WO2019148468A1 - 一种风扇及移动终端 - Google Patents
一种风扇及移动终端 Download PDFInfo
- Publication number
- WO2019148468A1 WO2019148468A1 PCT/CN2018/075171 CN2018075171W WO2019148468A1 WO 2019148468 A1 WO2019148468 A1 WO 2019148468A1 CN 2018075171 W CN2018075171 W CN 2018075171W WO 2019148468 A1 WO2019148468 A1 WO 2019148468A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- guide ring
- fan
- blade
- groove
- air
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/281—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/30—Vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/663—Sound attenuation
Definitions
- the present application relates to the technical field of mobile terminals, and in particular, to a fan and a mobile terminal.
- Terminal products such as notebook computers and tablets, because of the user's thin and light demand, need to be thinner and lighter, and need good heat dissipation performance, thus having a better temperature experience. And in order to improve the user's silent experience, the fan needs to have lower noise. This has the same small size as the cooling fan, and requires a higher air volume and lower noise.
- the application provides a fan and a mobile terminal for improving the air supply volume of the fan.
- the present application provides a fan, the fan includes a casing, the casing is provided with an air inlet and an air outlet, and a centrifugal impeller is disposed in the casing, and the centrifugal impeller is rotatable relative to the casing, thereby The air feed vent is sent to the air outlet; in a specific arrangement, the centrifugal impeller includes a plurality of blades disposed around a drive shaft of the centrifugal impeller, and at least one of the plurality of blades is used to improve the air intake effect.
- a plurality of grooves are provided, the plurality of grooves are arranged in a radial direction of the blade, and the grooves are inclined at an angle with respect to a normal direction of the radial tangential direction of the blade.
- the radial direction of the blade is the direction in which the blade is gradually extended away from the drive shaft.
- the motion of the airflow relative to the blade is synthesized by the velocity tangentially along the blade and the velocity relative to the radius of the centrifugal impeller, ie the final relative velocity is not parallel to the normal to the blade (perpendicular to the radial tangential direction of the blade) Direction), therefore, in order to allow air to flow through the groove in a smoother manner, the groove provided in the embodiment of the present application is inclined with respect to the radial direction such that the length direction of the groove is as the same as the direction of the relative speed, thereby Improves the passage of air over the grooves. In turn, the pass effect is improved and the noise caused by the fan is reduced.
- grooves When the above grooves are specifically provided, they may be formed in different manners, which are respectively described below.
- the groove is a first groove that is inclined in a single direction, and an angle between a longitudinal direction of the first groove and a normal direction of a radial tangent of the blade is an acute angle.
- the acute angle can be any angle between 3° and 75°.
- the plurality of first grooves may be disposed on different faces of the blade.
- the first groove may be respectively disposed on the top surface and the bottom surface, or The top surface or the bottom surface is provided with a first groove.
- a first groove may also be provided on the sides of the blade.
- the plurality of first grooves may be arranged periodically or non-periodically.
- the cross section of the first trench may be rectangular or triangular. Or have a streamlined ellipse, or other shape.
- the height of the single first groove is measured along the height direction of the blade, between 0.1% and 25% of the total height of the blade, and the dimension of the first groove width is measured along the radial length of the blade, the first groove
- the width of the groove is between 0.1% and 25% of the total length of the blade.
- the groove adopts a second groove of a chevron shape.
- the second groove includes a first groove body and a second groove body that are oppositely inclined, and the An angle between a groove body and the second groove body and a normal direction of the radial tangential direction of the blade is an acute angle.
- the acute angle may be any angle between 3° and 75°.
- the periodicity of the arrangement surface and the arrangement may refer to the above description of the first trench.
- a third groove is provided on the outer end surface of the blade. Further improve the ventilation effect.
- a guide ring In addition to the above-mentioned grooves, it is also possible to improve the air intake effect of the fan by adding a guide ring.
- a driving shaft of the centrifugal impeller is exposed at the air inlet; and the guiding ring is fixedly connected to the plurality of blades, and a side of the guiding ring facing the driving shaft is a guiding surface.
- the air flowing in from the air inlet is guided through the guide surface of the guide ring, thereby improving the effect of the air during steering, reducing the eddy current, improving the air flow, and thereby improving the air intake effect.
- the guiding ring can be used alone or in combination with the above-mentioned grooves, thereby further improving the air blowing effect.
- the guide ring When the guide ring is specifically disposed, the guide ring may be a unitary ring shape, or may be segmented. In this case, the guide ring includes a plurality of spaced arc segments.
- the position of the guide ring when the position of the guide ring is specifically set, it may be located inside the casing or exposed to the air inlet. In a specific embodiment, the guide ring is exposed at the air inlet.
- the cross section may have different shapes, such as the shape of the guide ring being circular, elliptical or bullet-shaped.
- a fan in a second aspect, includes a casing, the casing is provided with an air inlet and an air outlet, and a centrifugal impeller is disposed in the casing, and the centrifugal impeller is rotatable relative to the casing to send air
- the air inlet is sent to the air outlet;
- the centrifugal impeller includes a plurality of blades disposed around the driving shaft of the centrifugal impeller, and further includes a guiding ring for improving the air inlet effect, and the guiding ring is The plurality of blades are fixedly connected, and one side of the guide ring facing the drive shaft is a guiding surface.
- the air flowing in from the air inlet is guided through the guiding surface of the guiding ring, thereby improving the effect of the air in the steering, reducing the eddy current, improving the air circulation, and thereby improving the air inlet effect.
- the guide ring may be a unitary ring shape or may be segmented.
- the guide ring includes a plurality of spaced arc segments.
- the position of the guide ring when the position of the guide ring is specifically set, it may be located inside the casing or exposed to the air inlet. In a specific embodiment, the guide ring is exposed at the air inlet.
- the cross section may have different shapes, such as the shape of the guide ring being circular, elliptical or bullet-shaped.
- the present application further provides a mobile terminal comprising a housing and a fan of any of the above described in the housing. Improve the fan's air supply and reduce fan noise by adding a guide ring, adding a groove, or simultaneously adding a groove and a guide ring.
- FIG. 1 is a schematic structural diagram of a fan according to an embodiment of the present application.
- FIG. 2 is a cross-sectional view of a fan according to an embodiment of the present application.
- FIG. 3 is a schematic structural view of a centrifugal impeller according to an embodiment of the present application.
- FIG. 4 to FIG. 8 are schematic cross-sectional views of a guide ring according to an embodiment of the present application.
- FIG. 9 is a schematic diagram of a size of a fan according to an embodiment of the present application.
- FIG. 10 is a schematic cross-sectional view of a guide ring provided by an embodiment of the present application.
- FIG 11 is a schematic structural view of another centrifugal impeller according to an embodiment of the present application.
- FIG. 12 is a schematic structural diagram of a blade according to an embodiment of the present application.
- FIG. 13 is a schematic structural diagram of another blade according to an embodiment of the present application.
- Figure 14 is a schematic structural view of another blade according to an embodiment of the present application.
- FIG. 15 is a schematic diagram of an internal flow field direction of a centrifugal impeller according to an embodiment of the present application.
