of the present invention exhibits great potential for vibration control, noise reduction, and energy harvesting applications.
  • ⁇ ABH function can effectively suppress broadband vibration
  • the design process is simple, low cost, no (or only a few) parameter adjustments to adapt to different structural and working conditions, fewer structural components, easy assembly and connection to the main structure, and easy industrial mass production.
  • the invention can be applied to large engineering problems where vibration suppression is required, such as various mechanical, civil, military or consumer systems/equipment/products. More specifically, the thin wall structure of the present invention can be widely applied to the transportation, aerospace and aerospace industries.

Abstract

一种利用声学黑洞特征的宽频带振动抑制装置,包括:减振体(101),包括厚度不变的均匀部分(1011)和与该均匀部分(1011)一体相连的锥形部分(1012),该锥形部分(1012)从相连处起以从该均匀部分(1011)的厚度(d1)逐渐减小至一预定厚度(d2)的方式延伸;以及阻尼层(102),附连至该减振体(101)的锥形部分(1012)。振动抑制装置(100)可以在宽频带上有效抑制振动、降噪,并且设计简单。

Description

利用声学黑洞特征的宽频带振动抑制装置 技术领域
本申请涉及减振领域,更具体地,涉及一种利用声学黑洞特征的宽频带振动抑制装置。
背景技术
振动控制对于运输车辆、机器和电子仪器等许多工业产品来说非常重要。结构、设备和机器的振动直接影响产品的接受度和竞争力。越来越严格的规定要求将振动限制在可接受水平内,以避免疲劳、噪音和不舒适等潜在的问题。人们一直在努力开发出减少不期望的结构振动或机械振动的方法。
控制结构振动的流行和有效的方法之一是将辅助系统附加到受控的原始结构上。动态吸振器(Dynamic vibration absorber,DVA)是最常用的振动控制装置之一。它通常由质量块、弹簧和阻尼元件组成,结构上可以组成各种形式。然而,为了减少结构的共振峰值,DVA应被调整到准确的频率并且连接到主振动结构。通过这样做,由于该结构与DVA之间的强相互作用,可以有效地降低原始结构的振动水平。已经公开了基于该原理的各种吸收器发明,例如US3419111A等。然而,公认的是,传统的DVA只能在非常窄的频带上提供减振,并且该减振器的控制性能对其物理参数非常敏感。因此,调节和应用多个DVA进行多频或宽频带控制是一个非常复杂和繁琐的过程。还有另一种类型的振动控制装置是波导吸收器。波导吸收器可以增加主振动结构的阻尼和能量耗散,从而可能实现多谐振控制。然而,像波导吸收器这样的辅助吸收系统与主振动结构之间的耦合相对较弱,并且为了满足阻抗匹配条件,波导吸收器应被适当设计。除非使用具有特殊设计的不切实际的大结构,否则常规装置具有非常有限的波陷阱和能量耗散能力。同时,在实际应用中,应仔细选择吸收器的安装位置和数量,以便产生足够的减振效果。因此,需要开发一种用于有效的宽频带振动抑制的简单且易于使用的振动控制装置。
由上可见,传统的动态吸振器只能在很窄的范围内提供振动抑制,控制性能对振动吸收器的物理参数非常敏感。调整参数也很繁琐而且困难。尽管波导吸收器可以在宽频带上有效,但是这种辅助系统与主结构之间的耦合相对较弱。波导吸收器的设计要适当,要注意满足阻抗匹配条件,实际应用中通常需要多个吸收器。
发明内容
为了克服上述问题,本发明提供一种利用声学黑洞特征的宽频带振动抑制装置,包括:减振体,包括厚度不变的均匀部分和与该均匀部分一体相连的锥形部分,该锥形部分从相连处起以从该均匀部分的厚度逐渐减小至一预定厚度的方式延伸;以及阻尼层,附连至该减振体的锥形部分。
