WO2019148688A1 - 一种微电网并网转孤岛运行模式的稳定控制方法 - Google Patents

一种微电网并网转孤岛运行模式的稳定控制方法 Download PDF

Info

Publication number
WO2019148688A1
WO2019148688A1 PCT/CN2018/086239 CN2018086239W WO2019148688A1 WO 2019148688 A1 WO2019148688 A1 WO 2019148688A1 CN 2018086239 W CN2018086239 W CN 2018086239W WO 2019148688 A1 WO2019148688 A1 WO 2019148688A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
grid
microgrid
source
micro
Prior art date
Application number
PCT/CN2018/086239
Other languages
English (en)
French (fr)
Inventor
盛德刚
徐运兵
戴罡
裴军
徐大可
Original Assignee
大全集团有限公司
南京大全电气研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大全集团有限公司, 南京大全电气研究院有限公司 filed Critical 大全集团有限公司
Priority to AU2018406527A priority Critical patent/AU2018406527A1/en
Publication of WO2019148688A1 publication Critical patent/WO2019148688A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the invention relates to the technical field of micro grids, in particular to a stability control method for a grid-connected island operation mode of a micro grid.
  • the traditional primary energy sources such as coal and oil are non-renewable. Improving energy efficiency, developing new energy sources, and strengthening the use of renewable energy have become the increasingly prominent energy demand growth and energy shortage in the process of rapid economic and social development. The inevitable choice between energy use and environmental protection.
  • the distributed power generation is connected to the large grid in the form of microgrid and is connected to the grid. It is the most effective way to realize the performance of the distributed generation system.
  • the microgrid refers to the distributed power source, energy storage device, energy conversion device and related load.
  • the small power generation and distribution system which is combined with monitoring and protection devices, is an autonomous system that can realize self-control, protection and management. It can be operated in parallel with the large power grid (the connection switch between the micro-grid and the large power grid is closed). It can be operated on an island (the microgrid is disconnected from the connection switch of the large grid).
  • the grid-connected and island dual-mode operation capability is the key to the micro-grid's technical and economic advantages.
  • the micro network needs to operate independently or the main network fails according to the situation, it should quickly disconnect the connection to the main network and switch to the island operation mode; when the power supply of the main network returns to normal, or when the micro network is connected to the network according to the situation,
  • the microgrid in the island operation mode is reconnected to the public grid. Smooth and stable switching is the key technology to ensure the smooth transition of the microgrid between the two modes of operation. In the mode conversion process, the corresponding operation control strategy needs to be adopted to ensure the smoothness of the switching process.
  • the control strategy of the micro power supply not only determines the operation status of the micro network in the two modes, but also directly relates to the switching process of the operation mode.
  • Literature [1] Wang Zan, Xiao Wei, Yao Zhilei. Design and implementation of high-performance inverter with independent dual-mode control in grid-connected[J]. Proceedings of the CSEE, 2007, 27(1): 54-59, Yang Zilong, Wu Chun Sheng.Design of three-phase grid-connected/independent dual-mode inverter system [J].
  • micro-power control strategy using droop control, islanding and grid-connected modes
  • the micro-power control strategy remains unchanged and conforms to the plug-and-play feature, but does not consider the adaptability of the droop control to the grid-connected operation and the inrush current suppression of the grid-connected process.
  • the invention has stable and reliable performance; the main power grid has a reliable means to actively notify the micro grid of its running state, which greatly reduces the cost; and can assist the micro grid to quickly and smoothly between the island running state and the grid running state.
  • the transition helps the microgrid to operate safely and steadily; it satisfies the need for the grid operator to effectively control the microgrid.
  • this solution is tested by a transformer, which is inefficient and inaccurate.
  • Chinese patent application, application number 201310509652.3, public day February 19, 2014 discloses a stable control method when the microgrid is connected to the island state, wherein the planned switching, before the microgrid and the power system are disassembled,
  • the microgrid stability control system collects the power of the grid connection point, configures the power source and the load to make it basically balanced, and simultaneously sends the power to the inverter before the disconnection, and smoothly cuts off the grid-connected circuit breaker to keep the output power of the inverter.
  • the power is transmitted to the grid-connected point before the disconnection, and the power is immediately balanced after the micro-grid is off-grid.
  • the switch is not planned, the microgrid suddenly forms an island with the power system.
  • the load is cut or the power supply is cut off within 10ms.
  • the road ensures the stability of the system switching moment; the energy storage inverter with the largest capacity is immediately switched to the V/f control, and the other power source is set to the P/Q control.
  • the method can realize smooth switching of the grid connection of the micro grid to the island state. However, its control only switches and controls the power supply branch.
  • the overall stability control is not perfect, and there is no targeted cutting to ensure smoothness and insufficient stability.
  • China Patent Application, Application No. 201410458561.6, Public Date, February 19, 2014 discloses a stable control method for switching the microgrid unplanned grid-connected island operation mode, using the power supply, load capacity, and adjustment in the microgrid.
  • the combination of the output power of the energy storage unit and the real-time detection of the operating frequency and voltage level of the microgrid are used to realize the feedback control, and finally realize the stable operation of the microgrid in the unplanned grid-connected island operation mode switching to ensure various electrical Equipment safety, ensuring uninterrupted power supply for important users, has a good application prospect.
  • the detection method of this scheme is complicated, the cost is high, and the stability control efficiency is insufficient.
  • the present invention provides a stable control method for a microgrid grid-to-island operation mode in which the detection mode is simple, the stability is good, and the stability control efficiency is high.
  • a method for stably controlling a microgrid grid-connected island operation mode includes the following steps:
  • the micro-grid central controller and the rapid measurement and control unit collect the electrical quantities of the micro-grid and the tie line and receive the higher-level system instructions to obtain the real-time operation status of the micro-grid, and then perform step 2);
  • step 3 Determine whether it is a planned island, when it is a planned island, perform step 3), otherwise perform step 4);