- Figure 16 is a schematic view showing the internal flow field direction of the blade shown in Figure 13;
- Figure 17 is a schematic view showing the internal flow field direction of the blade shown in Figure 14;
- FIG. 18 is a schematic structural diagram of a mobile terminal according to an embodiment of the present application.
- the mobile terminal is gradually becoming thinner.
- the fan in the mobile terminal needs to be continuously miniaturized in order to match the mobile terminal, thereby reducing the air supply amount.
- the embodiment of the present application provides a fan.
- the fan is configured to improve the air supply volume of the fan.
- the fan provided in the embodiment of the present application is a centrifugal fan
- the centrifugal fan includes a casing and a centrifugal impeller disposed in the casing, wherein the centrifugal impeller is rotatably coupled to the casing through the driving shaft.
- the axis of the drive shaft is also the axis of the centrifugal impeller.
- the air inlet and the air outlet are arranged on the casing.
- the number of the air inlets may be one or two.
- the air inlet is one, the air inlet is located at one side of the centrifugal impeller, and at this time, the fan is a one-side air inlet fan.
- the air inlets are two, the two air inlets are oppositely disposed on both sides of the centrifugal impeller, and the fan is a fan that enters the wind on both sides.
- FIG. 1 is a schematic structural view of a fan
- FIG. 2 is a cross-sectional view of the fan.
- the housing includes a top cover 10 and a bottom cover 20 which are oppositely disposed, and The top cover 10 and the bottom cover 20 are connected by a side wall.
- the air inlet is disposed on the top cover 10
- the air outlet 70 is disposed on the side wall. In use, the air entering from the top cover 10 is transported to the air outlet 70 on the side wall through the centrifugal impeller 80, and then enters the mobile terminal. internal.
- the arrowed line in FIG. 2 indicates the flow direction of the air.
- the flow direction of the air in the casing is approximately a ninety degree fold when the air circulates. bend. Since the thickness of the top cover 10 at the air inlet is small, and the gap between the top cover and the inner wall surface of the system is small, the air has a large bend at the edge of the air inlet, which is easy to generate eddy currents. Affects the amount of air supplied to the air in the fan.
- the centrifugal impeller 80 provided in the embodiment of the present application is provided with a guide ring 40, which is referred to FIG. 3 together, and FIG. 3 shows the guide ring 40 on the centrifugal impeller 80.
- the guide ring 40 is annular, and the center of the guide ring 40 is located on the axis of the centrifugal impeller 80 to ensure that the guide ring 40 can rotate synchronously with the centrifugal impeller 80 when rotated, and can be opposite to the centrifugal impeller 80. still. As shown in FIG.
- the guide ring 40 divides the area on the centrifugal impeller 80 into two regions, namely, an area I and an area II, wherein the area I is an area corresponding to the air inlet, and the air is from the area when entering the air. I enters and is guided by the guide ring 40, flows through the blade 81, and is guided through the blade 81 into the region II.
- the guide ring 40 may be other than the above-mentioned ring shape, such as a ring shape surrounded by a plurality of discontinuous arc segments, or a different shape such as a ring with a notch.
- the guide ring 40 has a guide surface 41 thereon.
- 41 is the inner side of the guide ring 40, and when mounted on the centrifugal impeller 80, the guide surface 41 faces the axis of the centrifugal impeller 80.
- the guiding surface 41 is an arc-shaped guiding surface, in FIG.
- the arc of the edge of the guide surface 41 shown may be a different streamlined arc such as a circular arc or an elliptical arc.
- the edge of the guide surface 41 may not be an arc or may be a non-streamlined shape.
- the guide ring has a two-part function, one for the streamlined design to reduce air resistance and the other for reducing the eddy currents generated by fluid flow through the cover 10. Therefore, the guide surface 41 has a partial effect even if it is not streamlined, and therefore, the cross-sectional shape of the specific guide ring 40 is not limited herein.
- FIG. 4 to FIG. 8 show cross-sectional shapes of different guide rings 40.
- the cross section of the guide ring 40 provided in this embodiment may be Different shapes such as round, oval, bullet, and racetrack.
- the cross-sectional shape thereof may be a different shape such as a regular shape, an irregular shape, a symmetrical or an asymmetrical shape.
- R1 is the radius of the drive shaft 50
- r2 is the outer diameter of the top cover 10
- r3 is the radius of the center point of the cross section of the guide ring 40
- r4 is the radius of the air inlet 30
- a is the upper surface of the guide ring 40 to the top cover 10.
- the spacing of the surfaces, b is the width of the cross section of the guide ring 40, c is the thickness of the top cover 10, d is the spacing of the outer side of the guide ring 40 to the inner side of the top cover 10, and h is the height of the guide ring 40.
- the position of the guide ring 40 is between the drive shaft 50 and the outer diameter of the top cover 10, that is, r1 ⁇ r3 ⁇ r2.
- the guide ring 40 can be located inside the top cover 10 (in the air inlet 30) in the radial direction, in which case r1 ⁇ r3 ⁇ r4.
- a is a different value
- the negative dimension indicates that the upper surface of the guide ring 40 is higher than the top cover 10
- the positive distance indicates that the upper surface of the guide ring 40 is lower than the upper surface of the top cover 10
- the 0 dimension indicates that the guide ring 40 is flush with the height of the upper cover.
- the height of the upper surface of the guide ring 40 to the upper surface of the top cover 10 is greater than the thickness of the top cover 10, that is, the height of the guide ring 40 is smaller than the gap between the blade 81 and the top cover 10.
- the guide ring 40 is located at the air inlet 30, that is, the guide surface 41 of the guide ring 40 is closer to the drive shaft 50 than the inner side of the top cover 10, so that the guide surface can be passed through the air inlet 30. 41 Improve the effect of air turning.
- FIG. 10 shows the size of the guide ring 40.
- the guide ring 40 when the guide ring 40 is specifically fixed to the centrifugal impeller 80, the guide ring 40 may be fixed to the blade 81 of the centrifugal impeller 80 by bonding, welding, or by a joint connection or the like.
- the guide ring 40 and the centrifugal impeller 80 may be integrally formed. It can be applied to the fan provided in the embodiment of the present application, regardless of the connection or preparation method described above.
- the guide ring 40 provided in the embodiment of the present application has the following effects in addition to the effect of improving the air during steering as mentioned in the above description: since the guide ring 40 and the blade 81 are relatively fixed, therefore, When the centrifugal impeller 80 rotates, the relative position of the impeller 80 and the guide ring 40 is fixed. When the air circulates, the air blades 81 and the guide ring 40 on both sides of the air are relatively fixed to facilitate the circulation of air. In the prior art, when the centrifugal impeller rotates, when the top cover rotates relative to the blade, when the air is flowing, there is relative movement between the blades on both sides of the air and the top cover, and therefore, the air flows. Cause a certain disorder. It can be seen from the above description that the fan provided in the embodiment of the present application can more effectively improve the effect of air circulation when the impeller 80 and the guide ring 40 are relatively fixed, thereby increasing the air supply amount.
- the air supply amount can be improved by improving other structures on the centrifugal impeller 80.
- FIG. 11 shows the structure of another fan provided by the embodiment of the present application.
- the amount of blown air is improved by improving the structure of the vanes 81 on the centrifugal impeller 80.