可选地,该锥形部分的厚度减小遵循如下公式:
h(x)=ε·x m,m≥2
其中,x是沿着该锥形部分厚度减小方向的坐标,ε是系数,m是大于等于2的整数。
可选地,该振动抑制装置还包括:连接器,附连至该减振体的均匀部分的底部,用于将该减振体连接至一待减振设备。
可选地,该连接器用于通过强力胶水、焊接或螺栓将该减振体与该待减振设备连接。
可选地,该阻尼层附连至该减振体的锥形部分的延伸末端的顶面或底面上。
可选地,该减振体还包括从该锥形部分的延伸末端以该预定厚度继续延伸出一预定长度的平台。
可选地,该锥形部分的中性轴为线形,或螺旋形。
可选地,该阻尼层为多层。
可选地,多个振动抑制装置被连接至该待减振设备。
通过本发明,ABH特征内振动能量被有效地俘获和减振,且ABH结构元件由于其独特的动态特性,而具有带有高系统损耗因子的丰富模态分布,其能够在宽频带上提供能量耗散和动态相互作用。此外,ABH锥形结构元件具有简单和易于实现的几何形状。由于上述其独特的动态特性,可以避免传统动力吸振器的调谐过程。而且,本发明的振动抑制装置可以用于任何振动系统而不影响该振动系统的结构完整性。
附图说明
图1示出了根据本发明的一示例性实施例的利用声学黑洞特征的宽频带振动抑制装置的主视图;
图1A示出了根据本发明的一示例性实施例的利用声学黑洞特征的宽频带振动抑制装置的变型的正视图;
图2示出了根据本发明实施例将振动抑制装置安装到一待减振设备的示意图;
图2A示出了图2所示振动抑制装置及待减振设备的俯视图;
图2B示出了图1A所示的振动抑制装置的仰视图;
图3示出了根据本发明另一示例性实施例的振动抑制装置的主视图;
图3A示出了图3所示振动抑制装置的一变型的主视图;
图4A示出了图3所示的振动抑制装置的俯视图;
图4B示出了图3A所示的振动抑制装置的仰视图;
图5示出了根据本发明再一示例性实施例的振动抑制装置的俯视图;
图6示出了具有和不具有带有声学黑洞特征的振动抑制装置的任意选择的待减振设备的频率响应的实验测量结果。
具体实施方式
下面将详细描述本申请的实施例。应当注意,这里描述的实施例仅用于举例说明,并不用于限制本申请的范围。
本发明提供了一种利用声学黑洞特征的宽频带振动抑制装置,其中采用利用了声学黑洞特征的振动抑制装置作为辅助附加装置,从而以最小的调整实现结构的宽频带振动抑制,即在宽频带上减少主要结构的不希望的振动。预期这种附加的子装置的设计过程简单且易于应用于各种应用中。
本申请通过利用“声学黑洞”(Acoustic Black Hole,ABH)现象来设计宽频带有效振动吸收器,以减小结构的各种类型的不期望的结构振动,尤其是弯曲振动,并能够降低噪音。在ABH结构中,由于弯曲波在厚度根据幂函数(h(x)-ε·x m,m≥2)减小的锥形楔形物(wedge)内传播,因而弯曲波的波速逐渐减小,波幅度逐渐增大,其中x是沿着该锥形楔形物的厚度减小方向的坐标,ε是系数,m是大于等于2的整数。
所提出的具有ABH特征的振动抑制装置具有其特有的大工作频带和有效控制性能的内在特性。
在相关技术中,ABH特征可以通过减小原振动结构的厚度,以各种形式嵌入到原振动结构中,从而使原振动结构的静态特性下降。而本发明设法设计附加的振动抑制装置而不影响原振动结构本身的机械性能,即,本发明通过将ABH锥形结构元件作为独立装置附接到原振动结构上,因此不会牺牲原振动结构的完整性和刚度。
图1示出了根据本发明的一示例性实施例的利用声学黑洞特征的宽频带振动抑制装置的正视图。
如图1所示,振动抑制装置100可以包括:减振体(锥形附加梁)101,包括厚度不变的均匀部分1011和与该均匀部分1011一体相连的锥形部分1012,该锥形部分1012从相连处起以从该均匀部分1011的厚度d1逐渐减小至一预定厚度d2的方式延伸;以及阻尼层102,附连至该减振体101的锥形部分1012。
该锥形部分1012的厚度变化遵循如下幂律廓线(power-law profile):h(x)=ε·x m,m≥2,其中,x是沿着该锥形部分厚度减小方向的坐标,ε是系数,m是大于等于2的整数。但本发明不以此为限。例如,该锥形部分1012的厚度变化也可以遵循其他类似的公式,只要锥形部分1012的厚度逐渐减小,满足所谓的“平滑度准则(smoothness criterion)”,即局部波数的变化在波长上的距离小,就可以获得与本发明类似的效果。
此外,该锥形部分1012的厚度逐渐减小到该预定厚度d2而截断停止,由此在该截断处会产生很强的波反射。为了解决这一问题,本发明通过使用阻尼层102来覆盖锥形部分1012的末端,从而可以将由该截断导致的波反射显著减小。由此,具有变化厚度的锥形部分1012和阻尼层102的组合产生了有效的楔形吸收器,可以更加有效地吸收振动并减小噪声。