  • step 3 Calculate the real-time load and power output of the microgrid system to determine whether the source-load balance is balanced: if the source-load imbalance, adjust the energy storage output or cut off the controllable load, re-execute step 3); if the source-load balance, reach the planned switching time point After the PCC switch is disconnected, when each DG is in normal operation and the source and load balance of the microgrid is balanced, the process returns to step 1);
  • step 4) The micro-grid central controller judges that the system satisfies the island criterion. If the island criterion is satisfied, the main power is converted from the PQ operation mode to the V/f operation mode, and after the PCC switch is disconnected, step 5) is performed, otherwise, the process returns to step 1);
  • step 5 Determine whether the system is running normally: If the system is abnormal, immediately after detecting the faulty line, restart step 5); if the system is normal, if the source-load balance is judged in the micro-grid, if the source-load balance is reached, return to step 1 If the source is unbalanced, calculate the power imbalance, and adjust the energy storage output to re-determine the source-load balance. If the source-load balance is balanced, return to step 1). Otherwise, perform low-voltage/low-frequency load shedding to re-determine the source-charge balance.
  • micro-grid central controller is configured to collect the electrical quantities of the micro-grid and the tie line, and the electrical quantities of the micro-grid and the tie line include current and switch position on the tie line, bus voltage and frequency of the micro-grid, and Current and switch position of the micro power line, current and switch position of each load line.
  • the fast measurement and control unit is installed in each load line incoming line, and the fast measurement and control unit is configured to collect electrical information of each load line and provide overcurrent protection for the load line, and the fast measurement and control unit and the micro power grid central controller Communicate, upload load line electrical information to the microgrid central controller, and accept the remote control of the microgrid central device.
  • GOOSE communication is adopted between the micro power grid central controller, the rapid measurement and control unit, and the superior system.
  • the microgrid includes a wind power generator, a photovoltaic panel, and a battery.
  • micro grid is connected to the external power grid through the PCC point, and the inverter is used as an interface between the distributed power source and the energy storage system, and the PCC point and the inverter are controlled to open and close by the micro grid control system.
  • the PCC point, the power branch, and the load branch are opened and closed by the remote control module.
  • the main power source in the step 4) is provided by the energy storage system, and the micro grid can run in the PQ mode when the grid is connected to operate, and provides stable power for the micro grid; when the island is in operation, it can run in the V/f mode. Provides stable voltage and frequency support for the microgrid.
  • the determination of the source-load balance of the micro-grid in the steps 3) and 5) is based on the fact that all power sources and load power in the system are equal, that is, the power value is passed by the micro-grid central controller and the fast measurement and control unit through the high-speed. Sampling and data capture and calculation are obtained, that is, each cycle is sampled at 64 points, and the average of the measured values is taken after 3 cycles, and the accuracy of the source-source balance judgment is ensured on the basis of rapid response.
  • the steps of adjusting the source-load balance in the steps 3) and 5) are as follows: calculating the power imbalance of the micro-grid system, adjusting the energy storage output according to the calculation result, and performing low-voltage/low-frequency load shedding when the source-load is unbalanced.
  • the load is divided into important load and controllable load, and the controllable load is preferentially cut off to ensure that the important load is continuously discharged, and the controllable load is less power-off until the source-load balance is reached.
  • the control method utilizes the central controller of the micro-grid as the main control unit and the rapid measurement and control unit as the local control unit, collects the electrical quantities of each line of the micro-grid, and receives the instructions issued by the energy management system. According to the identified grid state, the switching load is adjusted and the energy storage system is adjusted, so that the microgrid can stably operate during the operation mode switching process, thereby further improving the reliability of the microgrid power supply;
  • the invention determines the state of the microgrid based on the collected microgrid data, and effectively improves the stability of the microgrid when the operation modes are switched by controlling the output of the energy storage device and the switching of the load. Improve the reliability of microgrid power supply and reduce the power outage range of the microgrid;
  • the program monitors the data of the microgrid online in real time, with high sensitivity, fast switching speed, high efficiency and good stability control;
  • This scheme can adopt the remote control module to open and close the PCC point and the micro-grid line by remote control, and perform internal switching of the micro-grid, which can be controlled remotely, saving cost and high efficiency.
  • FIG. 1 is a schematic view showing the overall structure of a microgrid according to the present invention.
  • Figure 2 is a flow chart of the present invention.
  • the invention relates to the operation and stability control of a microgrid, and particularly relates to a stable operation control method of a microgrid system when a grid is connected to an island.
  • the control method utilizes the micro-grid central controller as a main control unit to collect electrical quantities of each line of the micro-grid, and receives an instruction issued by the energy management system. According to the identified grid state, the switching load is adjusted and the energy storage system is adjusted, so that the microgrid can stably operate during the operation mode switching process, thereby further improving the reliability of the microgrid power supply.
  • the object of the present invention is to provide a method for realizing the stable operation of the micro-grid during the operation mode of the micro-grid connected to the island, improving the reliability of the micro-grid operation and reducing Microgrid power outage range.
  • the microgrid shown includes 2 sets of photovoltaic power generation systems, 2 sets of wind power generation systems, 2 sets of energy storage systems, and 2 loads. Except one set of energy storage system as the main power supply, the other DGs all run in PQ mode.
  • the AC load I is the primary load, and the AC load II is the other adjustable load.
  • a method for stably controlling a microgrid grid-connected island operation mode includes the following steps:
  • the micro-grid central controller and the rapid measurement and control unit collect the electrical quantities of the micro-grid and the tie-line and receive the instructions of the superior system to obtain the real-time operation status of the micro-grid, and then perform step 2);
