WO2019148803A1 - 二维钛纳米片及其制备方法和应用 - Google Patents

二维钛纳米片及其制备方法和应用 Download PDF

Info

Publication number
WO2019148803A1
WO2019148803A1 PCT/CN2018/100583 CN2018100583W WO2019148803A1 WO 2019148803 A1 WO2019148803 A1 WO 2019148803A1 CN 2018100583 W CN2018100583 W CN 2018100583W WO 2019148803 A1 WO2019148803 A1 WO 2019148803A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional titanium
nanosheet
dimensional
titanium nanosheet
titanium
Prior art date
Application number
PCT/CN2018/100583
Other languages
English (en)
French (fr)
Inventor
张晗
谢中建
陈世优
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2019148803A1 publication Critical patent/WO2019148803A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the invention relates to the field of nano materials, in particular to a two-dimensional titanium nanosheet and a preparation method and application thereof.
  • Tumor treatment has always been an area that humans can't overcome.
  • Traditional treatments include surgery, chemotherapy, and radiation therapy. However, these treatments have the characteristics of long treatment time and large side effects, and bring great pain to the patients.
  • Infrared photothermal therapy is an emerging treatment with short treatment time and small damage. Recently, infrared photothermal therapy has set off a wave of cancer treatment with the help of nanomaterials.
  • Typical photothermal nanomaterials include precious metals such as gold, and some emerging two-dimensional materials, including graphene, molybdenum disulfide, black phosphorus, antimony, titanium carbide, and the like.
  • infrared photothermal materials include non-toxicity, strong infrared absorption and high photothermal conversion efficiency.
  • these photothermal materials currently studied rarely meet the performance requirements of these requirements. Therefore, the development of new types of photothermal materials is imperative.
  • the present invention provides a two-dimensional titanium nanosheet which has good biocompatibility and good photothermal properties.
  • a first aspect of the invention provides a two-dimensional titanium nanosheet having a thickness of from 1 to 50 nm.
  • the two-dimensional titanium nanosheet has a thickness of 3-5 nm.
  • the two-dimensional titanium nanosheet has a thickness of 5-10 nm.
  • the two-dimensional titanium nanosheet has a length to width dimension of 10-50 nm.
  • the two-dimensional titanium nanosheet has a length to width dimension of 30-40 nm.
  • the two-dimensional titanium nanosheet has a length to width dimension of 10-30 nm.
  • the two-dimensional titanium nanosheet has a light absorption wavelength ranging from 200 to 2000 nm.
  • the photothermal conversion efficiency of the two-dimensional titanium nanosheet is greater than or equal to 70%.
  • the two-dimensional titanium nanosheet provided by the first aspect of the invention has the advantages of environmental friendliness, biocompatibility, strong absorption of the whole spectrum, and high photothermal conversion efficiency. Therefore, it has excellent photothermal performance.
  • a second aspect of the present invention provides a method for preparing a two-dimensional titanium nanosheet, comprising the steps of:
  • the titanium raw material is supplied, and the titanium raw material is peeled off by a liquid phase stripping method to obtain a two-dimensional titanium nanosheet having a thickness of 1 to 50 nm.
  • the method for liquid phase stripping specifically comprises the following operations:
  • the titanium raw material is added to the solvent, and the probe is ultrasonicated for 8-15 hours in an ice bath environment; after the ultrasonication of the probe is finished, the water bath ultrasonic wave is continued, the ultrasonic time of the water bath is 3-10 h, and the temperature of the water bath is maintained. 5-15 ° C; after ultrasonication, centrifugation and drying to obtain two-dimensional titanium nanosheets.
  • the ultrasonic power of the probe is 200-250W.
  • the ultrasonic time of the probe is 10h.
  • the probe ultrasound is non-continuous ultrasound, and the ultrasonic on/off time is selected to be 2/4 s.
  • the water bath ultrasonic power is 300-380W.
  • the time of the water bath ultrasound is 8 h.
  • the centrifugation operation comprises: firstly using a centrifugal force of 1800-2200 g, centrifuging for 20-35 min, taking the supernatant; then, the supernatant is continuously centrifuged by using a centrifugal force of 10000-13000 g to obtain a precipitate which is two-dimensional titanium. Nanosheets.
  • the solvent comprises at least one of isopropyl alcohol, ethanol, water and methylpyrrolidone.
  • the concentration of the titanium raw material in the solvent is 1-7 mg/mL.
  • the titanium raw material comprises titanium powder or titanium block.
  • the second aspect of the present invention provides a method for preparing a two-dimensional titanium nanosheet.
  • the first method uses a liquid phase stripping method to prepare a two-dimensional titanium nanosheet from a non-layered titanium material, and the preparation method is simple and easy to operate.
  • a third aspect of the invention provides the use of a two-dimensional titanium nanosheet as described above as a photothermotherapy formulation.
  • the two-dimensional titanium nanosheet provided by the invention has the advantages of environmental friendliness, biocompatibility, full spectrum absorption and high photothermal conversion efficiency, and has excellent photothermal performance;
  • the preparation method of the two-dimensional titanium nanosheet provided by the invention the first two-dimensional titanium nanosheet is prepared from the non-layered titanium raw material by the stripping method, and the preparation method is simple and easy to operate;
  • the two-dimensional titanium nanosheet provided by the invention can be applied as a photothermotherapy preparation.