附加的阻尼层102减小了入射波的反射并为减振体101提供了能量耗散。通常可以选择具有高损耗因子的粘弹性材料作为附加的阻尼层102。
如图1所示,阻尼层102附连至(例如,粘合到)减振体101的锥形部分1012的末端底面上。但本发明不以此为限。例如,阻尼层102也可以被设置在锥形部分1012末端 的顶面上,在此情况下,阻尼层102具有与锥形部分1012末端顶面变化一致的曲面,以与锥形部分1012末端顶面贴合。阻尼层102也可以附连至减振体101的顶面或底面的中间部分,或者偏左部分,而不必像图1所示那样与锥形部分1012的末端平齐。
在一示例中,阻尼层102可以为多层。即,在图1所示阻尼层102的基础上,还可以再额外设置形状相同或不同的阻尼层,例如可以进一步在阻尼层102上再设置一层阻尼层,或者可以进一步在锥形部分1012末端的顶面上再设置一层阻尼层,从而进一步减小入射波的反射并为减振体101提供进一步的能量耗散。
该均匀部分1011和该锥形部分1012形成为一体(即,一体成型),二者的材料相同。该均匀部分1011和该锥形部分1012的形式方式例如可以采用数控铣削加工,或者也可以利用3D打印一次成型,或者也可以利用电子放电加工(electrical discharge machining)。
图1A示出了根据本发明的一示例性实施例的利用声学黑洞特征的宽频带振动抑制装置的变型的正视图。
如图1A所示,在图1所示的振动抑制装置100的基础上,振动抑制装置100还可以包括连接器103,该连接器103附连至该减振体101的均匀部分1011的底部,用于将该减振体101连接至一待减振设备(即,原振动结构)。
图2示出了根据本发明实施例将振动抑制装置安装到一待减振设备的示意图。
如图2所示,连接器103附连至振动抑制装置100的减振体101的均匀部分1011的底部,用于将该振动抑制装置100连接至一待减振设备A。
连接器103用于连接主振动系统(即,待减振设备A)和辅助振动系统(即,减振体101),使得振动能量可以通过局部位移和旋转在待减振设备A和减振体101(进而振动抑制装置100)之间传递。例如,该连接器103可以通过强力胶水、焊接或螺栓等方式将该减振体101与该待减振设备A连接。
在一示例中,如果减振体101的均匀部分1011的长度相对较小,则也可以省略连接器103(如图1所示),而将减振体101直接经由强力胶水、焊接或螺栓等方式与该待减振设备A连接。
如图2所示,连接器103的厚度为d4,阻尼层102的厚度为d3,d4大于d3。
待减振设备A的振动引起振动抑制装置100中的弯曲波的传播。根据幂律廓线,振动抑制装置100的减振体101的厚度从原始大值d1调整到小值d2。然后,由于特定的“声学黑洞”效应,振动能量从减振体101的较厚部分移动到较薄部分并集中在减振体101的锥形部分1012的延伸末端周围。
减振体101的锥形部分1012的延伸末端的厚度d2应尽可能小,只要减振体101能够保持住阻尼层102不使减振体101破裂,且确保阻尼层102不接触待减振设备A即可。减振体101的锥形部分1012的延伸末端的厚度d2越小,则控制效果越好。
优选地,减振体101的锥形部分1012的末端(即,截断处)的残余厚度d2可以比减振体101的均匀部分的厚度d1小几十倍。
此外,具有声学黑洞特征的附加的振动抑制装置100具有丰富的动态(分布形式), 即,在频谱上具有丰富的模态分布,且在宽频带上具有高系统损耗因子。当频率匹配条件满足时,振动抑制装置100和待减振设备A之间也会同时发生相互作用,通过DVA原理促使待减振设备A在匹配频率附近的振动减少。
该振动抑制装置100能够作为辅助系统附接到待减振设备A以在宽频带上减小其振动。在一示例中,可将多个振动抑制装置100连接至该待减振设备A,以进一步有效地减小待减振设备A的振动,并减小噪声。
图2A示出了图2所示的振动抑制装置及待减振设备的俯视图。
如图2A所示,减振体101的长度为L1,均匀部分1011的长度为L11,锥形部分1012的长度为L12,其中L1=L11+L12。均匀部分1011和锥形部分1012的宽度均为w1。
图2B示出了图1A所示的振动抑制装置的仰视图。
如图2B所示,连接器103的长度为L2,阻尼层102的长度为L3,L2和L3均小于L1。优选地,L2小于L11,L3小于L12。但本发明不以此为限。例如,L3也可以大于L12。连接器103的宽度为w2,阻尼层的宽度为w3。优选地,w1=w2=w3。但本发明不以此为限。例如,w2和w3也可以小于w1。
参考图2和图2B,连接器103可以为长方体。但本发明不以此为限,连接器103也可以具有其他形状,例如正方体,椭圆体等。