  • step 3 Determine whether it is a planned island, when it is a planned island, perform step 3), otherwise perform step 4);
  • step 3 Calculate the real-time load and power output of the microgrid system to determine whether the source-load balance is balanced: if the source-load imbalance, adjust the energy storage output or cut off the controllable load, re-execute step 3); if the source-load balance, reach the planned switching time point After the PCC switch is disconnected, when each DG is in normal operation and the source and load balance of the microgrid is balanced, the process returns to step 1);
  • step 4) The micro-grid central controller judges that the system satisfies the island criterion. If the island criterion is satisfied, the main power is converted from the PQ operation mode to the V/f operation mode, and after the PCC switch is disconnected, step 5) is performed, otherwise, the process returns to step 1);
  • step 5 Determine whether the system is running normally: If the system is abnormal, immediately after detecting the faulty line, restart step 5); if the system is normal, if the source-load balance is judged in the micro-grid, if the source-load balance is reached, return to step 1 If the source is unbalanced, calculate the power imbalance, and adjust the energy storage output to re-determine the source-load balance. If the source-load balance is balanced, return to step 1). Otherwise, perform low-voltage/low-frequency load shedding to re-determine the source-charge balance.
  • the micro-grid central controller is configured to collect the electrical quantities of the micro-grid and the tie line, and the electrical quantities of the micro-grid and the tie line include current and switch position on the tie line, bus voltage and frequency of the micro-grid, and micro-power lines. Current and switch position, current for each load line, and switch position.
  • the microgrid central controller can perform multi-channel analog quantity and switch quantity acquisition, and communicate with an energy management system (EMS) and a battery management system (BMS), and can perform remote operation of the switch.
  • EMS energy management system
  • BMS battery management system
  • Built-in expert system program module to receive, process and forward data in real time.
  • the fast measurement and control unit is installed in each load line incoming line, and the fast measurement and control unit is configured to collect electrical information of each load line and provide overcurrent protection for the load line, and the fast measurement and control unit communicates with the central controller of the micro power grid, Upload the load line electrical information to the microgrid central controller and accept the remote control of the microgrid central device.
  • GOOSE communication is adopted between the micro-grid central controller, the rapid measurement and control unit, and the superior system.
  • the microgrid in the step 1) includes photovoltaic (PV), wind turbine (Wind Turbine Generation, WG), and energy storage device (SB), as shown in FIG. 1 , which can realize wind and solar complementation and improve Economical, environmentally friendly and reliable power supply.
  • the inverter is used as the interface between distributed power supply and energy storage system, which effectively improves the flexibility and dynamic performance of the microgrid. It involves multiple operating modes, including grid-connected operation mode. , island operation mode, grid-connected island mode, island-to-network mode.
  • the microgrid is connected to the external power grid through the PCC point, and the inverter is used as an interface between the distributed power source and the energy storage system, and the PCC point and the inverter are controlled to open and close by the micro grid control system.
  • the PCC point, the power branch, and the load branch are opened and closed by the remote control module.
  • the main power source in the step 4) is provided by the energy storage system, and the micro grid can run in the PQ mode when the grid is connected to operate, and provides stable power for the micro grid; when the island is in operation, it can operate in the V/f mode as the micro grid. Provides stable voltage and frequency support.
  • the determination of the source-load balance of the microgrid in the steps 3) and 5) is based on the fact that all power sources and load power in the system are equal, that is, the power value is measured and data by the micro-grid central controller and the fast measurement and control unit through high-speed sampling and data.
  • the capture and calculation are obtained, that is, each cycle is sampled at 64 points, and the mean value of the measured values is taken after 3 cycles, and the accuracy of the source-source balance judgment is ensured on the basis of rapid response.
  • the steps of adjusting the source-load balance in the steps 3) and 5) are as follows: calculating the power imbalance of the micro-grid system, adjusting the energy storage output according to the calculation result, and performing low-voltage/low-frequency load shedding when the source-source is unbalanced: according to the load
  • the priority classifies the load into important load and controllable load, and preferentially removes the controllable load to ensure that the important load is continuously discharged, and the controllable load is less power-off until the source-load balance is reached.
  • the island criterion contains three conditions, namely whether the main network has pressure, whether the PCC switch is in the jump position, and whether the microgrid is abnormal. According to the island criterion, the state of the micro grid can be quickly and accurately judged: if the main network is under pressure, PPC If the switch is closed and the microgrid has no abnormality, it will be connected to the grid. If the main network has pressure, the PCC switch is closed, and the microgrid is abnormal, the fault should be detected immediately and the fault should be removed. If the main network is under pressure, the PCC switch is disconnected and micro If there is no abnormality in the power grid, it should be connected to the grid, and the island should be connected to the grid.
  • the PCC switch is disconnected, and the microgrid is abnormal, the fault should be detected immediately and the fault should be removed, and then the grid connection operation should be carried out. If the main network is pressureless, the PCC switch is closed, and the microgrid is not abnormal, the island criterion is met, and the PCC switch should be disconnected immediately to enter the island operation; if the main network is pressureless, the PCC switch is closed, and the microgrid is abnormal, it is satisfied.
  • the PCC switch should be immediately disconnected to detect the fault in the microgrid and cut off; if the main network is pressureless, the PCC switch is disconnected, and the microgrid has no abnormality, it is normal island operation; if the main network is pressureless, PCC Breaking off, microgrid abnormal, fault detection and shall immediately remove the fault.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种微电网并网转孤岛运行模式的稳定控制方法,即通过微电网中央控制器及快速测控单元采集微电网、联络线各电气量以及接收上级系统指令,得到微电网实时运行状态;当是计划性孤岛,则计算微电网系统实时的负荷及电源出力,判断是否源荷平衡;否则当系统满足孤岛判据则主电源由PQ运行模式转换为V/f运行模式、分断PCC开关后判断系统是否正常运行,若系统异常,检测到故障线路后立即切除,重新开始判断;若系统正常,判断微电网内是否源荷平衡时,若源荷失衡,则计算功率失衡量,调节储能出力后重新判断是否源荷平衡,若源荷失衡则进行低压/低频减载,重新判断源荷平衡。本发明可以实现检测方式简单的效果,稳定性好。

