WO2019148702A1 - 密封件及发光装置 - Google Patents

密封件及发光装置 Download PDF

Info

Publication number
WO2019148702A1
WO2019148702A1 PCT/CN2018/088381 CN2018088381W WO2019148702A1 WO 2019148702 A1 WO2019148702 A1 WO 2019148702A1 CN 2018088381 W CN2018088381 W CN 2018088381W WO 2019148702 A1 WO2019148702 A1 WO 2019148702A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
resistant layer
sealing member
resistant
Prior art date
Application number
PCT/CN2018/088381
Other languages
English (en)
French (fr)
Inventor
谢颂婷
杨佳翼
后国波
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019148702A1 publication Critical patent/WO2019148702A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action

Definitions

  • the invention belongs to the field of device sealing, and in particular relates to a light-proof and light-proof sealing member and a light-emitting device using the same.
  • the illuminating device needs to open the structural member due to the connection of the power cord or other requirements, and the hole needs to be sealed after the opening.
  • Seals are usually made of a polymer material such as rubber.
  • the sealing function of the sealing member is due to its elastic deformation, causing contact pressure on the sealing contact surface. When the contact pressure is greater than the internal pressure of the sealed medium, no leakage occurs and the sealing effect is achieved.
  • the gasket has the defects of high temperature resistance and limited light resistance.
  • the low molecular polymer inside the gasket material becomes active and easily volatilizes to cause volatiles, resulting in internal pollution of the light-emitting device.
  • volatile matter tends to adhere to the surface of the optical member to cause low light efficiency or even burn the optical member; or attach to the sensing device to cause induction failure or the like. This is particularly evident on colored seals, especially dark seals such as black, which tend to absorb light and cause volatilization. Therefore, the gaskets used in the prior art in the light-emitting device all use a transparent gasket. However, the transparent gasket will directly transmit light and exit to the outside of the light-emitting device.
  • the international standard IEC60825-1 "Safety of Laser Products: Part 1: Equipment Classification and Requirements" clearly states that the safety level is divided into four levels according to the safety level of the laser product to the user:
  • Class 1 lasers refer to invisible laser radiation (radiation wavelengths greater than 1400 nm) produced by infrared lasers or laser diodes, and the radiated power is usually limited to 1 mW. These lasers are safe under reasonably foreseeable conditions and they do not produce harmful radiation or fire.
  • Class 2 lasers produce continuous or pulsed visible radiation with a wavelength of 400 to 700 nm.
  • the radiated power is generally low, and the radiated power of continuous light is usually limited to 1 mW.
  • Such laser products typically provide eye protection from an avoidance response including blinking reflections.
  • Class 1 or Class 2 laser products are typically used for demonstration, display or entertainment purposes, as well as for surveying, collimation and equalization.
  • Class 3 lasers are divided into 3a and 3b. Lasers of Class 3a visible or invisible lasers are usually not visible to the naked eye for a short period of time, but when viewed with optical instruments such as microscopes or telescopes, the laser beam can cause eye damage. Class 3a lasers typically provide eye protection from an avoidance response including blinking reflections. The diffuse light of this level of laser is generally not hazardous and does not pose a fire.
  • the visible laser output power of the 3a level is limited to 5 times of the 2nd stage laser output power, that is, 5Mw; the invisible laser output power is limited to 5 times of the 1st stage laser.
  • the 3b laser specifies that the output power of the continuous laser is greater than 500Mw, and the single pulse energy of the reproducible pulse laser is specified to be 30 ⁇ 150mJ (depending on the wavelength); the 3b laser can cause damage to the naked eye and the skin, and the diffuse reflection of the laser Light can also cause damage to the eyes.
  • Continuous or repeatable pulsed lasers with an average power of more than 500 mW are classified as Class 4, and the laser energy of a single pulse output is 30 to 150 mJ (variable by wavelength), and the laser wavelength is visible or invisible.
  • the power of the 4-level laser is enough to cause damage to the human eye or skin in an instant.
  • the diffuse light of the laser is as harmful to the eyes or skin.
  • Class 4 lasers have the potential to burn combustibles. Generally, when the laser power density reaches 2W/cm2, there is a possibility of fire.
  • Class 3 or 4 laser products are commonly used in research, engineering, laser engraving, laser welding, laser cutting, etc. where high-energy laser radiation is required.
  • the laser products for display must meet the requirements of Grade 2 or higher.
  • the existing products will pass the transparent seals and will not meet the requirements of Grade 2 or above.
  • the level 2 laser products still need to set eye protection, and many international applications have proposed the requirements of level 1 laser safety. Under this background, there is an urgent need to solve the problem of laser radiation caused by the transparency of the transparent seal.
  • the present invention provides a seal comprising a light-resistant layer and a light-blocking layer laminated with the light-resistant layer, the light-blocking layer being used for a beam of light passing through at least a portion of the light-resistant layer Block it.
  • the light blocking layer comprises a light absorbing layer that blocks the light beam by absorbing light, the light absorbing layer being located on a side of the sealing member away from the direction in which the light beam is irradiated.
  • the light blocking layer comprises a light shielding layer on a side of the light resistant layer away from the beam irradiation direction.
  • the light blocking layer is a reflective layer that blocks the light beam by a reflection effect on light.
  • the reflective layer is a plating layer on a partial surface of the light-resistant layer, and the material of the plating layer is any one of a metal reflective material, a dielectric reflective material, or a metal dielectric reflective material.
  • the plating layer covers the entire surface of the light-resistant layer.
  • the light blocking layer is located on a side of the light-resistant layer away from the beam irradiation direction, the light blocking layer is a light shielding layer, and the light shielding layer is a dark layer, and the light shielding layer is sprayed and coated. Either way, it is attached to the light-resistant layer.
  • the light blocking layer is buried inside the light emitting device.
  • the projected area of the light-resistant layer on the surface of the light-emitting device is greater than or equal to the projected area of the light-blocking layer on the surface of the light-emitting device.
  • the light-resistant layer and the light blocking layer are integrally injection molded.
  • connection layer is disposed between the light-resistant layer and the light blocking layer, and the light blocking layer is a planar structure or a transitional structure.
  • the connecting layer is a soldering layer
  • the soldering method is any one of ultrasonic welding, ultrasonic bonding, ultrasonic implantation or ultrasonic riveting.
  • the connecting layer is an adhesive layer
  • the adhesive layer is made of any one of epoxy resin, natural rubber or phenolic resin.
  • the light-resistant layer comprises a first light-resistant layer and a second light-resistant layer respectively disposed on both sides of the light blocking layer.