  • Example 1 is a transmission electron micrograph of a two-dimensional titanium nanosheet prepared in Example 1;
  • Example 2 is an atomic force micrograph of a two-dimensional titanium nanosheet prepared in Example 1;
  • Example 3 is an absorption spectrum diagram of a liquid phase stripping process of a two-dimensional titanium nanosheet in Example 1;
  • Figure 4 is a photograph of a two-dimensional titanium nanosheet aqueous dispersion at different concentrations
  • Figure 6 is an extinction coefficient of a two-dimensional titanium nanosheet aqueous dispersion
  • Figure 8 is a photothermal conversion efficiency of a two-dimensional titanium nanosheet aqueous dispersion
  • Figure 9 is a graph showing the results of cytotoxicity measurement of two-dimensional titanium nanosheets.
  • Figure 10 is the effect of two-dimensional titanium nanosheets on body weight of mice
  • Figure 11 is a graph showing the effect of two-dimensional titanium nanosheets on tissue damage in mice.
  • titanium nanosheet or "titanium” referred to in the present invention, unless otherwise specified, refers to elemental titanium.
  • a first aspect of an embodiment of the present invention provides a two-dimensional titanium nanosheet having a thickness of 1 to 50 nm.
  • the two-dimensional titanium nanosheet has a thickness of 3-5 nm.
  • the two-dimensional titanium nanosheet has a thickness of 5-10 nm.
  • the two-dimensional titanium nanosheet has a thickness of 10-50 nm.
  • the two-dimensional titanium nanosheet has a thickness of 1 nm, 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm or 50 nm.
  • the two-dimensional titanium nanosheet has a length to width dimension of 10 to 50 nm.
  • the two-dimensional titanium nanosheet has a length to width dimension of 30-40 nm.
  • the two-dimensional titanium nanosheet has a length to width dimension of 10-30 nm.
  • the two-dimensional titanium nanosheet has a length to width dimension of 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm or 50 nm.
  • the two-dimensional titanium nanosheet has absorption from a visible region to a near-infrared region.
  • the two-dimensional titanium nanosheet has a light absorption wavelength ranging from 200 to 2000 nm.
  • the photothermal conversion efficiency of the two-dimensional titanium nanosheet is greater than or equal to 70%.
  • the two-dimensional titanium nanosheet provided by the first aspect of the invention has the advantages of environmental friendliness, biocompatibility, strong absorption of full spectrum and high photothermal conversion efficiency, and has excellent photothermal performance.
  • a second aspect of the present invention provides a method for preparing a two-dimensional titanium nanosheet, comprising the following steps:
  • the titanium raw material is supplied, and the titanium raw material is peeled off by a liquid phase stripping method to obtain a two-dimensional titanium nanosheet having a thickness of 1 to 50 nm.
  • the titanium raw material is a two-dimensional non-layered metal titanium simple substance, and may be a titanium powder or a titanium block, and the size and shape thereof are not particularly limited.
  • the titanium raw material can be obtained by purchase.
  • the method for liquid phase stripping specifically includes the following operations:
  • the titanium raw material is added to the solvent, and the probe is ultrasonicated for 8-15 hours in an ice bath environment; after the ultrasonication of the probe is finished, the water bath ultrasonic wave is continued, the ultrasonic time of the water bath is 3-10 h, and the temperature of the water bath is maintained. 5-15 ° C; after ultrasonication, centrifugation and drying to obtain two-dimensional titanium nanosheets.
  • the solvent comprises at least one of isopropyl alcohol, ethanol, water, and methyl pyrrolidone (ie, N-methylpyrrolidone, NMP).
  • the titanium raw material is present in the solvent at a concentration of from 1 to 7 mg/mL.
  • the probe has an ultrasonic power of 200-250W. Further optionally, the ultrasonic power of the probe is 240W.
  • the probe is sonicated for 10 hours.
  • the probe ultrasound is non-continuous ultrasound
  • the ultrasonic on/off time is selected to be 2/4 s, that is, ultrasonic for 2 s, then the ultrasonic probe is turned off for 4 s, the ultrasound is continued for 2 s, and so on.
  • the water bath has an ultrasonic power of 300-380 W. Further optionally, the water bath ultrasonic power is 360W.
  • the time of the water bath ultrasound is 8 h.
  • the water bath temperature is maintained at 10 °C.
  • the centrifugation operation comprises: firstly using a centrifugal force of 1800-2200 g, centrifuging for 20-35 min, taking the supernatant; and then centrifuging the supernatant with a centrifugal force of 10000-13000 g.
  • the precipitate is obtained as a two-dimensional titanium nanosheet.
  • the supernatant is taken by centrifugal force of 2000 g, and the supernatant is taken for 30 min; then the supernatant is centrifuged with 12,000 g to obtain a precipitate, and the obtained precipitate is dried to obtain a two-dimensional titanium nanosheet.
  • the manner of drying is not limited, and may be, for example, vacuum drying.
  • the prior art generally employs a liquid phase lift-off method for stripping a two-dimensional layered material.
  • the present invention has succeeded in stripping two-dimensional non-layered metal materials by liquid phase stripping.
  • the second aspect of the present invention provides a method for preparing a two-dimensional titanium nanosheet.
  • the first method uses a liquid phase stripping method to prepare a two-dimensional titanium nanosheet from a non-layered titanium material, and the preparation method is simple and easy to operate.