- the amount of blown air is improved by providing a groove 811 in the radial direction of the blade 81 on the impeller 80, wherein the radial direction of the blade 81 refers to the gradual upward direction of the blade 81.
- the description is made with a rectangular blade.
- the faces on the blade 81 are respectively named, as shown in FIG. 11, the blade 81 has The five faces are a top surface 812, a bottom surface (a surface opposite to the top surface 812), a left side surface 813, a right side surface (a surface opposite to the left side surface 813), and an outer end surface 814.
- the top surface 812 and the bottom surface are two surfaces perpendicular to the axis of the centrifugal impeller 80.
- the left side surface 813, the right side surface and the outer end surface 814 are three sides between the top surface 812 and the bottom surface, and the outer end surface 814
- the end surface of the blade 81 away from the axis, the left side surface 813 and the right side surface are respectively side surfaces on both sides of the outer end surface 814. Further, in the direction of the blade 81, the direction from the axis of the centrifugal impeller 80 to the outer end surface 814 of the blade 81 is the radial direction of the blade 81.
- the fan provided by the embodiment of the present application is provided with a plurality of grooves 811 on at least one of the blades 81 , and the plurality of grooves 811 are arranged along the radial direction of the blade 81 . And the groove 811 is inclined at an angle to the normal direction of the radial tangent of the blade 81. For each of the grooves 811, as shown in FIGS.
- the groove 811 is inclined with respect to the radial direction of the blade 81, both ends of the groove 811 are open, and the length direction of the groove 811 and the diameter of the blade 81 are
- the angle of the tangential direction is a set angle, wherein the longitudinal direction of the groove 811 is a direction from one opening of the groove 811 to the other opening, and the radial tangential direction of the blade 81 is at the blade 81. In the case of a straight blade, it is the radial direction of the blade 81, and when the blade 81 is a curved blade, it is the tangential direction of the curved line on the blade 81.
- a portion of the blade 81 of the fan provided by the embodiment of the present application is provided with a first groove 815, and the first groove 815 is disposed on the top surface 812 of the blade 81, in a specific setting.
- the longitudinal direction of the first groove 815 is inclined with respect to the normal direction of the radial tangential line of the blade 81, and the angle between the longitudinal direction of the first groove 815 and the normal direction of the tangent of the blade 81 is an acute angle. As shown in FIG.
- the longitudinal direction of the first groove 815 is at an angle ⁇ with the radial direction of the blade 81, wherein ⁇ is between 3° and 75°, such as 10°, 20°, 30°, Different angles such as 40° and 50°.
- the single first groove 815 measures its height along the height direction of the blade 81 between 0.1% and 25% of the total height of the blade 81, and the width direction dimension is measured along the radial length direction of the blade 81, first The width of the groove 815 is between 0.1% and 25% of the total length of the blade 81.
- the plurality of first trenches 815 may be periodically or non-periodically distributed, and the plurality of trenches 811 may be arranged in an equally spaced manner, or may be non-equal spacing. Arranged in a way.
- the first grooves 815 may also be disposed on different faces of the blade 81. As shown in FIG. 13, the first grooves 815 are respectively disposed on the top surface 812 and the bottom surface of the blade 81, and at the same time, the outer end surface 814 may be disposed.
- the third groove 817 is to further improve the passage of air.
- the first groove 815 may also be disposed on the left side surface 813, the right side surface and the outer end surface 814 of the blade 81, and the groove on the outer end surface 814 is the third groove 817.
- the first trenches 815 are respectively disposed on different surfaces of the blades 81, the first trenches 815 on different planes may be arranged differently.
- the first trenches 815 located on the top surface 812 are periodically arranged on the bottom surface.
- the first trenches 815 are arranged in a non-periodical manner. Or the first trenches 815 on both sides may be periodically or non-periodically arranged, and may be applied in the embodiments of the present application.
- the cross-sectional shape of the first trench 815 a different shape may be employed, as in the first trench 815 shown in FIG. 13, including a streamlined elliptical first trench 815, or a regular rectangle and a triangle A trench 815.
- the shape of the first trench 815 is not limited to the shape of several trenches 811 listed above.
- the first trench 815 disposed on the same surface may be a trench 811 having the same cross-sectional shape, and may be a trench 811 having a different cross-sectional shape.
- the trench 811 provided by the embodiment of the present application may further include a second trench 816 in addition to the first trench 815 described above, wherein the second trench 816 includes two portions to form a chevron groove.
- the second groove 816 includes a first groove body 8161 and a second groove body 8162, wherein the first groove body 8161 and the second groove body 8162 are relatively inclined, and the first groove body 8161 and the second groove are The longitudinal direction of the body 8162 is at an angle set to the normal direction of the tangent to the blade 81.
- the size and cross-sectional shape of the first groove body 8181 and the second groove body 8162 in the second groove 816 can refer to the size and cross-sectional shape of the first groove 815 shown in FIG. This is not going to be described in detail.
- the first trench 815 and the second trench 816 may be located above all the blades 81 of the fan, or may be located above the plurality of blades 81 of the fan.
- the vanes 81 having the features of the grooves 811 may be periodically distributed or non-periodically distributed. It may be that several consecutive blades 81 have the features of the grooves 811, or that the discontinuous blades 81 have the features of the grooves 811. The distribution needs to be determined based on the actual measured air volume and noise spectrum characteristics.
- the centrifugal impeller 80 of the fan and the top cover 10 are relatively rotated, and the top surface and the bottom surface of the blade 81 are separated from the top cover 10 and the bottom cover 20 by a certain gap.
- the relative motion of the airflow between the top cover 10 and the blade 81 is as shown in Fig.
- the movement of the airflow relative to the blade 81 is synthesized by the velocity Vt tangential to the blade 81 along the centrifugal impeller 80 and Vr relative to the radius of the centrifugal impeller 80, i.e., The final relative velocity is Va at a certain point of the blade 81; the direction of Va varies depending on the radius of the blade 81, as can be seen in Fig.
- the resultant velocity Va of the relative motion is not parallel to the normal of the blade 81 ( The direction perpendicular to the radial direction of the blade 81), therefore, in order to allow the air between the centrifugal impeller 80 and the top cover 10 to flow through the groove 811 in a smoother manner, the direction of the groove 811 provided in the embodiment of the present application It should be as similar as possible to the direction of Va, thereby improving the passage of air over the groove 811.
- the direction of Va varies geometrically with the radius of the blade 81; it varies with the rotational speed of the centrifugal impeller 80; therefore, there is a suitable angle selection with the groove 811 at the radial position of the blade 81 and the rotational speed of the centrifugal impeller 80 at the usual operating point. .
- the general angle is between 3° and 75°.
- the longitudinal direction of the first groove 815 is set as parallel as possible to the synthesized Va.
- a herringbone-shaped blade 81 groove 811 layout may be employed, as specifically shown in FIG. As shown in FIGS. 16 and 17, the groove 811 provided obliquely allows the air to flow more smoothly and smoothly through the groove 811, thereby improving the flow effect of the air.
- the groove 811 when the groove 811 is employed, the groove feature of the surface of the blade 81 forcibly breaks up the large eddy flowing through the surface of the blade 81 into a small eddy current, thereby causing the turbulent energy to be distributed over a wider frequency band.