Description

一种微电网并网转孤岛运行模式的稳定控制方法 技术领域
本发明涉及微电网技术领域,特别是一种微电网并网转孤岛运行模式的稳定控制方法。
背景技术
传统的煤炭、石油等一次能源是不可再生的,提高能源利用效率、开发新能源、加强可再生能源的利用,就成为了解决经济和社会快速发展过程中日益凸显的能源需求增长与能源紧缺、能源利用与环境保护之间矛盾的必然选择。
目前,光伏发电、风力发电、燃料电池、微型燃气轮机、内燃机等分布式电源经过长期的发展,在技术上已取得了长足的进步,我国计划到2020年,发电机总装机容量近10亿千瓦,其中包含小水电在内的分布式能源比重超过20%。
将分布式发电以微电网的形式接入大电网并网运行,是发挥分布式发电供能系统效能的最有效方式,微电网是指由分布式电源、储能装置、能量变换装置、相关负荷和监控、保护装置汇集而成的小型发配电系统,是一个能够实现自我控制、保护和管理的自治系统,既可以与大电网并网运行(微电网与大电网的连接开关闭合),也可以孤岛运行(微电网与大电网的连接开关断开)。
并网和孤岛双模式运行能力是微网实现其技术、经济性优势的关键。当微网根据情况需要独立运行或主网发生故障时,应迅速断开与主网的连接,转入孤岛运行模式;当主网供电恢复正常时,或根据情况需要微网并网运行时,将处于孤岛运行模式的微网重新联入公共电网。平滑稳定切换是保证微网在两种运行模式间平稳过渡的关键技术。在模式转换过程中,需要采用相应的运行控制策略,以保证切换过程的平稳性。
微电源的控制策略不仅决定了微网在两种模式下的运行状况,也直接关系到运行模式的切换过程。文献[1](王赞,肖岚,姚志垒。并网独立双模式控制高性能逆变器设计与实现[J]。中国电机工程学报,2007,27(1):54-59,杨子龙,伍春生。三相并网/独立双模式逆变器系统的设计[J]。电力电子技术,2010,44(1):14-16)提出双模式逆变器,并网运行采用PQ电流控制、独立运行采用V/f控制,符合微网运行需要,但电压控制与电流控制之间切换难度大,有切换失败的风险。文献[2](王成山,肖朝霞,王守相,微网综合控制与分析[J]。电力系统自动化,2008,32(7):98-103)采用下垂控制,孤岛和并网两种模式下微电源控制策略不变,符合即插即用的特点,但没有考虑下垂控制对并网运行的适应性以及并网过程的冲击电流抑制。
中国专利申请,申请号201510442425.2,公开日2015年11月4日,公开了一种微电网 孤岛及并网信号控制系统及方法,所述微电网孤岛及并网信号控制方法在微电网侧公共耦合点与并网断路器之间,通过检测电压或电流信号判断变电站是否向微电网发出状态信号,并根据信号的类型由微电网控制系统在合适的时机向并网断路器发出开闭命令,协助微电网在并网状态和孤岛状态之间过渡;所述系统包括:控制系统、脉冲信号系统、电压检测系统。此发明性能稳定可靠;使主电网自身有了可靠的手段能够主动通知微电网其将要运行的状态,大大降低了成本;能够协助微电网在孤岛运行状态和并网运行状态之间快速、平滑地过渡,有助于微电网安全、稳定地运行;满足了电网运行方对微电网进行有效控制的需求。但此方案通过互感器进行检测,效率低,精度不高。
中国专利申请,申请号201310509652.3,公开日2014年2月19日,公开了一种微电网并网向孤岛状态切换时的稳定控制方法,其中计划切换时,在微电网与电力系统解列前,微电网稳定控制系统采集并网点功率,配置电源与负荷使其基本平衡,同时向逆变器发送解列前并网点输送功率;平稳切断并网点断路器,使所述逆变器的输出功率保持为所述解列前并网点输送功率,微电网离网后功率立即达到平衡。而非计划切换时,微电网突然与电力系统解列而形成孤岛,根据并网点解列前的潮流和储能逆变器输出最大功率之差,在10ms内联切负荷或者切掉部分电源支路,确保系统切换瞬间的稳定性;设置最大容量的储能逆变器立即转为V/f控制,设置其他电源为P/Q控制。该方法能够实现微电网并网向孤岛状态的平滑切换。但其控制仅针对电源支路进行切换和平稳控制,对于整体稳定控制不完善,没有针对性的进行切断,保证平稳,稳定度不足。
中国专利申请,申请号201410458561.6,公开日2014年2月19日,公开了一种微电网非计划并网转孤岛运行模式切换时的稳定控制方法,采用调整微电网内电源、负荷容量,以及调整储能单元输出功率相结合的手段,实时检测微电网的运行频率和电压水平,用以实现反馈控制,最终实现微电网在非计划并网转孤岛运行模式切换时的稳定运行,保证各种电气设备安全,保障重要用户的不间断供电,具有良好的应用前景。但此方案检测方式复杂,成本高,平稳性控制效率不足。
发明内容
针对现有技术中存在的问题,本发明提供了一种可以实现检测方式简单的效果,稳定性好、平稳性控制效率高的微电网并网转孤岛运行模式的稳定控制方法。