  • a third aspect of the invention provides the use of a two-dimensional titanium nanosheet as described above as a photothermotherapy formulation.
  • the two-dimensional titanium nanosheet of the present invention has good biocompatibility and photothermal conversion properties, it can be suitably used as a photothermographic preparation for treating diseases.
  • a method for preparing a two-dimensional titanium nanosheet comprising the following steps:
  • the desired metal elemental titanium nanosheets are obtained by centrifugation. First, the centrifugal force of 2000g was used and centrifuged for 30 minutes. The supernatant was taken, and then the supernatant was centrifuged at 12000 g to obtain a precipitate, which was vacuum dried to obtain a two-dimensional titanium nanosheet.
  • Fig. 1 it is an electron mirror topography of a two-dimensional metal elemental titanium nanosheet. Its size is less than 50 nm.
  • Figure 2 shows an atomic force micrograph. As can be seen from the figure, the thickness of the two-dimensional titanium nanosheet is about 3 nm. Therefore, by observation by transmission electron microscopy and atomic force microscopy, it is possible to peel off the two-dimensional metal elemental titanium nanosheet by the liquid phase stripping method.
  • the absorption spectra of the same concentration of two-dimensional titanium nanosheets were isopropyl alcohol (IPA) and water stripped, respectively. It is apparent that the absorption spectrum of the two-dimensional titanium nanosheet stripped in IPA has a higher absorption value and a larger slope (i.e., the upper curve in Fig. 3a). This shows that the larger titanium particles can be sufficiently stripped into smaller titanium nanosheets in IPA. Further, the absorption values of different stripping times (referred to as water bath ultrasonic time) of the same concentration of metal elemental titanium were compared (as shown in Fig. 3b), and it was found that as the stripping time increased, the absorption spectrum was continuously increased and appeared. A saturated state.
  • IPA isopropyl alcohol
  • a method for preparing a two-dimensional titanium nanosheet comprising the following steps:
  • the desired metal elemental titanium nanosheets are obtained by centrifugation. First, centrifugal force of 1800 g was used and centrifuged for 35 min. The supernatant was taken, and then the supernatant was centrifuged at 10000 g to obtain a precipitate, which was vacuum dried to obtain a two-dimensional titanium nanosheet.
  • a method for preparing a two-dimensional titanium nanosheet comprising the following steps:
  • the desired metal elemental titanium nanosheets are obtained by centrifugation.
  • the centrifugal force of 2200 g was used and centrifuged for 20 min. The supernatant was taken, and then the supernatant was centrifuged at 13,000 g to obtain a precipitate, which was vacuum dried to obtain a two-dimensional titanium nanosheet.
  • Different concentrations of two-dimensional titanium nanosheet aqueous dispersion were prepared to measure absorption spectrum and photothermal performance.
  • the absorption spectrum was measured using an ultraviolet-spectrophotometer.
  • the photothermal experiment used a 808 nm laser.
  • a two-dimensional titanium nanosheet aqueous dispersion of 10, 25, 50 and 100 ppm was prepared separately (as shown in Figure 4).
  • the prepared aqueous dispersion was separately placed in a quartz cuvette and placed in an ultraviolet spectrophotometer card slot to measure the absorbance.
  • the absorption curves of different concentrations are shown in Figure 5. According to the absorption at 808 nm, the extinction coefficient of the two-dimensional titanium nanosheet was 20.8 Lg -1 cm -1 (as shown in Fig. 6).
  • the photothermal conversion efficiency (73.4%) of the two-dimensional titanium nanosheet of the present invention is the highest among all reported photothermal agents, higher than the conventional two-dimensional photothermal agent of gold nanoparticles (21%), including MoS 2 ( 24.4%) black phosphorus quantum dots (28.4%) Ti 3 C 2 nanosheets (30.6%) and tantalum quantum dots (45.5%), therefore, the photothermal conversion efficiency of two-dimensional titanium nanosheets is significantly higher than other currently studied Photothermal agent.
  • the two-dimensional titanium nanosheet prepared by the invention has full spectrum absorption and high photothermal conversion efficiency, and has good photothermal performance.
  • Two-dimensional titanium nanosheets of different masses were dispersed in a cell culture medium, and then co-incubated with different cells, and the viability of the cells was measured.
  • hepatocyte cancer cells SMMC-7721, melanoma cells B16, and macrophage J774A.1 were separately plated into 96-well plates, and after the cells were attached, they were prepared for experiments.
  • Two-dimensional titanium nanosheet dispersions of 0, 10, 25, 50, and 100 ppm were prepared in DMEM high-sugar medium, 100 ⁇ l of the dispersion was taken, and the medium in the 96-well plate was replaced. After incubation for 24 hours, CCK8 was used.
  • the kit measures the viability of the cells in each well, and each set consists of 3 parallel wells. As shown in Fig. 9, in various cells, as the concentration of the two-dimensional titanium nanosheet increased (from 0 to 100 ppm), there was no significant decrease in cell viability as compared with the experimental group without the nanosheet. This indicates that the two-dimensional titanium nanosheets have no obvious cytotoxicity.
  • Embodiments of the invention also tested the toxicity of two-dimensional titanium nanosheets in model animals.
  • Two-dimensional titanium nanosheets and PEG2000-coated two-dimensional titanium nanosheets were separately dispersed in physiological saline to obtain a dispersion of 100 ppm.