参考图1-图2B,该锥形部分1012的中性轴为线形,即,该锥形部分1012中性轴从均匀部分1011开始以直线形式延伸,且其厚度从d1开始逐渐减小到d2。但本发明不以此为限,该锥形部分1012也可以以其他形式延伸,例如,该锥形部分1012可以螺旋形延伸,后面将参考图5对此进行具体描述。
如图1、图1A、图2、图2A和图2B所示,根据本发明示例性实施例的振动抑制装置的设计相对简单。
此外,由于声学黑洞(ABH)现象的独特性,本发明的振动抑制装置可以将动力吸振器和波导吸收器的原理统一,形成一个单一的装置,从而使得本发明的振动抑制装置可以同时具有动力吸振器和波导吸收器两者的优点。
图3示出了根据本发明另一示例性实施例的振动抑制装置300的主视图。与图1所示的振动抑制装置100类似,根据本实施例的振动抑制装置300也包括:减振体301,包括厚度不变的均匀部分3011和与该均匀部分3011一体相连的锥形部分3012,该锥形部分3012从相连处起以从该均匀部分3011的厚度d31逐渐减小至一预定厚度d32的方式延伸;以及阻尼层302,附连至该减振体301的锥形部分3012。
图3A示出了图3所示振动抑制装置的一变型的主视图。如图3A所示,在图3所示振动抑制装置300的基础上,振动抑制装置300还可以包括:连接器303,附连至该减振体301的均匀部分3011的底部,用于将该减振体301连接至一待减振设备(未示出)。
参考图3和图3A,该锥形部分3012的厚度减小可以遵循如下公式:
h(x)=ε·x m,m≥2
其中,x是沿着该锥形部分厚度减小方向的坐标,ε是系数,m是大于等于2的整数。
该锥形部分3012的厚度变化也可以遵循其他类似的公式,只要锥形部分3012的厚度逐渐减小,满足所谓的“平滑度准则(smoothness criterion)”,就可以获得与本发明类似的效果。
此外,该锥形部分3012的厚度逐渐减小到该预定厚度d32而截断停止,由此在该截断处会产生很强的波反射。为了解决这一问题,本发明通过使用阻尼层302来覆盖锥形部分3012的末端,从而可以将由该截断导致的波反射显著减小。由此,具有变化厚度的锥形部分3012和阻尼层302的组合产生了有效的楔形吸收器,可以更加有效地吸收振动并减小噪声。
该阻尼层302可以附连至该减振体301的锥形部分3012的延伸末端的顶面或底面上。这样可以将由锥形部分3012的延伸截断导致的波反射显著减小。由此,具有变化厚度的锥形部分3012和阻尼层302的组合产生了有效的楔形吸收器,可以更加有效地吸收振动并减小噪声。
附加的阻尼层302减小了入射波的反射并为减振体301提供了能量耗散。通常可以选择具有高损耗因子的粘弹性材料作为附加的阻尼层302。
连接器303用于连接主振动系统(即,待减振设备)和辅助振动系统(即,减振体301),使得振动能量可以通过局部位移和旋转在待减振设备和减振体301(进而振动抑制装置300)之间传递。例如,该连接器303可以用于通过强力胶水、焊接或螺栓将该减振体301与该待减振设备连接。
在一示例中,如果减振体301的均匀部分3011的长度相对较小,则也可以省略连接器303,而将减振体301直接经由强力胶水、焊接或螺栓等方式与该待减振设备连接。
该锥形部分3012的中性轴可以为线形,或螺旋形。
根据本实施例的振动抑制装置300与图1所示的振动抑制装置100的不同之处在于,根据本实施例的振动抑制装置300的减振体301还包括从该减振体301的锥形部分3012的延伸末端以该预定厚度d32继续延伸出一预定长度的平台3013。
该平台3013以恒定厚度d32从锥形部分3012的末端开始延伸一定长度L4,从而可以增强ABH效应。通过这样做,锥形部分3012的具有较薄厚度且使得此处的波具有较大振幅的部分被延长,从而弯曲波通过该延长的部分得以更好地衰减,并且振动抑制装置的低频性能也得到改善。
该均匀部分3011、该锥形部分3012和该平台3013形成为一体(即,一体成型),三者的材料相同。该均匀部分3011、该锥形部分3012和该平台3013的形式方式例如可以采用数控铣削加工,或者也可以利用3D打印一次成型,或者也可以利用电子放电加工。
如图3所示,阻尼层302附连至减振体301的锥形部分3012的末端底面上。但本发明不以此为限。例如,阻尼层302也可以被设置在锥形部分3012末端的顶面上,在此情况下,阻尼层302具有与锥形部分3012末端顶面变化一致的曲面,以与锥形部分3012末端顶面贴合。阻尼层302也可以附连至减振体301的顶面或底面的中间部分,或者偏左部分,而不必像图3所示那样与平台3012的延伸末端平齐。