本发明的目的通过以下技术方案实现。
一种微电网并网转孤岛运行模式的稳定控制方法,包括以下步骤:
1)通过微电网中央控制器及快速测控单元采集微电网、联络线各电气量以及接收上级系统指 令,得到微电网实时运行状态,之后再执行步骤2);
2)判断是否为计划型孤岛,当是计划型孤岛时,执行步骤3),否则执行步骤4);
3)计算微电网系统实时的负荷及电源出力,判断是否源荷平衡:若源荷失衡,调节储能出力或切除可控负荷,重新执行步骤3);若源荷平衡,到达计划切换时间点后分断PCC开关,当各DG正常运行及微电网源荷平衡时,则返回执行步骤1);
4)微电网中央控制器判断系统满足孤岛判据,若满足孤岛判据则主电源由PQ运行模式转换为V/f运行模式、分断PCC开关后执行步骤5),否则返回步骤1);
5)判断系统是否正常运行:若系统异常,检测到故障线路后立即切除,重新开始步骤5);若系统正常,判断微电网内是否源荷平衡时,若已源荷平衡,则返回步骤1);若源荷失衡,则计算功率失衡量,调节储能出力后重新判断是否源荷平衡,若源荷平衡则返回步骤1),否则进行低压/低频减载,重新判断源荷平衡。
进一步的,所述微电网中央控制器用于采集微电网以及联络线各电气量,所述微电网以及联络线各电气量包括联络线上的电流和开关位置、微电网的母线电压和频率、各微电源线路的电流和开关位置、各负荷线路的电流和开关位置。
进一步的,所述快速测控单元安装于各负荷线路进线,所述快速测控单元用于采集各负荷线路的电气信息并为负荷线路提供过流保护,所述快速测控单元与微电网中央控制器进行通信、上传负荷线路电气信息至微电网中央控制器、接受微电网中央器的遥控。
进一步的,所述微电网中央控制器、快速测控单元及上级系统之间采用GOOSE通信。
进一步的,所述微电网包括风力发电机、光伏电池板和蓄电池。
进一步的,所述微电网通过PCC点与外部电网连接,将逆变器作为分布式电源和储能系统的接口,所述PCC点和逆变器通过微电网控制系统控制开合。
进一步的,通过遥控模块对PCC点、电源支路、负荷支路进行开合。
进一步的,所述步骤4)中的主电源由储能系统提供,微电网并网运行时能够运行在PQ模式,为微电网提供稳定的功率;孤岛运行时,能够运行在V/f模式,为微电网提供稳定的电压和频率支撑。
进一步的,所述步骤3)和步骤5)中所述微电网源荷平衡的判断依据为系统内所有电源功率与负荷功率相等,即,功率值由微电网中央控制器、快速测控单元通过高速采样和数据捕捉并计算获得,即每个周波采样64点,3个周波后取测量值的均值,在快速响应的基础上确保源荷平衡判断的准确性。
进一步的,所述步骤3)和步骤5)中调节源荷平衡步骤如下:计算微电网系统功率失衡 量,根据计算结果调节储能出力,当源荷不平衡时,则进行低压/低频减载:按照负荷的优先级将负荷分为重要负荷及可控负荷,优先切除可控负荷,保证重要负荷不断电、可控负荷少断电,直至达到源荷平衡。
相比于现有技术,本发明的优点在于:
(1)该控制方法利用微电网中央控制器作为主控单元、快速测控单元作为就地控制单元,采集微电网各线路电气量,并接收能量管理系统下发指令。根据识别的电网状态,进行投切负荷、调节储能系统,以使微电网在运行模式切换过程中稳定运行,进一步提高微电网供电的可靠性;
(2)本发明以采集到的微电网数据为依据,判断微电网所处状态,通过控制储能装置的出力和负荷的投切,有效地改善了各运行模式切换时微电网的稳定性,提高了微电网供电的可靠性,减少了微电网的停电范围;
(3)本方案实时在线监测微电网的数据,灵敏度高,切换速度快,效率高,平稳性控制好;
(4)本方案可采用遥控模块,通过遥控对PCC点和微电网各线路进行开合,进行微电网的内部切换,可远程进行控制,节约成本,效率高。
附图说明
图1为本发明的微电网整体结构示意图;
图2为本发明流程图。
具体实施方式
本发明涉及微电网的运行和稳定控制,具体涉及并网转孤岛时微电网系统的稳定运行控制方法。该控制方法利用微电网中央控制器作为主控单元,采集微电网各线路电气量,并接收能量管理系统下发指令。根据识别的电网状态,进行投切负荷、调节储能系统,以使微电网在运行模式切换过程中稳定运行,进一步提高微电网供电的可靠性。
针对现有微电网并离网切换存在的问题,本发明的目的是提供一种在微电网并网转孤岛运行模式过程中实现微电网稳定运行的方法,提高微电网运行的可靠性,减小微电网停电范围。
下面结合说明书附图和具体的实施例,对本发明作详细描述。
如图1所示,所示微电网包括光伏发电系统2套、风力发电系统2套、储能系统2套、负荷2路。除1套储能系统作为主电源外,其余DG皆运行在PQ模式。交流负荷I为一级负荷,交流负荷II为其他可调负荷。
如图2所示,一种微电网并网转孤岛运行模式的稳定控制方法,包括以下步骤:
1)通过微电网中央控制器及快速测控单元采集微电网、联络线各电气量以及接收上级系统指令,得到微电网实时运行状态,之后再执行步骤2);