  • Six weeks old female Balb/c nude mice were given 100 ⁇ l of physiological saline (control), 100 ⁇ l of 100 ppm two-dimensional titanium nanosheets (represented as "titanium nanosheets”) dispersion and 100 ⁇ l by subcutaneous injection.
  • a 100 ppm PEG-coated two-dimensional titanium nanosheet (indicated by "polyethylene glycol-coated titanium nanosheets") was injected subcutaneously under the right forelimb of the mouse.
  • mice The body weight of the mice was measured on the 1st, 3rd, 5th, 7th, 9th, 11th, 13th, and 15th day after the injection, and the mice were sacrificed on the 15th day, and the main organs, heart, liver, spleen, lung and kidney were taken for H&E. Dyeing to see if the nanosheets caused damage to tissues and organs in mice. As shown in Figure 10, the two-dimensional titanium nanosheets do not affect the change in body weight; as shown in Figure 11, the two-dimensional titanium nanosheets do not cause damage to mouse tissues and organs.
  • the two-dimensional titanium nanosheets are not toxic to cancer cells, normal cells, and in vivo conditions under in vitro conditions, showing their biocompatibility and safety and non-toxic advantages.
  • the two-dimensional titanium nanosheets prepared by the invention have good photothermal properties and good biocompatibility, and the photothermal effect can be used for cell killing and cell killing-based tumor treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种二维钛纳米片,厚度为1-50nm。一种二维钛纳米片的制备方法,包括以下步骤:提供钛原料,采用液相剥离的方法对所述钛原料进行剥离,得到二维钛纳米片,所述二维钛纳米片的厚度为1-50nm。所述二维钛纳米片可以作为光热治疗制剂。

Description

二维钛纳米片及其制备方法和应用
本发明要求于2018年01月30日递交的申请号为201810090774.6,发明名称为“二维钛纳米片及其制备方法和应用”的在先申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及纳米材料领域,具体涉及一种二维钛纳米片及其制备方法和应用。
背景技术
肿瘤治疗一直是人类难以克服的一个领域。传统的治疗手段包括开刀、化疗、放疗。但是这些治疗手段具有治疗时间长和毒副作用大的特点,并给病人带来极大的痛苦。红外光热治疗是一种新兴的治疗手段,具有治疗时间短和损伤小的特点。最近,红外光热治疗借助纳米材料更是掀起了一股治疗癌症的热潮。一般的光热纳米材料包括贵金属,例如金,和一些新兴的二维材料,包括石墨烯,二硫化钼,黑磷,碲,碳化钛等。
红外光热材料所需要的性能包括无毒、强的红外吸收和高的光热转换效率等特点。而目前研究的这些光热材料很少能够完全满足这些需要的性能。因此,对于新型光热材料的开发势在必行。
发明内容
为解决上述问题,本发明提供了一种二维钛纳米片,所述二维钛纳米片生 物相容性良好,同时光热性能也良好。
本发明第一方面提供了一种二维钛纳米片,所述二维钛纳米片的厚度为1-50nm。
其中,所述二维钛纳米片的厚度为3-5nm。
其中,所述二维钛纳米片的厚度为5-10nm。
其中,所述二维钛纳米片的长宽尺寸为10-50nm。
其中,所述二维钛纳米片的长宽尺寸为30-40nm。
其中,所述二维钛纳米片的长宽尺寸为10-30nm。
其中,所述二维钛纳米片的光吸收波长范围为200-2000nm。
其中,所述二维钛纳米片的光热转换效率为大于或等于70%。
本发明第一方面提供的二维钛纳米片具有环境友好、生物兼容性、全光谱的强吸收和较高的光热转换效率等优点。因此,具有优良的光热性能。
本发明第二方面提供了一种二维钛纳米片的制备方法,包括以下步骤:
提供钛原料,采用液相剥离的方法对所述钛原料进行剥离,得到二维钛纳米片,所述二维钛纳米片的厚度为1-50nm。
其中,所述液相剥离的方法具体包括以下操作:
将所述钛原料加入至溶剂中,在冰浴环境下采用探头超声8-15h;所述探头超声结束后,继续采用水浴超声,所述水浴超声时间为3-10h,所述水浴的温度保持5-15℃;超声后,进行离心和干燥得到二维钛纳米片。
其中,所述探头超声的功率为200-250W。
其中,所述探头超声的时间为10h。
其中,所述探头超声是非连续超声,选择超声开/关时间为2/4s。
其中,所述水浴超声功率为300-380W。
其中,所述水浴超声的时间为8h。
其中,所述离心的操作包括:首先采用1800-2200g的离心力,离心20-35min,取上清液;然后将所述上清液采用10000-13000g的离心力继续离心,得到沉淀即为二维钛纳米片。
其中,所述溶剂包括异丙醇、乙醇、水和甲基吡咯烷酮中的至少一种。
其中,所述钛原料在所述溶剂中的浓度为1-7mg/mL。
其中,所钛原料包括钛粉或钛块。
本发明第二方面提供了一种二维钛纳米片的制备方法,首次采用液相剥离的方法由非层状的钛原料制得二维钛纳米片,制备方法简单易操作。
本发明第三方面提供了一种如上述所述的二维钛纳米片在作为光热治疗制剂中的应用。