- the concentration of energy of noise is reduced; at the same time, the scattering of large eddy reduces the possibility of air blocking the flow channel, especially in non-design conditions, the air flow state is deteriorated, which is more conducive to the smooth flow of air through the blades.
- the flow path enhances the air volume.
- the fan provided by the embodiment of the present application constructs a groove or a chevron groove on the top of the blade according to the flow characteristics of the blade. And the groove arrangement of the adjacent blades can be staggered to achieve the effect of maximizing the formation of large eddies, thereby improving the air intake effect of the fan and reducing the noise effect.
- the guide ring 40 and the groove 811 provided in the above embodiments can be used alone to improve the air intake effect of the fan to increase the air supply amount of the fan, and a combined manner can be used to improve the air supply amount of the fan.
- the first groove 815 or the second groove 816 described above is disposed on the blade 81 of the centrifugal impeller 80, or the first groove 815 and the second groove 816 are simultaneously disposed, and a guide ring is disposed on the centrifugal impeller 80. 40.
- the position of the guide ring 40 is set as described in the above embodiment, and the guide ring 40 divides the area on the centrifugal impeller 80 into two areas, namely, area I and area II, respectively.
- the fan has both the guide ring 40 improving the improvement effect of air bending, and the groove 811 improving the effect of air flowing through the blade 81, thereby effectively improving the fan.
- the embodiment of the present application further provides a mobile terminal, where the mobile terminal includes any of the above-mentioned fans 100.
- the mobile terminal is a common mobile terminal such as a notebook or a tablet computer.
- the fan 100 is disposed in the housing 200 of the mobile terminal, and the fan 100 improves the air supply amount and the fan 100 by increasing the guide ring, adding a groove, or simultaneously increasing the groove and the guide ring. The effect of fan 100 noise.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
本申请提供了一种风扇及移动终端,该风扇包括壳体,以及设置在壳体内且可相对壳体转动的离心叶轮,离心叶轮包括多个叶片,多个叶片中的至少一个叶片上设置有多个沿叶片径向方向排列的沟槽,且沟槽相对叶片径向切线的法向方向成一定角度的倾斜设置。在使用时,气流相对于叶片的运动由沿叶片切向的速度和相对于离心叶轮半径的速度合成,即最终的相对速度并不平行于叶片的法向(与叶片的径向方向切线垂直的方向),因此,为了让空气能以更顺畅的方式流过沟槽,本申请实施例设置的沟槽相对径向方向倾斜,从而使得沟槽的长度方向与相对速度的方向尽可能相同,从而提高了空气在沟槽上的通过性。进而提高通过效果,并且降低风扇造成的噪声。
Description
本申请涉及移动终端的技术领域,尤其涉及到一种风扇及移动终端。
笔记本电脑及平板等终端产品因为用户的轻薄需求,需要尺寸越趋轻薄,同时需要良好的散热性能,从而具有较好的温度体验。并且为了提高用户的静音体验,需要风扇具有较低的噪声。这对散热风扇具有尽可能小的尺寸的同时,需要有较高的风量和较低的噪声。
传统的风扇由于尺寸的变小,容易导致入口进风区域的流场恶化,降低风量,影响到风扇的送风效果。
发明内容
本申请提供了一种风扇及移动终端,用以改善风扇的送风量。
第一方面,本申请提供了一种风扇,该风扇包括一个壳体,该壳体上设置有进风口及出风口,并且壳体内设置了离心叶轮,该离心叶轮可相对壳体转动,从而将空气送进风口送入到出风口;在具体设置时,该离心叶轮包括多个叶片,该多个叶片环绕离心叶轮的驱动轴设置,为了改善进风效果,在多个叶片中的至少一个叶片上设置了多个沟槽,多个沟槽沿叶片的径向方向排列,且所述沟槽相对所述叶片径向切线的法向方向成一定角度的倾斜设置。其中,叶片的径向方向为叶片上沿逐渐远离驱动轴的延伸方向。
在使用时,气流相对于叶片的运动由沿叶片切向的速度和相对于离心叶轮半径的速度合成,即最终的相对速度并不平行于叶片的法向(与叶片的径向切线方向垂直的方向),因此,为了让空气能以更顺畅的方式流过沟槽,本申请实施例设置的沟槽相对径向方向倾斜,从而使得沟槽的长度方向与相对速度的方向尽可能相同,从而提高了空气在沟槽上的通过性。进而提高通过效果,并且降低风扇造成的噪声。
在具体设置上述沟槽时,可以通过不同的方式形成,下面分别进行介绍。
在一个具体的实施方式中,所述沟槽为单一方向倾斜的第一沟槽,并且所述第一沟槽的长度方向与所述叶片径向切线的法向方向的夹角为锐角。该锐角可以为3°~75°之间的任意角度。以使得第一沟槽能够与相对速度更加匹配,提高空气的通过性。
在具体设置第一沟槽时,多个第一沟槽可以设置在叶片的不同面,如在叶片具有相对的顶面及底面时,可以分别在顶面和底面设置第一沟槽,或者在顶面或者底面设置第一沟槽。在叶片具有相对的侧面时,可以在叶片的侧面上也设置第一沟槽。并且在叶片的面上设置第一沟槽时,多个第一沟槽可以呈周期性排布或者非周期性排布。