  • the present invention also provides a light-emitting device including a light source, a sealing groove for fixing the sealing member, and a sealing member matching the sealing groove, the sealing member including the light-resistant layer and the The light-resistant layer is laminated with a light blocking layer for blocking at least a portion of the light beam passing through the light-resistant layer.
  • the light blocking layer comprises a light absorbing layer that blocks the light beam by absorbing light, the light absorbing layer being located on a side close to the sealing groove.
  • the light-resistant layer comprises a light-shielding layer located on a side away from the sealing groove.
  • the light-resistant layer is at least partially buried inside the light-emitting device.
  • the seal of the present invention includes a light-resistant layer and a light-blocking layer laminated with the light-resistant layer for blocking at least a portion of the light beam passing through the light-resistant layer.
  • the sealing member of the invention can prevent the light from being radiated from the inside of the light-emitting device, and can effectively prevent the light from being emitted to cause the light radiation on the basis of ensuring the sealing, and the design is simple and easy to implement.
  • FIG. 1 is a schematic structural view of a sealing member according to a first embodiment of the present invention
  • Figure 2 is a view showing a state of use of a sealing member according to a first embodiment of the present invention
  • Figure 3 is a schematic structural view of a sealing member according to a second embodiment of the present invention.
  • Figure 4 is a view showing a state of use of a sealing member according to a second embodiment of the present invention.
  • Figure 5 is a schematic structural view of a sealing member according to a third embodiment of the present invention.
  • Figure 6 is a schematic structural view of a sealing member according to a fourth embodiment of the present invention.
  • Figure 7 is a schematic structural view of a sealing member according to a fifth embodiment of the present invention.
  • Figure 8 is a view showing a state of use of a sealing member according to a fifth embodiment of the present invention.
  • Figure 9 is a schematic structural view of a sealing member according to a sixth embodiment of the present invention.
  • Figure 10 is a schematic structural view of a sealing member according to a seventh embodiment of the present invention.
  • Figure 11 is a view showing a state of use of a sealing member according to a seventh embodiment of the present invention.
  • Figure 12 is a schematic structural view of a sealing member according to an eighth embodiment of the present invention.
  • Figure 13 is a view showing a state of use of a sealing member according to an eighth embodiment of the present invention.
  • Figure 14 is a schematic structural view of a sealing member according to a ninth embodiment of the present invention.
  • Figure 15 is a view showing a state of use of a sealing member according to a ninth embodiment of the present invention.
  • Fig. 16 is a view showing a state of use of the seal member in another state of the ninth embodiment of the present invention.
  • the present invention provides a new seal and a light-emitting device using the same to solve the problem that the prior art seal has laser radiation damage or can cause material volatilization to contaminate internal components.
  • the sealing member provided by the invention comprises a light-resistant layer and a light-blocking layer, and the light-resistant layer and the light-blocking layer are laminated, and the light-resistant layer has good sealing performance while being resistant to light, and is used for at least part of the light beam passing through the light-resistant layer. Block to avoid causing light to evaporate.
  • the illuminating device is a laser illuminating device, the structure can effectively prevent the laser radiation from harming the user.
  • the light blocking layer includes a light absorbing layer, a light reflecting layer, or a light shielding layer that blocks light from being emitted from the inside of the light emitting device by light absorption or light reflection.
  • the light absorbing layer, the light reflecting layer and the light shielding layer may be present at the same time, or only one or both of them may be present for the purpose of the present invention.
  • the invention also provides a light-emitting device using the above-mentioned sealing member, which is provided with a light source for emitting a light beam and a sealing groove, and the sealing member is arranged in the sealing groove for realizing sealing of the light-emitting device, which will be described in detail below with reference to specific embodiments:
  • the light-emitting device of the present invention has a light source for emitting a light beam and a sealing groove.
  • the sealing member provided by the present invention is disposed in the sealing groove, and includes a light-emitting direction inside the light-emitting device.
  • the light blocking layer 101 and the light resistant layer 102 are sequentially stacked in the outer direction.
  • the light-resistant layer is prepared by using a material with high sealing performance and strong light-resistance, and is used for blocking at least part of the light beam passing through the light-resistant layer, so that the light-emitting device is not easily volatilized, and specifically, the light-resistant layer is resistant.
  • 102 is a transparent sealing layer.
  • the light blocking layer 101 is a light absorbing layer that prevents light from being emitted to the outside by light absorption, and is specifically a black sealing layer.
  • the light beam absorbed by the light-resistant layer 102 is mainly stray light that is irradiated onto the light-resistant layer 102 through the inside of the light-emitting device.
  • the light blocking layer 101 and the light-resistant layer 102 are prepared by integral injection molding, and the formed sealing member is an integrated sealing gasket.
  • the injection molding process two injection molding machines can be simultaneously fed, or Using a main machine and an auxiliary machine to simultaneously feed, the transparent sealing layer raw material for preparing the light-resistant layer and the molten material of the black sealing layer raw material for preparing the light-absorbing layer are simultaneously hit on one mold through two different channels to form a Layer black, a transparent silicone pad.
  • the thickness of the black sealing layer is controlled by making a mold and controlling the feed.
  • L is the total thickness of the sealing member
  • d1 is the thickness of the light blocking layer
  • d2 is the thickness of the light-resistant layer 102.
  • the light blocking layer is buried inside the light emitting device.
  • the interface between the light blocking layer and the light-resistant layer is on the same plane as the surface of the light-emitting device, so that the light source emerging inside the light-emitting device, especially the light beam of the stray light that is irradiated to the light-resistant layer, is fully passed through the light-absorbing layer. absorb.
  • the present embodiment is an improvement based on the first embodiment, and the principle thereof is substantially the same, and the sealing member is disposed in the sealing groove of the light-emitting device.
  • the seal member includes a light blocking layer 101 and a light-resistant layer 102 which are sequentially stacked from the sealing groove toward the outer direction of the sealing device, except that in the present embodiment, the light blocking layer 101 and the light-resistant layer 102 are arranged in a gradient. That is, the projected area of the light-resistant layer 102 on the light blocking layer 101 is larger than the area of the light blocking layer 101.