综上,本发明有益效果包括以下几个方面:
1、本发明提供的二维钛纳米片具有环境友好、生物兼容性、全光谱的强吸收和较高的光热转换效率等优点,具有优良的光热性能;
2、本发明提供的二维钛纳米片的制备方法,首次采用剥离的方法由非层状的钛原料制得二维钛纳米片,制备方法简单易操作;
3、本发明提供的二维钛纳米片可以作为光热治疗制剂应用。
附图说明
图1为实施例1制得的二维钛纳米片的透射电镜图片;
图2为实施例1制得的二维钛纳米片的原子力显微图片;
图3为实施例1中二维钛纳米片的液相剥离过程的吸收光谱图;
图4为不同浓度的二维钛纳米片水分散液照片;
图5为不同浓度的二维钛纳米片水分散液的吸收光谱图;
图6为二维钛纳米片水分散液的消光系数;
图7为不同浓度的二维钛纳米片水分散液的升温曲线;
图8为二维钛纳米片水分散液的光热转换效率;
图9为二维钛纳米片的细胞毒性测定结果图;
图10为二维钛纳米片对小鼠体重的影响;
图11为二维钛纳米片对引起小鼠组织器官损伤影响图。
具体实施方式
以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
本发明提到的“二维钛纳米片”或“钛”,除特殊说明,均指的是单质钛。
本发明实施方式第一方面提供了一种二维钛纳米片,所述二维钛纳米片的厚度为1-50nm。
本发明实施方式中,所述二维钛纳米片的厚度为3-5nm。可选地,所述二维钛纳米片的厚度为5-10nm。可选地,所述二维钛纳米片的厚度为10-50nm。进一步可选地,所述二维钛纳米片的厚度为1nm、5nm、10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm或50nm。
本发明实施方式中,所述二维钛纳米片的长宽尺寸为10-50nm。可选地, 所述二维钛纳米片的长宽尺寸为30-40nm。可选地,所述二维钛纳米片的长宽尺寸为10-30nm。进一步可选地,所述二维钛纳米片的长宽尺寸为10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm或50nm。
本发明实施方式中,所述二维钛纳米片具有从可见光区到近红外光区的吸收。可选地,所述二维钛纳米片的光吸收波长范围为200-2000nm。
本发明实施方式中,所述二维钛纳米片的光热转换效率为大于或等于70%。
本发明第一方面提供的二维钛纳米片具有环境友好、生物兼容性、全光谱的强吸收和较高的光热转换效率等优点,具有优良的光热性能。
本发明实施例第二方面提供了一种二维钛纳米片的制备方法,包括以下步骤:
提供钛原料,采用液相剥离的方法对所述钛原料进行剥离,得到二维钛纳米片,所述二维钛纳米片的厚度为1-50nm。
本发明实施方式中,所述钛原料为二维非层状的金属钛单质,如可以为钛粉,也可以为钛块,对其大小和形状没有特殊限定。所述钛原料可通过购买得到。
本发明实施方式中,所述液相剥离的方法具体包括以下操作:
将所述钛原料加入至溶剂中,在冰浴环境下采用探头超声8-15h;所述探头超声结束后,继续采用水浴超声,所述水浴超声时间为3-10h,所述水浴的温度保持5-15℃;超声后,进行离心和干燥得到二维钛纳米片。
可选地,所述溶剂包括异丙醇、乙醇、水和甲基吡咯烷酮(即N-甲基吡咯烷酮,NMP)中的至少一种。
可选地,所述钛原料在所述溶剂中的浓度为1-7mg/mL。
可选地,所述探头超声的功率为200-250W。进一步可选地,所述探头超声的功率为240W。
可选地,所述探头超声的时间为10h。
可选地,所述探头超声是非连续超声,选择超声开/关时间为2/4s,即先超声2s,然后关闭超声探头保持4s,再继续超声2s,以此类推。
可选地,所述水浴超声功率为300-380W。进一步可选地,所述水浴超声功率为360W。
可选地,所述水浴超声的时间为8h。
可选地,所述水浴温度保持10℃。
可选地,超声后,进行离心,所述离心的操作包括:首先采用1800-2200g的离心力,离心20-35min,取上清液;然后将所述上清液采用10000-13000g的离心力继续离心,得到沉淀即为二维钛纳米片。进一步可选地,首先采用2000g的离心力,离心30min,取上清液;然后将所述上清液采用12000g的离心力继续离心,得到沉淀,将所得沉淀干燥后即得二维钛纳米片。可选地,所述干燥的方式不限,例如可为真空干燥。
现有技术通常采用液相剥离法用来剥离二维层状材料。而本发明首次采用液相剥离法剥离二维非层状金属材料,并取得成功。
本发明第二方面提供了一种二维钛纳米片的制备方法,首次采用液相剥离的方法由非层状的钛原料制得二维钛纳米片,制备方法简单易操作。
本发明第三方面提供了一种如上述所述的二维钛纳米片在作为光热治疗制剂中的应用。
由于本发明的二维钛纳米片具有良好的生物相容性以及光热转换性能,因此,可以很好地作为光热治疗制剂用于治疗疾病。
实施例1:
一种二维钛纳米片的制备方法,包括以下步骤:
(1)将500mg的钛粉加入100ml的异丙醇中。然后选择探头超声240W,超声10h。选择超声开/关时间为2/4s,并且是在冰浴环境下进行超声。探头超声完后,接着采用水浴超声。水浴超声功率为360W。超声时间为8h。水浴温度保持10℃;
(2)超声过后采用离心的办法得到需要的金属单质钛纳米片。首先采用2000g的离心力,离心30min。取上清,然后将上清采用12000g继续离心,得到沉淀,真空干燥后即得二维钛纳米片。
如图1所示,为二维金属单质钛纳米片的电镜形貌图。其尺寸小于50nm。图2显示的是原子力显微图片。由图可以看出,二维钛纳米片的厚度在3nm左右。因此通过透射电镜和原子力显微镜的观察,通过液相剥离法确实可以剥离出二维金属单质钛纳米片。
如图3a所示,分别为异丙醇(IPA)和水中剥离的,相同浓度的二维钛纳米片的吸收光谱。很明显,IPA中剥离的二维钛纳米片的吸收光谱具有更高的吸收值和更大的斜率(即图3a中上面的一条曲线)。这说明IPA中可以充分将比较大的钛颗粒剥离成较小的钛纳米片。进一步,比较了相同浓度的金属单质钛的不同剥离时间(指的是水浴超声时间)的吸收值(如图3b所示),发现随着剥离时间的增加,吸收光谱在不断增加,而且会出现一个饱和的状态。
实施例2:
一种二维钛纳米片的制备方法,包括以下步骤:
(1)将500mg的钛粉加入100ml的异丙醇中。然后选择探头超声200W,超声15h。选择超声开/关时间为2/4s,并且是在冰浴环境下进行超声。探头超声完后,接着采用水浴超声。水浴超声功率为300W。超声时间为10h。水浴温度保持15℃;
(2)超声过后采用离心的办法得到需要的金属单质钛纳米片。首先采用1800g的离心力,离心35min。取上清,然后将上清采用10000g继续离心,得到沉淀,真空干燥后即得二维钛纳米片。
实施例3:
一种二维钛纳米片的制备方法,包括以下步骤:
(1)将500mg的钛粉加入100ml的异丙醇中。然后选择探头超声250W,超声8h。选择超声开/关时间为2/4s,并且是在冰浴环境下进行超声。探头超声完后,接着采用水浴超声。水浴超声功率为380W。超声时间为3h。水浴温度保持5℃;
(2)超声过后采用离心的办法得到需要的金属单质钛纳米片。首先采用2200g的离心力,离心20min。取上清,然后将上清采用13000g继续离心,得到沉淀,真空干燥后即得二维钛纳米片。
效果实施例
(1)吸收光谱和光热性能的测试
配制不同浓度的二维钛纳米片水分散液测量吸收光谱和光热性能。吸收光谱采用紫外-分光光度计测量。光热实验采用808nm激光。分别配制10,25,50和100ppm的二维钛纳米片水分散液(如图4所示)。将配制的水分散液分别装入石英比色皿中,放入紫外分光光度计卡槽中测量吸收度。不同浓度的吸收曲线如图5所示。根据808nm处的吸收可以得到二维钛纳米片的消光系数为20.8Lg -1cm -1(如图6所示)。该值高于黑磷(14.8Lg -1cm -1)。对于光热实验的测量,取1ml二维钛纳米片水分散液加入比色皿中,采用808nm激光进行照射,并同时用热电偶记录温度曲线。图7显示的是不同二维钛纳米片浓度的温度随激光照射时间的升温图。通过定量的计算,可以得到二维钛纳米片的光热转换效率为73.4%(如图8所示)。
本发明的二维钛纳米片的光热转换效率(73.4%)在所有报道的光热剂中最高,高于传统的金纳米颗粒(21%)新兴的二维光热剂,包括MoS 2(24.4%)黑磷量子点(28.4%)Ti 3C 2纳米片(30.6%)和碲量子点(45.5%),因此,二维钛纳米片光热转换效率值明显高于其他当前正在研究的光热剂。
因此,本发明制得的二维钛纳米片具有全光谱的吸收和较高的光热转换效率,光热性能良好。
(2)二维钛纳米片的生物毒性测试
将不同质量的二维钛纳米片分散于细胞培养基,再与不同的细胞共孵育,再测定细胞的活力。首先将肝细胞癌细胞SMMC-7721、黑色素瘤细胞B16以及巨噬细胞J774A.1分别铺到96孔板中,待细胞贴壁后,准备用于实验。以DMEM高糖培养基分别配制0,10,25,50,100ppm浓度的二维钛纳米片分散液,取100μl 分散液,置换前述96孔板中的培养基,在孵育24小时之后,使用CCK8试剂盒测定每个孔里面细胞的活力,每一组实验设置3个平行孔。如图9所示,在多种细胞中,随着二维钛纳米片浓度的提高(从0到100ppm),和未加纳米片的实验组对比,其细胞活力并无明显的下降。这说明二维钛纳米片没有明显的细胞毒性。
本发明实施例也在模式动物中检测了二维钛纳米片的毒性。分别将二维钛纳米片和PEG2000包覆的二维钛纳米片分散于生理盐水,得到100ppm的分散液备用。取6周龄的雌性Balb/c裸鼠,通过皮下注射的方式将100μl的生理盐水(对照)、100μl的100ppm二维钛纳米片(图中以“钛纳米片”表示)分散液和100μl的100ppm PEG包覆的二维钛纳米片(图中以“聚乙二醇包覆的钛纳米片”表示)分散液注射到小鼠右前肢下方的皮下。分别在注射后的第1,3,5,7,9,11,13,15天测定小鼠的体重,并且在第15天时将小鼠处死,取其主要脏器心肝脾肺肾,进行H&E染色,观察纳米片是否导致小鼠组织器官损伤。如图10所示,二维钛纳米片不会影响其体重的变化;如图11所示,二维钛纳米片也不会对小鼠组织器官造成损伤。
综上所述,二维钛纳米片在体外条件下对癌细胞、正常细胞,以及在体内条件下都没有毒性,显示了其生物相容性以及安全无毒的优点。
综上,本发明制得的二维钛纳米片具有良好的光热性能,兼具良好的生物相容性,并且其光热效应可以用于细胞杀伤以及基于细胞杀伤能力的肿瘤治疗。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详 细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种二维钛纳米片,其中,所述二维钛纳米片的厚度为1-50nm。
  2. 如权利要求1所述的二维钛纳米片,其中,所述二维钛纳米片的厚度为3-5nm。
  3. 如权利要求1所述的二维钛纳米片,其中,所述二维钛纳米片的厚度为5-10nm。
  4. 如权利要求1所述的二维钛纳米片,其中,所述二维钛纳米片的长宽尺寸为10-50nm。
  5. 如权利要求4所述的二维钛纳米片,其中,所述二维钛纳米片的长宽尺寸为30-40nm。
  6. 如权利要求4所述的二维钛纳米片,其中,所述二维钛纳米片的长宽尺寸为10-30nm。
  7. 如权利要求1所述的二维钛纳米片,其中,所述二维钛纳米片的光吸收波长范围为200-2000nm。
  8. 如权利要求1所述的二维钛纳米片,其中,所述二维钛纳米片的光热转换效率为大于或等于70%。
  9. 一种二维钛纳米片的制备方法,其中,包括以下步骤:
    提供钛原料,采用液相剥离的方法对所述钛原料进行剥离,得到二维钛纳米片,所述二维钛纳米片的厚度为1-50nm。
  10. 如权利要求9所述的二维钛纳米片的制备方法,其中,所述液相剥离的方法具体包括以下操作:
    将所述钛原料加入至溶剂中,在冰浴环境下采用探头超声8-15h;所述探头超声结束后,继续采用水浴超声,所述水浴超声时间为3-10h,所述水浴的温度保持5-15℃;超声后,进行离心和干燥得到二维钛纳米片。
  11. 如权利要求10所述的二维钛纳米片的制备方法,其中,所述探头超声的功率为200-250W。
  12. 如权利要求10所述的二维钛纳米片的制备方法,其中,所述探头超声的时间为10h。
  13. 如权利要求10所述的二维钛纳米片的制备方法,其中,所述探头超声是非连续超声,选择超声开/关时间为2/4s。
  14. 如权利要求10所述的二维钛纳米片的制备方法,其中,所述水浴超声功率为300-380W。
  15. 如权利要求10所述的二维钛纳米片的制备方法,其中,所述水浴超声的时间为8h。
  16. 如权利要求10所述的二维钛纳米片的制备方法,其中,所述离心的操作包括:首先采用1800-2200g的离心力,离心20-35min,取上清液;然后将所述上清液采用10000-13000g的离心力继续离心,得到沉淀即为二维钛纳米片。
  17. 如权利要求10所述的二维钛纳米片的制备方法,其中,所述溶剂包括异丙醇、乙醇、水和甲基吡咯烷酮中的至少一种。
  18. 如权利要求10所述的二维钛纳米片的制备方法,其中,所述钛原料在所述溶剂中的浓度为1-7mg/mL。
  19. 如权利要求10所述的二维钛纳米片的制备方法,其中,所钛原料包括钛粉或钛块。
  20. 一种如权利要求1-8中任一项所述的二维钛纳米片在作为光热治疗制剂中的应用。
PCT/CN2018/100583 2018-01-30 2018-08-15 二维钛纳米片及其制备方法和应用 WO2019148803A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810090774.6 2018-01-30