此外,对于第一沟槽来说,可以采用不同的形状,具体的,第一沟槽的横截面可以为矩形或三角形。或者具有流线型的椭圆形,或者其他形状。
对于单个第一沟槽沿着叶片的高度方向测量其高度,介于叶片总高度的0.1%-25%之间,第一沟槽宽度方向尺寸沿着叶片的径向长度方向测量,第一沟槽的宽度介于叶 片的总长度的0.1%-25%之间。
在另一个具体的实施方式中,所述沟槽采用人字形的第二沟槽,具体的,所述第二沟槽包括相对倾斜的第一槽体及第二槽体,并且,所述第一槽体及所述第二槽体与所述叶片径向切线的法向方向的夹角分别为锐角。该锐角可以为3°~75°之间任意的角度。并且在具体设置第二沟槽时,其设置面及排列的周期性可以参考上述对第一沟槽的描述。
为了更进一步的提高送风效果,在叶片的外端面上设置有第三沟槽。更进一步的改善通风效果。
除上述沟槽外,还可以通过增加导向环来改善风扇的进风效果。具体的,所述离心叶轮的驱动轴外露在所述进风口;且所述导向环与所述多个叶片固定连接,所述导向环朝向所述驱动轴的一面为导向面。在进风时,从进风口流入的空气通过导向环的导向面进行导向,从而改善空气在转向时的效果,减少了涡流,提高了空气的流通性,进而提高了进风效果。在具体使用时,该导向环可以单独使用,也可以跟上述沟槽结合在一起使用,从而更进一步的提高送风效果。
在具体设置导向环时,该导向环可以为一个整体的环形,或者可以采用分段的方式,此时,所述导向环包括多个间隔设置的圆弧段。
此外,在具体设置导向环的位置时,其可以位于壳体内部,也可以外露在进风口。在一个具体的实施方案中,所述导向环外露在所述进风口。
对于导向环来说,其横截面可以为不同的形状,如导向环的横截面为圆形、椭圆形或子弹形等不同的形状。
第二方面,提供了一种风扇,该风扇包括一个壳体,该壳体上设置有进风口及出风口,并且壳体内设置了离心叶轮,该离心叶轮可相对壳体转动,从而将空气送进风口送入到出风口;在具体设置时,该离心叶轮包括多个叶片,该多个叶片环绕离心叶轮的驱动轴设置,为了改善进风效果,还包括导向环,且所述导向环与所述多个叶片固定连接,所述导向环朝向所述驱动轴的一面为导向面。
在使用时,在进风时,从进风口流入的空气通过导向环的导向面进行导向,从而改善空气在转向时的效果,减少了涡流,提高了空气的流通性,进而提高了进风效果。
在具体设置导向环时,该导向环可以为一个整体的环形,或者可以采用分段的方式,例如,所述导向环包括多个间隔设置的圆弧段。
此外,在具体设置导向环的位置时,其可以位于壳体内部,也可以外露在进风口。在一个具体的实施方案中,所述导向环外露在所述进风口。
对于导向环来说,其横截面可以为不同的形状,如导向环的横截面为圆形、椭圆形或子弹形等不同的形状。
第三方面,本申请还提供了一种移动终端,该移动终端包括壳体以及设置在壳体内的上述任一项的风扇。通过采用增加导向环、增加沟槽或者同时增加沟槽及导向环来改善风扇的送风量以及降低风扇噪声的效果。
图1为本申请实施例提供的风扇的结构示意图;
图2为本申请实施例提供的风扇的剖视图;
图3为本申请实施例提供的离心叶轮的结构示意图;
图4~图8为本申请实施例提供的导向环的横截面示意图;
图9为本申请实施例提供的风扇的尺寸示意图;
图10为本申请实施例提供的导向环的横截面尺寸示意图;
图11为本申请实施例提供的另一种离心叶轮的结构示意图;
图12为本申请实施例提供的一种叶片的结构示意图;
图13为本申请实施例提供的另一种叶片的结构示意图;
图14为本申请实施例提供的另一种叶片的结构示意图;
图15为本申请实施例提供的离心叶轮的内部流场方向示意图;
图16为图13所示的叶片的内部流场方向示意图;
图17为图14所示的叶片的内部流场方向示意图;
图18为本申请实施例提供的移动终端的结构示意图。
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
针对现有技术中移动终端逐步向薄型化发展,现有技术中移动终端中的风扇为了匹配移动终端也需要不断的小型化,从而造成送风量减少。为了改善送风量的问题,本申请实施例提供了一种风扇,在本申请实施例提供的风扇中通过改善风扇的结构,以提高风扇的送风量。为了方便理解本申请实施例提供的风扇,下面结合附图以及具体的实施例对其进行详细的说明。
首先,需要说明的是,本申请实施例提供的风扇为离心风扇,该离心风扇包括一个壳体,以及设置在壳体内的一个离心叶轮,其中,该离心叶轮通过驱动轴与壳体转动连接,其中驱动轴的轴线也是离心叶轮的轴线。壳体上设置有进风口以及出风口,在具体设置进风口时,进风口的个数可以为一个也可以为两个。在进风口是一个时,该进风口位于离心叶轮的一侧,此时,风扇为单侧进风风扇。在进风口为两个时,两个进风口相对设置在离心叶轮的两侧,此时风扇为双侧进风的风扇。
为了方便描述,本申请实施例以单侧进风风扇为例进行说明。如图1及图2所示,图1示出了风扇的结构示意图,图2示出了风扇的剖视图,由图2可以看出,壳体包括相对设置的顶盖10及底盖20,且顶盖10与底盖20之间通过侧壁连接。其中,进风口设置在顶盖10上,出风口70设置在侧壁上,在使用时,通过离心叶轮80将从顶盖10进入的空气输送到侧壁上的出风口70后进入到移动终端的内部。具体的,参考图2中带箭头的线,该带箭头的线表示空气的流动方向,由图2可以看出,在空气流通时,空气在壳体内的流向进行了一个近似九十度的折弯。而由于进风口处的顶盖10厚度较小,并且顶盖与所在系统的内壁面之间的间隙也较小,因此,空气在进风口边沿有一个较大的折弯,极易产生涡流,影响到风扇中空气的送风量。为了改善在进风口的空气在折弯时的损耗,本申请实施例中提供的离心叶轮80上设置了导向环40,一并参考图3,图3示出了导向环40在离心叶轮80上的设置方式。在具体设置时, 该导向环40为环形,且导向环40的圆心位于离心叶轮80的轴线上,以保证在旋转时,导向环40能够跟随离心叶轮80同步转动,并能够相对离心叶轮80相对静止。如图3中所示,导向环40将离心叶轮80上的区域划分成两个区域,分别为区域I及区域II,其中,区域I为进风口对应的区域,在进风时,空气从区域I进入,并经导向环40导向后,流经叶片81,并经叶片81导向进入到区域II内。此外,导向环40除了上述环形外,还可以采用其他的方式,如可以采用多个不连续的圆弧段围成的环形,或者采用带有缺口的环形等不同的形状。
一并参考图1及图3,其中,图1中示出了导向环40的横截面示意图,由图1示出的结构可以看出,该导向环40上具有一个导向面41,该导向面41为导向环40的内侧面,并且在装配在离心叶轮80时,该导向面41朝向离心叶轮80的轴线。在离心叶轮80转动时,空气流经该导向面41,空气沿导向面41进行折弯,为了改善空气在折弯时的流动效果,该导向面41为一个弧形导向面,在图1中所示的导向面41的边沿的弧线可以为圆弧、椭圆弧等不同的流线型弧线。导向面41的边沿也可以不为弧线,也可以为非流线形。并且在具体实施时,只需保证导向环40的导向面41具有一定的弧度即可改善空气在折弯时的流动效果。导向环具有两部分的作用,一部分是对采用流线型设计,降低空气阻力;另一部分的作用是减轻流体流过盖板10所产生的涡流。因此导向面41即使不做成流线型,也具有部分效果,因此,对于具体的导向环40的横截面形状在此不做任何限定。如图4~图8所示,图4~图8示出了不同的导向环40的横截面形状,由图4~图8可以看出,本实施例提供的导向环40的横截面可以为圆形、椭圆形、子弹形、跑道形等不同的形状。在具体设置导向环40时,其横截面形状可以为规则形状、不规则形状、对称或者不对称的形状等不同的形状。