  • the processing method of the sealing member of the present embodiment is similar to the foregoing embodiment, and injection molding is performed by a two-channel injection molding machine, and a desired transition structure can be formed by controlling the speed and pressure of the feeding, thereby processing a certain gradient structure.
  • the sealing member is disposed in the sealing groove of the light emitting device, and the sealing member includes The light blocking layer 101 and the light-resistant layer 102 are laminated in this order from the sealing groove to the outer direction of the sealing device, except that a connecting layer 103 is further provided between the light blocking layer 101 and the light-resistant layer 102.
  • the light blocking layer 101 and the light-resistant layer 102 are joined together by the connecting layer 103.
  • the connecting layer 103 is a soldering layer
  • the welding method is ultrasonic welding, specifically ultrasonic welding, ultrasonic bonding, ultrasonic implantation or Any of ultrasonic riveting.
  • the light blocking layer 101 may be a planar structure or a transitional structure.
  • the light blocking layer 101 and the light-resistant layer 102 are respectively formed sealing members, and are connected by ultrasonic waves after molding.
  • the present embodiment is an improvement based on the foregoing embodiment, and the principle thereof is substantially the same, and the structure thereof is consistent with the third embodiment, and the sealing member is disposed at In the sealing groove of the light-emitting device, the sealing member includes a light blocking layer 101, a connecting layer 103 and a light-resistant layer 102 which are sequentially stacked in the outer direction of the sealing device by the sealing groove, except that in the present embodiment, the connecting layer 103
  • the adhesive layer is made of any one of epoxy resin, natural rubber or phenol resin.
  • the light blocking layer 101 may be a planar structure or a transitional structure. During the processing, the light blocking layer 101 and the light-resistant layer 102 are separately formed seals, and the joints are formed by bonding after molding.
  • the present embodiment is an improvement based on the foregoing embodiment, and the principle thereof is substantially the same, and the sealing member is disposed in the sealing groove of the light emitting device.
  • the sealing member includes a light blocking layer 101 and a light-resistant layer 102 which are laminated in this order from the sealing groove to the outer direction of the sealing device, except that in the present embodiment, the light blocking layer 101 is a light reflecting layer, which is prevented by the reflection of light. Light inside the illuminating device leaks to the outside.
  • the light reflecting layer is a plating layer on the partial surface of the light-resistant layer 102, and functions to reflect the light irradiated to the position back into the light-emitting device, so that the light is not irradiated to the light-emitting device.
  • the material selection of the light reflecting layer may be a metal reflective material, a dielectric reflective material, or a metal dielectric reflective material.
  • the coating process used is physical vapor deposition (PVD) or chemical vapor deposition (CVD).
  • the light-resistant layer 102 is at least partially buried inside the light-emitting device, specifically, buried inside the sealing groove. During the processing, the area exposed inside the light-emitting device needs to be completely coated, that is, all the interfaces with the sealing groove. The surface is completely coated. In this way, external leakage of internal light can be avoided.
  • the present embodiment is an improvement based on the fifth embodiment, and the principle is substantially the same, except that in the present embodiment, the plating layer is covered.
  • the coated area can cover any area exposed outside of the illuminating device.
  • the reflective film layer covers the entire light-resistant layer 102, including but not limited thereto. In this way, the effect of preventing light leakage can be further enhanced.
  • the present embodiment is an improvement based on the foregoing embodiment, the principle of which is substantially the same, and the sealing member includes the light blocking layer 101 which is disposed by lamination
  • the connection layer 103 and the light-resistant layer 102 are different only in that, in the embodiment, the light-resistant layer 102 includes a first light-resistant layer 102-1 and a second light-resistant layer 102 respectively disposed on both sides of the light blocking layer 101. 2.
  • the light blocking layer 101 is a light reflecting layer, and the light reflecting layer is adhered to the first light-resistant layer 102-1 by the placement of the plating film, and then bonded to the second light-resistant layer 102-2 by connection.
  • the connecting layer 103 may be a solder layer or an adhesive layer.
  • the position of the light reflecting layer is set as shown in Fig. 11, preferably at a position flush with the outer casing, so that light of 360° of the reflecting surface can be reflected.
  • the present embodiment is an improvement based on the foregoing embodiment, and the principle is substantially the same, and the structure is substantially the same as that of the seventh embodiment.
  • the light blocking layer 101 is connected to the layer 103 and the light-resistant layer 102.
  • the light-resistant layer 102 includes a first light-resistant layer 102-1 and a second light-resistant layer 102-2 respectively disposed on both sides of the light blocking layer 101.
  • the connection layer 103 may be a solder layer or an adhesive layer.
  • the position of the light reflecting layer formed in the present embodiment is as shown in FIG. 13, and the light reflecting layer is located flush with the outer casing.
  • the present embodiment is an improvement based on the foregoing embodiment, the principle of which is substantially the same, and the sealing member includes the light blocking layer 101 which is sequentially stacked.
  • the difference from the light-resistant layer 102 is that, in the present embodiment, the light blocking layer 101 is a light-shielding layer located on the side of the light-resistant layer away from the inside of the light-emitting device.
  • the shading layer is made of a dark coating to prevent light from coming out by absorbing light.
  • the light shielding layer may be attached to the surface of the light-resistant layer 102 by spraying, coating, or the like.
  • the coating area of the light shielding layer depends on the portion of the sealing member exposed outside the light-emitting device, and the light shielding layer needs to completely cover the exposed portion.
  • the light-shielding layer is a coating on the surface as shown in FIG.
  • the present invention also provides a light-emitting device comprising the above-mentioned sealing member, comprising a light source and a sealing groove for fixing the sealing member, the sealing member being disposed on the light-emitting device through the sealing groove, so that the light-emitting device has a good sealing property, It can effectively prevent light leakage, ensure production safety and high reliability.
  • the seal of the present invention includes a light-resistant layer and a light-blocking layer laminated with the light-resistant layer for blocking at least a portion of the light beam passing through the light-resistant layer.
  • the sealing member of the invention can prevent the light from being radiated from the inside of the light-emitting device, and can effectively prevent the light from being emitted to cause the light radiation on the basis of ensuring the sealing, and the design is simple and easy to implement.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