CN201810090774.6A CN108339972B (zh) 2018-01-30 2018-01-30 二维钛纳米片及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019148803A1 true WO2019148803A1 (zh) 2019-08-08

Family

ID=62960737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100583 WO2019148803A1 (zh) 2018-01-30 2018-08-15 二维钛纳米片及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN108339972B (zh)
WO (1) WO2019148803A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114346253A (zh) * 2021-07-12 2022-04-15 上海纳米技术及应用国家工程研究中心有限公司 一种银纳米簇-钯复合纳米片的制备方法及其产品和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339972B (zh) * 2018-01-30 2020-05-05 深圳大学 二维钛纳米片及其制备方法和应用
CN108514636B (zh) * 2018-03-30 2021-04-20 张晗 基于钛量子点的纳米钛光热制剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030224168A1 (en) * 2002-05-30 2003-12-04 The Regents Of The University Of California Chemical manufacture of nanostructured materials
WO2015049067A2 (en) * 2013-10-02 2015-04-09 The Provost, Fellows, Foundation Scholars, And The Other Members Of Board, Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth, Near Dublin Sensitive, high-strain, high-rate, bodily motion sensors based on conductive nano-material-rubber composites
CN104528721A (zh) * 2014-12-23 2015-04-22 陕西科技大学 一种薄片二维纳米碳化钛纳米材料的制备方法
CN107275628A (zh) * 2017-07-19 2017-10-20 华中科技大学 一种二维铋烯的制备方法及锂离子电池
CN107381518A (zh) * 2017-07-26 2017-11-24 华南理工大学 一种二维氮化钛纳米片溶液的快速制备方法
CN108187047A (zh) * 2018-01-30 2018-06-22 深圳大学 纳米钛光热制剂及其制备方法和应用
CN108339972A (zh) * 2018-01-30 2018-07-31 深圳大学 二维钛纳米片及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159115A2 (en) * 2012-04-20 2013-10-24 Brookhaven Science Associates, Llc Molybdenum and tungsten nanostructures and methods for making and using same
KR101414560B1 (ko) * 2013-01-09 2014-07-04 한화케미칼 주식회사 전도성 필름의 제조방법
CN104085920B (zh) * 2014-07-09 2015-12-09 河海大学 一种二维片状二氧化钛纳米片材料的制备方法
CN106698369B (zh) * 2016-12-29 2019-01-15 深圳大学 一种二维黑磷纳米片及其液相剥离制备方法
CN107416784B (zh) * 2016-12-29 2020-05-26 深圳大学 一种二维黑磷纳米片及其液相剥离制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030224168A1 (en) * 2002-05-30 2003-12-04 The Regents Of The University Of California Chemical manufacture of nanostructured materials
WO2015049067A2 (en) * 2013-10-02 2015-04-09 The Provost, Fellows, Foundation Scholars, And The Other Members Of Board, Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth, Near Dublin Sensitive, high-strain, high-rate, bodily motion sensors based on conductive nano-material-rubber composites
CN104528721A (zh) * 2014-12-23 2015-04-22 陕西科技大学 一种薄片二维纳米碳化钛纳米材料的制备方法
CN107275628A (zh) * 2017-07-19 2017-10-20 华中科技大学 一种二维铋烯的制备方法及锂离子电池
CN107381518A (zh) * 2017-07-26 2017-11-24 华南理工大学 一种二维氮化钛纳米片溶液的快速制备方法
CN108187047A (zh) * 2018-01-30 2018-06-22 深圳大学 纳米钛光热制剂及其制备方法和应用
CN108339972A (zh) * 2018-01-30 2018-07-31 深圳大学 二维钛纳米片及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114346253A (zh) * 2021-07-12 2022-04-15 上海纳米技术及应用国家工程研究中心有限公司 一种银纳米簇-钯复合纳米片的制备方法及其产品和应用