下面以横截面为图4所示的导向环40为例说明一下导向环40在设置到离心风扇上时的结构。一并参考图9及图10,为了方便描述,首先对图9及图10中的字母含义进行说明。r1为驱动轴50的半径,r2为顶盖10的外径,r3为导向环40的横截面的中心点的半径,r4为进风口30的半径,a为导向环40上表面到顶盖10上表面的间距,b为导向环40横截面的宽度,c为顶盖10的厚度,d为导向环40的外侧面到顶盖10的内侧面的间距,h为导向环40的高度。在具体设置时,如图9中所示,导向环40的位置介于驱动轴50和顶盖10的外径之间,即r1≤r3≤r2。在采用上述设置方式时,导向环40既可以在径向方向位于顶盖10内侧(位于进风口30内),此时,r1≤r3≤r4。在采用该设置方式时,d≥0;在d=0时,表示导向环40远离驱动轴50的一端面与顶盖10的内侧面贴合。还可以采用导向环40嵌入到顶盖10内的结构,此时,r4≤r3≤r2。并且d<0。此时,导向环40位于进风口30外,且位于顶盖10及叶片81之间。在采用两种不同的设置方式时,a为不同的值,在导向环40位于进风口30内时,-3mm≤a≤+3mm,其中负的尺寸表示导向环40的上表面高于顶盖10上表面的高度,正的距离表示导向环40的上表面低于顶盖10的上表面,0尺寸表示导向环40与上盖板的高度平齐。在导向环40位于进风口30外时,a≥c。即导向环40的上表面到顶盖10的上表面的高度大于顶盖10的厚度,即导向环40的高度小于叶片81与顶盖10之间的间隙。在一个具体的实施方案中,采用导向环40位于进风口30处,即导向环40的导向面41比顶盖10的内侧面靠近驱动轴50,从而能够在进风口30处即可通过导向面41改善空气转向时的效果。
一并参考图10,图10示出了导向环40的尺寸,导向环40的高度h介于0.01mm-5mm之间,导向环40的宽度b介于0.01mm-15mm之间,如h=0.02mm,b=0.05mm;h=0.05mm,b=0.08mm;h=0.5mm,b=1mm;h=2mm,b=5mm;h=4mm,b=10mm;等不同的尺寸。
此外,在导向环40具体固定在离心叶轮80上时,可以通过粘接、焊接或者通过连接件连接等不同的方式将导向环40固定在离心叶轮80的叶片81上。此外,还可以采用导向环40与离心叶轮80采用一体成型的方式制备而成。无论采用上述那种连接或制备方式均可应用到本申请实施例提供的风扇中。
在本申请实施例提供的导向环40,除了上述描述中提到的改善空气在转向时的效果外,还具有如下效果:由于导向环40与叶片81之间采用相对固定的方式,因此,在离心叶轮80转动时,叶轮80与导向环40的相对位置是固定的,在空气流通时,空气两侧叶片81及导向环40是相对固定的,方便空气的流通。而现有技术中,在离心叶轮转动时,顶盖相对于叶片之间时相对转动时,空气在流通时,空气两侧的叶片及顶盖之间存在相对运动,因此,会对空气的流动造成一定的紊乱。通过上述描述可以看出,在本申请实施例中提供的风扇通过相对固定的设置叶轮80及导向环40可以更有利的改善空气在流通时的效果,进而提高送风量。
在本申请实施例中,除了上述通过导向环40来改善送风量的实施例外,还可以通过改善离心叶轮80上的其他结构来改善送风量。如图11所示,图11示出了本申请实施例提供的另外一种风扇的结构。在图11所示的结构中,通过改善离心叶轮80上叶片81的结构来改善送风量。继续参考图11,在本申请实施例中,通过在叶轮80上沿叶片81的径向方向设置沟槽811来改善送风量,其中,叶片81的径向方向指的是叶片81上沿逐渐远离驱动轴的延伸方向。在一个具体的实施方式中,以矩形的叶片进行描述,为了方便描述该沟槽811的结构以及设置位置,对叶片81上的面分别进行了命名,如图11中所示,叶片81具有的五个面分别为顶面812、底面(与顶面812相对的面)、左侧面813、右侧面(与左侧面813相对的面)及外端面814。其中,顶面812及底面为垂直于离心叶轮80的轴线的两个面,左侧面813、右侧面及外端面814为介于顶面812及底面之间的三个侧面,外端面814为叶片81远离轴线的端面,左侧面813及右侧面分别为外端面814两侧的侧面。另外沿叶片81的走向,从离心叶轮80的轴线指向叶片81的外端面814的方向为叶片81的径向方向。
继续参考图11,为了改善风扇的进风效果,本申请实施例提供的风扇在其中的至少一个叶片81上设置有多个沟槽811,且多个沟槽811沿叶片81的径向方向排列,且沟槽811相对叶片81径向切线的法向方向成一定角度的倾斜设置。针对每个沟槽811,如图12及图14所示,沟槽811相对叶片81的径向方向倾斜设置,沟槽811的两端均开口,且沟槽811的长度方向与叶片81的径向切线的法向方向呈设定的夹角,其中,所述沟槽811的长度方向为从沟槽811的一个开口指向另外一个开口的方向,该叶片81的径向切线方向在叶片81为直叶片时,即为叶片81的径向方向,当叶片81为弧形叶片时,即为叶片81上弧形线的切线方向。
首先参考图12所示,本申请实施例提供的风扇的其中的一部分叶片81上设置有第一沟槽815,并且该第一沟槽815设置在了叶片81的顶面812,在具体设置时,该第一沟槽815的长度方向相对于叶片81的径向切线的法向方向倾斜,第一沟槽815 的长度方向与叶片81的切线的法向方向的夹角为锐角。如图12中所示,第一沟槽815的长度方向与叶片81的径向方向的夹角为α,其中,α处于3°到75°之间,如10°、20°、30°、40°、50°等不同的角度。此外,单个第一沟槽815沿着叶片81的高度方向测量其高度,介于叶片81总高度的0.1%-25%之间,宽度方向尺寸沿着叶片81的径向长度方向测量,第一沟槽815的宽度介于叶片81的总长度的0.1%-25%之间。并且在具体的设置多个第一沟槽815时,多个第一沟槽815可以为周期或者非周期性分布,并且多个沟槽811可以采用等间距的方式排列,也可以采用非等间距的方式排列。此外,第一沟槽815还可以设置在叶片81的不同的面,如图13所示,第一沟槽815分别设置在了叶片81的顶面812、底面,同时,在外端面814上可以设置第三沟槽817,以进一步的改善空气的通过性。同样的,第一沟槽815也可以设置在叶片81的左侧面813、右侧面及外端面814,位于外端面814的沟槽为第三沟槽817。在此不一一画图进行示例。在叶片81的不同面上分别设置第一沟槽815时,不同面上的第一沟槽815的排列方式可以不同,如位于顶面812的第一沟槽815采用周期性排列,位于底面上的第一沟槽815采用非周期性排列。或者两个面上的第一沟槽815均采用周期性排列或者非周期性排列,均可以应用在本申请的实施例中。
此外,对于第一沟槽815的横截面形状,可以采用不同的形状,如图13所示的第一沟槽815中,包含流线型的椭圆形第一沟槽815,或者规则的矩形和三角形第一沟槽815。当然第一沟槽815的形状不仅限于上述列举的几种沟槽811形状。并且在具体设置时,在同一面上设置的第一沟槽815可以为横截面形状相同的沟槽811,可以为横截面形状不同的沟槽811。
参考图14,本申请实施例提供的沟槽811除了包括上述描述的第一沟槽815外,还可以为第二沟槽816,其中该第二沟槽816包括两部分,形成一个人字形沟槽,具体的,该第二沟槽816包括第一槽体8161及第二槽体8162,其中,第一槽体8161及第二槽体8162相对倾斜,并且第一槽体8161及第二槽体8162的长度方向与叶片81的切线的法向方向呈设定夹角。在具体设置时,第二沟槽816中的第一槽体8161及第二槽体8162的尺寸及横截面形状可以参考图12中所示的第一沟槽815的尺寸及横截面形状,在此不再详细的赘述。
此外,在具体设置第一沟槽815及第二沟槽816时,第一沟槽815或第二沟槽816可以位于风扇的所有叶片81上面,也可以位于风扇的若干个叶片81上面。具有沟槽811特征的叶片81可以周期性分布,也可以非周期性分布。可以是连续的几个叶片81具有沟槽811特征,也可以是不连续的叶片81具有沟槽811特征。其分布需要依据实际测试的风量和噪声频谱特性来确定。
为了方便理解本申请实施例提供的沟槽811,下面结合其原理对其进行详细的说明。如图15所示,风扇的离心叶轮80与顶盖10之间产生相对旋转,叶片81的顶面及底面分别与顶盖10及底盖20之间保留有一定的间隙。气流在顶盖10与叶片81之间的相对运动如图15所示:气流相对于叶片81的运动由沿离心叶轮80叶片81切向的速度Vt和相对于离心叶轮80半径的Vr合成,即最终的相对速度在叶片81的某一点为Va;Va的方向随叶片81所在的半径的大小而不同,如图15可以看出,相对运动的合成速度Va并不平行于叶片81的法向(与叶片81的径向方向垂直的方向),因此,为了让离心叶轮80与顶盖10之间的空气能以更顺畅的方式流过沟槽811,本 申请实施例设置的沟槽811的方向应与Va的方向尽可能相同,从而提高了空气在沟槽811上的通过性。