在一示例中,阻尼层302可以为多层。即,在图3所示阻尼层302的基础上,还可以在额外设置形状相同或不同的阻尼层,例如可以进一步在阻尼层302上再设置一层阻尼层,或者可以进一步在锥形部分3012末端的顶面上再设置一层阻尼层,从而进一步减小入射波的反射并为减振体301提供进一步的能量耗散。
图4A示出了图3所示的振动抑制装置的俯视图。
如图4A所示,减振体301的长度等于均匀部分3011的长度和锥形部分3012的长度以及平台3013的长度L4之和。均匀部分3011、锥形部分3012以及平台3013的宽度可以相同。
图4B示出了图3A所示的振动抑制装置的仰视图。
如图4B所示,连接器303的长度和阻尼层302的长度均小于减振体301的长度。优选地,连接器303的长度小于均匀部分3011的长度,阻尼层302的长度小于锥形部分3012的长度。但本发明不以此为限。例如,阻尼层302的长度也可以大于锥形部分3012的长度。图4B中示出阻尼层302的长度大于平台3013的长度,但阻尼层302的长度也可以等于平台3013的长度,或者小于平台3013的长度。均匀部分3011、锥形部分3012、平台3013、连接器303、阻尼层302的宽度相等。但本发明不以此为限。例如,均匀部分3011、锥形部分3012和平台3013的宽度相等,而连接器303的宽度和阻尼层302的宽度小于均匀部分3011的宽度。
待减振设备的振动引起振动抑制装置300中的弯曲波的传播。根据幂律廓线,振动抑制装置300的减振体301的厚度从原始大值d31调整到小值d32。然后,由于特定的“声学黑洞”效应,振动能量从减振体301的较厚部分移动到较薄部分并集中在减振体301的平台3012。
减振体301的平台3013的厚度d32应尽可能小,且延伸长度尽可能长,只要减振体301能够保持住阻尼层302不使减振体301破裂,且确保阻尼层302不接触待减振设备即可。减振体301的平台1013的厚度d32越小,则控制效果越好。
优选地,减振体301的锥形部分3012的末端(即,截断处)的残余厚度d32,也即平台3013的厚度,可以比减振体301的均匀部分的厚度d31小几十倍。
参考图3和图4B,连接器303可以为长方体。但本发明不以此为限,连接器303也可以具有其他形状,例如正方体,椭圆体等。
参考图3-图4B,该锥形部分3012的中性轴为线形,即,该锥形部分3012的中性轴从均匀部分3011开始以直线形式延伸,且其厚度从d31开始逐渐减小到d32。但本发明不以此为限,该锥形部分3012也可以以其他形式延伸,例如,该锥形部分3012可以螺旋形延伸,后面将参考图5对此进行具体描述。
此外,具有声学黑洞特征的附加的振动抑制装置300具有丰富的模态分布,在宽频带上具有高系统损耗因子。当频率匹配条件满足时,振动抑制装置300和待减振设备之间也会同时发生相互作用,通过DVA原理促使待减振设备在匹配频率附近的振动减少。
该振动抑制装置300能够作为辅助系统附接到待减振设备以在宽频带上减小其振动。 在一示例中,可将多个振动抑制装置300连接至该待减振设备,以进一步有效地减小待减振设备的振动,并减小噪声。
如图3-图4B所示,根据本发明示例性实施例的振动抑制装置的设计相对简单。
此外,由于声学黑洞(ABH)现象的独特性,本发明的振动抑制装置可以将动力吸振器和波导吸收器的原理统一,形成一个单一的装置,从而使得本发明的振动抑制装置可以同时具有动力吸振器和波导吸收器两者的优点。
图5示出了根据本发明再一示例性实施例的振动抑制装置的俯视图。
如图5所示,振动抑制装置500可以包括:减振体501,包括厚度不变的均匀部分5011和与该均匀部分5011一体相连的锥形部分5012,该锥形部分5012从相连处起以从该均匀部分5011的厚度逐渐减小至一预定厚度的方式延伸;以及阻尼层(未示出),附连至该减振体501的锥形部分5012。
该振动抑制装置500还可以包括:连接器(未示出),附连至该减振体501的均匀部分5011的底部,用于将该减振体501连接至一待减振设备(未示出)。
根据本实施例的振动抑制装置500与图1所示的振动抑制装置100类似的内容不再赘述,二者的不同之处在于,根据本实施例的振动抑制装置500的锥形部分5012的中性轴旋转成曲线状,即,锥形部分5012的中性轴形成为螺旋形。此外,所附加的振动抑制装置500由于旋转成曲线状,因而能够被包装进盒子504中,以使其结构更加紧凑。
因为中性轴的旋转对预期的声学黑洞效应影响不大,因而可以引入声学黑洞的曲线设计来代替线性声学黑洞。通过将锥形部分5012旋转成曲线状,可以减小振动抑制装置500的整体长度,从而可以将该振动抑制装置500放置在箱子里,以节省空间并提高ABH效率。此外,在一实例中,可以使用阻尼层和阻尼液来消散箱子内的振动能量。