一种密封件及发光装置,密封件包括耐光照层(102)和与耐光照层层叠设置的光阻挡层(101),光阻挡层(101)用于对经过耐光照层(102)的至少部分的光束进行阻挡。本密封件可以阻止光从发光装置内部照射出,在保证密封的基础上,还可以有效地防止光出射造成光辐射,设计简单,容易实现。

Description

密封件及发光装置 技术领域
本发明属于器件密封领域,尤其涉及一种防漏光、耐光照的密封件及使用该密封件的发光装置。
背景技术
目前,发光装置因连接电源线或其他需求需要对结构件进行开孔,开孔后需对这个孔进行密封。密封件通常选用高分子材料,例如橡胶。密封件的密封作用是由于其发生弹性变形,在密封接触面上造成接触压力,当接触压力大于被密封介质的内压时,则不发生泄漏,达到密封的效果。基于这种无缝密封的装置,也可防止光线从开孔缝隙处照射出,造成光辐射(如激光辐射)。然而,密封垫存在耐高温、耐光照性能有限的缺陷,当在光照、高温环境下,密封垫材料内部的低分子聚合物变得及其活跃,容易挥发出来造成挥发物,导致发光装置内部污染,例如,挥发物容易附着在光学件表面造成光效率低甚至烧毁光学件;或者附着在感应器件上造成感应失效等等。这点在着色密封垫,尤其是黑色等深色密封垫上表现得特别明显,着色密封垫容易吸收光造成挥发。因此,现有技术在发光装置中使用的密封垫均选用透明密封垫。但是,透明密封垫会造成光线直接透射,出射到发光装置外部,当发光装置采用激光作为光源,则会带来激光辐射,造成人眼伤害。国际标准IEC60825-1《激光产品的安全:第1部分:设备分类和需求》中明确规定,根据激光产品对使用者的安全程度, 将安全等级划分为四级:
(1)1级激光
1级激光多指红外激光或激光二极管产生的不可见激光辐射(辐射波长大于1400nm),辐射功率通常限制在1mW。这类激光在合理可预见的条件下是安全的,它们不会产生有害的辐射也不会引起火灾。
(2)2级激光
2级激光产生波长400~700nm的连续或脉冲可见光辐射,辐射功率一般较低,连续光的辐射功率通常限制在1mW。这类激光产品通常可由包括眨眼反射在内的回避反应提供眼睛保护。
1级或2级激光产品通常供演示、显示或娱乐之用,另外还常用在测绘、准直及调平等场合。
(3)3级激光
3级激光分为3a级和3b级。3a级激光产品可见或不可见激光,通常用肉眼短时间观察不会产生危害,但是当用显微镜或望远镜等光学仪器观察激光时,激光束会对眼睛造成伤害。3a级激光通常可由包括眨眼反射在内的回避反应提供眼睛保护,该级激光的漫反射光通常是不会有危害的,它没有造成火灾的可能。3a级可见激光输出功率限制在2级激光输出功率的5倍,即5Mw;不可见激光输出功率限制在1级激光的5倍。
3b级激光规定连续激光的输出功率大于500Mw,对可重复脉冲激光的单脉冲能量规定在30~150mJ(依波长而变);3b级激光对肉眼和皮肤会造成伤害,该级激光的漫反射光也会对眼睛造成伤害。
(4)4级激光
平均功率超过500mW的连续或可重复脉冲激光归为4级,单脉冲输出的激光能量在30~150mJ (依波长而变),激光波长是可见的或不可见的。4级激光的功率足可以使人的眼睛或皮肤瞬间内受到伤害。该激光的漫反射光对眼睛或皮肤一样具有很强的危害性。4级激光有使可燃物燃烧的可能,一般激光功率密度达到2W/cm2时就会有引发火灾的可能。
3级或4级激光产品通常应用在科研实验、工程研究、激光雕刻、激光焊接、激光切割加工等需要高能量激光辐射的领域。
技术问题
综上,显示用激光产品必须满足2级以上要求,现有产品由于透明密封件会透光,达不到2级以上要求。同时,2级激光产品仍要设置眼睛保护,国际上很多应用场合已提出1级激光安全的要求。在此背景下,迫切需要解决透明密封件透光带来激光辐射的问题。
因此,针对上述不足,实有必要提供一种新的密封件及发光装置,以解决现有技术的密封件无法阻挡光源所发光束,可能引起辐射而造成伤害,以及密封件本身产生物质挥发造成对其密封空间内的内部元件的污染的技术问题。
技术解决方案
为了克服现有技术的不足,以解决现有技术密封件具有光源辐射伤害或能够物质挥发污染内部元件问题,具体方案如下:
本发明提供一种密封件,所述密封件包括耐光照层和与所述耐光照层层叠设置的光阻挡层,所述光阻挡层用于对经过所述光耐光照层的至少部分的光束进行阻挡。
优选的,所述光阻挡层包括通过对光的吸收作用对光束进行阻挡的光吸收层,所述光吸收层位于所述密封件远离光束照射方向的一侧。
优选的,所述光阻挡层包括位于所述耐光照层远离光束照射方向一侧的遮光层。
优选的,所述光阻挡层为通过对光的反射作用作用对光束进行阻挡的反射层。
优选的,所述反射层为镀膜在所述耐光照层局部表面的镀层,所述镀层的材料为金属反射材料、电介质反射材料,或金属电介质反射材料中的任意一种。优选的,所述镀层覆盖所述耐光照层的全部表面。
优选的,所述光阻挡层位于所述耐光照层远离光束照射方向一侧,所述光阻挡层为遮光层,所述遮光层为深色图层,所述遮光层为通过喷涂、镀膜中的任意一种方式附着于耐光照层上。
优选的,所述光阻挡层埋在发光装置的内部。
优选的,所述耐光照层在发光装置表面的投影面积大于或等于所述光阻挡层在发光装置表面的投影面积。
优选的,所述耐光照层和所述光阻挡层为一体注塑成型。
优选的,所述耐光照层与所述光阻挡层之间设置有连接层,所述光阻挡层为平面结构或过渡式结构。