Va的方向在几何上随叶片81半径大小而不同;在运动上随离心叶轮80转速而不同;因此随沟槽811在叶片81的半径位置以及常用工作点的离心叶轮80转速有一合适的角度选择。一般的角度处于3°到75°之间。如图16中所示的结构,第一沟槽815的长度方向在设置时尽量做到与合成后的Va平行。此外,为了更大程度的将大的涡流打散,可以采用人字形的叶片81沟槽811布局,具体的可以参考图17所示。由图16及图17所示,通过倾斜设置的沟槽811可以使得空气更佳顺畅的流过沟槽811,进而能够改善空气的流动效果。
通过上述描述可以看出,在采用沟槽811时,叶片81的表面的沟槽特征将流过叶片81表面的大涡强制打散为小的涡流,从而使得湍流的能量分布在更宽的频带范围内,降低噪声的能量的集中度;同时大涡的打散,降低了空气堵塞流道的可能性,尤其在非设计工况,空气流动状态恶化,更有利于空气能够顺利流过叶片间的流道,提升风量。
在一个具体的实施方式中,由于笔记本、平板等移动终端设备越来越薄,风扇的尺寸也越来越薄,导致叶片的高度和厚度都受到极大的限制。为了最大限度的发挥沟槽的特征,本申请实施例提供的风扇依据叶片的流动特性,在叶片顶部构造斜的沟槽或人字形的沟槽。并且相邻的叶片的沟槽布置可以进行交错布置,以达到最大打散大涡形成的效果,进而提高风扇的进风效果,以及降低噪声的效果。
上述实施例中提供的导向环40及沟槽811可以单独使用来改善风扇的进风效果,以提高风扇的送风量,还可以采用组合的方式来改善风扇的送风量。此时,在离心叶轮80的叶片81上设置上述的第一沟槽815或第二沟槽816,或者同时设置第一沟槽815及第二沟槽816,并且在离心叶轮80上设置导向环40,在设置导向环40时,该导向环40的设置位置如上述实施例中描述的方式设置,导向环40将离心叶轮80上的区域划分成两个区域,分别为区域I及区域II,并且第一沟槽815或第二沟槽816设置的位置位于区域II内。在采用导向环40和沟槽811的结构时,该风扇既有导向环40改善空气折弯时的改善效果,又有沟槽811改善空气流过叶片81时的效果,从而可以有效的改善风扇的送风量。
如图18所示,本申请实施例还提供了一种移动终端,该移动终端包括上述任一种风扇100,在具体设置时,该移动终端为笔记本、平板电脑等常见的移动终端。如图18所示,该风扇100设置在移动终端的壳体200内,且该风扇100通过采用增加导向环、增加沟槽或者同时增加沟槽及导向环来改善风扇100的送风量以及降低风扇100噪声的效果。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (15)
- 一种风扇,其特征在于,包括:壳体,以及设置在所述壳体内且可相对所述壳体转动的离心叶轮,所述离心叶轮包括多个叶片,所述多个叶片中的至少一个叶片上设置有多个沿所述叶片径向方向排列的沟槽,且所述沟槽相对所述叶片径向切线的法向方向成一定角度的倾斜设置。
- 根据权利要求1所述的风扇,其特征在于,所述沟槽为单一方向倾斜的第一沟槽,且所述第一沟槽的长度方向与所述叶片径向切线的法向方向的夹角为锐角。
- 根据权利要求2所述的风扇,其特征在于,所述叶片具有相对而置的顶面及底面,其中,所述顶面和/或底面设置有所述第一沟槽。
- 根据权利要求2所述的风扇,其特征在于,所述第一沟槽的横截面为矩形或三角形。
- 根据权利要求1所述的风扇,其特征在于,所述沟槽为人字形的第二沟槽,且所述第二沟槽包括相对倾斜的第一槽体及第二槽体,且所述第一槽体及所述第二槽体与所述叶片的径向切线的法向方向成一定的角度的夹角。
- 根据权利要求2~5任一项所述的风扇,其特征在于,所述叶片具有外端面,所述外端面上设置有第三沟槽。
- 根据权利要求1~6任一项所述的风扇,其特征在于,所述风扇具有进风口,所述离心叶轮的驱动轴外露在所述进风口;还包括导向环,且所述导向环与所述多个叶片固定连接,所述导向环朝向所述驱动轴的一面为导向面。
- 根据权利要求7所述的风扇,其特征在于,所述导向环包括多个间隔设置的圆弧段。
- 根据权利要求7所述的风扇,其特征在于,所述导向环外露在所述进风口。
- 根据权利要求7所述的风扇,其特征在于,所述导向环的横截面为圆形、椭圆形或子弹形。
- 一种风扇,其特征在于,包括:壳体,以及设置在所述壳体内且可相对所述壳体转动的离心叶轮,所述离心叶轮包括驱动轴以及与所述驱动轴连接的多个叶片;还包括导向环,且所述导向环与所述多个叶片固定连接,所述导向环朝向所述驱动轴的一面为导向面。
- 根据权利要求11所述的风扇,其特征在于,所述导向环包括多个间隔设置的圆弧段。
- 根据权利要求11所述的风扇,其特征在于,所述导向环外露在所述进风口。
- 根据权利要求11所述的风扇,其特征在于,所述导向环的横截面为圆形、椭圆形或子弹形。
- 一种移动终端,其特征在于,包括如权利要求1~14任一项所述的风扇。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880039253.6A CN110892160B (zh) | 2018-02-02 | 2018-02-02 | 一种风扇及移动终端 |
PCT/CN2018/075171 WO2019148468A1 (zh) | 2018-02-02 | 2018-02-02 | 一种风扇及移动终端 |
EP18903083.6A EP3736449B1 (en) | 2018-02-02 | 2018-02-02 | Fan and mobile terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/075171 WO2019148468A1 (zh) | 2018-02-02 | 2018-02-02 | 一种风扇及移动终端 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019148468A1 true WO2019148468A1 (zh) | 2019-08-08 |
Family
ID=67478595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/075171 WO2019148468A1 (zh) | 2018-02-02 | 2018-02-02 | 一种风扇及移动终端 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3736449B1 (zh) |
CN (1) | CN110892160B (zh) |
WO (1) | WO2019148468A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101463831A (zh) * | 2007-12-19 | 2009-06-24 | 富准精密工业(深圳)有限公司 | 散热风扇及其风扇扇叶 |
CN101498317A (zh) * | 2008-02-01 | 2009-08-05 | 富准精密工业(深圳)有限公司 | 散热风扇及其叶轮 |
CN201560981U (zh) * | 2009-07-15 | 2010-08-25 | 鑫贺精密电子(东莞)有限公司 | 散热风扇之扇叶结构 |
CN202056098U (zh) * | 2011-05-26 | 2011-11-30 | 中达电子零组件(吴江)有限公司 | 低噪声计算机风扇 |
CN102478020A (zh) * | 2010-11-24 | 2012-05-30 | 台达电子工业股份有限公司 | 离心式风扇及其扇叶 |