2)判断是否为计划型孤岛,当是计划型孤岛时,执行步骤3),否则执行步骤4);
3)计算微电网系统实时的负荷及电源出力,判断是否源荷平衡:若源荷失衡,调节储能出力或切除可控负荷,重新执行步骤3);若源荷平衡,到达计划切换时间点后分断PCC开关,当各DG正常运行及微电网源荷平衡时,则返回执行步骤1);
4)微电网中央控制器判断系统满足孤岛判据,若满足孤岛判据则主电源由PQ运行模式转换为V/f运行模式、分断PCC开关后执行步骤5),否则返回步骤1);
5)判断系统是否正常运行:若系统异常,检测到故障线路后立即切除,重新开始步骤5);若系统正常,判断微电网内是否源荷平衡时,若已源荷平衡,则返回步骤1);若源荷失衡,则计算功率失衡量,调节储能出力后重新判断是否源荷平衡,若源荷平衡则返回步骤1),否则进行低压/低频减载,重新判断源荷平衡。
所述微电网中央控制器用于采集微电网以及联络线各电气量,所述微电网以及联络线各电气量包括联络线上的电流和开关位置、微电网的母线电压和频率、各微电源线路的电流和开关位置、各负荷线路的电流和开关位置。
所述步骤1)中微电网中央控制器(MGCC)可进行多路模拟量、开关量的采集,并与能量管理系统(EMS)、电池管理系统(BMS)进行通信,能进行开关的遥控操作;内置专家系统程序模块,对数据进行实时接收、处理、转发。
所述快速测控单元安装于各负荷线路进线,所述快速测控单元用于采集各负荷线路的电气信息并为负荷线路提供过流保护,所述快速测控单元与微电网中央控制器进行通信、上传负荷线路电气信息至微电网中央控制器、接受微电网中央器的遥控。
所述微电网中央控制器、快速测控单元及上级系统之间采用GOOSE通信。
所述步骤1)中的微电网包含光伏(Solar Photovoltaic,PV)、风力发电(Wind Turbine Generation,WG)、储能装置(Storage Battery,SB),如图1所示,可以实现风光互补,提高供电的经济性、环保性和可靠性,同时,采用逆变器作为分布式电源和储能系统的接口,有效提高了微电网的柔性和动态性能;涉及多种运行模式,包括并网运行模式、孤岛运行模式、并网转孤岛模式、孤岛转并网模式等。
所述微电网通过PCC点与外部电网连接,将逆变器作为分布式电源和储能系统的接口,所述PCC点和逆变器通过微电网控制系统控制开合。
通过遥控模块对PCC点、电源支路、负荷支路进行开合。
所述步骤4)中的主电源由储能系统提供,微电网并网运行时能够运行在PQ模式,为微电网提供稳定的功率;孤岛运行时,能够运行在V/f模式,为微电网提供稳定的电压和频率支撑。
所述步骤3)和步骤5)中所述微电网源荷平衡的判断依据为系统内所有电源功率与负荷功率相等,即,功率值由微电网中央控制器、快速测控单元通过高速采样和数据捕捉并计算获得,即每个周波采样64点,3个周波后取测量值的均值,在快速响应的基础上确保源荷平衡判断的准确性。
所述步骤3)和步骤5)中调节源荷平衡步骤如下:计算微电网系统功率失衡量,根据计算结果调节储能出力,当源荷不平衡时,则进行低压/低频减载:按照负荷的优先级将负荷分为重要负荷及可控负荷,优先切除可控负荷,保证重要负荷不断电、可控负荷少断电,直至达到源荷平衡。
孤岛判据包含三个条件,即主网是否有压、PCC开关是否在跳位、微电网内是否异常,根据该孤岛判据可快速准确地判断微电网的状态:若主网有压、PPC开关闭合、微电网无异常,则为正常并网运行;若主网有压、PCC开关闭合、微电网异常,则应立即进行故障检测并切除故障;若主网有压、PCC开关分断、微电网无异常,则应进行并网操作,孤岛转并网运行;若主网有压、PCC开关分断、微电网异常,则应立即进行故障检测并切除故障,然后进行并网操作,孤岛转并网运行;若主网无压、PCC开关闭合、微电网无异常,则满足孤岛判据,应立即分断PCC开关,进入孤岛运行;若主网无压、PCC开关闭合、微电网异常,则满足孤岛判据,应立即分断PCC开关,检测微电网内故障并切除;若主网无压、PCC开关分断、微电网无异常,则为正常孤岛运行;若主网无压、PCC开关分断、微电网异常,则应立即进行故障检测并切除故障。
文献[3](郭贤,郭贺,程浩忠,Masaud Bazargan,梁武星.考虑用户停电损失的微电网架规划[J].电工技术学报,2014,29(8):301-308.)中给出了单位停电损失费用的典型取值:当停电持续时间为20min时,小工业类用户停电损失大约为140元/(kW·h);当停电持续时间为60min时,小工业类用户停电损失约为250元/(kW·h)。若微电网在各运行模式间不能平稳地无缝切换,微电网将进入停机、启机、逐步接入负荷过程。该过程持续约30min。以容量为500kW的微电网为例,经历这一过程的停电损失为:
C=30÷60×500×140=35000元。