优选的,所述连接层为焊接层,所述焊接方式为超声波焊接、超声波贴焊、超声波埋植或超声波铆接中的任意一种。
优选的,所述连接层为粘接层,所述粘接层采用环氧树脂、天然橡胶或酚醛树脂中的任意一种制成。
优选的,所述耐光照层包括分别设置在所述光阻挡层两侧的第一耐光照层和第二耐光照层。
为了解决上述问题,本发明还提供一种发光装置,包括光源、用于固定密封件的密封槽和和与所述密封槽相匹配的密封件,所述密封件包括耐光照层和与所述耐光照层层叠设置的光阻挡层,所述光阻挡层用于对经过所述耐光照层的至少部分的光束进行阻挡。
优选的,所述光阻挡层包括通过对光的吸收作用对光束进行阻挡的光吸收层,所述光吸收层位于靠近所述密封槽的一侧。
优选的,所述耐光照层包括位于远离所述密封槽一侧的遮光层。
优选的,所述耐光照层至少部分埋入发光装置内部。
有益效果
相对于现有技术,本发明的有益效果如下:
本发明的密封件包括耐光照层和与所述耐光照层层叠设置的光阻挡层,所述光阻挡层用于对经过所述耐光照层的至少部分的光束进行阻挡。本发明的密封件可以阻止光从发光装置内部照射出,在保证密封的基础上,还可以有效地防止光出射造成光辐射,设计简单,容易实现。
附图说明
图1是本发明第一种实施方式的密封件的结构示意图;
图2是本发明第一种实施方式的密封件的使用状态图;
图3是本发明第二种实施方式的密封件的结构示意图;
图4是本发明第二种实施方式的密封件的使用状态图;
图5是本发明第三种实施方式的密封件的结构示意图;
图6是本发明第四种实施方式的密封件的结构示意图;
图7是本发明第五种实施方式的密封件的结构示意图;
图8是本发明第五种实施方式的密封件的使用状态图;
图9是本发明第六种实施方式的密封件的结构示意图;
图10是本发明第七种实施方式的密封件的结构示意图;
图11是本发明第七种实施方式的密封件的使用状态图;
图12是本发明第八种实施方式的密封件的结构示意图;
图13是本发明第八种实施方式的密封件的使用状态图;
图14是本发明第九种实施方式的密封件的结构示意图;
图15是本发明第九种实施方式的密封件的使用状态图;
图16是本发明第九种实施方式的密封件的另一状态下的使用状态图。
本发明的实施方式
本发明提供一种新的密封件及使用该密封件的发光装置,以解决现有技术密封件具有激光辐射伤害或能够物质挥发污染内部元件问题。
本发明提供的密封件包括耐光照层和光阻挡层,耐光照层和光阻挡层层叠设置,耐光照层在耐光照的同时也具有良好的密封性能,用于对经过耐光照层的至少部分的光束进行阻挡,避免造成光挥发。尤其是当发光装置为激光发光装置时,本结构可以有效避免激光辐射对使用者的伤害。
光阻挡层包括通过光吸收或光反射作用阻止光从发光装置内部照射出的光吸收层、光反射层或遮光层。其中光吸收层、光反射层和遮光层可以同时存在,也可以只存在其中任意一个或两个,均是可以起到本发明目的的。
本发明还提供一种应用上述密封件的发光装置,其上设置有发出光束的光源和密封槽,密封槽内设置上述密封件用于实现发光装置的密封,下面结合具体实施方式进行详细说明:
实施例一
参照图1和图2所示,本发明的发光装置内具有用于发出光束的光源和密封槽,本发明提供的密封件设置在密封槽内,其包括由发光装置内部即光束的照射方向向外部方向依次层叠设置的光阻挡层101和耐光照层102。
耐光照层采用密封性能高,且耐光照性能强的材料制备而成,其作用是用于对经过耐光照层的至少部分的光束进行阻挡,使得发光装置不易造成挥发,具体的,耐光照层102为透明密封层。光阻挡层101为通过光吸收作用避免光线出射到外部的光吸收层,具体的,为黑色密封层。在本实施方式中耐光照层102吸收的光束主要为通过发光装置内部照射到耐光照层102上的杂散光。
本实施方式中,光阻挡层101和耐光照层102为通过一体注塑成型制备而成,形成的密封件为一体化密封垫,在注塑过程中,可以是两台注塑机同时进料,或是使用一个主机、一个辅机同时进料,将制备耐光照层的透明密封层原料和制备光吸收层的黑色密封层原料的熔融的料通过两个不同的渠道同时打在一个模具上,形成一层黑色、一层透明的硅胶垫。并通过制作模具、控制进料来控制黑色密封层的厚度。
如图2所示,L为密封件的总厚度,d1为光阻挡层的厚度,d2为耐光照层102的厚度,在加工过程中,要求控制光阻挡层即黑色密封层的厚度d1=L-d2。光阻挡层埋设在发光装置的内部。光阻挡层与耐光照层的交界面与发光装置的表面位于同一平面上,这样,可以保证发光装置内部的出射的光源尤其是照射到耐光照层的杂散光的光束全部经过光吸收层的充分吸收。
实施例二
参照图3和图4所示,为本发明的第二种实施方式,本实施方式为在第一种实施方式的基础上进行的改进,其原理大致相同,密封件设置在发光装置的密封槽内,密封件包括由密封槽向密封装置的外部方向依次层叠设置的光阻挡层101和耐光照层102,区别仅在于,在本实施方式中,光阻挡层101和耐光照层102为梯度设置的,即耐光照层102在光阻挡层101上的投影面积大于光阻挡层101的面积。通过梯度的设置,可以有效光线从密封件与发光装置密封槽的间隙处逃出。
本实施方式的密封件的加工方法,类似于前述实施方式,通过双渠道注塑机注塑成型,通过控制进料的速度、压力可以制成所需的过渡性结构,从而加工出一定的梯度结构。
实施例三