US20130105124A1 (en) * | 2011-10-31 | 2013-05-02 | Foxconn Technology Co., Ltd. | Heat dissipation fan |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB754055A (en) * | 1953-08-05 | 1956-08-01 | Westinghouse Electric Int Co | Improvements in or relating to centrifugal fan wheels |
KR20020009138A (ko) * | 2000-07-24 | 2002-02-01 | 구자홍 | 터보팬 |
JP3969354B2 (ja) * | 2003-06-23 | 2007-09-05 | 松下電器産業株式会社 | 遠心ファンおよびその用途 |
CN101063456A (zh) * | 2006-04-24 | 2007-10-31 | 乐金电子(天津)电器有限公司 | 除湿器风机扇叶的电机旋转轴插接孔防变形松动脱扣结构 |
DE102009028125A1 (de) * | 2009-07-30 | 2011-02-03 | Robert Bosch Gmbh | Eintrittsgeometrie für halbaxiale Lüfterräder |
JP5203478B2 (ja) * | 2011-03-02 | 2013-06-05 | シャープ株式会社 | 貫流ファン、成型用金型および流体送り装置 |
TWI516683B (zh) * | 2013-02-05 | 2016-01-11 | 建準電機工業股份有限公司 | 離心式風扇 |
CN103629129A (zh) * | 2013-11-20 | 2014-03-12 | 广州商科信息科技有限公司 | 风扇及风扇装置 |
CN203906382U (zh) * | 2014-05-23 | 2014-10-29 | 宁波朗迪叶轮机械有限公司 | 后倾式斜流风叶 |
CN104613056A (zh) * | 2015-01-21 | 2015-05-13 | 北京超微上达科技有限公司 | 一种人字形结构的仿生减阻表面 |
DE102015004200B4 (de) * | 2015-03-27 | 2024-04-04 | Sew-Eurodrive Gmbh & Co Kg | Radiallüfter mit an einem Grundkörper angeordneten Lüfterflügeln |
CN104929977B (zh) * | 2015-04-30 | 2018-03-13 | 广东美的制冷设备有限公司 | 离心风轮 |
CN106151111A (zh) * | 2016-08-08 | 2016-11-23 | 常州大学 | 一种列车用低噪声冷却风机 |
CN206785722U (zh) * | 2017-02-09 | 2017-12-22 | 周家辉 | 一种降噪减阻风扇 |
-
2018
- 2018-02-02 WO PCT/CN2018/075171 patent/WO2019148468A1/zh unknown
- 2018-02-02 CN CN201880039253.6A patent/CN110892160B/zh active Active
- 2018-02-02 EP EP18903083.6A patent/EP3736449B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101463831A (zh) * | 2007-12-19 | 2009-06-24 | 富准精密工业(深圳)有限公司 | 散热风扇及其风扇扇叶 |
CN101498317A (zh) * | 2008-02-01 | 2009-08-05 | 富准精密工业(深圳)有限公司 | 散热风扇及其叶轮 |
CN201560981U (zh) * | 2009-07-15 | 2010-08-25 | 鑫贺精密电子(东莞)有限公司 | 散热风扇之扇叶结构 |
CN102478020A (zh) * | 2010-11-24 | 2012-05-30 | 台达电子工业股份有限公司 | 离心式风扇及其扇叶 |
CN202056098U (zh) * | 2011-05-26 | 2011-11-30 | 中达电子零组件(吴江)有限公司 | 低噪声计算机风扇 |
US20130105124A1 (en) * | 2011-10-31 | 2013-05-02 | Foxconn Technology Co., Ltd. | Heat dissipation fan |
Non-Patent Citations (1)
Title |
---|
See also references of EP3736449A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN110892160A (zh) | 2020-03-17 |
EP3736449A1 (en) | 2020-11-11 |
EP3736449B1 (en) | 2023-04-05 |
CN110892160B (zh) | 2022-02-25 |
EP3736449A4 (en) | 2021-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7092433B2 (ja) | 正逆回転ファン | |
CN100476216C (zh) | 轴流式风扇罩的导向叶片 | |
EP2230407B1 (en) | Propeller fan | |
KR20210006484A (ko) | 송풍장치 및 이를 포함하는 공기조화기의 실외기 | |
EP2213882B1 (en) | Centrifugal fan | |
KR20010011433A (ko) | 원심 송풍기 | |
US10519969B2 (en) | Centrifugal fan | |
CN103958900B (zh) | 多叶片风扇及具备该多叶片风扇的空气调节器 | |
CN211715357U (zh) | 消旋结构、混流风机组件及空调器 | |
JP6203294B2 (ja) | 遠心ファン及び空気調和装置 | |
US9222482B2 (en) | Centrifugal fan | |
US11852158B1 (en) | Fan and impeller | |
WO2019148468A1 (zh) | 一种风扇及移动终端 | |
CN110939603A (zh) | 叶片及使用其的轴流叶轮 | |
CN110118198B (zh) | 离心式风扇 | |
US20190230814A1 (en) | Air blower | |
JP2006125229A (ja) | シロッコファン | |
WO2023202327A1 (zh) | 组合式扇叶结构及出风装置 | |
JP2001182692A (ja) | 遠心式送風機 | |
CN114829784A (zh) | 离心送风机 | |
JP6758520B2 (ja) | 遠心送風機及び送風装置 | |
TWI398210B (zh) | 散熱風扇及其風扇扇葉 | |
CN117345689A (zh) | 串联式集流器及具有其的离心风机 | |
JPH05288196A (ja) | 空気調和機 | |
JP2000045999A (ja) | 電動送風機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18903083 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018903083 Country of ref document: EP Effective date: 20200807 |