CN114346253B (zh) * 2021-07-12 2024-02-13 上海纳米技术及应用国家工程研究中心有限公司 一种银纳米簇-钯复合纳米片的制备方法及其产品和应用

Also Published As

Publication number Publication date
CN108339972B (zh) 2020-05-05
CN108339972A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2019148802A1 (zh) 纳米钛光热制剂及其制备方法和应用
Zhu et al. Piezocatalytic tumor therapy by ultrasound‐triggered and BaTiO3‐mediated piezoelectricity
He et al. Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy
Wang et al. Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms
Sheng et al. Review of the progress toward achieving heat confinement—the holy grail of photothermal therapy
WO2019184201A1 (zh) 基于钛量子点的纳米钛光热制剂及其制备方法
Hu et al. Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics
Ge et al. Carbon dots with intrinsic theranostic properties for bioimaging, red‐light‐triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo
Wu et al. NIR‐activated multimodal photothermal/chemodynamic/magnetic resonance imaging nanoplatform for anticancer therapy by Fe (II) ions doped MXenes (Fe‐Ti3C2)
Liu et al. Dopamine‐melanin colloidal nanospheres: an efficient near‐infrared photothermal therapeutic agent for in vivo cancer therapy
WO2019148803A1 (zh) 二维钛纳米片及其制备方法和应用
Gao et al. Engineering of a hollow‐structured Cu2− XS nano‐homojunction platform for near infrared‐triggered infected wound healing and cancer therapy
Liu et al. In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe
Liu et al. Carbon dots with intrinsic bioactivities for photothermal optical coherence tomography, tumor‐specific therapy and postoperative wound management
Wang et al. Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors
Song et al. MoS 2-Based multipurpose theranostic nanoplatform: realizing dual-imaging-guided combination phototherapy to eliminate solid tumor via a liquefaction necrosis process
Liao et al. Small-size Ti3C2Tx MXene nanosheets coated with metal-polyphenol nanodots for enhanced cancer photothermal therapy and anti-inflammation
Shen et al. Heavy atom-free semiconducting polymer with high singlet oxygen quantum yield for prostate cancer synergistic phototherapy
WO2019184202A1 (zh) 钛量子点及其制备方法和应用
Zhang et al. In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets
Qi et al. Temperature Feedback‐Controlled Photothermal/Photodynamic/Chemodynamic Combination Cancer Therapy Based on NaGdF4: Er, Yb@ NaGdF4: Nd@ Cu‐BIF Nanoassemblies
Miao et al. Tiny 2D silicon quantum sheets: a brain photonic nanoagent for orthotopic glioma theranostics
Xia et al. Liposome-templated gold nanoparticles for precisely temperature-controlled photothermal therapy based on heat shock protein expression
Fan et al. Quantitative and qualitative evaluation of recovery process of a 1064 nm laser on laser-induced skin injury: in vivo experimental research
Lindner et al. Complications in hyperthermia treatment of benign prostatic hyperplasia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 18903326

Country of ref document: EP

Kind code of ref document: A1