根据本发明,将声学黑洞特征嵌入到振动抑制装置(即,振动控制装置)中。该振动抑制装置包含带有ABH厚度轮廓的锥形附加元件(可以是梁,可以是直的或弯曲的)、附加的阻尼层和连接器。该阻尼层粘合在锥形附加梁的薄部分的表面上,且阻尼层具有小的横截面厚度。
本发明可以实现动态吸振器和波导吸收器的组合控制效果,在宽频带上降低主振动结构的振动水平。本发明设计流程简单,易于应用于各种场合。
图6示出了具有和不具有带有声学黑洞特征的振动抑制装置的任意选择的待减振设备的频率响应的实验测量结果。
图6示出了通过进行实验测量显示的具有声学黑洞特征的振动抑制装置的振动控制效果。该振动抑制装置为线形,且没有附加平台。该振动抑制装置通过使用超级粘胶经由连接器连接到任意选择的待减振设备(均匀主梁)。在锥形部分连接多层阻尼层。待减振设备的一个自由端被夹住并施加点激振(point excitation)。图6显示了没有连接振动抑制装置(虚线:“--”)和连接有振动抑制装置(实线:“―”)的情况下待减振设备的驱动点响应。
图6的横轴表示频率,纵轴表示谐振峰值。从图6可以看出,除了一些特定的频率外, 宽频带上的谐振峰值被有效地抑制,且大多数峰值的减少约为15dB。请注意,同样的振动抑制装置在不同性质的其他待减振设备上进行了试验,结果表明也具有类似的宽频带振动减少。
通过本发明,ABH特征内振动能量被有效地俘获和减振,且ABH结构元件由于其独特的动态特性,而具有带有高系统损耗因子的丰富模态分布,其能够在宽频带上提供能量耗散和动态相互作用。
此外,ABH锥形结构元件具有简单和易于实现的几何形状。由于上述其独特的动态特性,可以避免传统动力吸振器的调谐过程。
本发明的振动抑制装置可以用于任何振动系统而不影响该振动系统的结构完整性。本发明的振动抑制装置显示出振动控制、降噪和能量收集应用的巨大潜力。
本发明的振动抑制装置至少具有如下有益技术效果:
·声学黑洞特征用在减振器中进行振动控制;
·ABH功能能够有效地抑制宽频振动;
·结合了动力吸振器和波导吸收器的振动控制效果;
·设计程序简单,低成本,无需(或只需很少的)参数调整,以适应不同的结构和工作条件,更少的结构部件,易于组装和连接到主体结构,且容易工业化大规模生产。
本发明可以应用于需要抑制振动的大型工程问题,例如各种机械、民用、军事或消费系统/设备/产品。更具体的,本发明的这种薄壁结构可以广泛应用于交通运输、航空和航空工业。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种利用声学黑洞特征的宽频带振动抑制装置,包括:
    减振体,包括厚度不变的均匀部分和与该均匀部分一体相连的锥形部分,该锥形部分从相连处起以从该均匀部分的厚度逐渐减小至一预定厚度的方式延伸;以及
    阻尼层,附连至该减振体的锥形部分。
  2. 根据权利要求1所述的装置,其中,该锥形部分的厚度减小遵循如下公式:
    h(x)=ε·x m,m≥2
    其中,x是沿着该锥形部分厚度减小方向的坐标,ε是系数,m是大于等于2的整数。
  3. 根据权利要求1所述的装置,还包括:连接器,附连至该减振体的均匀部分的底部,用于将该减振体连接至一待减振设备。
  4. 根据权利要求3所述的装置,其中,该连接器用于通过强力胶水、焊接或螺栓将该减振体与该待减振设备连接。
  5. 根据权利要求1所述的装置,其中,该阻尼层附连至该减振体的锥形部分的延伸末端的顶面或底面上。
  6. 根据权利要求1所述的装置,其中,该减振体还包括从该锥形部分的延伸末端以该预定厚度继续延伸出一预定长度的平台。
  7. 根据权利要求1所述的装置,其中,该锥形部分的中性轴为线形,或螺旋形。
  8. 根据权利要求1所述的装置,其中,该阻尼层为多层。
  9. 根据权利要求1所述的装置,其中,多个振动抑制装置被连接至该待减振设备。
PCT/CN2018/110628 2018-01-30 2018-10-17 利用声学黑洞特征的宽频带振动抑制装置 WO2019148891A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/965,851 US11946523B2 (en) 2018-01-30 2018-10-17 Wideband vibration suppression device utilizing properties of sonic black hole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810086724.0 2018-01-30
CN201810086724.0A CN110094452B (zh) 2018-01-30 2018-01-30 利用声学黑洞特征的宽频带振动抑制装置