Claims (10)

  1. 一种微电网并网转孤岛运行模式的稳定控制方法,其特征在于包括以下步骤:
    1)通过微电网中央控制器及快速测控单元采集微电网、联络线各电气量以及接收上级系统指令,得到微电网实时运行状态,之后再执行步骤2);
    2)判断是否为计划型孤岛,当是计划型孤岛时,执行步骤3),否则执行步骤4);
    3)计算微电网系统实时的负荷及电源出力,判断是否源荷平衡:若源荷失衡,调节储能出力或切除可控负荷,重新执行步骤3);若源荷平衡,到达计划切换时间点后分断PCC开关,当各DG正常运行及微电网源荷平衡时,则返回执行步骤1);
    4)微电网中央控制器判断系统满足孤岛判据,若满足孤岛判据则主电源由PQ运行模式转换为V/f运行模式、分断PCC开关后执行步骤5),否则返回步骤1);
    5)判断系统是否正常运行:若系统异常,检测到故障线路后立即切除,重新开始步骤5);若系统正常,判断微电网内是否源荷平衡时,若已源荷平衡,则返回步骤1);若源荷失衡,则计算功率失衡量,调节储能出力后重新判断是否源荷平衡,若源荷平衡则返回步骤1),否则进行低压/低频减载,重新判断源荷平衡。
  2. 根据权利要求1所述的一种所述的微电网并网转孤岛运行模式的稳定控制方法,其特征在于所述微电网中央控制器用于采集微电网以及联络线各电气量,所述微电网以及联络线各电气量包括联络线上的电流和开关位置、微电网的母线电压和频率、各微电源线路的电流和开关位置、各负荷线路的电流和开关位置。
  3. 根据权利要求1所述的一种所述的微电网并网转孤岛运行模式的稳定控制方法,其特征在于所述快速测控单元安装于各负荷线路进线,所述快速测控单元用于采集各负荷线路的电气信息并为负荷线路提供过流保护,所述快速测控单元与微电网中央控制器进行通信、上传负荷线路电气信息至微电网中央控制器、接受微电网中央器的遥控。
  4. 根据权利要求1所述的一种所述的微电网并网转孤岛运行模式的稳定控制方法,其特征在于所述微电网中央控制器、快速测控单元及上级系统之间采用GOOSE通信。
  5. 根据权利要求1或2或3或4所述的一种所述的微电网并网转孤岛运行模式的稳定控制方法,其特征在于所述微电网包括风力发电机、光伏电池板和蓄电池。
  6. 根据权利要求1所述的一种所述的微电网并网转孤岛运行模式的稳定控制方法,其特征在于所述微电网通过PCC点与外部电网连接,将逆变器作为分布式电源和储能系统的接口,所述PCC点和逆变器通过微电网控制系统控制开合。
  7. 根据权利要求6所述的一种所述的微电网并网转孤岛运行模式的稳定控制方法,其特征在于通过遥控模块对PCC点、电源支路、负荷支路进行开合。
  8. 根据权利要求1所述的一种所述的微电网并网转孤岛运行模式的稳定控制方法,其特征在于所述步骤4)中的主电源由储能系统提供,微电网并网运行时能够运行在PQ模式,为微电网提供稳定的功率;孤岛运行时,能够运行在V/f模式,为微电网提供稳定的电压和频率支撑。
  9. 根据权利要求1所述的一种所述的微电网并网转孤岛运行模式的稳定控制方法,其特征在于所述步骤3)和步骤5)中所述微电网源荷平衡的判断依据为系统内所有电源功率与负荷功率相等,即P DG=P LOAD,功率值由微电网中央控制器、快速测控单元通过高速采样和数据捕捉并计算获得,即每个周波采样64点,3个周波后取测量值的均值,在快速响应的基础上确保源荷平衡判断的准确性。
  10. 根据权利要求1所述的一种所述的微电网并网转孤岛运行模式的稳定控制方法,其特征在于所述步骤3)和步骤5)中调节源荷平衡步骤如下:计算微电网系统功率失衡量,根据计算结果调节储能出力,当源荷不平衡时,则进行低压/低频减载:按照负荷的优先级将负荷分为重要负荷及可控负荷,其中,重要负荷包括一级负荷、二级负荷,可控负荷包括三级负荷,优先切除可控负荷,保证重要负荷不断电、可控负荷少断电,直至达到源荷平衡。
PCT/CN2018/086239 2018-02-01 2018-05-10 一种微电网并网转孤岛运行模式的稳定控制方法 WO2019148688A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018406527A AU2018406527A1 (en) 2018-02-01 2018-05-10 Method for controlling stability when microgrid grid connection switches to island operation mode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810105873.7A CN109842148A (zh) 2018-02-01 2018-02-01 一种微电网并网转孤岛运行模式的稳定控制方法
CN201810105873.7 2018-02-01

Publications (1)

Publication Number Publication Date
WO2019148688A1 true WO2019148688A1 (zh) 2019-08-08

Family

ID=66882915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086239 WO2019148688A1 (zh) 2018-02-01 2018-05-10 一种微电网并网转孤岛运行模式的稳定控制方法

Country Status (3)

Country Link
CN (1) CN109842148A (zh)
AU (2) AU2018406527A1 (zh)
WO (1) WO2019148688A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697619A (zh) * 2020-06-09 2020-09-22 上海交通大学 微电网逆变器非计划离网控制切换方法及系统
CN112202208A (zh) * 2020-09-24 2021-01-08 广东电网有限责任公司韶关供电局 一种小水电微网切机自组网控制方法和系统
CN112350367A (zh) * 2020-10-13 2021-02-09 芜湖泰伦特能源科技有限公司 一种通过微电网构建的局部电网联合供电的控制方法
CN113629654A (zh) * 2021-08-04 2021-11-09 深圳市英锐恩科技有限公司 一种电源控制方法、电路、装置及可读存储介质
CN114063698A (zh) * 2021-10-20 2022-02-18 中航宝胜海洋工程电缆有限公司 一种恒压海底观测网的干线调节、保护电路及方法
CN116780629A (zh) * 2023-06-27 2023-09-19 武汉大学 一种含储能配电系统独立运行的平滑切换方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212583A (zh) * 2019-06-25 2019-09-06 国网山东省电力公司临沂供电公司 配网故障分布式电源解列联动的控制方法
CN111525524B (zh) * 2020-05-13 2022-05-24 国网山西省电力公司电力科学研究院 一种分布式光伏接入配电网继电保护方法
CN112186796B (zh) * 2020-09-04 2022-02-01 三峡大学 基于人工情感强化学习的多微网非计划性孤岛控制方法
CN113255485B (zh) * 2021-05-13 2022-05-17 云南电网有限责任公司 一种水力发电机组并网模式的识别方法及装置
CN113890098A (zh) * 2021-10-22 2022-01-04 三峡大学 基于人工情感sarsa学习的微电网非计划性孤岛切换方法
CN114156924A (zh) * 2021-11-30 2022-03-08 山东华天电气有限公司 一种微电网“源-荷-储”协同互动控制系统及方法
CN116826795B (zh) * 2023-06-01 2024-03-15 中能建储能科技(武汉)有限公司 一种储能电站非计划孤岛运行负荷分配控制设备及方法
CN117277403A (zh) * 2023-08-16 2023-12-22 湖北能源集团鄂州发电有限公司 一种微电网孤岛控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856924A (zh) * 2012-08-29 2013-01-02 中国能源建设集团广东省电力设计研究院 一种基于复合储能的微电网平滑切换控制方法与策略
CN103296699A (zh) * 2013-03-19 2013-09-11 昆明理工大学 一种基于广域信息的计划孤岛供电转换功率平衡的快速控制方法
CN103595052A (zh) * 2013-10-25 2014-02-19 国家电网公司 微电网并网向孤岛状态切换时的稳定控制方法
CN106374501A (zh) * 2016-11-17 2017-02-01 新智能源系统控制有限责任公司 一种实现微电源供电与负荷用电平衡的微电网系统
US20170163037A1 (en) * 2015-12-03 2017-06-08 Enphase Energy, Inc. Method and apparatus for minimizing circulating currents in microgrids