参照图5所示,为本发明的第三种实施方式,本实施方式为在前述实施方式的基础上进行的改进,其原理大致相同,密封件设置在发光装置的密封槽内,密封件包括由密封槽向密封装置的外部方向依次层叠设置的光阻挡层101和耐光照层102,区别仅在于,在光阻挡层101和耐光照层102之间还设置有连接层103。光阻挡层101和耐光照层102通过连接层103结合到一起,具体在本实施方式中,连接层103为焊接层,焊接方式为超声波焊接,具体为超声波焊接、超声波贴焊、超声波埋植或超声波铆接中的任意一种。
其中光阻挡层101可以是平面结构也可以是过渡式结构。在加工过程中,光阻挡层101和耐光照层102为分别成型的密封件,成型后再通过超声波实现连接。
实施例四
参照图6所示,为本发明的第四种实施方式,本实施方式为在前述实施方式的基础上进行的改进,其原理大致相同,其结构与第三种实施方式一致,密封件设置在发光装置的密封槽内,密封件包括由密封槽向密封装置的外部方向依次层叠设置的光阻挡层101、连接层103和耐光照层102,区别仅在于,在本实施方式中,连接层103为粘接层,粘接层采用环氧树脂、天然橡胶或酚醛树脂中的任意一种制成。
其中光阻挡层101可以是平面结构也可以是过渡式结构。在加工过程中,光阻挡层101和耐光照层102为分别成型的密封件,成型后再通过粘接实现连接。
实施例五
参照图7和图8所示,为本发明的第五种实施方式,本实施方式为在前述实施方式的基础上进行的改进,其原理大致相同,密封件设置在发光装置的密封槽内,密封件包括由密封槽向密封装置的外部方向依次层叠设置的光阻挡层101和耐光照层102,区别仅在于,在本实施方式中光阻挡层101为光反射层,通过光的反射作用防止发光装置内部的光泄露到外界。
具体在本实施方式中,光反射层为镀膜在耐光照层102局部表面的镀层,起到将照射到该位置的光反射回发光装置内的作用,不让光线照射到发光装置之外。光反射层的材料选择可以是金属反射材料、电介质反射材料,也可以是金属电介质反射材料。采用的镀膜工艺为物理气相沉积(PVD)或化学气相沉积(CVD)。
进一步的,耐光照层102至少部分埋入发光装置内部,具体的,为埋入密封槽内部,在加工过程中,裸露在发光装置内部的区域需要全部镀膜,即所有与密封槽相接处的表面全部进行镀膜处理。这样,可以避免内部光线的外漏。
实施例六
参照图9所示,为本发明的第六种实施方式,本实施方式为在第五种实施方式的基础上进行的改进,其原理大致相同,区别仅在于,在本实施方式中,镀层覆盖所述耐光照层的全部表面。镀膜区域可以覆盖裸露在发光装置之外的任何区域。优选的,反射膜层覆盖整个耐光照层102,包含但不限于此。这样,可以进一步增强防止光泄露的作用。
实施例七
参照图10和图11所示,为本发明的第七种实施方式,本实施方式为在前述实施方式的基础上进行的改进,其原理大致相同,密封件包括由层叠设置的光阻挡层101连接层103和耐光照层102,区别仅在于,在本实施方式中,耐光照层102包括分别设置在光阻挡层101两侧的第一耐光照层102-1和第二耐光照层102-2。本实施方式中,光阻挡层101为光反射层,光反射层通过镀膜的放置附着在第一耐光照层102-1上,再通过连接的方式与第二耐光照层102-2结合。其中连接层103可以是焊接层,也可以是胶粘层。
 光反射层的位置设置如图11所示,优选位于与外壳平齐的位置,这样反射面360°的光线均可被反射。
实施例八
参照图12和图13所示,为本发明第八种实施方式,本实施方式为在前述实施方式的基础上进行的改进,其原理大致相同,结构与第七种实施方式大致相同,密封件包括由层叠设置的光阻挡层101连接层103和耐光照层102,耐光照层102包括分别设置在光阻挡层101两侧的第一耐光照层102-1和第二耐光照层102-2,区别仅在于,在本实施方式中,光反射层通过镀膜的放置附着在第二耐光照层102-2上,再通过连接的方式与第一耐光照层102-1结合。同样的,连接层103可以是焊接层,也可以是胶粘层。
本实施方式形成的光反射层的位置如图13所示,光反射层位于与外壳平齐的位置。
实施例九
参照图14至图16所示,为本发明的第九种实施方式,本实施方式为在前述实施方式的基础上进行的改进,其原理大致相同,密封件包括依次层叠设置的光阻挡层101和耐光照层102,区别仅在于,在本实施方式中,光阻挡层101为位于所述耐光照层远离所述发光装置内部一侧的遮光层。遮光层选用深色涂层,通过吸收光的作用防止光线出射。遮光层可以用喷涂、镀膜等方式附着于耐光照层102表面。
如图15和图16所示,遮光层的涂敷面积取决于密封件裸露在发光装置之外的部分,遮光层需完全覆盖裸露部分。当密封件完全塞进发光装置时,遮光层就是表面一层涂层,如图16所示。
本发明还提供一种包括如上密封件的发光装置,其包括光源和用于固定该密封件的密封槽,密封件通过密封槽设置在发光装置上,使得发光装置其具有很好的密封性,能够有效防止光泄露,保证生产安全,可靠性能高。
相对于现有技术,本发明的有益效果如下:
本发明的密封件包括耐光照层和与所述耐光照层层叠设置的光阻挡层,所述光阻挡层用于对经过所述耐光照层的至少部分的光束进行阻挡。本发明的密封件可以阻止光从发光装置内部照射出,在保证密封的基础上,还可以有效地防止光出射造成光辐射,设计简单,容易实现。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
 