Publications (1)

Publication Number Publication Date
WO2019148891A1 true WO2019148891A1 (zh) 2019-08-08

Family

ID=67441903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110628 WO2019148891A1 (zh) 2018-01-30 2018-10-17 利用声学黑洞特征的宽频带振动抑制装置

Country Status (3)

Country Link
US (1) US11946523B2 (zh)
CN (1) CN110094452B (zh)
WO (1) WO2019148891A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210054898A1 (en) * 2018-01-30 2021-02-25 The Hong Kong Polytechnic University Wideband vibration suppression device utilizing properties of sonic black hole
CN113658573A (zh) * 2021-08-24 2021-11-16 东北大学 一种螺旋形二维声学黑洞隔振降噪结构
KR20220023623A (ko) * 2020-08-21 2022-03-02 한국과학기술원 진동 감쇠 장치
CN115071944A (zh) * 2022-06-14 2022-09-20 江苏科技大学 一种基于声学黑洞非线性接触的柴油机减振基座
CN115394274A (zh) * 2022-08-30 2022-11-25 哈尔滨工程大学 一种基于声学黑洞效应的多层复合高效减振板结构

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210090448A (ko) * 2020-01-10 2021-07-20 엘지전자 주식회사 배관 소음 저감 장치
DE102020124176A1 (de) 2020-09-16 2022-03-17 Ruag Ammotec Ag Festkörperstruktur
CN112478119B (zh) * 2020-11-27 2021-12-07 江苏科技大学 一种基于声学黑洞的复合减振支撑架及其设计方法
CN113182922B (zh) * 2021-04-27 2022-03-15 四川大学 一种主轴的三自由度低频吸振装置
CN114151305A (zh) * 2021-12-03 2022-03-08 广东美芝制冷设备有限公司 壳体组件、压缩机及制冷设备
CN114822467B (zh) * 2022-04-25 2022-12-09 清华大学 一种基于梯度声黑洞结构带隙调控的声子晶体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130071251A1 (en) * 2010-05-24 2013-03-21 Jose Javier Bayod Relancio Vibration damping blade for fluid
FR3028906A1 (fr) * 2014-11-25 2016-05-27 Inst De Rech Tech Jules Verne Procede et dispositif d’amortissement vibratoire d’un panneau
DE102015100442A1 (de) * 2015-01-13 2016-07-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aktives akustisches schwarzes Loch zur Schwingungs- und Lärmreduktion
CN106023974A (zh) * 2016-05-23 2016-10-12 南京航空航天大学 非完美声学黑洞截面构造
CN106023979A (zh) * 2016-05-23 2016-10-12 南京航空航天大学 局部共振声学黑洞结构
CN106023978A (zh) * 2016-05-23 2016-10-12 南京航空航天大学 双层板声学黑洞减振降噪结构
CN108122551A (zh) * 2017-12-20 2018-06-05 南京航空航天大学 一种声学黑洞振动吸收器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2617744A (en) 1949-10-26 1952-11-11 American Cyanamid Co Treatment of nonwoven cellulosic fabrics with urea resin colloids
US5485053A (en) * 1993-10-15 1996-01-16 Univ America Catholic Method and device for active constrained layer damping for vibration and sound control
US20060106500A1 (en) * 1995-08-07 2006-05-18 Quality Research, Development & Consulting, Inc. Vibration control by confinement of vibration energy
DE102004061314A1 (de) * 2004-12-20 2006-07-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lautsprechermemebran und Verfahren zum Herstellen einer Lautsprechermembran
US20070012535A1 (en) * 2005-07-15 2007-01-18 Matheny Alfred P Laminated damper
FR2967860A1 (fr) * 2010-11-23 2012-05-25 Daniel Dumay Enceinte electro-acoustique haute fidelite et procede de fabrication
US8997920B2 (en) * 2010-11-24 2015-04-07 Faist Chemtec Gmbh Method and damping element for reducing the natural vibration of a component
US20140262656A1 (en) * 2013-03-15 2014-09-18 University Of Houston Pounding tune mass damper systems and controls
CN106021974B (zh) 2016-05-19 2019-05-03 中牧智合(北京)生物技术有限公司 对t细胞表位进行优化的方法及由此制备的肽文库的组合物
CN110094452B (zh) * 2018-01-30 2021-05-07 香港理工大学 利用声学黑洞特征的宽频带振动抑制装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130071251A1 (en) * 2010-05-24 2013-03-21 Jose Javier Bayod Relancio Vibration damping blade for fluid
FR3028906A1 (fr) * 2014-11-25 2016-05-27 Inst De Rech Tech Jules Verne Procede et dispositif d’amortissement vibratoire d’un panneau
DE102015100442A1 (de) * 2015-01-13 2016-07-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aktives akustisches schwarzes Loch zur Schwingungs- und Lärmreduktion
CN106023974A (zh) * 2016-05-23 2016-10-12 南京航空航天大学 非完美声学黑洞截面构造
CN106023979A (zh) * 2016-05-23 2016-10-12 南京航空航天大学 局部共振声学黑洞结构
CN106023978A (zh) * 2016-05-23 2016-10-12 南京航空航天大学 双层板声学黑洞减振降噪结构
CN108122551A (zh) * 2017-12-20 2018-06-05 南京航空航天大学 一种声学黑洞振动吸收器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210054898A1 (en) * 2018-01-30 2021-02-25 The Hong Kong Polytechnic University Wideband vibration suppression device utilizing properties of sonic black hole
US11946523B2 (en) * 2018-01-30 2024-04-02 The Hong Kong Polytechnic University Wideband vibration suppression device utilizing properties of sonic black hole
KR20220023623A (ko) * 2020-08-21 2022-03-02 한국과학기술원 진동 감쇠 장치
KR102410475B1 (ko) * 2020-08-21 2022-06-20 한국과학기술원 진동 감쇠 장치
CN113658573A (zh) * 2021-08-24 2021-11-16 东北大学 一种螺旋形二维声学黑洞隔振降噪结构
CN113658573B (zh) * 2021-08-24 2023-07-14 东北大学 一种螺旋形二维声学黑洞隔振降噪结构
CN115071944A (zh) * 2022-06-14 2022-09-20 江苏科技大学 一种基于声学黑洞非线性接触的柴油机减振基座
CN115394274A (zh) * 2022-08-30 2022-11-25 哈尔滨工程大学 一种基于声学黑洞效应的多层复合高效减振板结构
CN115394274B (zh) * 2022-08-30 2023-07-07 哈尔滨工程大学 一种基于声学黑洞效应的多层复合高效减振板结构