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324741B (zh) * 2011-08-17 2013-10-16 国家电网公司 微电网离网能量平衡控制装置与方法
CN103607045B (zh) * 2013-11-06 2015-05-20 国电南瑞科技股份有限公司 基于goose的微电网并网转离网平滑切换智能控制方法
CN103795084B (zh) * 2014-02-24 2015-11-18 国电南瑞科技股份有限公司 微电网一键式并网转离网平滑切换控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856924A (zh) * 2012-08-29 2013-01-02 中国能源建设集团广东省电力设计研究院 一种基于复合储能的微电网平滑切换控制方法与策略
CN103296699A (zh) * 2013-03-19 2013-09-11 昆明理工大学 一种基于广域信息的计划孤岛供电转换功率平衡的快速控制方法
CN103595052A (zh) * 2013-10-25 2014-02-19 国家电网公司 微电网并网向孤岛状态切换时的稳定控制方法
US20170163037A1 (en) * 2015-12-03 2017-06-08 Enphase Energy, Inc. Method and apparatus for minimizing circulating currents in microgrids
CN106374501A (zh) * 2016-11-17 2017-02-01 新智能源系统控制有限责任公司 一种实现微电源供电与负荷用电平衡的微电网系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697619A (zh) * 2020-06-09 2020-09-22 上海交通大学 微电网逆变器非计划离网控制切换方法及系统
CN111697619B (zh) * 2020-06-09 2023-07-21 上海交通大学 微电网逆变器非计划离网控制切换方法及系统
CN112202208A (zh) * 2020-09-24 2021-01-08 广东电网有限责任公司韶关供电局 一种小水电微网切机自组网控制方法和系统
CN112350367A (zh) * 2020-10-13 2021-02-09 芜湖泰伦特能源科技有限公司 一种通过微电网构建的局部电网联合供电的控制方法
CN113629654A (zh) * 2021-08-04 2021-11-09 深圳市英锐恩科技有限公司 一种电源控制方法、电路、装置及可读存储介质
CN113629654B (zh) * 2021-08-04 2023-09-15 深圳市英锐恩科技有限公司 一种电源控制方法、电路、装置及可读存储介质
CN114063698A (zh) * 2021-10-20 2022-02-18 中航宝胜海洋工程电缆有限公司 一种恒压海底观测网的干线调节、保护电路及方法
CN114063698B (zh) * 2021-10-20 2024-01-23 中航宝胜海洋工程电缆有限公司 一种恒压海底观测网的干线调节、保护电路及方法
CN116780629A (zh) * 2023-06-27 2023-09-19 武汉大学 一种含储能配电系统独立运行的平滑切换方法及装置
CN116780629B (zh) * 2023-06-27 2024-02-20 武汉大学 一种含储能配电系统独立运行的平滑切换方法及装置

Also Published As

Publication number Publication date
CN109842148A (zh) 2019-06-04
AU2018406527A1 (en) 2020-09-24
AU2018102188A4 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2019148688A1 (zh) 一种微电网并网转孤岛运行模式的稳定控制方法
CN110943483B (zh) 一种微电网系统及控制方法
Cvetkovic et al. Future home uninterruptible renewable energy system with vehicle-to-grid technology
WO2018103232A1 (zh) 一种新能源微电网电动汽车充电站的控制方法
Shahidehpour et al. Cutting campus energy costs with hierarchical control: The economical and reliable operation of a microgrid
EP2645522A1 (en) A battery storage device for distributed hybrid powered smart grid system and control method thereof
CN111049200A (zh) 一种智能区域微电网系统及其控制方法
CN214204284U (zh) 适应多应用场景的多能源混合电站系统
WO2012129827A1 (zh) 多级电网自愈控制装置及控制方法
CN111404186B (zh) 一种配变动态增容智能储能装置及控制方法
CN105337306A (zh) 一种光储一体化发电系统
CN110535190B (zh) 一种户用微网能量路由器能量管理单元的本地控制方法
CN104242338A (zh) 一种含分布式电源的变电站用微网系统及控制方法
CN111600330A (zh) 微电网系统
CN108347067B (zh) 一种含有电池储能和发电机的微网架构和控制方法
WO2023093172A1 (zh) 直流组网船舶混动实验室的能量控制系统及其控制方法
WO2019075879A1 (zh) 一种交直流混合微电网运行模式转换方法
KR101644522B1 (ko) Ac 마이크로그리드 3상부하에서의 전력 공급 시스템
CN115378031A (zh) 低压分布式光伏计量采集系统及控制方法
Martirano et al. Implementation of SCADA systems for a real microgrid lab testbed
CN204858718U (zh) 一种微网负载分级供电控制装置
Zhu et al. Design and development of a microgrid project at rural area
CN111682588A (zh) 一种微网系统控制方法及微网系统控制器
CN112448470A (zh) 一种集综合能源利用实现的快速响应电厂保安系统
CN211930271U (zh) 一种用于配变增容的智能储能装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018406527

Country of ref document: AU

Date of ref document: 20180510

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18903176

Country of ref document: EP

Kind code of ref document: A1