Claims (17)

  1. 一种密封件,其特征在于,所述密封件包括耐光照层和与所述耐光照层层叠设置的光阻挡层,所述光阻挡层用于对经过所述耐光照层的至少部分的光束进行阻挡。
  2. 根据权利要求1所述的密封件,其特征在于,所述光阻挡层包括通过对光的吸收作用对光束进行阻挡的光吸收层,所述光吸收层位于所述密封件远离光束照射方向的一侧。
  3. 根据权利要求1所述的密封件,其特征在于,所述光阻挡层包括位于所述耐光照层远离光束照射方向一侧的遮光层。
  4. 根据权利要求1所述的密封件,其特征在于,所述光阻挡层为通过对光的反射作用作用对光束进行阻挡的反射层。
  5. 根据权利要求4所述的密封件,其特征在于,所述反射层为镀膜在所述耐光照层局部表面的镀层,所述镀层的材料为金属反射材料、电介质反射材料,或金属电介质反射材料中的任意一种。
  6. 根据权利要求5所述的密封件,其特征在于,所述镀层覆盖所述耐光照层的全部表面。
  7. 根据权利要求1所述的密封件,其特征在于,所述光阻挡层位于所述耐光照层远离光束发出方向一侧,所述光阻挡层为遮光层,所述遮光层为深色图层,所述遮光层为通过喷涂、镀膜中的任意一种方式附着于耐光照层上。
  8. 根据权利要求1所述的密封件,其特征在于,所述耐光照层在所述光阻挡层上的投影面积大于或等于所述光阻挡层。
  9. 根据权利要求1所述的密封件,其特征在于,所述耐光照层和所述光阻挡层为一体注塑成型。
  10. 根据权利要求1所述的密封件,其特征在于,所述耐光照层与所述光阻挡层之间设置有连接层,所述光阻挡层为平面结构或过渡式结构。
  11. 根据权利要求10所述的密封件,其特征在于,所述连接层为焊接层,所述焊接方式为超声波焊接、超声波贴焊、超声波埋植或超声波铆接中的任意一种。
  12. 根据权利要求10所述的密封件,其特征在于,所述连接层为粘接层,所述粘接层采用环氧树脂、天然橡胶或酚醛树脂中的任意一种制成。
  13. 根据权利要求1所述的密封件,其特征在于,所述耐光照层包括分别设置在所述光阻挡层两侧的第一耐光照层和第二耐光照层。
  14. 一种发光装置,其特征在于,包括光源、用于固定密封件的密封槽和和与所述密封槽相匹配的密封件,所述密封件包括耐光照层和与所述耐光照层层叠设置的光阻挡层,所述光阻挡层用于对经过所述耐光照层的至少部分的光束进行阻挡。
  15. 根据权利要求14所述的发光装置,其特征在于,所述光阻挡层包括通过对光的吸收作用对光束进行阻挡的光吸收层,所述光吸收层位于靠近所述密封槽的一侧。
  16. 根据权利要求14所述的发光装置,其特征在于,所述耐光照层包括位于远离所述密封槽一侧的遮光层。
  17. 根据权利要求14所述的发光装置,其特征在于,所述耐光照层至少部分埋入发光装置内部。
     