Also Published As

Publication number Publication date
CN110094452B (zh) 2021-05-07
US20210054898A1 (en) 2021-02-25
CN110094452A (zh) 2019-08-06
US11946523B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2019148891A1 (zh) 利用声学黑洞特征的宽频带振动抑制装置
Zhou et al. A resonant beam damper tailored with acoustic black hole features for broadband vibration reduction
CN108133700B (zh) 一种声学黑洞减振降噪装置
EP3948844B1 (en) Structural damper with an acoustic black hole, sensor and actuator
US5415522A (en) Active noise control using noise source having adaptive resonant frequency tuning through stress variation
Liu et al. Investigation of broadband sound absorption of smart micro-perforated panel (MPP) absorber
JP2008215064A (ja) 遮音板及びこれを備えた遮音装置
US20180062062A1 (en) Adaptive electromechanical shunt system, related adaptation law circuit and method for controlling vibrations of structures
JP2007290047A (ja) 防振工具
US20070221460A1 (en) Vibration damping device for internal combustion engine
CN108842963B (zh) 一种抑制振动的周期梁
CN107060203B (zh) 一种产生弯曲与轴向耦合振动带隙的周期梁
GB2582905A (en) Structural damper
KR20200040947A (ko) 진동 및 소음 저감장치
KR101764233B1 (ko) 동흡진기 제조방법
KR102410475B1 (ko) 진동 감쇠 장치
JP7371564B2 (ja) 超音波センサ
JP2021504110A (ja) 減衰機能を有する超音波振動ユニット
CN219309249U (zh) 一种非对称结构的弯曲振动换能器
US11971081B2 (en) Structural damper
JP6567392B2 (ja) 防振装置
Shi et al. Research on the Vibration Reduction Design of Camshaft Swing Grinding Based on Local Resonance Mechanism
WO2023079789A1 (ja) 超音波トランスデューサ
JP5141261B2 (ja) 振動騒音低減構造
US20170234397A1 (en) Anti-vibration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904068

Country of ref document: EP

Kind code of ref document: A1