     
PCT/CN2018/088381 2018-02-05 2018-05-25 密封件及发光装置 WO2019148702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810113077.8 2018-02-05
CN201810113077.8A CN110120623B (zh) 2018-02-05 2018-02-05 密封件及发光装置

Publications (1)

Publication Number Publication Date
WO2019148702A1 true WO2019148702A1 (zh) 2019-08-08

Family

ID=67477989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088381 WO2019148702A1 (zh) 2018-02-05 2018-05-25 密封件及发光装置

Country Status (2)

Country Link
CN (1) CN110120623B (zh)
WO (1) WO2019148702A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1466698A (zh) * 2001-08-23 2004-01-07 住友金属矿山株式会社 光隔离器组件
CN201981116U (zh) * 2010-12-10 2011-09-21 上海镭立激光科技有限公司 真空玻璃中排气口的密封结构
CN102203026A (zh) * 2008-11-14 2011-09-28 旭硝子株式会社 带密封材料层的玻璃构件的制造方法及电子器件的制造方法
JP2013232604A (ja) * 2012-05-01 2013-11-14 Towa Corp 積層体の切断方法および樹脂封止電子部品の製造方法
CN104064682A (zh) * 2013-03-21 2014-09-24 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3464473B2 (ja) * 2002-06-14 2003-11-10 株式会社半導体エネルギー研究所 表示装置
JP4124102B2 (ja) * 2003-11-12 2008-07-23 松下電工株式会社 多重反射防止構造を備えた発光素子とその製造方法
WO2011118109A1 (ja) * 2010-03-23 2011-09-29 株式会社朝日ラバー 可撓性反射基材、その製造方法及びその反射基材に用いる原材料組成物
JP2011204377A (ja) * 2010-03-24 2011-10-13 Sony Corp 光学機能膜およびその製造方法、並びに表示装置およびその製造方法
EP2378576A2 (en) * 2010-04-15 2011-10-19 Samsung LED Co., Ltd. Light emitting diode package, lighting apparatus having the same, and method for manufacturing light emitting diode package
CN102653034A (zh) * 2011-12-16 2012-09-05 成都泛华航空仪表电器有限公司 高压密封阀体组件脉冲激光焊接的方法
CN204045622U (zh) * 2014-08-25 2014-12-24 深圳市天电光电科技有限公司 Led 封装器件
DE202014011034U1 (de) * 2014-11-28 2017-06-23 Elringklinger Ag Dichtelement
KR102529150B1 (ko) * 2016-05-11 2023-05-03 삼성전자주식회사 광 변환 장치, 그 제조 방법, 및 이를 포함하는 광원 모듈과 백라이트 유닛

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1466698A (zh) * 2001-08-23 2004-01-07 住友金属矿山株式会社 光隔离器组件
CN102203026A (zh) * 2008-11-14 2011-09-28 旭硝子株式会社 带密封材料层的玻璃构件的制造方法及电子器件的制造方法
CN201981116U (zh) * 2010-12-10 2011-09-21 上海镭立激光科技有限公司 真空玻璃中排气口的密封结构
JP2013232604A (ja) * 2012-05-01 2013-11-14 Towa Corp 積層体の切断方法および樹脂封止電子部品の製造方法
CN104064682A (zh) * 2013-03-21 2014-09-24 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法

Also Published As

Publication number Publication date
CN110120623A (zh) 2019-08-13
CN110120623B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
CN202040690U (zh) 背光模块
US20090273931A1 (en) Illumination device and input unit with illumination device
CN206820238U (zh) 一种用于光纤激光器指示光接入和返回光监控的装置
JP2008299117A (ja) 表示装置
EP2923819B1 (en) Method of manufacture of an automotive light
US20170340386A1 (en) High power vcsel laser treatment device with skin cooling function and packaging structure thereof
KR20190005951A (ko) 백라이트 모듈 및 디스플레이 장치
CN108363137A (zh) 显示装置
CN109343227A (zh) 一种光投射模组及光学设备
CN110133793A (zh) 一种导光膜及显示装置
WO2019148702A1 (zh) 密封件及发光装置
US20190302349A1 (en) Light deflection device, method for manufacturing a light deflection device and illumination device
US11137533B2 (en) Display device and smart watch
JPH11119063A (ja) 光モジュール
CN204062674U (zh) 背光模块
CN201489235U (zh) 立体显示装置
CN212009225U (zh) 一种透明显示模组及电子设备
JP3228441U (ja) 発光素子及び光源モジュール
CN211502622U (zh) 一种安全的激光灯具
CN108561803B (zh) 一种发光组件及电子产品
CN105676339A (zh) 侧入式背光单元及显示装置
CN102182961A (zh) 背光模块及其组装方法
CN216643843U (zh) 一种激光灯
US20140313767A1 (en) Electronic incense assembly
CN202647601U (zh) 键盘背光单元之边际光束调制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904125

Country of ref document: EP

Kind code of ref document: A1